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Abstract

Sea level variation is one of the parameters directly related to climate change.
Monitoring sea level rise is an important scientific issue since many populated
areas of the world and megacities are located in low-lying regions.

At present, sea level is measured by means of two main techniques: the tide
gauges and the satellite radar altimetry. The sea level trends estimated from
tide gauge data are not directly comparable with those computed from satellite
records. Tide gauges measure sea-level relatively to a ground benchmark, hence,
their measurements are directly affected by local vertical ground motions. On the
other hand, satellite radar altimetry measures sea-level relative to a geocentric
reference and are not affected by vertical land motions.

In this study, the linear relative sea level trends of 35 tide gauge stations dis-
tributed across the Mediterranean Sea area have been computed over the period
1993-2014. In order to extract the real sea-level variation, the vertical land motion
has been estimated using the observations of available GPS stations and removed
from the tide gauges records. These GPS-corrected trends have then been com-
pared with satellite altimetry measurements over the same time interval (AVISO
data set). A further comparison has been performed, over the period 1993-2013,
using the CCI satellite altimetry data set which has been generated using an up-
dated modelling and a wider gridding compared to that of AVISO.

The first chapter of this dissertation gives an overview of the palaeo data and
current sea level observations, a basic description of the tide gauges and satellite
altimetry, and an analysis of the main causes of global mean sea level rise. The
second chapter introduces the region analyzed and the data sets from which the
tide gauge, GPS and satellite altimetry data have been selected and acquired. The
third chapter illustrates the strategies used to compute reliable trends from each
kind of data. The results are described in the fourth chapter.

The absolute sea level trends obtained from satellite altimetry and GPS-corrected
tide gauge data are mostly consistent, meaning that GPS data have provided re-
liable corrections for most of the sites. The trend values range between +2.5 and
+4 mm/yr almost everywhere in the Mediterranean area, the largest trends were
found in the Northern Adriatic Sea and in the Aegean. These results are in agree-
ment with estimates of the global mean sea level rise over the last two decades and
previous investigations concerning sea level in the Mediterranean Sea. In those
cases when GPS data were not available, information on the vertical land motion
deduced from the differences between absolute and relative trends are in agreement
with the results of other studies.





Sommario

La variazione del livello del mare rappresenta uno dei parametri direttamente
legati al cambiamento climatico. Monitorare l’innalzamento del livello marino è
importante poiché molte regioni densamente popolate e megalopoli del mondo sono
localizzate in aree costiere a bassa quota.

Attualmente, il livello del mare viene misurato per mezzo di due tecniche prin-
cipali: i mareografi e la radar altimetria da satellite. I trend di livello del mare
stimati dai dati mareografici non sono direttamente confrontabili con quelli calco-
lati dai dati satellitari. I mareografi, infatti, misurano il livello del mare relativa-
mente ad un caposaldo geodetico posto al suolo, quindi, questi dati possono essere
contaminati dai movimenti verticali del terreno. D’altra parte, la radar altimetria
misura il livello del mare rispetto a un riferimento geocentrico e non è influenzata
dai movimenti verticali del suolo.

In questo studio, sono stati calcolati i trend lineari di livello del mare di 35
stazioni mareografiche distribuite nel Bacino Mediterraneo, nel periodo 1993-2014.
Per ottenere la reale variazione del livello marino, il movimento verticale del suolo è
stato determinato, usando le osservazioni delle stazioni GPS disponibili, e rimosso
dai trend stimati con i mareografi. I trend cos̀ı corretti sono stati confrontati con
quelli calcolati dai dati satellitari durante lo stesso intervallo di tempo (AVISO data
set). Un ulteriore confronto è stato effettuato per il periodo 1993-2013, usando
i dati di radar altimetria del set CCI, recentemente divenuto disponibile e che
utilizza una modellistica più recente ed una risoluzione spaziale maggiore di quella
di AVISO.

Il primo capitolo di questa dissertazione presenta una panoramica dei paleo da-
ti e delle osservazioni recenti e attuali del livello del mare, una descrizione basilare
dei mareografi e dell’altimetria da satellite, e un’analisi delle principali cause del-
l’innalzamento globale osservato del livello del mare. Il secondo capitolo descrive
la regione analizzata e i dati mareografici, GPS e satellitari selezionati. Il terzo
capitolo illustra le strategie utilizzate per ottenere trend affidabili da ciascun tipo
di dati. I risultati ottenuti vengono forniti nel quarto capitolo.

I trend di livello del mare assoluti ottenuti dalla radar altimetria e dai dati
mareografici corretti per la variazione verticale del suolo sono nella grande mag-
gioranza dei casi consistenti, indicando che i dati GPS hanno fornito correzioni
valide nelle varie stazioni oggetto dello studio. I valori stimati dei trend sono com-
presi tra +2,5 e + 4 mm/a nell’area del Mediterraneo, i trend maggiori sono stati
rilevati nell’Adriatico settentrionale e nel Mar Egeo. Questi risultati sono in ac-
cordo con le stime di innalzamento globale del livello del mare, dell’ordine di +3,3
mm/a durante gli ultimi 20 anni, e con altre indagini relative al livello del mare nel
Mediterraneo. Nei casi in cui non erano disponibili dati GPS, le informazioni sul
movimento verticale del suolo ricavate dalle differenze tra trend assoluto e relativo
del mare sono in accordo con i risultati ottenuti da altri studi.
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Chapter 1

Sea level rise observations and

causes

The Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate

Change (IPCC) [2013] has established that the warming of the climate system is

unequivocal, and, furthermore, that anthropogenic activities are contributing to

the climate change. The impacts of global warming have become a question of

growing interest in the scientific community, and ongoing discussions on which

policies might be effective in response to the climate variations are taking place.

Global warming has already given rise to several visible consequences, in particular

the increase of the ocean temperature and heat content [Antonov et al., 2005;

Levitus et al., 2012], and of melting of glaciers [Gardner et al., 2013], and ice mass

from the Greenland and Antarctica ice sheets [Shepherd et al., 2012].

One of the key indicators of climate change is the sea level. Ocean warming

causes thermal expansion of sea waters, hence sea level rise. Similarly, water from

land ice melt ultimately reaches the oceans, thus also causing sea level rise. Direct

sea level observations available since the mid-to-late nineteenth century from in

situ tide gauges and, since the early 1990s, from high-precision altimeter satellites,

indeed, show that sea level is rising [Nerem et al., 2010; Church and White, 2011],

with potentially negative impacts in many low-lying regions of the world.

Coastal zones have changed profoundly during the 20th century with growing

populations and economies. Today, many of the world’s megacities are situated

on the coast; however, coastal developments have generally occurred with little

regard to the consequences of rising sea levels. It is estimated that almost 10%

of the world population is living in low-lying coastal zones, thus, sea level rise

is generally considered as a major threat of climate change [McGranahan et al.,

1



2 CHAPTER 1. SEA LEVEL RISE OBSERVATIONS AND CAUSES

2007]. During the twentieth century, shoreline erosion has been observed in many

area of the world [Bird, 1987], however, it remains unclear whether this is due

to climate-related sea level rise [Vellinga and Leatherman, 1989] or to more local

non-climatic factors such as ground subsidence, coastal management, waves and

currents, deficit in sediment supply, etc., [Bird, 1996]. Nevertheless, it is virtually

certain that in the coming decades, the expected acceleration of sea level rise, in

response to continuing global warming, will intensify the vulnerability of many

low-lying, densely populated coastal regions of the world [Wong et al., 2013]. An

improved understanding of sea level rise and variability is required in order to

reduce the uncertainties associated with future projections, and hence contribute

to a more effective coastal planning and management.

1.1 Past sea level estimations

The Earth’s climate has changed throughout history, thereby sea level has

changed and continues to change on all time scales. Palaeoclimate information

facilitates understanding of Earth system feedbacks on time scales longer than a

few centuries, which cannot be evaluated from short instrumental records. Past

climate changes also document transitions between different climate states, against

which the recent changes can be compared to assess whether or not they are

unusual. On time scales between a few thousand to several hundred thousand

years, sea level variability responds to an orbital forcing, which denote variations

in the Earth’s orbital parameters as well as changes in its axial tilt. Orbital forcing

is considered responsible of the transitions between glacial and interglacial periods

[Lisiecki, 2010; Huybers, 2011].

Over the glacial cycles sea level can oscillate by more than 100 m as the great

ice sheets waxed and waned. These changes in sea level, and the related global

average temperature changes, are a direct response to changes in the solar radiation

reaching the Earth’s surface; in turn, these solar radiation variations are due to

alteration of the Earth’s orbit around the sun. Also, feedbacks processes associated

with the related changes in the Earth’s albedo and greenhouse gas concentrations

amplify the initial solar radiation changes [Masson-Delmotte et al., 2013]. The

relations between sea level, C02 concentration, sea surface temperature and orbital

parameters are illustrated in Figure 1.1.
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Figure 1.1: Orbital parameters and proxy records over the past 800,000 yr. (a)
Eccentricity. (b) Obliquity. (c) Precessional parameter [Berger and Loutre, 1991].
(d) Atmospheric concentration of CO2 from Antarctic ice cores [Petit et al., 1999;
Siegenthaler et al., 2005; Ahn and Brook, 2008; Lüthi et al., 2008]. (e) Tropical sea
surface temperature stack [Herbert et al., 2010]. (f) Antarctic temperature stack
based on up to seven different ice cores [Petit et al., 1999; Blunier and Brook, 2001;
Watanabe et al., 2003; European Project for Ice Coring in Antarctica (EPICA)
Community Members, 2006; Jouzel et al., 2007; Stenni et al., 2011]. (g) Stack of
benthic δ18O, a proxy for global ice volume and deep-ocean temperature [Lisiecki
and Raymo, 2005]. (h) Reconstructed sea level [dashed line: Rohling et al., 2010;
solid line: Elderfield et al., 2012]. Lines represent orbital forcing and proxy records,
shaded areas represent the range of simulations with climate models [Grid Enabled
Integrated Earth System Model-1, GENIE-1, Holden et al., 2010a; Bern3D, Ritz et
al., 2011], climate–ice sheet models of intermediate complexity [CLIMate and Bio-
sphERe model, CLIMBER-2, Ganopolski and Calov, 2011] and an ice sheet model
[Ice sheet model for Integrated Earth system studies, IcIES, Abe-Ouchi et al., 2007]
forced by variations of the orbital parameters and the atmospheric concentrations
of the major greenhouse gases [From Masson-Delmotte et al., 2013].
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Ice ages are characterized by a low average level of the oceans, up to 130 m

below the current level during the last glacial maximum happened around 21,000

years ago [Lambeck et al., 2014]. On the contrary, interglacial periods are marked

by high sea level. During the last interglacial (between 116,000 and 129,000 years

ago) some palaeodata suggest rates of sea level rise perhaps as high as 1.6 ± 0.8

m/century [Rohling et al., 2008] and sea level about 4–6m above present-day values

[Masson-Delmotte et al., 2013] (Fig 1.2).

Figure 1.2: Sea level over the last 500,000 years. This sea level estimate is based on
carbonate δ18O measurements in the central Red Sea [From Rohling et al., 2008].

From its level at the last glacial maximum until the beginning of the Holocene,

the current interglacial period that began 11,700 years ago, the sea level has risen

at an average rate of about 12 mm/yr [Alley et al., 2005; Lambeck et al., 2014].

From about 6,000 to 2,000 years ago, sea level rose more slowly, and during the

last 2,000 years the mean sea level has remained quasi stable with a rate of sea

level change that did not exceed 0.5 mm/yr [Lambeck et al., 2014], until a recent

acceleration since the end of the Nineteenth century, clearly detected in the oldest

instrumental observations from tide gauges [Wöppelmann et al., 2008]. All these

past evolutions have been reconstructed from palaeoclimate and geological data.

The isotopic composition (ratio 018/016 in foraminifera and corals) allows estimat-

ing the volumes of ice sheets and ocean temperatures to deduce the sea level [Erez,

1978].
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1.2 Tide Gauges

For the twentieth century and the last decade, two main techniques of sea level

observation exist: tide gauges and satellite radar altimetry. Tide gauges measure

sea level relatively to the ground, hence data are directly affected by corresponding

ground motions. If one is interested in the climate-related components of sea level

rise, vertical land motions need to be removed. On the other hand, for studying

coastal impacts of sea level rise, it is the relative (including vertical land motion as

measured by tide gauges) sea level rise that is of interest. Satellite radar altimetry,

unlike tide gauges, measures sea level relative to a geodetic reference frame and

thus are not affected by vertical land motion. Data derived from tide gauges are

geographically limited while altimeter-measured sea level is characterized by global

coverage.

The earliest extended sea level measurements were made in Europe during the

eighteenth century. These data were visual observations of the heights and times of

high and low waters. Many entrances to docks were equipped with what were then

called “tide gauges”, graduated markings on their stone walls to indicate water

depth over the dock sill. Visual measurements could have had centimeter-level

accuracy in calm weather conditions, but would have been much less accurate in

the presence of waves [Woodworth et al., 2011].

A more accurate measurement of sea level is possible since the 1830s thanks to

automatic tide gauges, capable of recording the full tidal curve, not just the high

and low waters. These instruments employed a tube, known as a stilling well, with

a float connected to a wire, running over pulleys to a pen moving up and down as

the tide rose and fell, thereby drawing a tidal curve on a rotating drum of paper.

New technologies have since replaced float gauges at many locations such as

radar gauges, which emit a radar signal towards the sea surface and measure the

travel time of the reflected signal in order to deduce water level. However, it is

important to note that float gauges have provided the bulk of the historical sea level

data set, and they still constitute a large fraction of the global network. In order to

measure long-term sea-level changes accurately, tide gauge observations must be

compared to a well-defined fixed level or datum. Benchmarks are commonly used

for this purpose as they are located on a stable surface to provide a local height

reference level. The stability of a particular benchmark cannot be guaranteed,

thus, it is good practice to measure the elevation of the tide gauge benchmark

relative to a group of other local benchmarks, and to check them periodically to

ensure that they maintain, or not, these elevations relative to one another (Fig
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1.3).

Figure 1.3: Schematic diagram showing the tide gauge connections to SLR/VLBI
reference system [From Zerbini et al., 1996].

Tide gauge data have some limitations. First of all, they have a heteroge-

neous spatial distribution. The Permanent Service for Mean Sea Level [PSMSL;

Woodworth and Player, 2003] is the largest global data bank, about 2000 stations,

for long term tide gauge sea level observations concerning the twentieth century.

Figure 1.4 presents an overview of the data holdings. There are much greater con-

tributions from the Northern Hemisphere and from the second half of the twentieth

century. This bias should always be kept in mind when calculating global mean

sea level rise.

Another major difficulty is that tide gauge records are relative to the local

land, thus they measure the combined effect of ocean volume change and vertical

land motion (VLM). In active tectonic and volcanic regions, or in areas subject to

strong ground subsidence due to natural causes (for examples, sediment loading in

river deltas) or human activities (groundwater and hydrocarbons extraction), tide

gauge data are directly affected by relevant ground motions. One component of the

VLM is the post-glacial rebound, the viscoelastic response of the Earth crust and

mantle to last deglaciation (nowadays called glacial isostatic adjustment, GIA).

The problem of correcting the tide gauge records for the VLM has only been

partially solved. Most studies of twentieth century time series are only accounting

for the GIA [Douglas, 1991, 1997; Church and White, 2011], since this is the only

vertical motion that can be described globally by a physical model. Land motions

due to GIA are described by global geodynamic models of the Earth continued
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Figure 1.4: Overview of PSMSL tide gauge database. (a)Stations represented in
the data set of the Permanent Service for Mean Sea Level (PSMSL). (b)Stations
with long records containing more than 60 years of data [From Woodworth et al.,
2011].

response to deglaciation [Peltier, 2001, 2004]. However, in some areas, VLM due

to tectonic activity, groundwater mining, or ground fluids exploitation is larger

than GIA and can affect the estimate of reliable sea-level rates [King et al., 2012;

Wöppelmann et al., 2013]. An alternative approach is the use of space geodetic

techniques to measure directly VLM and to correct the tide gauge data [Zerbini

et al., 1996; Bouin and Wöppelmann, 2010]. More recently, Global Positioning

System (GPS) receivers have been installed at tide gauge sites to measure VLM.

However, these VLM measurements are only available since mid-late 1990s at the

earliest, and could only be extrapolated into the past, if the assumption of a

constant trend can be made. Additionally, at present the GPS installations do

not cover all tide gauge sites [Santamar̀ıa-Gòmez et al., 2012]. The information

on VLM provided by GPS at tide gauges is the approach used in this study, and

will be discussed in more detail in the following chapter.
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1.3 Satellite Radar Altimetry

Since the early 1990s, sea level is routinely measured with quasi-global coverage

and a few days/weeks revisit time (called “orbital cycle”) by altimeter satellites.

Compared to tide gauges, which provide sea level relative to the Earth crust,

satellite altimetry measures sea level variations relative to the center of mass of

the Earth. As a result, satellite altimetry measurements of sea level are made in

an absolute reference system and do not need to be corrected for VLM.

1.3.1 Basic principle

The concept of the satellite altimetry measurement is simple [Chelton et al.,

2001]: the onboard radar altimeter transmits microwave radiation toward the sea

surface and is partly reflected back to the satellite. The signal two-way travel time

is measured and the satellite distance from the sea surface can then be estimated.

Figure 1.5 presents a schematic diagram of how satellite radar altimetry works.

Figure 1.5: Altimetry principle: Altimeters emit signals toward the Earth, and
receive the echo from the sea surface, after the reflection. The sea surface height is
obtained by the difference between the satellite’s position relative to the reference
ellipsoid and the satellite distance from the sea surface (range) (From AVISO).



1.3. SATELLITE RADAR ALTIMETRY 9

Radar altimeters permanently transmit signals at high frequency (over 1700

pulses per second) toward the Earth, and receive the echoes from the sea surface.

The signal round-trip time between the satellite and the sea surface is deduced by

analyzing the echo waveform. This is the curve describing the power of the signal

reflected back to the altimeter. The electromagnetic radiation transmitted by the

satellite is attenuated while going through the atmosphere and finally the pulse

leading edge hits the water surface. As the incident pulse strikes the surface, it

illuminates a circular region increasing linearly with time. After the pulse trailing

edge has intersected the surface, it remains constant. At this moment, the return

waveform has reached its peak. Travelling back to the satellite, the signal power

is further attenuated by both the atmosphere and because the reflected signal no

longer comes from directly below (Fig 1.6, left panel).

Figure 1.6: Pulses reflection over a flat (left) and rough sea (right) (adapted from
AVISO).

This description is what happens over an ideal flat ocean, such standard wave-

form is also named “Brown Model” [Brown, 1977]. Surfaces characterized by sig-

nificant slopes, such as those present in rough seas, make accurate interpretation

more difficult. In this case, the pulse strikes the crest of one wave and of a series

of other crests, causing the reflected wave amplitude to increase more gradually

compared to the case of the flat ocean (Fig 1.6, right panel). From the change in

slope of the waveform leading edge, the Significant Wave Height (SWH) can be

estimated. The SWH is defined to be the average crest-to-trough height of the 1/3

highest waves and is usually denoted as H1/3. The power of the return signal is also

related to the sea surface roughness which is highly correlated with near-surface

winds, thus, wind speed can be estimated from empirical formulae relating it to

the signal backscattered power [Chelton and McCabe, 1985]. The return time is

defined as the moment in which the mid-point of the waveform leading edge is

detected (Fig 1.7).
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Figure 1.7: Basic waveform shape. Several parameters can be deduced: epoch at
mid-height gives the time the radar pulse took to travel the satellite-surface distance
and back again; P is the energy of the pulse which can be used to calculate the
backscatter coefficient; Po is the instrumental noise; the leading edge slope can
be related to the significant wave height (SWH); the skewness is the leading edge
curvature; the trailing edge slope is linked to any mispointing of the radar antenna
(i.e. any deviation from nadir of the radar pointing) (from AVISO).

The time measurement, scaled by the speed of light in the vacuum, yields a

range measurement:

R =
ct

2
(1.1)

The travel time needs to be known very accurately (a precision of 30 ps is required

to achieve an accuracy of 1 cm on the height), so the actual measurements are

formed by averaging a large number of individual radar echoes. These final obser-

vations, called the Geophysical Data Records (GDRs), are the data which will be

further processed. Once the range has been calculated, the quantity of scientific

interest can be computed, namely the sea surface height (SSH), that is the sea

surface above a reference ellipsoid:

SSH = S–R (1.2)

where S is the satellite altitude above the reference ellipsoid and R is the range.

Thus, the ability to determine with high accuracy the satellite orbit is a key factor

in satellite altimetry, since any error in the satellite orbit radial component will

directly affect the SSH measurement. Precise orbits are provided by the space

agencies.
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1.3.2 Corrections of altimeter measurements

Several sources of error affect the altimeter measurements. They can be grouped

in four different categories:

• instrumental errors;

• satellite position errors;

• signal propagation errors;

• geophysical errors.

1.3.2.1 Instrumental errors

To obtain accurate range measurements, the measured two-way travel time

must be corrected for a number of instrumental errors (for detailed information,

see Chelton et al., 1989, 2001). Under instrumental errors we can identify: the

Doppler shift effect, caused by a change in the frequency of the returned signal

due to the relative velocity between the satellite and the sea surface; the effect

of accelerations of the spacecraft relative to the sea surface; the oscillator drift;

altimeter calibration and pointing angle errors. The last one is the largest, resulting

in a 2 cm range error for a 0.2◦ off-nadir pointing. Some of these errors can

be evaluated on the ground before launch, and some during the initial mission

calibration phase.

1.3.2.2 Satellite position errors

Many efforts have been made since the beginning of the satellite altimetry

era to develop techniques capable of minimizing the orbit errors, since high preci-

sion is required for oceanographic applications [Tapley et al., 1994; Le Traon and

Ogor, 1998; Rudenko et al., 2012; Couhert et al., 2015]. Precise Orbit determi-

nation (POD) is the procedure allowing estimating the three-dimensional position

of the satellite center-of-mass, at regularly spaced time intervals, in a well-defined

reference frame. POD combines accurate and complex mathematical models, de-

scribing the dynamics of the satellite motion with high precision observations of

the satellite position [Tapley et al., 2000]. The motion of a close Earth satellite is

perturbed by a number of forces which are, in relative order of importance:

• Earth gravity field including solid Earth and ocean tides;

• gravity perturbations due to the Moon, Sun and major planets;
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• direct solar and Earth albedo radiation pressure;

• atmospheric drag;

Uncertainties in modeling the Earth gravity field have long been the main

source of orbit error in POD. Gravity force models have greatly improved since the

beginning of the altimetry era, thanks to dedicated gravity missions like GRACE

(Gravity Recovery and Climate Experiment) and the more recent GOCE (Grav-

ity Field and Steady-State Ocean Circulation Explorer), launched in March 2002

and March 2009, respectively [Pavlis et al., 2008; Mayer-Gürr et al., 2012]. The

current models for the various gravitational effects are well documented in the

International Earth Rotation Service (IERS) Conventions [IERS, 2010]. Non-

gravitational forces such as solar radiation pressure and atmospheric drag, depend

on the size and shape of the spacecraft, thus their modeling is easier for satellites

with a simple geometry.

Radar altimetry measurements cannot provide an accurate determination of

the satellite orbit, thus, independent observations of the satellite motion are re-

quired. Three main types of tracking techniques are employed to acquire these

observations, each with different measurement characteristics, temporal and geo-

graphic coverage. Most recent altimetry satellites can be tracked by means of, at

least, two techniques. Usually, a laser retroreflector array onboard the spacecraft,

or just a few corner cube retroreflectors, support tracking by the satellite laser

ranging (SLR) technique. Other systems include Doppler Orbitography and Ra-

diopositioning Integrated by Satellite (DORIS) and the Global Positioning System

(GPS).

1.3.2.3 Signal propagation errors

We can distinguish two main sources of error: the atmospheric refraction delay

and the sea-state bias.

Atmospheric refraction

The effects of atmospheric refraction are generally expressed in terms of path

delay. The presence of the atmosphere delayed the propagation of the altimeter

signal, increasing the measured two-way travel time, which differs from the esti-

mate assuming the free-space value for the speed of light. Failure to correct for

atmospheric refraction results in a range estimate that is longer than the true

range. Ionospheric and tropospheric refraction errors are considered separately; in
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turn, tropospheric error can be broken down into dry and wet tropospheric delay.

Ionospheric refraction

Ionospheric refraction of altimetric radar signals is due to the dielectric proper-

ties of the upper atmosphere associated with the presence of free electrons. These

are produced by the ionization, in the high atmosphere, of the incident solar ra-

diation. The effective light speed is reduced by an amount depending on the

Total Electron Content (TEC) and on the wavelength of the radar signal [Calla-

han, 1984]. The range delay is estimated from models of the vertically integrated

electron density. However, the TEC is mainly correlated with the geomagnetic

field, therefore is characterized by significant spatial variations. The TEC is also

correlated with the solar activity and thus present strong diurnal and seasonal

variability. Therefore, given that the delay depends on the signal wavelength,

it can be estimated using a dual frequency altimeter. The information obtained

from different frequencies allows estimating a reliable delay correction [Imel, 1994].

Dry tropospheric refraction

The dry component of atmospheric refraction is, by far, the largest correction

that need to be applied to altimeter measurements. The mass of dry air molecules

in the atmosphere causes an overestimation of the measured range of about 2.3

m. The correction is directly proportional to the atmospheric pressure measured

at sea level and, in units of centimeters, can be approximated by [Chelton et al.,

2001]:

∆SSHdry ≈ 0.2277P0(1 + 0.0026 cos 2ϕ) (1.3)

where P0 is the sea level pressure expressed in mbar and ϕ is the latitude of the

measured sea surface point.

Wet tropospheric refraction

The wet tropospheric correction includes both the water vapor and the cloud

liquid water droplet contributions to atmospheric refraction. The water content in

the troposphere is highly variable in space and time, causing path delays ranging

from 5 cm to 30 cm, according to the elevation angle of the observation. The wet

tropospheric correction is computed using both on-board microwave radiometer

measurements [Keihm et al., 1995], and atmospheric models of water vapor content

[Fernandes et al., 2010, 2014].
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Sea-state bias

The effect of the actual sea state on the reflected signal is referred as the

sea-state bias (SSB). The size of the reflecting area depends on the roughness

of the sea surface. At wave troughs the reflection is higher than at wave crests.

Systematic corrections are required because the sea surface height measured by the

altimeter is biased toward wave troughs. The SSB correction ε can be expressed

as a percentage of the SWH [Tran et al., 2010]:

ε ≈ β · SWH (1.4)

where β is between 1 and 5%. More accurate SSB corrections are obtained us-

ing empirical models derived from SWH and wind speed observations and from

numerical ocean wave models [Tran et al., 2010].

1.3.2.4 Geophysical errors

A satellite radar altimeter measures the instantaneous sea surface height that

is affected by time-dependent geophysical effects, including solid earth and ocean

tides, polar tide, ocean loading and high and low frequency sea surface response to

atmospheric pressure and wind stress. By removing these effects time independent

SSHs are obtained.

Ocean tides and ocean loading corrections

Ocean tides are periodic deformations of sea surface resulting from gravita-

tional attraction of celestial bodies, in particular, the Moon and the Sun. The

relative movements of the Moon and the Sun with respect to the Earth, combined

with the Earth own rotation, result in periodic displacements of water masses

with different order of magnitude. In open ocean, tide amplitudes are typically

1-2 m, while they can reach several meters in coastal regions [Le Provost, 2001].

The most recent models use assimilated altimeter data as constraints and estimate

tides globally with high spatial resolution [Ray et al., 2013]. Ocean tides also cause

oceanic mass redistribution with associated load change on the crust, therefore,

producing time-varying deformations of the Earth. The ocean tidal loading effect

is computed from ocean tide models [Ray, 1998].

Solid Earth tide correction

The solid Earth tide is the elastic periodic deformation of the Earth’s crust,
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including the ocean bottom, due to luni-solar forcing. Solid Earth tides occur at

the same frequencies as the ocean tides with amplitudes of about 50 cm. The solid

Earth tide correction can be derived from tide-generating potential models depend-

ing upon Love numbers assuming an elastic Earth with uniform mass [Cartwright

and Tayler, 1971; Cartwright and Edden, 1973].

Polar tide correction

The pole tide is a tide-like motion of the ocean surface, resulting from small

effects due to the variation of the Earth rotation axis. These perturbations primar-

ily occur at annual period, and at a 433-day period called the Chandler wobble,

with amplitudes of about 2 cm. The pole tide correction is provided by models

which require knowledge of the pole position [Wahr, 1985; Desai, 2002].

Atmospheric pressure and wind forcing correction

The Inverse Barometer (IB) is a correction accounting for variations in sea

surface height due to atmospheric pressure variations (atmospheric loading). The

ocean responds directly to atmospheric pressure changes: sea level rises (falls) in

connection with low (high) pressure systems. The inverse barometer correction

assumes an instantaneous static local response of the sea level to pressure varia-

tions, so that the total pressure at the ocean bottom is constant. The correction

is expressed by the following equation [Dorandeu and Le Traon, 1999]:

IB = −0.9948(P − PRef ) (1.5)

where P is the instantaneous local sea level pressure in millibar and PRef is the time

varying mean global surface atmospheric pressure over the oceans in millibar. In

many applications, PRef is assumed to be constant, equal to 1013.3 mbar. The scale

factor of -0.9948 implies that a local increase of 1 mbar in atmospheric pressure

locally depresses the sea surface by about 1 cm. More precise corrections can

be calculated using meteorological models. The ocean response to meteorological

forcing is not completely accounted for by simply applying the inverse barometer

correction [Wunsch and Stammer, 1997]. The classic IB formulation identifies the

static response of the ocean to atmospheric pressure forcing, while wind effects

are totally ignored [Carrere and Lyard, 2003]. Several studies have pointed out

that the ocean has a clear dynamic response to pressure forcing at high frequencies

(periods below 3 days) and at high latitudes, and that wind effects prevail around

the 10 days period [Fukumori et al., 1998; Ponte and Gaspar, 1999]. Therefore,
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this high frequency variability is corrected by using independent ocean models. At

present, the effect due to atmospheric pressure and wind forcing are combined in

the so called Dynamic Atmospheric Correction (DAC) [Carrere and Lyard, 2003;

Carrere et al., 2015].

1.3.3 Sea Level Anomalies

With the introduction of the models described above, the expression for the

measured sea surface height can be rewritten in a more complete form as follows:

SSH = Scor− (R+hi +hiono +hdry +hwet +hssb +hotide +hol +hstide +hptide +hdac)

(1.6)

where Scor is the satellite altitude corrected for orbit errors, R is the instanta-

neous distance between the altimeter antenna and ocean surface. The following

corrections represent hi the sum of the instrumental errors, hiono the ionospheric

delay, hdry the dry tropospheric component, hwet the wet tropospheric component,

hssb the sea-state bias, hotide the ocean tide, hol the ocean loading, hstide the solid

Earth tide, hptide the pole tide and hdac the dynamic atmospheric effect, respec-

tively. The SSH obtained in this way is time-independent and is the sum of three

remaining components. They are the height of the geoid above the reference ellip-

soid, and both a permanent and a variable part of the ocean dynamic topography.

The geoid is an equipotential surface of the Earth gravity field and can be defined

as the static part of the sea surface. In absence of other forcings, the sea surface

would be a surface of constant gravity potential corresponding to the marine geoid.

Because the gravity field varies geographically, the geoid is an undulated surface

and is, generally, described in terms of geoid undulations N, that is the heights

of the geoid with respect to the reference ellipsoid. Geoid undulations are in the

order of ± 100 m. The highest negative values, -106 m, are found in the Indian

Ocean, whereas the highest positive values are encountered over Indonesia (+85

m) and in the Northern Atlantic Ocean (+61 m) [Limpach, 2010]. A schematic

diagram of the effect of a bump and a depression at the ocean floor on the sea

surface is shown in Figure 1.8.
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Figure 1.8: Schematic diagram of a bump and a depression at the ocean bottom
and the corresponding marine geoid. Vectors indicate the gravitational acceleration
along the geoid [From Limpach, 2010].

The ocean topography can be divided into a quasi-stationary part called the

mean dynamic topography (MDT), with amplitude of magnitude of about 1 m, and

a time-variable component due to change in the ocean circulation, the amplitude

of which is in order of a few decimeters (Fig 1.9). The sum of the permanent and

the variable part is known as the absolute dynamic topography (ADT) which is

the sea surface height relative to the geoid, and is represented by the following

equation:

SSH = N + ADT (1.7)

The time variable part of the SSH is used in oceanographic studies. The Sea

Figure 1.9: Altimetry heights naming convention. (from AVISO).

Level Anomaly SLA, computed by subtracting from the SSH a temporal reference

〈SSH〉 is defined as follows:

SLA(ϕ, λ, t) = SSH(ϕ, λ, t)− 〈SSH(ϕ, λ)〉 (1.8)
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This temporal reference can be both a Mean Profile (MP) and a gridded Mean Sea

Surface (MSS). The MSS represents the ocean surface averaged over an appropriate

time period in order to remove annual, semi-annual, seasonal and spurious sea

surface height signals [Picot et al., 2003]. The MSS corresponds to the sum of the

geoid undulation N and of the mean dynamic topography MDT, over a selected

time period, and it is referred to a given ellipsoid [Hernandez and Schaeffer, 2001].

1.3.4 Satellite altimetry missions

The development of accurate satellite altimeter systems started in the early

1970s and made possible the first nearly global observations of sea level. These

early altimeters were intended to demonstrate proof of the concept of radar altime-

try. However, till the launch of TOPEX/Poseidon (T/P), on August 10 1992, these

measurements were severely affected by the inadequate knowledge of the Earth

gravity field, contributing to a poor determination of the orbits of the altimetry

satellites. This joint NASA/CNES (the USA and the French space agencies, re-

spectively) was launched with the main objective of observing and understanding

ocean circulation. Numerous improvements were made to Topex/Poseidon com-

pared to previous altimetry systems. This included a specially-designed satellite,

a suite of sensors, satellite tracking systems and orbit configuration, as well as the

development of an optimal gravity field model for precision orbit determination,

and a dedicated ground system for mission operations. Follow-on missions are

those of the Jason series, which have inherited the T/P main features, although

technological improvements constantly contribute to upgrading these satellites.

Satellite altimetry has become an operational technique, therefore the availability

of these observations is guaranteed for the future. Table 1.1 presents, starting from

1990s, the history, perspective and characteristics of satellite altimetry missions.



1.3. SATELLITE RADAR ALTIMETRY 19

Table 1.1: Summary of Satellite radar altimetry missions.
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1.4 Causes and Observations of current GMSL

1.4.1 Main factors of current global mean sea level rise

The main factors causing current GMSL rise are the thermal expansion of

sea waters, land ice loss, and fresh water mass exchange between oceans and land

water reservoirs (Fig 1.10); these different components have been the subject of

many studies [Antonov et al., 2005; Rignot et al., 2011; Shepherd et al., 2012;

Wada 2012]. These contributions vary in response to natural climate variability

and global climate change [Rhein et al., 2013].

Figure 1.10: Schematic of climate-sensitive processes and components that can
influence global and regional sea level. Changes in any one of the components or
processes shown will result in a sea level change [From Cazenave and Le Cozannet,
2014].

The oceans are a central component of the climate system, by storing and

transporting large amounts of heat. Indeed, more than 90% of the heat absorbed

by the Earth over the last 50 years due to global warming is stored in the ocean

[Levitus et al.,2012]. As the oceans warm, they expand and sea level rises, re-

sulting in changes of the ocean water density (steric effect). It is estimated that

for a 1000 m column of sea water the expansion is about 1 or 2 cm for every

0.1◦C of temperature increase [Church et al., 2010]. Density changes induced by

temperature changes are called thermosteric, while density changes induced by

salinity changes are called halosteric. Both are important for regional sea-level

changes [Durack and Wijffels, 2010]; however only the thermosteric contribution

is significant for the global average ocean volume change. Thermosteric sea level
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rise was a major contributor to 20th century sea level rise, and is projected to

continue during the 21st century and for centuries into the future [Rhein et al.,

2013]. Ocean thermal expansion has been estimated from analyses of Expand-

able Bathy Thermographers (XBT) data collected over the past 50 years by ships

[Ishii and Kimoto, 2009; Levitus et al., 2012], and during the last 10 years by

automatic profiling floats of the Argo system, mostly in the upper layers (up to

depths of 700-2000 m). These data indicate that the ocean heat content has in-

creased during the past few decades, in particular, since 1970 [Ishii and Kimoto,

2009; Levitus et al., 2012], resulting in a significant thermosteric sea level rise (Fig

1.11). Although very sparse, the few available deep ocean temperature measure-

ments (below 2000 m) indicate that the deep ocean has also warmed [Purkey and

Johnson, 2010] in the recent decades, but its exact contribution to sea level rise

remains uncertain. In addition, to the much improved observational database,

data assimilation techniques combining observations and models are now being

applied to the ocean. This approach helps overcoming the inadequate data dis-

tribution and allows synthesizing all available data in one consistent estimate of

the evolving ocean [Gregory et al., 2001]. Since the 1960s and 1970s, global ocean

and coupled atmosphere-ocean general circulation models (AOGCMs) have been

developed, and they improved rapidly as numerical techniques and ocean data sets

increased. These models are the basis for the projections of global averaged steric

sea level rise and the regional distribution of sea level rise during the 21st century

and beyond [Gregory et al., 2006, 2013].
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Figure 1.11: Time series of halosteric (red curve), thermosteric (black curve) and
total steric sea level component (mm) for the 0-700 m (top) and 0-2000 m (bot-
tom) layers based on running pentadal (five-year) analyses. Reference period is
1955-2015. Each pentadal estimate is plotted at the midpoint of the 5-year period
[updated from Antonov et al., 2005, NOAA 2015].
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The other main contribution to sea level rise is provided by the increase of

water mass due to melting of mountain glaciers and ice sheets from Greenland and

Antarctica. GMSL change resulting from ocean mass variation is called barystatic.

A signal of added mass to the ocean propagates around the globe such that all

regions experience a sea level change [Lorbacher et al., 2012]. In addition, an

influx of freshwater changes ocean temperature and salinity, and thus, changes

ocean currents and local sea level [Stammer, 2008]; these signals need decades to

propagate around the global ocean. The amount of barystatic sea level change due

to the addition or removal of water mass is called sea level equivalent (SLE). This

is the conversion of a water mass (ice, liquid or vapor) into a volume, by using a

density value equal to 1000 kg m−3 divided by the present day ocean surface equal

to 3.625 · 1014m2. Thus, a water mass of 362.5 · 1012 kg need to be added to the

ocean to cause 1 mm of global mean sea level rise.

Being very sensitive to global warming, mountain glaciers and small ice caps

have retreated worldwide during the twentieth century, with significant accelera-

tion since the early 1990s [Meier et al., 2007]. Changes in glaciers are measured

through the survey of glacier extension, mass and volume by means of a wide

range of observational techniques [Vaughan et al., 2013]. Most glaciers are now

monitored using remote sensing methods such as aerial photography and satellite

imaging [Leclercq and Oerlemans, 2012], and by GPS observations [King, 2004].

Since 2003, accurate measurement of the Earth gravity field variations from the

GRACE satellites provide a most significant contribution in estimating ice mass

variation/changes [Gardner et al., 2013]. For the mass balance of ice sheets, little

is known before the 1990s because of inadequate and incomplete observations. It is

estimated that if totally melted, Greenland and West Antarctica (the instable part

of the continent) would raise sea level by about 7 m and 3-5 m, respectively [Lemke

et al., 2007]. Even a small amount of ice mass loss from the ice sheets would be

able to produce substantial sea level rise; thus, the contribution of the ice sheets

to GMSL need to be controlled with higher precision. Since the early 1990s, differ-

ent remote sensing observations (airborne and satellite radar and laser altimetry,

interferometric synthetic aperture radar –InSAR–, and space gravimetry from the

GRACE mission) have provided important observations of the mass balance of the

ice sheets, indicating that Greenland and West Antarctica are losing mass with an

accelerated rate [Velicogna, 2009; Rignot et al., 2011]. For the period 1993-2003,

less than 15% of the rate of global sea level rise was due to the ice sheets [Lemke

et al., 2007], but this contribution has nearly doubled since 2003-2004 [Shepherd

et al., 2012; Vaughan et al., 2013]. In addition to these observations, Regional
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Figure 1.12: Contribution of Glaciers and Ice Sheets to sea level change. Cumula-
tive ice mass loss from glacier and ice sheets (in sea level equivalent) is 1.0 to 1.4
mm/yr for 1993-2009 and 1.2 to 2.2 mm/yr for 2005-2009 [From Vaughan et al.,
2013].

Climate Models (RCMs) are now the primary source of ice sheet surface mass

balance (SMB) projections. They incorporate, or are coupled to, sophisticated

representations of the snow and ice surfaces mass and energy budget [Lenaerts

et al., 2012]. SMB is primarily the difference between snow accumulation and

ablation (the total melted snow and ice). These models require information on

the state of the atmosphere and of the ocean at its boundary. These information

are derived from reanalysis data sets or AOGCMs. The main challenge, faced by

models attempting to assess sea level change from glaciers, is the small number

of glaciers for which mass budget observations are available (about 380) [Cog-

ley, 2009a], as compared to the total number (more than 170,000) [Arendt et al.,

2012]. Statistical techniques are used to derive relations between observed SMB

and climate variables for the small sample of surveyed glaciers, these relations are

then used for unsurveyed regions of the world. These techniques often include

area-volume scaling to estimate glacier volume from their more readily observable

areas [Marzeion et al., 2012; Hirabayashi et al., 2013].

An additional contribution to changing sea level comes from the storage of wa-

ter on land: in lakes, dams, rivers, wetlands, soil moisture, snow cover, permafrost,

and aquifers. These respond to both climate variations and to anthropogenic ac-

tivities (dam building, underground water mining, irrigation, urbanization, defor-

estation, etc.). No global data sets exist to estimate the historical land water

components; estimates of climate related changes in land water storage over the
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past few decades rely on global hydrological models [Milly et al., 2010] and, since

2002, on space gravimetry observations from the GRACE mission that allows direct

determination of the total land water storage variations due to the combination

of climate variability and human activities [Llovel et al., 2011]. Model-based es-

timates of land water storage change, caused by natural climate variability, do

not suggest any long-term climatic trend during the second half of the twentieth

century [Milly et al., 2003; Ngo-Duc et al., 2005]; however, they documented in-

terannual to decadal fluctuations, equivalent to several millimeters of sea level.

Recent studies have shown that the observed GMSL interannual variability corre-

lates with ENSO (El Niño Southern Oscillation) indices [Nerem et al., 2010] and

is inversely related to ENSO-driven changes of terrestrial water storage, especially

in the tropics [Llovel et al., 2011]. During El Niño events, sea level (and ocean

mass) tends to increase [Chambers, 2011; Cazenave et al., 2012]. The reverse hap-

pens during La Niña events, as seen during 2010-2011, when there was a decrease

in GMSL due to a temporary increase in water storage on the land, especially

in Australia, northern South America, and southeast Asia [Boening et al., 2012].

Human interventions on land water storage also induce sea level changes. Chao

et al. [2008] showed that dam building along rivers and associated reservoir im-

poundments has lowered sea level by about -0.5 mm/yr during the second half

of the twentieth century. Inversely, groundwater extraction for crop irrigation in

regions of intensive agriculture has led to a few tenths of mm/yr sea level rise

[Wada et al., 2013]. Although subject to considerable uncertainty, estimates for

the past few decades suggest near cancelation between net groundwater depletion

and dam/reservoir contribution [Konikow, 2011; Wada et al., 2012]. However, the

situation might change in the future because of expected increasing groundwater

depletion and decreasing dam building, leading to a net positive contribution to

sea level [Konikow, 2011; Wada et al., 2012, 2013].

1.4.2 Observed sea level rise and budget estimations

Many studies have been published in recent years on the comparison between

observed sea level rise and the sum of the estimated single contributions [Church

et al., 2011; 2013; Hanna et al. 2013; Dieng et al., 2015]. The observed sea level

change from instrumental records is mainly composed of tide gauge measurements

over the past two centuries, and, since the early 1990s, of satellite-based radar

altimeter measurements.

The estimate of the long-period (centennial period) GMSL rise, using the tide
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gauge records data base [Holgate et al., 2013; PSMSL 2015] is challenging. In

fact, tide gauges sample the ocean sparsely and non-uniformly, with a bias towards

coastal sites and the Northern Hemisphere, there are a few sites at latitude greater

than 60◦, and significant interannual and decadal-scale fluctuations are present in

all time series [Church and White, 2011; Hay et al., 2013]. Many authors have

compute the mean rate of twentieth century GMSL rise from the available tide

gauges data, all with different approaches [Jevrejeva et al., 2006; Holgate, 2007;

Jevrejeva et al., 2008; Church and White, 2011]. The estimates of GMSL rise

obtained from these studies ranges from 1.6 to 1.9 mm/yr. Also, IPCC AR5 [2013]

suggests that there is a 95% probability that GMSL rise from 1901 to 1990 was

greater than 1.3 mm/yr. However, independent model and data-based estimates of

the individual sources of GMSL, including mass flux from glaciers and ice sheets,

thermal expansion of oceans, and changes in land water storage, are insufficient

to account for the GMSL rise estimated from tide gauge records [Gregory et al.,

2013]. Church et al. [2013] presents a list of contributing effects to GMSL rise from

1901 to 1990 (see Table 1.2), the total budget turns out to be +0.5 ± 0.4 mm/yr

(90% Confidence Interval - CI) lower than the tide gauge derived rate of +1.5 ±
0.2 mm/yr (90% CI) estimated by Church and White [2011] for the same period.

This discrepancy has been attributed to underestimation of almost all possible

sources: thermal expansion, glacier mass balance, and Greenland or Antarctic ice

sheet mass balance [Church et al., 2013].
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Table 1.2: Global mean sea level budget (mm/yr) over different time intervals from
observations and from model-based contributions. The modeled thermal expansion
and glacier contributions are computed from the CMIP5 (Coupled Model Intercom-
parison Project Phase 5 [IPCC AR5, 2013]) results, using the model of Marzeion
et al. [2012a] for glaciers. The land water contribution is due to anthropogenic
intervention only, not including climate-related fluctuations. Notes: a) data for
all glaciers extend to 2009, not 2010; b) This contribution is not included in the
total because glaciers in Greenland are included in the observational assessment of
the Greenland ice sheet; c) Difference between observed GMSL rise and the sum of
the individual components [From Church et al., 2013].

A more recent study performed by Hay et al. [2015] revisits the analysis of

GMSL since the start of the twentieth century using two statistical methods:

Kalman smoothing (KS) and Gaussian process regression (GPR). Both approaches

naturally accommodate spatially sparse and temporally incomplete sampling of a

global sea level field, thus providing a rigorous, probabilistic framework for uncer-

tainty propagation, correcting also for a distribution of GIA and ocean models (see

Hay et al., 2015, for complete description of these methods). The mean GMSL

rate for 1901-1990 estimated from the KS and GPR analysis are, respectively, 1.2

± 0.2 mm/yr and 1.1 ± 0.4 mm/yr, significantly lower than the estimates of other

studies for the same period (Fig 1.13). This estimate closes the sea-level budget

for 1901-1990 estimated in AR5 [Church et al., 2013] without appealing to an un-

derestimation of individual contributions from ocean thermal expansion, glacier

melting, or ice sheet mass balance [Hay et al., 2015].
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Figure 1.13: Time series of GMSL for the period 1900-2010. Shown are estimates
of GMSL based on KS (blue curve), GPR (black curve), Ref.3 refers to Church and
White [2011] (magenta curve) and Ref.4 to Jevrejeva et al., [2008] (red curve).
Shaded regions show ±1σ uncertainty. Inset, trends for 1901-1990 and 1993-2010,
and accelerations, all with 90% CI (not available for Jevrejeva et al., [2008]).
Since the GPR methodology outputs decadal sea level, no trend is estimated for
1993-2010 [From Hay et al., 2015].

Budget studies are more reliable for the satellite altimetry era due to the in-

troduction of several global observation systems. In addition to satellite radar

altimetry, the GRACE mission, the network of Argo buoys, the InSAR and GPS

techniques, made it possible to accurately quantify each budget component (Fig

1.14).

In Church et al., 2013, the observed rate of global mean sea level rise over the

1993-2010 time span is compared to estimates of the sum of individual components.

The rate of GMSL rise for this period is +3.2 ± 0.4 mm/yr, based on the average

of altimeter time series published by multiple groups [Ablain et al., 2009; Beckley

et al., 2010; Nerem et al., 2010; Church and White, 2011; Masters et al., 2012].

The tide gauges analysis from Church and White [2011] for the 1993-2010 period

gives a rate of +2.8 ± 0.5 mm/yr. The result of the KS method from Hay et al.
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Figure 1.14: Global mean sea level from altimetry from 2005 to 2012 (blue line).
Ocean mass changes are shown in green (as measured by Gravity Recovery and
Climate Experiment (GRACE)) and thermosteric sea level changes (as measured
by the Argo Project) are shown in red. The black line shows the sum of the ocean
mass and thermosteric contributions [From Church et al., 2013].

[2015] is in agreement with the previous results, providing a rate of +3.0 ± 0.7

mm/yr. The different analysis show that the rate of sea level rise during the last

two decades is about twice as much the mean rise of the twentieth century. Hay et

al. [2015] calculate an acceleration of 0.009 ± 0.002 mm/yr2 based on the Church

and White [2011] time series, but, using the GMSL rate calculated with the KS

method (1.2 ± 0.2 mm/yr for the period 1900-1990) the estimated acceleration

is significantly higher and equal to 0.017 ± 0.003 mm/yr2. It has been suggested

that this higher rate cannot be attributed to decadal variations, it rather reflects

a recent acceleration of the global mean rise (since the early 1990s) [Merrifield et

al., 2009]. However, this was questioned by other studies stating that, because of

low-frequency, multidecadal sea level fluctuations, any recent acceleration is hard

to detect [Chambers et al., 2012]. While, on the one hand, this is certainly a

matter of concern because of the relatively short length of the altimetry record,

on the other, it is worth mentioning that the altimetry-based rate of sea level rise

is remarkably stable. Since more than a decade, continuous sea level time series
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give a nearly constant rate value in the range of 3.1 - 3.3 mm/yr [Cazenave and

Llovel, 2010; Cazenave and Le Cozannet, 2014].

For the satellite altimetry era, the contributions from thermal expansion, in-

cluding a small, poorly known contribution from the deep ocean, glaciers, Green-

land, and Antarctica, in percentage of the observed 3.2 mm/yr rate of GMSL rise,

are 34% [Cazenave and Llovel, 2010], 27% [Gardner et al., 2013], 10%, and 8.5%,

respectively [Shepherd et al., 2012]. This means that ocean warming and total

land ice melt explain 34% and 45.5% respectively of the global mean rise for the

altimetry period, leaving a residual term of about 20%. Church et al. [2013] con-

sider an additional contribution equaling 12% for the anthropogenic land water

storage change (net effect of groundwater depletion and dam/reservoir retention).

These values lead to quasi closure of the sea level budget over the altimetry era,

but the combination of systematic errors and/or lack of information on some com-

ponents, like ocean heat content below 2000 m, hinders perfect closing of the sea

level budget [Church et al., 2013; Dieng et al., 2015].



Chapter 2

Data selection and acquisition

2.1 Regional sea level and vertical land motion

Sea level is not rising uniformly (Fig. 2.1). Satellite altimetry observations,

over the last two decades, have revealed that rates of sea level rise at regional

scale may differ substantially from the global mean rise. This spatial variability

is mostly due to the redistribution of heat, salt and water mass, associated with

ocean dynamical processes [Stammer et al., 2013].

Figure 2.1: Spatial trend patterns of altimetry-based global sea level over
1993–2014. Gridded multi-mission SSALTO/DUACS data (from AVISO).

Tide gauges measurements also suggest substantial spatial variations in sea

31
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level. However, tide gauge records are the sum of two components:

• the absolute sea level, the same measured by satellite altimetry, which is the

climate-related component of the sea level variability;

• the vertical land motion (VLM) of the tide gauge benchmark, to which the

sea level observations are referred.

Any vertical motion at a tide gauge site affects the measured sea level. The VLM

can be equal or larger than the local absolute sea level signal, thus masking the

climatic-related information of the tide gauge record [Douglas, 2001]. Therefore,

the principal difference between the data acquired by satellite altimetry and tide

gauges is due to the VLM [Nerem and Mitchum, 2002]. In order to correct the tide

gauge records, the vertical land motion need to be estimated; one possible approach

is the use of space geodetic techniques [Zerbini et al., 1996; Wöppelmann et al.,

2007]. Among them, the most used is the GPS. While models account only for the

GIA, permanent GPS stations, co-located at tide gauge sites, measure accurately

and continuously vertical motions.

Figure 2.2 illustrates a tide gauge station co-located with a GPS antenna/receiver

and satellite altimetry sea level measurements. The tide gauge measures the rel-

ative sea level (S). This record is referred to a ground benchmark which can be

subjected to VLM (U); these are estimated by means of GPS data. The satellite

altimeter measures the absolute sea level (N), referred to the Earth’s center of

mass. The absolute sea level at the tide gauge site can be estimated by

N = S + U (2.1)

In the ideal case study presented in the figure, it is assumed that the tide gauge

and the satellite are observing the same sea level at the coast and offshore, respec-

tively, and that the GPS is measuring the VLM affecting the tide gauge station

[Wöppelmann et al., 2009].

Despite the many efforts done to combine the information from tide gauges

and GPS measurements, the availability of co-located GPS stations is still limited

[Santamar̀ıa-Gòmez et al., 2012]. Because of this, the correction of relative sea

level trends, using GPS-derived estimates of VLM, requires careful consideration.

High-accuracy GPS observations are only available since early-mid 1990s (the ear-

liest GPS data in this study begin in 1996). Therefore, to correct tide gauge

data collected prior to early 1990s, one should extrapolate to the past a constant

GPS-derived VLM rate. It is obvious that this assumption might not be correct,



2.1. REGIONAL SEA LEVEL AND VERTICAL LAND MOTION 33

Figure 2.2: Scheme of a GPS-equipped tide gauge station and satellite altimetry
measurements [From Wöppelmann et al., 2009].
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especially in active tectonic areas and in regions subject to strong subsidence or

uplift [Ballu et al., 2011; Raucoles et al., 2013]. However, many authors support

this assumption [Woodworth, 1990; Douglas 2001; Wöppelmann et al., 2007; San-

tamar̀ıa-Gòmez et al., 2012]. A further problem might arise if the GPS receiver

and the tide gauge site are not co-located. In fact, the VLM measured at the GPS

station might not be representative of that affecting the tide gauge benchmark.

The vertical motion can differ significantly even over short distances of few meters

in unstable regions. However, GPS and tide gauge stations can be separated by

several kilometers, as long as the ground upon which the instruments are settled

undergoes the same vertical motion [Bevis et al., 2002]. Thus, it is recommended

that the tide gauge and the GPS should be as close as possible, in order to avoid

a bias applying the VLM correction. The best case is, of course, when a GPS is

directly installed on top of the tide gauge station. Therefore, a distance threshold,

in which a GPS station is considered suitable to correct the VLM at a tide gauge,

should be identified according to the stability of the area. Typical maximum dis-

tances can be in the order of 15-20 km [Mazzotti et al., 2007; Wöppelmann et al.

2007; Santamar̀ıa-Gòmez et al., 2012].

In this study, by following the preceding considerations, tide gauges time series

are analyzed over the period 1993-2014. The records are corrected for the VLM,

using the observations of the nearest GPS station, when available. The results

are then compared with satellite altimetry measurements during the same time

interval. The area investigated is the Mediterranean Sea, with particular focus on

the Adriatic area.

2.1.1 Mediterranean Sea

The Mediterranean Sea is located between Africa and Europe and has a surface

of 2.5 ·106km2. It is connected to the Atlantic Ocean through the Gibraltar Straits,

which is roughly 13 km wide at its narrowest point. The basin is surrounded by

populated areas, and many of them are low-lying regions, vulnerable to sea level

rise [Tanhua et al., 2013]. Due to its semi-enclosed nature, the Mediterranean

Sea is strongly influenced by the seasonal atmospheric variations over Europe and

North Africa [Gomis et al., 2012]. The net evaporation over the basin exceeds

the precipitations and the river inflow [Tanhua et al., 2013]. The loss of water at

the surface is compensated by the water mass received from the Atlantic Ocean,

through the Gibraltar Straits. However, this balance is not perfectly attained and

this gives rise to a mean sea level tendency (Fig. 2.3). The Gibraltar Straits
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Figure 2.3: Regional trends of sea level anomalies in the Mediterranean Sea over
1993-2014 from altimetry-based data (from AVISO).

mass transport and the surface water flux are called the incompressible terms.

They are the mass component of the mean sea level in the Mediterranean Sea,

which is the main contributor to its variability [Pinardi et al., 2014]. The second

contribution to the mean sea level tendency of the basin comes from the steric

component, which is due to the buoyancy fluxes that account for the thermosteric

and halosteric components.

Active tectonics is widespread in the Mediterranean region [Zerbini et al., 1996;

Becker et al., 2002]. The collisions between the African, Eurasian and Arabic plates

have produced a very complex tectonic regime of micro-plates, and volcanic activity

and earthquakes may cause sudden or gradual land movements [Jimenez-Munt et

al., 2003]. In coastal areas, land subsidence is frequent, especially in river deltas

such as those of the Nile and the Po, which are subject to the balance between

deposition and compaction of sediments. The Adriatic Sea is the northern part of

the Mediterranean Sea. It extends over an area in the order of 105km2 and it is

connected to the Mediterranean through the Otranto Straits in the south. There
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are many tide gauges along the Adriatic coasts, and three of them are among the

longest records in the world (Marina di Ravenna (former Porto Corsini), Trieste

and Venice). The Northern Adriatic is an area particularly vulnerable to sea level

rise, subjected to both natural and anthropogenic subsidence [Zerbini et al., 2007].

It is thus important to correctly estimate the VLM affecting the tide gauges in

this region, in order to accurately identify climate-related sea level variations.

2.2 Tide gauge data

A total of 35 tide gauge stations have been selected because their time series,

over the period of this analysis 1993-2014, are complete to, at least, 85% [Douglas,

2001; Wöppelmann et al., 2007]. The records were taken from two different net-

works: the Permanent Service for Mean Sea Level (PSMSL) [http://www.psmsl.org/]

and the Rete Mareografica Nazionale (RMN) [http://www.mareografico.it/] of the

Italian Istituto Superiore per la Protezione e Ricerca Ambientale (ISPRA).

2.2.1 Permanent Service for Mean Sea Level

The PSMSL was established in 1933. Since then, it has collected and analyzed

sea level data from the global network of tide gauges. The sea level data used in

this analysis are monthly means from the Revised Local Reference (RLR) dataset.

RLR data are the most appropriate for scientific purposes. In fact, these records

are checked and corrected for local datum change, thus reducing them to a com-

mon reference level using the tide gauge datum history [Woodworth and Player,

2003]. The common datum is arbitrarily set at approximately 7000 mm below

mean sea level, in order to avoid negative numbers in the resulting RLR monthly

mean values. In the Mediterranean Sea, more than 100 tide gauges are available.

However, the spatial distribution is not uniform and a limited number of stations

are present in the southern part of the basin. Among the available stations, 22

have the required 85% of complete data for the period 1993-2014. The metadata of

these stations and the percentage of completeness of their time series are presented

in Table 2.1.
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Table 2.1: Tide gauge stations belonging to the PSMSL used in this work. The first
column lists the tide gauge location (nearest city), the second indicates the country,
third and fourth the geographical coordinates (as provided by PSMSL) and the last
shows the percentage of completeness of the time series.

2.2.2 Rete Mareografica Nazionale

The RMN was created in 1998. The present network is composed of 36

stations evenly distributed across the Italian national territory. The sea level data

are available as quality checked hourly values. Each record is referred to a local

benchmark, which is controlled by means of high precision leveling measurements.

Data collected before 1998 by the pre-existing stations can be found in the RMN
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archive. The stations selected from the RMN are 13. Among them, 10 present

85% of the complete time series for the chosen analysis period. The Cagliari and

Otranto stations were included because they both are very close to the required

percentage of data (82% for both records). The Ortona station was included,

although not reaching 85%, with the aim to have 12 stations evenly distributed on

the east and west coast of the Adriatic basin. Table 2.2 lists the selected stations;

seven of these time series, identified with an asterisk, present a discontinuity in

summer 1998 due to change of the tide gauge instrument. A datum shift was

therefore estimated for these stations. This will be described in detail in the

following chapter.

Table 2.2: Tide gauge stations from the RMN. The first column lists the tide gauge
location (nearest city), the second and the third the geographical coordinates, and
the last shows the percentage of completeness of the time series. The asterisk
indicates that the stations were corrected for a datum shift occurring in mid-1998.

2.3 Global Positioning System Data

GPS data were used to correct the tide gauge time series for VLM. The mini-

mum data span recommended to estimate reliable vertical velocities is three years

[Blewitt and Lavallée, 2002]. Thus, only GPS records longer than 3 years were
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considered. Where available, GPS stations within 20 km from a tide gauge site

were selected to provide estimates of VLM. Among all the available sites, only 21

GPS stations satisfy these requirements. The GPS data were obtained from two

main databases and from the archive of Department of Physics and Astronomy

(DIFA) of the University of Bologna. The databases are those of the Système

d’Observation du Niveau des Eaux Littorales (SONEL) [http://www.sonel.org/],

and the Nevada Geodetic Laboratory (NGL) [http://geodesy.unr.edu/]. The time

series of the TRIM (Trieste) and PORT (Ravenna) stations were taken from

the DIFA archive (personal communication) while the CAGZ (Cagliari), CEUT

(Ceuta), DUBR (Dubrovnik) and GENO (Genova) records were downloaded from

the SONEL databank, those of the remaining 15 stations were collected from the

NGL. The products available at SONEL are weekly time series of the vertical com-

ponent of the station position, while NGL and DIFA provide daily time series of

the height of the stations. Table 2.3 lists the metadata of the stations used, as

well as their distances from the nearest tide gauge. In Figure 2.4 the locations of

both tide gauge and GPS stations are shown.
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Table 2.3: GPS stations used in the analysis. Column 1 lists the station acronym,
columns 2 and 3 the geographic coordinates latitude and longitude, column 4 the
location of the nearest tide gauge, column 5 the distance between GPS and tide
gauge, columns 6 and 7 show the starting and ending date of the time series,
respectively, column 8 the total data span.
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Figure 2.4: Tide gauges (yellow dots) and nearest GPS station (blue triangle) used
in this study.

2.4 Satellite radar altimetry data

Two different satellite altimetry datasets were used: the AVISO (Archiving, Val-

idation and Interpretation of Satellite Oceanographic data) [http://www.aviso.ocean

obs.com/en/altimetry/index.html] and the Climate Change Initiative (CCI) [http://

www.esa-sealevel-cci.org/]. Both were compared to the tide gauge data, in order

to assess which was the most suitable for coastal studies.

2.4.1 Satellite data from AVISO

The AVISO data used are the SSALTO/DUACS Mediterranean Sea multi-

mission gridded sea-level anomalies (SLA). DUACS (Data Unification Altimeter

Combination System) is the SSALTO (Segment Sol multi-missions d’ALTimétrie,

d’orbitographie et de localisation précise) multi-mission altimeter data processing
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system. The DUACS system processes records from all satellite altimetry missions.

The so called “all-sat-merged” data are obtained by combining observations from

all available satellites over a selected time period. The period investigated in this

analysis is from 1993 to 2014, thus, the dataset used is based on ten satellites:

TOPEX/Poseidon (T/P), Jason-1 (J1), Jason-2 (J2), ERS-1 (E1), ERS-2 (E2),

GFO, Envisat (EN), Cryosat-2 (C2), Saral/Altika (AL), HY-2A (H2). Figure 2.5

shows the list of available satellites in all-sat-merged products.

Figure 2.5: Temporal availability of satellites in all-sat-merged products (from
AVISO).

The AVISO SLA, from different missions, consists of data interpolated into

daily regular grids by means of the so called “objective analysis” [Le Traon et al.,

1998; Ducet et al., 2000]. The data are provided corrected for instrumental errors,

satellite position errors, signal delays and geophysical effects. A complete list of all

the models can be found in AVISO User Handbook SSALTO/DUACS (M(SLA)

and M(ADT) Near-Real Time and Delayed time, CLS, edition 4.4, 2015). The

inverse barometer (IB) effect is accounted in the dynamic atmospheric correction

(DAC) [Carrere and Lyard, 2003]. The DAC is a correction combining the high

frequencies of a barotropic ocean model (MOG2D-G), forced by wind and pressure,

with the low frequencies of the IB correction [Carrere and Lyard, 2003]. The

provided SLA grid has spatial resolution of 1/8◦ × 1/8◦, the closest point to each

tide gauge station has been used to compare the two techniques (tide gauge and
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radar altimetry), over the 22 years analysis period 1993-2014.

2.4.2 Climate Change Initiative project

The Climate Change Initiative (CCI) is a program of the European Space

Agency (ESA), started in 2010, with the task of reprocessing all satellite altimetry

data from all missions. The main objective is to produce a consistent sea-level

record covering the past two decades [Ablain et al., 2015]. A set of new altimeter

corrections were evaluated and compared by CCI with those used for the AVISO

products. A major improvement in sea-level estimations derived from the use of

pressure data from the ERA-interim reanalysis, instead of data from operational

fields database. The new pressure data, produced by the European Centre for

Medium-Range Weather Forecasts, were used (ECMWF) in the CCI project [Dee

et al., 2011] to calculate the DAC and the dry tropospheric correction and have

led to significant improvements both in reducing the GMSL error and in the esti-

mates at regional spatial scale [Carrere et al., 2015]. The new model of the wet

tropospheric delay [Fernandes et al., 2010, 2014] presents significant improvements

particularly as regards the coastal and polar regions. In these particular areas, in

fact, the data collected by the on-board microwave radiometers are difficult to use

because of land or ice contamination. To overcome this problem, the observations

of the on-board instrument and of GNSS measurements are combined in a new

correction called GNSS-derived path delay (GPD). In addition, new orbit solutions

were developed and selected for the ERS-1 and ERS-2 missions, improving the or-

bit correction for these two satellites [Rudenko et al., 2012]. The CCI products

used in this thesis work are the SLA monthly grid time series with spatial resolu-

tion of 0.25◦. The CCI dataset is available in the time frame 1993-2013, therefore

the comparisons among the CCI altimetry data, the AVISO altimetry and the tide

gauge records could only be carried out over this period. The satellites included

in the CCI merged products are the same as in the AVISO dataset, except for the

HY-2A mission, which starts in April 2014. Figure 2.6 shows, as an example, both

the AVISO and the CCI SLA grids in the Adriatic Sea used in this work.

The following Table 2.4 provides, both for the AVISO and the CCI datasets,

a complete list of the distances between the tide gauge location and the closest

point of the gridded SLA.
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Figure 2.6: Sample of gridded SLA in the Adriatic Sea. Left panel: AVISO gridded
product, spatial resolution of 1/8 ◦× 1/8 ◦ (∼ 13 km). Right panel: CCI gridded
product, spatial resolution of 1/4 ◦× 1/4 ◦ (∼ 28 km)
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Table 2.4: Distances between the tide gauge locations and the satellite SLA gridded
data over the Mediterranean Sea. The first column identifies the tide gauge station,
the second and third columns show the distance between the tide gauge and the
nearest point of the AVISO grid and the CCI grid, respectively.
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Chapter 3

Data Analysis

The aim of this study is to compare mean sea level (MSL) trends derived from

the analysis of tide gauge time series with trends obtained from satellite altimetry

data. The tide gauge sea level data required a certain amount of corrections,for

this purpose, GPS time series have been acquired to estimate the possible VLM

affecting the tide gauge records. Some of the coordinate time series are character-

ized by jumps and/or sudden discontinuities, which must be removed in order to

reliably estimate the vertical velocity trends. The specific corrections applied on

each dataset are illustrated in detail in this chapter.

Before proceeding with the description of the procedures exploited to correct

the time series, it is worthwhile to give an overview of the STARS software [Bruni

et al., 2014; Rodionov, 2004, 2006], used in the analysis to identify the possible

discontinuities present in the GPS and tide gauge data.

3.1 The STARS methodology for the detection

of discontinuities in time series

As introduced previously in section 2.2.2, 7 sea level time series, acquired from

the RMN network, present clear discontinuities in the records, due to instrument

changes. Additionally, the daily GPS coordinate time series, downloaded from the

NGL database, can be affected by sudden jumps, occurring for different reasons,

for example: earthquakes, changes in the station equipment, antenna mounting

problems, etc. These discontinuities must be properly accounted for and removed

to prevent inconsistencies in the estimation of the long-term trends. To accurately

detect discontinuities in time series, it was adopted the methodological procedure

developed by Bruni et al. (2014), based on the STARS algorithm, originally devel-

47
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oped by Rodionov (2004, 2006) for climatological research. A short explanation of

the discontinuities identification strategy is reported here, a complete description

of the STARS algorithm can be found in Bruni et al. (2014).

The STARS procedure relies on three different parameters:

• The cut-off length L, representing the minimum time interval between two

consecutive discontinuities;

• p, the significance level of the Student’s t-test used in the algorithm;

• H, the Huber parameter [Huber, 1964], used to minimize the influence of the

noisiest data.

For the cut-off length L, four different values are adopted: 10, 15, 20 and

25 days. Before applying the STARS algorithm, a linear trend is estimated and

subtracted from the series, a mean seasonal cycle is computed from the residuals

and removed from the data. The STARS strategy for discontinuities identification

is divided in two steps. First, a point xj of the time series is considered a jump

candidate if either:

xj < m1 − t
√

2σ2
L

L
(Case 1) (3.1)

or

xj > m1 + t

√
2σ2

L

L
(Case 2) (3.2)

where:

• t is the value of the performed t-test with 2L− 2 degrees of freedom at the

given significance level p.

• σL is the mean standard deviation, computed over all possible L time inter-

vals in the series.

• m1 is a local mean estimated over the window [xj−L, xj−1], giving weights

to the data based on the Huber parameter, H.

The second step consists in the analysis of each jump candidates, discriminating

over significant discontinuities and local fluctuations:

xjk < m1 − t
√

2σ2
L

L
(Case 1) (3.3)

xjk > m1 + t

√
2σ2

L

L
(Case 1) (3.4)
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for k = 1, ..., L, and where

xjk =
1

k

k−1∑
l=0

xj+l (3.5)

If the inequality is valid for all the progressive means, xjk, within the L days

after day j, the jump candidate is accepted. On the basis of the outcomes of

the different cut-off lengths L, namely L = 10, 15, 20 and 25 days, among all

the discontinuities detected, only those common to all the four cut-off lengths

are retained. Once the jumps have been identified, the time series are corrected

accordingly and a consistent long-term trend can be computed.

3.2 Correction of tide gauge data and derivation

of mean sea level trends

According to the IOC (Intergovernmental Oceanographic Commission) Manual

on Sea Level Measurement and Interpretation (UNESCO, 1985), the instantaneous

measurement of sea level by tide gauges can be expressed as the sum of three

components:

η(xi, yi, t) = ηT ide(xi, yi, t) + ηMeteo(xi, yi, t) + ηSL(xi, yi, t) (3.6)

where

• xi, yi are the station coordinates;

• ηT ide indicates the tidal component of the sea level, consisting in periodic

movements of the sea, due to the combined effects of the gravitational forces

exerted by the Moon, the Sun and Earth’s rotation;

• ηMeteo is the meteorological component, due to variations of the atmospheric

pressure and of the wind speed, causing irregular movements of the sea sur-

face;

• ηSL is the local sea level component.

Each component is caused by separate physical processes, thus, each part can

be considered independent from the others. In order to obtain long-term trends

from the sea level time series, specific corrections must be applied to remove the

tidal and the meteorological components. The sea-level records downloaded from

the PSMSL database are monthly mean values in which the tidal component has
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already been removed. The data from RMN archive are hourly values; they require

a specific filtering method to obtain daily means and to remove the tides from the

sea level time series.

3.2.1 Doodson X0 filter

Daily means from hourly data were obtained applying a low-pass filter, namely,

the Doodson X0 filter. Firstly proposed by Doodson (1921) and extended by Pugh

(1987), the purpose of this filter is to remove the main tidal frequencies from hourly

sea level elevations, obtaining a mean value for each day. The Doodson X0 filter is

a point-to-point moving average filter [Shenoi, 2006]. A moving average filter can

be thought of as a window of a certain size, moving along the series one element

at a time. The middle element of the window is replaced with the average of all

elements in the window. The window of the X0 filter is 39 hours large, the central

element is the sea level at noon of the analyzed day. Given the time-variant signal

X(t), the filtered value XF (t) is computed from the following equation [Pugh,

1987]:

XF (t) =
1

30

{
F0 ·X(t) +

19∑
m=1

F (m) · [X(t+m) +X(t−m)]

}
(3.7)

where F0 is the weight of the central element, X(t), with t = 12h00. The filter,

F (m), is symmetric, so that F (m) = F (−m), and can be expressed as:

F (m) = (2, 1, 1, 2, 0, 1, 1, 0, 2, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1) (3.8)

Other variants of the Doodson X0 exist, as described in Godin (1972) and

Demerliac (1974). However, their main mechanisms differ very slightly from the

filter described in this paragraph and their results are very similar to those obtain

with the X0 filter [Holgate et al., 2013]. This filter was applied to the 13 time

series downloaded from the RMN archive, in order to obtain time series of daily

values, with the tidal component of the sea level removed.

3.2.2 Datum shift and monthly mean computation

The 13 filtered sea-level records were inspected for possible discontinuities,

using the STARS algorithm. Among them, 7 present a sudden jump due to the

installation of new tide gauge instruments, during summer 1998. The sizes of these
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discontinuities were evaluated and the time series corrected accordingly. Figure

3.1 shows, as an example, the daily time series of Catania, before and after the

mentioned correction was applied.

Figure 3.1: Daily sea level values of the Catania tide gauge. The detected discon-
tinuity is indicated by the red line (top panel). The magnitude of the jump has
been estimated with the STARS algorithm in order to accurately correct the records
(bottom panel).

A complete list of the estimated discontinuities is presented in Table 3.1.
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Table 3.1: List of the discontinuities identified in the sea level time series obtained
from the RMN network. The first column identifies the tide gauge station, the
second shows the day in which the discontinuity has been detected, the third column
presents the size of the discontinuity in centimeters.

The 7 stations corrected in this way will be indicated with an asterisk in the

following tables. Once the discontinuities in the time series have been removed,

the daily values were averaged to obtain monthly means. Following the PSMSL

recommendations, when more than 15 days were missing in a month, the mean

value has not been computed. The sea level data downloaded from the RMN

network were organized in the same format as that of the time series from PSMSL,

thus, further analysis of sea level data will be the same for all the records.

3.2.3 Linear regression and mean seasonal cycle

At this stage, all the sea level data are monthly mean time series. The mean

sea level trend for the 22 years period, 1993-2014, can be computed by fitting a

simple line to the series, as shown in Zervas (2001, 2009):

yi = bti + ri (3.9)

where yi are the monthly mean sea level values, ti represents the time in decimal

years format and ri are the residuals. b is the slope of the least squares best-fit

line, and can be expressed as:

b =

∑
i

(ti − T )(yi − Y )∑
i

(ti − T )2
(3.10)
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where T and Y are the means of ti and yi, respectively. The standard error of the

trend is:

sb =

√∑
i(yi − Y )2 − b

∑
i(ti − T )(yi − Y )

(n− 2)
∑

i(ti − T )2
(3.11)

where n is the number of monthly mean sea-level values.

The mean seasonal cycle can be considered as the regular, repeatable variation

of the sea level over the course of a year. The mean seasonal cycles of coastal water

levels are caused by a superposition of mean seasonal cycles due to air pressure,

wind, water temperature, salinity, ocean currents, and river discharge [Zervas,

2009]. Once the linear trend has been calculated, the seasonal component can be

estimated from the residuals of the time series. For N years of data, the mean

seasonal cycle is computed by averaging the residuals of each calendar month,

according to the following equation [Tsimplis and Woodworth, 1994]:

Mj =
1

N

N∑
k=1

Mjk (3.12)

where Mjk indicates the sea level residual of the j-th month of the k-th year. The

averages of the 12 calendar months calculated in this way form the mean seasonal

cycle. This seasonal component was then subtracted from the time series of each

tide gauge station.

The mean seasonal cycles at six selected representative stations are shown in

Figures 3.2 to 3.7, with two years displayed for clarity reasons. The mean seasonal

cycles computed for all the tide gauge stations have annual amplitudes ranging

between 40 and 100 mm, with the highest found in Valencia, and the lowest at

the Alexandroupolis tide gauge station. The main contribution to the sea level

cycle in the Mediterranean Basin is the steric component [Gomis et al., 2008]. The

cycle peaks between October and November everywhere, except in the Aegean Sea,

where it peaks in August. The water levels are the lowest in late winter, around

February and March, for the whole Basin.
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Figure 3.2: Mean seasonal cycle of the Valencia tide gauge displayed for a 2-year
period.

Figure 3.3: Mean seasonal cycle of the Genova tide gauge displayed for a 2-year
period.
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Figure 3.4: Mean seasonal cycle of the Marina di Ravenna tide gauge displayed for
a 2-year period.

Figure 3.5: Mean seasonal cycle of the Dubrovnik tide gauge displayed for a 2-year
period.
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Figure 3.6: Mean seasonal cycle of the Siros tide gauge displayed for a 2-year
period.

Figure 3.7: Mean seasonal cycle of the Alexandroupolis tide gauge displayed for a
2-year period.
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3.2.4 Inverse Barometer correction

According to Eq. (3.6), the sea level time series need to be corrected for the

tidal and meteorological effects, in order to obtain the mean sea level. As described

previously in section 3.2.1, the tidal component, ηT ide, has been removed using a

specific filter. On the contrary, the meteorological component, ηMeteo, has not been

removed yet from the time series. The meteorological component of the sea level

can be expressed as the sum of two elements:

ηMeteo = ηIB + ηHF (3.13)

where ηIB is the inverse barometer effect, due to the low frequency response of the

sea-surface to atmospheric pressure variations [Wunsch and Stammer, 1997], and

ηHF is the high frequency response to pressure forcing and wind effects [Carrere

and Lyard, 2003]. The high frequency response is relevant only on periods below

10 days [Fukumori et al., 1998], therefore, since monthly averaged data were used

in this analysis, the effect of ηHF is minimized and no correction is needed.

The inverse barometer effect requires a correction, based on atmospheric pres-

sure data at the sea level surface. The pressure records used in this work are those

of the NCEP/NCAR (National Centers for Environmental Prediction/National

Center for Atmospheric Research) Reanalysis 1, described in Kalnay et al., 1996.

A full list of all the exploited models and the available records of this dataset can

be retrieved at the following website: [https://climatedataguide.ucar.edu/climate-

data/ncep-ncar-r1-overview]. The data are archived on grids with spatial resolu-

tion of 2.5◦.

The downloaded records were monthly mean atmospheric pressure values at

the sea level surface. The time series were selected at the geographical locations

of the 35 tide gauge stations used in this work, over the analysis period 1993-2014.

The pressure and the de-seasoned tide gauge data were de-trended, and a linear

regression was computed between these residual series:

pi = ksi + ζi (3.14)

where pi are the de-trended monthly atmospheric pressure values in millibar, si

are the de-trended monthly sea level values in centimeters, k is the slope of the

least squares best-fit line and ζi the residuals. Then, the IB correction was applied

by using the coefficient k:

SIB
i = Si − kpi (3.15)
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where Si are the tide gauge data and SIB
i are the tide gauge records corrected for

the IB effect. At this stage of the analysis, the tide gauge data are de-seasoned

monthly mean sea level values, filtered for the tidal component and corrected for

the effect of atmospheric pressure variations. These are the values that have been

compared, in term of linear trends, with the data derived from satellite altimetry,

although, the possible VLM affecting the trends has not been estimated yet. The

following tables (Tables 3.2, 3.3, 3.4) present the sea level trends obtained from

the monthly mean time series, the de-seasoned records, and the de-seasoned time

series corrected for the IB effect.

Table 3.2: Mean sea level trends over the period 1993-2014, obtained from tide
gauge data in the Eastern Mediterranean Sea. Column 1 indicates the tide gauge
station, columns 2 to 4 report the trends derived from monthly mean sea level data,
de-seasoned monthly mean sea level data, and de-seasoned monthly mean sea level
data corrected for the IB effect, respectively. The trends were obtained from linear
regressions and associated are the relevant standard errors.
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Table 3.3: Mean sea level trends over the period 1993-2014, obtained from tide
gauge data in the Western Mediterranean Sea. Column 1 indicates the tide gauge
station, columns 2 to 4 report the trends derived from monthly mean sea level data,
de-seasoned monthly mean sea level data, and de-seasoned monthly mean sea level
data corrected for the IB effect, respectively. The trends were obtained from linear
regressions and associated are the relevant standard errors.
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Table 3.4: Mean sea level trends over the period 1993-2014, obtained from tide
gauge data in the Adriatic Sea. Column 1 indicates the tide gauge station, columns
2 to 4 report the trends derived from monthly mean sea level data, de-seasoned
monthly mean sea level data, and de-seasoned monthly mean sea level data corrected
for the IB effect, respectively. The trends were obtained from linear regressions and
associated are the relevant standard errors.

3.2.5 Standard Error accounting for serial autocorrelation

The linear trends and their standard errors were estimated by using a linear

regression. While a trend value obtained with this method is accurate, the standard

error of that trend, sb, is substantially underestimated. In fact, this estimated

error is valid only if the residual values, ri, are serially uncorrelated [Box and

Jenkins, 1976]. This condition is often not valid in time series analysis [Box and

Jenkins, 1976; Box et al, 1978], and, in particular, it usually not valid for sea-

level time series [Zervas, 2001]. Even after removing the mean seasonal cycle,

the residual time series is serially autocorrelated. Each monthly value is partially

correlated with the value of the previous month and the value of the following

month. Therefore, the monthly sea-level data yi can be expressed in the form of

an autoregressive first order process [Zervas, 2009]:

yi = bti + ρi(yi−1 − bti−1) + εi (3.16)



3.2. CORRECTION OF TIDE GAUGE DATA 61

where b and ti have the same meaning as in Eq. 3.9, i−1 indicates the previous data

value, and εi represents the unpredictable part of the residuals. The predictable

part of the time series from the previous month residual is represented by ρ1, called

the lag-1 autoregressive coefficient [Maul and Martin, 1993]. The value of the lag-

1 coefficient ρ1 oscillates between -1 and +1, when equals to 0 the next value is

completely unpredictable. This procedure does not alter the value of the trends,

but leads to a larger standard error sb. With a lag-1 coefficient ρ1, the effective

sample size, n, is reduced to n1, following the equation [Wilks 2006]:

n1 = n
1− ρ1
1 + ρ1

(3.17)

thus, the standard error sb increases to a value sb1

sb1 = sbFl = sb

√
1 + ρ1
1− ρ1

(3.18)

where Fl is called the variance inflation factor. The effect of the factor Fl on the

standard errors is shown in Table 3.5.

Table 3.5: Effect of temporal autocorrelation of the de-trended time series on stan-
dard errors [Zervas, 2009]. The first column indicates possible values of the au-
toregressive coefficient ρ1, the second column presents the variance inflation factor
relative to the ρ1 value, the last column show the ratio between the standard errors
calculated with autoregressive process of first order and with linear regression.

Accounting for the serial correlation of the residual time series, the standard

errors associated with the trends of the de-seasoned records corrected for the IB

effect, have been recalculated. The average of all the trend standard errors are

presented in Table 3.6, for the two different methods of calculation.
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Table 3.6: Average of the standard errors calculated with linear regression and with
autoregressive process of first order. Column 1 presents the average of all the trend
standard errors for the specific method of calculation listed in column 2.

The standard errors calculated with the autoregressie process were then multi-

plied by 1.96 according to Box et al. (1978), in order to obtain the 95% confidence

interval (CI) of each trend. The results are shown in Tables 3.7, 3.8, 3.9.

Table 3.7: Eastern Mediterranean Sea: trends estimated over the period 1993-2014.
The data are the de-seasoned tide gauge data, with IB correction applied. Column
1 identifies the tide gauge station, column 2 lists the trends with the standard errors
obtained with linear regression, column 3 the variance inflation factor, column 4
shows the trends with standard errors, sb1, derived from autoregressive process, and
column 5 presents the trends with the 95% confidence interval (1.96 sb1).
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Table 3.8: Eastern Mediterranean Sea: trends estimated over the period 1993-2014.
The data are the de-seasoned tide gauge data, with IB correction applied. Column
1 identifies the tide gauge station, column 2 lists the trends with the standard errors
obtained with linear regression, column 3 the variance inflation factor, column 4
shows the trends with standard errors, sb1, derived from autoregressive process, and
column 5 presents the trends with the 95% confidence interval (1.96 sb1).
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Table 3.9: Eastern Mediterranean Sea: trends estimated over the period 1993-2014.
The data are the de-seasoned tide gauge data, with IB correction applied. Column
1 identifies the tide gauge station, column 2 lists the trends with the standard errors
obtained with linear regression, column 3 the variance inflation factor, column 4
shows the trends with standard errors, sb1, derived from autoregressive process, and
column 5 presents the trends with the 95% confidence interval (1.96 sb1).

3.3 Discontinuities in GPS time series and ver-

tical velocities estimation

GPS coordinate time series can be affected by abrupt discontinuities, hinder-

ing the accurate estimation of trends. The series shall be corrected calculating

the magnitude of these sudden jumps. The records have been analyzed using

the STARS methodology [Bruni et al., 2014], as described in section 3.1. A pre-

processing phase was introduced, in order to remove the outliers from the dataset.

The series were then de-trended and de-seasoned, before applying STARS. The

vertical, East and North component of each station position can be treated sepa-

rately because jumps might not affect all three positions in the same way [Bruni et

al., 2014], thus, for the scope of this study, only the vertical components were ana-

lyzed. A threshold for the minimum size of an identifiable jumps was also adopted

from Bruni et al. (2014) , to account for the noise level of the time series. This
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threshold depends on the value of σL, the mean standard deviation computed over

all possible L time intervals in the series, through an exponentially decaying func-

tion, derived empirically. The threshold is computed using the following equation:

y = Ae(−
σL
b ) + y0 (3.19)

where A, b, and y0 are empirical parameters and y is the threshold, given in

percentages of σL. Thus, only discontinuities with magnitude greater than that of

the defined threshold were corrected. Additionally, the size of the data set used

in this analysis (21 time series) allows to check the output of the STARS software

manually. If consecutive jumps, in opposite directions, were detected within a

period of three month, the difference between their respective magnitudes have

been computed and compared to the jump acceptance threshold [Bruni et al.,

2014]. Figure 3.8 shows the coordinate time series of the MARS (Marseille) GPS,

before and after the analysis with STARS.
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Figure 3.8: GPS daily vertical coordinate time series of the MARS (Marseille)
station. Top panel: the time series downloaded from the NGL. Red lines indicates
the discontinuities detected by the STARS software. Bottom panel: the time series
after the removal of the discontinuities.

Among the 21 GPS coordinate time series, only the 15 downloaded from the

NGL database were analyzed with the STARS algorithm. In fact, the station po-

sitions discontinuities are already corrected in the data available from the SONEL

archive, using a specific methodology described in many studies [Wöppelmann et
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al. 2007; Bouin and Wöppelmann, 2010; Santamar̀ıa-Gòmez et al., 2012]. Also,

the time series of the TRIM (Trieste) and PORT (Ravenna) stations, obtained

from the DIFA (UNIBO), have been corrected previously with the same STARS

procedure described in this section. Discontinuities were found in almost half of

the analyzed records, namely for the stations of Catania, Ortona, Malaga, Mar-

seille, Napoli, Tarifa and Valencia. The details of the detected jumps are presented

in Table 3.10.

Table 3.10: Discontinuities detected in the GPS daily vertical coordinate time se-
ries. Each column refers to one of the stations listed above. For each jump, the
date of occurrence, the estimated magnitude (in millimeters) and the originating
causes are reported.

To identify the causes of the detected discontinuities, the IGS format log files

were checked for the listed GPS sites. These files contain the metadata of the

stations and should report any installation changes. However, some files are only

partially complete and not updated. Among the 16 discontinuities found, only

four were attributed to equipment changes. The remaining 75% were flagged as

of unknown origin. Long-term trends were finally computed from the corrected
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time series. The data were averaged in monthly mean values, rejecting those

months having less than 15 days of data, and the same linear regression process,

as described in section 3.2.3, was performed. The trends thus obtained for every

station are reported in Table 3.11.

Table 3.11: Trends of VLM estimated with linear regression. Column 1 lists the
station acronym, column 2 the location of the nearest tide gauge, column 3 the total
data span and column 4 the estimated trend with the associated standard errors.
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3.4 Satellite altimetry data analysis

The satellite data used in this analysis are the SSALTO/DUACS Mediterranean

Sea multi-mission gridded daily SLAs, available from AVISO, and the SLA monthly

grid time series provided by ESA CCI project. Differently from the tide gauge

data, satellite altimetry records are distributed after the tidal and meteorological

components have been removed from the time series. It should be noted that,

while the tide gauge data were corrected for the IB effect, the DAC applied on the

satellite records accounts for both the IB effect and the high frequency response

of the sea-level to pressure and wind variations.

The daily time series from AVISO were averaged to obtain monthly mean val-

ues, the same format as that of the CCI data. Then, the mean seasonal cycle

was calculated and removed from each time series of both datasets, following the

procedure previously described in section 3.2.3 (Eq. 3.12). The mean sea level

trends were estimated through linear regression (Eq. 3.9, 3.10) and the associ-

ated standard errors were calculated accounting for the serial autocorrelation (Eq.

3.18). Tables 3.12, 3.13 and 3.14 present the obtained results. The trends for the

CCI data are referred to the period 1993 – 2013.

Table 3.12: Mean sea-level trends derived from monthly de-seasoned satellite al-
timetry data over the Eastern Mediterranean Sea. Column 1 identifies the location
of the nearest tide gauge, column 2 presents the trends computed from the AVISO
records over the period 1993-2014, with the 95% confidence interval, column 3
shows the trends of the CCI data over the period 1993-2013, with the 95% confi-
dence interval.
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Table 3.13: Mean sea-level trends derived from monthly de-seasoned satellite al-
timetry data over the Western Mediterranean Sea. Column 1 identifies the location
of the nearest tide gauge, column 2 presents the trends computed from the AVISO
records over the period 1993-2014, with the 95% confidence interval, column 3
shows the trends of the CCI data over the period 1993-2013, with the 95% confi-
dence interval.
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Table 3.14: Mean sea-level trends derived from monthly de-seasoned satellite al-
timetry data over the Adriatic Sea. Column 1 identifies the location of the nearest
tide gauge, column 2 presents the trends computed from the AVISO records over
the period 1993-2014, with the 95% confidence interval, column 3 shows the trends
of the CCI data over the period 1993-2013, with the 95% confidence interval.
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Chapter 4

Comparison of mean sea level

trends

This chapter focuses on the comparison between the trends obtained from the

analysis of tide gauge and satellite radar altimetry sea level data. In section 4.1, the

period 1993-2014 is analyzed; the satellite trends deduced from the AVISO records

are compared with the mean sea level trends obtained from the 35 tide gauge

stations selected in the Mediterranean area. Section 4.2 presents the comparison

over the period 1993-2013, introducing the CCI satellite data in order to assess

which of the two different satellite data records was the most suitable for coastal

studies.

4.1 Period 1993-2014: linear trends from tide

gauge and AVISO satellite data

The data compared in this section are the de-seasoned monthly mean gridded

SLA, downloaded from AVISO, and the de-seasoned monthly mean sea level time

series of the 35 tide gauge stations selected for this study. The comparison has

been performed in term of linear trends, using the nearest satellite altimeter grid

point to each station.

For the sites where GPS data were available, in case a significant vertical

velocity was estimated, the tide gauge time series have been corrected for the

VLM. According to Eq. 2.1, the relative sea level trend, estimated by tide gauge

data, was summed to the VLM found at this site, in order to obtain an absolute

sea level trend, comparable with the one calculated from satellite altimetry data.

The standard error associated to the trend corrected in this way was computed by

73
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means of the propagation of uncertainties [Taylor, 1982]:

s =
√

(sb1)2 + (sV LM)2 (4.1)

where sb1 is the standard error of the relative sea level trend, accounting for resid-

uals autocorrelation, and sV LM the error associated to the VLM trend.

Additionally, at each station, the correlation coefficient between the satellite

altimetry and the tide gauge data was computed [Taylor, 1982]:

r =

n∑
i=1

(xi −X)(yi − Y )√
n∑

i=1

(xi −X)2

√
n∑

i=1

(yi − Y )2

(4.2)

where xi are the tide gauge data, yi the satellite data, X and Y the mean of xi

and yi, respectively, and n the number of mean sea-level values. The correlation

coefficients have been calculated using the tide gauge time series corrected for the

VLM for those sites where such correction has been estimated.

The results are presented in the followint Tables 4.1, 4.2, and 4.3.

Table 4.1: Eastern Mediterranean Sea: mean sea level trends, estimated over the
period 1993-2014, and VLMs. Column 1 identifies the tide gauge station, column 2
lists the sea level trends computed from the tide gauge data, column 3 presents the
VLM correction computed from the available GPS observations to be applied to the
tide gauge data, column 4 displays the tide gauge mean sea level trends corrected
for the VLM, when available, column 5 lists the sea level trends estimated from
the nearest satellite altimeter grid point and column 6 the correlation coefficient
between the two de-seasoned monthly time series where, when available, the tide
gauge data have been corrected for the VLM.
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Table 4.2: Western Mediterranean Sea: mean sea level trends, estimated over the
period 1993-2014, and VLMs. Column 1 identifies the tide gauge station, column 2
lists the sea level trends computed from the tide gauge data, column 3 presents the
VLM correction computed from the available GPS observations to be applied to the
tide gauge data, column 4 displays the tide gauge mean sea level trends corrected
for the VLM, when available, column 5 lists the sea level trends estimated from
the nearest satellite altimeter grid point and column 6 the correlation coefficient
between the two de-seasoned monthly time series where, when available, the tide
gauge data have been corrected for the VLM.
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Table 4.3: Adriatic Sea: mean sea level trends, estimated over the period 1993-
2014, and VLMs. Column 1 identifies the tide gauge station, column 2 lists the
sea level trends computed from the tide gauge data, column 3 presents the VLM
correction computed from the available GPS observations to be applied to the tide
gauge data, column 4 displays the tide gauge mean sea level trends corrected for the
VLM, when available, column 5 lists the sea level trends estimated from the nearest
satellite altimeter grid point and column 6 the correlation coefficient between the
two de-seasoned monthly time series where, when available, the tide gauge data
have been corrected for the VLM.

The two datasets show significant correlation almost at every site, with corre-

lation coefficients up to 0.8. The highest correlation was found in the Northern

Adriatic Sea, where the correlation coefficient of the Trieste station is equal to

0.80. In the Aegean Sea, the tide gauge and the satellite altimetry signals were

well correlated at all stations, with coefficients ranging between 0.72-0.78. Lower

values were found in the Alboran Sea (0.58-0.60) and, in particular, at the Valencia

station (0.48), in the Balearic Sea.

The absolute sea-level trends obtained from satellite altimetry range between

0.96-4.47 mm/yr, with the lowest value found in the Ionian Sea, near Catania, and

the highest in the Aegean sea, close to the Siros Island. The Adriatic Sea presents

high positive rates, especially in the northern part, where the largest trends found

near Ravenna and Rovinj are equal to 4.28 ± 0.90 mm/yr and 4.33 ± 0.96 mm/yr,

respectively.

The relative trends, computed from tide gauge data, differ significantly from
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site to site, most likely reflecting differences in the VLM affecting the stations. Sea

level trends larger than 5 mm/yr were found in 12 sites, with the three stations

of Levkas, Ravenna and Naples exhibiting sea-level rates larger than 7 mm/yr.

Generally, the relative trends corrected for the VLM are comparable with those

computed from satellite altimetry, within the 95% confidence interval. The cases

analyzed are described in detail in the following paragraphs.

4.1.1 Tide gauges along the Spanish, French and Western

Italian coasts

In the Gibraltar Straits, a small uplift has been detected in Ceuta, 0.53 ±
0.39 mm/yr, while significant land subsidence was estimated in Tarifa, equal to

-2.77 ± 0.17 mm/yr. Similar rates were found by Garc̀ıa et al. (2012), using

differences between tide gauge and satellite data. The sea-level trends of both

stations, corrected for the respective VLM, turn out to be consistent with those

estimated, for each station, at the nearest satellite altimeter grid point.

Moving to the Alboran Sea, no significant VLM, 0.13 ± 0.17 mm/yr, has been

estimated at the Malaga station. The relative sea-level trend measured by the

tide gauge, equal to 3.05 ± 1.01 mm/yr, is in agreement with the absolute trend

derived from satellite altimetry, 3.16 ± 0.69 mm/yr.

In the Balearic Sea, a smaller mean sea-level rise has been found from altimetry

data, 1.87 ± 0.49 mm/yr, near Valencia. The relative trend estimated from the

tide gauge data is 4.85 ± 1.09 mm/yr, about 3 mm/yr higher than the satellite

altimetry estimate, while the VLM computed from the VALE GPS time series

indicates s a subsidence rate of -1.00 ± 0.10 mm/yr. The VLM has been computed

over a period of time of about 13 years, good enough to estimate a reliable trend;

however, the GPS time frame does not overlap completely with the tide gauge

data record.

Similar results were found at the Barcelona station, where the tide gauge sea-

level trend, 4.32 ± 0.85 mm/yr, corrected for the ground component, is about 2

mm/yr higher than the absolute trend estimated by satellite altimetry data, 2.29

± 0.53. In this site, the distance between the tide gauge and the GPS (PLAN)

stations is about 17 km, and this could be considered as a potentially contributing

error source. In fact, a recent study by Tomás et al. (2014), performed using

InSAR measurements, has assessed that the rate of subsidence in Barcelona shows

differences even in the order of 1 mm/yr from one area to the other of the city,

and is somewhat higher near the coast. Thus, it is likely that the VLM estimated
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at the GPS station does not reflect the real ground motion affecting the tide gauge

records.

No GPS records were available for the L’Estartit station. The absolute and

relative sea-level are comparable, although, the difference between the two trends

suggests a small subsidence rate of about 1 mm/yr, which is in agreement with

the value found by Garc̀ıa et al. (2012).

Along the Southern French coast, the tide gauges at Marseille and Toulon have

been analyzed. The GPS at the Marseille site shows a negative VLM rate of -1.11

± 0.05 mm/yr, while no GPS station is available at Toulon. The sea-level trend

in Marseille, corrected for the subsidence, is very close to that of the neighboring

Toulon station (3.59 ± 0.95 mm/yr, 3.62 ± 0.82 mm/yr, respectively), and both

trends are comparable to the satellite-derived trends, within the 95% confidence

interval.

Along the Western Italian coast, the four sites of Genoa, Livorno (in the Lig-

urian Sea), Naples and Salerno (in the Tyrrhenian Sea) were analyzed. Higher

sea-level trends, both absolute and relative, were found in the south at the Naples

and Salerno stations. A significant land subsidence of -3.90 ± 0.27 mm/yr has

been measured in Naples, while no significant VLM has been estimated at the

other three stations. The rate of sea-level rise at the Naples tide gauge, corrected

for the VLM, is comparable to the trend computed from satellite data. The tide

gauge-derived trends of the two sites in the Ligurian Sea and that of the Salerno

station show a good agreement with the satellite-derived estimate, without correc-

tions for the VLM.

In Cagliari, on the Sardinia Southern coast, a small subsidence has been de-

tected, leading to a corrected sea-level trend of 3.57 ± 0.85 mm/yr, consistent

with the absolute trend of 2.42 ± 0.57 mm/yr, estimated at the nearest satellite

altimeter grid point.

No GPS station has been found near the Taranto station. The sea-level rise

obtained from the tide gauge data is higher than the absolute sea-level trend

derived from the satellite altimetry, suggesting land subsidence at this site. This

is in agreement with previous investigations concerning this area, were negative

trends of VLM have been found [Fenoglio-Marc et al., 2004]. Despite the lacking of

information on the VLM, the two trends are consistent, within the 95% confidence

interval.

For the Catania station, located on the Sicilian Eastern coast, the coastal sea-

level trend estimated from satellite altimetry is almost equal to zero, 0.97 ± 0.86

mm/yr. This low sea-level rise near the coast is in agreement with the results of
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Braitenberg et al. (2010), who found, for the period 1992-2009, a negative sea-level

rate in the Ionian Sea, decreasing towards the Eastern Sicilian coast where it turns

into small positive values (Fig. 4.1).

Figure 4.1: Map of SSH change in the Ionian Sea from satellite altimetry data,
over the time interval 1992-2008 [From Braitenberg et al., 2010].

Although the tide gauge trend has been corrected for subsidence, estimated

from the GPS time series, the absolute trend thus computed is higher, 2.98 ± 0.91

mm/yr, than the value obtained from satellite altimetry.

The relative sea-level trends computed from tide gauge data, the sea-level

trends corrected for the VLM, and the satellite altimetry-derived trends described

in this section, are graphically compared in Figure 4.2.
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Figure 4.2: Sea-level trends computed from tide gauge and satellite data along the
Spanish, French and Italian Western coasts. The black points identify the trends
estimated from the tide gauge data, the red points those from the satellite altimeter
data, and the blue points the tide gauge trends corrected for the VLM. Error bars
represent the 95% confidence interval.

4.1.2 Greek tide gauges

Along the Greek coast, 8 tide gauge stations were investigated. Unfortunately,

GPS data were available only for two of these stations, namely the Levkas and

Thessaloniki sites.

The highest relative sea-level trend of this study has been estimated at the

Levkas station, 9.54 ± 1.11 mm/yr, on the Western coast of Greece. This value is

almost 7 mm/yr higher than the absolute trend estimated at the nearest satellite

grid point, 2.57 ± 0.73 mm/yr, suggesting a strong subsidence rate at this site.

The VLM trend computed from the time series of the SPAN GPS, over a seven

year time span (2007-2014) is equal to -1.23 ± 0.11 mm/yr, reducing the tide gauge

trend to a value of 8.31 ± 1.14 mm/yr.

The two stations of Katakolon and Khalkis North present similar relative sea-

level trends, 6.04 ± 1.08 mm/yr, 6.14 ± 1.29 mm/yr, respectively, and absolute

trends, 3.29 ± 0.69 mm/yr, 3.42 ± 0.96 mm/yr, respectively. These values suggest

a rate of VLM approximately equal to -2.75 mm/yr for the two sites, in agreement

with other studies. In fact, land subsidence has been found in these regions during

the SELF project [Zerbini et al., 1996; Becker et al., 2002], also, Garc̀ıa et al.
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(2012) estimated a rate of VLM around -3 mm/yr for the Khalkis North station,

over the period 1993-2007.

For the islands of Siros, Leros and Khios, in the Aegean Sea, the trends com-

puted from satellite data are larger than those calculated from the tide gauge

records, suggesting a small uplift rate for the three sites. In any case, the trends

obtained from the two techniques are comparable, within the 95% confidence inter-

val. The Siros station presents the highest absolute sea-level trend found over the

time period considered in this study, equal to 4.47 ± 1.00 mm/yr, while the two

sites of Leros and Khios show absolute sea-level trends around 4 mm/yr. Small

uplift rates in this area have been found in other works [Fenoglio-Marc et al., 2004;

Garc̀ıa et al., 2007]. Although not included in this analysis, since it did not cover

the three years of data required to estimate a reliable vertical velocity [Blewitt and

Lavallée, 2002], a VLM trend has been computed from the vertical component time

series of the Khios CH00 GPS station. These GPS data were acquired from the

NGL database, and a vertical trend of 1.48 ± 1.30 mm/yr has been estimated for

the two-year period 2012-2014, in agreement with the hypothesis of uplift in this

area.

Finally, the tide gauges of Thessaloniki and Alexandroupolis have been ana-

lyzed in the northern part of the Aegean Sea. The trend estimated from the tide

gauge data in Alexandroupolis is consistent with the trend derived from satellite

altimetry; both value are close to 4 mm/yr. In Thessaloniki, the available GPS

allowed to compute the VLM trend of the site, finding a rate of subsidence equal

to -1.71 ± 0.11 mm/yr. The trend measured by the tide gauge, corrected for the

vertical land motion, is comparable to the absolute sea-level trend.

The rates of mean sea-level rise, obtained from the analysis of the satellite

records, tide gauge data and tide gauge corrected for GPS vertical velocities, along

the Greek coasts are graphically compared in Figure 4.3.

4.1.3 Tide gauges in the Adriatic Sea

Twelve tide gauge stations have been analyzed in the Adriatic Sea, with GPS

data available for 8 of them.

Along the east coast of the Adriatic Sea, the three tide gauge stations at

Dubrovnik, Split and Zadar have been analyzed in the Dalmatian region. A sig-

nificant trend of VLM has been found only in Dubrovnik, where a subsidence rate

of -1.76 ± 0.16 was estimated. The Split GPS gave a VLM rate of 0.05 ± 0.18

mm/yr, while no GPS time series is available in Zadar. The trend in Dubrovnik,
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Figure 4.3: Sea-level trends computed from the tide gauge and the satellite data
along the Greek coasts. The black points identify the trends estimated from the tide
gauge data, the red points the sea level trend from the satellite altimeter data, and
the blue points the tide gauge trends corrected for the VLM. Error bars represent
the 95% confidence interval.

corrected for the VLM, and the two relative trends at the Split and Zadar stations

are comparable with those estimated from satellite altimetry. The absolute sea-

level trends increase from south to north, with a rate of sea-level rise equal to 3.41

± 0.80 mm/yr in Dubrovnik, 3.93 ± 0.92 mm/yr in Split and 4.04 ± 0.96 mm/yr

in Zadar.

In the Southern Adriatic, sea-level trends around 3.70 mm/yr were found from

the satellite data for the two neighboring stations of Otranto and Bari. A small

rate of land subsidence has been detected from the data of the GPS station in

Otranto, -0.44 ± 0.17 mm/yr, obtaining a sea-level trend of 3.37 ± 1.15 mm/yr by

applying this VLM correction to the rate measured by the tide gauge. No suitable

GPS was found near Bari, but the relative trend is comparable with the absolute

one, within the 95% confidence interval.

In the Central Adriatic, on the Italian coast, two sites have been analyzed. In

Ortona, a large relative sea-level trend of 6.72 ± 1.97 mm/yr has been estimated,

associated with a significant rate of land subsidence, -1.81± 0.51 mm/yr, measured

from the local GPS. On the contrary, in Ancona, the relative sea-level trend, 3.08
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± 1.62 mm/yr, is affected by land uplift equal to 1.12 ± 0.33 mm/yr. The mean

sea-level trends estimated, for each station, at the nearest satellite grid point are

similar, 4.14 ± 0.86 mm/yr in Ortona and 4.12 ± 0.96 mm/yr in Ancona. The

two trends measured by the tide gauges have been corrected for the estimated

VLM, obtaining values comparable with the absolute sea-level rise computed from

satellite altimetry.

In the Northern Adriatic, a total of 5 stations have been selected for this

analysis. Along the Croatian coast, the two stations of Bakar and Rovinj were

analyzed. In Bakar, the relative sea-level trend measured by the tide gauge, 3.19

± 1.47 mm/yr, is comparable with the absolute trend computed from the AVISO

data, 3.80 ± 0.96 mm/yr. No GPS data were available, but the small difference

between the two trends shows that the site might be subjected to a small uplift

rate, which is in agreement with the results found by Fenoglio-Marc et al. (2012).

On the coast of the Istrian Peninsula, the relative sea-level trend, 1.96 ± 1.25

mm/yr, of the Rovinj tide gauge is significantly smaller than the absolute mean

sea-level rise derived from the satellite records, 4.33 ± 0.96 mm/yr. This suggests

that land uplift might affect the tide gauge site; however, no significant VLM has

been estimated from the nearest GPS (PORE) station, 0.28 ± 0.39 mm/yr., This

GPS station is located more than 16 km northward with respect to the tide gauge

site, and the data span is only three years long (2011-2014), the minimum required

to compute a reliable vertical velocity.

The northernmost location of this study is the Trieste tide gauge station. The

relative sea-level trend measured from the tide gauge data, 5.05 ± 1.20 mm/yr,

is almost 1 mm/yr higher than absolute sea level rise, 4.01 ± 1.07 mm/yr. A

relatively small positive VLM, equal to 0.91 ± 0.10 mm/yr, was found from the

analysis of the GPS data over the period 2007-2014,. Becker et al. (2002) detected

land subsidence in Trieste, whereas Garc̀ıa et al. (2012) found no significant land

motion over the period 1993-2007. However, both the sea-level trend obtained

from the tide gauge data, and the one corrected for the VLM, 5.96 ± 1.21 mm/yr,

are consistent, within the 95% confidence interval, with the mean sea-level rise

estimated from satellite altimetry.

Finally, high relative sea-level trends were found in Marina di Ravenna and

Venice, 7.13 ± 1.67 mm/yr and 6.52 ± 1.16 mm/yr, respectively. These two

stations are located in the Po Plain, a zone which is subjected to both natural

and anthropogenic subsidence [Zerbini et al., 2007]. In Venice, the VLM has

been investigated in many studies, over different periods, showing high spatial and

temporal variations [Zerbini et al., 1996; Becker et al., 2002; Tosi et al., 2002;
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Strozzi et al., 2009]. Zerbini et. Al. (2015) have realized a non-linear subsidence

correction by analyzing the sea-level data starting from the end of the 1800 and

by using all available benchmarks heights from levelling measurements, InSAR

and GPS vertical information. The corrected Venice tide gauge data were made

available for this work (Zerbini, personal communication) and lead to an estimate

of the absolute sea-level trend equal to 4.02 ± 1.18 mm/yr, in very good agreement

with the rate estimated from satellite altimetry for the closest point to the Venetian

coast. In Marina di Ravenna, the natural subsidence has been greatly enhanced

by anthropogenic activities, primarily gas and groundwater extraction, during the

second half of the twentieth century [Zerbini et al., 2007]. The GPS was installed

in Marina di Ravenna in 1996, in close proximity of the tide gauge [Zerbini et

al., 1996; Becker et al., 2002]. A strong subsidence rate, equal to -5.67 ± 0.10

mm/yr, is derived when the GPS vertical time series is approximated by a linear

fit, over the period 1996-2014. By correcting the relative sea-level trend for this

VLM, an absolute sea-level rate of 1.46 ± 1.69 mm/yr is obtained. This trend

is definitely lower than the value, 4.28 ± 0.90 mm/yr, estimated with satellite

altimetry data for the closest point to the Marina di Ravenna coastal area. Also

for this tide gauge, Zerbini et al. (2015), have realized a non-linear subsidence

correction using the tide gauge data from the end of the 1800, benchmarks heights

from levelling measurements, InSAR and GPS height time series. For the period

1993-2014, the absolute sea level series thus obtained by Zerbini et al. (2015,

personal communication) was used to estimate the VLM that turns out to be 4.16

± 1.67, quite comparable to the result provided by the satellite altimetry data. For

the two stations of Venice and Marina di Ravenna, new correlation coefficients were

calculated between the tide gauge time series corrected for the non-linear VLM

and the AVISO satellite data. Using these records, the correlation coefficients

estimated increase, exhibiting a value equal to 0.78 for both sites. The sea-level

trends obtained from the analysis in the Adriatic Sea are graphically compared in

Figure 4.4.
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Figure 4.4: Sea-level trends computed from tide gauge and satellite data in the
Adriatic Sea. The black points identify the trends estimated from the tide gauge
data, the red points the sea-level trend from the satellite altimeter data, and the
blue points the tide gauge trends corrected for the VLM. Error bars represent the
95% confidence interval.

4.2 Period 1993-2013: tide gauges, AVISO and

CCI satellite data

In this section, the CCI data are introduced as a further comparison between

tide gauge and satellite records. Due to the shorter data span of the CCI time

series, the sea-level trends described in the previous section were recalculated over

the period 1993-2013.

Before proceeding with the comparison of the datasets, it is worthwhile to recall

the main differences between the CCI and AVISO data sets:

• SLA grids of spatial resolution equal to 1/8◦ × 1/8◦ and 1/4◦ × 1/4◦ for the

CCI data, respectively;

• the introduction in GNSS data analysis of the wet tropospheric delay cor-

rection, in the CCI data [Fernandes et al., 2014];

• the use of pressure data from ERA-interim reanalysis for the computation

of the dry tropospheric correction and the dynamic atmospheric correction
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(DAC) for the CCI records [Carrere et al., 2015].

In this section, the tide gauge sea-level trends of the 21 sites equipped with

GPS are the absolute trends, meaning that the VLM correction has been applied.

The Trieste tide gauge data were not corrected for the GPS-derived vertical land

motion because the GPS time series only partially overlaps the 1993-2014 sea-

level data span. For Marina di Ravenna and Venice, the values derived from

the land subsidence correction presented in Zerbini et al. (2015), were adopted.

Additionally, the correlation coefficients between the tide gauge time series and the

CCI records have been calculated (see Eq. 4.2). The sea-level trends computed

from the tide gauge data and the two satellite altimetry datasets are presented

separately in two tables: Table 4.4 shows the stations where the tide gauge data

were corrected for the VLM, the remaining locations are listed in Table 4.5.

The tide gauge and the CCI time series are always positively correlated, with

correlation coefficients ranging between 0.5 and 0.75. A slightly higher correlation

was obtained in section 4.1 with the data from AVISO, especially in the Northern

Adriatic. Here, the best correlation has been obtained in the Aegean Sea, at the

three Islands of Siros, Leros and Khios (r = 0.75, 0.74 and 0.74, respectively).

Considering the 22 sea-level trends corrected for the VLM, the three datasets

turns out to be consistent, within the 95% confidence interval, almost everywhere.

Differences larger than 2 mm/yr between the rate estimated from the AVISO and

CCI records were found in three sites (Ceuta, Tarifa and Catania), the differences

at the other sites range between 0.5 and 1 mm/yr.

By using the CCI data, two anomalous large sea-level rates were found for

the Ceuta, 5.08 ± 0.78 mm/yr, and Tarifa, 5.20 ± 0.73 mm/yr, stations, in the

Gibraltar Straits, while the trends computed from the AVISO and the tide gauge

time series are in very good agreement, approximately equal to half the rates

derived from the CCI records.

In Rovinj, the best agreement is found between the tide gauge and CCI trends.

In paragraph 4.1.3, the difference between the trends computed from the tide gauge

and the AVISO satellite records was attributed to an underestimation of the VLM.

Over the period analyzed in the present section, a 2 mm/yr discrepancy is still

present between the tide gauge, 1.96 ± 1.25 mm/yr, and the AVISO-derived trend,

3.85 ± 1.33 mm/yr. On the contrary, the mean sea-level rise derived from the CCI

records, 2.30 ± 1.30 mm/yr is consistent with the rate computed from the tide

gauge data.

No significant sea-level rise has been found in Catania, 0.42 ± 0.89 mm/yr,
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Table 4.4: Sea-level trends over the period 1993-2013, computed from tide gauge,
CCI and AVISO data sets. Column 1 identifies the tide gauge station, column
2 lists the trend computed from the tide gauge data and corrected for the VLM,
column 3 the sea level rate estimated from the CCI satellite data, column 4 the
correlation coefficient between the tide gauge and the CCI time series and column
5 the sea-level trend computed from the AVISO satellite records.
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Table 4.5: Sea-level trends over the period 1993-2013, computed from tide gauge,
CCI and AVISO data sets. Column 1 identifies the tide gauge station, column 2
lists the relative sea-level trend measured by the tide gauge, column 3 the sea-level
rate estimated from the CCI satellite data, column 4 the correlation coefficient
between the tide gauge and the CCI time series, and column 5 the sea-level trend
computed from the AVISO satellite records.

from the AVISO records, over the period 1993-2013. However, a positive trend

of 2.64 ± 0.94 mm/yr was computed from the tide gauge data, corrected for the

land subsidence affecting the site. In section 4.1.1, a similar situation has been

discussed for the period 1993-2014. The sea-level rise derived from the CCI records

is equal to 2.94 ± 0.90 mm/yr, which is in agreement with the trend computed

using the tide gauge data.

For the tide gauges where no information is available concerning the VLM, the

two satellite datasets turns out to be consistent at all sites, the only difference

larger than 1 mm/yr was found in Taranto, where a smaller rate of sea-level rise,

2.08 ± 0.82 mm/yr, is obtained from the AVISO data. The trend computed from

the CCI records, 3.65 ± 0.78 mm/yr, is comparable with the relative sea-level

trend measured by the tide gauge, 4.40 ± 1.74 mm/yr.

The trends computed from the tide gauge and the CCI records are very similar

in Toulon, 3.15 ± 0.86 mm/yr, 3.03 ± 0.69 mm/yr, respectively, Alexandroupolis,
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4.43 ± 1.94 mm/yr, 4.51 ± 1.36 mm/yr, respectively, and Khios, 2.77 ± 2.05

mm/yr, 2.68 ± 1.06 mm/yr, respectively. These values are also comparable with

rate obtained from the AVISO data, within the 95% confidence interval.

Overall, the CCI data have provided better results in Rovinj and Catania, while

the trends computed in the Gibraltar Straits appeared to be anomalously large.

At the other stations, both AVISO and CCI derived trends are comparable, and,

in some cases, the sea-level rate from the CCI data is almost equal to the trends

determined by the tide gauge data. The linear trends obtained from the three

datasets, over the period 1993-2013 are graphically compared in Figures 4.5 and

4.6.

Figure 4.5: Sea-level trends computed from tide gauge, CCI and AVISO data sets
over the period 1993-2013. The black points identify the trends estimated from the
tide gauge data corrected for the VLM, the red points the trends from the AVISO
satellite time series, and the blue points the trends estimated from the CCI records.
Error bars represent the 95% confidence interval.

A map of the differences between the trends computed from the AVISO and

CCI data, over the whole Mediterranean Sea, has been provided by Prof. Fenoglio-

Marc (personal communication), for the period 1993-2013 (Fig 4.7). Figure 4.8

presents the differences of the trends over the Adriatic Sea.

This spatial distribution of the differences is in agreement with the results
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Figure 4.6: Sea-level trends computed from tide gauge, CCI and AVISO data,
over the period 1993-2013. The black points identify the relative sea-level trends
estimated from the tide gauge data, the red points the trends from the AVISO
satellite data, and the blue points the trends estimated from the CCI records. Error
bars represent the 95% confidence interval.

presented in this section. In fact, the discrepancies between the trends computed

from the two satellite datasets are within 0.50 mm/yr, except in a few locations

as, for example, in the Northern Adriatic and the Eastern Sicilian coast.
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Figure 4.7: Differences of the trends computed from AVISO and CCI satellite
data in the Mediterranean Sea, over the period 1993-2013 (Courtesy of Prof. L.
Fenoglio-Marc).
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Figure 4.8: Differences of the trends computed from AVISO and CCI satellite data
in the Adriatic Sea, over the period 1993-2013 (Courtesy of Prof. L. Fenoglio-
Marc).



Chapter 5

Conclusions and Outlook

In this thesis, linear absolute sea level trends have been estimated in the

Mediterranean Basin from the data of the two main sea level observation tech-

niques: tide gauges and satellite radar altimetry. A comparison between the rates

obtained at specific sites has been performed, in order to assess the consistency of

the results.

Tide gauge data have been extracted from two networks: 22 stations with

monthly time series were selected from the PSMSL data set, and 13 Italian stations

with hourly data were chosen from the RMN data set, for a total of 35 sites in

the Mediterranean Sea area. For 7 Italian sites, the estimation of a datum shift in

summer 1998 has been necessary. These discontinuities were corrected using the

STARS methodology [Bruni et al., 2014]. The RMN data have been averaged in

monthly means. The IB correction was performed on the 35 tide gauge time series

by means of linear regression coefficients estimated between monthly atmospheric

pressure values from NCEP/NCAR Reanalysis 1 [Kalnay et al., 1996] and sea level

data.

The satellite altimetry data used were those distributed by AVISO, in the form

of daily time series, and by ESA, in the framework of the CCI project, in the

form of monthly values. The daily data from AVISO were averaged in monthly

values. The satellite data from the two different sources are distributed already

corrected for the IB effect. The absolute sea level trends have been computed in

correspondence of the nearest satellite altimeter grid point to each station.

The seasonal component has been evaluated for each time series, to obtain de-

seasoned monthly data set. Linear sea level trends were then computed, and the

associated standard errors have been calculated accounting for the autocorrelation

of the residuals.
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The first period analyzed spans 22 years: from 1993 to 2014, during which the

trends derived from the tide gauge data and the AVISO satellite altimetry time

series have been compared. The relative sea level trends differ significantly from

point to point likely because of local VLM affecting the tide gauge observations.

Trend values not corrected for subsidence range from 1.7 to 9.5 mm/yr. The lowest

value, equal to 1.73 ± 1.60 mm/yr, was found in the Leros island station, in the

Aegean Sea, while values up to three time larger were detected at 8 stations. The

highest relative trend, equal to 9.54 ± 1.11 mm/yr, has been found in the Lefkada

island station, in the Eastern Ionian Sea. Values up to 7 mm/yr were detected in

4 sites, namely Ortona, Marina di Ravenna and Venice, located along the Italian

coastline of the Adriatic Sea, and Naples, on the Italian Western coast of the

Tyrrhenian Sea. These relative trends need to be corrected for the possible VLM

affecting the tide gauge site. GPS stations were selected within 20 km from the tide

gauge station and with time series at least three years long. The close proximity

of the GPS to the tide gauge site should ensure as much as possible that the VLM

affecting the tide gauge station is correctly identified. For the 35 sites investigated,

21 GPS stations satisfy these selection criteria. Discontinuities present in GPS

time series were corrected using the STARS methodology and linear VLMs have

been computed. The ground component was removed by summing the relevant

VLM with the relative linear trend obtained from the analysis of observations of

each tide gauge. Among these 21 GPS stations, land subsidence has been found

in 13 sites, with the highest values detected in Naples, -3.90 ± 0.27 mm/yr, and

Marina di Ravenna, -5.67 ± 0.10 mm/yr. Uplift rates have been identified in three

locations, up to 1 mm/yr in Ancona and Trieste, and around 0.5 mm/yr in Ceuta.

No significant VLM have been found for the remaining 5 stations.

The 21 tide gauge sea level trends corrected for the VLM have been compared

to those estimated from the AVISO satellite altimetry data. These trends are

consistent, within the 95% confidence interval almost at every station. Differences

in some sites might be due to the spatial distance between the tide gauge and

the nearest GPS station, or to the shorter time span of the GPS time series with

respect to the tide gauge records. In the case of the Marina di Ravenna and Venice

stations, analyses of the long term (centennial) time series, performed by different

authors, have shown that the local subsidence can hardly be represented by a

simple linear trend. Zerbini et al. (2015) have modeled the subsidence behavior

with a non-linear curve by using leveling benchmarks, GPS and SAR observations,

at both stations. By using these non-linear VLM corrections, the tide gauge sea-

level trends turn out to be in excellent agreement with the coastal value derived



95

from satellite altimetry.

Considering the 14 stations where no information on the GPS-derived VLM is

available, 11 relative sea level trends are in agreement with the values obtained

from the AVISO data, suggesting that, at these sites, vertical land motions might

be small. Differences in the order of 2 mm/yr were found between the absolute and

relative trends at two stations, namely Khalkis North and Katakolon, in Greece.

This suggests the presence of land subsidence, in agreement with previous investi-

gations concerning these sites [Zerbini et al., 1996; Becker et al., 2002].

An additional comparison has been performed between the monthly VLM-

corrected tide gauge time series and the AVISO monthly time series of the grid

point nearest to the coast. These pairs of data sets have been correlated; the

results show significant positive correlation in almost all cases, ranging from 0.6

to 0.8. The only exception is the Valencia site, where the correlation coefficient

turns out to be 0.48.

The CCI satellite records have been compared with the AVISO and tide gauge

data, over the period 1993-2013, due to the presently shorter time span of the

CCI products. Generally, the monthly CCI and tide gauge time series present a

slightly smaller correlation with respect to the coefficients computed between the

tide gauge and the AVISO records. The trends computed from the three different

data sets are consistent, except in two locations, Tarifa and Ceuta in the Gibraltar

Straits area, where the differences of the trends estimated from the two satellite

data sets are in the order of 2 mm/yr.

In conclusion, all the linear sea-level trends computed in this work, for the 35

selected tide gauge stations in the Mediterranean Sea, over both analyzed periods,

1993-2014 and 1993-2013, are positive. The 21 stations corrected for the VLM,

using GPS data, provide a mean sea-level trend in the order of 3.7 mm/yr, in

agreement with recent estimates of the global mean sea-level rise.

The main limitation of the tide gauge technique is that GPS stations in close

proximity of the tide gauge are not always available, despite the recommendations

of major international programs. Also, in many stations, the time interval for

which GPS data are available does not overlap with that of the tide gauge data,

in general, the GPS time series are shorter than the sea-level time series. There-

fore, one possibility is to propagate the VLM correction to the past, assuming a

linear and uniform behavior over the whole period analyzed. Comparing the tide

gauge sea level trends corrected for the VLM with coastal absolute sea level trends

estimated by satellite radar altimetry, consistent results are found almost at all

sites. This demonstrates the importance of the GPS data to achieve a reliable
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separation in the tide gauge data between the real sea-level variations/changes

and the land vertical motions. For those sites lacking of GPS receiver, information

on the local VLM can be extrapolated from the differences between the satellite

altimetry-derived absolute trend and the relative trend estimated from the tide

gauge data. In these particular cases, the results found are mostly in agreement

with VLM estimates derived by previous investigations. Overall, both the AVISO

and CCI sea level gridded products have provided trends consistent with those

estimated from the VLM corrected-tide gauge records.

For what concerns future studies of GPS-corrected tide gauge records, results

might improve as the GPS time series will become longer. Also, it shall be pointed

out that the number of tide gauge equipped with co-located permanent GPS sta-

tions is still limited. The installation of new GPS stations, suitable for tide gauge

applications, is mandatory and recommended by international organizations and

programs.
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Collilieux, Z. Altamimi, S. D. P. Williams, and B. Martin Miguez (2009),

Rates of sea-level change over the past century in a geocentric reference

frame, Geophys. Res. Lett., 36, L12607. doi:10.1029/2009GL038720.
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