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1. Introduction 

1.1 Morphology, ecology and biology of the blue shark Prionace glauca 

The blue shark (Prionace glauca, Linnaeus 1758) (Fig.1) is one of the most abundant carcharhinid 

shark and it is the only one species of Prionace genus. According to the “FAO species catalogue – 

Vol.4, Sharks of the world” (Compagno, 1984), the blue shark can be classified as follows: 

 Phylum: Chordata 

 Subphylum: Vertebrata 

 Superclass: Gnathostomata 

 Class: Chondrichtyes 

 Subclass: Elasmobranchii 

 Superorder: Galeomorphi 

 Order: Carcharhiniformes 

 Family: Carcharhinidae 

 Genus: Prionace 

 Species: P.glauca 

 

 

The blue shark is widely distributed in the world’s oceans; it is an oceanic and epipelagic shark and 

one of the few known shark species to be common in all tropical, subtropical and temperate seas 

Fig.1 Blue shark Prionace glauca [Illustration by Ann Hecht ©] 
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and both in deep and coastal waters. Blue sharks prefer water temperature between 7 and 16 °C, 

even if they can also tolerate warmer temperatures, up to 21 °C (Compagno, 1984). It has a unique 

morphology, which allows us distinguish blue sharks from any other shark: it has a long and slim 

body, with long pectoral fins and first dorsal fin set backward compared to the pectoral ones, second 

dorsal less than a third the size of the first dorsal. Blue sharks show pectoral fins long, narrow and 

tapered, caudal fin non-lunate with the upper lobe longer than the inferior one; this shark has also 

large eyes without posterior notches, short labial furrows, and weak keel on caudal peduncle. 

Finally, it is characterized by absence of inter-dorsal ridge, extended and sharp snout longer than 

the width of the mouth, well differentiated teeth in upper and lower jaws, upper teeth with broad, 

triangular, curved cusps - between straight and oblique – but not sharp, or small cusps except in 

very young specimens and each tooth is usually replaced every 8 to 15 days (Compagno, 1984; 

Nakano & Seki, 2003; Valeiras & Abad, 2009). All these unique characteristics make the blue shark 

body morphology highly-hydrodynamic and it provides them the possibility for fast and strong 

swimming; this body shape enables this species to make long migrations, fast hard turns during 

predation and it also permits them to get away from other fast swimming fish (Nakano & Seki, 

2003; Sampaio da Costa, 2013). 

Its common name, “blue shark”, derives from the peculiar body coloration, which also represents a 

specific adaptation of these sharks to the open ocean habitat. In fact, the body shows a deep and 

brilliant blue color on the dorsal side, while the flanks appears of a grey-blue and the ventral side 

becomes brightly white; because of this adaptation, if seen from above blue sharks exhibit a dark 

back which matches the dark surrounding water, while, if seen from below, the white belly matches 

the bright lightened surface (Karleskint et al., 2009). 

1.2 Reproductive Cycle 

Blue sharks can reach a maximum size of 400 cm, but the common length is around 334 cm. Age 

and growth of blue shark was analyzed from embryos to adults using length frequency data and 

vertebra samples in Nakano (1994). It is a placental viviparous species, so embryos develop inside 
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the female’s uterus with a gestation period between 9 and 12 months, size at birth is about 36 cm 

body length, referring to pre-caudal length, and it is believed that mating and fertilization occur in 

early summer (Pratt, 1979; Castro & Mejuto, 1995; Nakano, 1994). Blue shark is moderately 

productive characterized by a rapid growth, growing up to 30 cm annually until maturity, being this 

the reason why it can be considered the species with the fastest growth rate of all sharks. Male 

specimens reach sexual maturity around a 183 body size and an average age of 6 years. It has been 

seen that males smaller than 125 cm were immature presenting non-calcified claspers that did not 

reach the posterior end of the pelvic fins (Pratt, 1979; Nakano & Stevens, 2008; Megalofonou et al., 

2009). Females are ready for mating at 2 years old and it can be considered a sub-adult life period 

during which they are still developing sexual organs needed for gestation; in fact, observations on 

the reproductive organs in relation to body length showed that females smaller than 120 cm have 

immature ovaries with no maturing oocytes, while mature ovaries with visible yolky oocytes have 

been seen in specimens larger than 203 cm (Megalofonou et al., 2009). Full female sexual maturity 

comes at a 185 cm body length and a average age of 4-5 years. Once pregnant, females migrate 

north to birthing and pupping grounds in the sub-arctic boundary, where juveniles usually stay until 

they reach maturity. 

Approximately, 30% shark species show an oviparous reproduction (which means that females  

spawn in the outer space), 50% of sharks have a a-placental viviparous (which means that the 

development and spawning of the embryos occurs inside the maternal uterus and pups come out 

fully formed) while the remaining 20% exhibit a placental viviparous reproduction. Blue shark 

belongs to this latter category; in this kind of reproduction pups are in contact with mothers through 

a kind of primitive placenta and, after development has been completed, they come out in the outer 

space. Blue sharks have a gestation period of 9 to 12 months (Pratt, 1979; Castro & Mejuto, 1995) 

and, at the moment of parturition, the number of pups consists of 4 to 135, with an average number 

of 50-60 pups with a 35-50 cm length. Male specimens will reach maturity at 4 to 6 years, with a 

250 cm body length, while female ones at 5 to 7 years. The average age for this species seems to be 
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about 20 years, while the generation time is 8.2 and 9.8 for South African and North Atlantic stocks 

respectively, which means that it takes around 8.2/9.8 years between two consecutive generations in 

the lineages of its population (Cortès et al., 2015). In some areas, blue shark reproduction seems to 

be seasonal, occurring during spring and summer in the Atlantic Ocean, immediately followed by 

mating (Pratt, 1979).  

In the Mediterranean Sea, according to what has been speculated in the first study documenting 

biological information of this species within this geographical area (Megalofonou et al., 2009) the 

sex ratio seems to be constantly in favor of males and it is similar to that reported in the eastern 

North Atlantic Ocean and the Strait of Gibraltar. Nevertheless, sex ratio seems to be inverse to that 

reported in the western North Atlantic (Pratt, 1979) and eastern North Atlantic in British and Irish 

waters (Buencuerpo et al., 1998; Megalofonou et al., 2009; Stevens, 1976; Henderson et al., 2001), 

where it was strongly in favor of females, according also to the idea that male blue shark move 

inshore only upon attaining sexual maturity (Whelan, 1991; Pratt, 1979). The Mediterranean Sea 

can be considered a reproduction area for blue sharks, as supported by the results of the 

observations on the catch composition, according to which there’s a substantial presence of mature 

male and females (Megalofonou et al., 2009). In addition to these observations, previous studies 

have shown that the Adriatic Sea could be a nursery area and gravid females have been observed 

both in the Adriatic and in the Ionian Sea (Bianchi et al., 1997; Pomi, 1997). 

1.3 Geographical distribution 

Blue sharks distribution is circumglobal, both in temperate and tropical waters, and it is reasonably 

due to their excellent capability to make transoceanic movements. The blue shark geographic 

distribution (Fig.2) shows that these elasmobranchs can be found in Indian, Pacific and Atlantic 

ocean at a latitude between 60°N and 50°S (Steven et al., 2010); in Western Atlantic blue sharks 

can be found from Newfoundland, Canada to Argentina, while in the Eastern part they live from 
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Norway to South Africa, including Mediterranean Sea (Kohler et al., 2002; Clarke et al., 2006; 

Megalofonou et al., 2009). 

 

 

We know that, as other elasmobranch species, blue sharks are characterized by spatial segregation 

due to body size, sex and reproductive stage. In case of segregation by reproductive stage, male and 

female sharks live in different areas until they reach sexual maturity and mating can occur 

(Simpfendorfer et al., 2002; Nakano & Seki, 2003; Robbins, 2007). Moreover, it seems that body 

length increases moving from temperate and sub-arctic to tropical latitudes, but few information are 

available about the complex population structure of this species.  

As already said, blue shark is a pelagic species, but it can be occasionally found close to the 

continental shelf. These elasmobranchs seem to prefer swimming in surface, but their morphology 

and biological characteristic allow them to reach deeper waters up to 190 m., and some evidence 

show how these sharks are able to dive up to 350 m., searching for preys.  

According to what reported by the recreational fishery data, this species was once abundant, while 

in the last 30 years a 75% decline in its abundance has been registered, even though this evidence 

seems to be more related to the Ionian Sea rather than the Adriatic Sea (Ferretti et al., 2008). 

Considering specifically the Mediterranean Sea, P. glauca is the most common shark species 

observed in both Thyrrenian and Ionian sides of Strait of Sicily (Sperone et al., 2012) and this data 

Fig.2 World geographical distribution for the blue shark Prionace glauca (downloaded 

from www.fao.org) 
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is consistent with other studies referred to the Mediterranean area (De Metrio et al., 1984; 

Megalofonou et al., 2005; Psomadakis et al., 2009). However, it seems that Mediterranean blue 

sharks are generally declining in abundance, probably more than elsewhere in the world (Cavanagh 

& Gibson, 2007), and this event can be attributed to different factors, such as the life history 

characteristics of the species in combination with the intense fishing activity throughout these 

waters (Megalofonou et al., 2009). In fact, blues sharks represent a major by-catch of long line 

fisheries targeting swordfish or tuna (Megalofonou et al., 2005a, 2005b), every year approximately 

20 millions of these specimens are caught and these datas give us an idea of how this species is 

highly exposed to the commercial pressure. Comparing historical data from Italian swordfish 

fisheries in the Gulf of Taranto with recent data we can see how the catch rates in the Mediterranean 

Sea over the last 20 years have decreased by an average of 38,5% (De Metrio et al., 1984; Filanti et 

al., 1986; Cavanagh & Gibson, 2007).  

Prionace glauca, as top predator, represents a key component of the marine ecosystem, regulating 

the community structure. The loss of apex predators, due to the loss of entire functional groups of 

the marine ecosystem, might lead to enormous consequences for the ecosystem structure with a 

cascaded downward effect (Myers et al. 2007). One of the major damage is observed in the 

modification of population dynamics and population size of many species and this evidence 

suggests how the loss of top-predators can have dramatic consequences. For all these reasons blue 

shark is listed among the “protected fauna species” of the Bern convention (Appendix III - 

Protected fauna species) and it is also considered as "Near Threatened" on the IUCN red list 

assessment for Mediterranean chondrichthyans (Stevens J., 2009). Even if Blue Shark P. glauca 

(BS) has been categorized as "Near Threatened" in the IUCN (Stevens 2009; IUCN 2014) global 

assessment, the further assessments may require a revision because of the tremendous fishing effort 

to which the species is globally subjected, approximately 20 million specimens per year. In contrast, 

the Mediterranean BS population has been categorized as "Vulnerable" A2b category because a 

combination of biological and ecological characteristics of the species in a potentially insulator 
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basin. The UNEP RAC/SPA Action Plan for the Conservation of Cartilaginous Fishes in the 

Mediterranean Sea (2003) aims at promoting the general conservation of the chondrichthyan 

populations of the Mediterranean and the protection of selected chondrichthyan species, whose 

populations are considered endangered.  This document lists Prionace glauca among the main 

species for which it is recommended the development of national and regional programs for 

sustainable fisheries either as they are target and accessory species (Cavanagh & Gibson, 2007). 

1.4 Blue shark population and stock structure 

1.4.1 Tagging data and baselines 

Thanks to their peculiar and highly hydrodynamic body shape, blue sharks are able to perform great 

movements, travelling for about 3000 km and making often transoceanic movements, moving 

between northern and southern hemispheres and overcoming 6000 km distances, with the maximum 

recorded distance travelled by a blue shark specimen of 7176 km (Stevens, 1990; Kohler et al., 

2002; Quieroz et al., 2010; Costa et al., 2012). A representation of trans-regional movements and 

distances travelled for blue sharks according to the cooperative shark tagging program can be found 

in Fig.3 (Kohler et al., 2002). 

 

 

Fig.3: Recapture distribution for trans-regional movements of the blue-shark, Prionace glauca, from the cooperative 

shark tagging program. 1962-2000. Area definitions can be found in the text. From Kohler et al., 2002. 
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Nonetheless, there is evidence of a site fidelity to coastal or pelagic oceanic locations, such as 

seamounts, oceanographic fronts, continental shelves. This behaviour can be related to the presence, 

in these regions, of an high nutrient concentrations supplied by runoff and thermal front boundaries 

which provide high primary productivity (Bigelow et al., 1999; Litvinov et al., 2006; Quieroz et al., 

2012).  

Considering a review of tagging data from different tag-and-release programs carried out by 

different ICCAT members (Green et al., ICCAT, 2009; SCRS/2008/130), data regarding Irish 

recreational fisheries for blue sharks show how only 789 individuals of the 16804 sharks tagged in 

the period of time between 1970 and 2006 have been recaptured, resulting in a recapture rate of 

4.7%. Results from this studies report that no recapture occurred in the South Atlantic, while only 

one Mediterranean blue shark specimen has been recaptured and this data supports the idea of a 

separation between the Atlantic blue shark stock and the Mediterranean one (Kohler et al., 2002). 

Although several studies have been developed in order to define the patterns of the movements and 

migrations of this species and, contextually, to understand the connectivity between different areas, 

the complex structure of blue shark populations, as showed by different tag-recapture studies 

(Kohler et al., 1998; Fitzmaurice et al., 2005; Mejuto et al., 2005; Green et al., 2009) is still 

uncertain and, specifically for the Mediterranean Sea, it is still unknown.  

Several works focused on this aspect have been carried out for the Atlantic and especially North-

Atlantic blue shark populations; according to the results of these studies, we know that the locations 

having high incidence of juvenile blue sharks (those with a<150 cm body length) are located off 

mainland Portugal, off the Azores and off western South Africa (Kohler et al., 2002; Silva et al., 

2010; Quieroz et al., 2012). Data showed that both female and male small juvenile blue sharks tend 

to remain for extended period of time in a general area delimited by the Azores, the Atlantis – Great 

Meteor seamount complex and the Mid-Atlantic Ridge (Vandeperre et al., 2014). There are also 

different and contrasting opinion about the spatio-temporal segregation preference: the movement 
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patterns found by Vandeperre et al. (2014) didn’t show any indications of segregations between the 

two sexes at that spatial scale and found that segregation does not occur before the second year of 

life (Vandeperre et al., 2014). This result was in agreement with data from conventional tagging 

programs, which suggested that juveniles of 100-130 cm do not perform extensive latitudinal 

migrations. On the contrary, Quieroz et al. (2012) found that juvenile blue sharks made more 

extensive movements closer to continental shelves and others state that males and females segregate 

during the first year (Litvinov, 2006). Moreover, according to Vandeperre et al. (2014) probably 

there’s no connectivity between the central North-Atlantic and other juvenile grounds like the 

continental shelves of the Iberian Peninsula and Northern Africa, in agreement with the hypothesis 

that parturition may take place in this area of the North-Atlantic. The collected data provide also the 

evidence of the existence of a nursery area for blue sharks in the central North-Atlantic.  

We have information about the tendency of North-Atlantic large juvenile female to dominate 

summer catches off south-west England (Simpfendorfer et al., 2002; Pratt, 1979; Campana et al., 

2006), while in winter the major presence of female specimens seems to be  recorded off Portugal 

(Quieroz et al., 2005) and around the Azores. Female also exhibit a preference to surface water, 

with a spatio-temporal segregation between 15°C and 16°C throughout the year (Vandeperre et al., 

2014). In regard of adult female blue sharks, results from tagging studies in North Atlantic waters 

showed that these specimens display direct movements to tropical waters, some of them carrying 

embryos. This data reasonably indicates a relation between these movements and the reproductive 

cycle, supporting the fact that specimens of different ages and reproductive stage move in different 

directions and occupy separate areas (Vandeperre et al., 2014). 

As declared by the DELASS project (Development of Elasmobranch Assessment – Heessen, 2003), 

which aims at improving the scientific basis for the management of fisheries affecting 

elasmobranch species, and  confirmed by the ICCAT Shark Assessment Working Group (ICCAT, 

2009), there’s one stock of blue shark Prionace glauca in the North Atlantic Ocean (Fitzmaurice et 

al., 2005) and the most probable division between North and South Atlantic stocks of blue shark 
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would be located near the 5°N parallel (ICCAT, 2009). All the information available regarding the 

blue shark stock structure are mainly based on data and results from tag-recapture studies, assuming 

that there are, at least, three stocks in the Atlantic Ocean, consisting of one Mediterranean blue 

shark stock, another one in the North Atlantic and a third stock in the South Atlantic (ICCAT, 

2009). Previous studies have shown how the North Atlantic stock individuals would probably be 

characterized by a cyclical migration in a clockwise direction between 30-50°N (Kohler et al., 

2002; Skomal & Natanson, 2002; Fitzmaurice et al., 2005), while results from tag-recapture 

investigations have reported a limited movement of blue sharks between the Atlantic and the 

Mediterranean Sea. On the basis of these few information, a single Mediterranean stock is reported, 

separated from the two stocks of the Atlantic Ocean (Kohler & Turner, 2008; ICCAT, 2009). 

      1.4.2 Genetic structure and diversity 

Genetic studies have been carried out on the Atlantic and Pacific populations using microsatellite 

nuclear markers. Fitzpatrick et al. (2010) analyzed approximately 1,000 individuals collected 

worldwide at 16 microsatellite loci. This study revealed an inter-oceanic genetic structuring with 

gene-flow generally restricted within ocean. A population genetic analysis carried out on Brazilian 

BS populations with the same biparental markers indicated a moderate population structure among 

samples of Rio Grande do Norte, São Paulo and Rio Grande do Sul (Ussami et al. 2011). These 

results may suggest the existence of two South American local populations even if to assess 

population boundaries further and deeper analyses in terms of sampling design and type of markers 

to be used are required. The analysis of juvenile specimens (<2 yr) from Atlantic Ocean nurseries 

(Western Iberia, Azores and South Africa) using both mitochondrial and microsatellite markers 

showed a significant heterogeneity among nursery areas, and a temporal structuring within as well 

as between nurseries, suggesting the existence of different reproductive units in time and space 

within Atlantic Ocean (Verissimo et al., 2013). The genetic structure and demographic history of 

Pacific BS populations was inferred using mitochondrial DNA. A variation analysis of Cytochrome 

b sequence in 404 specimens from 10 different locations of Indo-Pacific indicated weak or no 
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genetic differentiation across the Indo-Pacific, and phylogenetic analysis has shown a historical 

demographic expansion, suggesting that this population has not suffered past climatic fluctuations 

(Taguchi et al. 2014). 

Most of the works concerning the population and stock structure of this species are mainly based on 

aspects including geographic range, age and growth, movements and migrations, while the data 

about the blue shark Prionace glauca genetic population structure in still poor. A recent study has 

tried to understand and describe the genetic stock structure of blue sharks within the Atlantic ocean, 

considering three known Atlantic nurseries and using mitochondrial and nuclear markers in order to 

estimate the genetic diversity of the individuals and targeting the most resident component of blue 

shark populations (Sampaio da Costa, 2013). As a result of the analysis carried out in this study, 

similar levels of genetic diversity among blue shark nurseries in the Atlantic were found by the two 

marker types considered, nuclear microsatellites and mitochondrial Control Region. However, the 

two markers detected genetic heterogeneity among juveniles sampled in distinct nurseries (Sampaio 

da Costa, 2013). In agreement with previous studies Sampaio da Costa (2013) suggested the 

presence of a North Atlantic group of blue sharks and a Southern one; however, on the basis of 

results from FCA (Factorial Correspondence Analysis) among nurseries, two genetic stocks seem to 

be present within the North Atlantic Ocean. This data seems in contrast with the absence of genetic 

differences between the North Atlantic nurseries observed with Fst values. The two markers gave 

also different results to the null hypothesis of Atlantic panmixia in Prionace glauca proposed by 

Sampaio da Costa (2013). As previously suggested, this contrast between the absence of a genetic 

structure according to bi-parentally inherited nuclear markers and the existence of a genetic 

structure according to the maternally inherited mtDNA could be related to the existence of a female 

philopatry to nurseries in presence of male mediated gene flow, as suggested in other shark species 

(Pardini et al., 2001; Portnoy et al., 2010; Tillett et al., 2012). 

Another study focused on the analysis of four shark species co-distributed in the Indo-Pacific, 

including blue shark Prionace glauca, was carried out using the variation of the mtDNA sequence 



12 
 

control region (Ovenden et al., 2009). Here, they found no evidence of genetic structuring in the 

Indo-Pacific blue shark populations (Ovenden et al., 2009).  

Summarizing, results from previous works in Pacific and Atlantic Ocean highlighted a poor genetic 

structure even between very far blue shark populations (Ovenden et al., 2009; Sampaio da Costa, 

2013). 

No genetic studies were carried out on Mediterranean blue shark population and, at this moment, it 

is extremely important to assess them in order to preserve their status from the increasing threat of 

by-catch fishing. Unfortunately, at the moment, we still don’t know P.glauca real population size, 

geographic distribution within the Mediterranean basin and its possible connections with the 

Atlantic population.  

The Mediterranean Sea represents the largest semi-closed European Sea, and this particular 

morphology is one of the most influential and important characteristics to be considered talking 

about the general abundance and the status of many marine populations. The Strait of Sicily (400 

km) connects the western Mediterranean Sea, including the Alborán Sea, the Balearic or Iberian 

Sea, the channel of Sardinia, the Sardinian Sea and the Corsica Sea, to the eastern Mediterranean 

Sea, consisting of the Adriatic Sea, the Ionian Sea, the Aegean Sea, the Libyan Sea and the 

Levantine Sea, while there’s only a restricted water exchange with the Atlantic Ocean through the 

Strait of Gibraltar. On the basis of fisheries management purposes the Mediterranean blue shark 

population has been considered as independent from the North Atlantic one, nevertheless it is still 

unknown if there is any exchange between the two populations (Megalofonou et al., 2009). Kohler 

et al. (2002) suggested that probably the Mediterranean blue sharks are local residents rather than 

occasional visitors, but today there’s a lack of knowledge about the real genetic structure and 

phylogeographic characteristics of these individuals. 
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In this context the  European  funded project “MedBlueSGen” aims to  create the largest datasets  of  

biological  samples  of  the  species  and  to  analyze  the  single  nucleotide polymorphisms (SNPs)  

throughout  the  blue  shark  genome  using  the  NGS  technology,  RAD sequencing.  

The project involves different national and international academic institutions (Alma Mater 

Studiorum – University of Bologna; UNIPD – University of Padova; UNICAL – University of  

Calabria; NKUA – National and Kapodistrian University of Athens, GR; IEO – Instituto Español de 

Oceanografia,  ESP;  Queen’s  University  of  Belfast,  UK)  and  the  European  Joint  Research 

Centre (JRC, EU). The research project of this thesis is included in this European plan for the 

identification the genetic structure of Mediterranean BS population. 

2. AIM 

The fundamental goals of this work consist in providing new molecular data about the 

Mediterranean blue shark populations. Moreover, the genetic characterization of the Mediterranean 

blue shark population has been implemented with a comparison with the North-Eastern Atlantic 

population, using a dataset of samples coming from this geographical area. This approach derives 

from the necessity to estimate the extent of connectivity among these populations as they appear to 

be subjected to ever increasing intense fishing effort and different environmental conditions. 

 Four specific objectives have been fixed: 

1) To create a new and unique dataset of Mediterranean blue shark mtDNA sequences 

available for further investigations. 

2) To assess the genetic diversity and phylogeographic structure of the Mediterranean blue 

shark, testing the hypothesis of genetic structure within the basin. 

3) To test the presence of an Atlantic-Mediterranean connection. 

4)  To provide informations about the historical demographic trend of the blue shark 

populations defined by this study. 
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3. Materials and methods 

3.1 Blue shark tissue samples from different Mediterranean areas 

The map visualization of samples collected for MedBlueSGen project can be visualized in Fig.4. In 

this context, with the final goal to cover as much as possible the entire extent of the Mediterranean 

Sea and a relevant part of the North-Eastern Atlantic Ocean, we have collected and analysed 

samples from multiple locations both in the Eastern Mediterranean Sea, such as Central Adriatic, 

Ionian and Aegean Sea, in the Western Mediterranean Sea, consisting of Thyrrenian and Balearic 

Sea, and in the North-Eastern Atlantic Ocean. The sampling dataset includes both female (F) and 

male (M) specimens such as large (L) and juvenile (J) sharks. The dataset consists of 195 blue shark 

samples (Tab.1). 

 

 

 

 

Fig.4 Capture location of historical and contemporary samples (2003-2015), downloaded from 

https://fishreg.jrc.ec.europa.eu/web/medbluesgen/index.html 

Tab.1 Dataset of samples available separated into six geographical locations. For each area, information about number of samples available, 

successfully extracted mtDNA, successfully processed and sequenced at each selected locus are reported, with the addition of biological 

characteristics (reproductive stage) and year. 
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3.2 DNA extraction  

DNA extraction was carried out using two different extraction and purification kit, following the 

manufacturers' protocols: 

- Invisorb® Spin Tissue Kit, Invitek (© STRATEC Molecular) 

- Wizard® Genomic DNA Purification Kit, Promega  

Comparing the two procedures used to extract DNA, we have to consider some important 

differences and highlight their advantages and disadvantages; as I’ve already explained, the use of 

any DNA extraction kit depends on various factors, including the aim of the investigation we’re 

going to carry out and, therefore, the analysis we want to develop using the DNA solution obtained; 

each DNA extraction procedure will give us DNA solutions differing each other in terms of nucleic 

acid quantity and quality. In this case, we can say that Wizard® Genomic DNA Purification Kit  

(Promega) definitely allow the DNA extraction from much more samples in less time than 

Invisorb® Spin Tissue Kit (Invitek), nevertheless it would probably have a major risk of 

contamination among samples. However, the extracted DNAs have been later analyzed using 

microdrop-MultiskanGO (© Thermo Scientific Fisher Corporation) by UNIPD partners (University 

of Padova) in order to carry out a DNA quality and quantity check; results from microdrop analyses 

show a majority of DNA samples exhibiting =/˃ 1.2 ratio, a part of samples with 1.0˂ratio˂1.2 

while a part of samples, corresponding to those collected from Aegean Sea between 2003-2005, 

shows ˂/=1.0 ratio; for this reason, we decided to exclude them from successive analyses. 

3.3 Design of species-specific primers for mitochondrial markers “control region” and “cyt-b” 

The “control region” marker is a non-coding mtDNA region, extremely variable, associated with 

the initiation of DNA replication, and it has already been used for P. glauca in previous work 

together with three to five microsatellite loci (Ovenden et al., 2009). Ovenden et al. (2009) 

amplified and sequenced the 5’ end of mtDNA control region using the forward primer ProL2 and 

the reverse primer PheCacaH2 designed by Pardini et al. (2001). Approximately 1145 bp (base 
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pairs) were amplified and 400 bp of the control region were sequenced in one direction using the 

forward primer. However, I decided to design new species-specific primers for the amplification of 

mtDNA “control region” and to test both the previous and the new primers to understand which pair 

would work best.  

No primer specific for the blue shark were available in literature for the mtDNA cytochrome b 

region, so I designed them ex-novo. The mtDNA is easily to isolate and it is characterized by a high 

number of copies, a long sequence and a turnover of highly preserved and variable regions. It also 

shows more frequent evolutionary variations rather than the nuclear DNA and they are independent 

from it, so it appears much more appropriate to use it in order to analyse phylogenetic variations 

both within the same population and between different populations. We decided to analyze control 

region and cyt-b markers because of their variability: blue sharks are characterized by great vagility, 

so it would not be advantageous, in order to find a genetic diversity and a real genetic structure and 

phylogeography, to consider and analyze mtDNA regions highly preserved, such as CO1 region. 

To design primers, I initially used the complete database of sequences of P. glauca available in 

GenBank, NCBI®. I downloaded all the available sequences of control region and cyt-b in FASTA 

format. Once obtained control region and cyt-b sequences, they have been aligned using ClusterW 

algorithm implemented in MEGA ver.6.0 (Tamura et al., 2013). Then primer pair for control region 

and cyt-b were designed using the online software “PRIMER3input (ver.0.4.0)” (Rozen et al., 

2000). Primer pairs for the two selected markers, each one with its characteristics, are in Table 2. 

Libraries and functions in “PRIMER3input” calculate oligonucleotide melting temperature (Tm), 

the propensity of oligos to form hairpins or dimers or to hybridize or prime from unintended sites in 

the genome, performing an exhaustive search for the best primer pairs given the specified template 

sequence (Untergasser et al., 2012). 

The designed primers were tested using the simulation “AmplifX” software version 1.44 (Nicolas 

Jullien [http://ifrjr.nord.univ-mrs.fr/AmplifX-Home-page]) generating the hypothetical fragments 



17 
 

that will be amplified on the hypothetical annealing positions of the gene and the hypothetical 

primer annealing temperatures. 

Also the available primer pair for “control region” “ProL-2 – PheCacaH2” (Pardini et al., 2001) 

was tested in order to compare it with the new primers designed and choose the best one. 

The primer pairs were first tested in order to identify optimal amplification conditions. 

Consequently, a first test was carried out by setting a 10°C temperature gradient to identify the most 

suitable melting temperatures (Tm from 50°C to 60°C) using the same PCR cycling conditions used 

by Ovenden et al. (2009) for CR primer pair “ProL2-PheCacaH2”. 

For this assessment a DNA from only one blue shark sample, casually chosen, was tested for the 

two primer pairs “CR-Blues-F – CR-Blues-R” and “ProL2 – PheCacaH2” for control region 

marker. Once identified the optimal melting temperature of primer pairs, the PCR thermal profile 

was adjusted as described in Fig.5 and the PCR reaction is composed by: 

PCR reaction final volume of 50 µL 

containing 31.75 µL of H2O, 8 µL of 

Buffer 10x (Tris-HCl), 3 µL of MgCl2, 2 

µL of dNTPs, 2.5 µL of each primer, 0.25 

µL of Taq polymerase and 2 µL of 

template DNA. The temperature profile 

included an initial denaturation at 94°C for 2 min, followed by 35 cycles of denaturation at 94°C for 

30 s, annealing at 60°C for 30s, elongation at 72°C for 30 s and a final elongation step at 72°C for 5 

min. 

The same evaluation was carried out for the amplification of cyt-b marker.  

Primer pairs for the two selected markers, each one with its characteristics, are in Tab.2. 

 

Fig.5 PCR definitive thermal profile and conditions. 
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Comparing the gradient test results for the amplification of control region marker, I decided to use 

“CR-Blues-F – CR-Blues-R” primer pair for further amplifications. Both “control region” and “cyt-

b” primer pairs gave positive results in PCR amplifications and amplicons have been sequenced 

using the sequencing service “EZ-seq V2.0” provided by MACROGEN® Europe. 

4. Data analysis 

Once obtained CR and Cyt-b sequences, different analyses were carried out in order to identify and 

describe genetic diversity and the extent of differentiation among and within Mediterranean and NE 

Atlantic populations. In addition to these analyses, the demographic trends of the populations and 

the phylogeographic patterns were investigated. 

First, all sequences obtained were validated with the homologous gene sequences deposited in the 

GenBank using the BLAST algorithm implemented in MEGA 6.0 (Tamura et al., 2013).  

The sequence datasets have been analyzed with DNAsp software (Librado & Rozes, 2009), in order 

to assess the genetic diversity in terms of the number of haplotype, the haplotype diversity (Hd), 

and the nucleotide diversity (Pi) with their associated standard deviation (sd) and the number of 

polymorphic sites. The genetic diversity analyses have been carried out considering each sequence 

dataset divided into six populations (East-Atlantic, EATL; West-Mediterranean/Balearic, WMED; 

Tyrrhenian Sea, THYR; Calabria Ionian Sea, IONI; Central Adriatic Sea, CADR; Aegean Sea, 

AEGE). In order to investigate at a more specific level the "juvenile" (J) and "large" (L) members 

of each population were also considered separately. In addition, the Aegean Sea sample (AEGE) 

dataset was splitted separating individuals sampled in different period of time (2002 and 

Tab.2 Control region and Cytochrome b primer pairs with associated characteristics of primer sequence, GC% (guanine and 

cytosine content) and melting temperature (Tm).  
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2005/2015), in order to evaluate possible differences in terms of genetic diversity between these 

temporal groups. Finally, each value has been calculated for the entire Mediterranean (MED) to 

directly compare it with Eastern Atlantic (EATL) values.  

To investigate haplotype relationships, the parsimony network was created using HAPLOVIEWER 

(http://www.cibiv.at/~greg/haploviewer) and the dnapars program of the PHYLIP package version 

3.6 (Felsenstein, 2005). 

The software Arlequin ver 3.5.2.2 (Excoffier & Lischer, 2010) has been used to calculate the 

haplotype frequencies and pairwise Φst matrix with the relative p-values after 10000 permutations, 

setting up a 0,05 significance level; however, the significance was later adjusted using various 

methodology of correction for multiple testing implemented in SGoF+ (Carvajal-Rodriguez & de 

Uña-Alvarez,. 2011). The best-fit model of nucleotide substitution, generated in MEGA6, resulted 

Tamura-Nei (1993) distance model (TN93). 

To perform the Principal Component Analysis (PCoA), pairwise ΦST distances were transformed 

into Euclidean matrices through the addition of a smallest positive constant (Cailliez, 1983) and 

were used to construct scatter plots using the ade4 (Dray & Dufour, 2007) and ape (Paradis, et al. 

2004) packages in R 3.0.2 (R Development Core Team. 2013).  

AMOVA analysis (Analysis of Molecular Variance), implemented in Arlequin software, has been 

used in order to estimate the extent of variance occurring among and within imposed groups. On the 

basis of the results of PCoA analysis and pairwise Φst matrix, we tested different combination of 

groupings from our sample dataset, described as follows: 

- AMOVA1 - All Samples, NO groups; 

- AMOVA2 - All Samples, three groups: EATL vs WMED (Balearic, Thyrrenian Sea) vs EMED 

(Central Adriatic, Ionian, Aegean Sea). These groupings were tested considering the separation into 

the three major geographical areas, as seen for other similar species; 

http://www.cibiv.at/~greg/haploviewer
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- AMOVA3 - All Samples, four groups: EATL vs WMED (Balearic, Thyrrenian Sea) vs CADR vs 

IONI+AEGE. This additional combination was tested on the basis of results observed in pairwise 

Φst matrix. 

The AMOVA analysis defines the significance of the variance within and among imposed groups 

that can be used to detect if the structures considered are significant or not, observing which 

combination best represents the general distribution pattern of our samples. 

Successively, the historical demographic trend of the Mediterranean (MED) samples - obtained 

considering its different sub-geographical areas together (Balearic Sea, WMED;  Thyrrenian  Sea,  

THYR;  Ionian  Sea,  IONI;  Central  Adriatic  Sea,  CADR; Aegen  Sea,  AEGE) and the North-

Eastern Atlantic one (EATL) have been investigated using Bayesian Skyline Plot implemented in 

the software BEAST v.1.8.2 (Drummond & Rambaut, 2007; Drummond et al., 2012), using the best 

evolutionary model calculated with MEGA6. At the same time, we decided to carry out an 

historical demographic analysis using also the "Mismatch distribution" analysis implemented in the 

DNAsp software (Librado & Rozas, 2009), with the aim to assemble the results obtained by the two 

software. Together with mismatch distribution analysis, Tajima's D and Fu's Fs neutrality tests 

(Holsinger, 2013) were carried out in order to assess if any pattern generated could be addressed to 

a random evolution trend or one under a non-random process, such as demographic expansion or 

contraction. 

Finally, in order to define the phylogeny of the Mediterranean and Eastern Atlantic blue shark 

populations, we used the software BEAST v.1.8.2 to construct a plausible phylogenetic tree of the 

species using the evolutionary rate estimated for both markers by Martin et al. (1992). Associated 

software TreeAnnotator was used to identify a single tree that best represents the distribution, and 

FigTree software was used as a graphical viewer of the phylogenetic tree produced. 
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5. Results 

Mitochondrial DNA amplifications and consecutive sequencing carried out using our new primer 

pairs appeared successful in terms of sequence quality and length, and it allows us to affirm that the 

primer pairs "CR - Blues" and "cytb - Blues" designed ex novo are highly performing. 

The number of sequences available for all planned data analysis resulted lower than the effective 

number of amplified samples sequenced (Tab. 1); this difference was due to the fact that some 

sequences, both for CR and Cyt-b mitochondrial markers, produced suboptimal results in terms of 

information quality, so we decided to exclude them from the two sequence datasets in order to 

avoid the risk of adding artefacts as inappropriate polymorphic sites.  

For the Cyt-b and CR markers were created respectively a 762 bp alignment of 136 sequences with 

15 polymorphic sites (2%), and a 857 bp alignment of 132 sequences with 51 polymorphic sites 

(6%). 

5.1 Genetic diversity 

Considering Cyt-b data, the highest haplotype diversity was shown by Ionian Sea - IONI - samples 

(0.886) - Tab.3. Generally, no considerable differences in haplotype and nucleotide diversity were 

reported within Mediterranean locations (WMED; THYR; CADR; IONI; AEGE), but they differ 

from the North-Eastern Atlantic group, which show the lowest haplotype diversity (0.613). No 

relevant differences were detected between juvenile and large individuals within its geographical 

sample, except for North-Eastern Atlantic and Ionian Sea haplotype diversity values, but these 

differences between the two size classes have to be interpreted in the light of a disproportion in the 

number of available sequences for each size class (Tab. 3). Haplotype diversity analysis carried out 

for CR dataset showed higher values compared with those obtained for the Cyt-b marker, with 

AEGE group exhibiting the lowest, but anyway high, values. Higher number of haplotypes was 

obtained at the CR locus, a data presumably coherent to the fact that it is a highly variable region of 

mitochondrial DNA.  Substantially, results obtained from this analysis suggested, especially for CR, 
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the presence of a low diversification between the population considered, both within Mediterranean 

groups and among Mediterranean and Eastern Atlantic specimens. 

 

 

 

5.2 Haplotype Network and Haplotype frequencies in populations 

The CR (Fig.6) and Cyt-b (Fig.7) haplotype networks didn't show any structuring between 

geographical locations analysed. The reconstruction based on Cyt-b data better show the presence 

of two major haplogroups more structured than the other, which present a simple star-like pattern. 

The network based on the CR haplotypes shows the presence of a major number of haplotypes, 

most of them made up by only one specimen, with less structuring than Cyt-b and a pattern more 

coherent with results from Фst pairwise analysis as most of IONI samples tend to diverge from 

other locations. 

The relative amounts of each haplotype in the different geographical samples are listed in Tab.4 (in 

Appendix). As shown by the two networks, haplotype inference also highlighted the presence for 

for the Cyt-b marker of two haplogroups shared by the majority of specimens from each location 

Tab.3 Haplotype (Hd) and nucleotide diversity (Pi) with standard deviation (sd) and number of polymprphic sites (Pol.Sites) of the Mediterranean 
and North-Eastern Atlantic individuals at the two mtDNA loci (CR and CYT-B). Individuals were subdivided in six geographical locations and each 
value was calculated also for the entire MED area, for each size class within the locations and the two temporal classes within the AEGE area. 
Values corresponding to each total geographical location were grey highlighted, while values calculated considering the entire dataset of samples 

were red highlighted. 
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considered (Hap2, Hap3). Observing CR occurrence of haplotype in each location, three are the 

most numerous haplotypes, although they are not shared by individuals from all geographical area. 

 

 

 

 

 

 

Fig.6 Control region (CR) Haplotype Network form Mediterranean and Eastern Atlantic blue shark populations.  Each node represents a haplotype, 

with its frequency related to the node diameter. Numbers indicate the amount of specimens sharing the haplotype. 

Fig.7 Cytochrome b (cyt-b) Haplotype Network form Mediterranean and Eastern Atlantic blue shark populations.  Each node represents a haplotype, 

with its frequency related to the node diameter. Numbers indicate the amount of specimens sharing the haplotype. 
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5.3 Population pairwise ФSTs  

The Cyt-b Фst pairwise matrix (Tab. 5) showed significant comparisons only between comparisons 

between Norht-Eastern Atlantic ad Ionian and North-Eastern Atlantic and Aegean samples also 

after Benjamini-Hockberg (B-H) correction, so between locations more geographically distant. In 

CR Фst pairwise matrix more significant results were detected, with differentiation values between 

4% and 25%, due to higher level of variability between locations (Tab.5).   

Same analysis was carried out considering exclusively juvenile specimens from each location for 

both CR and Cyt-b marker, in order to verify possible different patterns in terms of differentiation 

ascribable to young individuals and so depending to the reproductive stage (Tab.6). This additional 

analysis was performed considering previous evidences reported by Quieroz et al. (2012) and 

Vandeperre et al. (2014), suggesting that a different reproductive stage shows different migration 

behaviour and tend to occupy different area. 

 

 

 

 

 

 

Tab.5 Cyt-b and CR Фst pairwise matrix. Values in bold were significant only before BH correction (P value<0,05), 

while underlined values remained significant also after the correction. 
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Observing the two tables, it is clear how the pattern related to Фst pairwise matrix calculated for the 

entire dataset of samples and the one related only to juvenile specimens are largely overlapped, so 

we can suggest that in this analysis no considerable differences in the extent of structuring related to 

the reproductive stage were reported. 

5.4 Principal Coordinates Analysis (PCoA) 

Both CR (Fig. 8) and Cyt-b (Fig.9) PCoA, according to the results of the previous analysis, 

confirmed the apparent absence of a structuring between blue sharks populations, particularly 

between the two major groups on which we decided to focus attention (Mediterranean Sea and 

North-Eastern Atlantic). Each PCoA was performed illustrating the resulting plot both in individual 

genetic distances (plot 1.) and haplotype distances (plot 2.). 

 

 

Tab.6 Cyt-b and CR Фst pairwise matrix calculated only for juvenile specimens from each location. Values in bold 

were significant only before B-H correction (P value<0,05), while underlined values remained significant also after 

the correction. 

 

Fig.8 Principal Coordinates plots for CR marker. Plot 1. describes individual genetic distances, while plot 2. describes 

haplotype distances. Polygons and ellipses represent the 95% confidence interval of samples (points) distribution.  
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5.5 AMOVA analysis  

AMOVA results are shown in Tab.7. We tested different combination of groups with the aim of 

identifying the one that best summarize and represents the variance among groups imposed on the 

basis of our assumptions. The first assumption ("NO groups") was tested on the basis of the results 

obtained from the other analysis, suggesting a lack of structuring between samples, while the 

second assumption (EATL vs WMED vs EMED) was made considering the entire dataset divided 

into the three major geographical area, making the hypothesis that the Strait of Gibraltar and Strait 

of Sicily could represent geographical boundaries as for other similar species. The third assumption 

was made to test the results of Фst pairwise difference analysis, which showed a more significant 

differentiation between samples geographically distant, such as EATL and IONI and AEGE. 

 

 

 

 

 

 

Fig.9 Principal Coordinates plots for Cyt-b marker. Plot 1. describes individual genetic distances, while plot 2. describes 

haplotype distances. Polygons and ellipses represent the 95% confidence interval of samples (points) distribution.  
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As we can see in Tab.7, the combination which show significant values both for CR and Cyt-b 

markers is the one in which samples have not been divided into pre-established groups, a result that 

confirm the evidence already shown by previous analysis of a lack of structuring among the 

geographical locations considered. 

 

 

 

Tab.7 AMOVA analysis for three different combination samples groups. Results in terms of total amount of variation (%) 

for each source of variance, F statistics and associated P-values were reported for both CR and Cyt-b marker. 
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5.6 Demographic Analysis  

The Bayesian Skyline Reconstruction was performed for both EATL and MED samples separately, 

although all previous analysis showed that there's no structuring between them. We initially tried to 

construct the bayesian plot considering EATL and MED samples together, but the software 

produced non optimal results in terms of ESS values (Effective Sample Size) which couldn't 

produce a reliable plot. For this reason we considered the two locations separately, and the Bayesian 

Skyline plot obtained corresponded to a general stable demographic pattern in Cyt-b (Fig.10). 

Nevertheless, the control region showed a slight demographic increase dated between 250 and 150 

Kya, during Pleistocene epoch (Fig.11).  

 

 

 

 

The mismatch distribution trends of the Cyt-b dataset showed a ragged distribution associated with 

constant population size (Fig.12). In contrast, mismatch distribution trends of the control region 

dataset show a skewed unimodal distribution related to recent bottleneck or sudden population 

Fig.10 Bayesian Skyline Plot of Cyt-b marker from North-Eastern Atlantic (EATL) and Mediterranean (MED) area. Blue 

areas represents the 95% confidence intervals. 

Fig.11 Bayesian Skyline Plot of CR marker from North-Eastern Atlantic (EATL) and Mediterranean (MED) area. Blue 

areas represents the 95% confidence intervals. 
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expansion (Fig.13). However, in all cases the values of mismatch distribution and the neutrality 

tests (Fu's, Tajima) gave no significant results. 

 

 

 

Fig.12 Cyt-b Mismatch distribution constructed for each geographical location, with expected (green) and observed (red) 

values of distribution. 

Fig.13 CR Mismatch distribution constructed for each geographical location, with expected (green) and observed (red) values 

of distribution. 
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The Bayesian tree showed as expected a topology not defined by populations, with clusters shared 

by all populations of the study area, stressing the lack of genetic structure among populations.  

The divergence time analysis revealed an highly significant separation between the two major 

clades for both markers, dated at 1,2/1,3 Mya, during Pleistocene epoch (Fig.14; Fig.15 - In 

Appendix). 

6. Discussions and Conclusions 

The research project developed in this thesis concerned with the identification of the genetic 

structure characteristics of blue shark, Prionace glauca, population within the Mediterranean Sea, a 

geographical area still unexplored for this species. Therefore, the principal goal was to fill a gap in 

the available knowledge relative to this particular aspect.  

The evaluation of blue shark biological productivity reported by ICCAT showed the highest values 

of susceptibility to capture and mortality in longline pelagic fisheries for blue shark Atlantic stocks 

(ICCAT, 2009). We know that the blue shark is rarely included in target commercial species, and it 

represents a major bycatch of longline and driftnet fisheries. The majority of this bycatch is often 

unrecorded, causing problems in the assessment of the effective stock size and its real availability. 

In this perspective the results of the analyses developed in this work can be useful especially 

because of the fact that the lack of data regarding the status of the Mediterranean population could 

probably expose this species to the risk of an underestimated overexploitation. 

The lack of previous information about Mediterranean blue sharks, specifically in terms of genetic 

diversity and population structure, limits the possibility of having an extensive dataset to analyse 

and compare with new results, but on the other hand gave us the opportunity to create a new and 

unique data resource (mtDNA control region and cytochrome-b sequences) available for future 

investigations. 
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Generally, observing the results obtained in this work we can immediately identify a lack of 

structuring and differentiation between samples analysed, as found in previous works for other blue 

shark populations. 

Concerning the genetic diversity, results obtained from the analysis of haplotype and nucleotide 

diversity parameters seems to be in agreement with evidences from studies carried out investigating 

the genetic composition of blue sharks in other geographical areas, such as Pacific, Indian and 

Atlantic Ocean (Ovenden et al., 2009; Raquel & Sampaio, 2013), highlighting the absence of a 

considerable genetic differentiation also within the Mediterranean Sea. In addition to this, 

comparison between haplotype and nucleotide diversity values obtained for North-Eastern Atlantic 

group and the whole Mediterranean location gave the same result, leading to the hypothesis that 

presumably these blue shark specimens could have similar fishing pressure (Tab.3). Furthermore, 

the high values of genetic diversity observed suggest, in contrast with previous modeling based on 

fishing data (Ferretti, et al., 2008), that the populations has not yet reached levels of exploitation 

that could erode its genetic diversity. Probably, the conservation of the genetic diversity can also be 

due to the short generation time, compared with that of other shark species, and the high 

productivity of the species in terms of pups (Pratt, 1979; Nakano & Stevens, 2008).  

The majority of significant pairwise differentiations between samples were observed in the CR 

marker, rather than the Cyt-b, due to a higher value of variability on a non-coding genetic marker.  

The Фst values of differentiation are consistent with the geographical distances between locations, 

however the Ionian Sea population, IONI, is the more differentiated from the others, with a 

maximum divergence of 25% from the Atlantic population and a minimum divergence from the 

population of the South Tyrrhenian (9%). The low values of Фst among populations of EATL and 

WMED, and between IONI and THYR, indicate that the maternal gene exchanges between these 

two geographical groups, through the Strait of Gibraltar and the Strait of Messina respectively, is 

greater than exchanges between the others areas. The additional analysis of Фst values of 
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differentiation performed only on juvenile specimens from each geographical area, carried out in 

order to verify a possible different pattern related to the reproductive stage, gave similar results to 

those obtained for the entire dataset of samples. This result is not coherent with what has been 

found earlier (Quieroz et al., 2012; Vandeperre et al., 2014), regarding the tendency of juvenile 

individuals to move in different directions compared with large specimens. However, this result has 

to be observed in the light of a considerable difference in the number of juvenile and large blue 

shark samples available in this work. 

In addition to this, it is clear from the analysis of the network that, although there is a minimum 

genetic differentiation between populations, no structure between MED and EATL areas, and 

within the MED, are observed, enabling us to formulate the total lack of phylogeographic barriers 

for this extremely vagile species, as already observed in previous researches (Ovenden et al., 2009; 

Raquel & Sampaio, 2013). It is possible to hypothesize that the Central Atlantic nursery area 

highlighted by Sampaio da Costa, (2013) is a structuring part of the reproductive cycle of 

Mediterranean specimens, with a maternal gene flow between these two areas. 

It is clear from the network analyses that one of the two largest clusters, in both markers, is more 

differentiated, suggesting it as the ancestral cluster where all the geographical groups and the sub-

areas sampled in the present study share haplotypes (Fig.6; Fig.7). The same pattern was observed 

in the phylogenetic tree. The major haplotype is shared by all samples from different and distant 

geographical areas and particularly between those from North-Eastern Atlantic and Mediterranean 

Sea highlighting a lack of structuring among them, as observed also in the PCoA in both markers, 

with a total overlap of the locations considered (Fig.8; Fig.9). This overlap of information between 

EATL and MED populations corroborates that the Gibraltar doesn’t represent a phylogeographic 

barrier. 

Results from these preliminary analyses immediately highlight an inconsistency between the 

genetic approach and data from previous tag-and-recapture works (Green et al., 2009). For 



33 
 

example, data from the Irish recreational fishery, consisting of fish tagged and/or recaptured from 

1970 to 2006 reported only one recapture from the Mediterranean Sea, suggesting that there's a 

separation between the Mediterranean and the Atlantic stocks, specifically the Northern one, but 

evidence obtained from the genetic and phylogeographic approach developed in this work suggests 

that they could probably be considered as a unique population. However, all results reported in this 

work have to be interpreted in the light of our dataset nature, which doesn't cover the whole Atlantic 

Ocean, so it would be appropriate to include, in further investigations, also specimens from other 

Atlantic areas, especially from the Northern ones (e.g. UK, Ireland, ecc.) and from Western 

Atlantic. 

The analysis of the historical demographic trend, enhanced by the results of the different 

approaches we decided to take such as a Bayesian Skyline Reconstruction and a Mismatch 

Distribution Analysis, together with the construction of a phylogenetic tree for both CR and cyt-b 

sequence datasets, gave us important and unexpected information. The images of the demographic 

trend from mismatch distributions (Fig.12; Fig.13) suggest a constant population size and a recent 

bottleneck or sudden population expansion for control region and Cyt-b respectively; however, 

these analyses and the neutrality test are not significant, invalidating these assumptions. The 

Bayesian skyline reconstruction seemed to be coherent to a general stable demographic pattern for 

the Cyt-b marker (Fig.10), and show a slightly population expansion for the control region, both in 

MED and EATL (Fig.11).  Both these possible expansions are dated between 250 and 150 Kya, 

during Pleistocene epoch. 

Due to the fact that we observe two major haplogroups, and taking into account these demographic 

analyses, it is plausible that the populations of blue shark have gone through a bottleneck process 

with a subsequent expansion that generated the second haplogroup observed in the network (Fig.7).  

It is plausible that during an epoch rich of climatic shifts, alteration of food availability and extreme 

weather conditions, as the Pleistocene, an event of bottleneck can affected the blue shark 

populations of the EATL/MED areas.  
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The divergence time analysis succeeds to date this separation event between haplogroup using an 

evolutionary rate estimated as 0.62%/site/My and 0.32%/site/My for control region and Cyt-b 

respectively. The analysis dated an highly significant and supported separation between the two 

major clades for both markers, dated at 1,2/1,3 Mya, during Pleistocene epoch,  supporting the 

hypothesis of a past event that formed the two haplogroups. The fact that both markers associated 

with different evolutionary rates gave the same significant dating at 1,2/1,3 Mya, is a sign of a good 

calibration of the molecular clock of the species for these two markers.  

Further investigations are needed in order to better understand these predator populations. 

Although still a major bycatch of longline fishery instead of a commercial target and the 

extraordinarily high number of specimens globally registered, due also to the reproductive cycle and 

general biologic characteristics, blue shark P. glauca, as other elasmobranch, is characterized by a 

high vulnerability. Therefore, t is easy to understand the importance of increasing the source of 

information related to its population extent, genetic pattern and migratory possibilities throughout 

different areas in order to plan specific conservation actions and facilitate its stock management. In 

this perspective this thesis, especially because of the gap in knowledges regarding Mediterranean 

blue shark populations, can be considered a starting crucial point for planning further investigations, 

combining these results with the development of genomic resources for the blue sharks,  providing 

genetic markers for this species by identifying genome-wide informative Single Nucleotide 

Polymorphism (SNP) markers. 
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Tab.4 Occurrence of haplotypes in each geographical sample for both CR and Cyt-b markers. 
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Fig.14 Divergence tree for CR marker, performed with software BEAST v. 1.8.2. Supported separation between the 

two major clades is dated 1,2/1,3 Mya. 
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Fig.15 Divergence tree for Cyt-b marker, performed with software BEAST v. 1.8.2. Supported separation 

between the two major clades is dated 1,2/1,3 Mya. 
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