Abbondanza, Nicola
(2015)
Trasformazioni che conservano la misura.
[Laurea], Università di Bologna, Corso di Studio in
Matematica [L-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
Abstract
Si consideri un insieme X non vuoto su cui si costruisce una sigma-algebra F, una trasformazione T dall'insieme X in se stesso F-misurabile si dice che conserva la misura se, preso un elemento della sigma-algebra, la misura della controimmagine di tale elemento è uguale a quella dell'elemento stesso. Con questa nozione si possono costruire vari esempi di applicazioni che conservano la misura, nell'elaborato si presenta la trasformazione di Gauss. Questo tipo di trasformazioni vengono utilizzate nella teoria ergodica dove ha senso considerare il sistema dinamico a tempi discreti T^j x; dove x = T^0 x è un dato iniziale, e studiare come la dinamica dipende dalla condizione iniziale x. Il Teorema Ergodico di Von Neumann afferma che dato uno spazio di Hilbert H su cui si definisce un'isometria U è possibile considerare, per ogni elemento f dello spazio di Hilbert, la media temporale di f che converge ad un elemento dell'autospazio relativo all'autovalore 1 dell'isometria. Il Teorema di Birkhoff invece asserisce che preso uno spazio X sigma-finito ed una trasformazione T non necessariamente invertibile è possibile considerare la media temporale di una funzione f sommabile, questa converge sempre ad una funzione f* misurabile e se la misura di X è finita f* è distribuita come f. In particolare, se la trasformazione T è ergodica si avrà che la media temporale e spaziale coincideranno.
Abstract
Si consideri un insieme X non vuoto su cui si costruisce una sigma-algebra F, una trasformazione T dall'insieme X in se stesso F-misurabile si dice che conserva la misura se, preso un elemento della sigma-algebra, la misura della controimmagine di tale elemento è uguale a quella dell'elemento stesso. Con questa nozione si possono costruire vari esempi di applicazioni che conservano la misura, nell'elaborato si presenta la trasformazione di Gauss. Questo tipo di trasformazioni vengono utilizzate nella teoria ergodica dove ha senso considerare il sistema dinamico a tempi discreti T^j x; dove x = T^0 x è un dato iniziale, e studiare come la dinamica dipende dalla condizione iniziale x. Il Teorema Ergodico di Von Neumann afferma che dato uno spazio di Hilbert H su cui si definisce un'isometria U è possibile considerare, per ogni elemento f dello spazio di Hilbert, la media temporale di f che converge ad un elemento dell'autospazio relativo all'autovalore 1 dell'isometria. Il Teorema di Birkhoff invece asserisce che preso uno spazio X sigma-finito ed una trasformazione T non necessariamente invertibile è possibile considerare la media temporale di una funzione f sommabile, questa converge sempre ad una funzione f* misurabile e se la misura di X è finita f* è distribuita come f. In particolare, se la trasformazione T è ergodica si avrà che la media temporale e spaziale coincideranno.
Tipologia del documento
Tesi di laurea
(Laurea)
Autore della tesi
Abbondanza, Nicola
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
trasformazioni che conservano la misura teorema ergodico teorema di Birkhoff
Data di discussione della Tesi
18 Dicembre 2015
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Abbondanza, Nicola
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
trasformazioni che conservano la misura teorema ergodico teorema di Birkhoff
Data di discussione della Tesi
18 Dicembre 2015
URI
Statistica sui download
Gestione del documento: