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�Give a man a �sh, you feed him for a day;

teach a man to �sh, you feed him for a lifetime�

To my family.



Abstract

La simulazione di un sistema quantistico complesso rappresenta ancora oggi
una s�da estremamente impegnativa a causa degli elevati costi computa-
zionali. La dimensione dello spazio di Hilbert cresce solitamente in modo
esponenziale all'aumentare della taglia, rendendo di fatto impossibile una
implementazione esatta anche sui più potenti calcolatori. Nel tentativo di
superare queste di�coltà, sono stati sviluppati metodi stocastici classici, i
quali tuttavia non garantiscono precisione per sistemi fermionici fortemente
interagenti o teorie di campo in regimi di densità �nita. Di qui, la necessità
di un nuovo metodo di simulazione, ovvero la simulazione quantistica. L'idea
di base è molto semplice: utilizzare un sistema completamente controllabile,
chiamato simulatore quantistico, per analizzarne un altro meno accessibile.
Seguendo tale idea, in questo lavoro di tesi si è utilizzata una teoria di gauge
discreta con simmetria Zn per una simulazione dell'elettrodinamica quanti-
stica in (1+1)D, studiando alcuni fenomeni di attivo interesse di ricerca, come
il diagramma di fase o la dinamica di string-breaking, che generalmente non
sono accessibili mediante simulazioni classiche. Si propone un diagramma di
fase del modello caratterizzato dalla presenza di una fase con�nata, in cui
emergono eccitazioni mesoniche ed antimesoniche, cioè stati legati particella-
antiparticella, ed una fase decon�nata.
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Introduction

�Nature isn't classical, dammit, and if you want to make a simulation of na-

ture, you'd better make it quantum mechanical, and by golly it's a wonderful

problem, because it doesn't look so easy.� (R. P. Feynman, 1982).
This memorable words are an excellent starting point to approach the world
of quantum simulation. Simulating quantum mechanics is still today a very
challenging problem: suppose we have a generic quantum system with a
Hamiltonian H. In order to perform a numerical analysis, we have to dis-
cretize the problem and to implement it on the computer. The amount of
memory required for this purpose grows exponentially with the system size
N due to the fact that the dimension of the Hilbert space generally increases
according to a relation of the form dimH ∝ aN . So, we must store in memory
an aN×aN -matrix for each observable of the system. This is surely a limit to
a static analysis, but it imposes signi�cant limitations especially in calculat-
ing the time evolution, which requires an exponentiation of these matrices.
To have a concrete idea of the problem, just think that to store in a memory
a single state of a spin-1/2 chain of lenght N = 40, about 4 terabytes are
required.
To circumvent these considerable di�culties in the simulation of large quan-
tum systems, classical stocastic methods, like Monte Carlo, have been de-
veloped: these algorithms generally evaluate the phase space of the system
and the integrals de�ned on it (partition functions, correlators, mean values
of the observables, etc.) in a polynonial time with respect to the number
of components of the system. Nevertheless, these methods provide consider-
able accuracy only when the functions within integrals vary slow and do not
change sign. In general, this does not occur in many quantum systems, expe-
cially for strongly correlated fermionic systems in condensed matter physics
and for fermionic �eld theories in �nite-density regimes. So, in this sense,
classical simulations are severely limited by this problem, which is known in

6



Introduction 7

Figure 0.0.1: A quantum system and a corresponding quantum simulator.

literature as the sign problem.

From here we can infer the need for a new simulation method, i.e. quantum
simulation. The basic idea is very simple: to use some fully controllable
quantum system, called quantum simulator, to emulate and to analyze an-
other less controllable or accessible quantum system. Suppose we have a
system with an Hamiltonian Hsys and consider the unitary evolution, i.e.
U = e−iHsyst/~, from an initial state |φ(0)〉 to |φ(t)〉. In a quantum simula-
tor, being a controllable system, the initial state |ψ(0)〉 can be prepared, the
unitary evolution U

′
= e−iHsimt/~, through a suitable Hamiltonian of the sim-

ulator Hsim, can be enginereed, and the �nal state |ψ(t)〉 can be measured, as
shown in Fig. 0.0.1, taken from [12]. The quantum simulator must be built
with a mapping of the initial system, so that this latter can be correctly sim-
ulated. More precisely, there must be a mapping between |φ(0)〉 ↔ |ψ(0)〉,
|φ(t)〉 ↔ |ψ(t)〉, Hsys ↔ Hsim, U ↔ U

′
, so that a measurement on the simu-

lator provides information about the simulated system. The main advantage
of the quantum simulation consists in the fact that the simulator is �exper-
imentally� accessible, while, in many cases, this is not true for the initial
system: for example, to get an idea of this, just think that the propagation
of sound waves in a two-component BEC has been proposed in [9] for the
study of cosmic in�ation.
A quantum simulator is generally realized by means of a synthetic many-body

system, i.e. a system composed of many degrees of freedom, where interac-
tions can be tailored at the microscopic level using external �knobs�. These
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Figure 0.0.2: Rydberg atoms in a quantum gas form ordered structures that are suitable

to emulate Hubbard models with di�erent geometries. Image taken from [28].

systems usually consist of ultracold atoms or molecules in optical lattices, su-
perconducting circuits, trapped ions, nuclear spins or photonic systems. Each
platform has its own advantages and limitations, and di�erent approaches
often tackle with complementary aspects of quantum simulation. However,
these realistic setups are �nding many applications in many di�erent areas of
physics and chemistry [35]. Fig. 0.0.2 shows a pictorial scheme of a quantum
simulator with Rydberg atoms.
An important area for the application of the quantum simulation is the study
of gauge theories, which, in the context of high-energy physics, play a central
role in the dynamics of the Standard Model, or, in condensed matter physics,
allow to describe strongly correlated systems (quantum spin liquids, high-Tc
superconductors, etc.). Solving a gauge theory is generally very challenging:
a representative example is the theory of strong interactions, quantum chro-
modynamics (QCD). One of the reasons for the di�culties is that a gauge
theory, like QCD, generally may present non perturbative e�ects that are
hard to capture with a perturbative or analytical approach. In this frame-
work, it becomes particularly attractive to develop a quantum simulator of
a gauge theory.
The conceptual passages for this purpose are the following. First, you have
to pass from the considered (continuum) gauge theory to a discrete version
of it: this is generally achieved basing on the numerous works developed in
the context of lattice gauge theories (LTGs). At this point, it is necessary
a suitable formalism to estabilish the connection between the lattice gauge
theory and the system that potentially will be able to be used as a quantum
simulator: this can be done by using the consolidated quantum link model
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(QLM), which, for example, allows an identi�cation of degrees of freedom in
terms of spin operators [6]. Precisely in this passage, in the context of (1+1)D
QED as Abelian lattice gauge theory, a new Zn model has been recently pro-
posed for quantum simulations [27]: it allows an interesting mapping to a
particular fermionic system, in which the interaction between the Abelian
gauge (electromagnetic) �eld and the matter is achieved through a unitary
operator in a very natural way.
This master degree thesis inserts itself in this contest: by identifying a suit-
able way to numerically engineer the gauge symmetries of the Zn model, a
quantum simulation of the (1+1) QED is performed, studying some impor-
tant phenomena of active research interest, such as the QED-phase diagram
and the dynamics of string breaking.
The outline of this work is the following. In Chapter 1, we start from the
study of the Dirac and electromagnetic �elds in the classical Lagrangian for-
mulation, showing how it is possible to derive an interacting theory through
the introduction of gauge symmetries and how it is consequently possible
to obtain a Lagrangian for the classical electrodynamics in the context of
Abelian gauge theories. Then, we perform a quantization of the fermionic
and the electromagnetic sectors, examining, in particular, the operators that
represent, in the quantum formalism, the gauge trasformations. In this way,
we get to a coherent formulation of QED.
In Chapter 2, we examine the problems related to the discretization of the
QED-Hamiltonian on a lattice, focusing on the fermion doubling problem

and its possible solutions. In particular, we explain in detail how the use
of staggered fermions can solve this problem, allowing for the formulation of
(1+1)D QED as lattice gauge theory.
In Chapter 3 we present the QLM and the Zn lattice model, showing how
they capture the gauge invariance of our lattice gauge theory with di�erent
approaches and how are suitable to quantum simulations due to a general
reduction of the degrees of freedom.
In Chapter 4, we consider the Zn model and propose a way to engineer the
gauge symmetries and to constrain the system in the physical (gauge invari-
ant) subspace. So, �rst by means of aMathematica program and then using
the DMRG algorithm, we perform a systematic study of the static phase
diagram, of the properties of the ground-state and of some important quan-
tities such as free energy, energetic gap and entropy, highlighting the possible
presence of a phase transition.
In Chapter 5, we introduce the symmetries of the model, investigating in
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particular a charge-symmetry breaking and proposing an important starting
point for further researchs.
Finally in Chapter 6, with a suitable implementation of the Mathematica

algorithm, we study (with small size of the system) the real-time dynamics
of string-breaking, which usually can not be accessed using classical lattice
simulations due to e�ects of the sign problem. We stress that the implemen-
tation of the dynamics at numerical level, which has been performed, may
represent a �platform� for the study of other interesting non-perturbative
e�ects of (1+1)QED.



Chapter 1

Introduction to Abelian gauge

theories

The starting point of this chapter is the treatment of classical �eld theory
for the Dirac and the electromagnetic �elds. Therefore, we focus on the
connection between the fermionic theory and the U(1) Abelian gauge theory
with the introduction of local gauge trasformations and covariant derivatives.
Finally, the quantization of �elds is presented.

1.1 Basic de�nitions and conventions

The physical space on which the �elds are de�ned is the Minkowski space
M: it is a four dimensional space in which the three spatial dimensions
are combined with a single dimension of time to form a four-dimensional
manifold (spacetime). We impose c = ~ = e = 1.
Each physical event is uniquely identi�ed by a suitable four-vector

x = (x0,x) (1.1.1)

where x0 is the temporal coordinate, x = (x1, x2, x3) the spatial three di-
mensional vector. These coordinates both spatial and temporal are called
�contravariant� and are indicated by xµ with Greek index µ = 0, 1, 2, 3. Con-
versely, a Latin index i runs over spatial components 1, 2, 3. The metric
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tensor is conventionally

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (1.1.2)

where the spatial part is negative. We de�ne the �covariant� coordinates of
four-vector x as

xµ = ηµνx
ν =

{
x0 = x0

xi = −xi . (1.1.3)

Consequently, the scalar product of two four-vector a and b is

a · b = aµηµνb
ν = aµbµ = a0b0 −

∑
i

aibi (1.1.4)

and the squared norm of a

‖a‖2 = aµηµνa
ν = aµaµ = (a0)2 −

∑
i

(ai)2. (1.1.5)

The derivates of a function in the Minkowski space are compacted in a par-
ticular four-vector

∂µ ≡ ∂

∂xµ
= (

∂

∂x0
,∇). (1.1.6)

In the Minkowski space there is a speci�c trasformation law for the coordi-
nates

xµ → (xµ)′ = Λµ
νx

ν (1.1.7)

where Λµ
ν ∈ SO+(1, 3), the proper and orthochronous Lorentz group (detΛ =

1, Λ0
0 ≥ 1). Each element of this group is a Lorentz trasformation, i.e. a

composition of a spatial rotation and a boost. Therefore it is identi�ed by
six parameters: θ = (θ1, θ2, θ3) for the spatial rotation, β = (β1, β2,β3) for
the boost.
A classical relativistic �eld consists of a collection of real or complex functions
de�ned on the Minkowski spaceM

Υ (x) =


Υ1(x)
Υ2(x)
...
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with a well de�ned trasformation law under the action of SO+(1, 3). This
law depends on the representation of the Lorentz group for which the �eld is
de�ned.

1.2 Free Dirac �eld

The Lorentz group has two important, irriducible, two-dimensional represen-
tations τ 1

2
0 and τ0 1

2
which can be realized by means of the group of complex

2 × 2 matrices of unit determinant SL(2, C) [32]. The matrices related to
τ 1

2
0 act upon the left Weyl's two-component spinors ψL, while the matrices

related to τ0 1
2
act upon the right Weyl's two-component spinors ψR.

These matrices have the following exponential form

ΛL = exp{(−iθk − βk)
1

2
σk} (1.2.1)

ΛR = exp{(−iθk + βk)
1

2
σk} (1.2.2)

where σk are the Pauli matrices (a set of three 2 Ö 2 complex matrices which
are Hermitian and unitary):

σ1 =

[
0 1
1 0

]
σ2 =

[
0 −i
i 0

]
σ3 =

[
1 0
0 −1

]
. (1.2.3)

These matrices are directly connected to generators of τ 1
2
0 and τ0 1

2
represen-

tations, as seen respectively in (1.2.1) and (1.2.2). Notice that

[σj, σk] = 2iεjklσl. (1.2.4)

From (1.2.4) we can easily understand that the generators in (1.2.1) and
(1.2.2) satisfy the general propriety [Ia, Ib] = CabcIc with a particular struc-
ture constants.
The left and right Weyl's two-component spinors trasform according to

ψ
′

L = ΛLψL (1.2.5)

ψ
′

R = ΛRψR. (1.2.6)

The Weyl's spinors describe spin-½ particles with di�erent helicity: it is a
physical quantity de�ned as the projection of the spin onto the direction of
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Figure 1.2.1: Left-handed and right-handed particles.

momentum. Left-handed spinor have h = −1
2
, right-handed h = 1

2
(Fig.

1.2.1).
To describe spin-½ particles with four deegres of freedom s = ±1

2
and h = ±1

2

(i.e. electrons, positrons) and to guarantee parity preservation (all massive
fermions are known to obey parity conservation unlike Weyl's two-component
spinors) we introduce the four-components Dirac spinors [33] in the Weyl or
chiral representation:

ψ =

[
ψL
ψR

]
=


ψL1
ψL2
ψR1

ψR2

 . (1.2.7)

Starting from the matrices (1.2.3), we can de�ne a new set of 4× 4 matrices
that correctly acts upon Dirac spinors (1.2.7) in this representation

γ0 =

[
0 1
1 0

]
γi =

[
0 σi
−σi 0

]
. (1.2.8)

These matrices allow to obtain the Dirac equation [8], which describes the
evolution of spin-½ particles with mass m:

(iγµ∂µ −m)ψ(x) = 0. (1.2.9)

Equation (1.2.9) can also be obatined from the Lagrangian density [21]

LD = ψ(iγµ∂µ −m)ψ (1.2.10)

with ψ = ψ†γ0.
The Dirac equation has four indipendent solutions

ψ(x) = ur(p)e
−ipx = ur(p)e

−iEx0+ipx (1.2.11)
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ψ(x) = vr(p)e
+ipx = vr(p)e

+iEx0−ipx (1.2.12)

with r = 1, 2, ur(p), vr(p) costant spinors, p = (E, p) the four-momentum.
(1.2.11) and (1.2.12) are respectively plane-wawe solutions with positive and
negative energy, i.e. particles, antiparticles. The two-fold degeneracies for
a given momentum, r = 1, 2, correspond to solutions with opposite spin
orientations along a reference axis.
Therefore, the most general solution of the Dirac equation is [21]

ψ(x) =
∑
p,r

[cp,rur(p)e
−ipx + d∗p,rvr(p)e

ipx]|p0=Ep
(1.2.13)

where p0 = Ep = (p2 + m2). cp,r and dp,r are anti-commuting numbers
[32], also named Grassmann numbers, which have the following properties
(∀r, s = 1, 2; p,q ∈ R3):

{cp,r, cq,s} = {c∗p,r, c∗q,s} = 0⇒ (cp,r)
2 = (c∗p,r)

2 = 0 (1.2.14)

{dp,r, dq,s} = {d∗p,r, d∗q,s} = 0⇒ (dp,r)
2 = (d∗p,r)

2 = 0. (1.2.15)

{cp,r, dq,s} = {cp,r, d∗q,s} = {c∗p,r, dq,s} = {c∗p,r, d∗q,s} = 0 (1.2.16)

From this equations, we can easily notice that the classical relativistic Dirac
spinors satisfy the following relations:

{ψ(x), ψ(y)} = {ψ†(x), ψ†(y)} = {ψ(x), ψ†(y)} = 0. (1.2.17)

1.3 Free electromagnetic �eld

We introduce the four-vector potential

A = (φ,A) = Aµ (1.3.1)

where φ is the electric potential and A the vector potential such that the
electric and magnetic �elds result

E = −∇φ− ∂A

∂t
(1.3.2)

B = ∇×A. (1.3.3)

Starting from the Aµ, we can de�ne the electromagnetic �eld tensor

F µν = ∂µAν − ∂νAµ. (1.3.4)
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It is antisymmetric, thus it has six independent components, i.e. the three
components of E and the three of B [4].
The electomagnetic �eld is uniquely determined by the tensor F µν : the rela-
tions (1.3.1) and (1.3.3) can be written as

F i0 = Ei (1.3.5)

F ij = −εijkBk. (1.3.6)

An important property of the electromagnetic tensor is the gauge-invariance:
if we de�ne a gauge trasformation of the potential Aµ as follows

(Aµ)′ = Aµ − ∂µϕ(x) (1.3.7)

where ϕ(x) is a smooth function, we notice that

(F µν)′ = F µν . (1.3.8)

The Lagrangian density for the free electromagnetic �eld is

Lem = −1

4
FµνF

µν . (1.3.9)

in which the dynamic variables are the four components Aµ.

1.4 Local gauge symmetry and interaction

A way to write interaction terms in the Lagrangian formalism is the request of
local symmetries (gauge symmetries): in fact, by promoting a global symme-
try of the Lagrangian, which describes a generic �eld, into a local symmetry
(i.e. symmetry under a space-time dependent trasformation), it is possible
to introduce a gauge �eld as a dynamical variable and to derive in a natural
way interaction terms between the original �eld and the gauge �eld.
We notice that under U(1) global trasformations with a real number α

ψ
′
(x) = ψ(x)eiα (1.4.1)

the Lagrangian density (1.2.10) is invariant:

L′D = LD. (1.4.2)
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Thus, the free Dirac �eld exhibits a global U(1) symmetry.
We now impose that this symmetry is local by de�nition of a parameter as
a real function of the Minkowski space α = α(x). Therefore, the local U(1)
trasformation acts on �elds as

ψ
′
(x) = ψ(x)eiα(x). (1.4.3)

The mass term in the Lagrangian density (1.2.10) is invariant, while the
kinetic term is not. In fact, we have

(ψiγµ∂µψ)
′
= ψγµ∂µψ + iψγµψ∂µα(x) (1.4.4)

where there is an additional term due to the dependence of trasformation
(1.4.1) on the spacetime-point x. Therefore, we must properly extend the
Lagrangian density to restore the symmetry. We introduce the covariant
derivative as

Dµ = ∂µ + iAµ (1.4.5)

where Aµ is the gauge �eld which coincides with the four-vector potential
(1.3.1). Then, if we operate a local gauge trasformation as follows

ψ′(x) = ψ(x)eiα(x)

A
′

µ = Aµ − ∂µα(x) (1.4.6)

D
′

µ = ∂µ + i(Aµ − ∂µα(x))

we have that
(ψ(x)iγµDµψ(x))′ = ψ(x)iγµDµψ(x). (1.4.7)

Therefore, we can replace the derivative ∂µ in the kinetic term of (1.2.10)
with the covariant derivative Dµ to obtain a local gauge symmetry. In this
way, we introduce de facto an interaction between the two �elds due to the
presence of Aµ in the de�nition (1.4.5). This new kinetic term combined
with the Lagrangian density of electromagnetic free �eld (1.3.9) gives us the
complete Lagrangian density:

L = ψ(x)(iγµDµ −m)ψ(x)− 1

4
FµνF

µν . (1.4.8)
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1.5 The comparator U

We have seen in (1.4.4) that the kinetic term including derivatives is not
gauge invariant under the local trasformation (1.4.1). This is not a simple
mathematical �consequence�, but it follows from a general geometrical prop-
erty. The derivative of ψ(x) in the direction of a generic four-vector ηµ is
de�ned as

∂ηψ(x) = ηµ∂µψ(x) = lim
ε→0

1

ε
[ψ(x+ εη)− ψ(x)] . (1.5.1)

The two �elds ψ(x + εn), ψ(x) are calculated at di�erent points, so they
have completely di�erent transformations. Therefore, the quantity ∂µψ has
no simple trasformation law and no useful geometric interpretation [29].
To compensate for this phase-di�erence between the two points, we can in-
troduce a quantity, called the comparator, that depends on the two points
and trasforms under (1.4.1) as:

U
′
(x, y) = eiα(x)U(x, y)e−iα(y) (1.5.2)

We assume that U(x, y) is unitary, therefore U(x, y) = eiφ(x,y), and U(x, x) =
1 when y = x. The introduction of this comparator has a signi�cant e�ect:
the quantities U(x, y)ψ(y) and ψ(y) trasform in the same way, so they can be
subtracted from each other respecting the local symmetry. Then, we de�ne a
new derivative with this di�erence (setting y = x+ εη), called the covariant
derivative [29]:

Dηψ(x) = lim
ε→0

1

ε
[U(x, x+ εη)ψ(x+ εη)− ψ(x)]. (1.5.3)

It can be shown that the this is a gauge-covariant quantity:

(Dηψ(x))
′

= lim
ε→0

1

ε
[U(x, x+ εη)ψ(x+ εη)eiα(x) − ψ(x)eiα(x)] (1.5.4)

= eiα(x)Dηψ(x)

i.e. it transforms like a spinor.
We can now analyze the properties of this covariant derivative and its con-
nection with the previous de�nition (1.4.5).
Assuming that the phase φ(x, y) is a regular function, we can expand in ε
the comparator U(x, y):

U(x, x+ εη) = U(x, x) + εηµ
∂U

∂yµ
|y=x +O(ε2) (1.5.5)
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whence
U(x, x+ εη) = 1 + iεηµVµ +O(ε2) (1.5.6)

where Vµ = ∂φ(x,y)
∂yµ
|y=x. If we apply the trasformation law (1.5.2)

U
′
(x, x+ εη) ' eiα(x)(1 + iεηµVµ)e−iα(x+εη)

' eiα(x)(1 + iεηµVµ)(1− iεηµ∂µα(x))e−iα(x)

= 1 + iεηµ(Vµ − ∂µα(x))

we notice immediatly that Vµ must have the same trasformation law of Aµ.
So, we can identify it with the four-vector potential (1.3.1): this is signi�cant
because we have de�ned the covariant derivative (1.5.3) in a very general way
and now we �nd the four-vector potential as a consequence of the comparator
trasformation law (1.5.2).
Starting from this results, we can now evaluate the de�nition (1.5.3)

ηµDµψ(x) = lim
ε→0

1

ε
[(1 + iεηµAµ)ψ(x+ εη)− ψ(x)]

= ηµ(∂µ + iAµ)ψ(x). (1.5.7)

from which it follows that this �new� covariant derivative coincides with the
covariant derivative de�ned in (1.4.5). This is an important result because
it allows us to understand from a new point of view that the request of local
symmetry implies a general geometric construction of the covariant derivative
and the very existence of the vector �eld Aµ. This is the essence of a gauge
theory.
At this point it is useful to introduce an explicit form of the comparator [38]
which respects all its properties, in particular its trasformation law:

U(x, y) = exp

i
yˆ

x

dxµAµ

 . (1.5.8)

Starting from this expression, we can analyze some important properties:
�rst we note that U(x, x) is gauge invariant, then we take two unit vectors
in the Minkowski space:

v1 = (0, 1, 0, 0) (1.5.9)

v2 = (0, 0, 1, 0). (1.5.10)
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Therefore, we value the comparator along a square closed path with side ε
(a plaquette) from initial point x:

U(x) = U(x, x1)U(x1, x2)U(x2, x3)U(x3, x) (1.5.11)

where x1 = x+ εv1, x2 = x+ εv1 + εv2, x3 = x+ εv2. It can easily show [29]
that U(x) is a gauge invariant quantity and can be written as

U(x) = 1 + iε2[∂1A2(x)− ∂2A1(x)] +O(ε3) (1.5.12)

= 1 + iε2B3(x) +O(ε3)

where in the second term appears the �ux of the third component of the
magnetic �eld across the above in�nitesimal plaquette of area ε2. This for-
mula allows us to understand that, since U(x) is gauge invariant, also the
quantity ∂1A2(x) − ∂2A1(x) must have the same property. If we repeat the
previous reasoning with other directions in the Minkowski space, we notice
immediately that all the components of the tensor Fµν = ∂µAν − ∂νAµ must
be gauge invariant. This is the geometrical origin of the electromagnetic �eld
tensor (1.3.4) in the view of a gauge theory.

1.6 Quantization of the Dirac �eld

In the Lagrangian formulation of the free Dirac �eld, the spinor ψ(x) is
the dynamical variable. Starting from the Lagrangian density (1.2.10), the
conjugate momentum results

Ωα(x) =
∂L

∂(∂0ψα(x))
= iψ†α(x) (1.6.1)

in which the index α = 1L, 2L, 1R, 2R identi�es the spinorial components.
The canonical quantization is achieved by promoting the classical spinorial
�elds ψ(x) and ψ†(x) to �elds operators and, due to the nature of the Grass-
man algebra of the classical solutions of the Dirac equation, the classical
relations (1.2.17) to suitable egual-time anticommutation relations:

{ψ̂α(x0,x), ψ̂†β(x0,y)} = δα,βδ
(3)(x− y) (1.6.2)

{ψ̂α(x0,x), ψ̂β(x0,y)} = 0

{ψ̂†α(x0,x), ψ̂†β(x0,y)} = 0 (1.6.3)
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From these equations, we obtain the usual anticommutation relation of con-
jugate variables:

{ψ̂α(x0,x), Ω̂β(x0,y)} = iδα,βδ
(3)(x− y). (1.6.4)

In the expansion (1.2.13) of the Dirac �eld, we have now a set of operators,
ĉp,r and d̂p,r, with fermionc feature:

{ĉp,r, ĉ†q,s} = δr,sδ
(3)(p− q) (1.6.5)

{d̂p,r, d̂†q,s} = δr,sδ
(3)(p− q) (1.6.6)

all the other anticommutators vanish. (1.6.7)

In the formalism of the canonical quantization, it results that the Hamilto-
nian density operator of the Dirac �eld has the following form:

Ĥ = ψ̂(−iγi∂i +m)ψ̂. (1.6.8)

The operators ĉp,r and d̂p,r allow us to de�ne the Hilbert space HD on which
this Hamiltonian is de�ned: it is a Fock space, i.e. the direct sum of tensor
products of copies of a single-particle Hilbert space H.

HD =
∞⊕
n=0

AH⊗n = H0 ⊕ H⊕ A(H⊗ H)⊕ A(H⊗ H⊗ H)⊕ .... (1.6.9)

in which H0 is the quantum space state with zero particles and A is the
operator which antisymmetrizes the tensor products, due to the fermionic
nature of the particles. In this space, �rst we de�ne a vacuum state |0〉 as
follows:

ĉp,r |0〉 = 0 ∀p, s (1.6.10)

d̂p,r |0〉 = 0 (1.6.11)

then, we can build a one particle/antiparticle states as

|p, r,−〉 = ĉ†p,r |0〉 (1.6.12)

|p, r,+〉 = d̂†p,r |0〉 (1.6.13)
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in which the sign refers to the electric charge of particle/antiparticle. Sim-
ilarly, we can build a generic antisymmetric state with a particles and b
antiparticles as

|φ〉 =
a∏

m=1

b∏
n=1

ĉ†pm,rm d̂
†
pn,rn |0〉 . (1.6.14)

We have seen in (1.4.2) that the classical Lagrangian density of the Dirac
�eld is invariant under global U(1) trasformation. In the quantum formalism,
this is translated into a symmetry of the Hamiltonian density (1.6.8) under
a trasformation performed by a suitable operator. If we de�ne the operator

T̂ (x0, α(x)) = exp

{
i

ˆ
d3x α(x)ψ̂†(x0,x)ψ̂(x0,x)

}
(1.6.15)

it can easily show [26] that it trasforms the spinor as

T̂ †(y0)ψ̂(y)T̂ (y0) = ψ̂(y)eiα(y) (1.6.16)

which coincides with the local U(1) trasformation of the quantum Dirac �eld.
We notice that it results [

Ĥ, T̂
]

= 0→ T̂ †ĤT̂ = Ĥ (1.6.17)

only if α is a constant, rediscovering the global U(1) symmetry of the Dirac
theory.

1.7 Quantization of the electromagnetic �eld

When we try to perform the canonical quantization of the free electromag-
netic �eld, we encounter a problem: starting from the Lagrangian density
(1.3.9) and proceeding to determine the conjugate momenta of the four vari-
ables Aµ, we �nd

Πµ =
∂Lem
∂(∂0Aµ)

⇒
{

Π0 = 0
Πi = −Ei (1.7.1)

in which the momentum Π0 is identically zero: it shows that the evolution
of A0 is not �xed by any dinamical law and is arbitrary, as we can modify
it by a gauge trasformation. Indeed it is always possible to �nd a gauge
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trasformation with a function ϕ(x) such that ∂0ϕ(x) = A0. In this way, the
new dynamic variables result

A0 = 0 Ai = Ai − ∂iϕ(x). (1.7.2)

This condition does not completely eliminate the gauge freedom: a residual
set of gauge time-indipendent trasformations are still allowed.
Now we can apply the canonical formalism by promoting Ai and Πi to �eld
(conjugate) operators, such that at equal time it results[

Âi(x
0,x), Π̂j(x

0,y)
]

= iδi,jδ
(3)(x− y) (1.7.3)

or, in terms of the electric �eld:[
Âi(x

0,x), Êj(x
0,y)

]
= −iδi,jδ(3)(x− y) (1.7.4)

In this gauge, the Hamiltonian density operator of the free electromagnetic
�eld can be written in the form

Ĥ =
1

2
(Ê2 + B̂2). (1.7.5)

Let us now determine the Hilbert space of the quantum electromagnetic �eld,
Hel: being Âi and Êi conjugate operators (such as x̂ and p̂ in the quantum
mechanics), we can consider a space of states |Ψ〉 with wave functions which,
in the Â-representation, have the form Ψ({Ai}). In this representation, the
operator Âi(x

0,x) is multiplicative, while the electric �eld becomes the dif-
ferential operator [10]

Êi(x
0,x) = i

δ

δÂi(x0,x)
. (1.7.6)

We de�ne now an operator which performs the gauge trasformations with a
time-indipendent function ϕ(z):

R̂(ϕ(z)) = exp

{
−i
ˆ
d3z ϕ(z)∇ · Ê(x0, z)

}
. (1.7.7)

It can be easily shown [10] that

R̂†(ϕ(z))Âi(x
0,x)R̂(ϕ(z)) = Âi(x

0,x)− ∂iϕ(z) (1.7.8)
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recovering the trasformation (1.7.2). Due to the gauge symmetry, this trasfor-
mation does not change the physics of the electromagnetic �eld and its states
(i.e. states that di�er by gauge trasformations are physically equivalent).
Therefore, the Hilbert space de�ned previously is too large: it contains also
non-physical states. We must restrict the Hilbert space to the space of gauge-
invariant physical states by imposing the following constraint:

R̂(ϕ(z)) |Ψ〉 = |Ψ〉 (1.7.9)

whence
∇ · Ê(x0,x) |Ψ〉 = 0 ∀x0,x (1.7.10)

which is the quantum version of the classical Gauss' law for the free elec-
tromagnetic �eld. So �nally, only the states which obey this law de�ne the
physical Hilbert space.

1.8 Quantum gauge theory: QED

Starting from the classical form of the comparator (1.5.8), we perform its
quantization in the gauge A0 = 0, obtainig the following operator:

Û(x0,x,y) = exp

−i
yˆ

x

dz · Â(x0, z)

 . (1.8.1)

It can be shown [26] that, in quantum formalism, it trasforms according to
(1.5.2) under local gauge trasformation, namely

R̂†(ϕ(z))Û(x0,x,y)R̂(ϕ(z)) = eiϕ(x)Û(x0,x,y)e−iϕ(y). (1.8.2)

We de�ne a quantistic counterpart of the covariante derivative (1.5.3) as

D̂ηψ̂(x) = lim
ε→0

1

ε

[
Û(x, x+ εη)ψ̂(x+ εη)− ψ̂(x)

]
. (1.8.3)

Therefore, taking into account the de�nitions (1.6.8) and (1.7.5) and the
classical interaction theory, we can de�ne the Hamiltonian density operator
of a system in which the Dirac and the electromagnetic �elds interact with
each other, i.e. quantum electrodynamics, as

Ĥ = ψ̂(−iγiD̂i +m)ψ̂ +
1

2
(Ê2 + B̂2). (1.8.4)
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This operator is invariant under an appropriate gauge trasformation which
operates simultaneously on the Dirac �eld and the electromagnetic �eld
and represents the quantum counterpart of the classical local trasformations
(1.4.6). This trasformation can be performed by the operators T̂ and R̂ as
follows

(T̂ ⊗ R̂)†Ĥ(T̂ ⊗ R̂) = Ĥ. (1.8.5)

The Hilbert space of the system is the tensor product of the Dirac and elec-
tromagnetic Hilbert spaces, thus a generic state can be written as linear
combination of vectors of the form|Φ〉 = |φ〉D ⊗ |ψ〉el. Due to the gauge
symmetry, in this case too, we must restrict the Hilbert space to the space
of gauge-invariant physical state by imposing a new constraint:

(T̂ ⊗ R̂) |φ〉D ⊗ |ψ〉el = 0 (1.8.6)

whence
(ψ̂†ψ̂ −∇ · Ê) |Φ〉 = 0 (1.8.7)

which is the Gauss'law in presence of charges.



Chapter 2

Regularization on a lattice

We now analyze the formulation of the QED, that we have described in
the previous chapter as a continuum gauge theory, on a discrete lattice.
This formulation is an example of what is usually called lattice gauge theory.
We will introduce the fermion doubling problem, which comes out in the
transition from continuous to discrete space and we will implement the gauge
�elds and the gauge transformations on the lattice. At the end of this chapter,
we will get to a lattice one dimensional formulation of QED.

2.1 Fermion doubling problem

In the continuum space, the euclidean action of the free Dirac �eld is [37]

SE =

ˆ
d4xE ψ(γEµ ∂µ +m)ψ (2.1.1)

in which µ = 1, 2, 3, 4 and xEµ ≡ (xi, ix0), γE4 ≡ γ0, γEi ≡ −iγi. The
Feynman propagator results

GF (x− y) =

ˆ
d4pE
(2π)4

[(−i)∑µ γ
E
µ pEµ +m]∑

µ p
2
Eµ +m2

eipE(xE−yE). (2.1.2)

in which pEµ ≡ (pi, ip0). If we suppose to discretize the space-time with a
four-dimensional lattice, the fermion �eld ψ(x) must be replaced by a suitable
variable ψx, which lives on the lattice point x, and the derivatives ∂µ must
be discretized by �nite di�erences. In this way, the action can be written in

26
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the following form

SE = a4
∑
x,µ

{
1

2a
(ψxγ

E
µ ψx+µ̂ − ψxγEµ ψx−µ̂) +mψxψx

}
(2.1.3)

in which a is the lattice spacing and the integral over space-time is replaced
by a lattice sum. In addition, to regain correctly the continuum limit in
(2.1.3), the lattice variables have been de�ned in a dimensionless way, i.e.

ψ(x)→ 1

a3/2
ψx

ψ̄(x)→ 1

a3/2
ψ̄x

m→ 1

a
m.

(2.1.4)

It can be shown [37] that the lattice fermion propagator becomes (we neglect
the subscript of the euclidean four-vectors xE and pE)

Glatt
F (x− y) =

ˆ
BZ

d4p̃

(2π)4
[(−i)∑µ γ

E
µ p̃µ +m]∑

µ p̃µ
2 +m2

eip(x−y) (2.1.5)

where BZ is a four-dimensional Brillouin zone
[
−π
a
, π
a

]4
with periodic bound-

ary conditions and

p̃µ =
1

a
sin(pµa) (2.1.6)

In the continuum limit a → 0, the lattice propagator would reduce to the
fermion propagator in the euclidean formulation, but in this case there is a
problem due to the de�nition of p̃µ. In Fig. 2.1.1, the blue line corresponds to
p̃µ as a function of pµ in the one-dimensional Brillouin zone, while the violet
line represents the condition p̃µ = pµ (expected continuum limit). In the half
Brillouin zone [− π

2a
, π
2a

], there is a deviation from the continuum limit only
for large momenta where pµ and p̃µ are of order

1
a
. Therefore, when a is very

small, this deviation becomes very negligible in the integral which de�nes
the propagator GF (x− y). The problem arises from the presence of zeros of
the sine-function at the edges of the Brillouin zone: whatever is the value
of a, there are regions (in the one dimensional case [ π

2a
, π
a
) and (−π

a
,− π

2a
])

where p̃µ has signi�cantly di�erent values from pµ: this values remain �nite
in the limit a→ 0 and give contributions in Glatt

F (x− y) which are absent in
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Figure 2.1.1: p̃µ as a function of pµ in the Brillouin zone (blue line) with the expected

continuum limit (violet line).

GF (x − y). This can easily be seen in a one dimensional case in which we
have only one component of the moment, for example p1. We can compute
the lattice propagator as follows:

Glatt
F (x− y) =

ˆ π
a

−π
a

dp̃1
2π

[(−i)γE1 p̃1 +m]

p̃1
2 +m2

eip̃1(x1−y1)

=

ˆ π
2a

− π
2a

dp̃1
2π

[(−i)γE1 p̃1 +m]

p̃1
2 +m2

eip̃1(x1−y1)

+

ˆ π
a

π
2a

dp̃1
2π

[(−i)γE1 p̃1 +m]

p̃1
2 +m2

eip̃1(x1−y1)

+

ˆ − π
2a

−π
a

dp̃1
2π

[(−i)γE1 p̃1 +m]

p̃1
2 +m2

eip̃1(x1−y1)

(2.1.7)

In the �rst integral, being in the half Brillouin zone, we can replace p̃1 with p1
when a is very small. In the second and third integral we can approximate the
relation (2.1.6) with an expansion in ±π

a
respectively, so that p̃1 ≈ −p1 ± π

a
.

We obtain

Glatt
F (x− y) ≈

ˆ π
2a

− π
2a

dp1
2π

[(−i)γE1 p1 +m]

p21 +m2
eip1(x1−y1)

+

ˆ − π
2a

−π
a

dp1
2π

[(−i)γE1 (−p1 + π
a
) +m]

(−p1 + π
a
)2 +m2

ei(−p1+
π
a
)(x1−y1)

+

ˆ π
a

π
2a

dp1
2π

[(−i)γE1 (−p1 − π
a
) +m]

(−p1 − π
a
)2 +m2

ei(−p1−
π
a
)(x1−y1).

(2.1.8)
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We perform now the following substitutions: p = p1− π
a
in the second integral,

p = p1 + π
a
in the third. Due to periodicity in the momentuum space, we can

retrieve the integration limits in the Brillouin zone. Thus, we get

Glatt
F (x− y) ≈

ˆ π
2a

− π
2a

dp1
2π

[(−i)γE1 p1 +m]

p21 +m2
eip1(x1−y1)

+

ˆ π
2a

0

dp

2π

[(−i)γE1 (−p) +m]

p2 +m2
ei(−p)(x1−y1)

+

ˆ 0

− π
2a

dp

2π

[(−i)γE1 (−p) +m]

p2 +m2
ei(−p)(x1−y1).

(2.1.9)

By replacing p1 = −p in the second and third integral, we obtain

Glatt
F (x− y) =

ˆ π
2a

− π
2a

dp1
2π

[(−i)γE1 p1 +m]

p21 +m2
eip1(x1−y1)

+

ˆ π
2a

− π
2a

dp1
2π

[(−i)γE1 p1 +m]

p21 +m2
eip1(x1−y1)

≈ 2GF (x− y) when a→ 0

(2.1.10)

This result tells us that when we try to retrieve the limit a → 0 in a one-
dimensional lattice, an additional �fermion�, which is a pure lattice artefact
and has no continuum analog, emerges. This is the central point of the
fermion doubling problem: when we try to put fermionic �elds on a lattice,
spurious states appear and the propagator receives contributions from all
fermions, also the ones that do not really exist in the original continumm
theory. In a d-dimensional lattice, there are 2d−1 of this spurious excitations.

2.2 Relation to chiral anomaly

Let us go back for a moment to the classical electrodynamics. The Lagragian
density (1.4.8), in addition to the gauge invariance, has another particular
symmetry in the massless case. If we set m = 0 and perform the following
trasformation

ψ′ = eiθγ
5

ψ (2.2.1)

where θ ∈ R and γ5 = γ0γ1γ2γ3, it results that L is invariant. This property
is called chiral symmetry. In agreement with Noether's theorem, there is a
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conserved current, which has density

ju5 = ψ̄γµγ5ψ (2.2.2)

such that the conservation law results

∂µj
µ5 = 0. (2.2.3)

Once performed the quantization, it can be shown, using a method known
as Fujikawa method [11], that in the QED-framework the chiral current is
not conserved. This e�ect, which implies quantum nonconservation of a
conserved current in the classical scheme, is called chiral anomaly.
In the lattice formulation of a chiral theory based on a discretization of
the Lagrangian, the chiral symmetry implies that the associated current is
strickly conserved for any lattice spacing, therefore the anomaly is totally
absent. Thus, lattice regularization generates extra fermions needed to cancel
this anomaly of the continuum theory. This is the fundamental reason of the
fermion doubling.

2.3 Nielsen and Ninomiya theorem

If we want to prevent the fermion doubling when we perfom the regulariza-
tion on lattice, we must �rst consider a theorem by Nielsen and Ninomiya
[25].
This theorem states that a local, hermitian, lattice fermion action, which has
translational invariance and chiral symmetry (even if only in the massless
case), necessarily has fermion doubling.
As a result, the only way to get rid of the doublers is by violating one of the
presuppositions of the theorem. There are several solutions for this purpose.
A �rst method is known as Wilson fermions [30]: in this scheme, a term
which explicity breaks the chiral symmetry and vanishes in the continuum
limit, is added to the lattice action (2.1.3). This term de facto associates an
�in�nite� mass to extra-fermions at the edges of the Brillouin zone. The re-
sult is that the continuum limit is now dominated by the fermion only in the
origin and doubling is prevented. Obviously, with this method, the theory
completely loses the original chirally invariance for m = 0.
An alternative method is known in the literature as Staggered Fermions [34]
[3]: in order to understand the basic idea of this formulation, we recall that
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the fermion doubling problem arises from the fact that the lattice propaga-
tor (2.1.5) is dominated not only by values of pµ near the origin (physical
fermion), but also at the edges of the Brillouin zone (no-physical excitations).
If somehow we could reduce the Brillouin zone to half of its initial size, the
problem would disappear. This can be done by placing di�erent fermions on
adjacent lattice site, so the periodicity becomes 2a and the Brillouin zone in
a d-dimensional case is e�ectively reduced to [− π

2a
, π
2a

]d. This is the central
point of staggered fermions method. In this case, the presupposition of the
Nielsen and Ninomiya theorem which is violated is the locality, while the
chiral symmetry is preserved.
We will use staggered fermions in the following, so we will explain this method
in detail in the next section.

2.4 Staggered fermions

Now we restart from the classical Dirac Hamiltonian:

H =

ˆ
d3x ψ̄(−iγi∂i +m)ψ (2.4.1)

in which we have used the chiral representation (1.2.7). We want to change
representation for the Dirac spinors and for γµ matrices, by switching from
chiral to standard representation. In this scheme the four-components Dirac
spinor can be written as

ψ =

[
ψ+

ψ−

]
=


ψ+,1

ψ+,2

ψ−,1
ψ−,2

 (2.4.2)

i.e. ψ is composed now by a positive energy two-component spinor (particle)
and by a negative two-component energy spinor (antiparticle), and the γµ

matrices become

γ0 =

[
1 0
0 −1

]
γi =

[
0 σi
−σi 0

]
. (2.4.3)

Suppose we consider a spinless model in a (1+1) dimensional space: in this
framework the Dirac spinor has only two components

ψ(x) =

[
χ1(x)
χ2(x)

]
(2.4.4)
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and the 2× 2 γ-matrices result

γ0 =

[
1 0
0 −1

]
γ1 =

[
0 1
−1 0

]
. (2.4.5)

Therefore, the Dirac equation (1.2.9) reduces to

(iγ0∂0 + iγ1∂1 +−m)

[
χ1(x)
χ2(x)

]
= 0 (2.4.6)

whence {
i∂tχ1(x) = +mχ1(x)− i∂xχ2(x)
i∂tχ2(x) = −mχ2(x)− i∂xχ1(x)

. (2.4.7)

We implement this model on a one-dimensional lattice with spacing a, as-
suming that time remains continuous and discretizing the x-derivative by the
�nite di�erence of the two neighbouring points. We obtain:{

i∂tχ1,x = +mχ1,x − i
2a

(χ2,x+1 − χ2,x−1)
i∂tχ2,x = −mχ2,x − i

2a
(χ1,x+1 − χ1,x−1)

. (2.4.8)

Remembering that our purpose is to prevent the fermion doubling problem,
this discretization looks very interesting. In fact we can see in (2.4.8) that
the �rst spinor component χ1 is connected to the second component χ2 only
on sites with di�erent parity and viceversa. Thus, altought we have two
components on each site, de facto this lattice variables form two independent
sets: if x has even parity for example, χ1,x depends only on χ2,x±1 and
χ2,x±1only on χ1,x±2 and so on. Viceversa for χ2,x. Therefore, we can consider
only one of these two connected groups by de�ning a single component lattice
fermion �eld ζx that must be correctly reduced to χ1 or χ2 depending on
parity of the site [24]:

ζx =

{
χ1,x x− odd
χ2,x x− even (2.4.9)

The two spinor components of the fermions sit on di�erent sites now: on
even sites there are positive energy solutions, on odd sites negative energy
solutions. As a result, the number of degrees of freedom is divided by two
and the fermion doubling problem is pratically eliminated. In other words,
we can imagine to divide the initial one dimensional lattice with spacing a
into blocks of two sites with alternating spinor components. The periodicity
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of the system becomes 2a and so we avoid the extra excitation at the edges of
the Brillouin zone. The price that one pays in the use of staggered fermions is
the locality of the Hamiltonian density, or equivalently of the corresponding
action, because the inititial spinor �elds ψ(x) are now delocalised over two
sites.
We stress that in the model exhibited in this section the time is considered
continuous, so the fermion doubling problem could arise only by discretiz-
ing the spatial x-axis. Hence the presence of only one and not three extra
excitations.

2.5 Staggered fermion Hamiltonian

The use of staggered fermions in a one dimensional lattice model allows us to
write the classical free Dirac Hamiltonian (2.4.1) in the following form [34]:

H =

(
− i

2a

)∑
x

ζ†xζx+1 + h.c.+m
∑
x

(−1)xζ†xζx (2.5.1)

We note immediately that the staggered structure corresponds to having
particles with a positive mass term on even sites, antiparticles with a negative
mass term on odd sites. Furthermore, the global U(1) symmetry of the
continuum Dirac theory is preserved in this lattice formulation: infact if we
perform the analogous of the trasformation (1.4.1) as follows

ζ
′

x = ζxe
iα (2.5.2)

the Hamiltonian results invariant.
In the continuum space, there was another particulary symmetry that we
have presented in section 2.2: the chiral symmetry for m = 0. In a one-
dimensional lattice model, it results that

γ5 = γ0γ1 =

[
0 1
1 0

]
(2.5.3)

from which

γ5ψx =

[
0 1
1 0

] [
χ1,x

χ2,x

]
=

[
χ2,x

χ1,x

]
(2.5.4)

i.e. the chiral trasformation is equivalent to the interchange of the two spinor
components. In the staggered structure that we have introduced in (2.4.9)



CHAPTER 2. REGULARIZATION ON A LATTICE 34

this interchange can be done by performing a lattice shift with an odd integer
k:

ζx → ζx+k
ζ†x → ζ†x+k

(2.5.5)

Now, in the staggered Hamiltonian (2.5.1), the kinetic term has odd-shift
invariance, while the mass term doesn't. Therefore, also the chiral symmetry
for m = 0 is preserved.
In addition, it can be easily seen that the kinetic and mass term both have
even-shift invariance (trasformations (2.5.5) with k even): this is the lattice
analogous of translational symmetry of the continuum Hamiltonian.
Now it is easy to perform the quantization by following the guidelines of
section 1.6. First we can promote the lattice variables to �elds operator ζ̂x
and ζ̂†x, then we can implement on lattice the fermionic anticommutation
relations as follows:{

ζ̂x, ζ̂
†
y

}
= δx,y

{
ζ̂x, ζ̂

†
y

}
= 0

{
ζ̂†x, ζ̂

†
y

}
= 0 . (2.5.6)

The discrete version of the operator (1.6.15), which performs the U(1) trasfor-
mation of quantum fermionic �elds, results

T̂ (αx) =
∏
y

eiαy{ζ̂†y ζ̂y+ 1
2
[(−1)y−1]} (2.5.7)

in which the presence of the additional term 1
2
[(−1)y− 1] is solely due to the

use of staggered fermions. In this way, it can be easily veri�ed that

T̂ †ζ̂xT̂ = eiαx ζ̂x. (2.5.8)

Due to the U(1) global symmetry, which is preserved in our lattice formula-
tion, when α is a constant, it results

[T̂ , Ĥ] = 0. (2.5.9)

The ground state of the free staggered Hamiltonian (2.5.1) consists in a
�lled Dirac sea of negative energy states, which corresponds to the complete
occupation of the odd sites.
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2.6 Lattice gauge theory

Our goal now is to reach a one dimensional lattice formulation of QED,
namely a discrete version of the Hamiltonian density (1.8.4) that re�ects its
properties and, in particular, the local gauge symmetry (1.8.5).
We can start right from the continuum Hamiltonian

Ĥ =

ˆ
d3x ψ̂(−iγiD̂i +m)ψ̂ +

1

2
(Ê2 + B̂2). (2.6.1)

When we get in a one dimensional space, there cannot be magnetic �eld.
Also, we have the two component spinor (2.4.4) and the 2 × 2 γ-matrices
(2.4.5). So, it results

Ĥ =

ˆ
dx ψ̂(−iγ1D̂1 +m)ψ̂ +

1

2
Ê2 (2.6.2)

If we use the de�nition of covariant derivative (1.8.3), the kinetic term results:

Ĥkin = lim
ε→0

ˆ
dx

(
− i
ε

){
ψ̂†(x)γ0γ1Û(x, x+ ε)ψ̂(x+ ε)− ψ̂†(x)γ0γ1ψ̂(x)

}
(2.6.3)

Now consider the �rst term in this expression:

ψ̂†(x)γ0γ1Û(x, x+ ε)ψ̂(x+ ε) =

=
[
χ̂†1(x) χ̂†2(x)

] [ 0 1
1 0

] [
χ̂1(x+ ε)
χ̂2(x+ ε)

]
Û(x, x+ ε)

= χ̂†1(x)Û(x, x+ ε)χ̂2(x+ ε) + χ̂†2(x)Û(x, x+ ε)χ̂1(x+ ε).

(2.6.4)

When we consider the lattice discretization, it becomes:

χ̂†1,xÛ(x, x+ a)χ̂2,x+a + χ̂†2,xÛ(x, x+ a)χ̂1,x+a (2.6.5)

Due to the use of the staggered fermions, we know that we have to consider
only one of the two decoupled sets of spinor components. Therefore, we can
remove the second term in this expression. For the same reason also the
second term in (2.6.3) can be removed. Setting a = 1, it results

Ĥkin = (−i)
∑
x

ζ̂†xÛ(x, x+ 1)ζ̂x+1 + h.c. (2.6.6)
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In the same way, the mass term in (2.6.2) becomes

Ĥm = m
∑
x

(−1)xζ̂†xζ̂x (2.6.7)

that is clearly the same expression of the staggered Hamiltonian (2.5.1). Now
what is left is to understand how the electric �eld term can be implemented
on a lattice. An indication for this purpose comes from the structure of the
kinetic term, which contains the comparator Û(x, x + 1). We recall for a
moment its general de�nition (1.8.1):

Û(x, y) = exp

{
−i
ˆ y

x

dz · Â(z)

}
(2.6.8)

In a one dimensional space the vector potential has only one component, so
it results:

Û(x, x+ 1) = exp

{
−i
ˆ x+1

x

dz Â(z)

}
. (2.6.9)

Analyzing this expression and, in particular, the line integral in it, we can
see that a natural way to implement the gauge �eld on lattice is to de�ne
the vector potential Â and, consequently, the electric �eld Ê, on the links
between the lattice sites. To do this, we can introduce a link operators Âx,x+1

and Êx,x+1 such that there is the following correspondences in the transition
from continuous to discrete space:ˆ x+1

x

dz Â(z) → Âx,x+1 (2.6.10)[
Â(x), Ê(y)

]
= −iδ(3)x,y →

[
Âx,x+1, Êx′,x′+1

]
= −iδx,x′ (2.6.11)

In this way, it is easy to obtain a correct implementation of the comparator
on the links, by de�ning

Ûx,x+1 ≡ e−iÂx,x+1 . (2.6.12)

In order to veri�y that this is a correct choice, we recall that the kinetic
term (2.6.6) must be gauge invariant. This occurs only if Ûx,x+1 trasforms
in an appropriate way, which corresponds to the trasformation law (1.8.2)
adapted on the lattice. Therefore, we can introduce the discrete version of
the operator (1.7.7), which performs the gauge trasformation of the quantum
vector potential in the following way

R̂(αx) =
∏
y

e−iαy(Êy,y+1−Êy,y−1) (2.6.13)
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Figure 2.6.1: Implementation of the fermionic �eld and the gauge �eld on a one-

dimensional lattice.

in which we have discretized the electric �eld divergence. If we compute the
trasformation law of Ûx,x+1 using the commutation relation (2.6.11), we get

R̂†Ûx,x+1R̂ = eiαxÛx,x+1e
−iαx+1 (2.6.14)

which is exactly the discrete analogous of the trasformation law (1.8.2), as
desidered. This is enough to ensure the local invariance of the kinetic term
under the complete lattice gauge trasformation which operates simultane-
ously on the Dirac and the electromagnetic �eld, i.e.:

(T̂ ⊗ R̂)†Ĥkin(T̂ ⊗ R̂) = Ĥkin. (2.6.15)

As a result, we can �nally write a lattice version of the one dimensional QED
Hamiltonian (2.6.2) (we rename the staggered fermionic �eld with ψ̂x):

Ĥ = −t
∑
x

ψ̂†xÛx,x+1ψ̂x+1 + h.c.+m
∑
x

(−1)xψ̂†xψ̂x +
g2

2

∑
x

Ê2
x,x+1 (2.6.16)

in which we have introduced a general hopping constant t and a coupling
constant g. This Hamiltonian is clearly gauge invariant and describes, in
a very general way, a quantized Abelian lattice gauge theory, in which the
gauge �eld is coupled with a spinless Dirac �eld.
Let us summarize the main �ndings of this section. We have implemented
the fermionic �eld on the sites of a one dimensional lattice by using staggered
fermions, which provide an elegant way of simultaneously incorporating mat-
ter and antimatter �elds. Then, we have de�ned the gauge �eld, represented
by the comparator, on the links between the lattice sites, as shown in Fig
2.6.1. The two �elds are coupled due to the kinetic term in (2.6.16): a
fermion tunneling from site i to i + 1 corresponds, in general, to a change
of the electric �eld on the link in between. Futhermore, the local symmetry
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(2.6.15) makes the coupling more �physical�: if we write the operator T̂ ⊗ R̂
in a more compact way as

T̂ ⊗ R̂ =
∏
x

eiαxĜx (2.6.17)

in which the generators are

Ĝx = ψ̂†xψ̂x − (Êx,x+1 − Êx,x−1) +
1

2
[(−1)x − 1] (2.6.18)

we can easily understand that, as in the continuum case of section 1.8, we
have to perform a restriction to a gauge invariant subspace, which is de�ned
by the condition

Ĝx |Ψ〉 = 0 ∀x. (2.6.19)

This relation represents nothing else but equation (1.8.7). Therefore, the
local gauge symmetry allows us to select correctly only physical states which
respect the Gauss law.



Chapter 3

Quantum simulation models

In this chapter we want to introduce a generic class of models that capture
gauge invariance of our lattice gauge theory and at the same time are suitable
for quantum simulations. This latter purpose involves a general reduction
of the degrees of freedom of the system, so that it is possible to work with
a �nite number of states and values. However, this models share an im-
portant feature: in a suitable thermodynamic limit they should recover the
corresponding continuous gauge theory that, in our case, is the QED.

3.1 Quantum Link Model

In the one dimensional lattice QED Hamiltonian that we have presented
in the section 2.6, the fermionic operators live in a �nite space, while the
link operators Ûx,x+1 are de�ned in an in�nite dimensional Hilbert space:
indeed the electric �eld, in principle, can assume arbitrary values on each
link. Futhermore, this operators involve a particular set of commutation
relations, which are summarized as

[Êx,x+1, Ûx′,x′+1] = δx,x′Ûx,x+1. (3.1.1)

The main point of the Quantum Link Model (QLM) [38] is the introduction
of link operators which span a �nite dimensional Hilbert space and, at the
same time, retain the commutation relations (3.1.1). The solution performed
in the QLM consists in a substitution of the quantum link operator as well
as the electric �eld operator with a quantum spin operator associated with a
given link. In more technical terms, we consider the spin operators Ŝi with

39
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i = 1, 2, 3 and the ladder corresponding operators Ŝ± = Ŝ1 ± iŜ2, which
satisfy the following commutation relations

[Ŝ3, Ŝ±] = ±Ŝ±. (3.1.2)

Therefore, a smart link correspondence is established:

Ûx,x+1 → Ŝ+
x,x+1 (3.1.3)

Û †x,x+1 → Ŝ−x,x+1 (3.1.4)

Êx,x+1 → Ŝ3
x,x+1. (3.1.5)

In this way, due to the (3.1.2), the initial commutation relation (3.1.1) is
automatically satis�ed.
The advantage of this formulation is that now, if S is the modulus of the spin,
the electric �eld on a link can take only discrete values {−S,−S + 1, . . . , S}.
So, the link Hilbert space is (2S+1)-dimensional.
We can now write the Hamiltonian (2.6.16) in a QLM-version:

Ĥ = −t
∑
x

ψ̂†xŜ
+
x,x+1ψ̂x+1 + h.c.+m

∑
x

(−1)xψ̂†xψ̂x +
g2

2

∑
x

Ŝ3
2

x,x+1. (3.1.6)

The Hilbert space on which this Hamiltonian acts is the tensor product of
the Hilbert spaces relative to each site and each link, which have respectively
the following form:

Hx = {|0〉 , |1〉} (3.1.7)

Hx,x+1 = {|kx,x+1〉 , kx,x+1 = −S,−S + 1, . . . , S} . (3.1.8)

In this scheme, we can have a clear interpretation of the kinetic term in
(3.1.6): when a fermion passes from site x + 1 to x, the electric �eld on the
link in between is increased from |kx,x+1〉 to |kx,x+1 + 1〉. Conversely, when
a fermion passes from site x to x + 1, it is decremented from |kx,x+1〉 to
|kx,x+1 − 1〉. Clearly, the U(1) local gauge invariance of the Hamiltonian is
preserved in the QLM: in fact, if we write the generators (2.6.18) as follows

Ĝx = ψ̂†xψ̂x − (Ŝ3
x,x+1 − Ŝ3

x,x−1) +
1

2
[(−1)x − 1] (3.1.9)

it results, once again, that

[Ĝx, Ĥ] = 0 ∀x. (3.1.10)
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So, we have to select for the system only the physical gauge invariant states.
This states, which satisfy the Gauss law, have now a speci�c property: the
condition (2.6.19) becomes a local equation for the eigenvalues of the opera-
tors Ĝx:

nx − (kx,x+1 − kx,x−1) +
1

2
[(−1)x − 1] = 0 ∀x (3.1.11)

in which nx is the fermion site occupation number.
We emphasize one point of the QLM formulation: the substitutions (3.1.3),
(3.1.4) and (3.1.5) preserve the algebra relation (3.1.1), but the structure of
the gauge coupling is altered: the new comparator is no longer unitary since

(Ŝ+
x,x+1)

†Ŝ+
x,x+1 = Ŝ−x,x+1Ŝ

+
x,x+1 6= 1. (3.1.12)

3.1.1 Quantum simulators

The QLM formulation represents the starting point for a great variety of
quantum simulations: thanks to its discrete nature, quantum link models
can be embodied by the quantum states of ultracold atoms in an optical lat-
tice. A fermionic species will be used to de�ne the matter �eld, while bosonic
atoms are generally used to implement the electric �eld and the compara-
tor. For example, in [2], using a Fermi-Bose mixture of ultracold atoms (one
fermionic and two bosonic species) in an 3-strand optical lattice, a quantum
simulator for our QED theory is proposed. In this realization, each fermion
is allowed to tunnel along the whole lattice, while each boson is con�ned on a
�xed couple of sites, which can be identi�ed with a link. There are 2S bosonic
atoms on each link which allow to have the same eigenvalues of the QLM
electric �eld. A fermion hopping from x to x+ 1 is necessarily accompanied
by a boson hopping the other way, i.e. a change in the electric �eld on the
link in between, in order to conserve energy. Thus, the energy conservation
ensures the gauge invariance. This process is well illustrated in Fig. 3.1.1a.
This quantum simulator can be used to study the dynamics of string break-

ing, a non perturbative phenomenon that quantum electrodynamics (QED)
in one spatial dimension shares the with quantum chromodynamics (QCD)
[15]. Infact, di�erently from (3+1)d QED, in (1+1)d electrons and positrons
interact via a long-range potential which increases linearly with distance [39].
So, when they (one electron and one positron) separate themselves, at some
point it is more energetically favorable for a new electron�positron pair to
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(a) (b)

Figure 3.1.1: (a) Scheme of the quantum simulator with a Fermi-Bose mixture of ultra-

cold atoms. (b) String breaking phenomenon.

spontaneously appear, than to allow the �tube� of electric �eld to extend
further: this is the string breaking phenomenon. As a result of this, instead
of seeing the indivual fermion, we can see, in a detector for example, only
particle-antiparticle states, called mesons. That is why we also speak of con-
�nement, namely the impossibility of isolating, in this case, electrons and
positrons. This mechanism is common to quarks, described by QCD, which
always exhibit con�nement.
In the context of the quantum simulator that we are describing, the string
breaking e�ect has been observed dynamically, setting S = 1, in the follow-
ing way: an external static quark-antiquark pair QQ̄ with a large separation
is connected by a con�ning electric �ux string and a vacuum fermionic state
(due to the use of staggered fermions the vacuum consists in a �lled Dirac sea
of negative energy states, namely the complete occupation of the odd sites).
In the dynamical evolution of this state, for su�ciently small fermion mass,
the potential energy is converted into kinetic energy by fermion hopping,
which amounts to the creation of a dynamical quark-antiquark pair qq̄. At
the end of the process, two mesons Q̄q and q̄Q result, separated by vacuum.
The phenomenon is shown in Fig. 3.1.1b.
Another important feature, that this simulator suggests, is the presence in a
possibile phase-diagram of a crossover between a �string� state characterized
by a nonzero mean electric �eld and the vacumm Dirac sea with zero electric
�eld.
Other quantum simulators of (1+1)QED, based on the QLM, have been built
with a wide variety of techniques, such as ion trap in [14] or superconduct-
ing circuits in [22]. Setting, for example, S = 1

2
, i.e. two possible eletric

�eld con�gurations on links, they allow the observation in realistic setups of
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spontaneous parity- and charge-symmetry breaking as well as the real-time
dynamics, which are inaccessible to classical simulation methods. An attrac-
tive property of this simulators comes from a study of feasibility [19], which
explores the e�ect of representing the gauge degrees of freedom with �nite-
dimensional systems and shows that the results converge rapidly to �nite-size
extrapolations of the lattice Schwinger model; thus even with small S it is
possible to obtain a reasonable accuracy.
However, in a more general view, the quantum simulators �nd numerous ap-
plications in diverse areas of physics and chemistry. The general idea is the
same: to use some controllable quantum system in order to study another
less controllable or accessible quantum system or model. For example, a
simulator of the Bose-Hubbard model with atoms in optical lattice has been
proposed in [18] and implemented with rubidium atoms in [13]. This simula-
tor has allowed the �rst observation of the quantum phase transition from a
super�uid to a Mott insulator; similarly, in the context of superconductivity,
by using a quantum simulator, it has been possible to observe a crossover
between a BCS and a BEC super�uid as the strenght of attractive interac-
tions between fermionic particles is varied. Also from a chemical point of
view, quantum simulators play an important role: for example, it is possible
to simulate the static and dynamical chemical properties of molecules (for
example molecular energies as shown in [1]) or chemical reactions, as shown
in [7].
These are just a few examples that allow us to understand how the quantum
simulation is revolutionizing the physics research and because it represents,
in the context of lattice gauge theories, one of the reasons of this thesis work.

3.2 Discrete Zn Quantum Model

We have seen in the section 3.1 that in the QLM formulation, going from
in�nite to �nite Hilbert spaces of the link operators, the comparator retains
its algebra, that is the commutation relation (3.1.1), but loses its unitary
nature, as shown in (3.1.12). Therefore, the formal structure of the hopping
term is completely altered.
A di�erent approach has recently been proposed in [27]. In this formulation,
the structure of the original Hamiltonian (2.6.16), including the coupling of
the matter �elds with a unitary gauge operator, is completely preserved. As
a result, the model exhibits a discrete gauge symmetry Zn, approximating
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the U(1) original symmetry for large n. We will use this model in our study,
so we want to explain it in detail, by following the same logical steps as the
original mentioned article.

3.2.1 Continuous Weyl group

We start with very general de�nitions. Consider two hermitian operators Ê
and Â, de�ned in a continuous Hilbert space H, such that they satisfy the
Heisenberg commutation rule

[Ê, Â] = i (3.2.1)

and have the following eigenvalue equations

Ê |ε〉 = ε |ε〉 (3.2.2)

Â |α〉 = α |α〉 . (3.2.3)

The set of this operators and their polynomial function, equipped with the
composition law (3.2.1), forms the Heisenberg's algebra. Starting from these
de�nitions, we can introduce the following unitary operators, called Weyl
operators:

Û(η) = e−iηÊ (3.2.4)

V̂ (ξ) = e−iξÂ (3.2.5)

Ŵ (η, ξ) = e−i(ηÊ+ξÂ) (3.2.6)

in which η, ξ ∈ R. If we use the Baker-Hausdor formula1, it results that

Ŵ (η, ξ) = Û(η)V̂ (ξ)e
1
2
ηξ (3.2.7)

and also, changing the order of the addends in the exponent of Ŵ ,

Ŵ (η, ξ) = V̂ (ξ)Û(η)e−
1
2
ηξ. (3.2.8)

As a result, taking into account the unitary character of Û and V̂ , we can
write

Û(η)V̂ (ξ) = eiηξV̂ (ξ)Û(η). (3.2.9)

1eD+F = eDeF e−
1
2 [D,F ] when [D, [D,F ]] = [F, [D,F ]] = 0
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We can interprete to all e�ects this relation as the commutator between the
Weyl operators. At this point, we can de�ne the abstract continuous Weyl
group: it is a two real parameters group whose generators obey the Heisen-
berg's algebra relation (3.2.1) and whose commutator have the form (3.2.9).
The Weyl group elements are (3.2.4), (3.2.5), (3.2.6) and their compositions.
We can now show how Weyl operators act on eigenstates of Ê or Â. If
we use the usual representation for this operator in the position basis, i.e.
Ê → ε and Â → −i∂ε, due to the presence of the traslation operator in the
exponents, it results that

Û(η) |ε〉 = e−iηÂ |ε〉 = |ε+ η〉 (3.2.10)

while, if we use the representation in the momentum basis, i.e. Â → α and
Ê → i∂α, for the same reason we have

V̂ (ξ) |α〉 = e−iξÊ |α〉 = |α− ξ〉 . (3.2.11)

Thus, the Weyl operators act on this eigenstates as spectral translations in
opposite directions. We stress also a general property: starting from (3.2.9),
we can take the derivative as follows

∂

∂ξ
|(ξ,η=0,1)

{
Û(η)V̂ (ξ)

}
=

∂

∂ξ
|(ξ,η)=0,1

{
eiηξV̂ (ξ)Û(η)

}
(3.2.12)

from which [
Ê, Û

]
= Û (3.2.13)

in which U = Û(1) = e−iA. Therefore, the Weyl relation (3.2.9) implies
(3.2.13). If we interpret Ê as an electric �eld, Â as a potential vector and
Û as a comparator, we immediately notice that the commutation relation
(3.2.13) is exactly what we have found in the (1+1)d lattice QED with an
in�nite dimensional Hilbert space for each link. Therefore, in the continuous
case, we have found a generalization of this commutation relation at the level
of the Weyl group.

3.2.2 Discrete Schwinger-Weyl group

Let us consider a n-dimensional Hilbert space H with an orthonormal basis
B = {|al〉}1≤l≤n. We can de�ne a unitary operator Û which rotates cyclically
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the basis states as [31]

Û |al〉 = |al+1〉 (3.2.14)

Û |an〉 = |a1〉 (3.2.15)

Ûn = 1. (3.2.16)

Note that the condition (3.2.15) distinguishes Û from a ladder (increasing)
operator, for which one would have Û+ |an〉 = 0.
We consider now the eigenvalue equation of Û :

Û |uk〉 = uk |uk〉 . (3.2.17)

From (3.2.16), it follows that

Ûn |uk〉 = unk |uk〉 = |uk〉 (3.2.18)

therefore, the eigenvalues are the n roots of unity:

uk = e−i
2π
n
k k = 1, 2, . . . n. (3.2.19)

As a result, the eigenvalue equation (3.2.17) is satisfed for

|uk〉 =
1√
n

n∑
l=1

ei
2π
n
kl |al〉 k = 1, 2, . . . n. (3.2.20)

This relation tells us that the eigenvectors of Û are related to the basis
vectors in B by the discrete Fourier transform. Now we introduce a new
unitary operator V̂ , which cyclically permutes the eigenvectors of Û (and
not the basis states) as follows

V̂ |uk〉 = |uk−1〉 (3.2.21)

V̂ |u1〉 = |un〉 (3.2.22)

V̂ n = 1. (3.2.23)

For the same reasons, if we consider the eigenvalue equation of V̂ ,

V̂ |vl〉 = vl |vl〉 (3.2.24)

it can be easily demostrated that the eigenvalues are, once again, the n roots
of unity

vl = e−i
2π
n
l l = 1, 2, . . . n (3.2.25)
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while the eigenvectos this time are exactly the elements of the initial or-
thonormal basis, namely:

|vl〉 = |al〉 l = 1, 2, . . . n. (3.2.26)

In this way, we have constructed two operators, Û and V̂ , called conjugated

operators, which have the same spectrum and such that each of them per-
mutes cyclically in opposite direction the eigenvectors relative to the other
operator, i.e.

Û |vl〉 = |vl+1〉 with |vl+n〉 = |vl〉 (3.2.27)

V̂ |uk〉 = |uk−1〉 with |uk−n〉 = |uk〉 . (3.2.28)

We can consider respectively these relations as the �nite dimensional counter-
part of the spectral translations (3.2.10) and (3.2.11), that we have obtained
from the continuous Weyl operators.
The action of Û and V̂ on a state do not commute. In fact, it can be seen
that

V̂ Û |uk〉 = e−i
2π
n
k |uk−1〉 (3.2.29)

Û V̂ |uk〉 = e−i
2π
n
(k−1) |uk−1〉 (3.2.30)

from which it follows that
Û V̂ = ei

2π
n V̂ Û . (3.2.31)

This relation can be generalized to all the integer powers of the operators
into

Û lV̂ k = ei
2π
n
klV̂ kÛ l. (3.2.32)

In this way, we can de�ne the discrete Schwinger-Weyl group as the set of
all products between Û and V̂ and their integer power equipped with the
commutator (3.2.32), that we can equivalently write in the following form

[Ûk, V̂ l] = (ei
2π
n
kl − 1)V̂ kÛ l. (3.2.33)

This commutation law represents the �nite dimensional generalization of
(3.2.9) that we have found for the continuos Weyl group. The di�erence
in this case is that, being in a discrete group, it is impossible to perform
a di�erentiation, as in (3.2.12), to obtain a commutation relation that in-
volves the presence of a �generator�, as in (3.2.13). Note that now, not being
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able to consider in�nitesimal transformations, the same concept of �gener-
ators� (like Ê and Â in the continuous case) is meaningless. However, the
procedure leading to (3.2.32) is successful in preserving the unitarity of the
operators involved and this commutation law is a valid starting point for a
gauge theory in which the local �elds act on �nite dimensional Hilbert spaces.
Furhtermore, it can be shown [17] that by taking the limit n→∞, the Weyl
continuous group is reached.

3.2.3 New approach: Schwinger-Weyl comparator

One might wonder what have to do the Weyl groups of the previous sections
with our physical model of the lattice (1+1)d QED, de�ned in 2.6. The
answer lies in the fact that, in the model, we have two hermitian operators
on each link, Êx,x+1 and Âx,x+1, de�ned in a in�nite dimensional Hilbert
space, whose commutation relation is

[Êx,x+1, Âx,x+1] = i (3.2.34)

that is the Heisenberg's algebra product. Therefore, if we consider their
exponentials

Ûx,x+1 = e−iÂx,x+1 (3.2.35)

V̂x,x+1 = e−iÊx,x+1 (3.2.36)

they form a continuous Weyl group. Note that the �rst operator is exactly
the comparator of the physical model, the second is related to the electric
�eld. The group commutator (3.2.9) becomes

Ûx,x+1V̂x,x+1 = eiV̂x,x+1Ûx,x+1 (3.2.37)

which, as we have seen, implies the commutation relation (3.1.1) of our model.
Our goal now is to pass from in�nite to �nite Hilbert spaces of the link
operators. The innovative approach, compared to the QLM, consists in the
use of the discrete Schwinger-Weyl group. Consider a n-dimensional Hilbert
space for each link. We can then de�ne on it two conjugated operators, Ũx,x+1

and Ṽx,x+1, which have the same features of the operators described in the
subsection 3.2.2. As a result, we have

Ũn
x,x+1 = 1 (3.2.38)

Ṽ n
x,x+1 = 1 (3.2.39)

Ũk
x,x+1Ṽ

l
x,x+1 = ei

2π
n
klṼ l

x,x+1Ũ
k
x,x+1 (3.2.40)
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in which k, l ∈ Z. We consider on each link the orthonormal bases of eigen-
vectors of Ṽx,x+1 ⇒ {|vk,x,x+1〉}1≤k≤n, called electric �eld basis, so it follows
that

Ṽ x,x+1 |vk,x,x+1〉 = ei
2π
n
kx,x+1 |vk,x,x+1〉 kx,x+1 = 1, . . . n (3.2.41)

Ũx,x+1 |vk,x,x+1〉 = |vk+1,x,x+1〉 (3.2.42)

Ũx,x+1 |vn,x,x+1〉 = |v1,x,x+1〉 (3.2.43)

We choose the unitary operator Ũx,x+1 as the new comparator in our model

and Ṽx,x+1 as the new conjugated operator. As a result, we have a signi�cant
di�erence respect to QLM. In fact, if we consider the electric �eld eigenvectors
corresponding to the maximum and minimum eigenvalues, in QLM it results
that

ÛQLM |+S〉 = Ŝ+
x,x+1 |+S〉 = 0 (3.2.44)

Û †QLM |−S〉 = Ŝ−x,x+1 |−S〉 = 0 (3.2.45)

while with the new comparator, it follows

Ũx,x+1 |vn,x,x+1〉 = |v1,x,x+1〉 (3.2.46)

Ũ †x,x+1 |v1,x,x+1〉 = |vn,x,x+1〉 . (3.2.47)

So, we get a truly cyclicity of the electric �eld values in our model, which
can be represented as n equidistant points placed on a circle.

3.2.4 Zn lattice model

We shall start once again from the lattice (1+1)d QED Hamiltonian (2.6.16)
and we consider, in particular, the electric �eld term in it

g2

2

∑
x

Ê2
x,x+1. (3.2.48)

Under the new approach, we have established the correspondence Êx,x+1 →
Ṽx,x+1 = e−iÊx,x+1 . As a result, this term, which is positive, unbounded and
vanishes only when the electric �eld is zero on each link, must be replaced
with a suitable function of the operators Ṽx,x+1. Obviously, this function must
be diagonal in the electric �eld basis and in the continuum limit n → ∞,
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has to tend to the original term (3.2.48). Although there is arbitrariness, a
simple choice is [26]

f(Ṽx,x+1) =
(Ṽx,x+1 − 1)(Ṽ †x,x+1 − 1)

(2π/n)
. (3.2.49)

This new operator on each link is Hermitian, its bounded and discrete eigen-
values are

S(kx,x+1) =
4 sin2(πkx,x+1/n)

(2π/n)2
. (3.2.50)

This relation has a single minimum, which is zero and corresponds to kx,x+1 =

0. Also, this spectrum is quadratic around this minimum, like a Ê2term, but
compared to the latter, it is deformed at the edges of the kx,x+1-domain. As

a result, f(Ṽx,x+1) approximates the electric �eld energy only for low energy
states: however the approximation improves when n increases. In addition,
if we consider the continuum limit, it results that

lim
n→∞

4 sin2(πkx,x+1/n)

(2π/n)2
= k2x,x+1 (3.2.51)

that is the required condition.
Finally, we can write the Hamiltonian of our lattice (1+1)d QED model

Ĥ = −t
∑
x

ψ̂†xŨx,x+1ψ̂x+1 + h.c.+m
∑
x

(−1)xψ̂†xψ̂x +
g2

2

∑
x

f(Ṽx,x+1).

(3.2.52)
The Hilbert space is the tensor product of the Hilbert spaces relative to each
site and each link:

H =

{∏
x

∣∣nFx 〉⊗∏
k

|vk,x,x+1〉
}

(3.2.53)

in which nFx = 0, 1 is the fermion occupation number of a site and |vk,x,x+1〉
is an element of the electric �eld basis, which represents the electric �eld on
a link.
It can be easily shown that, due to the commutation law (3.2.40), the Hamil-
tonian (3.2.48) is invariant under the local gauge trasformation performed
by the operator

T̂ [αx] =
∏
x

Tx(αx) =
∏
x

eiαx
2π
n
(ψ̂†xψ̂x+

(−1)x−1
2

)Ṽx,x+1Ṽ
†
x,x+1 (3.2.54)
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in which αx ∈ Z. Since it results that T nx = 1, the U(1) gauge symmetry of
the original theory, which we have proved in the section 2.6, becomes a Zn
symmetry.
In this framework, the Hilbert subspace of physical gauge invariant states is
determined by a generalized Gauss's law:

Tx |φ〉 = 0 ∀x (3.2.55)

which translates into a condition on the eigenvalues nFx and vk,x,x+1 relative
to physical states:

ei
2π
n
(nFx+

(−1)x−1
2

)vk,x,x+1v
∗
k,x−1,x = 1. (3.2.56)

This equation allows us to understand how the physical states can be built:
if an even site x is empty, i.e. nFx = 0, the eigenvalues of Ṽ in neighboring
links must be equal, while if it is occupied, i.e. nFx = 1, it must result that

vk,x,x+1 = e−i
2π
n vk,x−1,x. Instead, if a odd site x is empty, it follows that

vk,x,x+1 = ei
2π
n vk,x−1,x, while if it is occupied, the eigenvalues of Ṽ are equal.

Note that, in agreement to the de�nition of staggered vacuum, the absence of
a particle in a odd site (negative energy state) is equivalent to the presence of
an antiparticle. Furthermore, the equation (3.2.42) tells us that the operator

Ũx,x+1 performs a counterclockwise discrete rotation of the eigenstates of Ṽ ,

while Ũ †x,x+1 a clockwise rotation.
In the next chapters, we will study some interesting aspects of this Zn lattice
model of (1+1)d QED.



Chapter 4

Numerical analysis

In this chapter, we analyze the discrete Zn lattice model, which represents
the lattice version of the QED in (1+1) dimensions, setting n = 3.

4.1 Characterization of a suitable Hilbert space

Due to the use of staggered fermions in our lattice model, as we have seen, a
split between even and odd sites occurs: the �rst ones correspond to positive
energy states, the latter to negative energy states. As a result, the presence
(absence) of a fermion on a even (odd) site can be considered as the presence
of a particle (antiparticle), also called quark (antiquark). If x is an even site,
the fermionic con�gurations are shown in Fig. 4.1.1.

Figure 4.1.1: Fermionic con�gurations on a couple of sites (x, x+ 1).

52
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Figure 4.1.2: Even/odd site con�gurations which respect the Gauss law.

We work with n = 3, so there are three possible electric �eld states on
a link, i.e. the three eigenvectors of the operator Ṽx,x+1 that we can label
with kx,x+1 = −1, 0, 1.We pictorially interpreted this states as con�gurations
in which the electric �eld is respectively oriented to the left, non-oriented,
oriented to the right.
The Hilbert space associated to a site x and the two neighboring links is, in
principle, d1 = 3×2×3 = 18 dimensional, but, due to the Gauss law (3.2.56),
the allowed con�gurations decrease, as it can be seen in Fig. 4.1.2, so d1 = 6.
We can denote this states by

∣∣kLx , nFx , kRx 〉, in which kLx , k
R
x = −1, 0, 1 and

nFx = 0, 1.
The Hilbert space ofN neighboring sites, with open boundary conditions, can
be constructed with linear combinations of states having the tensor product
form ∣∣kL1 , nF1 , kR1 〉⊗ ∣∣kL2 , nF2 , kR2 〉⊗ . . .⊗ ∣∣kLN , nFN , kRN〉 (4.1.1)

in which the right electric �eld of a site must be egual to the left electric �eld
of the next site, so kRxj = kLxj+1

. The whole con�guration of the chain, due
to the Gauss law, depends only on the presence/absence of fermions on all
sites (2N possibilities) and on the left electric �eld of the �rst site (3 possi-
ble con�gurations). As a result, the Hilbert space of the N -chain has total
dimension dN = 3× 2N .
In our numerical analysis, we will use the physical Hilbert space Hα associ-
ated to a couple of neighboring sites (x, x+ 1), in which the �rst is even, the
latter is odd. According to the previous reasoning, it follows that

Hα = Span
{∣∣nF1 , nF2 ,M〉 =

∣∣kL1 , nF1 , kR1 〉⊗ ∣∣kR1 , nF2 , kR2 〉} (4.1.2)
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Figure 4.1.3: Hilbert space basis for a couple of sites.

in which nF1/2 = 0, 1 and M = kL1 = −1, 0, 1. Its dimension is dα = 12 and
it is convenient to make explicit all these basis elements in Fig. 4.1.3, be-
cause we will use them, in a ordered way, as the starting point of our study.
Notice that the Hilbert space is composed of four subspaces, labelled by the
fermionic occupation numbers, each of which is three-dimensional due to the
presence of three electric �eld con�gurations on the �rst link.

4.2 Hamiltonian decomposition

Recall that the Hamiltonian of our model is written in the following form

Ĥ = −t
∑
x

ψ̂†xŨx,x+1ψ̂x+1+h.c.+m
∑
x

(−1)xψ̂†xψ̂x+
g2

2

∑
x

f(Ṽx,x+1). (4.2.1)

Working with a Z3 symmetry, we can choose the function f(Ṽx,x+1) in the

simplest way: we associate an energy g2

2
to each link with nonzero electric

�eld. Clearly, this energy vanishes when the electric �eld on a link is zero.
Therefore, we can replace the above function with a term proportional to
Ê2
x,x+1. It follows that

Ĥ = −t
∑
x

ψ̂†xŨx,x+1ψ̂x+1 + h.c.+m
∑
x

(−1)xψ̂†xψ̂x +
g2

2

∑
x

Ê2
x,x+1. (4.2.2)
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This Hamiltonian is written as a sum over all lattice sites. We can group
this sites two by two (even and odd) and rewrite it as a sum over couples:
(henceforth we neglect the operatorial notation)

H = −t
∑
α

(ψ†αEUαE,αOψαO + H.c.) (4.2.3)

+ −t
∑
α

(ψ†αOUαO,α+1,Eψα+1E + H.c.) (4.2.4)

+ m
∑
α

(ψ†αEψαE − ψ†αOψαO) (4.2.5)

+
g2

2

∑
α

(E2
α−1O,αE + E2

aE,αO + E2
αO,α+1E). (4.2.6)

The term (4.2.3) describes the hopping of a fermion between the even and
odd sites inside the same couple. The term (4.2.4) instead moves a fermion
from the odd site of the couple α to the even site of the next couple α+1 and
viceversa. The term (4.2.5) is relative to the staggered mass energy. The last
term (4.2.6) represents the energy of the electric �eld on each link included
in the couple or between two couples.
Our goal now is to write any term in the sums as a tensor products of
operators de�ned on Hα ⊗Hα+1, which are respectively the Hilbert space of
the couple α and α + 1, by using the ordered basis of Fig. 4.1.3.

� Kinetic term (4.2.3): the �rst piece of the kinetic energy acts on �xed
couple and can be written in the form:

(−t)(K + K†)α ⊗ Iα+1. (4.2.7)

The 12×12 matrix K gives non-zero only when the odd site is occupied
and the even site is empty. Viceversa for the K† matrix. Iα+1 is the
identity matrix in the space Hα+1. If we de�ne a three dimensional
matrix

P =

 0 0 1
1 0 0
0 1 0

 (4.2.8)

it follows that

K =


0 0 0 0
0 0 0 0
0 P 0 0
0 0 0 0

⇒ K + K† =


0 0 0 0
0 0 P† 0
0 P 0 0
0 0 0 0

 . (4.2.9)
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� Kinetic term (4.2.4): the second piece of the kinetic energy acts between
two nearby couples and it can be written in the form

(−t)(Jα ⊗ Tα+1 + J†α ⊗ T†α+1). (4.2.10)

in which, due to the use of our ordered basis, the matrices J and T look
as

J =


0 0 0 0
I 0 0 0
0 0 0 0
0 0 I 0

 T =


0 0 I 0
0 0 0 I
0 0 0 0
0 0 0 0

 (4.2.11)

in which I is the 3× 3 identity matrix.

� Mass term (4.2.5): it can be easily written as

m(Mα ⊗ Iα+1) (4.2.12)

with

M =


0 0 0 0
0 −I 0 0
0 0 I 0
0 0 0 0

 . (4.2.13)

� Electric �eld term(4.2.6): if we consider the left link and the central
link of the couple α, this term can be written as

g2

2
(L2 + C2)⊗ Iα+1 (4.2.14)

provided that a term which represents the con�guration of the right
link of the last couple on the chain is added. This last term can be
written as

g2

2
(I1 ⊗ I2 ⊗ . . .⊗ Iα ⊗ Iα+1 ⊗ . . .⊗ R2). (4.2.15)

In this relations, L,C,R are the following diagonal matrices:

L =


M0 0 0 0
0 M0 0 0
0 0 M− 0
0 0 0 M−

 (4.2.16)
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C =


M0 0 0 0
0 M0 0 0
0 0 M0 0
0 0 0 M0

 (4.2.17)

R =


M− 0 0 0
0 M0 0 0
0 0 M− 0
0 0 0 M0

 (4.2.18)

in which we have used the 3× 3 diagonal matrices

M0 = diag [−1, 0,+1] (4.2.19)

M− = diag [+1,−1, 0] (4.2.20)

M+ = diag [0,+1,−1] . (4.2.21)

This decomposition allows us to write the entire Hamiltonian of L couples
as a sum of tensor products of the previous matrices. This is a signi�cant
starting point for numerical processing. In the following analysis, we consider
a number of particles equal to the number of couples (as in the staggered
vacuum). This, in the quark/antiquark picture, means to consider the sector
of the Hilbert space with a total charge Q = 0.

4.3 Exact diagonalization for small sizes

Suppose we consider a generic number of couples L. If we write the Hamil-
tonian of the whole system with the decomposition of the previous section,
it will be de�ned in an Hilbert space of dimension d = 12L. However, this
space is too large because it contains also non-physical states: in fact, in the
tensor product of matrices, it is not taken into account that the right link of
a couple must coincide with the left link of the next couple. Due to this, each
state of the ordered basis (Fig. 4.1.3) can be connected only with four states
of the next couples. As a result, the physical Hilbert space has dimension
dL = 12× 4L−1 = 3× 4L. This result, taking into account that we are using
the number of couples L instead of N (number of sites), coincides with the
dimension of the Hilbert space that we have found in section 4.1.
In this thesis work, the �rst step has consisted in the developing of a program
in Mathematica that can restrict the Hamiltonian on the physical subspace
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Figure 4.3.1: Plots of
〈
E2
〉
as a function of m (left), of g (right) for L = 2.

and perfom an exact diagonalization for small L (see Appendix A).
Our goal is the characterization of the phase diagram (g,m), by varying this
two parameters and setting t = 1. For this purpose it is convenient to con-
sider some limit cases �rst.
We can reasonably expect that, when m � g, the ground-state (GS) coin-
cides with the staggered fermions vacuum, i.e. a �lled Dirac sea of negative
energy states (all odd sites �lled) with a zero electric �eld on each link. The
same for g � m, since the presence of a non vanishing electric �eld would
be energetically disadvantaged. When m and g are of the same order and
comparable to the value of t, there is a particular competition between the
kinetic term on the one hand and the mass and the electric �eld terms on the
other: in fact, due to the particular coupling, the kinetic term tends to move
the fermions, activating mass and electric �eld excitations. For our study, it
is convenient to de�ne as order parameter the expectation value of the whole
�quadratic� electric �eld in the GS:〈

E2
〉

=
1

L

∑
x

〈
E2
x,x+1

〉
GS
. (4.3.1)

The square is needed in order to distinguish the vacuum, which has identically
Ex,x+1 = 0, from the other possible con�gurations with positive and negative
electric �elds on the various links.
We shall start studying the introductory, but interesting, case, with L = 2.
With an exact diagonalization of the physical Hamiltonian, it is calculated
the order parameter with various values ofm and g. The results are presented
in Fig. 4.3.1. It is clearly visible an exponential decay of 〈E2〉 when we move
in the phase diagram along the horizontal line g = 0.1 or along the vertical
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Figure 4.3.3: Plots with g = 0.1 (left) and m = 0.1 (right) for di�erent L.

line m = 0.1 with increasing values of the other parameter. This situation
persists when we consider the lines g = 1 or m = 1, while it is completely
absent when we set g = 10 or m = 10: in this case, the order parameter is
pratically zero everywhere, as we can see in Fig. 4.3.2.
Altought in the present case these trends might be due to �nite-size e�ects
and, in principle, we can not say anything about the presence of a crossover or
a phase transition, it is interesting to note that the case with L = 2 captures
many physical properties which remain una�ected by increasing the size of
the system. In fact, if we consider the cases with L = 3, 4, 5, which have been
solved exactly as well, the trends of the order parameter are very similar, as
it results in the comparative plots of Fig. 4.3.3.
In order to understand what happens to the system while we vary g and m,
we can characterize its GS by studying two local properties: the expectation
value of nFx and Ex,x+1, i.e. the fermionic lattice density and the mean
electric �eld on each link. It results that, regardless of the size L = 2, 3, 4, 5,
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Figure 4.3.4: Plots of
〈
nFx
〉
(left) and 〈Ex,x+1〉 (right) as a function of g, with m = 0.01

and L = 4

the system passes from a con�guration in which we have〈
nFx
〉
≈ 1

2
∀x (4.3.2)

〈Ex,x+1〉 ≈
{

0 x even
1
2

x odd
(4.3.3)

to another in which

〈
nFx
〉
≈

{
0 x even

1 x odd
(4.3.4)

〈Ex,x+1〉 ≈ 0 ∀x (4.3.5)

by increasing the values of m or g, as it is shown in Fig. 4.3.4. This means
that when m or g are larger than certain values, the GS coincides with the
�lled Dirac sea, as expected. When m and g tend to zero the GS of the
system is a delocalized state, in which the expectation value of the occupa-
tion number is the same for each site, and with a particular con�guration of
the electric �eld: on the external links of the chain its expectation value is
identically zero; on the links inside of couples, it is large and positive; on the
links between couples it is zero.
A better characterization is possible if we understand which elements of our
ordered basis appear in GS. With L = 2, it results that the GS is a superpo-
sition of the states listed in Fig. 4.3.5a. In the associated quark picture, this
states correspond to the vacuum, meson states, an antimeson state, a pairs
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Figure 4.3.5: (a) Components of the GS for L = 2. (b) Probability amplitudes as a

function of m with g = 0.01 for L = 2. (c) Probability amplitudes as a function of g with

m = 0.01 for L = 2.

state and a string state. Note that on the external links the electric �eld is
always zero and, a consequence, the mesons can only be created inside of the
couples, while the antimeson states only between couples with an opposite
electric �eld. Furthermore, in the pair state all the masses are excited form-
ing charge-anticharge pairs, while in the string state two mass excitations are
present at the boundaries, and all electric �elds connecting the two are posi-
tive. It is interesting to analyze the probability amplitudes of these di�erent
components of the GS (Fig. 4.3.5b and Fig. 4.3.5c): when m and g are very
small, the GS is dominated by the meson states (including equivalently the
antimeson state). When we increase m or g, there is a particular coexistence
of the meson/antimeson states, the vacuum and the pair state as long as the
vacumm becomes completely dominant.
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Figure 4.3.6: (a) Proability amplitudes as a function of m with g = 0.01 for L = 3. (b)

Proability amplitudes as a function of g with m = 0.01 for L = 3.

This behavior is also found in a clear manner in the cases with L = 3, 4, 5:
in fact, increasing the size of the system, there is a remarkable rise of the to-
tal meson/antimeson amplitudes at the expense of the other components, as
shown in Fig. 4.3.6a and Fig. 4.3.6b for L = 3. In these plots we can also see
that in the transition between the two limit con�gurations, identi�ed by the
local properties (4.3.2) and (4.3.4), the involved components become essen-
tially two: meson/antimeson states and vacuum. Recalling that the meson
states can be created only inside the couples (with a positive electric �eld),
while the antimeson states only between couples (with a negative electric
�eld), let us go back to what we have found by studying the fermionic lattice
density

〈
nFx
〉
and the mean electric �eld on each link 〈Ex,x+1〉 in Fig. 4.3.4:

the fact that on the links between couples 〈Ex,x+1〉 is pratically zero when m
and g are very small (∼ 0.01), tells us that the GS in this case corresponds
to a superposition of meson states (with multiple possible mesons) without
antimesons. The �hopping� of this mesons on the whole chain justi�es the
limit occupation value

〈
nFx
〉

= 1
2
on each site and determines the condition

〈Ex,x+1〉 = 1
2
on the links inside of the couples. All of this is possible because

the probability amplitudes of the meson components in the GS, which have
been calculated in our computation, have the same value, so for example
when L = 3 and m and g are very small, we are approximately in the follow-
ing situation for the GS (excluding the components with small amplitudes
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that, as we have seen, decrease with increasing L):

|GS〉 ≈ 1√
6
{|9, 5, 5〉+ |5, 9, 5〉+ |5, 5, 9〉 (4.3.6)

+ |9, 9, 5〉+ |9, 5, 9〉+ |5, 9, 9〉}

in which |a, b, c〉 = |a〉 |b〉 |c〉 represents the states of the three couples in our
ordered basis of Fig. 4.1.3. The state |9〉 corresponds to a meson, the state
|5〉 to the vacuum, so |GS〉 is a superposition of states in which one or two
mesons move on the chain. It is easy to see that on this state it results
that

〈
nFx
〉

= 1
2
for each site, 〈Ex,x+1〉 = 1

2
for the links inside of couples and

〈Ex,x+1〉 = 0 for the links between couples, exactly as we have found in our
analysis.
The absence of antimeson components in the GS may be due to the �nite
(small) size of the system, which can break a possible degeneration of the
fundamental energy level, favouring a completely meson state at the expenses
of the antimesonic components.
However, we can note that when we increase slightly m or g, there is a small
rise of the amplitudes of the total meson/antimeson components (Fig. 4.3.6a
and Fig. 4.3.6b): we can attribute this rise to the �activation� of antimeson
components in order to justify the small negative peak of the mean electric
�eld on the links between couples, Fig. 4.3.4.
To sum up, we have found an interesting property in our analysis with small
sizes: there is a particular region in the phase diagram (m, g), in which the
GS of the system does not correspond to the vacumm, but a state with mass
and �eld excitations due to the presence of mesons and antimesons.
Starting from these considerations, we can study in detail the phase diagram
with di�erent values of L. We have considered the value 〈E2〉0 of the order
parameter in (m = 0.01, g = 0.01) as reference and have determined the
points (m, g) in which 〈E2〉 = 0.03 〈E2〉0. The phase diagram obtained with
L = 2, 3, 4, 5 is shown in Fig.4.3.7a. It is possible to note a slight shift
of the transition line with the increasing of the size. This e�ect has been
quantitatively estimated by evaluating the distances δ between the points
with g = 1. A logarithmic plot of this parameter shows us a clear exponential
decay, Fig. 4.3.7b. As a result, we can reasonably expect that by increasing
the size of the system at large values of L, the phase diagram retains the
properties that have been analyzed in this section.
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Figure 4.3.7: (a) Phase diagram g −m with di�erent sizes L of the system. (b) Loga-

rithmic plot of the δ as a function of di�erences between sizes.

4.4 DMRG - numerical results

The DMRG (Density Matrix Renormalization Group) algorithm is a vari-
ational method that enables us to study numerically our model, providing
accurate information about the lowest part of the spectrum and various prop-
erties of the GS (see Appendix B). In this work, this algorithm has been used
to study the phase diagram of our system with a considerable size L. The
goal is to capture all the properties of the thermodynamic limit (L → ∞).
However, recalling that L is the number of couples and, therefore, we have
a chain with a double number of sites and related links, it results that the
computational costs for large sizes are very high (memory used, computation
time, etc.). An e�cient compromise is the case with L = 20 that we study
in the following.
First of all, we analyze the order parameter as a function of g and m: as in
the previous cases with small sizes, when we move along the orizontal/verti-
cal lines with �xed m/g, it results an exponential decay of 〈E2〉 in a speci�c
region of the phase diagram, i.e. when the �xed parameter exceeds a certain
value this e�ect disappears, Fig. 4.4.1a and 4.4.1b.
We can study now two local properties of the GS: we consider the expectation
values

〈
nFx
〉
and 〈Ex,x+1〉 as in the previous section. In Fig. 4.4.1c and 4.4.1d

we can see the behavior of this quantities for two sites (even and odd) and
for two links (one inside of a couple, the other between two couples) of the
chain. On the other sites and links of the same type, the situation is quite
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Figure 4.4.1: The order parameter
〈
E2
〉
as a function of m (a), g (b) with L = 20. (c)

Plots of
〈
nFx
〉
for two sites (even and odd) as a function of g, with m = 0.1 and L = 20

(d) Plots of 〈Ex,x+1〉 for two links (inside of a couple/between couples) as a function of g,

with m = 0.1 and L = 20.

identical. It is immediately noted that we have the same trends of the previ-
ous section: this is very important in order to characterize the GS, because
with the DMRG-algorithm we do not get the probability amplitudes of the
various components that �ow in it. However, through the analysis with small
sizes, we have shown that this typical trends are related to meson/antimeson
states, which become completely dominant over the vacuum and the other
components for small values of the parameters. We can note an important
di�erence compared to the case with small sizes: here, when m and g are
very small (∼ 0.01), the mean electric �eld 〈Ex,x+1〉 on links between couples
does not go to zero, but takes negative values comparable with those on the
links inside of couples, which now are smaller than 1

2
. Moreover, the mean
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occupation value
〈
nFx
〉
does not tend to 1

2
, but it assumes greater values for

the odd sites, smaller values for the even sites. This tells us that the antime-
son components remain present in the GS. In fact, suppose to consider for
simplicity an ideal chain with L = 3 without small size e�ects. Recalling that
the probability amplitudes of the meson/antimeson components of the GS
have essentially the same values as we have shown in the previous section, we
can consider a generalization of the state (4.3.6) by including the antimeson
components:

|GS〉 ≈ 1√
11
{|9, 5, 5〉+ |5, 9, 5〉+ |5, 5, 9〉+ |9, 9, 5〉 (4.4.1)

+ |9, 5, 9〉+ |5, 9, 9〉+ |2, 11, 5〉+ |5, 2, 11〉
+ |2, 8, 11〉+ |2, 11, 9〉+ |9, 2, 11〉}

in which the states |5〉 corresponds to the vacuum con�guration for a couple,
the state |9〉 to a meson, the |2, 11〉 = |2〉 |11〉 to an antimeson that can be
created only between couples. In this con�guration we have all possible states
allowed by Gauss'law with a number of mesons and antimesons between 1 and
L− 1. Recall that a state of the form |9, 9, 9〉 is a �pairs� state (Fig. 4.3.5a)
and its probability amplitudes becomes pratically zero with the increase of
the size, as we have seen in the previous section. For this reason we consider
only states with a maximum of L − 1 mesons/antimesons in (4.4.1). It is
easy to see that on this GS it results

〈
nFx
〉
≈ 0.45 for even sites,

〈
nFx
〉
≈ 0.55

for odd sites, 〈Ex,x+1〉 ≈ 0.3 for the links inside of couples, 〈Ex,x+1〉 ≈ 0.25
for the links between couples. If we consider a state of this type for the case
with L = 20, this values are in agreement with what we have seen in the Fig.
4.4.1d.
As a result, we can conclude that the GS of the system, when m and g are
small enough, is a superposition of meson and antimeson states. In a pictorial
scheme, we can represent it as an hopping of multiple mesons and antimesons
on the chain.
The relation (4.4.1) represents, clearly, a �rst approximation of the GS of
the system, but it o�ers important cues for further researchs: for example,
there might be a little di�erence in the probability amplitudes of meson and
antimeson components, which could lead to a charge-symmetry breaking (see
Chapter 5).
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Figure 4.4.2: Phase diagram of the lattice Z3 model for QED.

4.4.1 Finite size scaling

By a detailed study of the trends of the order parameter, which have been
calculated by using the DMRG-algorithm, it is possible to determine the
phase diagram of our model. The line has been traced with the same crite-
rion of the previous section, i.e. 〈E2〉 = 0.03 〈E2〉0 for L = 20. The result,
which is one of the goals of this thesis work, is shown in Fig. 4.4.2.
We can perform now a �nite size scaling of the order parameter 〈E2〉 in order
to study how the phase diagram varies for di�erent lattice sizes. We have
considered three points: the �rst in �meson/antimeson� region (m = 0.1, g =
0.1), the second on the �transition� line (m = 3.805, g = 2), the third in the
�vacuum� region (m = 7, g = 7). It results that 〈E2〉 always shows a partic-
ular behavior: it tends to saturate to a �nite asymptotic value, as reported
in Fig. 4.4.3. On the �rst point, this is immediately clear (Fig. 4.4.3a).
On the second and third point, the data are in good agreement with a �t
of the form a − b/L, in which a and b are two positive parameters. The
analysis of the numerical values of these parameters (reported in Fig. 4.4.3b
and Fig. 4.4.3c) tells us that when L = 20 the correction with respect to the
asymptotic value of 〈E2〉 is extremely small (b/L ≈ 10−2a). Whereby, we can
reasonably expect that the phase diagram, which in our analysis has been
built with L = 20, remains practically unchanged when L further increases.
This fact justi�es the stability and the reliability of our phase diagram.
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Figure 4.4.3: Finite size scaling of the order parameter for (a) m = 0.1, g = 0.1, (b)

m = 3.805, g = 2, (c) m = 7, g = 7. (d) Comparative plot of the previous trends.

In Fig. 4.4.3d are overall shown the same trends: it can be qualitatively
noted, in this case, as the dependence on L is really weak.
We can reasonably ask why the order parameter does not go to zero with the
increase of the size L when m = 7 and g = 7, i.e. when we are completely
in the �vacuum� phase. The answer lies in the boundary conditions: we
are using open boundary conditions and this a�ects the values of the order
parameter. We can analyze this e�ect by studying the mean (small) value
of 〈Ex〉 on each link inside couples and between couples (here, the �rst and
the last link of the chain correspond to the internal link of the �rst and the
last couple): as we can see in Fig. 4.4.4a, inside couples 〈Ex〉 results posi-
tive (residual meson components) and tends to zero with increasing L except
on the �rst and last link of the chain, where it increases. This is clearly a
boundary e�ect, which determines the fact that the order parameter does
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Figure 4.4.4: (a) 〈Ex〉 on links inside couples. It is clearly visible a boundary e�ect. (b)

〈Ex〉 on links between couples.

not go exactly to zero. Instead, between couples 〈Ex〉, as we can expect, is
negative (residual antimeson components) and tends to zero symmetrically
with respect to the previous case, without boundary e�ects, Fig. 4.4.4b.
At this point, it is interesting to understand what happens to the system in
the passage between the two con�gurations, i.e. mesons/antimesons↔vacuum.
We can investigate this argument by studying the �rst two energy levels of
the system (divided by size), E0/L and E1/L (the third level, in our numer-
ical analysis, results always degenerate with the second). Suppose we move
in the phase diagram along the two directions g = 0.1 (vertical) and m = 0.1
(horizontal): we obtain the trends of Fig. 4.4.5, in which there is also a
comparison between the case with L = 4 and L = 12. We can notice some
important features:

� the fundamental energy level E0/L remains pratically unchanged with
increasing size;

� the �rst level E1/L instead tends to get closer to the fundamental
energy in a range of g or m between zero and a certain maximum
value;

� outside of the said range, the �rst level E1/L tends to move away from
the fundamental energy, as can be seen in the case with L = 4 and,
more sharply, in the case with L = 12 (note in Fig. 4.4.5b the change
of slope of E1/L for L = 12 compared to the case with L = 4);

In order to understand if this e�ect persists in the case with L� 1, we can
perform in both cases (vertical lines m = 0.1 and horizontal lines g = 0.1) a
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Figure 4.4.5: Plots of E0/L and E1/L with L = 4, L = 12 as a function of g with

m = 0.1 (a) and as a function of m with g = 0.1 (b). It is indicated the distance δ between

the two levels with L = 12 on the corresponding transition point of the phase diagram

and the distance γ on a point of the �vacuum� phase.

�nite size scaling of δ (distance between the two levels on the corresponding
transition point) and γ (distance between the two levels on a point of the
�vacuum� phase belonging to the considered lines).
The trends of δ are shown in Fig. 4.4.6a and 4.4.6b. It is clearly visible
a decrease of δ when the size increases. Furthemore, the data is in good
agreement with a �t of the form a + b/L, in which the asymptotic value a
(reported in the �gures) is very small: this important fact tells us that on a
transition point, δ approaches zero when L is very large.
The trends of γ, instead, are shown in Fig. 4.4.7a and Fig. 4.4.7b. In this
case, γ increases with the size L and the data are in good agreement with a
�t of the same form a + b/x, in which however the parameter b is negative
and the asymptotic value a (reported in the �gures) is large compared to
zero.
As a result, when we move in the phase diagram along one of the previous
lines, the energy levels tend to a situation, in which the energy gap between
E0/L and E1/L approaches zero close to the transition point, while it tends
to grow considerably in the �vacuum� region.
This behavior may be a sign of the presence of a phase transition between
the two regions of our phase diagram. This hypothesis is also supported
by the fact that if we consider a generic �transition� point, for example
(m = 3.805, g = 2) and perform a �nite size scaling of the free energy density,
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evaluated as f = E0/L, we obtain the trend shown in Fig. 4.4.8. It is clearly
visible a functional dependence of the type 1/L, as highlighted by a �t of
this form. This behavior is in agreement with a general result for the �nite
size scaling of the free energy density close to a critical point [16], according
to which it results fsin ∼ L−d, in which fsin represents the singular part of
the free energy density and d the dimensionality of the system.
In order to further investigate the system behavior in the passage between
the two con�gurations of our phase diagram, we can proceded in a system-
atic way: we have chosen in the phase diagram a generic straight line passing
through a point (determined previously) of the transition line, as shown in
Fig. 4.4.9a. We have �xed on this line a certain number of points, particu-
larly concentrated in the transition zone. For each of these points, we have
performed a �nite size scaling of the di�erence δ between the two energy
levels E0/L and E1/L: the trends, as we have previously seen along the hor-
izontal and vertical lines, are always of the form a + bL, in which b results
positive in the �meson/antimeson� region and negative in the �vacuum� re-
gion. In both cases, from these trends it has been possible to extrapolate
the asymptotic value δasym = a, which represents an estimate of δ for L� 1
at �xed m and g. At this point, we have plotted δasym as a function of m
(g = 0.512m+ 0.048) to obtain the trend of the gap between the two energy
levels along the considered line in the phase diagram. The result is shown
in Fig. 4.4.9b: in the �meson/antimeson� region the gap is very small and it
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Figure 4.4.9: (a) The considered line in the phase diagram. (b) Plot of δasym along the

previous lines.

has an almost constant trend; close to the transition point the gap tends to
zero, while, once inside the �vacuum� region, it tends to grow considerably.
This behavior could be an important clue about the presence of a phase tran-
sition between a critical phase (with a zero energy gap), here represented by
the �meson/antimeson region�, and a gapped phase, here represented by the
�vacuum� region.
We can study now the von Neumann entropy, which is de�ned as

S = −Tr {ρ log2(ρ)} (4.4.2)

in which ρ is the density matrix of the system. By using the density matrix
decomposition ρ =

∑
i λi |ψi〉 〈ψi| in which |ψi〉 is one of the basis elements

and the quantity λi is its probability amplitude in the GS (λi ≥ 0 and∑
i λi = 1), the entropy can be calculated as follows:

S = −
∑
i

λilog2(λi). (4.4.3)

This quantity takes value between S = 0 for a pure state and S = ln(d), in
which d is the size of the Hilbert space of the system, for a maximally mixed
state (a superposition of the states |ψi〉 with uniform probability amplitudes
λi = 1/d). Thus, S quanti�es the departure of the system from a pure state.
In our framework, using the DMRG-algorithm, which computes the density
matrix for a block of a �xed lenght, we consider the reduced density matrix
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ρL/2 = Tri>L/2ρ of the half chain (surrounded by the remaining part of the
system) and we evaluate the corresponding entropy as

SL/2 = −Tr
{
ρL/2 log2(ρL/2)

}
(4.4.4)

which is also called entanglement entropy. In fact, if the half chain is in a
maximally entagled state with the remaing part of the system, this quantity
assumes large values. Conversely, if the half chain is in a pure state without
signi�cant correlations, it tends to zero. As a result, SL/2 gives us an esti-
mate of the correlations in the GS of the system.
Clearly this quantity is a function of L. Therefore, we can study this
functional dependence adequately to our purpose, by considering again the
previous three points of the phase diagram: the �rst in the �mesons/an-
timesons� region (m = 0.1, g = 0.1), the second on the �transition� line
(m = 3.805, g = 2), the third in the �vacuum� region (m = 7, g = 7).
It results that the entropy on this points shows di�erent behaviors, as re-
ported in Fig. 4.4.10. On the �rst point we observe a particular growth with
L, Fig. 4.4.10c: this trend seems to be logarithmic, but a �t of this type
does not show a good agreement. A �t of the form (a + be−|k|L), in which
a, b, k are three parameters, instead, is in good agreement, showing that
SL/2 saturates to a �nite value. On the second point, altought SL/2 is very
small, we have observed a logarithmic growth (Fig. 4.4.10a), as highlighted
by the logarithmic plot in Fig.4.4.10b. Finally, on the third point we observe
a constant trend with a very small value, showing that the GS in this case is
almost factorised.
As a result of this, we are in the following situation:

SL/2(L) =


a+ be−|k|L (m = 0.1, g = 0.1)

c log2(L/2) transition point

b (m = 7, g = 7)

(4.4.5)

in which a, b, c, k are constant values.
Therefore, the entropy behaves in a di�erent way in the various parts of the
phase diagram. This has an important consequence when we consider the
case with L� 1, in which it follows that

SL/2 ≈


a (m = 0.1, g = 0.1)

c log2(L/2) transition point

b (m = 7, g = 7).

(4.4.6)
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Figure 4.4.10: (a) Plot of entropy SL/2 as a function of L/2 on the �transition� point.

(b) Logarithmic plot of the previous quantity (c) Plot of SL/2 as a function of L with

m = g = 0.1. (d) Plot of SL/2 as a function of L with m = g = 7.

The fact that on the �transition� point SL/2 depends on L, in contrast to
what happens in the other two regions, may suggest that on this point, when
L � 1, the correlations tend to become increasingly large. This is a typical
behavior in proximity to a phase transition. In support of this, we can note
that the relation Sl ∼ log2(l) is a general result for a 1+1-dimensional QFT
at a critical point, in which l is the lenght of the considered subsystem [5].
The trend of the entropy in the "meson/antimeson" region (m = 0.1, g = 0.1)
provides an important starting point for future investigations: in fact, the
above analysis on the energetic gap δ seems to highlight the presence of a
critical phase, but in this case we should have a logarithmic trend of SL/2 in
this region instead of a saturation to a �nite value. This argument will be
deepened by considering a simulation with a greater number of couples and
further points in the �meson/antimeson� region.



Chapter 5

Symmetries and �nal

considerations

In this chapter we illustrate the symmetries of the Zn lattice model for (1+1)d
QED and we present some considerations related to the phase diagram and
the behavior of the system that we have previously described.

5.1 Symmetries of the model

Consider again the initial Hamiltonian of our lattice Zn model:

H = −t
N∑
x

ψ†xUx,x+1ψx+1 + h.c.+m
N∑
x

(−1)xψ†xψx +
g2

2

N∑
x

E2
x,x+1. (5.1.1)

At this point, considering an even number of sites of the whole chain, we can
note that this Hamiltonian is invariant under the parity trasformation (P),
the charge-conjugation (C) and the combined trasformation (CP), de�ned as

P (ψx) = ψ−x (5.1.2)

P (ψ†x) = ψ†−x (5.1.3)

P (Ux,y) = U †−y,−x (5.1.4)

P (Ex,y) = −E−y,−x (5.1.5)

76
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and

C(ψx) = (−1)x+1ψ†x+1 (5.1.6)

C(ψ†x) = (−1)x+1ψx+1 (5.1.7)

C(Ux,y) = U †x+1,y+1 (5.1.8)

C(Ex,y) = −Ex+1,y+1. (5.1.9)

and

CP (ψx) = (−1)−x+1ψ†−x+1 (5.1.10)

CP (ψ†x) = (−1)−x+1ψ−x+1 (5.1.11)

CP (Ux,x+1) = U−x,−x+1 (5.1.12)

CP (Ex,x+1) = E−x,−x+1. (5.1.13)

Besides, the initial Hamiltonian, exclusively for m = 0, is invariant under
the chiral trasformation (χ), which in the context of staggered fermions, is
de�ned as a shift of one lattice spacing:

χ(ψx) = ψx+1 (5.1.14)

χ(ψ†x) = ψ†x+1 (5.1.15)

χ(Ux,x+1) = Ux+1,x+2 (5.1.16)

χ(Ex,x+1) = Ex+1,x+2. (5.1.17)

This transformation preserves all terms in the Hamiltonian except the mass
term. Furthermore, it is also explicity broken when one imposes the Gauss'law
and considers only the subspace of the physical gauge invariant states: in fact,
for example, if we try to trasform under χ the staggered vacuum, we obtain
a state with all even sites full and the electric �eld everywhere zero. This is
a non-physical state, for which Gx |ψ〉 6= 0.
Another important symmetry of the Hamiltonian is related to the conserva-
tion of the baryon number, i.e. the number of quark minus the number of
antiquarks. In our framework, we can de�ne a baryon number operator as

NB =
∑
x

ψ†xψx −
N

2
(5.1.18)

in which N is the number of the sites. In this way, NB is counted relative to
the staggered vacuum and the symmetry is due to the fact that [NB, H] = 0.
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5.2 Considerations

Taking into account the results of our numerical analysis, we can introduce
now a useful formalism: starting from the Fock vacuum |0〉, we can express
the staggered vacuum as

|0〉S =
∏
x−odd

ψ†x |0〉 (5.2.1)

i.e. the state with all odd sites �lled.
If we consider the operator ψ†xUx,x+1ψx+1 it results that

ψ†xUx,x+1ψx+1 |0〉S =

{
|1m,x,x+1〉 x− even
0 x− odd (5.2.2)

in which |1m,x,x+1〉 is a state with a meson on sites (x, x+ 1). Therefore, we
can identify the operators

c†x,x+1 =
1

2
[(−1)x + 1]ψ†xUx,x+1ψx+1 (5.2.3)

cx,x+1 =
1

2
[(−1)x + 1]ψ†x+1U

†
x,x+1ψx (5.2.4)

as creation and annihilation operators of mesons, in which the factor 1
2
[(−1)x+

1] is due to the fact that the meson can be created only inside of a couple
(even-odd sites).
In the same way, we can note that

ψ†x+1U
†
x,x+1ψx |0〉S =

{
0 x− even
|1a,x,x+1〉 x− odd (5.2.5)

in which |1a,x,x+1〉 is a state with an antimeson on sites (x, x+ 1). Therefore,
we can identify the operators

d†x,x+1 =
1

2
[1− (−1)x]ψ†x+1U

†
x,x+1ψx (5.2.6)

dx,x+1 =
1

2
[1− (−1)x]ψ†xUx,x+1ψx+1 (5.2.7)

as creation and annihilation operators of antimesons, in which the factor
1
2
[1−(−1)x] is due to the fact that the antimeson can be created only between
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couples (odd-even sites).
We can analyze now some important properties: the staggered vacuum |0〉S
is cleary invariant under P , C and also the combination CP . In fact, if we
consider for example the charge conjugation, it results

C |0〉S = C(
∏
x−odd

ψ†x |0〉) = C(
∏
x−odd

ψ†x |0〉+
∏

x−even

ψx |0〉)

=
∏
x−odd

C(ψ†x) |0〉+
∏

x−even

C(ψx) |0〉

=
∏
x−odd

ψx+1 |0〉+
∏

x−even

ψ†x+1 |0〉

=
∏
x−odd

ψ†x |0〉 = |0〉S . (5.2.8)

and the same for P or CP.
Now suppose we consider a state with a meson |1m,x,x+1〉, x-even. It follows
that

C |1m,x,x+1〉 = C(c†x,x+1 |0〉S) = C(ψ†xUx,x+1ψx+1 |0〉S)

= −ψx+1U
†
x+1,x+2ψ

†
x+2 |0〉S = ψ†x+2U

†
x+1,x+2ψx+1 |0〉S

= d†x+1,x+2 |0〉S = |1a,x+1,x+2〉 (5.2.9)

i.e. a meson on (x, x + 1) becomes an antimeson on (x + 1, x + 2). If we
apply again C, it is easy to see that it results C(|1a,x+1,x+2〉) = |1m,x+2,x+3〉,
i.e. a state with a meson on (x + 2, x + 3), and so on. That is, the charge-
conjugation is explicated by a shift of one lattice spacing, accompanied by
an appropriate exchange of the fermionic operators.
If we consider the parity trasformation, instead, it results that

P |1m,x,x+1〉 = P (c†x,x+1 |0〉S) = P (ψ†xUx,x+1ψx+1 |0〉S)

= ψ†−xU
†
−(x+1),−xψ−(x+1) |0〉S = d†−x,−(x+1) |0〉S

=
∣∣1a,−(x+1),−x

〉
(5.2.10)

i.e. a meson on (x, x + 1) is symmetrically �re�ected� into an antimeson on
(−x−1,−x). Clearly, if we apply again P , it follows that P (

∣∣1a,−(x+1),−x
〉
) =

|1m,x,x+1〉, i.e. the initial meson. This tells us that, as we expect, the parity
trasformation is explicated by a re�ection with respect of the center of the
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whole chain (the site with x = 0).
At this point, we can easily note that if we consider the trasformation CP ,
we obtain

CP (|1m,x,x+1〉) = CP (c†x,x+1 |0〉S) = CP (ψ†xUx,x+1ψx+1 |0〉S)

= −ψ−x+1U−x,−x+1ψ
†
−x |0〉S

= ψ†−xU−x,−x+1ψ−x+1 |0〉S = c†−x,−x+1 |0〉S
= |1m,−x,−x+1〉 (5.2.11)

i.e. a meson on (−x,−x+ 1). Again, it also results that CP (|1m,−x,−x+1〉) =
|1m,x,x+1〉. So, the trasformation CP re�ects the state but does not change
the meson or antimeson nature.
All these properties allow us to make some qualitative observations about the
transition that we have analyzed in the previous chapter: in the �vacuum�
region, the GS coindices with the staggered vacuum |0〉S, which, as we have
shown, is C,P,CP -invariant and clearly has NB = 0 (the number of quarks
and the number of antiquarks are both zero).
Now, an important goal would be to understand what are the symmetries of
the GS in the �meson/antimeson� region. However, apart from the conserva-
tion of the number of particles on the chain which still implies NB = 0, this is
not easy because we do not have an analytical expression for the ground-state
|GS〉. Moreover, even at numerical level, the trasformation P and CP can
not be implemented in a simple way, due to their �non-locality� with respect
to the space of the single couples that we have considered in our analysis.
On the contrary, we can brie�y investigate the behavior of the GS under the
charge-conjugation, by using the mean value of the operator C, i.e. the quan-
tity 〈C〉 = 〈GS|C |GS〉. Suppose we move in the phase diagram along the bi-
sector g = m. The trend of 〈C〉 (for L = 5) is shown in Fig. 5.2.1. As we can
see, in the �vacuum� region (m > 2.86) 〈C〉 tends to get closer to one, while
when we pass in the �meson/antimeson� region, it decreases. Recalling that
if a normalized state |ψ〉 is invariant under C, it must result 〈ψ|C |ψ〉 = 1,
this behavior may really indicate a spontaneous charge-symmetry breaking.
Anyway, this analysis wants to be an indication for further research aimed
at a careful study of all the simmetries of GS.



CHAPTER 5. SYMMETRIES AND FINAL CONSIDERATIONS 81

ææææ

æ

æ

æ

æ

æ
æ ææ

æ æ æ

æ g = m

0 1 2 3 4 5 6

0.4

0.6

0.8

1.0

m

<
C
>

Figure 5.2.1: Plot of 〈C〉 as a function of m (g = m) for L = 5.



Chapter 6

Real time dynamics of

string-breaking

In this chapter we analyze the real time dynamics of our Z3 lattice model
for QED. In particular, we show that the model exhibits the phenomenon of
string-breaking, which is closely related to the phase diagram that we have
obtained in the previous chapter.

6.1 String breaking

We have already mentioned the phenomenon of string-breaking in section
3.1.1. We can then summarize by saying that it is a non perturbative phe-
nomenon that quantum electrodynamics in one spatial dimension shares with
the quantum chromodynamics (QCD). It consists in a cutting of the electric
�eld string that connects a particle-antiparticle pair by creating a new charge-
anticharge pair. For this reason, it is closely related to the con�nement, i.e.
the impossibility of isolating, in this case, electrons and positrons (quarks
and antiquarks in the QCD framework).
In our construction, an electric �eld string generated by a particle-antiparticle
pair is represented by a suitable state, which respects the Gauss'law.
Suppose that the number of couples results L = 5: starting from the stag-
gered vacuum, we can construct a string of lenght l = 5 (the length of a
string is measured according to the number of links with a positive electric
�eld) in the following way:

|ψstring〉 = |5〉 ⊗ |12〉 ⊗ |6〉 ⊗ |3〉 ⊗ |5〉 (6.1.1)
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(a)

(b)

Figure 6.1.1: (a) String state of lenght l = 5. (b) Meson state with two mesons, which

corresponds to the break of the initial string.

in which |5〉, |12〉, |6〉 and |3〉 are elements of our ordered basis of Fig. 4.1.3.
In a static picture, this state is represented in Fig. 6.1.1a, in which we
can clearly see how the string is surrounded by the vacuum and how the
electric �eld extends itself between the two opposite charges of the particle-
antiparticle pair. This state has an energy

Estring(l) = E0 + 2m+
g2

2
l (6.1.2)

in which E0 = −mL is the vacuum energy. Instead, a two-mesons state,
which can represent the break of the string is shown in Fig. 6.1.1b and has
energy

Emesons = E0 + 4m+
g2

2
. (6.1.3)

In static terms, we can determine the minimal length of the string above
which the mesons state is energetically favored over the string state:

Estring(lmin) = Emesons → lmin =
4m

g2
+ 2. (6.1.4)

So, in order to have the possibility to observe the string breaking phe-
nomenon, we must choose the values of g andm such that lmin results smaller
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then the lenght of the string that we use for our simulations (l = 5).
Starting from this consideration, we can perform a dynamical evolution in
the canonical way: if we assume that for t = 0 the state of the system results
|ψ(0)〉 = |ψstring〉, for a generic t ≥ 0 (here, times are given in units of the
inverse of the hopping parameter) it follows

|ψ(t)〉 = e−iHt |ψstring〉 . (6.1.5)

We stress an important property of this evolution: recalling that in our model
we must select only the physical states, that respect the Gauss'law, one may
wonder whether the evolution of an allowed state, like |ψstring〉, remains in
the physical subspace. The answer lies in the fact that the Hamiltonian
(3.2.52) commutes with the gauge operator (3.2.54), as we have seen in the
previous sections. Therefore, a physical state always evolves in a physical
state, i.e. in mathematical formalism, if |ψ(0)〉 is a gauge-invariant state
such that T [ax] |ψ(0)〉 = 0, it follows

T |ψ(t)〉 = Te−iHt |ψ(0)〉 = e−iHtT |ψ(0)〉 = 0 (6.1.6)

so that even |ψ(t)〉 is a physical state.
This is very importat in our numerical simulation because, having imple-
mented in the program only the physical Hilbert space, we can be sure to
reproduce the correct dynamical evolution. Besides, the dynamical gauge-
invariance of a physical state remains unchanged even if we perform an ex-
pansion of the evolution operator e−iHt.
In order to study the string-breaking phenomenon, starting from the state
|ψstring〉, we have simulated its evolution with a fourth-order expansion of the
evolution operator and we have determined the time trend of the mean elec-
tric �eld 〈Ex,x+1〉 on each link. We have repeated the simulation for di�erent
values of g and m, considering, in reference to the phase diagram, a point
in the meson/antimeson phase (m = 0.1, g = 1), a point on the transition
line (m = 1, g = 3.9) and a point in the vacuum phase (m = 7, g = 7). The
numerical coordinates of this points have been chosen taking into account
that it must be lmin ≤ l = 5. The results are shown in Fig. 6.1.2.
We can notice some importants features:

� when m and g are small, Fig. 6.1.2a, the initial string is clearly broken
with a following formation of two mesons, which, surrounded by the
vacuum, widen over the entire chain. This corresponds, in our pictorial
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Figure 6.1.2: Time evolution of the state |ψstring〉 with a string of length l = 5 sur-

rounded by the vacuum. In the �gures are shown the time trends of the mean electric �eld

〈Ex,x+1〉 on each link with di�erent values of the parameters m and g. (a) m = 0.1, g = 1.

(b) m = 1, g = 3.9. (c) m = 7, g = 7. In all plots zero values are displayed as white,

positive values as reddish, negative values as bluish.
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representation of the static states, to the passage from the initial string
state to a two-mesons state shown in 6.1.1b, by means of a dynamic
creation of a new particle-antiparticle pair in the middle.

� when m and g de�ne a transition point of the previous phase diagram,
the initial string evolves in a pairs state, i.e. a state in which all the
masses are excited forming charge-anticharge pairs. In this case, how-
ever, we do not have a clear separation of two mesons in the vacuum,
but collective excitations in the whole system.

� when m and g are in the �vacuum� phase, instead, the string has an
internal dynamics (the electric �elds on links tend to �rotate� between
positive and negative values), but it remains strongly con�ned, as we
can see in Fig. 6.1.2c: in this case the large mass and the large cou-
pling constant suppress the string breaking. In fact, if m assumes
large values the creation of new particles is completely disadvantaged
from the energetic point of view. In the same way, if g is large, the
initial string contains too much �electrical� energy, which can not be
trasformed in two matter exicitations (recall that the total energy, of
course, must be preserved). In addition, large values of m and g sup-
press the vacuum �uctuations, as we have seen by a static point of view
in the previous chapter, so the vacuum between the two initial charge
of the string remains stable against particle-antiparticle creation and
the string breaking does not occur.

At this point, we can have a qualitative interpretation of the phase diagram
of our model from a dynamical point of view: the meson/antimeson phase of
our static analysis may be connected to the string breaking phenomenon and
consequently we can think of it as a con�ned phase, in which the con�nement
of the charges exists. Conversely, the vacuum phase may be regarded as a
decon�ned phase, in which the particles are allowed to exist as free excita-
tions, rather than only within bound states.
We can conclude with an important consideration: we have shown that the
Z3 lattice model for QED is able to capture the con�nement of the electrical
charges in a given range of the values of the parameters m and g, reproduc-
ing in this case the results of the massive Schwinger model for (1+1)d QED.
Outside of this range, the vacuum remains stable against particle-antiparticle
creation.
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Figure 6.2.1: (a) Phase diagram of the Z3 lattice model for QED (b) Phase diagram of

the QCD.

6.2 An important outlook

As a result of the dynamical analysis of the previous section, we can consider
the phase diagram of Fig. 4.4.2 in terms of a con�ned phase and a decon�ned
phase (Fig. 6.2.1a). This is an important and interesting property in order
to use a Zn lattice model to build a quantum simulator (for example with
ultracold atoms) able to capture non-quantitative aspects of quantum �eld
theories such as QED or, as a long term outlook, for QCD.
Let us consider the case of QCD: recent studies both theoretical and numer-
ical [23] suggest that the QCD phase diagram exhibits a particular phase
transition between con�ned/decon�ned phases with changes in temperature
T and in baryion chemical potential µ, as we can see in Fig. 6.2.1b. In the
con�ned phase at low energies, the quarks prefer to form bound states called
hadrons, either in the form of three-quarks qqq states called baryons, such as
protons and neutrons, or quark-antiquark qq̄ states called mesons, like pions.
As we increase the temperature, the bound states will eventually break up.
Quarks and gluons become weakly coupled due to asymptotic freedom (the
coupling constant decreases with increasing energy scale), forming a state
called quark-gluon plasma (QGP) [20].
So, even if only qualitatively, we have an important analogy with our model,
which, in this sense, could be a good starting point for building a quantum
simulator for more general �eld theories.
In this sense, a further study of the dynamics will be performed for L > 5 by
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using the tDMRG, i.e. the time dependent �version� of the DMRG-algorithm.



Conclusions

In this master degree thesis we have performed a quantum simulation of
(1+1)D QED through a Zn lattice gauge theory. In particular, we have pre-
sented an useful construction to implement the model at numerical level.
We have developed a Mathematica-algorithm able to engineer the gauge
symmetries and to constrain directly the system in the physical subspace.
Thanks to an exact diagonalization for small sizes, this program has allowed
us to obtain important information on the physical properties of the system
and to have a clear interpretation of the results obtained by the DMRG-
algorithm (used for larger sizes).
We have identi�ed a suitable order parameter for studying the behavior of
the system by varying two important parameters: the mass and the cou-
pling constant. In this way, through a systematic study, we propose a static
phase diagram of the model with two di�erent regions: the �rst (�vacuum
phase�), for large values of the previous parameters, in which, as expected,
the ground-state coincides with the vacuum, i.e. a state without mass or
electric �eld excitations; the second (�meson/antimeson phase�), for smaller
values of the parameters, in which the ground-state is characterized by the
formation of mesons and antimesons, i.e. particle-antiparticle pairs with two
possible con�gurations of the internal electric �eld.
We have studied the stability of our phase diagram by performing a �nite size
scaling of the order parameter. Thanks to this analysis, we can reasonably
expect that the property of the phase diagram remains very similar when we
consider very large sizes.
We have analyzed some important quantities such as free energy, energetic
gap and Von Neumann entropy, highlighting the possible presence of a phase
transition between the two mentioned regions. This analysis represents an
interesting starting point for further researches in order to investigate all de-
tails of this transition, which, according to the data at our disposal, seems
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to involve a critical phase and a gapped phase.
We have studied the symmetries of the model, introducing a suitable formal-
ism in order to show the properties of some important states, such as the
staggered vacuum or the meson/antimeson components. Also, we have inves-
tigated a spontaneus charge-simmetry breaking in relation to the transition
of our phase diagram.
We have performed an implementation of the Mathematica algorithm in or-
der to study the real-time dynamics of the system. In particular, we have
analyzed the string-breaking, a non perturbative e�ect, closely related to the
con�nement, that (1+1)QED shares with the QCD and that usually can not
be accessed using classical simulation due to e�ects of the sign problem. In
this framework, we have shown that the Zn model is able to capture the
phenomenon in a range of the values of the previous parameters that cor-
responds to the �meson/antimeson phase�. This gives us, from a dynamical
point of view, a qualitative interpretation of our phase diagram in terms of a
con�ned phase, in which the con�nement of charges exists, and a decon�ned
phase, in which the particles are allowed to exist as free excitations.
The implementation of the dynamics at numerical level, which has been
performed, represents also an interesting �platform� for the study of other
dynamical e�ects of (1+1)QED (for example, meson-meson scattering, time
evolution of exotic states, etc): in this sense, a further study will be per-
formed by using the tDMRG, i.e. the time dependent �version� of the DMRG-
algorithm.



Appendix A

Mathematica algorithm

In the section 4.3, we have presented the results of the exact diagonalization
of our model for small sizes (L = 2, 3, 4, 5). This diagonalization has been
performed using an algorithm developed in Mathematica.

The core of this program consists in the construction of the Hamiltonian
matrix restricted to the physical Hilbert subspace, by using the ordered ba-
sis of Fig. 4.1.3, by taking into account the Hamiltonian decomposition of
section 4.2 and by considering the fact that when we connect two couples,
the right link of the �rst couple must be equal to the left link of the second
couple. This constraint implies that each state of our ordered basis can be
connected to only four states (relative to the next couple). For example, the
state |1〉 can be connected to the states |3〉 , |6〉 , |7〉 , |10〉, the state |2〉 to
|1〉 , |4〉 , |8〉 , |11〉 and so on for the other states.
For computational purposes it is therefore convenient to insert all this pos-
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sible couplings between couples in a single matrix that we have called "St":

St =



1 3 6 7 10
2 1 4 8 11
3 2 5 9 12
4 1 4 8 11
5 2 5 9 12
6 3 6 7 10
7 3 6 7 10
8 1 4 8 11
9 2 5 9 12
10 1 4 8 11
11 2 5 9 12
12 3 6 7 10



(A.0.1)

in each row we have the state of the ordered basis (�rst column) and its
possible couplings on the right.
In this way, in order to construct the physical Hamiltonian, it is possible to
perform the tensor products of section 4.2 with the following code (reported
for L = 5):

For [ i = 1 , i < 13 , i++,
For [ j = 1 , j < 13 , j++,
For [ k = 1 , k < 5 , k++,
For [ l = 1 , l < 5 , l++,

m = St [ [ i , k + 1 ] ] ;
n = St [ [ j , l + 1 ] ] ;

For [ u = 1 , u < 5 , u++,
For [ v = 1 , v < 5 , v++,

e = St [ [m, u + 1 ] ] ;
h = St [ [ n , v + 1 ] ] ;

For [ p = 1 , p < 5 , p++,
For [ q = 1 , q < 5 , q++,

r = St [ [ e , p + 1 ] ] ;
s = St [ [ h , q + 1 ] ] ;

For [ a l f a = 1 , a l f a < 5 , a l f a++,
For [ beta = 1 , beta < 5 , beta++,

de l t a = St [ [ r , a l f a + 1 ] ] ;
gamma = St [ [ s , beta + 1 ] ] ;
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a = 4* (4* (4* (4* ( i−1)+k−1)+u−1)+p−1)+a l f a ;
b = 4* (4* (4* (4* ( j−1)+l−1)+v−1)+q−1)+beta ;

Hph [ [ a , b ] ] = Hph [ [ a , b ] ] +
A [ [ i , j ] ] *B [ [m, n ] ] *C1 [ [ e , h ] ] *D1 [ [ r , s ] ] *C2 [ [ de l ta , gamma ] ]

] ] ] ] ] ] ] ] ] ]

in which Hph is the physical Hamiltonian (for L = 5 is a 3072×3072 matrix),
initially de�ned with all elements equal to zero. A,B,C1, D1, C2 are 12×12
matrices corresponding to the �ve operators (one for each couple) of the ten-
sor products which appear in the Hamiltonian decomposition (for example,
for the �rst kinetic term relative to the �rst couple, it results A = K+K†,
B = I, C1 = I, D1 = I, C2 = I). a and b are respectively row and column
indexes: they are calculated using a generalization with �ve operators of the
relations of the tensor product between two matrices1. Clearly, the whole
cycle is repeated for each term of the decomposition, varying the assignment
of the matrices A,B,C1, D1, C2.
It can be noted that the algorithm does not perform simply the tensor prod-
uct between A,B,C1, D1, C2 (by doing it, we would go out from the phys-
ical Hilbert subspace), but a particular form of it that takes into account
only the physical couplings contained in the matrix St. In fact, the indexes
(m,n), (e, h), (r, s, ), (delta, gamma), relating, respectively, to the second,
third, fourth and �fth couple, are calculated taking into account the state of
the previous couple in the chain.
More precisely, the process can be viewed in this way: the �rst couple of the
chain can be in anyone of the 12 states of the ordered basis, so the matrix A,
which represents the term of the tensorial product relative to the �rst couple,
is entirely evaluated for i, j = 1, 2, . . . 12. When we added the second couple
to the right, each state of the initial ordered basis is split in four states,
corresponding to the possible couplings that it can form with the states of
the second couple. This couplings are represented in the program by the
indexes m and n, which, for each i and j, correctly identify the states of the
second couple that must be �attached� to the states of the �rst couple. It is
obtained in this way a new ordered basis for the two adjacent couples with

1Given am×nmatrixR and a p×q matrix S their tensor product is a (mp)×(nq)matrix
with elements de�ned by Cα,β = Ri,jSk,l in which α = p(i− 1) + k and β = q(j − 1) + l.
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12 × 4 = 48 elements. The corresponding Hamiltonian matrix is then built
on this new basis with the product A[[i, j]] ∗B[[m,n]]. At this point, adding
to the right a new couple, each state of the basis is split in four elements:
in this way, it is obtained a new ordered basis for the three adjacent cou-
ples with 48 × 4 = 192 elements. The Hamiltonian matrix is then built as
A[[i, j]] ∗ B[[m,n]] ∗ C1[[e, h]], by taking into account the correct couplings
of the third couple through the indexes e and h. This process is repeated for
all following couples in order to construct the Hamiltonian in the physical
Hilbert space.
The same algorithm can be used to construct the matrix relative to any
observable of the system, such as the electric �eld on links or the number
operator.



Appendix B

DMRG algorithm

The density matrix renormalization group (DMRG) is a numerical variational
technique devised to obtain the low energy physics of quantum many-body
systems with high accuracy. It was invented in 1992 by Steven R. White and
it is nowadays the most e�cient method for 1-dimensional systems [36].
One of the main problem in the analysis of a quantum many-body system
lies in the dimension of its Hilbert space, which generally grows exponen-
tially with size, making very di�cult an exact diagonalization. For example,
in the model that we have analyzed in this thesis work, the dimension of the
physical Hilbert space grows with the number of the lattice sites N according
to the relations d = 3×aN with a = 2. The DMRG method allows to reduce
the degrees of freedom by a truncation of the Hilbert space, keeping only the
most probable eigenstates. This procedure is performed in order to deter-
mine a target state of the system, which is generally a good approximation
of the ground-state. The process can be also repeated to determine a certain
number of excited states, although in this case the accuracy is lower.
In principle, the DRMG algorithm can calculate all ground state properties
(energies, correlation functions, etc.) at any temperature and all the observ-
ables of the system, although the convergence of these quantities depends on
details of the system, such as boundary conditions and dimensionalty.
Suppose we consider our Zn lattice model on a chain with N sites (N -even).
The DMRG algorithm proceeds in the following way.

1. the starting point consists in considering a small �version� of the system,
i.e. a chain of lenght l (here, we refer to the number of sites) with an
Hamiltonian Hl and a D-dimensional Hilbert space. In the study of our
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model, we have setted l = 8 and, consequentially, D = 3 × 28 = 768.
This small �version� of the system is solved exactly;

2. this initial block is expanded by one site to the right. This �new� block
of lenght l+ 1 is called system (S) and is described by the Hamiltonian
Hl+1. Clearly it has an Da-dimensional Hilbert space;

3. the system S is re�ected in order to form a new specular block, which
is called environment (E). This new block is attached to S, obtaining
a superblock which overall contains 2l + 2 sites;

4. it is considered an interaction between the two internal blocks in or-
der to reproduce the interaction between di�erent sites in the original
Hamiltonian. In this way, it is obtained an Hamiltonian H2l+2 for the
superblock;

5. the program proceeds to diagonalize H2l+1 and to determine its ground-
state |ψ〉 and the density matrix of the superblock ϕ = |ψ〉 〈ψ|;

6. in order to extract informations on the system S, its reduced density
matrix is calculated as ρS = TrE(ρ). It is diagonalized, by keeping only
theM eigenstates which correspond to the highest eigenvalues (M is an
input parameter of the algorithm, called number of Dmrg states and,
clearly, it must have M ≥ D for a good approximation). The same
procedure is repeated for the environment, by using ρE = TrS(ρ);

7. the set of these M eigenstates is chosen as an approximate basis of the
Hilbert space of the system S. Its Hamiltonian in this �reduced� space
is calculated as H̃S

l+1 = A†Hl+1Al, in which A is the (Da×M)-matrix
that contains (as column) the states of the approximate basis. In this
way, we obtain an (M ×M) Hamiltonian matrix for the system S. The
same is done for the environment, obtaing an (M ×M) Hamiltonian
H̃E
l+1;

8. at this point, the system S becomes now the starting block for the whole
procedure described, using as initial Hamiltonian H̃S

l+1, which makes
the Hamiltonian of the resulting superblock su�ciently small to be di-
agonalized. Note that, even if the size of S from time to time increases,
its Hilbert space is always approximated with anM -dimensional space.
This is the core of the DMRG (truncation);
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9. the algorithm is iterated until we obtain two blocks of length (N
2
− 1)

and two sites between them, i.e. a system S and an enviroment E of
the lenght N

2
. For each of these, we have a reduced M -dimensional

Hilbert space (with a basis of eigenstates) and a (M×M) Hamiltonian
matrix. During each iteration, the Hamiltonians of the system and the
environment and the related basis of eigenstates are stored;

10. at this point, in order to improve the approximation, the �rst block (on
the left) is incremented by one site at the expense of the right block,
which is reduced in order to maintain the total lenght of the chain �xed.
In this way, we obtain a superblock with �xed lenght N , with a system
of lenght N

2
+1 and an environment of lenght N

2
−1. Then, the previous

steps are repeated. This procedure is called left-to-right phase.

11. When the size of the �rst block is such that the right block can be
exactly diagonalized by using M states, the role of the left and right
block (and of their Hamiltonians) in the iteration is reversed: the right
block starts to grow at the expense of the left block. This procedure,
called right-to-left phase, �nishes when the left block can be exactly
diagonalized by using M states.

12. The set of the left-to-right phase and the right-to-left phase constitutes
a sweep. Three sweeps are generally enough to have a good approxi-
mation.

The computation time of the DMRG-algorithm increases signi�cantly with
M : the more states we keep, the better is the approximation but the compu-
tational cost can become very high. In our analysis we have used a number
of Dmrg states between 2000 and 4000, in relation to the total length of the
chain.
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