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Abstract 

Nowadays, soy is one of the most used ingredients in the formulation of fish 

feed, due to the ample market supply, lower market price, high protein 

concentration and favorable amino acid composition. Nevertheless, soybean 

meal products are rich and primary diet source of phytoestrogens, as genistein, 

which may have a potential negative impact on growth, hormonal regulation 

and lipid metabolism in fish. The principal aim of this study was to better 

understand in vivo and in vitro genistein’s effects on lipid metabolism of 

rainbow trout. In adipose tissue it was showed an unclear role of genistein on 

lipid metabolism in rainbow trout, and in liver an anti-obesogenic effect, with 

an up-regulation of autophagy-related genes LC3b (in adipose tissue) and 

ATG4b (in liver and adipose tissue), a down-regulation of apoptosis-related 

genes CASP3 (in adipose tissue) and CASP8 (in liver). An increase of VTG 

mRNA levels in liver was also observed. Genistein partially exerted these 

effects via estrogen- receptor dependent mechanism. In white muscle, genistein 

seemed to promote lipid turnover, up-regulating lipogenic (FAS and LXR) and 

lipolytic (HSL, PPARα and PPARβ) genes. It seemed that genistein could exert 

its lipolytic role via autophagic way (up-regulation of ATG4b and ATG12l), not 

through an apoptotic pathway (down-regulation of CASP3). The effects of 

genistein on lipid-metabolism and apoptosis-related genes in trout muscle were 

not dose-dependent, only on autophagy-related genes ATG4b and ATG12l. 

Moreover, a partial estrogenic activity of this phytoestrogen was also seen. 

Through in vitro analysis (MTT and ORO assay), instead, it was observed an 

anti-obesogenic effect of genistein on rainbow trout adipocytes, and this effect 

was not mediated by ERs. Both in vivo and in vitro, genistein exerted its effects 

in a dose-dependent manner.
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1. Introduction 

World aquaculture production has increased significantly in the last 50 years , 

with an average annual growth rate of 6.1% in volume between 2004 and 2006 

(FAO, 2009). Fish meal and fish oil are the main raw materials used in the 

formulation of fish feeds. Due to the expansion of aquaculture, marine fisheries 

will not be able to sustain the needs of aquaculture in the not too distant future. 

The global demand for fishmeal for aquafeeds may exceed total available 

supplies around the year 2020 and for fish oil well before 2010 (New& 

Wijkstroem, 2002). Thus, alternatives to the use of marine materials in fish 

feeds must be found. Several studies have investigated the replacement of fish 

oil by vegetable oils in fish feed. Partial replacement of fish oils by vegetable 

oils such as rapeseed, soybean, linseed or palm oils in fish feeds has no negative 

impacts on growth and survival of Atlantic salmon (Rosenlund et al., 2001), 

brook char (Guillou et al., 1995), gilthead sea bream and European seabass 

(Izquierdo et al., 2003) and rainbow trout (Greene & Selivonchick,1990; 

Caballero et al., 2002). Regarding protein supply, soybean meal (SBM) and soy 

protein concentrate (SPC) are ingredients currently incorporated in aquafeeds to 

partially replace fish meal without negative effects on growth performance 

(Kaushik et al., 1995; Refstie et al., 2010).  

 A class of compounds of high concentration in soy are isoflavones that, for 

their capacity of  binding to and activating estrogen receptors (Latonnelle et al., 

2002), were classified as phytoestrogens. The phytoestrogen of greatest 

abundance in soy products is genistein, which is present in defatted SBM at an 

average of 114,7 mg/100g SBM (Bhagwat et al., 2008), although concentrations 

potentially vary between seasons and soybean varieties (Wang and Murphy, 

1994). Epidemiological studies have shown that a regular intake of soy foods is 

associated with a reduced risk of several chronic pathologies, such as coronary 

heart disease, cancer, (Setchell and Cassidy, 1999) and atherosclerosis, 
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associated with oxidative damage (Anthony et al., 1998; Hertog et al.,1998) .  

Different hypotheses have been suggested to explain these health benefits, such 

as the involvement of the two major isoflavones in soy foods, genistein and 

daidzein, whose different biological activities have been documented in vitro 

and in vivo studies. For example, it has been proposed that the protective effect 

exerted by genistein against atherosclerosis could be related to its antioxidant 

properties (Ferretti et al., 2003); in fact, genistein is able to inhibit lipid 

peroxidation induced in vitro by several pro-oxidant agents on model and 

natural membranes (Jha et al., 1985), on cultured cells (Guo et al., 2002; Ho et 

al.,2003), and on low density lipoproteins (LDL) (Kerry et al., 1998; Wilson et 

al., 2002).  

On the other hand,  it has been reported, for example, that genistein can impact 

negatively  the growth performance. This happen if, considering that a 

maximum concentration of genistein in soy products is ~ 5900 µg/g, this is 

added to a concentration  of 3000µg/g of genistein, which is more or less equal 

to genistein levels when there is a total replacement of fish meal by soybean 

meal (Chen et al., 2014). So, it has been observed that the high dietary levels of 

genistein (3000 µg/g) can depress the growth performance in fishes, as Nile 

Tilapia, while lower levels of it (0-300µg/g) haven’t effect on growth 

performance (Chen et al., 2014); similar results have also been reported  in 

rainbow trout (Oncorhynchus mykiss) (Catherine et al., 2001) for a dietary 

genistein supplementation of 500µg/g. Here, this suppressing effect of genistein 

can be partly due to its capacity of  inhibit the activity of major digestive 

enzymes: stomach protease and intestine amylase. In vivo and in vitro studies 

indicate genistein (and dadzein) is capable of binding to and activating estrogen 

receptors in rainbow trout (Latonnelle et al., 2000; Bennetau-Pelissero et al., 

2001; Denny et al., 2005; Cosnefroy et al., 2009; Cleveland, 2014 ). This ability 

suggests that they may have negative effects on growth- related mechanisms 
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that are parallel to those of estradiol. In fact, in salmonids E2 negatively affects 

physiological and metabolic processes that support anabolic growth, as down- 

regulating  the growth hormone (GH)/insulin-like growth factor (IGF) axis 

(Holloway and Leatherland, 1998; Norbeck and Sheridan, 2011), and promoting 

catabolic effects on protein turnover in skeletal muscle (reducing rates of 

protein synthesis and increasing rates of protein degradation). Cleveland and 

Weber, in 2011, demonstrated that also phytoestrogens (as genistein) are 

capable of these effects. For example, phytoestrogens have effects on protein 

turnover and cell proliferation in rainbow trout white muscle, in particular, high 

concentrations of these have negative effects on skeletal growth via estrogen 

receptor-dependent and –independent mechanisms (Cleveland, 2014). Many 

studies have been done on the effects that phytoestrogens can have on metabolic 

processes in mammals, as on lipid metabolism and glucose tolerance,  through 

estrogen receptor-dependent and  -independent mechanisms, the latter including 

AMPK and PPAR activation and inhibition of tyrosine kinase activity (Orgaard 

and Jensen, 2008; Arunkumar and Anuradha, 2012; Palacios-Gonzalez et al., 

2014). But few of these studies have been done on the effects of phytoestrogens 

and their mechanisms of action in fish adipose tissue. 

Thus, in this study we want to examine the in vivo effects of  the phytoestrogen, 

genistein, on lipid metabolism in adipose tissue primarily, but also in liver and 

white muscle, and its in vitro effects on adipocytes in culture from rainbow trout 

(Oncorhynchus mykiss). In addition, in vivo effects of genistein on apoptosis- 

related genes expression and autophagy-related genes expression in all three 

tissue of rainbow trout were studied.  
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1.1 Oncorhynchus mikyss (common name “Rainbow trout”) 

 

1.1.1 Taxonomy 

Class: Actinopterygii  

Order: Salmoniformes  

Family: Salmonidae  

Genre: Oncorhynchus  

Species: O. mykiss Walbaum, 1792 

 

 

 

1.1.2 Morphology 

The rainbow trout has an elongate body, the length of which is generally 5 times 

greater than its height. The head has a conical shape and the mouth is slightly 

oblique, with the maxillary bone which extends to the posterior edge of the eye. 

The trout teeth are arranged in 1 or 2 series and are present only on the stem of 

the ploughshare. The lateral line is nearly horizontal and back, before the tail 
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fin, is an adipose fin with a black edge. There aren’t nuptial tubercles, but 

changes take place about the head, mouth and colour in spawning males. The 

body colour of the rainbow trout may vary according to habitat, the size of the 

specimens and their stage of sexual maturation. Generally the body of this 

salmonid has a green-blue shade into dorsal part, while the hip area shows a 

pigmentation which gradually tends to clear and take silvery reflections. On the 

sides there is a pink band along the lateral line which assumes more intense 

shades tending to iridescent when arrives the breeding season. The abdomen of 

the trout has further a colour lighter, almost whitish. 

 

1.1.3 Biology and habitat 

Rainbow trout is a species native to north America, that since 1874 it has been 

introduced in most of the rivers on the planet, for recreational fishery and 

aquaculture. This species has an anadromous life cycle, in fact, it spends a few 

years of life at sea, then, returns to freshwater when spawning begins. These 

animals are characterize by a very rapid growth and, are be able to, in just three 

years, accumulate from 7 to 10 kg of weigh, while normal rainbow trout, in the 

same time, increase by a maximum of 4.5kg. The rainbow trout was introduced 

in Italy about a century ago, and, as a result of its outstanding ability to adapt to 

various environmental conditions, the presence of this salmonid can be found in 

most of the rivers and lakes on the national territory, nowadays. It is a species 

that is easily reproduced in captivity, and, is characterized by very short rates of 

growth.  

Rainbow trout fry have dimensions greater than those of the majority fish 

species, and, this gives the possibility of being able to administer artificial diet 

during the early stages of breeding, so to abbreviate the weaning times. This 

species is very well suited to various temperature conditions and can survive in 

environments characterized by a temperature range between 0 and 27° C. The 
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growth of trout takes place in water temperatures that can vary from 6° to 20° C 

with a thermal optimum between 14° and 18° C , while as regards the 

reproductive activity , the optimal thermal levels are between 10° and 12°C.  

Usually, the maturation of sexual organs takes place on reaching the 3rd-4th 

year of age, but acting on the diet and thermal conditions of the environment, 

this can be anticipated. The eggs of the trout have a diameter ranging from 3 to 

7 mm, and, the females can also produce up to 2000 per kg of body weight. In 

breeding, changing some environmental parameters or through hormonal 

treatments depending on broodstock, it is possible to obtain only females or 

sterile individuals. These last show development similar to that of females, but 

more rapid than that of males. Spawning occurs in the natural environment  in 

spring (January-May), but in breeding, this stage can be moved in time, acting 

on nutrition, on the conditions of photoperiod or through hormonal induction.  

In the wild, adult trout feed on aquatic and terrestrial insects, molluscs, 

crustaceans, fish eggs, minnows, and other small fishes, but the most important 

food is freshwater shrimp, containing the carotenoid pigments responsible for 

the orange-pink colour in the flesh. In aquaculture, the inclusion of the synthetic 

pigments astaxanthin and canthaxanthin in aquafeeds causes this pink 

colouration to be produced. 
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Fig. 1 Production cycle of Oncorhynchus mykiss. 

 

1.1.4 Farm techniques  

The breeding of the trout is generally practiced within intensive structure, in 

which it must constantly be the opportunity to take advantage of waters of 

excellent quality (without aeration - 1 l/min/kg of trout without aeration or 5 

l/sec/tonne of trout with aeration), that meets a number of criteria: 

DO2: near saturation. 

CO2: <2.0 ppm. 

Temperature: 12-21ºC. 

pH: 6.5-8.5. 

Alkalinity (as CaCO3): 10-400 mg/litre. 

Manganese: <0.01 mg/litre. 

Iron: <1.0 mg/litre. 

Zinc: <0.05 mg/litre. 

Copper: <0.006 mg/litre in soft water or <0.3 mg/litre in hard water. 

Tab.1 
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Trout is very sensitive to the presence of nitrogenous substances which are 

derived from the catabolism of proteins, such as , ammonia, nitrates and nitrites. 

A parameter that must always be kept under control in the plants of trout 

farming that use water (with dissolved nitrogen) pumped from underground 

wells , is the oversaturation gaseous water, which must be avoided because it 

causes the formation of gas bubbles in the blood of the fish. Alternatively, river 

water can be used, but temperature and flow fluctuations alter production 

capacity. Trout are animals that can tolerate an higher alkalinity and hardness of 

water compared to acidity, but in any case, it is good practice to use neutral or 

medially alkaline water with a pH between 6.5 and 8.5. However, when the 

above criteria are met, trout are generally on-grown in raceways or ponds 

supplied with flowing water, but some are produced in cages and recirculating 

systems. 

1.1.5 Fry production 

Trout will not spawn naturally in culture systems; thus juveniles must be 

obtained either by artificial spawning in a hatchery or by collecting eggs from 

wild stocks. Larvae are well developed at hatching. The breeders, males and 

females, after being selected, are generally kept separate. The choice of their 

number depends on the number of fry required, and, the ratio which is most 

frequently adopted between males and females is 1:3. The females don’t spawn 

naturally in captivity environment, and when are fully mature, to induce  the 

release of the eggs, it is necessary human intervention. Trout are subjected to an 

anesthetic treatment, and subsequently, eggs are removed manually from 

females by applying a slight pressure on the abdomen  from the pelvic fins to 

the vent area. To reduce the stress of the animals, it has been ideated another 

method of extraction, “air  spawning” ; it consists of insertion of a hypodermic 

needle about 10 mm into the body cavity near the pelvic fins and air pressure (2 

psi) expels the eggs. The air is removed from the body cavity by massaging the 
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sides of the fish. Up to 2000 eggs/kg body weight are collected in a dry pan and 

kept dry, improving fertilization. Males are stripped in the same way as females; 

the semen is collected into containers by pressing, and then, added to eggs.  

Water is added to activate the sperm and allow the eggs to increase in size by 

about  20 percent by filling the perivitelline space between the shell and yoke; a 

process known as 'water-hardening'.  

Fertilized eggs are incubated in hatcheries until the eyed stage is reached; the 

others (non-viable eggs) are removed. A single water source flows (3-4 L/min) 

up through the eggs, spills over into the tray below, thus becoming aerated, 

allowing large numbers of eggs to hatch in a minimal amount of space and 

water. Time required to hatch varies according to the water temperature. With a 

temperature of 3.9°C it takes 100 days , while with 14.4°C requires 21 days, for 

a total of about 370 degrees/day. Fry can remain in trays until swim-up at about 

10 to 14 days after hatching. Hatching of the batch of eggs usually takes 2-3 

days, during which time all eggshells are regularly removed, as well as dead and 

deformed fry. Eggs incubated separately from rearing troughs are transferred to 

rearing troughs after hatching.  

After hatching, the trays are removed and trough water depth is kept shallow (8-

10 cm) with a reduced flow until fry reach 'swim-up' stage, the yolk sac is 

absorbed, and active food searching . Larvae are able to absorb the yolk sac in a 

period ranging from 2 to 6 weeks , depending on the temperature conditions, 

and, when the yolk sac has been absorbed for about 2/3, begins the artificial 

administration of food with frequent meals and diets properly formulated. In 

these rearing troughs, feed pellets, made of fish meal (80 percent), fish oils and 

grains, provide nutritional balance, encouraging growth and product quality, and 

are formulated to contain approximately 50 percent protein, 12-15 percent fat, 

vitamins (A, D and E), minerals (calcium, phosphorus and sodium) and a 

pigment to achieve pink flesh (where desirable). In this phase, it is very 
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important the efficiency of the water exchange; in case of poor availability of 

water, it is appropriate to reduce the loading of the animals in the tanks up to 10 

kg / m3, so as to ensure at least 6 changes of water per day. 

During this period and also in the subsequent phases, it is extremely important 

to calibrate fishes to form groups of uniform size, to facilitate the management, 

and, to reduce losses due to cannibalism. Fry remain in these tanks until the 

completion of ossification of cartilaginous tissues, which usually occurs around 

the 12th week of life. 

1.1.6 Fattening techniques-intensive farming 

When fry reach 8-10 cm in length (250 fish/kg), they are transferred into 

fattening facilities, as concrete raceways, ponds or cages. The raceways are the 

most used in the traditional trout farming, which, usually, are rectangular tanks 

2-3 m wide, 12-30 m long and 1-1.2 m deep. The amount of food that is given, 

the amount of water exchange, and, the amount of oxygen to add in the water 

body, will have to be appropriate to bred biomass and average size of trout. The 

sustainable load into tanks must be established as a function of environmental 

conditions and water temperature. The factor that has the greatest impact on 

growth of trout is the water temperature, which should never deviate too much 

from the optimal temperature levels. With temperatures between 10°C and 

14°C, the trout can reach a weight of 80-100g and a length of 15-20cm in only 

6-8 months after hatching, and using diets high in energy, they reach the size of 

commercialization (250-300 g) in 10-12 months. Alternative on-growing 

systems for trout include cage culture (6 m by 6 m by 4-5 m deep) production 

systems where fish (up to 100 000) are held in floating cages in freshwater and 

marine environments, ensuring good water supply and sufficient dissolved 

oxygen. This method uses existing water bodies at a lower capital cost than 

flow-through systems. However, on one hand, stocks are vulnerable to external 
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water quality problems and fish eating predators (rats and birds), and growth 

rates depend on ambient temperature; on the other, high stocking densities can 

be achieved (30-40 kg/m²) and fish transferred to marine cages have faster 

growth rates, reaching larger market size. Fry of about 70 g weight can attain 3 

kg in less than 18 months. 

1.1.7 Nutrition of farmed trout 

Feeds for rainbow trout have been modified over the years. Rainbow trout feeds 

have undergone a shift since the 1970s (fig. 2); in the same period, the 

percentage of digestible protein has increased, making modern trout feeds much 

more efficient and less polluting.  

    

 

  

 

 

 

 

An additional change in trout feeds has been a reduction of the percentage of 

protein provided by fishmeal and a corresponding increase in the contribution of 

alternate proteins, mainly plant protein concentrates and animal proteins, such 

as poultry byproduct meal. Another shift in formulation of rainbow trout feeds is 

replacement of fish oil with plant oils. In 2006, 88 percent of global production 

of fish oil was consumed in aquafeeds (Tacon and Metian, 2008); for this, in 

2006/2007, there was an increase of fish oil price that leads feed producers to 

replace portions of fish oil with plant oils such as rapeseed oil and soy bean oil.  

 Fig.2 Changes in percent   protein, digestible protein 

and fat in rainbow trout feed. (FAO) 
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About feed ingredients used in rainbow trout feed formulations, these are 

similar throughout the world; in Tab.2, are shown some examples of rainbow 

trout feed formulations: 

Ingredient composition 

(%) 

Life stages/ size class 

 Early fry Fry Fingerling Growe

r 

Broodstock 

Fish meal 68 68 46 30 34 

Corn gluten meal 0 0 2 4 4 

Poultry byproduct meal 2 2 5 6 8 

Feather meal 0 0 4 6 5 

Soybean meal 0 0 5 12 10 

Blood meal, avian 1 1 2 4 4 

Ground wheat 17 17 20 22 20 

Soybean oil 0 0 0 5 0 

Fish oil 10 10 12 9 10 

Vitamin 1.5 1.5 1.5 1.5 1.5 

Mineral 0.5 0.5 0.5 0.5 0.5 

Tab.2 Feed formulae (ingredient composition) of commonly used feed for different life 

stages of rainbow trout in intensive farming structures. 
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1.1.8 Main producer countries 

Main areas where it is practiced aquaculture trout are located in Europe, North 

America, Chile, Japan and Australia. 

 

 

Fig. 3 Main producer countries of Oncorhynchus mykiss (FAO Fishery Statistics, 2006). 

 

 

1.2 Lipid metabolism in liver and adipose tissue  

 

1.2.1 An introduction to lipids 

The noun lipid refers to a large and heterogeneous group of substances 

classified together on the basis of their high solubility in non-polar solvents or 

their relatedness to such compounds. Most of the lipids in eukaryotes are 

derived from acetyl-CoA and belong to three major classes: straight chain fatty 

acids; branched, cyclic, and other specialized fatty acids; and polyprenoid 

compounds, including carotenoids and sterols and their derivatives. Lipids have 
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a number of major roles in all organisms. Perhaps most importantly, they are  

structural components of cell membranes and are essential for energy provision 

and storage. Lipids and fatty acids, along with proteins, are the major 

macronutrients for fish (Sargent et al., 2002). Fish seem not to have evolved 

efficient carbohydrate utilization systems in contrast to terrestrial vertebrates. 

So, carbohydrates are less important as nutrients (quantitatively) for most fish, 

suggesting that fish may satisfy structural carbohydrate and storage 

carbohydrate (glycogen) requirements principally by catabolizing amino acids 

(Cowey and Walton, 1989). The types of lipids that are most vital to energy 

metabolism are fatty acids and triglycerides. Fatty acids are the most commonly 

stored and circulating forms of energy, and triglycerides are the most  common 

non-toxic form of fatty acids. Fatty acids/triglycerides may originate from four 

sources (pool input): de  novo fatty acids synthesis, cytoplasmic triacylglycerol 

stores, fatty acids derived from triglycerides of lipoprotein remnants directly 

taken up by the liver, and plasma non-esterified fatty acids (NEFA) released by 

adipose tissue. The relative importance of these sources depends on species 

differences and on short- and long-term nutritional status and energy balance.  

Fatty acids and triglycerides may also be used in different ways (pool output). 

Triglycerides may accumulate in hepatocytes (while NEFA or activated forms 

of NEFA may not) unless NEFA are oxidized (more or less completely) or 

triglycerides are exported as constituents of very low density lipoproteins 

(VLDL). The triacylglycerol content of hepatocytes is regulated by the activity 

of cellular molecules that facilitates hepatic fatty acid uptake, fatty acid 

synthesis, and esterification (‘input’) and hepatic fatty acid oxidation and 

triacylglycerol export (output). Moreover, fatty acids regulate lipid metabolism 

by binding nuclear receptors that modulate gene transcription. Peroxisome 

proliferator-activated receptors (PPAR) are ligand binding transcription factors 

of the nuclear receptor superfamily, which includes receptors for steroids, 
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thyroids and retinoids (Han et al., 2007; Sertznig et al., 2007). Three types of 

PPAR have been identified (a, b, ɤ), each encoded by distinct genes and 

expressed differently in many parts of the body (Sertznig et al., 2007). They 

form heterodimers with the retinoid X receptor, and these complexes 

subsequently bind to a specific DNA sequence, the peroxisome proliferating 

response element (PPRE) that is located in the promoter region of PPAR target 

genes and modulates their transcription (Tachibana et al., 2008). Gender and 

stage of life cycle influence expression levels of all the PPARs in brown trout; 

estrogen appears to play an important role in differential expression of PPARs 

(Batista-Pinto et al., 2009). In rainbow trout adipose tissue, the gene 

transcriptional levels of PPARs change differentially with the nutritional status 

(Cruz-Garcia et al., 2015). As in mammals, it was found in fish that PPARɤ is 

highly expressed in adipose tissue and acts as a promoter of fat storage and 

adipocyte differentiation (Bouraoui et al., 2008; Cruz-Garcia et al., 2009; 

Albalat et al., 2007). In concordance with this, it was seen that insulin 

administration upregulated this PPAR isotype highly significantly in trout 

adipose tissue in vivo and in in vitro in line with the pro-lipogenic actions of this 

hormone (Cruz-Garcia et al., 2015). PPARɤ gene expression increased during 

adipocyte differentiation in rainbow trout (Bouraoui et al., 2008), but not with 

differentiation of trout myocytes, in agreement with the myogenic development 

program (Rescan, 2008). PPARα and PPARβ are regulated by a  transcriptional 

factor LXR (liver X receptor) in trout myocytes (Cruz-Garcia et al., 2011); 

PPARα is regulated by insulin in trout adipose tissue, not instead PPARβ (Cruz-

Garcia et al.,2015). PPARβ has a controversial role in fish as in mammals; it 

seems to mediate lipolytic effects in gilthead sea bream (Cruz-Garcia et al., 

2009). 

In mammals, PPARɤ is expressed strongly in adipose tissue and is a master 

regulator of adipocyte differentiation (Lehrke et al., 2005). In addition to its role 
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in adipogenesis, PPARɤ is an important transcriptional regulator of glucose and 

lipid metabolism, and is implicated in the regulation of insulin sensitivity, 

atherosclerosis, and inflammation (Lehrke et al., 2005; Semple et al., 2006). 

PPARγ affects transcription rates of a variety of lipogenic target genes such as 

FABP4 (fatty acid binding protein 4), CD36 (thrombospondin receptor), LPL 

(lipoprotein lipase), leptin, ACC (Acetyl-CoA carboxylase), FAS (fatty acid 

synthase), and SCD1 (Stearoyl-CoA desaturase 1) (Lee and Hossner, 2002). 

Additionally, PPARα is responsible for regulating fatty acid β-oxidation (Varga 

et al., 2011).  Regarding PPARβ, little is known about it in the context of target 

tissues, target genes, lipid homeostasis, and functional overlap with PPARα, and 

PPARɤ. The activation of PPARβ in skeletal muscle cells programs a cascade of 

gene expression designed to activate catabolism, and energy expenditure 

(Dressel, et al., 2003). In adipose tissue, instead,  even if  PPARβ is not directly 

implicated in the control of adipogenesis, because alone  is not able to promote 

lipogenesis (but only together with PPARɤ), however, it plays a role in the 

adaptive response of adipose tissue to dietary fatty acid content, (Neels and 

Grimaldi, 2014). 

Definitely, fatty acids can be produced from acetyl CoA into “de novo” 

Lipogenesis, and can be broken down to acetyl CoA by β-oxidation, a cyclical 

pathway. Triglycerides, instead, accounted as the main storage form of fatty 

acids, are produced through the process known as Lipogenesis or synthesis of 

TG, while their hydrolysis is known as Lipolysis, with release of fatty acids. 

1.2.2 Hormonal regulation of lipid metabolism and its dependence on diet. 

Adipose tissue is a specialized organ that functions as one of the major storage 

sites for fat in the form of triglycerides and provides a buffer for energy 

imbalances. In mammals, the equilibrium between lipolytic and lipogenic 

pathways in adipose tissue is influenced by nutritional and endocrine factors 
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and by components of the immune response (Rosen et al., 2006). There is 

limited knowledge on the hormonal control of lipid turnover in fish adipose 

tissue (Albalat et al., 2005; Polakof et al., 2011). It has been seen that in 

mammals, GH reduces body fat, inhibits adipocyte differentiation, decreases 

lipogenesis, and increases lipolysis (Herrington et al.,2001; Xu et al., 2009). 

Also in isolated trout adipocytes, GH enhances lipolysis and inhibits, at least in 

part, lipogenesis. In the first case, through the direct  modulation of HSL 

activity probably, not at a transcriptional level; in the second, through the down-

regulation of FAS expression during fasting (Cruz-Garcia et al., 2015). It has 

been reported that growth hormone (GH), in addition to being a growth 

promoter, exerts a lipolytic effect in gilthead sea bream adipocytes too (Albalat 

et al., 2005; Salmeron et al., 2013). GH transgenic coho salmon (Leggatt et al., 

2009) are shown to increase their utilization of lipids for synthetic roles to 

maintain accelerated growth, but the specific effects in adipose tissue of GH 

overexpression remain unknown.  

Insulin acts as a promoter of carbohydrate and lipid deposition by reservoir 

tissues during the post-feeding period in fish, although its concentration 

decreases during fasting periods (Navarro et al., 2004), with an increase in 

circulating GH (Cruz-Garcia et al., 2015). During fasting, insulin down-

regulates PPARα expression, suggesting a reduction in fatty acids oxidation 

associated with the enhanced use of fatty acids for re-esterification and 

triglyceride synthesis. Studies have demonstrated the anabolic role of insulin in 

rainbow trout adipocytes and myocytes, where it stimulates glucose and fatty 

acid uptake (Capilla et al., 2004; Sanchez-Gurmachez et al., 2010). Insulin also 

stimulates lipoprotein lipase (LPL) activity in rainbow trout adipose tissue 

(Albalat et al., 2006) and reduces the basal lipolysis level in rainbow trout and 

gilthead sea bream adipocytes (Albalat et al., 2005; Albalat et al., 2005). 
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Insulin-like growth factor (IGF)-I is structurally and functionally similar to 

insulin but is more potent as a growth factor and a metabolic controller in 

rainbow trout and gilthead sea bream myocytes and adipocytes (Salmeròn et al., 

2013; Bouraoui et al., 2010; Codina et al., 2008; Castillo et al., 2004). In 

vertebrates, many of the growth-promoting actions of GH are known to be 

mediated indirectly through the stimulation of IGF transcription, mainly by the 

liver, or locally by extra hepatic tissues (Chia, 2014), but the mechanisms of 

action involved in GH proliferative and metabolic effects in fish are not well 

known (Bergan et al., 2013). 

In contrast, tumor necrosis factor a (TNFα), secreted by adipose tissue, that a 

part from acts as a pro-inflammatory cytokine, it also regulates lipid cell uptake 

and degradation of triglycerides because it is lipolytic in fish and mammalian 

adipose tissue (Saera-Vila et al., 2007; Albalat et al., 2005; Zhang et al., 2002). 

TNFα has been described as a limiting factor for adiposity in gilthead sea bream 

(Bouraoui et al., 2008; Saera-Vila et al., 2007), and it has been shown to 

promote lipolysis in isolated adipocytes of rainbow trout and gilthead sea bream 

(Albalat et al., 2005; Cruz-Garcia et al., 2009). The mechanisms underlying the 

action of TNFa on lipolysis are complex, and modulation of the expression of 

peroxisome proliferator-activated receptors (PPARs) appears to be significant 

(Cruz-Garcia et al., 2009). In fact, it has been reported by Cruz-Garcia that 

TNFα decreases PPARɤ expression in adipocytes in line with its anti-fat storage 

effects and anti-insulin actions described in relation to the lipid metabolism of 

mammals and fish (Bou et al., 2015; Nieto-Vazquez et al., 2008). Regarding 

PPARα expression after TNFα treatment in isolated cells, it remains to be 

elucidated, but points to a possible pathway for the inhibition of fatty acid 

oxidation in adipose tissue. 

The management of fat deposition has become a key area of interest in fish 

farming in the quest to obtain a high-quality product with good nutritional value 
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and to maintain fish health. Regarding the growth in fin-fish aquaculture, it has 

been made possible by the  development of artificial diets or feeds formulated to 

satisfy essential  requirements (amino acids, fatty acids, vitamins and minerals, 

etc.), and provide macronutrients (protein, lipid, carbohydrate) and energy in 

balance to optimize growth. Thus, it has been the requirements of aquaculture 

that have driven research into fish nutrition, including lipid and fatty acid 

metabolism and its regulation. Dietary lipid and fatty acids can have three 

primary fates in fish. They can be incorporated into cell membranes and hence 

the flesh of the fish, they can be oxidized to provide energy, or lipid can be 

deposited in adipose or other tissues as energy storage (Tocher, 2003). 

Therefore, from an aquaculture perspective, the lipid (fat) content and the fatty 

acid composition of the diet must be optimized to enable high growth rates, 

ensure fish health, and, at the same time, maintain the nutritional benefits of fish 

for the human consumer (Sargent et al., 2002; Tocher, 2003). The lipid content 

of pelleted diets has increased greatly in recent years due in part to the technical 

advancements in the production of feed. This increase is driven by the 

observation that more energy can be supplied by dietary lipid,  less protein will 

be used for energy, and so  more dietary protein can be “spared” for synthesis of 

new tissue/flesh (Hemre and Sandnes, 1999). However, although protein 

sparing by dietary lipid is widely accepted, the limits to its effectiveness, or the 

mechanisms by which it might occur, have not been accurately defined for any 

fish (see Company et al., 1999). Consequently, dietary formulations have 

maximized lipid content in order to satisfy commercial pressure to increase 

growth rates and reduce production times, despite the fact that there is a strong 

relationship between dietary lipid levels and undesirable levels of lipid in the 

carcass of fish (Cowey and Cho, 1993). In fact, the administration of high-lipid 

feed can lead to an unwanted increase in fat deposition that alters sensory and 

organoleptic characteristics (Kjaer et al., 2008; Turchini et al., 2009). In 

addition, because of fatty acid composition of fish lipids generally reflects the 
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fatty acid profile of  the diets (Watanabe, 1982), studies have been conducted 

into the lipid metabolic disorders associated with the content and type of lipids 

in the diet (Turchini et al., 2009; Benedito-Palos et al., 2008) and the dietary 

effects on macrophage function and stress susceptibility (Sitjà-Bobadilla et 

al.,2005;Gjoen et al.,2004). Unfortunately, while  in higher vertebrates, many  

studies have shown that changes in dietary fatty acid composition can induce 

modification of hepatic lipogenesis (Blake & Clarke,1990; Clarke et al. 1990, 

Salati & Amir-Ahmady, 2001), lipid transport in blood (Grundy & Denke, 

1990; Fernandez & West, 2005) and tissue lipid uptake (Montalto & 

Bensadoun, 1993; Raclot et al., 1997), a few of them have been done on fishes 

as on rainbow trout. One of these studies on rainbow trout, conducted by 

Richard  et al., in 2006, has shown that a dietary vegetable oils can have a little 

effects on hepatic lipogenesis, lipid transport and tissue lipid uptake; in 

particular, it was seen that hepatic lipogenesis and lipid uptake in perivisceral 

adipose tissue, white muscle and liver weren’t modified; only regarding the 

lipid composition of plasma, it was seen a decrease in plasma cholesterol and 

LDL (low density lipoproteins), because of  expression of LDL receptor  gene 

in the liver that was down-regulated. 

1.2.3 Fatty acids synthesis and uptake 

Two major tissues produce fatty acids in the body: the liver and the adipose 

tissue. Fatty acids synthesized in the liver are exported through lipoprotein 

production, and thus provide an energy source and structural components for 

membrane building. In adipose tissue, de novo synthesis of fatty acid directly 

contributes to in situ fat deposition and long-term energy storage. Fatty acids 

synthesis occurs in the cytosol and uses acetyl CoA to build a long chain fatty 

acid.  As shown in fig.4, the first step of fatty acids synthesis consists in a 

conversion of two-carbon acetyl CoA into a three-carbon malonyl CoA (the 

substrate of the multiprotein enzyme fatty acid synthase), this thanks to an 
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enzyme, acetyl CoA carboxylase. Fatty acids synthase uses malonyl CoA (and 

reducing energy of NADPH) to extend the length of the fatty acid, adding two 

carbons in a series of four reactions: 1) condensation, 2) reduction, 3) 

dehydration, 4) reduction. At the end of one cycle (5), the fatty acid shifts to the 

initial position to allow the next malonyl CoA to bind. After seven cycles, when 

the fatty acid has grown to 16 carbons, palmitate has been produced; this is a 

common component of fatty acid stores and from it can be produced fatty acids 

with longer chains. (Fig. 4).  

 

Besides the synthesis capacity of adipose tissue and liver,  these tissues take up 

NEFA from the blood in proportion to their concentration. NEFA enter cells via 

transporters (fatty acid transport protein (FATP) or fatty acid translocase (FAT)) 

or diffusion. Into cells, long-chain fatty acids of 14 carbons or more are 

covalently bound and activated by fatty acid binding protein (FABP) or acyl-

CoA synthetases (ACS) found in the microsomes and outer mitochondrial 

membrane. These transport fatty acids to intracellular compartments (for 

metabolism) or the cellular nucleus (to interact with transcription factors). 

      Fig.4 Fatty acid synthesis. (Animal Physiolology, Moyes and Schulte, 2006). 
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However the cells with these fatty acids, rapidly, assimilate them into neutral 

and polar lipids, and some are oxidized. The result of these metabolic pathways 

is to keep intracellular NEFA and fatty acyl-CoA very low. 

1.2.4 Β-oxidation of fatty acids 

The catabolism of fatty acids can occur by β-oxidation in two different 

organelles in the cells, mitochondria and peroxisomes. Red muscle, liver, and 

heart are generally regarded as the most important tissues for β-oxidation in 

fish. The fatty acid oxidation pathway happens primarily into mitochondria and 

results in the production of acetyl CoA. Depending on conditions, this acetyl-  

CoA can enter the TCA cycle or be destined to other pathways. Because the 

substrate for β-oxidation is fatty acyl CoA, cells must first convert fatty acids to 

their CoA esters using a fatty acyl CoA synthase. While short and medium 

chain fatty acids are able to enter the mitochondria directly (where they are 

activated by a mitochondrial fatty acyl CoA synthase), Palmitate (and others as 

it) that cannot cross outer mitochondrial membrane, is activated by an 

extramitochondrial fatty acyl CoA synthase. Because mitochondria aren’t able 

to import any fatty acyl CoA directly, they use a multienzyme complex ( known 

Fig. 5 Fatty acid transport into mitochondria. (Animal Physiolology, Moyes and Schulte, 

2006). 
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as carnitine palmitoyl transferase, CPT) and this transport process is called the 

“carnitine shuttle” (Fig.5). After that fatty acyl CoA has crossed the outer 

mitochondrial membrane, is converted to fatty acyl carnitine by the enzyme 

CPT-1 releasing coenzyme A (CoASH). After that fatty acyl carnitine is 

transported across the inner mitochondrial membrane by the carnitine-acyl 

carnitine translocase, the enzyme CPT-2 

converts it into fatty acyl CoA. This 

elaborate transport process provides an 

additional level of control for the 

oxidation of long chain fatty acids as 

Palmitate. Once inside the mitochondria, 

fatty acids enter the β-oxidation pathway 

(Fig.6). This is a cyclical  pathway that 

sequentially cuts pairs of carbons of fatty 

acid to form acetyl CoA. Β- oxidation 

consists of 4 steps: 

 

1. Oxidation 

2. Hydration 

3. Oxidation 

4. Thiolysis  

 

 

 

 

 

Fig.6 Fatty acid oxidation. (Animal 

Physiolology, Moyes and Schulte, 2006).  
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This cycle is repeated until  all the acyl CoA of the fatty acid are converted to 

acetyl CoA. 

1. The first step provides a dehydrogenation of the fatty acyl CoA (a loss of 

hydrogen), forming double bind between carbon 1 and carbon 2 of the  

molecule; this reaction is catalysed by enzyme acyl CoA dehydrogenase 

(present on mitochondrial inner membrane) that uses as coenzyme FAD 

that, in turn, gaining the hydrogen atoms dissociated, become FADH2. 

The oxidation reaction is the following: 

          Fatty acyl CoA     acyl CoA dehydrogenase         Enoyl CoA + FADH2 

2. The second step is a reaction of hydration catalyzed by the enzyme Enoyl 

CoA hydratase, with the addition of a H2O molecule to double bind 

formed to have β-hydroxyl CoA, according to this reaction: 

 

Enoyl CoA  β-hydroxyl CoA 

                              H2O 

 

3. The third step is an another oxidation reaction catalyzed by enzyme β-

hydroxyacyl dehydrogenase that has as co-factor NAD
+
; this reaction of 

dehydrogenation provides a transformation of the hydroxyl group on the 

C3 into a carbonyl group, with the loss of two hydrogen atoms, one of 

which is gained by NAD
+
 that become, in turn, NADH according to the 

following reaction: 

Β-hydroxyl CoA    β-hydroxyacyl dehydrogenase         β-ketoacyl CoA 

 

4. The last step is a thiolysis reaction that provides a separation of the 

remaining carbonyl group; it is catalyzed by an enzyme thiolase that uses 
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as co-enzyme CoASH which, in turn, acts as lytic agent to form an acetyl 

CoA plus a fatty acyl CoA, following the reaction: 

 

β-ketoacyl CoA         thiolase                Acyl CoA + Acetyl CoA  

                          CoASH 

 

About 30% of the energy liberated from fatty acids derives from reducing  

equivalents (FAD and NAD
+
) produced in β-oxidation. The remaining 70% 

derives, instead, from oxidation of acetyl CoA in the TCA cycle (citric acid 

cycle, also known as Krebs cycle). Mitochondrial β-oxidation isn’t the only 

pathway trough which it happens fatty acids breakdown, but many cells have 

other pathways that are complementary to the mitochondrial. In the 

peroxisomes occurs a β-oxidation that processes very long chain fatty acids 

(more than 22 carbons), which aren’t efficiently oxidized in the mitochondrial 

pathway; this process occurs through a few cycles, releasing the shortened fatty 

acids into the cytoplasm where they can be oxidized by mitochondrial β-

oxidation. A third pathway of fatty acid oxidation is called ω-oxidation and 

occurs in the endoplasmic reticulum of liver and kidney. However, this process 

isn’t important for the production of energy but can used in order to synthetize 

other metabolites.  

 

1.2.5 Lipogenesis 

A triglyceride is an ester composed of glycerol and three fatty acids. A lot of 

tissues can produce triglyceride from fatty acids for a long-term storage of this 

metabolic fuel. The tissues that act as lipid storage tissues, producing o 

releasing fatty acids on behalf of other tissues, are adipose tissue and liver in 

vertebrates. About liver, it has been seen that species with limited hepatic 
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lipogenesis have less ability to secrete 

triacylglycerol from the liver compared with 

species in which the liver is a major or 

moderate source of lipogenesis (Pullen et al., 

1990). In these species, fatty acids could 

preferentially be esterified into phospholipids 

that would be incorporated into membranes, 

then transferred to pre-high-density lipoprotein 

particles (Yokoyama, 2006). However, in 

some cases, the liver can also synthesize 

triglycerides when high concentrations of 

NEFA are present and phospholipid transfer to 

membranes is exceeded. Triglyceride 

synthesis, or lipogenesis, is a multistep 

pathway through which from glycerol 3-

phosphate (produced from glycolysis), fatty 

acids (activated into their CoA ester by fatty 

acyl CoA synthase) are added sequentially to 

carbon 1 then carbon 2 to form phosphatidic 

acid; after removal of the phosphate group, 1,2-diacylglicerol is formed. At the 

end with the addition of a third fatty acid, triglyceride is formed (Fig.7). 

Triacylglycerol synthesis is under the control of transcription factors and 

nuclear receptors such as sterol regulatory element binding proteins SREBP-1c, 

carbohydrate regulatory element binding protein (ChREBP) (Dentin et al., 

2006), peroxisome proliferator-activated receptor c (PPARɤ), liver X receptors 

(LXRs) and their ligands. These play an important role together with hormonal 

and nutritional regulators, such as insulin, carbohydrate, and fatty acids 

(Coleman and Lee, 2004). 

Fig.7 Triglyceride synthesis. (Animal 

Physiolology, Moyes and Schulte, 2006). 
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1.2.6 Triglyceride export (VLDL synthesis and secretion) 

The liver synthetize VLDL (very low density lipoproteins), enclosing inside 

them a large amount of triglycerides. VLDL are lipoproteins that, like the other 

(chylomicrons, IDL, LDL, HDL), are constituted of a central core with lipids 

inside, and an outer shell constituted of one or more apoproteins, phospholipids 

with polar groups on the outside and free cholesterol; but, differ from the other 

lipoproteins in lipid composition and apoproteins, which subserve both the lipid 

transport (allowing them to move in the aqueous smoothly), and the regulation 

of lipoproteins metabolism, through interaction with plasma enzymes and with 

specific cellular receptors.  In particular, chylomicrons provide the transport of 

exogenous lipids from the intestine to the tissues; LDL and HDL are 

characterized by an high content in cholesterol, carrying it into blood; but, while 

the first give it to the tissues, the latter, instead, remove superfluous cholesterol 

from pheripheral tissues and transport it to the liver.  

VLDL, synthetized into liver, transport endogenous triglycerides  from liver to 

the tissues. Apoprotein B100 (apoB100; and apoB48 in a few species) is the key 

component whose rate of synthesis in the rough endoplasmic reticulum controls 

the overall rate of VLDL production. Lipid components that are synthesized in 

the smooth endoplasmic reticulum are added by the microsomal triacylglycerol 

transfer protein to apoprotein B (White et al., 1998). After being carried to the 

Golgi apparatus in transport vesicles, the apoproteins are glycosylated. 

Secretory vesicles bud off the Golgi membrane, migrate to the  membrane of the 

hepatocyte, then fuse with the membrane and release the VLDL into blood , 

through which , the latter come to pheripheral tissues, as muscle or adipose 

tissue, where release triglycerides transported. After they have given a good part 

of  triglycerides to the tissues, their density and content in cholesterol increase, 
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so, firstly, become IDL (intermediate density lipoprotein), then, losing 

triglycerides again, LDL (low density lipoprotein). There are important species 

differences in the ability to export triglycerides from the liver as VLDL despite 

similar rates of esterification of fatty acids to triglycerides. It has been 

suggested that among different species, the rate of export of triglycerides as 

VLDL from the liver is proportional to its lipogenic capacity. For example, 

some animals that don’t synthetize fatty acids in the liver also have low rates of 

triglycerides export from the liver, with an increased risk of fat accumulation in 

this tissue; instead, others, in which lipogenesis occurs predominantly in the 

liver (chicken and fish), or in adipose tissue and liver (rabbits and rats) produce 

very high/intermediate rates of VLDL (Pullen et al., 1990). The origin of the 

fatty acids, that constitute triglycerides, can affect the rate of VLDL export. In 

obese mice, de novo fatty acids synthesis in the liver does not stimulate VLDL 

production (Wiegman et al., 2003). Rather, plasma exogenous NEFA, seem to 

play an important role in enhancing hepatic esterification and stimulating VLDL 

production (Julius, 2003), as it has been seen in rats. 

 

1.2.7 Lipolysis 

Triglyceride breakdown, or lipolysis, needs enzymes called lipases that attack 

triglyceride molecule, breaking the bond between the fatty acid and glycerol. 

There are two types of lipases, an hormone-sensitive lipase (HSL) that breaks 

off two fatty acid from triglyceride molecule to form diacylglyceride, and, 

monocylglyceride lipase that completes the breakdown of triglyceride, releasing 

the last fatty acid and separating it from glycerol. The liberated fatty acids are 

either used directly into the cell or introduced into circulation for uptake by 

other tissues (such as liver or muscle) that can use them for energy metabolism. 
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1.2.8 Adipose tissue and “Adipogenesis” 

The mesenteric adipose tissue is an organ of fat accumulation in fish which, 

together with the muscle and liver, controls the lipid homeostasis and energetic 

balance of the animal (Jobling and Johansen, 2003; Sheridan and Kao, 1998), 

and, at the same time, it also acts as an endocrine organ secreting adipokines 

which act as potent messengers to distant organs such as the liver and muscle to 

maintain the body's energy balance (Gregor and Hotamisligil, 2007).   

Adipose tissue stores lipids and provides energy from lipid stores. Triglycerides,  

which come from the diet, are hydrolyzed by lipoprotein lipase (LPL) and the  

fatty acids released are taken up by the adipocytes and accumulated in droplet 

form. In response to energy demands, (HSL), after  phosphorylation by protein  

kinase A, can access the lipid droplet  and hydrolyze the triglycerides into 

glycerol and fatty acids (Lafontan and Langin, 2009).In fish as in mammals, the 

development of adipose tissue is a continuous process which includes the 

hypertrophy of existing adipocytes and the proliferation of new ones. The 

training process of new adipocytes from undifferentiated mesenchymal cells is 

called adipogenesis (fig.8); this occurs thanks to a transcriptional factor PPARɤ 

(Peroxisome Proliferator Activated Receptor gamma,), that activates other 

transcriptional factors, and by which, the precursor cells become lipoblast, and 

then, pre-adipocytes; the latter, then, proliferate and differentiate into 

adipocytes, which, in turn, accumulate lipid droplets.  
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Fig.8 Adipogenesis 

 

These processes are known to be affected by diet in mammals, but how dietary  

changes affect the capacity for enlargement of adipocytes or the  differentiation  

of new ones is poorly understood in fish. For example, it was seen by Cruz-

Garcia et al. in a study conducted in 2011 on gilthead sea bream (Sparus Aurata 

L.) that fish oil substitution by 66% vegetable oils in a diet results in an increase 

of lipolytic activity and adipocyte cell size. Therefore, dietary vegetable oil, 

causing changes in tissue fatty acids composition, can affect the metabolism of 

gilthead sea bream adipocytes and the proliferation of new cells which could 

potentially affect other organs such as the liver. It has been suggested that 

excessive lipid accumulation in the liver or steatosis is due in part to the 

increased hepatic uptake of fatty acids released from adipose tissue with 

enhanced lipolysis (Benedito-Palos et al., 2008).  

 

1.2.9 The adipocyte life cycle 

Adipocytes are derived from mesenchymal stem cells, which have the potential 

to differentiate into myoblasts, chondroblasts, osteoblasts or adipocytes. The 

adipocyte life cycle includes alteration of cell shape and growth arrest, clonal 

storage of lipid and finally cell death (Gregoire, 2001) (fig. 9). During the  

growth phase, preadipocytes resemble fibroblasts morphologically. Pref-1, a  

Preadipocytes Mature 

adipocytes 

Day 0 Day 7 Day 10 

    Confluence 
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preadipocyte-secreted factor serves as a marker for preadipocytes and is 

extinguished during adipocyte differentiation (Wang, et al., 2006). At 

confluence, preadipocytes enter a resting phase called growth arrest before 

undergoing the differentiation process. Two transcription factors, 

CCAAT/enhancer binding protein (C/EBPα), and peroxisome proliferator-

activated receptor PPARγ were shown to be  involved in the preadipocyte 

growth arrest that is required for adipocyte  differentiation (Umek, et al., 1991). 

Following growth arrest, preadipocytes must receive an appropriate 

combination of mitogenic and adipogenic signals to continue through the 

subsequent differentiation steps. During the process of differentiation, 

preadipocytes undergo one round of DNA replication leading to clonal 

amplification of committed cells (Pairault, et al., 1979). The induction of 

differentiation also results in drastic change in cell shape as the cells convert 

from fibroblastic to spherical shape. Following induction, a dramatic decrease in 

Pref-1 expression accompanies a rapid increase in the expression of C/EBPβ, 

followed by expression of C/EBPα and PPARγ (Rosen, et al., 2002). During the 

terminal stages of differentiation, the mRNA levels for enzymes involved in 

triacylglycerol metabolism like glycerol-3-phosphate dehydrogenase, fatty acid 

synthase and glyceraldehyde-3-phosphate dehydrogenase, increase to a great 

extent (Paulauskis, et al., 1988; Spiegelman, et al., 1983). Finally, the total 

number of adipocytes change throughout life, and new adipocytes can be 

formed or can be removed by the process of apoptosis. 
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Fig.9 Mesenchymal stem cells are the precursors of several different types of cells, 

including myoblasts, chondroblasts, osteoblasts and preadipocytes. Once preadipocytes 

are triggered to mature, they begin to change shape and undergo a round of cell 

division known as clonal expansion, followed by initiation of the genetic program that 

allows them to synthesize and store triglycerides. Mature adipocytes can continue 

storing lipid when energy intake exceeds output, and they can mobilize and oxidize lipid 

when energy output exceeds input. Mature adipocytes can also undergo apoptotic cell 

death under certain conditions. 

 

1.3 Apoptosis and autophagy 

Cell death has been subdivided into the categories apoptosis (Type I), 

autophagic cell death (Type II), and necrosis (Type III). The boundary between 

Type I and II has never been completely clear and perhaps does not exist due to 

intrinsic factors among different cell types and the crosstalk among organelles 

within each type. Apoptosis can begin with autophagy, autophagy can end with 

apoptosis, and blockage of caspase activity can cause a cell to default to Type II 

cell death from Type I. 
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 Fig.9 Types of cell deaths. (Richard A. Lockshin and Zahra Zakeri, 2004) 

The controlled cells deaths frequently display substantial caspase-independent 

autophagy or they are predominantly apoptotic. Most apoptotic deaths are 

caspase-dependent, but there are claims of apoptotic morphology in situations in 

which caspase activity is equivocal. Caspase activation can occur by means of 

ligation of a membrane-bound receptor or by means of metabolic changes 

resulting in depolarization of mitochondria and release of cytochrome c and 

APAF-1. Other metabolic means of activating apoptosis include UPR (unfolded 

protein response) that is a cellular stress response related to the “ER 

(endoplasmatic reticulum) stress; this process is usually activated in response to 

an accumulation of unfolded or misfolded proteins in the lumen of the 

endoplasmatic reticulum. If it doesn’t restore the normal function of the cell,  

the UPR process can lead to apoptosis (Lockshin and Zakeri, 2004). The 

“Apoptosis” process was described for the first time by Kerr et al., in 1972, who 

asserted that apoptosis is a mechanism of controlled cell deletion, which appears 

to play a complementary but opposite role to mitosis in the regulation of animal 

cell populations. Its morphological features suggest that it is an active, 

inherently programmed phenomenon, and it has been shown that it can be 

initiated or inhibited by a variety of environmental stimuli, both physiological 

and pathological (Kerry et al., 1972). In particular, they described the 

morphological changes that take place during the evolution of apoptosis. The 

latter characteristically affects disseminated single cells, and is manifested 
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histologically by the formation of small, roughly spherical or ovoid cytoplasmic 

fragments. Electron microscopy shows that the structural changes in apoptosis 

take place in two discrete stages (Fig. 10) (Kerr et al., 1972): the first comprises 

the formation of apoptotic bodies, the second their phagocytosis and 

degradation by other cells. The condensation is presumably a consequence of 

the extrusion of water, but its mechanism is still unknown. The formation of 

apoptotic bodies involves marked condensation of both nucleus and cytoplasm, 

nuclear fragmentation, and separation of protuberances that form on the cell 

surface (Fig. 10) (Kerr, 1971) to produce many membrane compact, but 

otherwise well preserved cell remnants of greatly varying size. The initial 

morphological events have not been identified: apoptotic cells have already 

condensed and separated from their neighbours, and the nuclear chromatin is 

aggregated in dense masses beneath the nuclear envelope (Kerr, 1971). Fully 

developed apoptotic bodies show closely packed organelles, which may 

themselves be condensed, but which are apparently intact, both chemically 

(Kerr, 1965, 1967; Ballard and Holt, 1968) and structurally. Lucent cytoplasmic 

vacuoles and dense masses of nuclear material are seen in some bodies. 

The content of an apoptotic body depends on the cellular constituents that 

happened to be present in the cytoplasmic protuberance that gave rise to it; 

small bodies thus occasionally consist almost entirely of condensed nuclear 

chromatin , whereas others are composed only of cytoplasmic elements. It is 

difficult to determine precisely the time taken for the sequence of events 

described above, even when augmented by various stimuli, the process appears 

to start in individual cells of the same organ or tissue at different times. 

However, examination of the serial changes that take place in several 

experimental models (Kerr, 1971; Crawford et al., 1972; Wyllie et al., 1972b) 

suggests that the process is completed fairly rapidly: bodies may form and 

disappear within 24 hours. 
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Fig.10 Morphological features of apoptosis. (Kerr et al. 1972). 

Currently, the morphology and behaviour of apoptotic cells is largely explained 

by activation of caspases (cysteinyl aspartate specific proteinase), and apoptosis 

is considered to be nearly synonymous with caspases activation.  Among them, 

caspase-3 is a frequently activated death protease, catalyzing the specific 

cleavage of many key cellular proteins. However, the specific requirements of 

this (or any other) caspase in apoptosis have remained largely unknown until 

now. Pathways to caspase-3 activation have been identified that are either 

dependent on or independent of mitochondrial cytochrome c release and 

caspase-9 function. Caspase-3 is required for some typical hallmarks of 

apoptosis, and is indispensable for apoptotic chromatin condensation and DNA 

fragmentation in all cell types examined. Thus, caspase-3 is essential for certain 

processes associated with the dismantling of the cell and the formation of 

apoptotic bodies, but it may also function before or at the stage when there is 

the loss of cell viability (Alan et al., 1998).In most cells the machinery for 

killing the cell is present but inactive long before the cell is induced to die, and 
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death appears to be a release from inhibition. So, it is assumed that classical 

apoptosis is a caspase-dependent form of cell death, whether triggered by 

extrinsic (cell surface receptor) or intrinsic (mitochondrial depolarization) 

means. So, the  vast majority of maturing or mature cells possess the machinery 

for self-destruction in the form of inactive proenzymes (pro-caspases) as well as 

machinery for regulating or adjusting the level at which the proenzymes can be 

activated. Cells normally hold the machinery in abeyance, and default to its 

activation when any of numerous conditions define an imperfect situation for 

the cells. Finally, we can say that as an antagonist of cellular proliferation, 

apoptosis contributes to maintaining homeostasis between cell production and 

elimination of superfluous cells produced, that elude mechanisms of control of 

cell development or that undergo genetic damage. 

About autophagy process, this is usually defined as a non-selective vacuolar 

degradative pathway conserved in eukaryotic cells, starting with the formation 

in the cytoplasm of a multi-membrane-bound compartment named 

autophagosome. The discovery of autophagy was contemporary to that of 

lysosomes by de Duve and Wattiaux (de Duve & Wattiaux, 1966). At the same 

time, the term autophagic cell death or type II programmed cell death (PCD II) 

was introduced to describe a cell death different from apoptosis or type I 

programmed cell death (PCD I) (Schweichel & Merker, 1973) and reviewed  by 

Clarke (1990). From these data it appeared that autophagy is a cell response to 

stress, which under certain circumstances can lead to cell death. However, the 

precise role of autophagy as a cell-death mechanism remains to be explored 

(Lipinski, & Degterev, 2003). Autophagy is an evolutionarily conserved 

lysosomal pathway involved in the turnover of long-lived proteins and 

organelles (Dunn, 1994; Klionsky & Ohsumi, 1999; Seglen & Bohley, 1992). 

Autophagy starts with the formation of a multilayer-membrane bound vacuole 

(autophagosoma), in this step, cytoplasmic constituents, including organelles, 
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are sequestered by a unique membrane called the phagophore or isolation 

membrane, which is a very flat organelle like a Golgi cisterna. Complete 

sequestration by the elongating phagophore results in formation of the 

autophagosome, which is typically a double-membraned organelle. This step is 

a simple sequestration, and no degradation occurs. The autophagosomal 

membrane is derived from a pre-autophagosomal structure of uncertain origin 

(Mizushima et al., 2001; Suzuki et al., 2001). A first step towards the formation 

of the autophagosome is the expansion of the pre-autophagosomal membrane. 

This step is dependent upon signaling molecules that modulate the activity and 

the expression of some “autophagy genes”. In the next step, autophagosomes 

fuse with lysosomes (in metazoan cells) or vacuoles (in yeast and plant cells). 

The inner membrane of the autophagosome and the cytoplasm-derived materials 

contained in the autophagosome are then degraded by lysosomal/vacuolar 

hydrolases. These degrading structures are often called “autolysosomes” or 

“autophagolysosomes”. In mammalian cells, most autophagosomes receive 

input from endocytic compartments (Stromhaug & Seglen, 1993; Liou, Geuze, 

Geelen, & Slot, 1997) to form a hybrid organelle called the amphisome 

(Stromhaug & Seglen, 1993). Studies in rat hepatocytes showed that all 

lysosomes are able to fuse with autophagic vacuoles to degrade the sequestered 

material (Fengsrud et al., 1995). In some cases direct fusion of autophagosomes 

with lysosomes was observed (Lawrence & Brown, 1992). However, once 

macromolecules have been degraded in the lysosome/vacuole, monomeric units 

(e.g., amino acids) are exported to the cytosol for reuse; for example, amino 

acids can be used as an energy source through the tricarboxylic acid (TCA) 

cycle, or they can be used to synthetize proteins, which are important for 

adaptation to starvation environments; however, little is known about this step. 

So about roles of autophagy , it is constitutive in all cell types containing a 

lysosomal compartment. This function is involved in cytoplasmic homeostasis 

because it controls the turnover of long-lived proteins and probably also the 
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remodeling of the cytoplasm. But autophagy can be also stimulated in response 

to different situations of stress, such as starvation, change in cell volume, 

oxidative stress, accumulation of misfolded protein, hormonal signaling, 

irradiation and xenobiotic treatment. About  role of autophagy in adaptation to 

starvation, it was seen that the breakdown of proteins by autophagy produces 

amino acids and other elements needed for intermediary metabolism and for 

biosynthetic pathways. For this, it’s clear that amino acids are regulators of 

autophagy. Although autophagy is considered to be a non-selective process, 

selective sequestration of organelles can be observed in various 

pathophysiological and/or stress situations. Definitively, in addition to diseases 

as  myopathies, neurodegenerative disorders and cancer, where alterations in the 

autophagic pathway and/or deficiency in autophagy genes are involved, the role 

of autophagy during physiological processes falls into three categories: (1) 

autophagy is involved in remodeling during development and differentiation; 

(2) autophagy is involved in the production of amino acids when nutrients fall 

short; (3) autophagy is involved in the elimination of unwanted and damaged 

organelles and molecules, which is likely to be an important function during the 

adult life span.  

Free fatty acids (FFAs) are taken up by hepatocytes and converted into 

triglycerides (TGs) for storage with cholesterol in lipid droplets (LDs). LD-

sequestered TGs continually undergo hydrolysis, generating FFAs that are 

predominantly re-esterified back into TGs for storage. Nutrient deprivation 

upregulates TG hydrolysis to supply FFAs for oxidation to meet cellular energy 

demands. An alternative energy source in times of nutrient scarcity is provided 

by the breakdown of cellular components by autophagy. In 2009,  this new role 

of autophagy was discovered by a group of researchers (Singh, et al., 2009); 

they saw that lipid droplets and autophagic components associated during 

nutrient deprivation, and inhibition of autophagy in cultured hepatocytes and 
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mouse liver increased triglyceride storage in lipid droplets. So, the regulatory 

and functional similarities between autophagy and lipolysis, along with the 

capability of lysosomes to degrade lipids, indicated that autophagy may 

contribute to LD and TG breakdown.  

1.4 The phytochemicals  

Phytochemicals are a large group of plant-derived compounds that are 

commonly found in fruits, vegetables, beans, cereals and plant-based beverages 

such as tea and wine (Arts & Hollman, 2005). Based on their chemical 

structure, phytochemicals can principally be categorized into alkaloids, 

flavonoids, pigments, phenolics, terpenoids, steroids and essential oils. 

1.4.1 Flavonoids 

Flavonoids are diphenylpropanes that constitute one of the most characteristic 

classes of secondary metabolites in plants (Cao et al., 1997). It has been shown  

that flavonoids are potent antioxidants, capable of removing hydroxyl radicals, 

superoxide anions and lipid peroxy radicals, and have been reported as having 

antibacterial, anti-inflammatory, antiallergic, antimutagenic, antiviral, 

antineoplastic, anti-thrombotic and vasodilatory actions (Yao et al., 2004; 

Chakraborty & Hancz, 2011). The structural components common to these 

molecules include two benzene rings on either side of a 3-carbon ring, and 

multiple combinations of hydroxyl groups, sugars, oxygens and methyl groups 

attached to these structures create the various classes of flavonoids: flavanols, 

flavanones, flavones, flavan-3-ols (catechins), anthocyanins and isoflavones.  

The use of medicinal plants as fertility enhancers and sex reversal agents in fish 

has been receiving some attention. Moreover, as the components of fish diet 

and/or compounds present in the aquatic environment, phytochemicals may 

induce biological responses in fish including estrogenic effects and delayed 

reproduction, and for this are considered as endocrine disrupting chemicals 
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(EDCs) (Ng et al., 2006; Cheshenko et al., 2008). Among Phytochemicals, 

flavonoids are an important group of endocrine disrupting chemicals. Among 

them there are genistein and dadzein (isoflavones), often called phytoestrogens, 

because of their structural resemblance with 17b-oestradiol and estrogenic 

and/or anti-estrogenic properties. In particular, there are numerous reports of 

genistein exerting estrogenic effects in fish. For example, Bennetau-Pelissero et 

al. (2001) reported increased plasma vitellogenin concentrations in male and 

female fish  fed diets containing either 500 or 1000 ppm genistein until 

spawning. Male fish fed a diet with 500 ppm genistein showed a slight decrease 

in plasma levels of FSH and LH at the end of spermatogenesis, testicular 

development was accelerated, and sperm motility and concentration were 

decreased in a dose-dependent way at spawning. Female fed a diet containing 

50ppm of genistein showed  decreased FSH and LH levels, delayed spawning 

and impaired gamete quality. Contrarily, in yellow perch, Perca flavescens,  

Koet al. (1999) reported that genistein (0.75 and 7.5 mg g 1 diet)  haven’t  

apparent estrogenic effects on reproductive function. This happens because of 

dual role of genistein as not only acts as an estrogenic agonist, but also as an 

antagonist blocking estrogen’s action. About mechanism of action of 

phytoestrogens as endocrine disruptors, it has been seen that phytoestrogens, 

including isoflavones such as genistein and daidzein, bind weakly to estrogen 

receptors so that they can produce or inhibit estrogenic effects.   

1.5 Genistein: sources, structure and metabolism  

Epidemiological data strongly suggested that consumption of plant-based foods 

rich in isoflavones provides beneficial effects for human health (Ososki and 

Kennelly, 2003). Thus, much attention has been given to investigating the 

effects of these compounds, especially genistein, in human physiological and 

pathological states. Soybean is the main source of isoflavones in the human diet, 

it contains between 0.6 and 3.8 g isoflavones/kg fresh weight (Cassidy et al., 
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2000).  The three principal isoflavones found in soy are genistein, daidzein and 

glycetein, generally in a concentration ratio of 1:1:0.2 (Manach et al., 2004).  

 

Fig.11 Chemical structure of genistein, genistin, daidzein and 17b estradiol and are 

presentation of genistein metabolism. (Behloul et al., 2013). 

The particular similitude of isoflavones to 17β-estradiol, enables them to bind to 

estrogen receptors and thus can at least partly explain their effects. After 

ingestion, genistein is released from the glucoside genistin by acid hydrolysis in 

the stomach or by microflora hydrolysis in the intestine. The resulting aglycone 

can either be absorbed or further metabolized to specific metabolites 

(Dihydrogenistein,5-hydroxy-equol) (Matthies et al., 2012). Genistein (4,5,7-

trihydroxyisoflavone) was originally isolated by Perkin and Newbury in 1899 

from Dyer’s Broom (Genista tinctoria) (Perkin and Newbury,1899).This 

naturally derived compound is a member of the isoflavone group of the 

flavonoid family of small molecules, which includes over 5,000 compounds 

(Andersen and Markham, 2006; Veitch and Grayer, 2008). The isoflavones are 

structurally characterized by their 3-phenylchromen-4- one core, that is formed 
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by two benzene rings linked by a heterocyclic pyran ring. In addition to this 

heterocyclic core, genistein and  other members of isoflavone family are 

polyphenols, because of they contain several hydroxyl groups attached to core 

phenyl rings. These phenols confer an antioxidant activity to this class of 

compounds which possess a significant activity against free radicals in tissue 

(Andersen and Markham, 2006). As previously mentioned, genistein’s 

structural characteristics are similar to those of 17β-estradiol; in particular, 

shares both a near identical molecular weight as well as a similar hydroxylation 

pattern, with two key phenolic groups at C7 and C4′ (Fig.12) (Dixon and  

Ferreira, 2002). Importantly, the C7 hydroxyl group is needed for genistein to 

bind to the estrogen receptor (ER). Furthermore, the distance (∼11.5 Å) 

between the C7 and C4′ phenolic groups (highlighted in green, see Fig. 12, 

below) allows for optimal binding of genistein to the ER, as they are in very 

similar positions to the key hydroxyl groups on the estradiol core (Andersen and 

Markham, 2006). It has been shown that both the C4′ and C7 phenolic group 

form key contacts with ERβ, with the C4′ phenol binding to Glu305 and Arg306 

and the C7 phenol to His475 (Pike et al., 1999). Because of these structural 

characteristics, genistein can bind to both α and β isoforms of the ER (Kuiper et 

al., 1998; Mueller et al., 2004), although it binds to ERβ with 20-fold higher 

affinity than ERα  (Kuiper et al., 1997). 

 

Fig.12 Structures of genistein (left) and 17-β-estradiol (right). Genistein’s structure is 

characterized by a 3-phenylchromen-4-one core (highlighted in red) and phenolic 

substitution at the C4′, C5, and C7 positions. The C4′ and C7 phenols of genistein are in 

very similar positions to key hydroxyl groups on estradiol (highlighted in 

green),allowing genistein to bind to the ER. (Pavese et al., 2010). 
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1.6 Genistein: a compound with pleiotropic effects 

Genistein, a soy derived isoflavone, has been reported as a potential therapeutic 

agent with anti-cancer, anti-osteoporosis, anti-oxidant and anti-inflammatory 

effects. Regarding cancer, genistein has been shown to induce apoptosis and 

differentiation in cancer cells, inhibit cell proliferation, modulate cell cycling, 

exert anti-oxidant effects, inhibit angiogenesis and suppress osteoclast and 

lymphocyte functions; these make genistein a promising agent  into treatment of 

cancer. In relation to osteoporosis, it has been seen that genistein exerts a 

significant estrogenic activity and may be an efficient agent in retaining bone  

 

mass. Studies with ovariectomized rats (lacking in endogenous estrogens) have 

demonstrate that genistein is active like estrogens in maintaining bone health 

(Anderson et al., 1998). In tissue cultures in vitro genistein, like estradiol, exerts 

a significant protective activity against experimentally induced bone resorption 

(Yamaguchi et al., 1998) ,and moreover, it stimulates osteoblast-mediated bone 

formation. It has been proved that genistein, not only as agonist of estradiol acts 

on bone health, but also blocking osteoclastic function in vitro through tyrosine 

kinase mechanism. Genistein has been proposed as a promising compound for 

Fig. 13 Pleitropic effects of 

genistein.Genistein(G) inhibits 

preadipocytes   

differentiation,lipidaccumulationandgl

ucose(Glu)uptake in mature 

adipocyte.It enhances lipolysis and 

adipocyte apoptosis and reduces the 

secretion of pro-inflammatory 

cytokines and leptin.It also enhances 

glucose-stimulated insulin secretion, 

reduces reactive oxygenspecies-induced 

b cell damage and ameliorates the 

insulin resistance state by counteracting 

reactive oxygen species,pro-

inflammatory cytokines and leptin 

actions. ROS: reactiv eoxygen species; 

TG: triglyceride; FFA: free fatty acids. 

(Behloul et al., 2013). 
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the treatment of metabolic disorders and for ameliorating diabetes and obesity 

states (Fig. 13). 

The pleiotropic effects of genistein are due to its multiple mechanisms of action 

and involvement of several cellular signaling pathways as estrogen-like activity, 

tyrosine kinase inhibitory effect and 5’ AMP- activated protein kinase (AMPK) 

pathway. Studies conducted on obese diabetic mice and non- obese diabetic 

mice (Choi et al., 2008) have shown that genistein ameliorated glucose and lipid 

metabolism, elevated insulin levels and preserved pancreatic β-cells. Moreover, 

at physiologically achievable concentrations, genistein potentiated glucose-

stimulated insulin secretion in both insulin-secreting cell lines and mouse 

pancreatic islets (Liu et al., 2006). Genistein also protected pancreatic β-cells 

against cytokine-induced toxicity through inhibition of iNOS (inducible nitric 

oxide synthase) gene expression, nitric oxide production, and also, the 

suppression of Erk-1/2 and JAK/signal transducer and activator of transcription 

(STAT) pathways (Kim et al., 2007). Recently, it has been seen that genistein 

protects human pancreas cells, that express estrogen receptor β, against high 

glucose-induced cell apoptosis and the inhibition of their proliferation, through 

estrogen receptor and Bcl-2 pathways (Zhong et al., 2011). 

It has been repeatedly highlighted the bond between oxidative stress and 

metabolic disorders as diabetes, obesity and cardiovascular diseases (Fatehi-

Hassanabad et al., 2010; Grattagliano et al., 2008; Rains and Jain, 2011; 

Schonfeld and Wojtczak, 2008). Chronic exposure to reactive oxygen species 

(ROS) activates stress pathways that affect negatively insulin signaling and are 

involved into insulin resistance, impaired glucose intolerance, β-cell and 

mitochondrial dysfunctions and finally into diabetes state. The main cellular 

producers of ROS are mitochondria and plasma membrane. Free fatty acids 

levels, which are elevated during obesity and diabetes, have been shown to 

influence the production of ROS by a partial inhibition of complexes 1 and 3 of 
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the respiratory chain into mitochondria and my modulating the reduced NADPH 

(nicotinamide adenine dinucleotide phosphate) activity in plasma membrane. 

Regarding the anti-oxidant activity of genistein, it has been emphasize genistein 

as a compound capable of counteract ROS detrimental effects. Following 

which, its effect on activation of the transcription factors – Nrf1 and Nrf2, 

which have been implicated in the regulation of genes involved in response to 

oxidative stress, was investigated (Hernandez-Montes et al., 2006). These 

transcription factors are involved in the regulation of c-GCS and other 

detoxification proteins. Genistein was found to induce the cytosolic 

accumulation and nuclear translocation of Nrf1 and Nrf2. Ultimately, genistein 

is an antioxidant thanks to its inhibition of the activation of NF-kB stimulated 

by oxidant stress (Davis et al., 2001). 

Beside the oxidative stress, metabolic disorders are also linked to inflammation 

(Garcia et al., 2010), and genistein seems to ameliorate this inflammatory state. 

For example, it reduce the expression levels of TNFα and pro-inflammatory 

citokines in cerebral endothelial cells (Lu et al., 2009), decreases the plasma 

levels of TNFα and interleukin 6 (IL6) in fructose-fed rats (Palanisamy et al., 

2011), and also inhibits the inflammatory process and the progression of non-

alcoholic steatohepatitis induced by high fat diet in rats by decreasing TNFα 

and IL6 levels in serum and liver, by activation of JNK and inhibition of NFkB 

p65 nuclear translocation and IkBα phosphorylation.  

1.6.1 Effects of genistein on adipocytes  

Many studies have reported that genistein has an anti-obesogenic effect in 

ovariectomized mice; in particular, it seems that genistein decreases food intake, 

body weight, fat pad weight and increases apoptosis of adipose tissue (Kim et 

al., 2006; Naaz et al., 2003). Many researchers supposed that these effects of 

genistein may be due to decreased leptin secretion which is the most important 
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adipose derived hormone, implicated in the regulation of energy homeostasis, 

obesity, reproduction, bone formation, wound healing and immunity among 

other biological functions (Peelman et al., 2006). Leptin in mammals is 

produced and secreted primarily by mature white adipocytes (Matson et al., 

1996; Zhang et al.,1994); when fat mass decreases, circulating leptin is reduced, 

leading to stimulated appetite and suppressed energy expenditure (Ahima et al., 

1996; Coppari and Bjørbæk, 2012). In salmonids as in other teleost species 

studied, the liver appears to be the main production site of leptin, as evidenced 

by high hepatic Lep gene expression (Gong et al., 2013; Gorissen et al., 2009; 

Huising et al., 2006; Kling et al., 2012; Kurokawa et al., 2005; Kurokawa and 

Murashita, 2009; Murashita et al., 2008; Pfundt et al., 2009; Rønnestad et al., 

2010), even if leptin has been immunohistochemically detected in primary 

cultured mature adipocytes of Atlantic salmon (Vegusdal et al., 2003) and in 

rainbow trout adipose tissue (Pfundt et al., 2009) using mammalian antibodies. 

So, it is clear the role of leptin as a satiety signal, not only in mammalian, but 

also in teleost species as rainbow trout (Oncorhynchus mykiss), goldfish 

(Carassius auratus), Atlantic salmon. Many of the leptin effects are linked to its 

actions in the central nervous system, in particular, in the basomedial 

hypothalamus where leptin receptor β mRNA is highly expressed (Schwartz et 

al., 2000).  

Nowadays, the idea of the leptin resistance state is associated with common 

forms of human obesity, and, two hypothesis have been proposed to explain it: 

the failure of circulating leptin to reach its targets into brain and/or the 

inhibition of the intracellular leptin receptor β; in this case, two inhibitory 

molecules have been identified: SOCS3 (suppressor of cytokine signaling 3), 

and, PTP1B (protein tyrosine phosphatase) (Munzberg et al., 2005). It has been 

demonstrated that genistein disrupts leptin synthesis in 3T3-L1 preadipocytes 

(Phrakonkham et al., 2008), inhibits its secretion not via estrogen receptor in 
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murine adipocytes (Niwa et al., 2010), but it has been supposed that genistein 

might reduce this leptin resistance also by ameliorating the inflammatory state 

of obesity. Especially, this amelioration could restore the normal leptin influx to 

its targets in brain and/or down regulate the expression of molecules (SOCS3, 

PTP1B), that inhibit leptin receptor β signaling. So, genistein could contribute 

to the recovery of a negative feedback that would decrease the synthesis and the 

secretion of leptin.  

Nowadays, is well known that the process of adipogenesis is controlled by a 

myriad of adipocyte-specific genes expressions such as expression of 

peroxisome proliferator-activated receptor ɤ (PPARɤ), CCAAT/enhancer 

binding protein(C/EBP a) and adipocyte determination and differentiation-

dependent factor1/sterol regulatory element binding protein1c 

(ADD1/SREBP1c). Genistein alone or in combination with other compounds 

suppresses differentiation, adipogenesis and lipid accumulation and increases 

lipolysis (Harmon and Harp, 2001) in 3T3-L1adipocytes. Regarding the 

mechanisms (Fig. 14),  
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it has been reported that genistein inhibits adipogenic differentiation of human 

adipose tissue-derived mesenchymal stem cell via Wingless and Int/β catenin 

(Wnt/β-catenin) signaling pathway, such as Extracellular signal-regulated 

kinase/c-Jun-N-terminal kinase (Erk/JNK) signaling, in an estrogen-receptor-

dependent way (Kim et al., 2010). Genistein also inhibits lipid accumulation in 

a dose-dependent manner, via down-regulation of adipocyte specific 

transcription factors as PPARɤ, C/EBPα and glycerol-3-phosphate 

dehydrogenase (Park et al., 2009). Previously, it has been shown that genistein 

also inhibits adipocyte differentiation via activation of 5’ AMP- activated 

protein kinase (Hwang et al., 2005), and promotes expression of C/EBP 

homologous protein that blocks the DNA binding and the transcriptional 

activity of C/EBPβ during differentiation (Harmon et al., 2002).  

Fig.14 Simplified schema of genistein effects on adipocytes and the different suggested mechanisms. 

Erk/JNK: extracellular signal-regulated kinase/c-Jun N-terminal kinase; Wnt/b-catenin: wingless and 

Int/ b-catenin pathway;AMPK:50 AMP-activated protein kinase; C/EBPb: CCAAT/Enhancer binding 

protein b; C/EBPhp: CCAAT/Enhancer binding protein homologous  protein; C/EBPa: 

CCAAT/Enhancer binding protein a; PPARɤ : peroxisome proliferator activated receptor ɤ; 

GPD:glycerol-3-phosphate dehydrogenase ;PARP: poly(ADP-ribose)polymerase; Bax:Bcl-2-associated 

X protein; PKA: protein kinase A; GLUT4:glucose transporter4;(+):activation;(-):inhibition; :   

increased level;  : decreased level;(?): the mechanism of action is not elucidated yet. (Behloul et al., 

2013). 
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It has been reported that genistein, because of its tyrosine kinase inhibition 

activity, inhibits glucose uptake in MC3T3-G2/PA6 adipocytes and directly, 

through the glucose transporter 4 (GLUT4), counteracts glucose uptake in 3T3-

L1 adipose cell (Bazuine et al., 2005; Nomura et al., 2008). Recently, it has 

been seen that genistein also inhibits insulin-stimulated glucose uptake and 

reduce ATP in adipocytes and the mechanism proposed seems to involve a 

mitochondrial dysfunction (Szkudelska et al., 2011). Moreover, genistein 

counteracts the anti-lipolytic  action of insulin (Abler et al., 1992), and also, 

inhibits, in an estrogen receptor-independent manner, the inhibitory action of 

insulin on epinephrine-induced lipolysis in isolated rat adipocytes; this action 

seems to be due to protein kinase A (PKA) activation and elevation of cAMP 

levels (Szkudelska et al., 2008). Genistein has been shown to induce cell 

apoptosis via mitochondrial damage; although on adipocytes, low doses of 

genistein increase cell viability, while high doses decrease it (Park et al., 2009). 

In vivo and in vitro studies have shown that genistein has anti-obesogenic 

effects (Tab.3), unfortunately, not yet it has been done this type of studies on 

fishes. 

Animal/cell 

line 

Dose of 

genistein 

Effects of 

genistein  

Mechanism 

described 

Ref. 

3T3-L1 

adipocytes 

100µM/L Increased lipolysis.  Harmon et Harp 

(2001). 

3T3-L1 

adipocytes 

 

200µM/L Inhibition of 

adipocyte 

differentiation. 

Activation of AMP-

activated protein 

kinase. 

Hwang et al. (2005). 

MC3T3-G2/PA6 

adipocytes 

50µM/L Inhibition of glucose 

uptake 

Tyrosine kinase 

inhibition activity. 

Bazuine et al. 

(2005). 

Ovariectomized 

C57/BL6 female 

mice;  

1500µM/L Reduction of food 

intake, body weight 

and fat pad weight. 

 Kim et al. (2006). 
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Tab.3 In vivo and in vitro anti-obesity effects of genistein. (Behloul et al. 2013). 

 

3T3-L1 mouse 

embryo 

fibroblasts 

400µM/L Adipose tissue 

apoptosis. 

 Kim  et al. (2006). 

3T3-L1 mouse 

embryo 

fibroblasts 

100µM/L Inhibition of leptin 

synthesis.  

 Phrakonkham et al. 

(2008). 

3T3-L1 

adipocytes 

 

10µM/L Abrogation of 

GLUT4-mediated 

glucose uptake 

Tyrosine kinase 

inhibition activity. 

Nomura et al. 

(2008). 

Rat adipocytes 100µM/L Inhibition of the 

antilipolyitc action 

of insulin. 

Activation of protein 

kinase A and 

elevation of cAMP 

levels. 

Szkudelska et al. 

(2008). 

Synovial 

fibroblasts 

 

 

Inhibition of leptin 

secretion. 

 

 

Relic et al. (2009). 

 

Primary human 

pre-adipocytes 

 

50µM/L Inhibition of lipid 

accumulation. 

 

Down-regulation of 

PPARɤ, C/EBPα and 

glycerol-3-phosphate 

dehydrogenase. 

Park et al. (2009). 

Murine 

adipocytes 

40µM/L Inhibition of leptin 

secretion. 
 Niwa et al. (2010). 

Human adipose 

tissue-derived 

mesenchymal 

stem cell 

100µM/L Inhibition of 

adipogenic 

differentiation 

Wnt/b-catenin 

signaling pathway. 

Kim et al. (2010). 

Obese 

postmenopausal 

women 

60.8mg/day 

 

Reduction of serum 

leptin levels. 
 

 

Llaneza et al. 

(2011). 

 

Freshly isolated 

rat adipocytes 

50µM/L Inhibition of isulin-

stimulated glucose 

uptake and 

reduction of ATP 

levels. 

Mitochondrial 

dysfunctions.  

Szkudelska et al. 

(2011). 
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Because of plasma concentrations of genistein, after a regular consumption of it,  

are much lower than those in vitro, combinations with other compounds were 

investigated (Tab.4). 

Combination Cell line Effects Mechanisms of 

action 

Ref. 

Genistein with 

guggulsterone 

3T3-L1 

adipocytes 

Apoptosis and 

suppression of 

differentiation and 

adipogenesis. 

Production of active 

caspase. Expression of 

pro-apoptotic Bax. 

Release of cytochrome 

c. 

Yang et al. 

(2007). 

Genistein with green 

tea catechin and 

capsaicin 

 

3T3_L1 

adipocytes 

Suppression of 

differentiation, 

adipogenesis and lipid 

accumulation, and 

induction of apoptosis. 

Release of intracellular 

reactive oxygen species 

and activation of 

AMPK pathway. 

Hwang et 

al. (2005). 

Genistein with 

resveratrol  

 

3T3_L1 

adipocytes 

Inhibition of 

adipogenesis; induction 

of apoptosis; stimulation 

of lipolysis. 

Down-regulation of 

PPARɤ and 

CCAAT/enhancer 

binding protein α 

Rayalam et 

al. (2007). 

Genistein with vitamin 

D 

3T3_L1 

adipocytes 

Inhibition of lipid 

accumulation, and 

induction of apoptosis. 

Suppression of PPARɤ, 

C/EBPα, and enhancing 

vitamin D receptor 

expression. 

Rayalam et 

al. (2008). 

Tab.4 Synergistic combinations of genistein with other compounds. (Behloul et al. 2013) 

For example, genistein with guggulsterone induces apoptosis and suppression of 

differentiation and adipogenesis in 3T3-L1 adipocytes, through an increase in 

production of active caspase 3, and an induction of the expression of pro-

apoptotic Bcl-2-associated x protein (Bax) and the release of cytochrome c. 

Genistein with vitamin D combined promote the inhibition of lipid 

accumulation and the induction of apoptosis in 3T3-L1 adipocytes, through a 

suppression of PPARɤ, C/EBPα, and an induction of vitamin D receptor 

expression (Rayalam et al., 2008).  
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2. Aims of research 

The management of fat deposition has become a key area of interest in fish 

farming in the quest to obtain a high-quality product with good nutritional value 

and to maintain fish health. The administration of high-lipid feed usually can 

lead to an unwanted increase in fat deposition that alters sensory and 

organoleptic characteristics (Kjær et al., 2008; Turchini et al., 2009). On one 

hand the potential anti-obesogenic effect of genistein in rainbow trout can be 

positive as ingredient in fish diets, on the other, it isn’t (i.e adipocytes 

apoptosis). So, the hypothesis of work is that genistein can have in vivo and in 

vitro anti-adipogenic and anti-obesogenic effects, as shown previously in 

mammals. Moreover, we want to analyze the main pathways through which it 

exercises this role on Oncorhynchus mykiss lipid metabolism. Following, are 

reported the purposes of the research in detail: 

1. To determine the effect of an intraperitoneal injection of genistein on 

lipid metabolism related genes expression; to evaluate the effect of 

genistein on apoptosis-related genes expression, and on autophagy-

related genes expression. All of this, in adipose tissue, liver and white 

muscle of rainbow trout. 

2. To describe the potential anti-obesogenic effect of genistein, in 

particular, analyzing the effects of genistein on viability and 

differentiation in rainbow trout adipocytes in primary culture. 
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3. Materials and methods 

 3.1 Animals  

Juvenile (in vivo experiment) and adult (in vitro experiment) rainbow trout, 

approximatively 80g and 250g in weight respectively, were obtained from 

Spanish commercial fish farm and maintained either in 0,2m
3 

and 0,4m
3
 tanks 

with a temperature controlled freshwater recirculation system (18±1°C), and 

12L:12D photoperiod in the facilities of the Faculty of Biology at the University 

of Barcelona. Fish were fed with a commercial diet (Skretting, Burgos, Spain) 

twice daily. Juvenile animals were fasted 2 hours before the injection to 24 

hours post-injection; adult animals for in vitro experiment were fasted 24 hours.  

 

3.2 Experimental design in vivo: intraperitoneal injection 

After 15 days of acclimation, juvenile rainbow trout were anesthetized (MS-

222, 0.1g/L), and received intraperitoneal injections of 4.64µL volume per g 

body mass containing genistein at different dose (see above). Both for the 

experiment in vivo than that in vitro, genistein, 17β-estradiol (E2), and 

fulvestrant (estrogen receptor antagonist) were initially resuspended in DMSO 

(Dimethyl sulfoxide). Only for in vivo experiments, genistein and E2 were 

diluted then 1:3 in sesame oil. Treatments were :  

1) Control containing DMSO diluted 1:3 in sesame oil; 

2) Genistein at 5µg/g of body mass; 

3) Genistein at 50µg/g of body mass; 

4) 17β-estradiol at 5µg/g of body mass. 

After 24 hours, fish were first anesthetized, and then sacrificed by a blow to  the 

head; blood samples are taken from the caudal aorta, samples of liver, 

perivisceral adipose tissue and white muscle were harvested and stored at -80°C 

until analysis.   
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3.3  Gene expression analysis 

3.3.1 RNA isolation 

All tissue samples were processed individually, both those of adipose tissue that 

those of the liver (N=31), and those of white muscle. To isolate total RNA from 

tissues, approximately 0,1g (adipose tissue), 0,02-0,03g (liver), and 0,1g (white 

muscle) were homogenized in 1mL TRIzol (Ambion, Alcobendas, Spain) 

according to the following protocol: 

Homogenization of tissues for RNA 

Material 

-Falcons 

-Eppendorfs 1.5 mL 

-Tri-Reagent SOLN (RNA reagent isolation) 

- Polytron 

-Water mQ 

-NaOH (0.5-1M) 

Procedure 

1. Add to every falcon 1mL of “TRIZOL” 

2. Weigh samples; they must be more or less 0.1g 

3. Put them into every falcon with “TRIZOL” 

4. Homogenize samples by a polytron: 2-3 times (30”)  

at 12000 rpm 

5. Samples homogenates  must be put into new eppendorfs 

 

 

Fig. 15 Samples Homogenization 

by a polytron.  
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6. Centrifuge at 4°C for 10 min at 12000 rcf 

7. Get only the upper part and put it into new eppendorfs and 

reject pellet 

 

 

 

 

 

Notes 

The “TRIZOL” must be always into ice; it is a reaction based on water and 

phenol which extracts nucleic acids and protects from degradation of  RNAses. 

 

3.3.2 Extraction of RNA from tissues 

Material  

-Chloroform 

-Isopropanol  

-Ethanol 75% 

-Eppendorfs 1.5mL 

-Water mQ 

 

Procedure  

1. Put 200µL of Chloroform into every eppendorf with homogenate tissue 

and vortex for 20” 

Fig.16 Centrifuge machine. 
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2. Let rest 5 min at room temperature so that the phases begin to separate 

themselves 

3. Centrifuge at 4°C for 15 min at 13000 rcf ; then there will be 3 phases 

well differentiated: a lower with chloroform, an intermediate with protein 

and an higher with RNA plus water 

4. Get only the upper phase and put it into new eppendorfs 

5. Put 500µL of Isopropanol (it helps to precipitate RNA) and mix by 

inversion (4-5 times) 

6. Let rest 10 min at room temperature 

7. Centrifuge at 4°C for 10 min at 13000 rcf , so that there will be an higher 

aqueous phase and a white pellet (it includes RNA)  

8. Reject an aqueous phase and don’t touch pellet 

9. Add 1mL of Ethanol 75% 

10. Centrifuge at 4°C for 5 min at 7500 rcf  

11. Repeat the last three steps, so that we have two washes by Ethanol 75% 

12. Reject aqueous phase and let dry pellet so that Ethanol evaporates 

13. Re-suspend pellet by adding 30µL of RNAse Free water 

14. Quantify RNA into samples by NANODROP 

The quantity of the RNA was determined by measuring the 

absorbance at 260nm and 280nm with a ND-2000 NanoDrop 

(Thermo Fisher Scientific, Alcobendas, Spain). 

 

 

 

 

 Fig.17 Nanodrop 2000  

machine. 
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3.3.3 Complementary DNA synthesis   

For the reverse transcriptase reaction (RT), 500-1000ng of total RNA were 

treated with DNase Ι (Life Technologies, Alcobendas, Spain) in order to remove 

all genomic DNA, and furthermore the RNA was reverse transcribed with the 

Transcriptor First Strand cDNA synthesis (Roche, Sant Cugat del Valles, 

Spain), according to the following protocol: 

DNase + RT protocol 

- cDNA synthesis (DNase + Denaturalization+ RT) 

DNase treatment kit (vf= 11µL) 

Eppendorfs 200µL RNase-free 

Calculate the amount of DEPC H2O (µL) to use with Excel, based on the 

amount of RNA (µg). 

CNTC= no RNA 

CRTC= no RT enzim. Use RNA from higher concentrated sample 

 

STEPS: 

1. Label the eppendorfs  

2. Prepare mix: DNase (1µL) + Buffer (1µL) (+2-3 pipetting error). Keep on 

ice. 

3. Add the DEPC water corresponding to each sample (see Excel). 

4. Add the amount of RNA from each sample except CNTC (see Excel). 

5. Add MIX (2µL/eppendorfs) and put the timer 15 min from the first 

sample (room temperature). 

6. After 15min, add 1µL of EDTA to stop reaction. 
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7. Place eppendorfs in PCR machine and select DNase protocol (10min at 

65°C). 

 

 

 

 

 

Denaturalization kit cDNA (vf= 13µL) 

STEPS: 

1. Label the final eppendorfs with sample code. 

2. Make a MIX with oligdT’s (1µL) + Random hexamer (2µL) (+2-3 

pipetting error). Keep on ice. 

3. Add 10µL from the sample (DNase treatment) to new eppendorfs. 

4. Add MIX (3µL/Eppendorf). 

5. Place eppendorfs into PCR machine and select Denaturalization protocol 

(10min at 65°C). 

 

RT. Retro- transcription kit cDNA (vf= 20µL) 

 

STEPS: 

1. Prepare MIX with Buffer (4µL) + Protector (0.5µL) + dNTPs (2µL) + 

RT enzim (0.5µL) (+2-3 pipetting error). Keep on ice. 

Fig.18 PCR machine Bio-Rad. 
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2. Add MIX (7µL/Eppendorf) to all samples except the CRTC ( add water 

instead of RT enzim). 

3. Place eppendorfs into PCR machine and select RT protocol (~90min). 

 

3.3.4 Real-time quantitative reverse transcription PCR (Real-time 

qRT-PCR) 

A serial dilution in nuclease-free water of cDNA derived from a RNA pool of 

experimental samples (liver, adipose tissue and white muscle) was amplified to 

construct standard curves for both target and reference genes. Standard curves 

were included in each run to determine amplification efficiency (E) and dilution 

at which it has the highest gene 

expression.After then, both cDNA liver 

samples and adipose tissue samples were 

diluted 1:10 and 1:50 in nuclease free-water; 

while white muscle samples were diluted 

1:10, 1:50, 1:100, 1:200 in nuclease free 

water. Real-time qRT-PCR measurements 

were performed by preparing 4µL PCR mix 

(2,5µL of Sybr-Green; 0,25µL of primer 

(F+R), and 1,25 of MQ water) and by applying 1µL of diluted cDNA samples; 

for some genes, 3µL of PCR mix was prepared (2,5µL of Sybr-Green; 0,125µL 

of primer (F+R), and 0,375 of MQ water, or 2,5µL of Sybr-Green, 0,25µL of 

primer (F+R), and 0,25µL of MQ water) with 2µL of diluted cDNA samples. 

The quantitative polymerase chain reaction primer sequences for the genes 

analyzed (EF1α LPL, GAPDH, HSL, FAS, EM, LXR, PPARβ, PPARα, β-actin, 

Ubiquitin, Lep, ER2α, ER2β, VTG, LC3B, SQSTM1, ATG12L, ATG4B, 

Fig.19 Real-time PCR machine Bio-rad. 
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CASP3, CASP8, P53, NUPR1), and the reference genes of adipose tissue, liver 

and white muscle are shown in Tabl. 23. 

Tab.5 Rainbow trout sequences used for qPCR. 

Gene symbol                                                                   T°                                                                                Sequence 5’-3’                                                 

Reference genes for adipose tissue and liver 

Ubiquitin F                                                                       58°                                                   5’- ACAACATCCAGAAAG-3’ 

Ubiquitin R                                                                       -                                                       5’- AGGCGGGCGTAGCACTTG-3’ 

β-actin F                                                                           62°                                                   5’-ATCCTGACAGAGCGCGGTTACAGT-3’ 

β-actin R                                                                           -                                                       5’-TGCCCATCTCCTGCTCAAAGTCCA-3’ 

EF1αF                                                                              59°                                                    5’-TCCTCTTGGTCGTTTCGCTG-3’ 

EF1αR                                                                              -                                                        5’-ACCCGAGGGACATCCTGTG-3’ 

 

Reference genes for white muscle 

Ubiquitin F                                                                       58°                                                   5’- ACAACATCCAGAAAG-3’ 

Ubiquitin R                                                                       -                                                       5’- AGGCGGGCGTAGCACTTG-3’      

EF1αF                                                                               59°                                                   5’-TCCTCTTGGTCGTTTCGCTG-3’ 

EF1αR                                                                               -                                                       5’-ACCCGAGGGACATCCTGTG-3’        

 

Lipid metabolism-related genes 

LPLF                                                                               59°                                                      5’-TAATTGGCTGCAGAAAACAC-3’ 

LPLR                                                                               -                                                          5’-CGTCAGCAAACTCAAAGGT-3’ 

GAPDHF                                                                        62°                                                       5’-GACACCTAGTGGAGGCTGTC-3’ 

GAPDHR                                                                        -                                                           5’-ATGACCTTGCCCACAGCCTT-3’ 

HSLF                                                                              58°                                                       5’-AGGGTCATGGTCATCGTCTC-3’ 

HSLR                                                                              -                                                           5’-CTTGACGGAGGGACAGCTAC-3’ 

FASF                                                                              54°                                                        5’-GAGACCTAGTGGAGGCTGTC-3’ 

FASR                                                                              -                                                            5’-TCTTGTTGATGCTGAGCTGT-3’ 

PPARαF                                                                         54°                                                        5’-CTGGAGCTGGATGACAGTGA-3’ 

PPARαR                                                                         -                                                            5’-GGCAAGTTTTTGCAGCAGAT-3’ 

PPARβF                                                                        59°                                                         5’-CTGGAGCTGGATGACAGTGA-3’ 

PPARβR                                                                         -                                                            5’-GTCAGCCATCTTGTTGAGCA-3’ 
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LEPF                                                                           60°                                                 5’-TTGCTCAAACCATGGTGATTAGCA-3’ 

LEPR                                                                           -                                                     5’-GTCCATGCCCTCGATCAGGTTA-3’ 

LXRF                                                                          62°                                                 5’-TGCAGCCGTATGTGGA-3’ 

LXRR                                                                          -                                                    5’-GCGGCGGGAGCTTCTTGTC-3’ 

ER2αF                                                                        60°                                                 5’-AGACGGTCATCTCGCTGGAAG-3’ 

ER2αR                                                                         -                                                    5’-ACACTTTGTCATGCCCACTTCGTA-3’ 

ER2βF                                                                        60°                                                 5’-AGAGGAAGTGAACTCCTCCTCAGG-3’ 

ER2βR                                                                         -                                                    5’-GATAGTAGCACTGGTTAGTTGCTGGAC-3’ 

VTGF                                                                         58°                                                 5’-GAGCTAAGGTCCGCACAATTG-3’ 

VTGR                                                                         -                                                    5’-GGGAAACAGGGAAAGCTTCAA-3’ 

Autophagy-related genes 

LC3BF                                                                      57°                                                  5’-GAACAGTTTGACCTGCGTGAA-3’ 

LC3BR                                                                       -                                                     5’-TCTCTCAAtGATGACCGGAATCT-3’  

SQSTM1F                                                                57°                                                  5’-AGCCCACTGGGTATCGATGT-3’                              

SQSTM1R                                                                 -                                                     5’-GGTCACGTGAGTCCATTCCT-3’ 

ATG12F                                                                   60°                                                  5’-GATGGAGGCCAATGAACAGC-3’ 

ATG12R                                                                     -                                                    5’-GCGTTTGAACTGAAAAGGGCTAA-3’ 

ATG4BF                                                                   60°                                                 5’-TATGCGCTTCCGAAAGTTGTC-3’ 

ATG4BR                                                                    -                                                    5’-CAGGATCGTTGGGGTTCTGC-3’ 

 

Apoptosis-related genes 

CASP3F                                                                  57°                                                   5’-TTTGGGAGTAGATTGCAGGG-3’ 

CASP3R                                                                   -                                                      5’-TGCACATCCACGATTTGATT-3’ 

CASP8F                                                                  56°                                                   5’-CAGCATAGAGAAGCAAGGGG-3’ 

CASP8R                                                                   -                                                      5’-TGACTGAGGGGAGCTGAGTT-3’ 

P53F                                                                        56°                                                   5’-GTGGAATTTGATCCGAGTCTGT-3’ 

P53R                                                                         -                                                      5’-AGTGTCCAGGGTAGAAATGGAG-3’ 

NUPR1F                                                                 56°                                                   5’-CGAAGAAGCACACTACGATCAA-3’ 

NUPR1R                                                                  -                                                      5’-TCAGTCCGATTTCTCTCTTGGT-3’                            

Abbreviations: EF1α, elongation factor  1α; LPL, lipoprotein lipase; GAPDH, Glyceraldehyde 3-phosphate dehydrogenase                

;HSL, hormone sensitive lipase; FAS, fatty acid synthase; PPAR, peroxisome proliferator-activated receptors; LEP, leptin; LXR, liver X 

receptor; ER, estrogen receptor; VTG, vitellogenin;LC3B ( MAP1LC3B), Microtubule-associated protein 1 light chain 3 beta; SQSTM1, 

sequestome-1; ATG, autophagy- related; CASP, caspase; P53, phosphoprotein 53; NUPR1, nuclear protein; qPCR, quantitative 

polymerase chain reaction. 
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3.4 Experimental design in vitro: cell culture 

To avoid contamination from the gastrointestinal tract, adult fishes were fasted 

24 hours before the experiments. The cell culture was performed according to 

the following protocol:  

 

Pre-adipocytes protocol 

Solutions: 

1. Stock Krebs preparation ( x 10) 

It is necessary to prepare 500mL of Krebs the day before beginning the 

culture, and, to aliquot it in equal parts of 50mL, and, to freeze it. These 

amounts are good for cultivation trout. 

Reagents Concentration (mM) X 500 mL  (g) (x10) 
NaCl 117.5 34.33 

KCl 5.6 2.09 
CaCl2 (dehydrated) 2.52 1.85 

MgSO4 1.18 1.45 

NaH2PO4 (monohydrated) 1.28 0.88 

 

Reagents Amounts 

Stock Krebs (x 10) 50mL 

Distilled water (mQ) 445mL 
NaHCO3 (25mM) 1.05g 

D-Glucose (5.5mM) 0.495g 
HEPES pH 7.4 5mL 

 

 

 

2. Stock HEPES (1M) pH 7.4  
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3. Erythrocyte buffer preparation 

To prepare 100mL of buffer: 

Reagents X 100 mL (g) 

NH4Cl 0.822 
KHCO3 0.101 

EDTA 0.0292 

  

    Notes: Adjust pH at 7.3 and put the solution in the autoclave. 

4. Collagenase 

Preparing collagenase Type II sigma C6885 (130U/mL). Filtering 

collagenase by filter 0.22µm (Millipore CatN° SVGP01050).  

(130 U/mL) * (mg/475U) * mL of Buffer Krebs = Xmg of collagenase into 

XmL of  KBSA 1% 

 475=  units of collagenase that are written on bottle (this value can 

varies)   

 mL of Buffer Krebs= volume of Buffer Krebs to add. It is depends on 

amount of tissue (per gram of tissue extract, it need to add 5mL 

(1g/5mL). 

 

5. Medium of growth (for 500mL) 

 

Reagents Amounts 
FBS (Sigma F7524-500 mL) 50 mL 
Antibiotic (1%) (mix Sigma A5955-
100 mL) 

5 mL 

L-15 (Leibovitz’s Ref. 11415) Add to complete the volume 
 

6. Medium of differentiation (for 50mL) 

 

- Insulin (I5523, Sigma; PM 5807 g) 171.87 L (to keep into the freezer) 
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- Dexametasone (4°C, D2915, Sigma 1mM into water; PM 392.5 g) 12,5 

L 

 

- IBMX (-20°C, 17018, Sigma stock 1M in DMSO; PM 222,25 g) 50 L 

 

- Lipids (L5146, Sigma 4°C) 250 L (to keep into the freezer) 

 

 

 

7. Gelatine 1% 

 

The bottle (dust) must be preserved  sterile, and, it must be opened into cape. 

It is possible to choose an amount, and, when we go to prepare it outside 

cape (for example: 150mL), we put 1.5g of gelatin plus 150mL of distilled 

water, and then, we put the solution in the autoclave. Finally, this solution 

must be rated.  

 

8. Feral bovine Serum (FBS) 

 

It is liquid, must be rated (~ 30mL) and it must be put into freezer at -20°C. 

 

 

Procedure 

 

The day before culture 

 

Prepare the plates with gelatine 1% (1mL in every well) into cape, put them 3 

hours into incubator at 18°C, and then, wash with PBS (Phosphate Buffered 

Saline) sterile (500µL/ well) twice, then, put the plates with PBS into incubator 

until the day of the culture.  
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The day of culture 

 

 Turn on the cap and select UV. 

 Prepare 500mL di Krebs-HEPES solution and mix it with CO2 5%. 

 Weight 0.5g of anesthetic ms222 (Ethyl 3-aminobenzoate 

methanesulfonate). 

 Filter ~ 370mL of Krebs-HEPES solution with help of syringe and filter 

of 0.22µm (Millipore CatN° SVGP01050), the remaining mL aren’t 

filtered and into them put 1.3g of BSA 1% (Albumin from bovine serum), 

then put them into incubator. 

 Put the dissection material  into the cape. 

 Put 4 falcons with 5mL of Krebs-HEPES solution plus 50µ of antibiotic 

and put this solution into ice. 

 

Sacrifice fish 

Anaesthetize two fishes at a time, and then, kill them by a blow to the head. 

After that, weight fishes and extract adipose tissue from them (5g for every 

falcon). 

Digestion and incubation 

 

 Put into the cape a beaker for waste. 

 Prepare the amount of collagenase type II (130U/mL) to put into the 

Krebs-HEPES solution (not filtered) plus 1% BSA. This depends on 

amount of adipose tissue extract. Prepare 5mL of medium/gram of tissue 

extract. For example if we extract 16g of tissue (4g for 4 falcons),we will 

have more or less 130mL: 
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130U x 130mL 

_____________ = 24.3mg of collagenase 

       693.2 

 

 Filter collagenase into the cape with help of syringe and filters (Stevirex 

GP 0.22µm). 

 Put adipose tissue of falcons (one by one) into a petri and, with help of 

two scalpels, cut tissue and put it into a new falcon, adding 5mL of Krebs 

filtered. 

 Remove lower part of falcons and add to every falcon 5mL/g of medium 

filtered with collagenase. 

 Put falcons into the incubator at 18°C for an hour on the roller. 

 Put falcons in ice and filter the content in a new falcon with help of filters 

for falcons (100µm) (Filters falcon Ref. 352360). 

 Complete the volume up to 50ml with Krebs-HEPES and centrifuge at 

1500 rpm for 10 minutes at 4°C. 

 After centrifuging, take only the precipitate (erythrocytes plus pre-

adipocytes), remove the remainder by decantation. 

 Put in every falcon 5ml of erythrocytes buffer for 5-10 minutes at room 

temperature and with help of sterile pipette dilute precipitate in buffer. 

 Join the content of two falcons in a new one, filtering it by filters for 

falcons (100µm) without taking lipids in the upper part. 

 Wash falcon (with remaining lipids) by 5ml of Krebs-HEPES, then, take 

only the Krebs (without lipids) and put it in the new falcon. 

 Add to falcon (with the filtered content) Krebs-HEPES until to arrive at 

35ml. 

 Centrifuge in the same conditions. 
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 Remove the upper part of the centrifuged from falcons, put 1ml of 

medium of growth and re-suspend by a pipette; then, add the remaining 

medium of growth to arrive 2ml. 

 

Cells count 

     Put into eppendorf: 

 

 20µl of pre-adipocytes 

 10µl of medium of growth       

 10µl of trypan blue 

 

Put into  Neubauer chamber culture room 20µl after having put a coverslip. 

After cells count, it needs to do a media, multiply by 2 (factor of dilution), 

multiply by the total volume and multiply by 10000 (factor of plate) to 

obtain total number of cells; while, without total volume to obtain number of 

cells/ml. After this, cells are seeded in pre-treated six-well or twelve-well 

plates (9,6cm
2
/well or 2,55cm

2
/well respectively). 

 

The day after the culture  

 Take from the fridge L-15 and medium of growth and put them into cap 

for about 30 minutes. 

 Remove medium from the plates with help of pipette. 

 Put 1ml of L-15 in every well (into plates composed of 12 wells) to do 

the washing of plates. 

 Remove L-15 and put 1ml of medium of growth. 

Dilution 1:2 
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 Change medium of growth every 2 days. 

 

Differentiation 

When cells are confluent (seventh day of culture), add medium of 

differentiation. 

Treatments were the following:  

1. Control containing 0,1% of DMSO; 

2. Genistein at 10µM; 

3. Genistein at 100µM; 

4. E2 at 1µM; 

5. Genistein (10µM) + Fulvestrant (2µM); 

6. Genistein (100µM) + Fulvestrant (2µM); 

7. E2 (1µM) + Fulvestrant (2µM). 

The initial concentrations of compounds were: 

1. Genistein: 10mM 

2. E2: 100µM 

3. Fulvestrant: 100µM 

 

3.5 Cytotoxicity assay: MTT assay for the cellular viability 

To describe the potential non-viable effect of genistein in rainbow trout 

adipocytes in primary culture, it was performed a colorimetric assay: bromide of 

3-(4,5-dimethylthiazol-2-ilo)-2,5-diphenyltetrazolium (MTT).It is a colorimetric 

assay (use to examine the cellular survival and proliferation, mainly), through 

which we can determine a certain enzyme activity, thanks to a change of colour. 

This assay is based on the metabolic reduction of MTT (a yellow water-soluble 
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salt) to a blue compound (known as formazan); this reaction happens thanks to 

mitochondrial succinate-dehydrogenase enzyme that dissociates the tetrazolium 

ring of MTT molecule. In this way, we can estimate the number of active 

mitochondria, and so, the number of life cells, because the amount of alive cells 

is proportional to the amount of formazan produced. The MTT metabolized to 

formazan forms water-insoluble crystals which are entrapped into cells, so they 

must be solubilized in an organic solvent before carrying out a colorimetry. 

 

Preparation of the stock solution MTT 

Put 5 mg of MTT (ref. M5655 500mg, SIGMA) per millilitre of PBS          

(Phosphate Buffered Saline). Then, wrap it in an aluminum foil, this because of 

it is photo-sensible, and so, it could damage itself.  

 

 

 

Fig.20 MTT salt. 

 

After the preparation of stock solution MTT, treatments were prepared, and on 

the fifth day of culture (beginning of cell proliferation) it was performed 

stimulation of the plates with the following treatments: 

1. Control (GM+ DMSO) 

2. G10µM 

3. G100µM 

4. E2 1µM 

5. E2 (2µM) + Fulvestrant (2µM) 
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6. G (10µM) + Fulvestrant (2µM) 

7. G (100µM) + Fulvestrant (2µM) 

Then, after six hours the solution of MTT was placed, according to the 

following protocol: 

 

MTT Protocol 

1. Put 50µL of MTT plus 450µL of medium in every well of plate (if it is 

composed of 12 wells), or, 100µL of MTT plus 900µL of medium if it is 

composed of 6 wells.  

2. You leave it in the incubator for 3 hours. When you jab out it from the 

incubator, it is necessary to observe the blue crystals under the 

microscope. 

3. Wash the wells with PBS once (1mL in every well). 

4. Add 150µL (if the plate is composed of 12 wells), or, 250µL (if it is 

composed of 6 wells) of DMSO (Dimethyl sulfoxide) in every well to 

dissolve crystals formed. Then, put the plates into incubator for 2 hours 

(in case of osteoblasts), or, we  examine them immediately (in case of 

adipocytes).  

5. Put 100µL (once, if the plate is composed of 12 wells; twice, if it is 

composed of 6 wells) into a plate ELISA and measure the absorbance at 

570nm and at 650nm by a spectrophotometer (TECAN). The formazan 

solution absorbs light at 570nm, not at 650nm; for this, the final optical 

density (OD), obtained about formazan produced, can be calculate by 

subtraction between two absorbance (570nm-650nm). 

  

“DMSO” is an uncolored organic solvent with the capacity of crossing 

epidermis and cellular membranes, quickly. It is a solvent that in solution 
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doesn’t release protons to form hydrogen bonds and it is highly polar. It is 

miscible both water and organic solvents.  

 

3.6 Cytochemical assay: ORO (Oil red oil) assay 

The lipophilic dye Oil Red O (ORO) is widely used to characterize the fat cells 

differentiated, because it is a fat-soluble dye capable of staining neutral 

triglycerides and lipids, highlighting them in red. 

 

              Fig.21 Rainbow trout mature adipocytes highlighted in red with the dye ORO. 

 

In the present work, to investigate the potential anti-differentiation effect of 

genistein in rainbow trout adipocytes in primary culture, the seventh day of the 

cell culture, stimulation of the plates was performed with the following 

treatments: 

1. Control (DM + DMSO) 

2. G10µM 

3. G100µM 

4. E2 1µM 

5. E2 (2µM) + Fulvestrant (2µM) 
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6. G (10µM) + Fulvestrant (2µM) 

7. G (100µM) + Fulvestrant (2µM) 

After preparing the Working solution ORO (in 36% TEP): 

Stock solution ORO: 500mg ORO/ 100ml 60% TEP (Triethyl phosphate) 

 

                                12ml stock solution ORO + 8ml H2O 

                                                                Filter with paper Whatmann (n°4) 

                             Working solution ORO (in 36%TEP) 

3 days after (72h), it was done the dye of triglycerides with ORO, according to 

this protocol: 

 Wash cells with PBS. 

 Fix them for an hour with formalin 10% (or formaldehyde 3,7%). 

 Do three washes with distilled water (1ml in every well into plates 

composed of 12 wells). 

 Dye with Working solution ORO (1ml in every well into plates composed 

of 12 wells) for 2 hours. 

 Do three washes with distilled water.  

 

Extraction of triglycerides  

 Let dry cells. 

 Add isopropanol: 250µL into plates composed of 6 wells (or 150µL for 

plates composed of 12 wells) for 30 minutes. 
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 Put 100µL x2 (for plates composed of 6 wells), or 100µL (for plates 

composed of 12 wells) into wells of ELISA plate and analyze at 490nm 

with TECAN. 

 

Dye and extraction of proteins  

 2 washes with distilled water 

 Add 1ml of Comassie solution for an hour at room temperature. 

 Washes with distilled water twice. 

 Add propyl glycol: 1ml (for plates composed of 6 wells) or 500µL (for 

plates composed of 12 wells) for an hour at 60°C. 

 Put 100µl x2 (for plates composed of 6 wells) or 100µL (for plates 

composed of 12 wells) into wells of ELISA plate and analyze at 630nm 

with TECAN. 

 

Count TG/proteins: divide the reading at 490nm for reading at 630nm. 

 

3.7 Statistical analysis 

All data were analyzed using the statistical software IBM SPSS statistics 19. 

Data are presented as means values ± SEM (standard error of the mean). For in 

vitro experiments, n=4 independent experiments from 4 different cell isolations 

were used. For in vivo experiments, n=9 fish were analyzed. Statistical 

differences were analyzed in log-transformed data. To verify data normality, it 

was done Shapiro-Wilk test; to verify the homogeneity of variances, Levene test 

was done. The results were analyzed by 1-way ANOVA followed by Tukey test 
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(Levene test not significant) or Dunnett test (Levene test significant). When the 

data did not follow the ANOVA presumptions, the non-parametric Kruskal-

Wallis followed by Mann-Whitney tests were performed. Differences were 

considered significant at P<0.05. 

 

4. Results  

4.1 In vivo results: Gene expression analysis in adipose tissue and liver 

Expression of estrogen receptors, and lipid metabolism-related genes after 

genistein or 17β-estradiol administration, in adipose tissue and liver, are 

presented in fig.22. Expression of VTG was also determined in liver to confirm 

the effectiveness of the injected compounds. 

In adipose tissue, high concentration of genistein (50µg/g) increased FAS, 

PPARβ, GAPDH and LXR expression. Regarding LPL, HSL and LEP, no 

significant effect was seen. 

In liver, instead, genistein at 50µg/g increased HSL, and GAPDH expression, 

but no significant effect in the other genes was observed.  

In adipose tissue, E2 induced a tendency to increase FAS, PPARβ, GAPDH and 

LXR expression, but it isn’t a significant effect; 

In liver, E2 slightly increased FAS and HSL expression, but not significantly; 

while, E2 increased PPARα and GAPDH expression strongly.  

Regarding VTG in liver, both E2 and the high dose of genistein (50µg/g) 

increased its expression significantly.  
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Regarding estrogen receptors ER2α and ER2β, the high dose of genistein 

(50µg/g) decreased ER2α both in adipose tissue and liver, while in liver it 

decreased ER2β.  

E2, instead, decreased only ER2β in liver. 
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Fig.22 Effects of E2 and genistein (5µg/g and 50µg/g) on expression of estrogen 

receptors (ERs), vitellogenin (VTG) and lipid metabolism related genes of 

Oncorhynchus mykiss both adipose tissue and liver. Gene expression data are presented 

as relative units using Ubiquitin, EF1α and β-actin as housekeeping genes. Data are 

shown as means ± S.E.M. Treatments bars are relative to the control. Different letters 

indicate significant differences, P< 0,05. FAS, fatty acid synthase; LPL, lipoprotein 

lipase; HSL, hormone sensitive lipase; PPARs, peroxisome proliferator-activated 

receptor; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; LXR, liver X receptor; 

LEP, leptin; VTG, vitellogenin. 

 

Expression of apoptosis-related genes and autophagy-related genes after 

genistein or 17β-estradiol administration, in adipose tissue and liver, are 

presented in fig. 23. The autophagy-related genes were: CASP3, CASP8, and 

P53; while,  autophagy-related genes were: LC3b, ATG4b, ATG12l.  

In adipose tissue, genistein at 50µg/g decreased CASP3, and increased LC3b 

and ATG4b. 

E2, instead, induced a tendency to decrease CASP3, and to increase ATG4b, but 

these effects weren’t significant statistically. 

In liver, genistein did not have a significant effect on CASP3 and CASP8, only 

the lower dose of genistein (5µg/g) decreased CASP8, significantly. On the 

other hand, the high dose of genistein (50µg/g) increased autophagy-related 

gene ATG4b, significantly, and it had a tendency to increases ATG12l, but not 

significantly. 
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E2, in liver, increased apoptosis-related genes CASP3 and CASP8, appreciably; 

regarding autophagy-related genes, E2 decreased LC3b, and increased ATG12l, 

a tendency to increased ATG4b was also observed, but the effect was not 

significant. 

 

 

Fig.23 Effects of E2 and genistein (5µg/g and 50µg/g) on apoptosis-related genes and 

autophagy-related genes of Oncorhynchus mykiss both adipose tissue and liver. Gene 

expression data are presented as relative units using Ubiquitin, EF1α and β-actin as 

housekeeping genes. Data are shown as means ± S.E.M. Treatments bars are relative to 

the control. Different letters indicate significant differences, P< 0,05. CASP3, Caspase 3; 

CASP8, Caspase 8; P53, Tumor protein; LC3b, light chain 3b protein; ATG4b, 

autophagy related 4, cysteine peptidase; ATG12l, autophagy-related 12. 
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4.2 In vivo results: Gene expression analysis in white muscle 

Expression of estrogen receptors, and lipid metabolism-related genes after 

injection of genistein or 17-β estradiol in white muscle are showed in fig. 24. 

The lower dose of genistein (5µg/g) increased FAS, HSL, PPARα, PPARβ and 

LXR significantly. A significant down-regulation of GAPDH by genistein at 

5µg/g was also seen. Genistein at 50µg/g raised FAS, HSL, PPARα, and LXR, 

with a tendency to increase PPARβ, even if not significantly. GAPDH, instead, 

was not modified. 

E2 increased only PPARβ mRNA levels appreciably, with a tendency to rise the 

other genes (such as FAS, GAPDH and LXR) but not significantly. 

Regarding estrogen receptors ER2α and ER2β, the lower dose of genistein 

(5µg/g) increased both of them significantly; while the high dose of genistein 

(50µg/g) increased ER2β strongly, and tended to up-regulate ER2α mRNA 

levels, but this effect was not significant. 

E2 had a tendency to increase ER2β and ER2α, but not significantly. 
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Fig.24 Effects of E2 and genistein (5µg/g and 50µg/g) on expression of lipid metabolism-

related genes of Oncorhynchus mykiss, and estrogen receptors (ERs) in white muscle. 

Gene expression data are presented as relative units using Ubiquitin and EF1α as 

housekeeping genes. Data are shown as means ± S.E.M. Treatments bars are relative to 

the control. Different letters indicate significant differences, P< 0,05. FAS, fatty acid 

synthase; LPL, lipoprotein lipase; HSL, hormone sensitive lipase; PPARs, peroxisome 

proliferator-activated receptor; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; 

LXR, liver X receptor. 

 

Expression of apoptosis-related genes and autophagy-related genes after 

genistein or E2 administration in trout white muscle are shown in fig. 25.  

The lower dose of genistein rised ATG12l mRNA levels in a significant way, 

but not ATG4b. Regarding apoptosis-related genes, genistein at 5µg/g 

decreased only CASP3 significantly, while this dose of genistein had a tendency 

to down-regulate P53 and to up-regulate CASP8. 

The high dose of genistein (50µg/g) increased autophagy-related genes ATG4b 

and ATG12l significantly; the same dose of genistein decreased CASP3 in a 

significant manner; it tended to decrease P53, although not significantly, and to 

increase CASP8, even if  also this effect was not significant. 

E2, instead, increased only CASP8 in a significant way, while a tendency to 

down-regulate CASP3 was observed. 
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Fig. 25 Effects of E2 and genistein (5µg/g and 50µg/g) on apoptosis-related genes and 

autophagy-related genes of Oncorhynchus mykiss in white muscle. Gene expression data 

are presented as relative units using Ubiquitin and EF1α as housekeeping genes. Data 

are shown as means ± S.E.M. Treatments bars are relative to the control. Different 

letters indicate significant differences, P< 0,05. CASP3, Caspase 3; CASP8, Caspase 8; 

P53, Tumor protein; LC3b, light chain 3b protein; ATG4b, autophagy related 4, 

cysteine peptidase; ATG12l, autophagy-related 12. 
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4.3 In vitro results: MTT assay 

 

 

 

 

 

 

 

 

 

 

Fig.25 Cell viability profile of rainbow trout adipocytes under different treatments 

measured using the MTT assay. Data are means ± SEM of 4 independent experiments. 

Cell viability is relative to the control value. P value <0.05. 

To investigate cell proliferation of the adipocytes in culture, MTT assay was 

performed. The results obtained with the MTT assay performed after 24h of E2 

and genistein stimulation at two different doses, are shown in fig.23. After 24h 

post-stimulation, genistein showed a clear dose-response curve, with significant 

decrease in cell proliferation at the concentration of 100µM with respect to the 

control and between two concentrations (Fig.25). Moreover, it was observed 

that genistein at 100µM+ Fulvestrant (an inhibitor of ERs) had the same effect 

of genistein at 100µM, namely decreased cell viability in the same proportion,  

indicating that an high dose of genistein had a significant effect on cell viability 

and the proliferation cells, but  it didn’t, either alone or in combination with 

fulvestrant, exert this effect via estrogen receptor-dependent mechanism. 

Regarding E2, it had not significant effect on cell viability and the proliferation 

cells. 
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4.4 In vitro results: Oil red oil (ORO) assay 

 

 

 

 

 

 

 

 

 

 

 

Fig.26 Lipid content profile of rainbow trout adipocytes under different treatments 

measured using the ORO assay. Data are means ± SEM of 4 independent experiments. 

Lipid content is relative to the control value. P value <0.05. 

 

To investigate the differentiation of rainbow trout adipocytes in culture and to 

quantify lipid content of the cells, ORO assay was performed. The results 

obtained with the ORO assay performed after 72h of E2 and genistein 

stimulation at two different doses, are shown in fig.26. After 72h post-

stimulation, the high dose of genistein (100µM) showed a clear anti-

differentiation effect,where genistein at 10µM  hadn’t significant effect on cell 

differentiation, as well as E2. Interestingly, genistein at 100µM+Fulvestrant, (an 

inhibitor of ERs), had the same effect of genistein at 100µM, namely it 

decreased specific lipid content of adipocytes significantly. Also in this case, as 

for cell viability and cell proliferation, data suggest that genistein exerts its 

effect via estrogen-receptor independent mechanism. 
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5. Discussion 

5.1 Effects in adipose tissue and liver 

In vivo results from this study showed that genistein had an unclear effect on 

adipose tissue of Oncorhynchus mykiss, increasing FAS, PPARβ, GAPDH and 

LXR  expression.  In fact, while FAS and GAPDH are two lipogenic genes, and 

this would lead us to consider genistein as adipogenic compound, PPARb and 

LXR have a controversial role in fish and in mammalian adipose tissue. FAS is 

a key enzyme involved in “de novo” lipogenesis that catalyzes the synthesis of 

long chain fatty acids, mainly by catalyzing acetyl coenzyme A and malonyl 

coenzyme A in all vertebrats (Smith et al., 2003); GAPDH is a lipogenic 

enzyme involved in cell differentiation in mammals and in fish (Bouraoui, et al., 

2008). Regarding PPARβ, little is known about it in the context of target tissues, 

target genes, lipid homeostasis, and functional overlap with PPARα, and PPARɤ 

(Dressel et al., 2003). In mammalian adipose tissue, this gene is not directly 

implicated in the control of adipogenesis, because alone is not able to promote 

lipogenesis (but only together with PPARɤ), however, it plays a role in the 

adaptive response of adipose tissue to dietary fatty acid content (Neels and 

Grimaldi, 2014). It has been reported that PPARβ expression in adipose tissue 

changes with nutritional situation in trout (Cruz-Garcia et al., 2015), and it 

seems to mediate lipolytic effects in gilthead sea bream (Cruz-Garcia et al., 

2009). Regarding LXR, some studies showed that it induces lipogenic genes, 

adipogenesis and lipid accumulation in adipose tissue (Juvet et al., 2003; Seo et 

al., 2004), others demonstrated opposite results (Ross et al., 2002; Stulnig et al., 

2002; Hummasti et al., 2004; Sekiya et al., 2007; Stenson et al., 2011). 

Nevertheless, recent studies in humans and mice demonstrate that LXR seems 

to be more involved in lipid mobilization than lipogenesis in adipose tissue 

(Korach-Andrè et al., 2011; Stenson et al., 2011). No information is available 

on the role of LXR in teleost adipose tissue, only in  Oncorhynchus mykiss, a 
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group of researchers (Cruz-Garcia et al., 2012) studied its possible roles, 

showing that it seems to regulate cholesterol transport through ABCA1 (ATP-

binding cassette transporter A1), and it is not related to synthetic pathways in 

trout adipose tissue, but it could be considered an indicator of increased 

lipolysis in this tissue, a phenomen described already in Sparus aurata fed 

vegetable ingredients (Cruz-Garcia et al., 2011; Albalat et al., 2005a).  

Unfortunately, we have not studies on genistein’s effects on lipid metabolism in 

fish in order to do a comparisons, only one done by Cleveland and Manor 

(2015) on effects of genistein in rainbow trout, however the effects in adipose 

tissue were not studied. Rather, several studies on mammals have been reported, 

showing anti-obesogenic effects of genistein in adipose tissue, through up-

regulation of β-oxidation-related genes (as PPARα), and down-regulation of  

LXRs (Mi-Hyun Kim et al., 2010). Furthermore, genistein stimulated a dose-

dependent increase in lipolysis, and restricted fatty acid synthesis and/or their 

esterification in rat adipocytes (Kandulska, et al., 1999; Szkudelska, et al., 

2002), and decreased adipose weight and adipocyte circumference at higher 

doses, and lipoprotein lipase (LPL) mRNA in mice (Naaz, et al., 2003). 

In fish, we have only studies that showed the effects of dietary vegetable oil (as 

soybean oil) on adipose tissue and also in hepatic lipid metabolism–related 

genes, lipid deposition, growth or tissue fatty acids composition. Therefore, 

there are previous studies on gilthead seabram (Sparus aurata) showed that 

plant components increase basal lipolysis levels in adipocytes (Albalat et al., 

2005a) as well as it was observed in the measurements of the basal lipolysis 

levels in isolated adipocytes from animals fed vegetable oils (66%VO). This is 

in agreement with an enhanced HSL activity, and up-regulation of LXR 

expression in adipocytes by 66%VO. Furthermore, liver weight values were 

higher in fish fed 66%V0, suggesting that the fatty acids released from adipose 

tissue could produce lipid accumulation in the liver, as previously suggested 
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(Benedito-Palos et al., 2008), and as it has been described in humans (Browning 

and Horton, 2004) (Cruz-Garcia, et al., 2011). Also Caballero et al. (2004) 

found that a diet with 60% soybean oil as replacement induced fat liver 

accumulation and steatosis in sea bream. The authors concluded that the 

reduction of dietary essential fatty acids due to the inclusion of vegetable oil, 

and the type of non-essential fatty acid included in the diet, affects hepatic 

morphology and lipid content (Bouraoui, et al., 2011). Similar effects were seen 

by Li et al., (2015) in blunt snout bream (Megalobrama amblycephala), where 

an increasing SO (soybean oil) levels in the diet (from 20% to 100%) down-

regulated PPARα and PPARβ expression, explaining the increase in lipid 

accumulation in the liver (Li, et al., 2015). Nevertheless, many other factors 

beside genistein, can affect lipid metabolism in these vegetable diets studies. 

In our study, genistein had a lipolytic effect in liver of rainbow trout, underlined 

by an increase of HSL expression, and by tendency to increase PPARα. 

Previously, the same lipolytic effect  of genistein was seen in other studies, in 

which genistein decreased lipogenesis in rat liver, through a reduction in fatty 

acid synthesis and an increase in β-oxidation (Takahashi, et al., 2009). Genistein 

decreased fat liver accumulation, reducing levels of hepatic TG and cholesterol, 

increasing PGC-1 (PPARɤ co-activator involved in mitocondrial fatty acids 

oxidation) mRNA, mitochondrial medium chain acyl-CoA dehydrogenase 

(MCAD) (PPARα target gene, involved into fatty acid β-oxidation) mRNA, and 

uncoupling protein (UCP-2) (a mitochondrial inner-membrane protein that 

mediates proton leakage by uncoupling adenosine triphosphate synthesis) 

mRNA levels, up-regulation of which may compromise cellular adenosine 

triphosphate levels and decrease metabolic efficiency and, thus, decrease fat 

accumulation (Lee, et al., 2006). Through plasma analysis of Oncorhynchus 

mykiss, with a significant decrease of TAG levels or increase of NEFA levels, a 

similar lipolytic effect of genistein was seen (Lutfi, et al., 2015 unpublished). 
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Also a previous study regarding the effects of genistein on growth-related and 

lipogenic-genes in rainbow trout (Cleveland and Manor, 2015) showed that E2 

and genistein promote changes in gene expression that support a regulation of 

lipid metabolism in liver.  

Moreover, the high dose of genistein, along with E2, can have estrogenic effects 

in liver, evidenced as up-regulation of vitellogenin (VTG). Therefore, up-

regulation of this gene in fish exposed to genistein, confirm the ability of this 

phytoestrogen to produce estrogenic effects in vivo (Pelissero et al., 1991; Inudo 

et al., 2004; Kaush et al., 2008; Schiller et al., 2014). Like in previous studies, 

in which a similarity between E2 and genistein responses in liver suggested that 

effects of genistein are partially mediated through activation of estrogen 

receptors (ERs) (Cleveland, et al., 2015), also in this study, it seemed to be a 

certain parallelism between the effects of estradiol and those corresponding to 

the high dose of genistein on ER2β (down-regulation) and VTG (up-regulation) 

expression in liver. Moreover, as in other studies (Cleveland, et al., 2015), genes 

expression responses to genistein increased with injected amount, indicating 

that the estrogenic response in vivo can be dose-dependent, and therefore could 

vary depending on the amount of phytoestrogens in the diet. 

Studies on mammals indicate that genistein may affect lipid metabolism through 

additional mechanisms, not only through activation of ERs; however for some 

effect it was not discovered a mechanism of action yet. For example, genistein 

can have an anti-obesogenic role, decreasing food intake and increasing body 

weight loss (Kim et al., 2006), or decreasing leptin secretion (Brennan and 

Mantzoros, 2006) or inhibiting leptin synthesis (Phrakonkham, et al., 2008). In 

vitro genistein can also induce on 3T3-L1 mouse adipocyte apoptosis, which 

may be contributor to genistein’s reducing effect on body weight (Kim, et al., 

2006), but the pathway is unknown at the moment. For the other anti-

obesogenic effects of genistein, instead, the mechanism of action has been 
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clarified. In fact, this phytoestrogens is capable of inhibiting  lipid accumulation 

in primary human pre-adipocytes, via down-regulation of PPARɤ, C/EBPα, and 

glycerol-3-phosphate dehydrogenase (Park et al., 2009), and inhibiting the 

antilipolytic action of insulin, through an activation of protein kinase A and 

elevation of cAMP levels (Szkudelska et al., 2008). In Oncorhynchus mykiss, 

we observed  as the in vivo effects of genistein are partially estrogen receptor-

dependent in liver; then, genistein may act through the autophagic way, as 

shown by an increase of autophagy-related genes LC3b in adipose tissue, and 

ATG4b both in liver and adipose tissue, while these effects were not observed 

after estrogen administration. This autophagic pathway could be considered as 

possible way through which genistein exerts its lipolytic role in liver. Finally, 

apoptotic pathway was analyzed in order to see if a potential anti-obesogenic 

effect of genistein happened through an activation of apoptosis in adipose 

tissue; differently from it was expected and observed in mammals, genistein not 

seemed to affect apoptosis-related genes significantly, while it not seemed to 

have an apoptotic effect in vivo, rather it was seen a decrease of CASP3 caused 

by genistein at lower concentration (5µg/g) in adipose tissue; this, in agreement 

with that reported by Alan et al., (1999) according to them CASP3 is essential 

for certain processes associated with the dismantling of the cell and the 

formation of apoptotic bodies, in particular it is is required for some typical 

hallmarks of apoptosis, and is indispensable for apoptotic chromatin 

condensation and DNA fragmentation in all cell types examined (Alan et al., 

1999). 

Regarding autophagy pathway, what we observed in our work is in agreement 

with the recently reported by Kuma et al., (2010), namely autophagy 

involvement in lipid metabolism of liver and adipose tissue. Inhibition of 

autophagy in hepatocytes in vitro and in vivo leads to an increase in triglyceride 

storage in lipid droplets (Komatsu et al., 2005; Singh et al., 2009). Moreover, it 
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was proposed that lipid droplets are sequestered and degraded through 

autophagy during starvation (Singh et al., 2009), which would lead us to believe 

that lipolytic role of genistein in liver detected in our study could be positive 

avoiding excessive lipid accumulation in liver. These findings indicate a new 

role for autophagy in regulating intracellular lipid stores in the liver. Autophagy 

also has an impact  on adipogenesis. Autophagy is induced during in vitro 

adipogenesis (Baerga et al., 2009), and inhibition of autophagy impairs 

adipogenesis in cultured mouse embryonic fibroblasts and mouse adipose 

tissues (Baerga et al., 2009; Zhang et al., 2009; Singh et al., 2009) (Kuma et al., 

2010). This could induce us to think that genistein, increasing autophagy-related 

genes LC3b and ATG4b in adipose tissue, could promote “adipogenesis”, even 

if it is just an idea that need more studies to be clarified.  

Regarding in vitro studies, phytochemicals, as genistein, are considered in 

mammals potential agents to inhibit  proliferation and differentiation of pre-

adipocytes, stimulate lipolysis, and induce apoptosis of existing adipocytes in 

vitro, and reduce body weight and adipose tissues mass in animal models 

(Andersen et al., 2010). However, we don’t know how genistein affects in vitro 

preadipocyte proliferation and differentation in fish, in order to compare the 

present results, only studies in mammals have been reported. For example, one 

of these studies done on mammals showed that genistein inhibits the 

proliferation and differentiation of MCF-7 and 3T3-L1 cells via the regulation 

of ERα expression and induction of apoptosis in a concentration- dependent 

manner (Choi et al., 2014); the same results were obtained also in other works, 

with a difference: genistein may exert these effects through different 

mechanisms of action, as via Wingless and Int/β catenin (Wnt/β-catenin), such 

as Extracellular signal-regulated kinase/c-Jun-N-terminal kinase (ERk/JNK) 

signaling, in an estrogen-receptor independent manner (Behloul et al., 2013). In 

our work, to determine if the observed effects of genistein on rainbow trout 
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adipose tissue were connected with its estrogenic activity, adipocytes were also 

incubated with estradiol and fulvestrant, an inhibitor of ERs. It was observed 

that, in contrast  to genistein, estradiol did not affect preadipocyte cell 

proliferation and differentiation, and genistein, also in association with 

fulvestrant, decreased pre-adypocites cell proliferation and their specific lipid 

content. So, as in mammals, our  results in vitro from  MTT assay and ORO 

assay not only showed high dose of genistein (50µg/g) decreased in a dose-

dependent manner adipose tissue adipogenesis of rainbow trout, but also 

indicated that the observed effects of genistein were not mediated by estrogen 

receptor. These in vitro data are inconsistent with that obtained in vivo, because 

we didn’t have clear results regarding effects of genistein on rainbow trout lipid 

metabolism in adipose tissue. 

 

5.2 Effects in white muscle 

Results from this study showed that genistein affected lipid metabolism-related 

genes in white muscle of rainbow trout, up-regulating FAS, HSL, PPARα and 

PPARβ significantly. As previously cited, FAS is a lipogenic gene involved into 

fatty acids synthesis, while HSL is a lipolytic gene and PPARα and PPARβ 

arerelated to catabolisms of fatty acids. HSL is the principal enzyme that 

catalyzes the hydrolysis of triglycerides (Weil et al., 2012), PPARα and PPARβ 

are transcriptional factors that have been shown to stimulate fatty acid β-

oxidation in muscle, liver (PPARα) and adipose tissue (PPARβ) in fish (Cruz-

Garcia et al., 2011). This effect of genistein could be seen as a contribute to 

promote a lipid turnover in white muscle, allowing muscle to respond to the 

treatments with genistein with an increase of lipogenesis and lipolysis, in 

agreement with the high capacity of salmonid muscle to accumulate and to 

oxidize lipids (Cruz-Garcia et al., 2011). Regarding LXR, in our study, it was 
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observed that both doses of genistein rised it in the same way. However, it’s 

quite difficult to explaine this effect, because few studies have addressed the 

functional role of LXR in fish (Archer et al., 2008; Cruz-Garcia et al., 2009a; 

Cruz-Garcia et al., 2009b; Cruz-Garcia et al., 2011), whereas in mammals, it is 

known that LXRs are involved in the regulation of cholesterol homeostasis 

(Zhang and Mangelsdorf, 2002; Tontonoz and Mangelsdorf, 2003; Steffensen 

and Gustafsson, 2004), fatty acid synthesis (Repa et al., 2000; Schultz et al., 

2000), carbohydrate metabolism (Laffitte et al., 2003; Mitro et al., 2007) and 

anti-inflammatory effects (Fowler et al., 2003; Valledor, 2005), as they activate 

the transcription of genes involved in these processes. Mammalian muscle is a 

key regulator of lipid, particularly cholesterol, metabolism through the action of 

LXR (Muscat et al., 2002). In fish, one study was done by a group of 

researchers (Cruz-Garcia et al., 2011) in muscle trout, in vitro showing that 

LXR is hormonally regulated by insulin and GH, and in turn, it regulates the 

transcription of key genes (such as FAS, PPARα, LPL, PPARβ, ABCA1) 

involved in muscle lipid metabolism in trout. In particular, LXR may play a 

lipogenic role through insulin stimulation and a tendency to promote anabolic 

effects through GH on trout myocites. 

There is scarce information on the regulation of lipid metabolism in teleost 

muscle, although muscle accounts for a high proportion of the total weight of 

the animal and the final product in aquaculture. For this reason, this study was 

done also on lipid metabolism in muscle trout. Moreover, we have not other fish 

studies done on the effects of genistein in muscle lipid metabolism in order to 

do a comparisons, only some works in other animals. It was seen that soy 

isoflavones (which include a mixture of daidzein, genistein and glycitein) lead 

to improved growth performance, antioxidant capacity, carcass traits and meat 

quality in several studies (Cook et al., 1998; Payne et al., 2001). Furthermore, 

isoflavones may have efficacy as a feed supplement to decrease fat deposition in 
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animals because of its estrogen-like function (Payne et al., 2001). Cook (1998) 

evaluating the in vivo effects of dietary soybean isoflavones on carcass muscle 

content and body growth rate in pigs, observed that the isoflavones (670 mg 

genistein, 705 mg daidzein and 210 mg glycitein/kg diet) increased growth rate 

and carcass muscling, but carcass fat was not affected in pigs from 6 to 32 kg of 

body weight. Similar results for rats are reported by Cook (1998). Payne et al. 

(2001) reported that addition of isoflavones to a corn-soy protein concentrate 

diet (C-SPC), increased carcass leanness and decreased carcass fat and results in 

carcass traits similar to, or better than, those of barrows fed corn-soybean meal 

(C-SBM) (Payne et al., 2001).  

However, a few of studies on the effects of individual flavonoid compounds (as 

genistein) were performed. A study done by Kamboh et al. (2013) on the effects 

of genistein on growth, meat characteristics, oxidative stability of lipids and 

sensory quality of raw meat in chickens showed that genistein reduced lipid 

oxidation in muscle, without affecting the sensory quality of breast meat, and in 

general improved meat quality in a dose-dependent manner. In an other study 

Kamboh et al., (2013) showed that genistein decreased cholesterol and 

tryglicerides levels in breast muscle with increasing levels of this 

phytoestrogen, and also fatty acids composition of chicken meat was improved 

in a dose-dependent way.  

Flesh  quality  of  fish  is  strongly  influenced  by  diet.  Carotenoids, lipid 

sources, antioxidants, and other dietary components can  affect  color  (Nickell 

et al., 1998; Coral et al., 1998),  fatty  acid  profile  (Waagbo et al., 1993; 

Skonberg et al., 1994),  texture (Rora et al., 2003; Faergemand et al., 1995), and 

flavor (Johnsen et al., 1991; Skonberg et al., 1993) of farm-raised fish. 

Similarly, the absorption of feed components such as isoflavones in the fish 

muscle may offer additional benefits to consumers (D’Souza et al., 2005). 

Although few of studies was done on the effects of genistein in fish muscle, first  
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step  toward  explaining  the  effects  of individual  soy  components (as 

genistein)  on  some  of  the  important  quality attributes of fish it was a study 

done by D’Souza et al., (2005) on rainbow trout white muscle, in which the 

authors showed that dietary genistein resulted in genistein deposition in fish 

flesh without adversely  affecting  the  flavor, color,  or  proximate composition 

of the fillets; however, the genistein  levels  found  in  trout  fillets  were  much  

lower  than that found in commercial soy foods, for example, tofu and tempeh, 

which contain approximately 20.6 and 24.8 mg of genistein/100 g of sample 

(U.S. Department of Agriculture, 2002). It is for this reason that it is difficult to  

draw  any  conclusions  about  the  potential  human health benefits from these 

low amounts of genistein. More studies are needed to understand the effects of 

dietary genistein on the oxidative stability of fish fillets. Another study in trout, 

instead, showed that the high doses of genistein affects muscle protein turnover 

by increasing rates of protein degradation and proteolysis-related gene 

expression, via estrogen receptor-dependent and –independent mechanisms, so 

to have negative effects on skeletal growth (Cleveland et al., 2014).  

More studies on the effects of partial or total replacement of fish meal/oil by 

soybean or, in general, by vegetable meal/oils on growth, muscle fatty acid 

composition and organoleptic quality of flesh were performed. It was seen that 

inclusion of vegetable oils in fish diets modifies body fatty acid profiles and 

may significantly affect fish flesh quality and sensory characteristics (Guillou et 

al., 1995; Morris et al., 1995). For example, in one of these studies lipid 

concentrations in the muscle of cobia fed soy-based diets were found to 

significantly increase with an increase in soybean meal, while muscle ash and 

protein varied without a definite trend (Chou et al., 2004); in an other work, 

Izquierdo et al. (2005) observed that it is possible to substitute up to 60% fish 

oil by vegetable oils in diets for gilthead seabream without affecting growth and 

feed utilization even for a long feeding period.  
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In the present study, genistein’s possible-mechanisms of action were also 

studied, in particular the autophagy and apoptotic pathways. Regarding 

autophagy, in mammals several changes occur during catabolic conditions: 

proteins are mobilized to sustain gluconeogenesis in the liver and to provide 

alternative energy substrates for organs, mitochondrial and sarcoplasmic 

networks are remodeled and myonuclei are lost. In addition, the daily 

contractions can mechanically and metabolically damage/alter muscle proteins 

and organelles. Muscle cells therefore require an efficient system for removing 

and eliminating unfolded and toxic proteins as well as abnormal and 

dysfunctional organelles. The autophagy system is responsible for this action, 

generating double membrane vesicles that engulf portion of cytoplasm, 

organelles, glycogen and protein aggregates (Levine and Kroemer, 2008; 

Mizushima et al., 2008). Autophagosomes are then delivered to lysosomes for 

degradation of their contents. Despite this important function, the role of 

autophagy in the control of muscle mass has only recently begun to be 

investigated (Sandri, 2010). It was observed that an inhibition/alteration of 

autophagy can contribute to myofiber degeneration and weakness in muscle 

disorders characterized by accumulation of abnormal mitochondria and 

inclusions (Masiero et al., 2009). As in mammals, also in fish the autophagic 

proteolytic system represents a largely non-selective route of protein 

degradation which serves to recycle amino acids during periods of amino acid 

or energy deficiency (Kuma and Mizushima, 2010). This pathway has been 

implicated as a major contributor to increased muscle proteolysis during sexual 

maturation in salmon and rainbow trout (Yamashita and Konagaya, 1990; 

Cleveland et al., 2012). 

In mammals different signaling pathways may control autophagosome 

formation during short (hours) or long (days) periods of induced autophagy. 

Denervation is able to induce autophagy in skeletal muscles, although at a 
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slower rate than after fasting (O’Leary and Hood, 2008; O’Leary and Hood, 

2009). This  effect is mediated by Runx1 (an autophagy suppressor), which is 

upregulated in denervated muscles and is required to preserve muscle mass 

(Wang et al., 2005). The mechanisms of Runx1-mediated autophagy 

suppression is unclear but recent evidence shows that Runx1 can inhibit FoxO3 

action (Wildey and Howe, 2009). Another negative regulator of autophagy in 

muscle cells is the phosphatase Jumpy. Reduction of Jumpy protein by RNAi 

results in the formation of autophagosomes in C2C12 myoblasts and an 

increased rate of proteolysis observed both in normal and starvation media 

(Vergne et al., 2009). However, the regulation of Jumpy in normal and atrophic 

muscles is still unknown. The most potent autophagy inhibitor in skeletal 

muscles is the kinase Akt. Acute activation of Akt in adult mice or in muscle 

cell cultures completely inhibits autophagosome formation and lysosomal-

dependent protein degradation during fasting (Mammucari et al., 2007; Zhao et 

al., 2007; Zhao et al., 2008). Mammalian TOR (mTOR) is a nutrient-sensitive 

kinase downstream of Akt that is important for cell growth. However, the role 

of mTOR in autophagy regulation is not so important and therefore, mTOR, at 

least in skeletal muscles, does not mediate the negative effect of Akt on the 

autophagy pathway. The upregulation of several autophagy-related genes in 

atrophying muscles (Lecker et al., 2004; Mammucari et al., 2007; Zhao et al., 

2007; O’Leary and Hood, 2008; O’Leary and Hood, 2009) suggests the 

contribution of one or more transcription factors to autophagy regulation. 

Recently, it was identified  FoxO3 as the critical factor for autophagy control in 

adult muscles. Expression of FoxO3 is sufficient and required to activate 

lysosomal-dependent protein breakdown in cell culture and in vivo. Moreover 

several autophagy genes including LC3, Gabarap, Bnip3, VPS34, ATG12 are 

under FoxO3 regulation. Recently, the p38 αβ MAPK pathway was also 

described to regulate expression of autophagy-related genes independently of 

FoxO3 during oxidative stress (McClung et al., 2009). Differently from 
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mammals, the mechanisms responsible for the regulation of autophagy have not 

been investigated in teleosts, known to exhibit different muscle growth 

dynamics. One study was done by Seiliez et al., (2010), in which the authors 

investigated both in vivo and in vitro the transcriptional regulation of several 

major genes involved in autophagy (LC3b, gabarapl1, ATG12l, ATG4b) in the 

white skeletal muscle of rainbow trout.  

In mammals, FoxO transcritional factors are also known as a downstream target 

of the IGF1/insulin-PI3K-Akt signalling pathway; when the IGF1/insulin-PI3K-

Akt axis is active, FoxO proteins are phosphorylated and sequestered in the 

cytosol, but in catabolic states, the unphosphorylated transcription factors enter 

the nucleus and induce different proteasome- and autophagy-related genes 

(Sandri et al., 2004; Mammucari et al., 2007; Zhao et al., 2007). To examine the 

involvement of the Akt–FoxO signalling pathway in the regulation of the 

autophagy-related gene expression in trout, Seliez et al. (2010) investigated the 

specific effect of IGF1 on the Akt–FoxO signalling pathway and the expression 

of autophagy-related genes in cell culture model. IGF1 induced the 

phosphorilation of Akt and FoxO3 in primary culture of trout muscle cells, but 

had a weak or no effect on the expression of autophagy-related genes, 

suggesting a moderate role for FoxO3 in the regulation of the expression of the 

autophagy-related genes in trout myocytes. For the first time they showed the 

existence and the regulation of genes involved into autophagy in fish, and the 

overexpression of the autophagy-related genes during starvation to indicate that 

in rainbow trout muscle, these genes are regulated by the feeding status 

similarly to what is observed in mammals (Seiliez et al., 2010).  

In a study of Cleveland (2014) on rainbow trout skeletal muscle, it was seen that 

high concentrations of genistein, increased autophagy-related genes, among 

which ATG4b, to support the idea that dietary genistein potentially could be 

considered as a regulator of autophagy, implicated into protein degradation 
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process. Also in our study, the high dose of genistein (50µg/g) increased 

ATG4b and ATG12l. So, we can suppose that, in a similar way than in trout 

liver, genistein may act through the autophagic pathway in order to exert its 

lipolytic role into rainbow trout white muscle.  

In our study, also a lipogenic role of genistein into trout white muscle was 

observed, as shown by a significant increase of FAS enzyme involved into fatty 

acid synthase, and LXR. In mammals, lipotoxicity (excess lipid accumulation 

resulting from an elevated supply of plasma fatty acids) leads to cellular 

dysfunction and death in non-adipose tissues including the heart, pancreas and 

liver. While lipoapoptosis has been shown in cultured skeletal muscle cells (by 

several specific measures, including caspase-3 activation) (Turpin et al., 2006), 

in vivo instead, it was observed as a lipid overload did not induce skeletal 

muscle apoptosis (Turpin et al., 2009). In our in vivo study, both doses of 

genistein decreased apoptosis-related gene CASP3 significantly, so we can 

suppose that genistein, despite its possible obesogenic role, is capable of protect 

trout muscle cells against an eventual lipid overload-induced cell apoptosis. Or 

simply, a possible excessive lipid accumulation in trout muscle caused by 

genistein and following lipid overload-induced cellular apoptosis, can be 

counteracted by skeletal muscle itself, considering that, as in mammals as in 

fish, unlike the pancreas and liver, this tissue has a comparatively large capacity 

to oxidize FAs that may afford the tissue protection from lipoapoptosis. At the 

moment, these are only speculations that need additional studies to be 

investigated. 

Regarding the supposed anti-obesogenic role of genistein, it is not possible to 

assert that, because of results obtained, genistein exerts it through apoptotic 

pathway in trout white muscle. 
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Differently from the previous studies and unlike we obtained in adipose tissue 

and liver, the effects of genistein in trout white muscle were not dose-

dependent, except in the case of autophagy-related genes ATG4b and ATG12l. 

Regarding the estrogenic activity of phytoestrogen genistein, even in rainbow 

trout  muscle, it was seen a certain parallelism between genistein and E2; in 

particular, it was observed a similarity between the effects of the lower dose of 

genistein and those of E2 on PPARβ  (up-regulation), and between the effects of 

the high dose of genistein and those of E2 on ER2α (mild up-regulation), 

suggesting that genistein role could be partly mediated by estrogen receptors, as 

in trout liver. Likewise in a previous study (Cleveland, 2014) it was observed 

that the high dose of genistein can exert its effects on protein turnover in trout 

muscle also via estrogen-receptors.  

 

6.  Conclusions 

From the current study it resulted that genistein can have in vitro anti-

obesogenic effects on rainbow trout pre-adipocytes via estrogen-receptor 

independent mechanism. In vivo unclear results about role of genistein in   

Oncorhynchus mykiss adipose tissue were obtained. 

Regarding liver, genistein had a clear lipolytic effect in vivo, with a significant 

increase of HSL expression, mediated also by a possible autophagic way, 

enhancing a process that, along with lipolysis, contributes to lipid droplets and 

triglycerides breackdown. In liver, genistein seems to have a partial estrogenic 

role. 

The in vivo and in vitro anti-adipogenic effect of high dose of genistein 

(50µg/g) in liver and adipose tissue respectively, showed that genistein exerts  

its role in a dose-dependent way. Globally, data obtained are very interesting 

both in order to avoid an excess of adiposity of the animal that might affect 
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sensory and organoleptics characteristics of the fish, which can have a benefit in 

aquaculture. 

In vivo results obtained in trout white muscle, showed that genistein affected 

lipid metabolism-related genes in this tissue, up-regulating FAS, HSL, PPARα 

and PPARβ significantly. This double effect of genistein (lipogenic and 

lipolytic effect) could be positive if interpreted as a contribute to promote a lipid 

turnover in trout white muscle. 

Regarding genistein’s mechanisms of action, it was seen that genistein could 

exert its lipolytic role in trout muscle via autophagic way, increasing ATG4b 

and ATG12l, not through the apoptotic pathway, because of it decreased 

CASP3 significantly, with a tendency to decrease P53. Rather, this down-

regulation of CASP3 expression involved into apoptosis process, could be seen 

as a capacity of genistein to counteract an eventual lipid overload-induced 

muscle cell apoptosis. 

The effects of genistein on lipid-metabolism and apoptosis-related genes in trout 

muscle were not dose-dependent, only on autophagy-related genes ATG4b and 

ATG12l. Moreover, a partial estrogenic activity of this phytoestrogen was also 

seen. 

Definitely, our data need additional studies both to clarify the in vivo effect of 

genistein on rainbow trout lipid metabolism in adipose tissue, along with its 

mechanisms of action, and to better understand if the autophagic way in adipose 

tissue could be a possible pathway through which genistein may exert a possible 

adipogenic role, directed to the maintenance of the adipose tissue healthy and 

funcionality.  

Regarding rainbow trout white muscle, instead, further studies would be 

necessary to confirm the double role of genistein in this tissue, and to 

investigate if genistein can be seen as a possible compound counteracting 
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cellular apoptotis induced by an eventual lipotoxicity. These data will contribute 

to know if the inclusion of soybean (that is rich in genistein) into Oncorhynchus 

mykiss diet, as an alternative to fishmeal for aquaculture, could be a benefit or 

not. 
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