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Introduzione

In questa tesi vogliamo studiare le forme reali di algebre e superalgebre
di Lie semisemplici complesse. L’elaborato ¢ diviso in tre capitoli, i primi
due riguardano il caso classico, in altre parole le algebre di Lie, mentre nel
terzo capitolo esaminiamo il caso delle superalgebre di Lie.

Il primo capitolo é sostanzialmente usato per definire gli strumenti base
e la notazione, a partire dalla definizione di algebra di Lie, passando per la
definizione della forma di Cartan-Killing e di spazi di radice, sino ad arrivare
alla classificazione delle algebre si Lie semisemplici nelle famiglie standard
Ay B, Cun, Dy, e le algebre eccezionali, con relativi sistemi di radici e
diagrammze di Dynkin.

Nel secondo capitolo invece entriamo piu nel dettaglio del nostro studio,
definiamo la nozione di algebra compatta e, pid importante, di sottoalgebra
compatta massimale u, che come vedremo € unica a meno di automorfismi in-
terni. La sottoalgebra compatta massimale gioca un ruolo fondamentale nella
determinazione di tutte le forme reali go di una stessa g complessa semisem-
plice. Seguono poi le definizioni di decomposizione di Cartan, go = €y D po,
ed involuzione di Cartan, che esiste per ogni algebra di Lie reale ed € unica a
meno di coniugazione attraverso elementi di Intg, il gruppo degli automor-
fismi interni di g. Dopo questo importante risultante, si dimostra che, data g
algebra semisemplice complessa, ogni coppia di forme compatte é coniugata
attraverso un elemento di Int(g). Da ci6 segue quasi immediatamente il risul-
tato su cui poggia il nostro lavoro: le involuzioni di Cartan di g¥, ’algebra di
Lie g complessa vista come algebra reale, sono coniugate rispetto alla forme
reali compatte di g. Introduciamo poi i diagrammi di Vogan di una tripla
(g0, o, AT), che per le algebre reali giocano lo stesso ruolo dei diagrammi di
Dynkin nel problema di classificazione e ci limitiamo a studiare i diagrammi
di Vogan astratti senza frecce, in quanto assumiamo che

hCtCyg
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dove g = €@ p e b e la sottoalgebra di Cartan di g che ¢ la complessificazione
di go, con fine ultimo la dimostrazione del teorema di Borel de Siebenthal.

Nella parte finale del capitolo viene presentato I'algoritmo "push the but-
ton", un interessante metodo in cui si agisce direttamente sui diagrammi
di Vogan e che ci permette di ottenere una dimostrazione alternativa del
teorema di Borel de Siebenthal, nonché di trovare un algoritmo per dire di-
rettamente se due diagrammi di Vogan sono equivalenti, cioé corrispondono
alla stessa algebra di Lie.

Il terzo capitolo invece riguarda il caso delle superalgebre e ricalca la strut-
tura del capitolo del caso classico. Inizialmente vengono fornite definizione
di base riguardanti le superalgebre di Lie, tra le quali anche le definizioni di
superalgebre di Lie classiche e di Cartan. Poi studiamo i sistems di radice e
in particolare descriveremo quelli delle algebre classiche. Una volta forniti i
sistemi di radici, diamo la definizione di forma reale e studiamo in particolare
le forme reali di A(m|n). In ultimo introduciamo i diagrammi di Vogan, i
diagrammi di Vogan astratti e I'algoritmo "push the button" nel caso delle
superalgebre.



Introduction

In this work we want to study the real forms of semisimple complex Lie
alegbras and Lie superalgebras. We have three different chapters, the first
two are about the classical case, in other terms about Lie algebras, while, in
the third one, we examinate the case of the superalgebras.

In the first chapter we define the basic instruments and the notation for the

Lie algebras. We start defining what a Lie algebra is, then we give the defi-
nition of Killing form and of the root spaces. It ends with the classification
of the Lie algebra in the standard families A, , By, , Cy, , Dy, and the excep-
tional ones with their root sistems and Dynkin diagrams.

In the second chapter we go deeper in our study, we define the notion of

compact Lie algebra, and especially of mazimally compact Lie subalgebra u
which is unique up to inner automorphism.
The maximally compact subalgebra plays a foundamental role in the classi-
fication of all the real forms gg of the same semisimple complex Lie algebra
g. Then we define what a Cartan decomposition gy = £y @ po is, and what a
Cartan imvolution is, that it exists for all the real Lie algebra and it is unique
up to conjugation through element of Intgy. After this important result,
we prove that, given a semisimple complex Lie algebra g, any teo compact
forms of g are conjugate by an element of Intg. Then it follows the main
result on which our work is based: the Cartan involution of g¥, which is the
complex Lie algebra g seen as a real one, are conjugate with respect to the
compact real forms of g. Then we define what a Vogan diagram of the triple
(g0, bo, A1) and the abstract Vogan diagram with no arrows, since we study
also the case in which

hCctCg

where g = €@ p is the Cartan subalgebra of the complexification g og gy and
we reach the Borel de Siebenthal theorem. In the last part of the chapter
we develop the "push the button" algorithm, which helps us to achieve an
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alternative proof of the Borel de Siebentahl theorem and a direct algorithm
to determine if two Vogan diagram are equivalent, which means that they
correspond to the same real form.

The third chapter is about the Lie superalgebras and their real forms
and it is similar in structure to the first chapter treating the classical case.
In the first part we give the basic definitions for the Lie superalgebras as
the definition of classical Lie superalgebra and of Lie superlagebra of Cartan
type. Then we investigate the root systems and we give a presentation of the
root system for the classical families. After that we give the definition of real
form and we study, in particular, the real forms of A(m|n). At the end of
the chapter we introduce the notion of Vogan diagram and the abstract Vogan
diagram and the "push the button" algorithm in the super case.



Chapter 1

Lie algebras

This chapter does not want to be a detailed description of classical Lie
algebras but wants to establish the notation and recall some important defi-
nitions in order to help us with our work. Due to this purpose, we do not give
all the proofs of the theorems we will state, but we give always the references
where such proofs can be found.

At the end of the chapter, we can also find some examples of Lie algebras,
roots system and Dynkin diagrams.

1.1 Preliminar definitions

First of all, we have to define what a Lie algebra is, then we define what
semisimple and simple Lie algebra are.
At the end of the section we also introduce the notion of Cartan subalgebra.
We work in an arbitrary commutative field F' with characteristic 0.

Definition 1.1. Let g be a vector space g over a field F', with an operation
g X g — g denoted (z,y) — [z,y] and called the bracket or commutator of x
and y. g is called a Lie algebra over F, if the following axioms are satisfied:

1. The bracket is bilinear;
2. [z,2] =0, Vzeg;
3. [z [y, 2]l + [y, [z, 2l + [, [z, y]] =0, Va,y,z€g.

It is useful for us to introduce the concept of morphism of Lie algebras
and gl(V).

Definition 1.2. A linear transformation ¢ : g — g’, where g,g’ are Lie
algebras, is called morphism if ¢([z,y]) = [¢(x), d(y)], Vx,y € g.

1



1. Lie algebras

Ezxample 1.3. Let V be a finite dimensional vector space over F' and denote
with End (V') the set of the linear transformations from V to V. If we define
the bracket as [z, y] = xy —yz with 2,y € End(V') we have that (End(V'),[,])
is a Lie algebra and we call it gl(V).

In order to study the structure of a Lie algebra, we have to define the
notion of ideal.

Definition 1.4. A subspace I of a Lie algebra g is called an ideal of g if
x € g,y € I implies [z,y] € I.

Thanks to this definition, we are already able to define what a simple Lie
algebra is.

Definition 1.5. Let g be a Lie algebra. We call g simple if g has no ideals
except itself and 0, and if moreover [g, g] # 0 (i.e. g is not abelian).

Now we want to define what a semisimple Lie algebra is. To reach our
purpose we need to go through the definition of solvable Lie algebra.

Definition 1.6. Define a sequence of ideals of g, called derived series, by

9@ =g,g% =[g,g],0® = [gW,gW],.... g = [g0D gt V]. gis called
solvable if g™ = 0 for some n.

Next we assemble a few simple observations about solvability, for the
proof see [1], chapter 1.

Theorem 1.7. Lel g be a Lie algebra,

a) If g is solvable, then so are all subalgebras and homomorphic images of
g.

b) If I is a solvable ideal of g such that g/I is solvable, then g itself is
solvable.

c) If I,J are solvable ideals of g, then so is I + J.

As a first application of this proposition we can prove the existence of

a unique and maximal solvable ideal called the radical of g and denoted by
Rad g.

Definition 1.8. Let be g a Lie algebra. We call g a semisimple Lie algebra
if Radg = 0.

Theorem 1.9 (Cartan’s Criterion). Let g be a subalgebra of gl(V'), V' finite
dimensional. Suppose that Tr(zy) = 0 Vz € [g, 9],y € g. Then g is solvable.

For the proof of this theorem see on [1], chapter 2.
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1.2 Root space decomposition

In this section g denotes a nonzero semisimple Lie algebra.
Our purpose is to study in detail the structure of g, via its adjoint represen-
tation. The Killing form will play a crucial role.
First of all, we have to introduce what a representation of a Lie algebra is
and in particular the adjoint one.

Definition 1.10. A representation of a Lie algebra g is an homomorphism
of Lie algebras

¢:g—gl(V)

If we define the morphism ad, : g — g, ad,y = [z,y]. We have the
following definitions.

Definition 1.11. Let be g a Lie algebra, given an element x of a Lie algebra
g, the adjoint representation is the morphism:

ad: g — gl(V)
T — ad,

forallz € g
Now we are ready to introduce the Killing form.

Definition 1.12. Let g any Lie algebra, if z,y € g we define the Killing
form the follow bilinear form on g:

k(x,y) = Tr(ad,ad,)

With this new tools, now we can define a toral subalgebra, show some
properties of its subalgebras and define what a root system is.

Definition 1.13. We call a subalgebra toral if it consists of semisimple
elements.

It is easy to see that a toral subalgebra is abelian too, which is verified
in [1].
Now we fix a mazimal toral subalgebra b of g, i.e. a toral subalgebra not
properly included in any other.
Since b is abelian, adgh is a commuting family of semisimple endomorphism
so it is simultaneously diagonalizable.

So we find that
1=Po.
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where g, = {z € g|[h, 2] = a(h)x Vh € b}, where a ranges over h*.
Now we finally give the definitions of root system and root space decomposi-
tion.

Definition 1.14. The set of all nonzero o € h* for which g, # 0 is denoted
by A and its elements are called roots of g relative to b.

With the above notation we have what we call the root space decomposi-
tion also called root decomposition:

g:h@ga

aEA

For more details see in [1].
We can now continue with a simple observation about the root space decom-
position.

Theorem 1.15. If g = h P . 9a 5 a ro0t decomposition, we have:
o For all o, B € H*, [gas 85] C Gats-
o Ifx € gy, a+#0, then ad, is nilpotent.

o Ifa,B € ", a+ B # 0, then g, is orthogonal to gg, relative to the
Killing form k of g.

Let’s now see some properties, which are all verified in [1].
Theorem 1.16. Let A a root system:

1. A spans b*;

2. If o € A then —a € A;

3. Let a € Ax € g0,y € 9. Then [x,y] = k(x,y)t, where t, € b is
defined by k(ty, h) = a(h), Yh € b;

4. If a € A, then [ga, 8 o] is one dimensional with basis t.;
5. a(ty) = k(ta, ta), fora e A;

6. If « € A and x4 is any nonzero element of g, then there exists y, €
0o such that To,Ya,ha = [Ta,Ya) span a three dimensional simple
01

subalgebra of g isomorphic to sl(2, F') via x, — 00/

L(00y, (o),
yOt 10’(1 0_17
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5

2
7. ha = #; ha = _h—a;
K(ta,ta)

8. If a € A the only scalar multiples of o which are roots are a, —a;

9. If a,p € A, then 5(hy) € Z, and  — B(ho)a € A, the numbers 5(hy)
are called Cartan Integers;

10. ]fa,ﬁ,a+6 € A; then [gougﬂ] = fa+85

11. Let o, B € A, B # ta. Let r,q b (respectively) the largest integers for
which —ra, B+ qa are roots. Then all f+ia € A (—r < i <q), and
Bha) =1 —q;

12. g is generated (as Lie algebra) by all the root spaces gq.

Now, we are at this point: we have g, which is a semisimple Lie algebra,
h a maximal toral subalgebra, A C h* the set of roots and g = b Baca ga
our root space decomposition.
Since the restriction to b of the Killing form is nondegenerate we can transfer
the form to b*, letting (v,0) = k(t,t5), V7,0 € h*. Since we know that A
spans h* we can choose a basis ay,...,q; and write § € A as 8 = 22:1 ciovy,
with ¢; € F'. 1t is possible to show that all the ¢; € Q.
Now we can show the result of this section, proved in [1]

Theorem 1.17. Let be g a Lie algebra, by its maximal toral subalgebra, A a
root system and & = R ®q Ly where Eg is the Q-subspace of b* spanned by
all the roots. Then:

1. A spans E, and 0 does not belong to A;

2. If a« € A then —a € A, but no other scalar multiple of o is a root;

3. If a, B € A, then  — Q(B’a)a € A;
(a, )

4. If a, B € A, then 8 — 2(5,0) e Z.
(a, )

1.3 Root Systems, Weyl Group, Cartan Ma-
trix, Dynkin Diagram

In this section we define the notion of a root system by a few axioms,
what a reflection and the Weyl group are. After that, we define the Cartan
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matrix, that is a matrix strictly connected to the Lie algebra and last, but
not least, the Dynkin Diagram, which is a sort of graphic representation of
the Cartan Matrix which will be useful for the classification.

1.4 Root systems and Weyl group

Let be E a fixed real euclidean space, i.e. a finite dimensional vector
space over R endowed with a positive definite symmetric bilinear form (a, 3).
Geometrically a reflection in £ is an invertible linear transformation leaving
pointwise fixed some hyperplane (subspace of dimension one) and sending
any vector orthogonal to that hyperplane into its negative. Evidently a
reflection is orthogonal. Any nonzero vector « determines a reflection o,
with reflecting hyperplane P, = {8 € E|(8,a) = 0}. Of course, nonzero
vectors proportional to « yield the same reflection. It is easy to write down
2(ﬁ’ a) = <5a Oé>.

an explicit formula: o3 = 5 —
a, o

Definition 1.18. A subset of A of the euclidean space E is called a root
system in E if the following axioms are satisfied:

1. A is finite, spans F, and does not contain 0;
2. If « € A, the only multiples of o in A are +q;
3. If a € A, the reflection o, leaves A invariant;
4. If a, p € A, then (B,a) € Z

Definition 1.19. Let be A a root system in . We denote by W the sub-
group of GL(E) generated by the reflection o,(a € A) and we call it the
Weyl Group of A.

By the third and the first axioms respectively we can see that VW per-
mutes the set A and it is finite. The following lemma shows how a certain
automorphism of F acts on W by conjugation, for the proof see in |1]|,chapter
3.

Lemma 1.20. Let A be a root system in E, with Weyl group W. If o €
GL(E) leaves A invariant, then co,0™t = 0, for all « € A, and (B3,a) =

(0(B),0(a)) for all a, p € A.
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The fourth axiom limits severely the possible angles occurring between
pairs of roots. Recall that the cosine of the angle 6 between vectors o, 8 € F
is given by the formula ||al||| 5| cos0 = («, ).

2
Therefore, (5, a) = ((ﬁ,a)) = QHBH cos® and («a, B){B3,a) = 4cos*H. This
a, !
last number is a nonnegative integer; but 0 < cos?# < 1, and (a, 3)(f, )
have like sign, so the following possibilities are the only ones when o # +0
and ||8|| > ||a||. Since 4cosf = (a, B){(f, a) we could have only a few values
for (o, B) and (B, a), values that are reported in the following table.

(. 8) | (B} | 0 | 1IBIP/llef]”
0 0 7/2 | undetermined
1 1 | #/3 1
1 1 | 2n/3 1
1 2 | x/d 2
1 2 | 3n/4 2
1 3 | /6 3
1 3 | 57/6 3

Table 1.1: Values of («, 5) and (3, «)

Lemma 1.21. Let o, 5 be nonproportional roots. If (a, ) > 0fi.e. if the
angle between o and B is strictly acute), then o — 5 is a root. If (o, B) <0,
then o+ 3 is a root.

This last lemma is proved in [1].
Let us introduce some important notions about root systems:

Definition 1.22. A subset S € A is called a base if:
1. S is a base of E;

2. each root 8 can be written as 8 = Y koo (o € S) with integral coeffi-
cients k, all nonnegative or all nonpositive.

Remark 1.23. We can denote with IT = Span{S} N A

The roots in S are called simple. As a consequence of the first property
Card S = dim E = [ and the expression for 3 in the second one tell us that
this expression is unique. Thanks to this fact we can define the height of
a root by ht3 = > ko If all the coeflicients are nonnegative we call 3
a positive root and we denote it writing § € AT, otherwise we will write

geA.
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A
B a+f
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-a-f3 -B

Figure 1.1: Root system of Aj

Lemma 1.24. If S is a base of A, then (o, 5) <0 fora# B in S, and a—

18 not a root.

Also this lemma is proved in [1].
It is possible to show that A has a base, to reach this results we have to
introduce some new tools:

Definition 1.25. Let be v € E, we call it reqular if v € E —Uq,ea P, where
P,={B € E|(f,a) =0}

Then if 7 is regular, it is clear that A = AT (~v) UA™(7); we can call now
a € At (y) decomposable if o« = By + B3 for some [y, 5y € A, indecomposable
otherwise. With the following theorem, and it is possible to show that this
A is a base, see in [1], chapter 3. Now we will see some behavior of simple
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roots:
All the proofs are on [1]:

Lemma 1.26. If «v is positive but not simple, then a— 3 is a root (necessarily
positive) for some 3 € S

Corollary 1.27. Each € A" can be written in the form aq+- -+ ay (o €
S not necessarily distinct) in a such way that each partial sum is a root.

Lemma 1.28. Let o be simple. Then o, permutes the positive roots other
than «.

1
Corollary 1.29. Set § = 5 > gen+ B Then 0,(6) =0 — o for alla € S.

Corollary 1.30. If 0 = o0y...0; is an expression for o € W in terms of
reflections corresponding to simple roots, with t as small as possible, then

o(a) € AT.

Now we can finally discuss some properties of the Weyl group, see [1],
chapter 3.

Theorem 1.31. Let S be a base of A, then:
1. If v € E regular, there exists o € W such that (o(a), ) > 0,YVa € S;

2. If S is another base of A, then o(S’) = S for some c € W (so W acts
simply transitively on the set of bases);

3. If o is any root, there exist o € W such that o(a) € S;

4. W is generated by the o, € S;

1.5 Cartan Matrix and Dynkin diagram

Definition 1.32. Fix an ordering (a1, ...,q;) of simple roots. The matrix
({a;, j)) is then called the Cartan matriz of A.

It is obvious that the matrix depends on the order we choose for the
simple roots, i.e. if we choose a different order we will have a permutation
of the columns and the rows of that matrix, but it is not a problem because
we have already seen that the Weyl group acts transitively on the collection
of bases. Notice that the matrix is not singular since S is a base for E.
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Theorem 1.33. Let A’ C E' be another root system, with base S" = (o, ..., a)).

If (i, a5) = (aj,af) for 1 < 4,5 < I, then the bijection a; — o extends
(uniquely) to an isomorphism ® : E — E' mapping A onto A’ and satisfying
(P(a), ®(B)) = (a, B) for all a,p € ®. Therefore, the Cartan matriz of A

determines A up to isomorphism.

The proof of this last theorem is in [1]. If «, 8 are distinct positive roots,

we know that (o, 3)(8,a) = 0,1,2,3. Now we can define the Cozeter graph
of A which is a graph having [ vertices, where [ is the dimesion of our root
space, the i—th joined the to the j—th (i # j) by (o, a;){(a;, a;) edges.
Whenever a double or triple edge occurs in the Coxeter graph of A, we can
add an arrow pointing to the shorter of the two roots. This additional infor-
mation allow us to recover the Cartan integers; we call the resulting figure
Dynkin diagram of A.
If we recall that A is called irreducible if and only if A cannot be partioned
into two proper, orthogonal subset, we can easily understand that A is ir-
reducible if and only if the Dynkin diagram is connected in the usual sense.
In general, we could have as many connected components of the Dynkin di-
agram as the partition of S into mutually orthogonal subsets, we will call
them S;. If E; is the span of S; it is clear that E = E1 ® Ey ® -+ - ® E,. It is
possible to show that all the E; are VW-invariant .

Theorem 1.34. A decomposes (uniquely) as the union of irreducible root
system A; (in subspaces E; of E) such that E = E1® Ey®- - -® E; (orthogonal
direct sum,).

The discussion we have already have show that it is sufficient to classify
the irriducibile root systems or the Dynkin diagrams, for the proof see in [1],
chapter 3. The possibilities of different Dynkin diagram are restricted by the
angles that the edge of the graph can have, angles that are expressed in table
1.1.

Theorem 1.35. If A is an irreducible root system of rank [, its Dynkin
diagram 1s one of the following:



1.5 Cartan Matrix and Dynkin diagram

Proposition 1.36. Let g be a classical Lie algebra, its Dynkin diagram is
one of the Dynkin of the previous Theorem.

Remark 1.37. As a consequence of the last two theorem and of Theorem 1.33,
we have that if we have two classical Lie g, g’ algebras with the same Dynkin
diagram, g = ¢'.

Exzample 1.38. We can introduce the four kind of classical Lie algebra with
their root systems.

The first one, which is called A,, = sl(m + 1,F) = {z € gl(lm + 1, F) :
tr(r) = 0}. We have that its dimension is (m + 1)> — 1 and a base is
{Eii—Eiv1i,i=1,....my H{Ei;j i #J,4,5=1,...,m—1}.

If we define ¢; € b* = ¢;(diag(ay, ..., a,)) = a; we can give a basis of its root
system as follows:

A, ={ei—¢gji#ji,j=1..,m}
so if we define a; = &; —¢€;41, i =1,...,m —1 we have that
S = o, s}

and its Dynkin diagram is:
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For the following ones we have to introduce the concept of a Lie algebra
associated to a bilinear form. Let f be a nondegenarate bilinear form, if s is
the matrix associated to f, our Lie algebra is:

Ly={xz €gl(n, f):z's+ sz =0}

If we take s = J where J? = Id we obtain two different kind of Lie algebra.
We will have B, = so(2m + 1, F') and a base is given by E; ; — E;« ; where
i*=n+1l—diand j*=n+1—jand n=2m+ 1 and D,, =so(2m, F). A
root systems for B,, and D,, is given by:

Ap, ={%ei,£eite;i#ji,j=1,...,m}
Ap, ={feixe;j:i#ji,j=1,...,m}

If we define « : @ = €;6;41 and «,,, = €, we have the following base for B,,:
Sg,, = {a1,...,an} and if we define o : i = g;;4 fori=1,...,m — 1 and
O = Em—1 — €m We have Sp, = {ay,...,a,} and the Dynkin diagram are
the following:

Last but not least if we consider a bilinear form with the following matrix
we will obtain C,,, = sp(2m, F):

= (50)

Ag,, ={£2e;,%eite; i #j0,j=1,...,m}

The root system is:

and if we define a; = ¢; — ;41 forie=1,...,m —1 and «,, = €, we obtain
Se,, = {o1,...,an,} as a basis and the following Dynkin diagram:



Chapter 2

Real Forms and Cartan
Decomposition

In this chapter we see what a compact Lie subalgebra and a Cartan
decomposition are and their relation to the root space decomposition.
To reach this purpose we need some properties of the Killing form and finally
we introduce Vogan diagrams, which are strictly related with the Dynkin
diagrams explained in the previous chapter.

2.1 Compact Lie Algebras

Let us recall Lie second and third theorem. For its proof see|2| page 662.

Theorem 2.1. Every finite-dimensional Lie algebra over R is isomorphic to
the Lie algebra of a simply connected analytic group.

Thanks to this theorem, we can now define what a compact Lie subalgebra
is.
Definition 2.2. Let g be a semisimple complex Lie algebra, we define as

Int(g) the analytic subgroup of Autg(g) with Lie algebra ad(g). Thus Int(g)
is the identity component of Ad(G) and equals to Ad(G) if G is connected.

Definition 2.3. Let g be a semisimple Lie algebra over R. Let £ be a
subalgebra of g and K* th analytic subgroup of Int(g) which corresponds
(according to the second Lie theorem) to the subalgebra ad,(€) of ady(g). The
subalgebra ¢ is called compactly imbedded subalgebra of g if K* is compact.
The lie algebra g is said to be compact if it is compactly imbedded in itself
or equivalently if Int(g) is compact.

Lets see some properties and properties of the compact Lie algebras.

13
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Theorem 2.4. If G is a Lie group with Lie algebra g and if K is a compact
subgroup with corresponding Lie subalgebra €, then € is a compactly embedded
subalgebra of g. In particular, the Lie algebra of a compact Lie group is
always a compact Lie algebra.

Proof. Since K is compact, so is the identity component K. Then Ad,(K°)
must be compact, being the continuous image of a compact group. The
groups Ady(K") and Inty(€) are both analytic connected subgroups of GL(g)
with Lie algebra ady(€) and hence are isomorphic as Lie groups. Therefore
Int,(€) is compact. O

The next proposition and its corollary give properties of a compact Lie
algebra.

Remark 2.5. Let G be a compact Lie group, we have that G admits an
invariant measure under Ad which is the Haar measure, see on |2] page 239.
So when Ad(G) invariant product is defined as follows:

1
(z,y) = @L<Ad(g)x,Ad(g)y>dg

where (,) is any product on g.

Definition 2.6. A Lie algebra g is called reductive if its radical coincides
with its center.

Proposition 2.7. Let g be a Lie algebra over R, G its adjoint group. Then
the following statements are equivalent:

(i) g is reductive and [g, g| is of compact type;
(ii) G is compact;
(i) If X € g, adX is semisimple and has only pure imaginary eigenvalues.

Sketch of proof. (See on [1], chapter 4, for a complete proof). (i) = (ii) Let
C' be the center of g, g1 = [L,L]. Then YV =Y for Y € C,y € G. So if
Int(G); is the adjoint group of [g, g], ¥ — y|[¢g is an isomorphism of G onto
G1. So G is compact.

(i) = (iii) Let G be compact, so it follows as we said in the previous remark,
that there is an inner product for g which is positive deinite and invariant
under G. It is easy to see that the adX (X € g) are skew-symmetric with
respect to this inner product. A standard result in linear algebra implies that
all eigenvalues of adX are pure imaginary. If X € g and m is a subspace of
g invariant under ad X, then X leaves the orthogonal complement of m in g
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invariant. Hence ad X is semisimple for all X € g.

(iii) = (i) The adjoint representation of g is semisimple, so g is reductive.
Let [g, g] the derived algebra of g and w the Casimir polynomial of the de-
rived algebra. So, according to the previous observation, we have that all
eiegenvalues of (adX)? are < 0, so w(X) = (¢r(X))? < 0. Moreover, if X € g
and w(X) = 0 we have that all the eigenvalues are equal to zero. So adX is
nilpotent, showing that adX = 0. Thus X = 0. —w is therefore a positive
definite quadratic form on the derived algebra. If G; is the adjoint group
of the derivate we have that it is a closed subgroup of GL([g,g]). On the
other hand, (G; is contained in the orthogonal group of the derived algebra,
with respect to w, which is compact. So G, is compact and we have proven

(1)- 0
The next proposition is a kind of converse of the previous corollary.

Proposition 2.8. If the Killing form of a real Lie algebra g is negative
definite, then g is a compact Lie algebra.

Proof. By Cartan’s criterion for semisimplicity, Theorem 1.9, g is semisimple.
We also have that Int(g) = (Autgg)o (see [2], Proposition 1.97 and 1.98).
Consequently Int(g) is a closed subgroup of GL(g). On the other hand, the
negativity of the Killing form is an inner product on g in which every member
of adg is skew symmetric. Therefore the corresponding analytic group Intg
acts by orthogonal transformations. Since Intg is then exhibited as a closed
subgroup of the orthogonal group, it is compact. ]

2.2 Real Forms

In this section we introduce what a real form is and what a Cartan de-
composition and a Cartan involution are.

Definition 2.9. Let V be a vector space over R of finite dimension. A
complex structure on V is an R-linear endomorphism J of V such that J? =
—Id, where Id is the identity mapping of V.

A vector space V over R with a complex structure J can be turned into
a vector space V over C, by putting

(a+ib)X =aX +bJX, XeV,a,beR

In fact J? = —Id implies a(8X) = (aBX) for o, 8 € C, so it is obvious that
dim¢V = %dimRV. We call V' the complex vector space associated to V.
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On the other hand, if we have the vector space F over C we can consider the
vector space E® over R where the multiplication by 7 is given by the complex
structure J and it is clear that £ = ER.

A Lie algebra g over R is said to have a complex structure J, if J is a complex
structure over the vector space g and in addition

(X, JY]=JX,Y], VXY €g
From which simply follows:
[JX,JY]=-[X)Y], VXY eg

So the complex vector space g becomes a Lie algebra over C with the following
bracket operation:

[(a+ib) X, (c+id)Y] = [aX +bJ X, cY +idY] =
=ac[X, Y]+ bcJ[ X, Y]+ adJ[X,Y] — bd[X,Y]

In a similar way, we can introduce a complex structure .J instead the multi-
plication for ¢ of a complex Lie algebra to reach a real one.

Now suppose that V' is an arbitrary finite dimensional vector space over R, so
the product V xV is a vector space too and we can choose the endomorphism
J:VxV:(X,Y)— (=Y, X) which is a complex structure on V' x V. The

—_——

complex space (V x V) is called complezification of V and will be denoted
VC. In the same way we can define g the complerification of a Lie algebra
go, where gg is a real Lie algebra, writing X + JY with X,Y € gy and the
following bracket:

X +JY,Z+JT) = [X,Z] - [V, T] + J([Y, Z] + [X, T))

So we will denote with gg a real Lie algebra, g its complexification and with g®
a Lie algebra over R with a complex structure J derived from multiplication
by i on g.

Lemma 2.10. Let kg, k and k* denote the Killing forms of the Lie algebras
go, g and g®. Then

ko(X,Y)=r(X,Y) for X|Y € g
KY(X,Y) = 2Re(k(X,Y)) for X,Y € g*
Proof. The first relation is obvious, for the second suppose X; (1 <i <mn) is

any basis of g; let B + iC denote the matrix of adXadY with respect to this
basis, B and C being real. Then X,...,X,,,JX1,...,JX, is a basis of g&
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and since the linear transformation adXadY of g® commutes with .J, it has
the matrix expression

B -C

C B

from which the second relation above follows. O]
Due to this lemma we have the following.

Proposition 2.11. Let g a Lie algebra, go, g, 9%, are all semisimple if and
only if one of them is.

Definition 2.12. Let g be a Lie algebra over C. A real form of g is a
subalgebra g, of the real algebra g® such that

g° =00 ® Joo
In this case, each Z € g can be uniquely written as
Z=X+1iY, X,Y € g

Thus g is isomorphic to the complexification of go. The mapping o of g onto
itself is given by 0 : X +iY — X —iY(X,Y € go) is called the conjugation
of g with respect to go. The mapping ¢ has the properties

olo(X) =X, o(X+Y)=0(x)+)
olazx) =ac(X), o[X,Y]=[0X,0Y]

for X,Y € g,a € C. Thus o is not an automorphism of g, but it is an
automorphism of g®. We can now observe that the set go of fixed point of o
is a real form of g and o is the conjugation of g with respect to go. We have
that Jgo is the eigenspace of o for the eigenvalue —1 and g = go + Jgo.

Definition 2.13. A real form of g that contains b, for some Cartan subal-
gebra b is called split real form.

FExample 2.14. Let us see an example of real form and of a compact subalge-
bra.
Let g = sl,C = span{h, X, X_,} where

10 0 1 0 0
o= o 5) %= o ) = (G o)
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We have the real form gy = slbR, which is split, and also another real form
up = su(2) = span{ X, Y, Z} C sl,C where

= ) =) 2= (8

This is also a real form because spangs(X,Y, Z) = sl,C, but it is not split.
We have only to verify that su(2) is compact, that is a real form as slLR is
obvious.

To see that ug is compact we give as isomorphism @ to sog(3) = {z €
gl3(R)|X = — X"} which is compact:

d :5u(2) — sor(3)

X 5 X
Y—>}~/
AR/
where
_ 010~ 000~ 0 01
X=|-100)Y=|0 0 1| Z= 0O 00
0O 0 0 0 -1 0 -1 0 0

which generate sog(3), and @ is well defined on the bracket.
Remark 2.15. Following the notation of the first chapter, for each o € A a
vector X, € g, can be chosen such that for all o, 8 € A:
[(Xo, X o] = Ha, [H,X,]| =a(H)X, for H € b;
[Xo, X5 =0 ifa+p#0and a+ 5 ¢ A;
[XO“XB] = Na”gXa,g, if o+ ﬁ e A

where the constant N, g is integral and satisfies
Naaﬁ - _N_a’_ﬁ

The {H,, Xo, X 4, }aca form the Chevalley-Weyl basis.
To see that every semisimple Lie algebra has a Chevalley-Weyl basis see on
|3] page 176.

Theorem 2.16. Every semisimple Lie algebra g over C has a real form which
s compact.
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Sketch of proof. Let k denote the Killing form of g. Let § be a Cartan subal-
gebra of g, and A the root system. For each a € A we select X, € g,. Since
[Xo, X_o| = H, implies k(X,, X_o) = 1, see Theorem 1.15 and consequently

K(Xo — Xoay Xa— X o) = —2
(I (Xa 4 X ), i(Xa + X_a)) = —2
K(Xa = Xayi(Xa+ X_0)) =0

k(iHy,1Hy) = —a(H,) <0

Since k(Xa, Xg) = 0if o+ # 0, it follows that « is strictly negative definite
on the R-linear subspace

w =Y RGH,) + Y R(Xo—X_o)+ > R(i(Xo+X_y))

a€A acEA aEA

Moreover g = ug @ iug. Using N, g = —N, _g, where [X,, X3] = Ny sXats,
see Remark 2.15 which implies that IV, g is real, we see that X, Y € uy implies
[X,Y] € ug, so up is a real form of g, and due to the fact that the Killing
form is strictly negative, we have that it is compact. O

2.3 Cartan Decomposition

In this section we will see what a Cartan decomposition and a Cartan
involution are, the connection between them and the connection to the max-
imal compact subalgebra of a given real Lie algebra.

Definition 2.17. Let gy be a semisimple Lie algebra over R, g its complex-
ification, o the conjugation of g with respect to go. A direct decomposition
go = B + po of go into a subalgebra €, and a vector subspace pg is called a
Cartan decomposition if there exists a compact real form ug of g such that

oc-ucCu, f=goNu, Po=goN (iu,)

Since every semisimple Lie algebra g over C has a real form which is
compact, we will see, in this section, that every semisimple Lie algebra gg
over R has a Cartan decomposition.

Definition 2.18. An involutive automorphism 6 of a semisimple Lie alge-
bra go is called a Cartan involution if the bilinear form (X, 6Y) is strictly
positive definite.
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Let be g a semisimple Lie algebra over C and let R(g) the set of its real
forms.
Lets us define also Alnv(g) = {o:g — g|o0?=1d,0 antilinear}.
It is obvious that there exists a bijection between this two sets. Our goal
is to show what kind of relationship exists between R(g) and the Cartan
involutions. If we consider v C g, (we can consider it bacaues of Theorem
2.16), we can define 7, € Alnv(g) as the conjugation with respect to u and
& = oor, where o € Alnu(g).
Last but not least also define the following set:

A(g) = {n € Int(g)|ln~" = ruonor}
Theorem 2.19. The map:

Alnv(g) — A(g)

oc—& =00T,
is a biection and &, € Alnv(g) if and only if o o1, =T, 00.

Proof. To prove that &, € A(g) we have to check if ;! = 7,0, o7, but
&' =r1,0007, 07, so the inverse map is £ o 7, = 0.

We have now to see the second point of our statement, it is easy to see
because we have only to see what &2 is:

§o=1d
coT,o00T, =1Id

00T, =Ty00

We have now to see how the group Int(g) acts on the sets.

Proposition 2.20. Let be o € Int(g), and R(g), Alnv(g) and A(g) as in
the previous definition. Then we have the well defined actions:

i de
i. o g el a(g0), g0 € R(g)

g d
ii. aooc ™ aocoal, o€ Alnv(g)

iii. aof @ aoto(r,oator,), €€ Ag)
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Proof. The first point is obvious that is well defined so let us check the second
and the third one and also if the actions respect the bijections. ii)

—aocoa loaogoa™t

1

iii)
Lo Tu)fl o 571 oa !
1

(dofo(ryoator,)) = (r,0a”
=T1,0a0T,06 o™

=T,000T, 0T, 00T, 00 "

:7'uoogofo7'uoof1

:Tu0<040£)07‘u
And now we will check that the actions respect the bijections: Consider the
map:

Alnv(g) — A(g)
o—o0oT1, =&,
Ozoa—?>aoga

1

If we remember that c o0 = oo oa™* we have:

ozoaoofloTu:ozocTOTuOTuoofloTu

—aoom0a lor,

Meanwhile if we consider the inverse map:
A(g) — Alnv(g)

§—=>Efomy
aof 5 ao oty

1

This is easy to verify because: cofoT1,0a tor, 07, =aofor,oa"!l O

Thanks to these verification we can now give the following theorem.
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Theorem 2.21.
Alnv(g) . Alg) o R(g)

Int(g)  Int(g) Int(g)

Thanks to this Cartan’s result we know that if we have 0 € AInv(g)/Int(g)
exists an alement &, which is a Cartan involution for every equivalence class
(0], we post pone the proof later because we have to see some preliminar
results:

Lemma 2.22. Let gy be in R(g), so there is an o € Int(g) such that:
1. Oa(go) © Tu = Tu © Oa(go)s
2. Ta(g) © Tula(go) s a Cartan involution of a(go)

Proof. The Hermitian form ., on g X g given by
kn(X)Y)=—k(X,7,Y), X, Yeg

is strictly positive definite since u is compact. The linear transformation

N = o7, where o is the conjugation of g with respect to R(g) is an automor-
phism of the complex algebra g and hence leaves the Killing form invariant.
Using 02 = 72 = Id we obtain:

K(NX,7Y) = k(X,N'7Y) = k(X,7NY)
or
kir,(NX,Y) = k7, (X, NY)

This shows that N is self-adjoint with respect to x,,. Let Xi,...,X,, be
a basis of g with respect to which N is represented by a diagonal matrix.
Then the endomorphism P = N? is represented by a diagonal matrix with
positive diagonal elements \{,...,\,. For each t € R, let P! denote the
linear transformation of g represented by the diagonal matrix with diagonal
elements ();)" > 0. Then each P' commutes with N. Let ¢}; denote the
constants determined by

n
(X5, X1 =D e X,
k=1
for 1 <i,5 < n. Since P is an automorphism, we have

Ak = (/\k)cfj, (1<i,j<n)

)iy
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This equation implies

) (N)'ely = (\)'ely, (t €R),
which shows that each P! is an automorphism of g.

Consider now the mapping 7 = P, P~! of g into itself. The subspace Plu
is a compact real form of g and 7 is the conjugation of g with respect to
this form. Moreover we have 7,N7, ' = N~! so 7,N7,! = P~!. By a simple
matrix computation the relation 7,P = P~'7, implies 7,P' = P~'r, for all
t € R. Consequently,

or, =oP'r,P ' =0r,P % =NP?
o= (or) ' = PN = N1 P,

Ift = i then o = 7. Thus the automorphism a = P has the desired
properties. €y is compactly imbedded in gg, and it is maximal. If &, were
not maximal, let €, be a compactly imbedded subalgebra of gq, properly
containing €y. Then there exists an element X # 0 in €; Npy. Then 7,90 C go
and the bilinear form, as we have already seen, is symmetric and strictly
positive definite. Since:

k([ X,Y],7.2) = —k(Y, [ X, 1,.Z]) = (Y, [1.X, TuZ])
we have
kr,(adX(Y), Z) = K, (Y,ad X (Z).

Thus ad X has all its eigenvalues real, and not all zero. But then the power
e*dX can not lie in a compact matrix group. This contraddicts the fact that
¢, is a compactly embedded subalgebra of go. ]

Theorem 2.23. Let g be a complex semisimple Lie algebra, let uy be a com-
pact real form of g, and let T be the conjugation of g with respect to uy. If g
is regarded as a real Lie algebra g®, then 7 is a Cartan involution of g®.

Proof. It is clear that 7 is an involution. The Killing forms x4 of g and kg
are related by

KJQR (Zl, ZQ) = 2Re/<ag(Zl, ZQ),
see Lemma 2.10. Write Z € g as X + Y with X, Y € uy. Then

kg(Z,7Z) = kg(X + 1Y,z — 1Y)
= kg(X, X) + 14(Y,Y)
- ’iu()(X?X) + ’iuo(}/? Y)
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and the right side is < 0 unless Z = 0. It follows that

(kge)r (21, Z2) = =k (21,7 Z,) = —2Rery(Z1,722)
is positive definite on g®, and therefore 7 is a Cartan involution of g=. O
Corollary 2.24. If gy is a real Lie algebra, then go has a Cartan involution

Proof. Let g be the complexification of gy, and choose a compact real form
u of g. Let o and 7 be the conjugations of g with respect to go and ugy. If
we regard g as a real Lie algebra g, then o and 7 are involutions of g® and
the previous theorem shows that 7 is a Cartan involution, so we can find
¢ € Int(g®) = Intg such that p7p~! commutes with o, see Theorem 2.21
Here o7 ! is the conjugation of g with respect to (i), which is another
real form of g. Thus

(Kge) pro-1(Z1, Z2) = —2Rekqy(Z1, o1 Zo)

is positive definite on g¥.
The Lie algebra gg is characterized as the fixed set of 0. If X = X, then

a(gm'(p’lX) = o1 o X = pre X,

Hence o7 ~! restricts to an involution 6 of go. We have

_ 1
— gy (X, 07) = —ky(X, o7 'Y) = §(H9R)WW1(X, Y).
Thus By is positive definite on gg, and 6 is a Cartan involution. O

Corollary 2.25. If gg is a real semisimple Lie algebra, then any two Cartan
wnwvolutions of go are conjugate via Intgg.

Proof. Let 6 and 0’ be two Cartan involutions. Taking ¢ = ¢ in Theorem
2.22, we can find ¢ € Int(go) such that pfp~! commutes with 6’. Here @fp~!
is another Cartan involution of go. So we may as well assume that 6 and 6’
commute from the outset. We shall prove that § = 6.

Since 6 and 6’ commute, they have compatible eigenspace decomposition into
+1 and —1 eigenspaces. By simmetry it is enough to show that no nonzero
X € gois in the 41 eigenspace for 6 and the —1 eigenspace for #’. Assuming
the contrary, suppose that X = X and #/X = —X. Then we have

0 < —r(X,0X) =—kr(X,X)
0 < —kr(X,0X) =+r(X,X),

contradiction. We conclude that 6 = ¢'. O]
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Corollary 2.26. If g is a complex semisimple Lie algebra, then any two
compact real forms of g are conjugate via Intg.

Proof. Each compact real form has an associated conjugation of g that de-
termines it, and this conjugation is a Cartan involution of g®, by Theorem
2.23. Applying Corollary 2.25 to g%, we see that the two conjugations are
conjugated by a member of Int(g®). Since Int(g®) = Int(g) the corollary
follows. [

Corollary 2.27. If g is a complex semisimple Lie algebra, then the only
Cartan involutions of gt are the conjugations with respect to the compact
real forms of g.

Proof. Theorem 2.16 and Theorem 2.23 produce a Cartan involution of g®
that is conjugations with respect to some compact real form of g. Any other
Cartan involution is conjugate to this one, according to Corollary 2.25, and
hence is also the conjugation with respect to a compact real form of g. [

A Cartan involution 6 of gq yields the eigenspace decomposition

go = £ @ po

of go into 1 eigenspaces, and these must bracket according to the rules

[€0, o] € €0, [Eo, o] S po [P0, Po] € &
Since 6 is an involution,
£, and p, are orthogonal under g4, and under xy.

In fact, if X isin €y and Y isin pg, then ad XadY carries £, to pg and viceversa.
Thus it has trace 0, and kg, (X,Y) = 0; since Y = =Y, ky(X,Y) = 0 also.
Since kg is positive definite, the eigenspaces £, nd po have the property that

.| negative definite on &,
Kgo, 18 i .
positive definite on pg

so we have a Cartan decomposition. Conversely a Cartan decomposition
determines a Cartan involution 6 by the formula

9: {+1 on EO

—1 on Po

Proposition 2.28. Let gy a real semisimple Lie algebra and g its complexi-
fication, 6 is a Cartan involution of go if and only if:
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1)

go = €0 @ po,

[0, 8] € Eo, [Eo,Po] S Po [P0, o] C Eo;

2) kg, is negative definite on €, and positive definite on pg

Proof. Let 6 be a Cartan involution and €y, po the +1 eigenspaces, then 1)
and 2) are clear. We now have to show that an involution satisfying 1) and
2) is a Cartan decomposition.

This implication is also easy because we have only to give a compact real form
which has the desired properties, this compact, see the proof of Theorem 2.16
where we show why this is compact, real form is u = €y ®ipy and we consider
the conjugation o of g respect to go. ]

Lemma 2.29. If gg is a real semisimple Lie algebra and 0 is a Cartan invo-
lution, then

(adX)* = —adfX, VX € g
where adjoint (+)* is defined relative to the inner product Kg.

Proof. We have

By((adOX)Y, Z) = —w([0X,Y],02)
=k(Y,[0X,07]) = x(Y,0[X, Z])
= —kre(Y, (adX)Z) = —krp((adX)*Y, 7).

]

Proposition 2.30. If gy is a real semistmple Lie algebra, then go is isomor-
phic to a Lie algebra of a real matrices that is close under transpose. If a
Cartan involution 0 of go has been specified, then the isomorphism may be
chosen so that 0 s carried to negative transpose.

Proof. Let 6 be a Cartan involution of gy and define the inner product By on
go- Since go is semisimple, gy = adgy. The matrices of adgg in an orthonormal
basis relative to k¢ will be the required Lie algebra of matrices. We have only
to show that adgg is close under adjoint. But this follows from Lemma 2.29
and the fact that gg is closed under 6. O]
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We have already seen that every real semisimple Lie algebra has a Car-
tan subalgebra, now we want to investigate the conjugacy class of Cartan
subalgebras and some their relationship to each other.

Proposition 2.31. Any Cartan subalgebra by of go is conjugate via Intgg to
a 0 stable Cartan subalgebra.

Proof. Let b be the complexification of hy, and let o be the conjugation of g
with respect to gg. Let ug be the compact real form constructed from b and
let 7 be the conjugation of g with respect to uyg. The construction of uy has
the property that 7(h) = . The conjugations ¢ and 7 are involutions of g¥,
and 7 is a Cartan involution by Theorem 2.23. The conjugations o and 7 are
involutions of g%, and 7 is a Cartan involution. Lemma 2.22 shows that the
element ¢ of Intg® = Intg given by ¢ = ((¢7)2)1 has the property that the
Cartan involution 7 = o7~ ! of g® commutes with o. Since o(h) = b and
7(h) = b, it follows that ¢(h) = h. Therefore 77(h) = b.

Since 77 and o commute, it follows that 77(go) = go. Since ho = bh N go, we
obtain 7i(hy) = bo.

Put n = 74, so that n(hg) = ho. Since 7 is the conjugation of g with respect
to the compac real form (up), the proof of Corollary 2.24 shows that 7 is a
Cartan involution of gy. Corollary 2.25 shows that 1 and 0 are conjugate cia
Intgg, say 6 = ¥np~! with ¢ € Intge. Then 1 (ho) is a Cartan subalgebra of
go, and

0(¢(ho)) = vy~ (ho) = ¥ (nho) = ¥ (ho).
shows that it is 6 stable. H

Thus it is sufficient to study 6 stable Cartan subalgebras. When b is
stable, we can write hy = to P ag with tg C €, and ag C pg. We can define the
compact dimension as dimty and the noncompact dimension as dimagy which
are unchanged when by is conjugated via Intgy to another 6 stable Cartan
subalgebra.

We say that a 6 stable subalgebra hy = ty + ag is mazimally compact if
its compact dimension is as large as possible, mazimally noncompact if its
noncompact dimension is as large as possible.

Theorem 2.32. Let tg be a maximal abelian subspace of €. Then by =
Zg,(to) is a stable Cartan subalgebra of gy of the form by = ty & ag with
ap € Ppo.

Proof. The subalgebra b is 6 stable and hence is a vector space direct sum
ho = to@ag, where ag = hoNpo. Since by is O stable, it is reductive and [ho, ho]
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is semisimple. We have [ho, ho] = [ao, ao, and [ag, ag] C ty since ag C py and
ho N €y = to. Thus the semisimple Lie algebra [ho, ho| is abelian and must be
0. Consequently bg is abelian.

It is clear that h = (ho)® is maximal abelian in g, and adg,(ty) are skrew
adjoint, the members of ady, (ag) are selfadjoint, and t, commutes with aj.
Finally, we have that b is a Cartan subalgebra of g, and hence b, is a Cartan
subalgebra of gg. m

With any 6 stable subalgebra hy = to @ ag, tp is an abelian subspace of £,
so hp is maximally compact if and only if t; is a maximal abelian subspace
of Eo.

Proposition 2.33. Among 0 stable Cartan subalgebras by of go, the maxi-
mally noncompact ones are all conjugate via K, and the mazrimally compact
ones are all conjugate via K, where K = Intg,(¥).

Proof. Let by and b be given Cartan subalgebras. In the first case, as we
observed above, hy N po and by N py are maximal abelian in poy and there is
no loss of generality in assuming that by N py = by N po. Thus by = ty S ag
and by = t;, @ ap where ay is maximal abelian in py. Define my = Z (ao.
Then t; and t{, are in my and are maximal abelian there. Let M = Zx(ay).
This is a compact subgroup of K with Lie algebra mg, and we let M, be its
identity component. Now we have that t;, and t{ are conjugate via My, and
this conjugacy clearly fixes ayg. Hence by and b, are conjugate via K.

In the second case, hy N & and hj N €, are maximal abelian in £,, so we can
assume that ho N €, = by N €. So Theorem 2.32 shows that hy = b, and the
proof is complete. n

If we examine the proof of the first part of this last proposition, we find
that we can adjust it to obtain root data that determine a Cartan subalgebra
up to conjugacy. As a consequence there are only finitely many conjugacy
classes of Cartan subalgebras.

Lemma 2.34. Let by and b be 8 stable Cartan subalgebras of go such that
ho N po = by Npo. Then by and b, are conjugate via K.

Proof. Since the py parts of two Cartan subalgebras are the same and since
Cartan subalgebras are abelian, the €, parts ho N € and by N ¢ are both
contained in m = Zy (hp N pg). The Cartan subalgebras are maximal abelian
in go. Let M = Zr(ho N pg). This is a compact Lie group with Lie algebra
mg, and we let Mg be its_identity component, so we have that by N € and
by N € are conjugate via My, and this conjugacy clearly fixes ho N py. Hence
ho and bj are conjugate via K. ]
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Lemma 2.35. Let ag be a marimal abelian subspace of po, and let X be
the set of restricted-roots of (go,a0). Suppose that by is a 0 stable Cartan
subalgebra such that ho Npoe C ag. Let X' = {A(ho Npo) = 0}. Then by N po
is the common kernel of all A € X',

Proof. Let aj; be the common kernel of all A € ¥’. Then hy Npy C ag, and
we are to prove that equality holds. Since g is a maximal abelian in g, it
is enough to prove that by + af is abelian.

Let go = ag & my P @Aez(QO)A be the restricted-root space decomposition
of go, and let X = Hy + Xy + ZAGE X, be an element of gy that centralize
ho N po. Bracketing the formula for X with H € by N pg, we obtain 0 =
Y sesosy A(H) Xy, from which we conclude that AM(H)X, = 0 for all H €
ho Npo and all A € ¥ — ¥/, Since that X’s in ¥ — ¥ have A(hy N pg) not
identically 0, we see that X, = 0 for all A € ¥ — ¥/. Thus any X that
centralize by N pg is of the form

X =Hy+Xo+ Y Xy
rex
Since hg is abelian, the elements X € by are of his form, and aj, commutes

with any X of this form. Hence by + a; is abelian, and the proof is complete.
O

Proposition 2.36. Up to conjugacy by Intgg, there are only finitely many
Cartan subalgebras of go.

Proof. Fix a maximal abelian subspace ag of py. Let hy be a Cartan sub-
algebra. Without loss of generality we can assume that b, is 6 stable and
that by N pg is contained in ay. Lemma 2.35 associates to a hy a subset of
the set X of restricted roots that determines by N po, and Lemma 2.34 shows
that ho N po determines by up to conjugacy. Hence the number of conjugacy
classes of Cartan subagebras is bounded by the number of subset of . [

2.4 Vogan Diagrams

We want to associate to a real Lie algebra gy a diagram consisting of

the Dynkin diagram of g = (go)® with some additional information superim-
posed. This diagram will be called Vogan diagram.
Let go be a real semisimple Lie algebra, let g be its complexification, let 6 be
a Cartan involution, let go = £y @ po be the corresponding Cartan decompo-
sition, and let x the associated Killing form. Fix a Cartan subalgebra h C g,
we assume that

hCtCyg.
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This makes fh compact and @ stabilizes all of root spaces, fact that it cannot
always do. We have that A = Ay @ A, where A, are the compact roots and
A, the noncompact ones and that [¢,p] C p and [¢,€] C £ and

0 is equal to 1 on £ and to —1 on p.

For the general case see on [2], chapter VI section 8.

Definition 2.37. Let gy a real Lie algebra and g its complexification. We
define the Vogan diagram of the triple (go,bo, A*) as the Dynkin diagram
of AT with painted or not painted vertices, according as the corresponing
simple root is noncompact or compact.

FEzample 2.38. If go = su(3,3), let us take 6 to be negative conjugate trans-
pose, by to be the diagonal subalgebra. We have that A = {¢; —¢;| 1 < i #
Jj <6} and AT to be determined by the conditions g1 > g9 > &4 > 5 > &3 >
g6, 80 we have that S = {e1 — e9,69 — 4,64 — €5,65 — €3,63 — €. The Dynkin
diagram is of type As. In particular, € acts as the identity in the Dynkin
diagram. The compact roots €; — €; are those with ¢ and j in the same set
{1,2,3} or {4,5,6}, while the noncompact roots are those with ¢ and j in
opposite sets. Then among the simple roots, €; — 9 is compact, €5 — €4 is
noncompact etc. Hence the Vogan diagram is

o0——1C—=0—0

If we use the standard ordering on the ¢;, with 1 < < 6 and that a root ¢; —
£, 1s compact if ¢ and j are in the same set {1, 2,3} or {4, 5,6}, noncompact if
1 and j are in opposite sets we have that the only noncompact root is 3 — &4.

o—C—=e——C0C—-—o0

Remark 2.39. Note that if we choose a real form we can have more associated
Vogan diagram, but if we choose a Vogan diagram we have only one real form
associated to it.

Theorem 2.40. Let gy and g;, be real semisimple Lie algebras. If two triples
(90, bo, AT) and (g, bo, (A)T) have the same Vogan diagram, then go and g,
are isomorphic.

Remark 2.41. This theorem is an analog for real semisimple Lie algebras of
the Isomorphism Theorem 1.33 for complex semisimple Lie algebras.
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Proof. Since the Dynkin diagrams are the same, the Isomorphism Theorem
1.33 shows that there is no loss of generality in assuming go and gi, have
the same complexification g. Let uy = & @ ipy and uy = ¥, @ ip; be the
associated compact real forms of g. By Corollary 2.25, there exists x € Intg
such that zuj = uy. The real form xgj of g is isomorphic to g; and has
Cartan decomposition xg, = x¥, & zp(. Since €| & ixp, = xu; = Uy, there
is no loss of generality in assuming that uj = uy from the outset. Then

9(110) = Uy and Gl(uo) = Uy

Let by and hj, be the Cartan subalgebras. We have that there exists a k €
Int(ug) with k(b)) = ho. Therefore by and b have the same complexification,
which we denote §.

Now that the complexification g and h have been aligned, the root systems
are the same. Let the positive systems given in the respective triples be A™
and A'". Now we have that there exists k' € Intuy normalizing uy N b with
K A" = AT, replacing g; by k'g), and arguing as above, we may assume that
A" = AT from the outset. The next step is to choose normalizations of root
vectors relative to h. For this proof let x be the Killing form of g. We start
with root vectors X, produced from b, and then we construct a compact
real form uy of g. The subalgebra uy is just uy N h. By Corollary 2.25, there
exists g € Intg such that guy = ug. Then guy = ug is built from g(uy N )
and the root vectors gX,. Since up Nk and g(up N h) are maximal abelian
in ug, there exists u € Intuy with ug(up Nh) = up N h. Then vy is built from
ug(ug N'h) and the root vectors ugX,. For a € A, put Y, = ugX,. Then we
have established that

w =Y RGH.)+ Y R(Y,—Y,)+ Y Ri(Y,+Yo,)

a€cA aEA aEA

We have not yet used the information that is superimposed on the Dynkin
diagram of A*. Since the automorphism of A* defined by 6 and ' are the
same, 0 and ¢’ have the same effect on h*. Thus

O(H)=0'(H), VHeHh
Then

0(Y,) =Y, =0(Y,), if ais unpainted
0(Y,) =—Y, =0'(Y,), if ais painted

This completes the proof. O
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Let us now show all the real forms of A,, with h C ¢ C g and the
corresponding Vogan diagrams.
Ezample 2.42. Let g be sl(m + 1,C), and let be B = {E;;|1 <1i,j <m+1}
our basis of gl(m + 1,C).
With this notation we take as our Cartan subalgebra:
h = {diag(z1,...,2mi1)| St 2, = 0}. So we have that ¢; € b* and if
we denote with «;; = €; — €; our root system is A = («;;) and that At =
{ayjli < g} and A~ = {ay;|j > i} and S = {ai11]1 < i < m}.
Let us now consider the following basis H = {H; = E; — Fiy1,41]1 < i <
m} N{E;;}. We can define the following scalar product:

def . .
(A)r = (i1, i) = Qi (Hy) = ¢ =1 |7 —i| =

Let us consider

su(p,q) ={X e€sl(m+1,C)| X*1d,, +1d, ,X =0}

A B * o *

where p+q¢ =m+1,1 < p,q < m. It is easy to show that its complexification
is sl(m + 1,C). The Cartan decomposition of su(p, q) corresponding to the
Cartan involution #(X) = —X* is

A0 0 B
bh=1{y p) P=Ip o

Now we can see that all the diagonal matrix of su(p,q) are in €y, so it is a
maximally compact Cartan subalgebra, 6 acts trivially on .S, so we have only
one simple root whose root space is not in £, which is g, — €41, so we have
only one black vertex which is the p-th.

Thanks to Theorem 2.46 we will know that these are all the real forms of
A,

Now we will investigate the question of existence.

Definition 2.43. We define an abstract Vogan diagram with no arrows to
be an abstract Dynkin diagram with a subset of the roots, which is to be
indicated by painting the vertices corresponding to the members of the sub-
set. Every Vogan diagram, restricted to the case h C £ C g, is of course an
abstract Vogan diagram with no arrows.
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To have a full description about abstract Vogan diagram see on [2], chapter
VI.

Theorem 2.44. If an abstract Vogan diagram 1is given, then there exist a
real semisimple Lie algebra go, a Cartan involution 6, a mazximally compact
0 stable Cartan subalgebra by, and a positive system A' for A = A(g,h)
such that the given diagram is the Vogan diagram of (go, bo, AT).

Proof. Let g be a complex semisimple Lie algebra with the given abstract
Dynkin diagram as its Dynkin diagram, and let h be a Cartan subalgebra.
Put A = A(g, ), and let AT be the positive system determined by the given
data. Introduce root vectors X, normalized and define a compact real form
Uy of g in terms of h and the X,. The formula for ug is

wo =Y R(H.)+ > R(Xo—X_o)+ > Ri(Xo+X_o).

acA acA a€cA

The given data determine an automorphism 6 of the Dynkin diagram, which
extends linearly to h* and is isometric. Thus (A) = A. Thanks to this
result we can transfer 6 to b, retaining the same name. Define 6 on the root
vectors X, for simple roots by

X, if v is unpainted
eXa = ° . . p
—X. if « is painted
We have that 6 extends to an automorphism of g consistently with these
definitions on h and on the X,’s for a simple.
The main step is to prove that fuy = ug. Let x be the Killing form of

g. For a € A, define a constant a, by X, = a,Xgo. Then aja_, =
K(aaXga, 0—aX_0a) = k(0X,,0X_,) = 1 shows that

Aal_q = 1.
We shall prove that
a, = *1, VYaeA

To prove this, it is enough to prove the result dor a € A*t. We do so by
induction on the level of . If the level is 1, then a, = 41 by definition.
Thus it is enough to prove that if it holds for positive roots o and g and if
a + [ is a root, then it holds for o + 8. In the notation already used, we
have:

0Xarp = Nop01XaXs] = Ny 510Xa, 0]
- C::ll?aaaﬁ [Xéaa Xeﬂ] = N;éNea,Hﬁaaaﬁxanrgg].
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Therefore
ot = NO:;Ngayg/gaaag

Here a,as = £1 by assumption, but we know that 6 is an automorphism of
A and that the N, 3 and Ny, s are real with

1 1
Nis = 5a(L+p) = laf* = Sa(1+ p)lBaf* = Nj, 5.

Hence an45 = £1.
Let us see that

OR(Xy — X o +Ri( Xy + X ) CR(Xpa — X o) + Ri(Xgo + X _ga)-
If x and y are real and if 2 = 2 4 yi, then we have
o(Xo — X o) +yi(Xo+ X o) =2X, —2X .

is of the form wXy, — WX _g,, and this follows from the observations above.
Since 0 carries roots to roots,

0 (Z R(iHa)> =Y R(iH,)

a€A aEA

So we see that Oug = uy. Let € and p be the +1 and —1 eigenspaces for 6 in
g, so that g = €@ p. Since Huy = uy, we have

up = (up N€) & (up N p).
Define £, = (up N €) and py = (ug N p), so that
ug = €y P 1po.
Since ug is a real form of g as a vector space, so is
go = o @ po.
Since fuy = uy and since # is an involution, we have the bracket relations
(€0, Eo] C o, [0, Po]  po, [Po, Po] € to.

Therefore g, is closed under brackets and is a real form of g as a Lie algebra.
The involution # is +1 on €, and is —1 on py; it is a Cartan involution of g,
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since €y B 1py = ug is compact.
So we have shown that # maps ug N b to itself, and therefore

up = (upNeENH) S (up Nph)
= (.o Nbh) ® (ipo N b)
= (o N'h) B i(poh).

The abelian subspace 1y N b is a real form of h, and hence so is

bo = (€N bh) @ (po N ).

The subspace by is contained in gg, and it is therefore a 6 stable Cartan
subalgebra of go. A real root « relative to by has the property that 6o = —a.
Since 6 preserves positivity relative to AT, there are no real roots, and so
bo is maximally compact. Let us verify that A results from a lexicographic
ordering that takes i(€,Nh) before poNh. Let {3;}._, be the set of simple roots
of A* in l-element orbits under 6. Relative to a basis {a;}/73™ consisting of
all simple roots, let {w;} be the dual basis defined by (w;, o;) = d;;. We shall
write wg, in place of w; in what follows. We define a lexicographic ordering

by using inner products with the ordered basis

W5jl, co ,wﬁjl

which takes i(€ N b) before po N h. Let a be in AT, and write

l
i=1

Then
<a7wﬁj> =n; 20

If all these inner products are 0, then all coefficients of « are 0, contradiction.
Thus « has positive inner product with the first member of our ordered basis
for which the inner product is nonzero, and the lexicographic ordering yields
AT as positive system. Consequently (go, ho, AT) is a triple.

Our definitions of # on h* and on the X, for o simple make it clear that the
Vogan diagram of (go, ho, AT) coincides with the given data. O

Now we want to show that we can always choose the simple roots so that
we have one root painted in the Vogan diagram. Before doing this we show
another property of real Lie algebras.
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Theorem 2.45. Let gy be a simple Lie algebra over R, and let g be its
complexification. Then there are just two possibilities:

1. go is complez, i.e. go is of the form s® for some complex s, and then g
s in C isomrphic to s @ s.

2. go s not complex, and then g is simple over C.

Proof. 1. Let J be multiplication by v/—1 in gy, and define an R linear
map L:g > s®s by LIX+Y) = (X+JY, X —JY) for X and V
in go. We readily check that L is one-one and respects brackets. Since
the domain and range have real dimension, L is an R isomorphism.
Moreover L satisfies

L(X +iY)) = L(—Y +iX)
= (=Y + JX,-Y — JX)
= (J(X + JY), —J(X — JY)).

This equation exhibits L as a C isomorphism of g with s & s, where §
is the same real Lie algebra as gy but where the multiplication by v/—1
is defined as multiplication by —i.

Now we have to show that s is C isomorphic to s. We already know
that s has a compact real form uy. The conjugation 7 of s with respect
to ug is R linear and respects brackets, and the claim is that 7 is a C
isomorphism of s with 5. In fact, if U and V' are in 1y, then

T(JU+JIV))=7(=V + JU) = -V = JU
= —J(U = JV) = —Jr(U + JV)

and 1. follows.

2. Let bar denote conjugation of g with respect to go. If a is a simple ideal

in g, then aNa and a + a are ideals in g invariant under conjugation
and hence are complexifications of ideals in gg. Thus they are 0 or g.
Since a # 0,a+a = g.
If ana = 0, then g = a® a. The inclusion of gq into g, followed
by projection to a, is an R homomorphism ¢ of Lie algebras. If kery
is nonzero, then kery must be go. In this case gy is contained in a.
But conjugation fixes gg, and thus go C aNa = 0, contradiction. We
conclude that ¢ is one-one. A dimensional count shows that ¢ is an R
isomorphism of gy onto a. But then gg is complex, contradiction.
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We conclude that aNa = g and hence a = g. Therefore g is simple, as
asserted.
O

Now we want to reduce the redundancy of the Vogan diagrams that come
out by having many choices for the positive system A™. The idea is that we
can always change A™ so that at most one simple root is painted.

Theorem 2.46 (Borel and de Siebenthal Theorem). Let gy be a noncomplex
simple real Lie algebra, and let the Vogan diagram with no arrows of go be
given so that corresponds to the triple (go, bo, AT). Then there exists a simple
system S’ for A = A(g, h), with the corresponding positive system A’ such
that (go, bo, A'™) is a triple and there is at most one painted simple root in
its Vogan diagram. Furthermore suppose that the automorphism associated
with the Vogan diagram is the identity, that S = {a1,...,«}, and that
{w1,...,wi} is the dual basis given by (w;, o) = 6;5. Then the single painted
simple root o; may be chosen so that there is no v with (w; — wy, wy) > 0.

We start with two lemmas.

Lemma 2.47. Let A be an irreducible abstract reduced root system in a real
vector space V., let S be a simple system, and let w and W' be nonzero members
of V' that is dominant relative to S. Then (w,w’) > 0.

Proof. The first step is to show that in the expansion w = ) _.a,q, all the

a€sS
a, are > 0. Let us enumerate S as «q,...,q; so that
f s
w= g ;0 — E by =w —w”
i=1 i=r+1

with all ¢; > 0 and all b; > 0. We shall show that w™ = 0. Since w™ = w*—w,
we have

T s l
0< |w P =(whow) = (wwy=> > abjlaa) = > bifw, ay).
=1 j=r+1 j=r+1
The first term on the right side is < 0 and the second term on the right side
is term-by-term < 0 by hypothesis. Therefore the right side is < 0, and we
conclude that w™ = 0. Thus we can write w = 22:1 a;o; whit all a; > 0.
The next step is to show from the irreducibility of A that a; > 0 for all j.
Assuming the contrary, suppose that a; = 0. Then

0 < (w,ai) =Y aj{ay, )

J#i
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and every term on the right side is < 0. Thus a; = 0 for every «; such
that (o, ;) < 0. Since the Dynkin diagram is conneted, iteration of this
argument shows that all coefficients are 0 once of them is 0.

Now we can complete the proof. For at least one index i, (o, w’) > 0 since
w" # 0. Then

(w, W'y = Zaj(oéj,w,> > a;{o,w'),

J
and the right side is > 0 since a; > 0. This proves the lemma. 0

Lemma 2.48. Let gg be a noncomplex simple real Lie algebra, and let the
Vogan diagram of go be given that corresponds to the triple (go, bo, AT). Let
V' be the span of the simple roots that are imaginary, let Ay be the root system
ANV, let H be the subset of ity paired with V, and let A be the subset of H
where all roots of Ag take integer values and all noncompact roots of Ay take
odd-integer values. Then A is nonempty. In fact, if aq, ..., oy, is any simple
system for Ao and if wy, ... ,w, in'V are defined by (w;, ag) = 0,1, then the
element

i with «; noncompact

is in A.
Proof. Fix a simple system ay,...,q,, for Aq, and let A be the set of
positive roots of Ag. Defin w,...,wy, by (wj,on) = dj. If a = >0 noy

is a positive root of Ay, then (w,«) is the sum of the n; for which a; is
noncompact. This is certainly an integer.

We shall prove by induction on the level > n; that (w,«) is even if « is
compact, odd if « is noncompact. When the level is 1, this assertion is true
by definition. In the general case, let @ and (3 be in Aj with a + 3 € A,
and suppose that the assertion is true for o and . Since the sum of the n;
for which «; is noncompact is additive, we are to prove that imaginary roots
satisfy

compact-+compact—compact
compact-+noncompact—noncompact
noncompact-+noncompact—compact.

But this is immediate from Corollary 1.15 and the previous observation about
the behaviour of a # Cartan involution with a Cartan decomposition. O
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Proof of Theorem 2.46. Observe that the Dynkin diagram of A is connected,
i.e., that the roots in the Dynkin diagram of A fixed by the given automor-
phism form a connected set. There is no problem when the automorphism
is the identity, and we observe the connectedness in the other cases one at a
time by inspection.

Let Af = AT NV. The set A is discrete, being a subset of a lattice, and the
previous lemma has just shown that it is nonempty. Let Hy be a member
of A with norm as small as possible. We know that we can choose a new
positive system A[f for Ag that makes Hy dominant. The main step is to
show that

at most one simple root of AE;“ is painted.

Suppose Hy = 0. If o is in Ay, then (Hp, a) is 0 and is not an odd integer.
By definition of A, « is compact. Thus all roots of Ag are compact, and the
assert is true.

Now suppose Hy # 0. Let aq,...,a,, be the simple roots of Ay relative to
Ayt abd define wy, ..., wy, by (wj, k) = 5. We can write Hy = > 7" njw;
with n; = (Hy, o). The number n; is an integer since Hy is in A, and it is
> 0 since Hy is dominant relative to A,".

Since Hy # 0, we have n; > 0 for some i. Then Hy — w; is dominant relative
to Ay, and Lemma 2.47 shows that (Hy — w;,w;) > 0 with equality only if
Hy = w;. If strict inequality holds, then the element Hy — 2w; is in A and
satisfies

|H0 — 2w,»|2 = |H0|2 — 4<H0 — wi,wi> < |H0|2

in contradiction with the minimal-norm condition on H,. Hence equality
holds, and Hy = w;.

Since Hj is in A, a simple root «; in AE;F is noncompact only if (Hy, o ;) is
an odd integer. Since (Hy,a;) = 0 for j # 4, the only possible noncompact
simple root in Ayt is a.

If the automorphism associated with the Vogan diagram is the identity, we
have proved the first conclusion of the theorem. For the second one we are
assuming that Hy = w;; then an inequality (w; — w;y, wy) > 0 would imply
that

’HO — 2&)1'/‘2 = ’H()’Z — 4<w,- — wi/,wi/> < |F[0|27

in contradiction with the minimal-norm condition on Hj.

To complete the proof of the theorem, we have to prove the first conclusion
when the automorphism associated with the Vogan diagram is not the iden-
tity. Choose an element s € W(Aq) with A = sAJ, and define A" = sA*.
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Let the simple roots of A' be 3i,...,5 with £;,...,5 in Ay. Then the
simple roots of A" are sf,...,s8. Thus At has at most one simple root
that is noncompact imaginary. O

2.5 Graph Paintings

In this section we want to give a "graphic" algorithm to reduce the black
vertices of a Vogan diagram with no arrows and to see if two Vogan diagrams
are equivalent, which means that they correspond to the same real form.
By an abuse of terminology we identify the vertices of a Vogan diagram with
the roots of a simple system of g. We encode the information contained in
a Vogan diagram, by the pair consisting of a Dynkin diagram D and the
k — uple (i1, ...,1x), where the i; < --- < i) are the black vertices.

We introduce an operation F'[i] on the Vogan diagram which corresponds to
the action on the root system of the reflections s; of the noncompact root 1.

Definition 2.49. Let notation be as above, we define the operation F'[i] on
the Vogan diagram (D, (iy,...,4,)) as follows:

e The colors of the vertex ¢ of D and all vertices not adjacent to ¢ remain
unchanged.

e If the vertex j is joined to ¢ by a double edge and j is long, the color
of j remains unchanged.

e Apart from the above exceptions, F[i] reverses the colors of all vertices
adjacent to i.

Ezample 2.50. Let (As, (1,3,4)) be a Vogan diagram.
o—O0O—8 0O

If we apply F'[3] we have (1,2,3).
o—e 0 OO

Proposition 2.51. Let (D, (iy,...,i,)) be the Vogan diagram corresponding
to the real form go with the choice of simple system S. The operation F[i] on
(D, (i1,...,1i,)) gives a new Vogan diagram (D', (i}, ...,i.)) corresponding to

the choice of simple system s;(S) where s; is the reflection in W, the Weyl
group associated with the root i € {iy,... i, }.
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Sketch of proof. Let a be a black vertex and [ a simple root.
We have that

(.8)

(@, a)

Saﬁzﬁ_z

Since both «, 8 are simple, QEZﬁ < 0. As we have seen in the first chapter,

a)
Table 1.1, we have

B g 5 g
(@, a)
We consider only the case 2%—’@ = —1, leaving the other 2 cases as an exercise

to the reader. So we have that

S5 = {ﬁ + « if the vertices «, 8 are connected,

[ if the vertices «, 5 are not connected.

Hence s, brings the simple system {«, 5} to the simple system {—a, o + }.
If B is white we have that o + [ is black, so from a Vogan diagram in which
we had a black vertex o and a white vertex [ we obtain a Vogan diagram
with two black vertices o, o+ 3. Viceversa if [ is black, o+ 8 is white, from
a Vogan diagram with two black vertices we obtain a Vogan with one black
vertex and one white vertex. ]

From now on we restrict ourself to consider g as one of the Lie alge-
bras belonging to the classical families A,, B,, C,, D,. Now we want to
show that applying F[i] a pair of painted vertices can be shifted leftward or
rightward.

Lemma 2.52. Let the notation be as above. If i1 < --- < iy:

1. (D, (i1, ... i) ~ (D, (i1, .« yip_1,bp—Cy Gpy1—C, lpra, - - . , i) ) wWhenever
ir—l < ir -G

2. (D, (i1, ... i) ~ (D, (i1, ..y b1, 8pF+Cy b1 +C,y Upga, - - -, ig)) Whenever
bry1+ ¢ <ipypo. Werequire i, +c<n+1imnC, andi, 1 +c<n-+2
m D,

Proof. 1. Suppose we want to move 7,.1,,1 leftward c steps, where 7,1 <
i, — c. It is equivalent to moving them 1 steps for ¢ times, namely it
suffices to show that

(D7 (ih s JZk)) ~ (D7 (i17 s 72'7“717?:7' - 17iT+1 - 17iT+27 s 7Zk))
(2.1)
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By applying F[i,+1], F[i,+2],. .., F]i,+1—1] consecutively to (i1, ..., i)
we obtain 2.1 and the point follows.

2. It is similar to the first point and the restriction on C,,, D,, follows from

the properties of F'[7].
[

FEzample 2.53. In (Ao, (1,5,7,9)), we can move the pair 5,7 leftward three
steps and get (Ayg, (1,5,7,9)) ~ (Ag, (1,2,4,9)) with F[7], F[9], F[5], F[4],
Fl6], F[3], Fl4].

Now we see a way to reduce the number of painted vertices, that can
be used to find an alternative proof of Theorem 2.46. We show that, given
a Vogan diagram, using operations F'[i] it is possible, by shifting leftward
or rightward the pairs of noncompact roots, to reduce the number of black
vertices.

Lemma 2.54. Let the notation be as above:

[ ] In An, Bn; (D, (2.17 . 7Zk)) ~ (D, (ZQ — i17i3, . ,Zk))

o In Cn, [fZQ S n — 17 (D, (il, c. ,Zk)) ~ (D, (22 — il,i3, Ce ,Zk))

e In Dn; If@g S n — 27 (D7 (il, ce ,Zk)) ~ (D, (Zg — i172.3, ce ,Zk))

Proof. We divide the arguments for (iy,...,4) into two cases.

iv=11If iy = 2 then F[1)(D,(1,2,is,...,ix)) ~ (D,(1,is,...,ix)) and we

are done. So suppose that iy > 2. Apply F[1], F[2],..., F[is — 1] to
(D, (1,i2, RN ,ik)), we get (D, (1,i2, RN ,Zk)) ~ (D, (Z2 — il,ig, RN ,Zk))

iy > 1 By Lemma 2.52, (D, (i1, ...,i)) ~ (D, (1,isi1 + 1,is, ... ,ix)) and this

is reduced to the first case. The extra conditions on C,, D,, depends
on how F[i] acts, as in Lemma 2.52.

]

We now describe our algorithm based in the operation F[i]:

1. Using Lemma 2.1 we can shift pairs of noncompact roots to the left or

to the right;

2. Using Lemma 2.54 we can reduce the number of noncompact roots, one

by one.
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Our algorithm F[i] has another powerful property: if we consider only the
Vogan diagram with no arrows, we can use this algorithm to find when two
Vogan diagram are equivalent.

Theorem 2.55. Two Vogan diagrams with no arrows are equivalent if and
only if one can be transformed into the other by a sequence of F[i] operations.

Proof. The "if" part is obviuos since F'[i] preserves equivalence classes, in fact
by Proposition 2.51 it correspond to a different choice of simple system of the
same g, now we consider the converse. We recall that two equivalent Vogan
diagrams correspond to the same Lie algebra under different choices of simple
systems, see Example 2.38. The Weyl group W = (S,,) acts transitively on
the simple systems, and so it acts transitively on each equivalence class of
Vogan diagrams. Recall that F'[i] acts as a reflecition about the noncompact
simple root ;. let W, and W, denote the subgrous generated by reflections
about the compact and noncompact simple roots, respectively. Clearly, W
is generated by W, and W,. Further, since W, acts trivially on painting of
the Vogan diagrams, it follows that W, acts transitively on each equivalence
class of Vogan diagrams. This proves the theorem. ]

We now can state the Borel de Siebenthal theorem, which follows from
our prevoius discussion.

Theorem 2.56 (Borel and de Siebenthal Theorem). Fvery Vogan diagram
with no arrows are equivalent to a Vogan diagram with only one vertex
painted.

Now we want to generalize the result of Theorem 2.55 and see another
connection to Theorem 2.46.

Corollary 2.57. If a connected graph I' is a Dynkin dagram, then

1. every painting on I' can be semplified via a sequence of F[i| to a painting
with single painted vertex;

2. every connected subgraph of 1" satisfies the first property.

Proof. To prove the first point, let I' be a Dynkin diagram. Suppose that
p is a painting on I'. By Theorem 2.46, (I',p) ~ (I, s), where s paints just
a single vertex of I'. By Theorem 2.55 (I', p) can be transformed to (T, s)
with some F'[i] operations. This proves the first properety. Since connected
subgraph of a Dynkin diagram correspond to simple subalgebras, the second
condition is trivial. [

Example 2.58. If we consider the following Vogan diagram
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and denote the first black vertex with number 4, if you apply F[4] o F[3] o
F[2] o F[1] you have only one black vertex:



Chapter 3

Lie Superalgebras

At the beginning of this chapter we define what a Lie superalgebra is and
some of its properties in order to have some preliminary notions to discuss
in the following chapter about their real forms.

Due to the this fact it is written only to give a few notions about this argu-
ment, we not give the proof of any proposition but we always give a reference.

3.1 Preliminary definitions

Let K be our ground field algebrically closed and of characteristic zero.

Definition 3.1. A super vector space is a Z/Zs-graded vector space
V=WeWn
where the elements of V[ are called even and elements of V; are called odd.

Definition 3.2. The parity of v € V, denoted by p(v) or |v|, is defined only
on non-zero homogeneus elements, that is elements of either V; or Vi:

() = [o| 0ifv eV
V) = |V =
b lifvel]

We have that every element can be expressed as the sum of homogeneus
elements, so we can give all the definitions, theorems and proofs considering
only these elements.

Definition 3.3. The superdimension of a super vector space V is the pair
(p, q) where dim(Vg) = p and dim(V}) = ¢ as ordinary vector spaces, we can
also write dim(V') = plq.

45
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Thanks to this definition we can define also what a basis is: if dimV =
plg we can find a basis {e,...,e,} of Vj and a basis {e1,...,¢,} of V] so
that V is canonically isomorphic to the K-vector space generated by the
{e1,...,ep €1,...,6,t. We can denote this K-vector space by KPl9 and we
will call (eq,...,ep ¢€1,...,¢6,) the canonical basis of KPI9. The (e;) form a
basis for KP = K- and the (¢;) form a basis for K¢ = K/,

Definition 3.4. A morphism from a super vector space V to a super vec-
tor space W is a linear map from V to W preserving Z/Zs-grading. Let
Hom(V, W) denote the vector space of morphisms V' — W.

Now we can define what a Lie superalgebra is.

Definition 3.5. A super Lie algebra is a super vector space g with a mor-
phism [,] : g ® g — g called superbraket, or simply bracket, which satisfies
the following condition:

1. Anti-Simmetry
for x,y € g homogeneous.

2. The Jacobi-identity
[l’, [y7 Z]] + (_1)|IHy|+|IHZ|[y7 [Z, JI]] + (_1)\y|\$|+\w||2\[z’ {SL’, y]] =0
for z,y, z € g homogeneous.

The most important case of Lie superalgebra is the algebra of endomor-
phism, as in the classical case, called gl(V).
If we have that V = K™" we can denote gl(V) as gl(m|n). The even part
gl(m|n)o consists of the matrices with entries in K corresponding to endo-
morphisms preserving the parity, while the odd one consists of matrices that
reverse the parity:

gl(m|n) = gl(m|n)o ® gl(m|n), = {(61 3) }@{ (g ﬁ) }

where A and D are (m X m)-matrices and (n x n)-matrices, and B and C
are (n X m)-matrices.
Then gl(m|n) is a Lie superalgebra with the following bracket:

(X,Y] = XY — (—D)X Wy x
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Now we can define the special linear Lie superalgebra, denoted by sl(m|n)
and the projective special linear Lie superalgebra psl(m|n) as

sl(m|n) = {X € gl(m|n)|str(X) = 0}

where str is the supertrace, defined as follow:

A B
str (C D) =trdA — trB

and psl(m|m) := sl(m|m)/Klay,.

Definition 3.6. We say that a bilinear form f on a super vector space
V =Vy® Vi is super symmetric if

f(uv U) = <_1)|u‘|v‘f(vvu)

for every homogeneus elements u,v € V. We say also that it is consistent if
f(u,v) =0 for u € Vy,v € Vi.

Now, we are ready to introduce the orthosymplectic Lie superalgebra.

Definition 3.7. Let f be a non-degenerate consistent super symmetric bilin-
ear form on V, dimV = m+n. We define the orthosymplectic Lie superalgebra
as

0sp(V) := {X € gl(m|n)|f (X, u,v) = —(=1)* I f(u, Xv)}

Notice that n has to be even since f defines a non-degenerate skew-
symmetric form on Vj.

Definition 3.8. We define the strange series P(n) as

P(n) = {(é _it)} Coltn + 1jm+ 1)

where A € sl(n + 1), B is symmetric and C skew-symmetric.
The strange series Q(n) is defined as follows:

-{(2 )

sq(n) are the matrices in ¢(n) with tr(B) = 0 and Q(n — 1) = psq(n) =

sq(n)/KIn:
Qn—1) = {(é i) B e 5[n} /K,
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3.2 Simple Lie Superalgebras

Simple Lie superalgebras have been classified by Kac and play a key role
in many applications.

Definition 3.9. Let g be a Lie superalgebra (always finite-dimensional). We
say that g is simple if g is not abelian and it admits no non-trivial ideals. g is
of classical type if it is simple and g; is completely reducible as a go-module,
where the action is given by the bracket. g is basic if it is classical and it
admits a consistent, non-degenerate, invariant bilinear form, that is to say,
there exists a consistent, non-degenerate, bilinear form (,) : g x g such that
(X,[Y.2]) = {[X.Y], 2).

The simple Lie superalgebras divide into two main types: the classical
type and the Cartan type. We make a list of such Lie superalgebras, for the
proof see on [7].

Classical type. The classical type subdivides further into type 1 and type
2. Type 1 classical superalgebras are those for which g, is not irreducible as
go-module and type 2 are those for which g; is an irreducible gyo-module.

Classical type 1. These superalgebras are:

A(m|lm) =sl(m+1n+1), m#n
A(m|m) = psl(m + 1jm + 1),
C(n) :==o0sp(22n —2), P(n).

and g; decomposes into two components as a gy module.

Classical type 2. The type 2 superalgebras are those for which g, is irre-
ducible, so that there is no compatible Z-grading. These Lie superalgebras
are:

B(m|n) := osp(2m + 1|2n)
D(m|n) := osp(2m|2n)
D(2,1;a), F(4), G(3), Q(n).

where D(2,1;a) is a family with continuous parameter a € K\ {0,1}. Two
elements D(2,1; ), D(2,1;3) of this family are isomorphic if and only if
a and (8 lie in the same orbit under the action of the group generated by
a— —1—a,a— 1/a, see on [7].
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Cartan Type. Let Sym(V) denote the symmetric algebra over the su-
per vector space V. If our super vector space has dimension m|n we can
create an isomorphism between this symmetric algebra with the following

Y

polonomial algebra with m even indeterminates and n odds: Sym(V) =
Klz1, ..., zm, &1, ..., &) =1 A. We define W(m|n) := Der(A) as the superal-
gebra of derivations of A, which is in general infinite-dimensional, however
when m = 0 it is finite-dimensional. To semplify the notation we will write
W (n) instead of W (0|n). Define ©(n) as the associative superalgebra over
A generated by 604, ..., 0§, with relations 0 A 08, = —0&; A 0E;, (1 # j).
This is a superalgebra with grading induced by deg(0¢;) = 1. Now we can
introduce the following superalgebras:

S(n) 2 {D € W(n)|D(0& A--- A 0OE,) = 0}

Sn) (D e |D((1+&6...6)06 A+ ABE,) = 0} for even n

which are subalgebras of W (n) where some elements of ©(n) are annihilated,
those elements are called volume forms.

Now we can introduce our last superalgebra called H(n) which is the com-
mutator of W(n) preserving a certain metric:

H(n) @ [H(n), H(n)] where H(n) @ {D € W(n)|D(de2 + - + d€2) = 0}

Finally, we can enunciate the following theorem.

Theorem 3.10. Fvery simple finite-dimensional Lie superalgebra over K is
isomorphic to one of the following:

1. the classical Lie superalgebras, either isomorphic to a simple Lie algebra
or to one of the following classical Lie superalgebras:

A(mln), B(m|n), C(n), D(m|n), P(n),Q(n),
for appropriate ranges of m and n,

F4), G(3), D(2,1;a), for a € K\{0;—1}

2. the Lie superalgebras of Cartan type:

W(n), S(n), S(n) for evenn, H(n)
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3.3 Root Systems, Cartan Matrix, Dynkin Di-
agram

Similarly to the ordinary setting, for Lie superalgebras we have the notion
of Cartan subalgebras and the corresponding root decomposition.

Definition 3.11. Let g be a simple Lie superalgebra. A subalgebra h C g
is a Cartan subalgebra if b is nilpotent, self-normalizing Lie subalgebra of g.
If a € b, we define the super vector space

o = {X € g|[h, X] = a(h)X for all h € by}

If go # {0} for a € b\ {0} we say «is a root and g, a root space. A root
is even if g, N go # {0}, odd if g, N g1 # {0}. Notice that dim(g,) = 1|0 or
dim(g,) = 0|1 but in @ where a root can be both even and odd, see on [12]
for more details. As in the ordinary case, if we denote A = Ay U Ay as the
set of all roots we have:

g=bo Z Ja-

acA
For the proof of the root space decomposition, see on |7]

Definition 3.12. Let g be a Lie classical superalgebra, we denote with x the
Cartan-Killing form defined as follows:

k(z,y) = str(ad(z), ad(y)),
where x,y € g.

As one can easily check, this form is symmetric and consistent. However,
quite differently from what happens in the classical setting, it is not always
non-degenerate. In particular its restriction to a Cartan subalgebra of g may
be degenerate.

The fact that the Cartan—Killing form of a classical Lie superalgebra may be
degenerate prompts the definition of basic classical Lie superalgebras.

Definition 3.13. A Lie superalgebra g is a basic classical Lie superalge-
bra if g is simple, go is reductive, and g admits a non-degenerate invariant
symmetric consistent bilinear form.

The following table summarizes the classification of simple Lie superal-
gebras together with information about the existence of an invariant non-
degenerate symmetric bilinear form.
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Super Lie Algebra

Classical Lie Alegbra Cartan Type
Basic Strange
A(m|n), B(m|n), C(n), and D(m|n)
D(1,2;0), G(3), F'(4) P(n), Q(n) | W(n), S(n), S(n), H(n)

As in the classical case we can introduce the Cartan matriz:

Definition 3.14. The Cartan matriz A associated to the simple Lie super-
algebra g and the simple root system II is defined as:

A= (CLij) = (ai<hj))

As it happens in the classical theory, we can associate a Dynkin diagram
following the rules:

e Put as many nodes as simple roots.
e Connect the i-th node with the j-th node with |a;;a;;| links.

e The i-th node is white if «; is even, the j-th node is black if o is odd
and a;; # 0 and it is grey if o; is odd and «;; = 0.

e The arrow goes from the long to the short root.

Unluckily, in the super case we do not have a bijection between Dynkin di-
agrams and Lie superalgebras, so we have to define what a distinguished
root system, a distinguished Cartan matriz and a distinguished Dynkin di-
agram are. This fact happens beacuse a basic Lie superalgebra possesses
many equivalent simple root system, which correspond to many inequivalent
Dynkin diagrams. For a detailed discussion of this fact see on [12].

Definition 3.15. For each basic Lie superalgebra, there exists a simple root
system for which the number of odd roots is the smallest one. Such a simple
root system is called the distinguished simple root system. The associated
Cartan matrix is called the distinguished Cartan matrix.

Definition 3.16. The distinguished Dynkin diagram is the Dynkin diagram
associated to the distinguished simple root system to which corresponds the
distinguished Cartan matrix. It is constructed as follows: the even dots are
given by the Dynkin diagram of the even part go (it may be not connected)
and the odd dot corresponds to the lowest weight of the representation g; of

go-

Remark 3.17. All the Dynkin diagram we use in this discussion are the dis-
tinguished ones.
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3.4 The classical families: A(m|n), B(m|n),
C(n), D(m|n)

A(m|n). First we discuss about A(m|n) = sl(m + 1|jn + 1) for m # n. Let
€i,0; €%, 1 <i<m+1, 1 <j<n+l,defined as ¢;(diag(a, - . . , Gmint2)) =
a;, i =1,...,m+1, and J;(diag(as, ..., Gmint2)) = mi1+4, j = 1,...,n+1
Its root system is:

A = {Ei — sj,ék — 51, :i:(f:‘i — 5]9)},
Ag = {:]:z’:‘Z + €j, :t&?i, :]:(Sk + 51, j:26k}

And its simple root system:

II = {Oél = €1 —&9,0pg = &2 —E&3,...,0np11 = Emt1 —(51,
Ump42 = 51 - 52a s Qmgn—1 = 571 - 6n+1}

For A(n|n),n > 1, the root system and the simple root system are the same,
the difference between them is that in this last one we have two relations
between ¢; and 0k, €1+ + €y = 01+ - -+ 01 = 0 instead of ¢; and dy,
€14+ Emr1 =01+ -+ + 0,41 in the first case.

Let us now turn to the construction of the Cartan matrix and the Dynkin
diagram associated to a classical Lie superalgebra g with a simple root system
IT = {a; }ics. For each simple root «; € I, fix elements e; € g,, fi € g_, and
set h; = [e;, fi] € go which is defined up to a costant. If a;(h;) # 0, we fix it
by imposing that a;(h;) = 2.

In the case of A(m|n) we can choose e¢; = E; ;1 and f; = Ej4q1,, so we
have that h; = E; — Eijy141 for i # m + 1, while hy1 = [emy1, frng1] =
emt+1fm+1 + fmt1€mt1 = Emsimer + Em +2,m + 2.

The Cartan matrix has the form

2 -1 0 ... 0 ... 0 ...0
-1 2 -1 ... 0 0 0
A= 2 -1 0
0 ... -1 0 +1
0 o -1 2 -1
: -1 2

where the zero appears in row (m + 1) because &, 11(hmi1) = 0.

So we have that the Dynkin diagram of A(m|n) is:
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B(m|n). B(m|n) = o0sp(2m + 1|2n), and we have that
h ={h =diag(as,...,am, —a1,...,—apm,0,b1,...,b,,—b1,...,—by)}.

Let ;,0; € h* be: for h € h,letg;(h) = a1, i=1,...,mand ;(h) =b;, j =
1,....,m.
Its root system for m # 0 is

Ay = {xe; £ ¢;, £e;, £ £, £204},

Ay ={de; 6,16, 1<i#j<m, 1<k#Il<n.
and for m = 0 is

Ao = {E0, £ 0, £26}, Ay ={%0r}, 1<k#1I<n
The simple root systems for B(m|n), B(0|n) are respectively

I={ay =01 —09,...,0p_1 =01 — Op, 0y, = 6, — €1,
Qi1 = €1 — €2y vy Upintl = Em—1 — Emy Ymtn = Em )
and
M={{a; =01 —02,...,n1 =0p_1 — Op, 0, = O }.

Then we have that the Cartan matrix for B(m|n) with m # 0 is

2 -1 0 ... 0 ... O .. 0
-1 2 -1 ... 0 ... 0 .. 0
2 -1 0
A=1 0 ... -1 0 +1
0o ... o -1 2 -1 ...
0 -1 2 -1
0 0o 2 2

and for B(0|n) it is

2 -1 0 0 0
-1 2 -1 0 ... 0
A= : :
0 -1 2 -1
0 0 -2 2

The Dynkin diagram is
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C(n) = 0sp(2|2n — 2). We have that
h - {h’ = diag(ab —aq, b17 SRR bn—17 _b17 ) _bn—l)}

Define €1,01,...,0,-1 € b* as follows: for h € b, let €1(h) = aq,...,en(h) =
Ay s 51(]1) = bl, Ce ,(Sn(h) = bn
The root system is:

AO == {:|:€i:|:€j,:l:2(5k,:|:5k:|:(51},
Ay ={de+6), 1<i#j<m, 1<k#1<n

Instead, the root system is:

H:{Oél :51—(52,...,Ckn,1:571,1—5”,0(”:(571—61,

Apt1 = €1 — €25y Umin—1 = Em—1 — Ems Om4n = Em—1 + 5m}

We have that the Cartan matrix is

o 41 0 ... 0 ... O

-1 2 -1 0 0
A= : :

0 -1 2 =2

0 0 -1 2

D(m|n). D(m|n) = osp(2m|2n). We have that
h={h =diag(as,...,am, =1, .., —Qm,b1,..., by, —by,...,—by)}.
The root system is:

AOI{iEiigj,:i:Q(Skj:(Sl},
A ={te;£8), 1<itj<m, 1<k#1<n
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And the simple root system:

H:{Oél 2(51—(52,...,&n,1:5n,1—5n,an:5n—€1,

Opt1 = €1 — €2, -, Omin—1 = Em—1 — Em; Um4n = Em—1 + 6m}-

The Cartan matrix:

2 -1 0 0 0 0
-1 2 -1 0 0 0
0 -1 0 +1 0
A= 0 0o -1 2 -1 ... 0
0 -1 2 0
0 -1 0 2

3.5 Real Forms of Lie Superalgebras

In this section we show the parallelism and the differences between Lie
superalgebras and Lie algebras and we discuss the real forms of A(m,n), m #
n using two different methods: the algebraic one and the graph painting.
Before introducing what a real form of a classical semisimple complex Lie
superalgebra is, we have to introduce some definitions and theorems starting
from the definition of classical Lie superalgebra of the previous chapter.

Definition 3.18. Let g be a classical Lie superalgebra over C. A semi-
morphism C of g is a semilinear transformation of g which preserves the
gradation, that is such that

for all X,Y € gand a € C.

All homomorphisms and semimorphisms of Lie superalgebras will be as-
sumed to preserve go, g1-
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Proposition 3.19. Let g be a complex Lie superalgebra and let C be an
involutive semimorphism of g. Then go = {x + Cx|x € g} is a real classical
Lie superalgebra.

Proof. From the definition of go it is obvious that g¢ is a real simple Lie
superalgebra and that its complexification is g: it is simple because g is
classical and so simple itself, and it is real because C' is an involutive semi-
morphism. The only thing we have to check is that the representation
goc = {z + Cz|x € go} on gic = {z + Cx|z € g1} is completely reducible.
Let V = V ® C be invariant with respect to go; hence, there exists a sub-
space W’ supplementary to V in g; and invariant by go. The subspace
W = ({I+C){uw € WI{I - C)W' € iV} of gic is supplementary to V/
and invariant by goc. Since C(I + C) = C + I, W C gi¢, moreover, if
g € gOCv[g)w] = <]+ C)[ng] = (I - C)[ng/] = [97(I+C)w/]7 so W is
invariant by goo. Last but not least W is supplementary to V, if we have
w=T+Cw e€V,2w =T +Cw + (I —Chw' €V +iV = V; hence
w' = 0 and thus w' € W and W NV = 0. On the other hand, if z € gi¢,
one has © = w’' + v’ where w' € W’ and v € V. However, (I — C)uw' € W;
hence, 2e = (I +Cla = I+ X)w' + (I +C)' e W+ V. O

Proposition 3.20. If g is a real classical Lie superalgebra, its complexifica-
tion g = g ® C is a Lie superalgebra which is either classical or the direct
sum of two isomorphic ideals which are classical.

Proof. Let C' be the conjugation in g with respect to g. We note that the
representation of gg = go ® C on g; = g1 ® C is completely reducible. Let
indeed V' be a complex subspace of g; which is invariant by go. Hence, V
is invariant by go. Thus, there exists a subspace W' supplementary to V' in
g1 and invariant by go. Then g = V' @ W’ is invariant by o, which proves
the first point. If g is not simple, it contains a simple graded ideal S. Then
(I +C)S = g is a graded ideal of g so either (I +C)S =0o0r (I +C)S = g.
However, (I+C)S = 0 is impossible since S+C'S = 0 implies i.S+C(iS) # 0.
Hence, (I +C)S =gandg=g+ig= ([ +C)S+ (I —-C)S =S5+ CS.
Since S U CS is an ideal of S, we have S U CS = 0, which shows that g is
the direct sum of the two ideals S and CS. [

Proposition 3.21. Let g be a complex Lie superalgebra and let C and C' be
two involutive semimorphism of g. The real forms gc and gor are isomorphic
if and only if there exists an automorphism ¢ of g such that C' = pCp~1.

Proof. If ' = pCp~!, it is clear that go = pgcr. Conversely, assume there
exists an isomorphism ¢ from go into gor. The linear extension ¢ of
to g = go + ige is defined by ¢(g + ig) = ¥g + ig, with g € g, is an
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automorphism of g. Moreover, if ¢ = ¢g € g we have ("¢’ = ¢’ = g =
0g = pCqg = eCp~1g’; hence, C'pC¢p~! is the identity on go and thus also
on g. O]

As a consequence of the previous two propositions, now, we can say:

Proposition 3.22. Let g be a real classical Lie algebra, g. Then there are
only two possibilities:

o [If the complexification of g is not simple, g 1s a complex classical Lie
superalgebra considered as a real algebra;

o [f the complexification g of g is simple, g is the subalgebra of fized points
of an involutive semimorphism of g.

Now we see how to classify the involutive semimorphism in order to clas-
sify, after that, the real forms of A(m|n). Before the main proposition we
have to show a small Lemma:

Lemma 3.23. If g is not D(n) or B(n) (defined in paragraph 3.2) and g
s an inner automorphism of go, there exists an automorphism ¢ = @y + @1

of g.

Proof. Let p denote the representation of gy on g; and let B be any non-
degenerate invariant bilinear form of g. If ¢y = €24 = (™ gatisfy
p(vog)e1 = @1p(g) for all simple ideals of gg and n € go. On the center of
gowo is the identity. On each of the simple ideals of gy, the bilinear form
B is a multiple of the Killing form: hence ¢( is an isometry for B. On the
other hand, B(p(n)z,y) + B(z, p(n)y) = 0 for all z,y € g; implies that ¢,
is also an isometry for B. Then we have for all g € go, B([¢1,y], vog) =
Blpiz, [p1y, vog]) = B(prz,@aly, 9]) = B(z, [y, 9]) = B([z,y],9) =

B(po[z, yl, pog) and thus [p1z, 1y] = polz, y]. O

Proposition 3.24. Le g be a complex classical Lie superalgebra and let
C = Cy + Cy be an involutive semimorphism of g. Assume C{ is an in-
volutive semimorphism of go conjugate to Cy in Aut(gg). Then there exists
an involutive semimorphism C' = C{ + C| of g which is conjugate to C in
Aut(g).

Proof. Assume Cl) = ¢oCopy*, where oo € Aut(gg). If there exists ¢ =
o+ p1 € Aut(g), then C" = pCp~! is an involutive semimorphism of g and
the proposition is proved. The existence of ¢ will follow from the previous
Lemma when (g is inner and g is not D(n) or B(n). O
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Now we see that for a given real form goo of the Lie subalgebra gy there
exists, up to isomorphism, at most two real forms go which contains goc,
we will see that these two forms are isomorphic. Let C = Cy + 7 and
C" = C} + C] be the two involutive semimorphism which have the same
restriction Cj = Cj to go.

Lemma 3.25. If the representation p of go on g1 is irreducible, then C] =
+C.

Proof. The linear transformation C;C] of g commutes with p(go); hence
Cl = \C; and C2C7?? = 1d implies A = 1. If 2,y € g, we have Colz,y] =
[Chx, Cry] = N?[Chz, Cry] = NColz,y], so A = £1. If the representation p
of go on g, is reducible, we write g; = Y’ @& Y” for the sum of the invariant
subspaces and if gy is not semisimple, we denote by ko the element of the
center of gy such that p(ko)|y: = Id and p(ko)|y» = —Id. O

Lemma 3.26. Let us use the same notation and hypothesis of the previous
Lemma:

1. If C; preserves Y and Y", then Coky = ko and if Cy permutes Y' and
Y”, then Cok’o = —ko,'

2. If C = Cy+ Cy and C" = Cy + C preserve Y' and Y", then they are
conjugate in Aut(g);

3. If they permute Y' and Y", then C' is conjugate in Aut(g) to Cy + C
or to Cy — C}.

where gy is the direct sum of the two subspaces Y, Y" and [Y',)Y'] = [Y", Y"] =
0 and [Y',Y"] = go.

Proof. 1. Since the decomposition of g; into Y’ and Y” is unique, any
semimorphism of g preserves or permutes Y’ and Y”. If gg is not
semisimple, we set Coky = aky, where aa = 1. Then [Cyko, Cry] =
Cilko,y] = Cry with y € Y’, which implies a = 1 if C1Y’ = Y’ and
a=—-1ifCY'=Y".

2. If we set Cy = C"+C", where C' = C|y: and C” = Cy|y~, by the same
argument of the previous Lemma, we know that C’ and C” are unique
up to a factor of modulus 1, so we may write C7 = \C" + pC”. 1If
zx €Y and y € Y, we have Cy[z,y] = [NC'x, uC"y|] = \u[C'z, C"y| =
AuColz,y] and thus \u = 1. However, the linear transformation ¢ de-
fined by vy’ = A2y y” = A\"Y%y", and gy = go is an automorphism
og g and Cy + C] = (Cy + Cy )y,
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3. Since C,C1 preserves Y/ and Y” and commutes with p(go), we may write
Ciz = \Cix and Cly = pCyy for all z € Y’ and y € Y”. From C? =
C2 = 1d, we deduce A\ = 1 and Cy[z,y] = [C}z, Chy] implies as above
Mt = 1. We define an automorphism v of g by 1y = A\~Y2y/ 4y =
A2y and gy = go. If the real number ) is positive, we have Cy+C/ =
P(Co+ C1)yp~! and if A is negative, we have Cy + C] = ¢(Cy — Cy ).

O]

3.6 Real Forms of A(m|n)

Now we consider m # n ,as we have said in the previous chapter, A(m|n) =
sl(mn).
If we write an element of A(m|n) as in the previous chapter:

A B
X = (C D) esl(im+1n+1)
we can now say that go is the direct sum of its one dimensional center K|
and of the two simple ideals K; and K, of the respective type A,, and A,
where:

o Ko={X € A(m|n)|C =D =0, A=nald,,, B=mald,, a € C};
e K1 ={X € Almn)|JA=B =D =0};
e Kb ={X € A(m|n)|]A=B=C=0}.

The subspace g is the direct sum of the two invariant subspaces Y’ = {X €
Am|n)]JA = B =D = 0} and Y = {X € A(m|n)|[A = B = C = 0}.
The representation p’ of K7 @& K, on Y’ is the tensor product of the nat-
ural representation m; of K; and the contragradient representation m,_; of
K5, which we will abbreviate p/ = m(K;) ® m,_1(K3). Similarly, p” =
Wmfl(Kl) ® 7T1(K2).

Both the natural representation m; of A,, and its contragradient ,, are real
for the real form sl(m + 1,R), they are unreal for su*(m + 1) and real for
su(p, m+1—p). Hence the only real forms of K@ K>, for which the irreducible
representations p’ and p” are real, are sl(m, R)®sl(n,R) and su*(m) @ su*(n)
if m and n are even.

For the real form su(p, m —p) ®su(q, n—q) of K1 ® Ks, we will see that exists
an extension to g of the semimorphism Cj which permutes Y’ and Y”. We
now consider the real forms of K7 ® K5 in which K- and Ky¢ are of different
types. Since the representations p’ and p” are never real, any extension of Cj
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to g must permute Y’ and Y”. However, the existence of a semilinear involu-
tion C} permuting Y’ and Y such that p'(CyX)C) = C1p"(X), implies that
the weights of p” are conjugate to those of p’ o C. But this never happens
and we check it in the following way:

If Kic @ K¢ is of the form | The weights of p’ o C' are conjugate to those of
su(p,m — o) @ sl(n,R) Tm-1(K1) @ m,_1(K3)
su(p,m — o) @ su*(n) Tm—1(K1) ® m,_1(K>)
5[(m, R) S, ﬁu*(n) T (Kl) ® 7Tn_1<K2)
sl(m,R) & su*(q,n — q) T (K1) @ m1(Ky)
su*(m) @5[<H,R) 7T1(K1) ®7Tn_1(K2)
su*(m) @ su*(q,n — q) (K1) ® m1(K>)

while p" = m,,_1(K7) ® m(K>).
The possible real forms are the following:

1. goc = sl(m,R) ® R, the involutive semimorphism is CX = X and
it preserves Y/’ and Y”. With the notations of Lemma 3.26, we have
Cky = ko and hence Koo = R.

2. goc = su*(m) @ su*(n) ® R if m and n are even. The involutive semi-
morpshim is CX = M XM~ where

M- <ant1d1ag(—1dr, Id,)

antidiag(—Ids, Ids)) '
Again C preserves Y/ and Y, Koo = R.

3. goc = su(p,m — p) ® su(q,n — q) ®iR. The involutive semimorphism
is CpX = —NX'N if X € gy and O, X = iNX'N if X € g;, where
N = diag(—I1d,, Idy,—p, —1d4, Id,,—,). Since C' permutes Y’ and Y”, it
follows that Cky = —ky and Koo = iR.

We now prove that Cy may be chosen up to conjugacy in Aut(gy). Every
X € Aut(go) preserves the two ideals K; and K, and on each ideal is of the
form 10 where 6 is inner and ¢(X) = —X". All the three Cy, we have chosen
to define the real forms, commutes with 1, so any C{) conjugate to Cj is of the
form #CH~!. Finally because of Lemma 3.26, all semimorphism extending
Cy are conjugate in the first two cases. In the third, we define ¢ € Aut(g)
as © = g + @1, where o X = —NX'N if X € gy and ¢,C; = —Cy¢4, thus
proving that Cy + Cy and Cy — C} are conjugate by Aut(g).

Now we will investigate the case where m = n; the biggest difference be-
tween A(m|n),m # n and A(m|m) is that sl(m|m) is not semisimple, but
it has a one dimensional center. As we have said in the previous chapter,
we will consider sl(m|m)/Klds,,. For the semimorphism Cj which preserve
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K; and K5, we can apply the same reason of A(m|n) and we obtain the real
forms containing:

1. goc = sl(m,R)
2. goc = su*(m) @ su*(m) if m is even
3. goc = su(p,m —p) ® su(q,m — q)

4. There is also the real form where goo = sl(m,C) is the real alge-
bra of dimension 2(m? — 1), defined by the semimorphism CX =
PCXP, with P = antidiag(Id,,,Id,,), which permutes the two ide-
als K7 and K, of gg and the subspaces Y', Y of g;.

The proof of the first three cases are the same of the previous ones, where we
have shown that all semimorphism extending Cy are conjugate in Aut(G).
The fourth is a little bit different, the other possible semimorphism Cy—C} is
conjugate to Cy + C by the automorphism ¢ = @y + ¢, where o X = — X"
if X € goand o1 X =iX"if X € g.

To prove that C; may be chosen up to conjugacy by Aut(go), it is sufficient
to show that any semimorphism of gy extends to an automorphism of g.
Any element of Aut(gg) may be written as a product 1ng or by or 6y
where 0 is inner, 1o X = — X', and noX = PXP. By Lemma 3.25, we know
that 6y extends to g. Automorphisms of g extending ¢y and 7y are defined,
respectively, by ¢, X = iX* and ;X = PXPif X € g.

3.7 Vogan Diagrams

We have seen in section 2.4 what a Vogan diagram is, so now we want
to define these diagrams in the super case. They are essential to classify the
real forms of the Lie superalgebras.

Our discussion is only about basic Lie superalgebras, where we have that the
Cartan subalgebra is totally even, hence this semplifies our discussion. We
also are under the assumption that

hCt Cgo

when b is a fixed Cartan subalgebra. Hence, let g denote a basic Lie super-
algebra

9=200D9g1
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and let

g0 = £ D po

semisimple be the complexification of a CArtan decomposition of the semisim-
ple part of the complex <lie algebra g5. We call g = & D p,p = py D b7 a
complex Cartan decomposition. It correspond to a unique real form ge of g,
see on [8]. This is not the general, but for clarity of exposition we restrict
ourselves to this. In this way we only obtain Vogan diagrams with no arrows.

Definition 3.27. Let D be a distinguished Dynkin diagram. The Vogan
diagram of Lie superalgebras is the Vogan diagram of the even part of Lie
superalgebras. In addition to that:

1. The vertices fixed by the Cartan involution of the even part is painted
(or unpainted) depending whether the root is noncompact (or com-
pact).

2. The odd root remains unchanged.

Definition 3.28. An abstract Vogan diagram with no arrow is an abstract
Dynkin diagram with the subset of noncompact roots which is indicated by
painting the vertices. Every Vogan diagram is of course an abstract Vogan
diagram of a Lie superalgebra.

Theorem 3.29. If an abstract Vogan diagram with no arrows is given, then,
there exists a real Lie superalgebra gc, a Cartan involution 6, a Cartan subal-
gebra and a positive system A for A = A(g,b) such that the given diagram
is the Vogan diagram of (gc, bo, Ad).

For the proof see on [9].
Now we present a modified version of Borel-de Siebenthal theorem for Lie
superalgebras.

Theorem 3.30. Let go be a non complex real Lie superalgebra and let the
Vogan diagram of gc be given that corresponding to the triple (gc, ho, A™).
Then exists a simple system I for A = A(g,bh), with corresponding posi-
tive system AT, such that (gc,bo, A1) is a triple and there is at most two
painted simple root in its Vogan diagrams of A(m|n), D(m|n) and at most
three painted vertices in D(2,1;a). Furthermore suppose the automorphism
associated with the Vogan diagram is the identity that II' = oy, ..., and
that wy, ..., w; is the dual basis for each even part such that (wj, ag) = 01/ €k
where €gy. 1s the diagonal entries to make Cartan matriz symmetric. The dou-
ble painted simple root of even parts may be chosen so that there is no i’ with
(w; — wir,wy) > 0 for each even part.
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To see the proof of Theorem 3.30 see on [9] and [8]. As in the classical
case we have the following properties for the roots:

compact-compact—=compact
compact-+noncompact—noncompact
noncompact--noncompact—compact.

3.8 Graph Paintings

In this section we study a procedure to obtain froam a given Vogan dia-
gram another equivalent one, with fewer noncompact vertices.
Recall that in the Dynkin diagram of Lie superalgebras, we have that vertices
can be white, grey, black or grey and white.

Definition 3.31. Two Dynkin diagrams I', T” are said to be related if they
represent the same basic Lie superalgebra, and we denote this by I' ~ I".

As in the classical case, we can indicate the black and grey verices of a

Vogan diagram with the k& — uple (iy,iy,...,4,) where 0 < iy, < -+ <4, <n
where n is the number of vertices of our diagram and the grey or black ver-
tex appears odd number of times and a white vertex appears even number
of times.
Let g be a basic Lie superalgebra, with Cartan subalgebra h and root system
A C b*. Fix a simple system IT C A. Its Dynkin diagram has II as vertices,
and its edges depend on the pairing of roots under an invariant supersym-
metric form, since we do not ask for a positive definite form, roots may have
zero length. Write A = Ay U A; for the even and odd roots. Let o € II, if
« is even, the its Weyl reflection s, is an automorphism on Ay and A, so
IT and s,II produce the same Dynkin diagram. If « is odd, we define s, as
followes. Given § € I, we let s,(3) be

ﬁ—Q%Q if (o, ) # 0,
f+a if (a,a) =0 and («, 8) # 0,
g if (o, ) = (o, 5) = 0,

—a iff=a«a

sa(8)

Theorem 3.32. For any o € 11, s, Il is again a simple system. For fixed
I, its orbit under such s,, erhausts all simple systems of (g,h). Namely if
Il C A is another simple system, then there is a sequence 11 = I1; — Il; —
oo = [0, = II" such that each T1; — 11,41 is given by s, for some odd root
a € II;.
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The above method gives a practical way to find the Dynkin diagram
related to a given one.
Now we look what happen when « is grey. If § # « is perpendicular to a,
then [ is not moved by s,, otherwise 5 changes by a multiple of a. Hence the
colors of the vertices that are not adjacent to « remain the same, as do the
edges attached to these vertices. Therefore, it suffices to study the vertices
which are adjacent to «, and this is described by the next proposition.

Proposition 3.33. Let a be an odd root. Then the following table, in which
the grey vertices are indicated with a crossed one, reveals the effect of the odd
root reflection s.,.

of o

(a)| ® & X

o o

()] 2 & D

N
WV
©
&
&)

A
\
&
&
-

e O—& > O

(D

(e) ®7®<i > & ®<g

A
o=
A
\

&
&)=
A
O

N

For the proof see on [13]. Also in this case we have some combinatorial
rules.

Lemma 3.34. Let (T, (i1, 19, ...,1,)) be a diagram as above.
a) (T, (i1, 02, ...,0p)) ~ (T, (i — 1,00 — 1,43,...,4,));
b) (T, (i1,d2,...,1,)) ~ (T, (ig — 41,43, .. .,4,));
¢) (I, (0) ~ (I, (n +1 1))

Proof. For part a), apply s;,, Si,+1, - - - , Siy—1 consecutively to (I', (i1, 42, .. .,4,)).
Namely,
(F, (il, ig, R 72.7‘)) — (F, (Zl — ]_,1'172.1 + ]_, ig, A ,’ir)> by S;

— s = (F,(Zl — 1,2-2—2,2'2 — 1,i2,i3,...,iT)> by Si1+,s - -

— (F,(ll — 1,@2— 1,i3,...,ir)). by3i2—1

-y Sig—2
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By applying a) inductively, we keep shifting the pair leftward and obtain
(F, <i1,7:2, e 7%‘)) ~ (F, (22 - Iil —|— 17?:3, e 7%‘))

Then apply sq, S2, ..., Si,—; we obtain b). For ¢) we have only to apply
s;, V5 € {i,...,n} to (7). O

As in the classical case we can apply consecutively Lemma 3.34 to reach
a diagram with the minimum number of black and grey vertices.
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