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Introduzione

In questa tesi vogliamo studiare le forme reali di algebre e superalgebre
di Lie semisemplici complesse. L'elaborato è diviso in tre capitoli, i primi
due riguardano il caso classico, in altre parole le algebre di Lie, mentre nel
terzo capitolo esaminiamo il caso delle superalgebre di Lie.

Il primo capitolo è sostanzialmente usato per de�nire gli strumenti base
e la notazione, a partire dalla de�nizione di algebra di Lie, passando per la
de�nizione della forma di Cartan-Killing e di spazi di radice, sino ad arrivare
alla classi�cazione delle algebre si Lie semisemplici nelle famiglie standard
Am, Bm, Cm, Dm e le algebre eccezionali, con relativi sistemi di radici e
diagrammi di Dynkin.

Nel secondo capitolo invece entriamo più nel dettaglio del nostro studio,
de�niamo la nozione di algebra compatta e, piú importante, di sottoalgebra
compatta massimale u, che come vedremo è unica a meno di automor�smi in-
terni. La sottoalgebra compatta massimale gioca un ruolo fondamentale nella
determinazione di tutte le forme reali g0 di una stessa g complessa semisem-
plice. Seguono poi le de�nizioni di decomposizione di Cartan, g0 = k0 ⊕ p0,
ed involuzione di Cartan, che esiste per ogni algebra di Lie reale ed è unica a
meno di coniugazione attraverso elementi di Intg0, il gruppo degli automor-
�smi interni di g. Dopo questo importante risultante, si dimostra che, data g
algebra semisemplice complessa, ogni coppia di forme compatte è coniugata
attraverso un elemento di Int(g). Da ció segue quasi immediatamente il risul-
tato su cui poggia il nostro lavoro: le involuzioni di Cartan di gR, l'algebra di
Lie g complessa vista come algebra reale, sono coniugate rispetto alla forme
reali compatte di g. Introduciamo poi i diagrammi di Vogan di una tripla
(g0, h0,∆

+), che per le algebre reali giocano lo stesso ruolo dei diagrammi di
Dynkin nel problema di classi�cazione e ci limitiamo a studiare i diagrammi
di Vogan astratti senza frecce, in quanto assumiamo che

h ⊂ k ⊂ g

iii
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dove g = k⊕p e h è la sottoalgebra di Cartan di g che è la complessi�cazione
di g0, con �ne ultimo la dimostrazione del teorema di Borel de Siebenthal.

Nella parte �nale del capitolo viene presentato l'algoritmo "push the but-
ton", un interessante metodo in cui si agisce direttamente sui diagrammi
di Vogan e che ci permette di ottenere una dimostrazione alternativa del
teorema di Borel de Siebenthal, nonchè di trovare un algoritmo per dire di-
rettamente se due diagrammi di Vogan sono equivalenti, cioè corrispondono
alla stessa algebra di Lie.

Il terzo capitolo invece riguarda il caso delle superalgebre e ricalca la strut-
tura del capitolo del caso classico. Inizialmente vengono fornite de�nizione
di base riguardanti le superalgebre di Lie, tra le quali anche le de�nizioni di
superalgebre di Lie classiche e di Cartan. Poi studiamo i sistemi di radice e
in particolare descriveremo quelli delle algebre classiche. Una volta forniti i
sistemi di radici, diamo la de�nizione di forma reale e studiamo in particolare
le forme reali di A(m|n). In ultimo introduciamo i diagrammi di Vogan, i
diagrammi di Vogan astratti e l'algoritmo "push the button" nel caso delle
superalgebre.



Introduction

In this work we want to study the real forms of semisimple complex Lie
alegbras and Lie superalgebras. We have three di�erent chapters, the �rst
two are about the classical case, in other terms about Lie algebras, while, in
the third one, we examinate the case of the superalgebras.
In the �rst chapter we de�ne the basic instruments and the notation for the

Lie algebras. We start de�ning what a Lie algebra is, then we give the de�-
nition of Killing form and of the root spaces. It ends with the classi�cation
of the Lie algebra in the standard families Am , Bm , Cm , Dm and the excep-
tional ones with their root sistems and Dynkin diagrams.

In the second chapter we go deeper in our study, we de�ne the notion of
compact Lie algebra, and especially of maximally compact Lie subalgebra u
which is unique up to inner automorphism.
The maximally compact subalgebra plays a foundamental role in the classi-
�cation of all the real forms g0 of the same semisimple complex Lie algebra
g. Then we de�ne what a Cartan decomposition g0 = k0 ⊕ p0 is, and what a
Cartan involution is, that it exists for all the real Lie algebra and it is unique
up to conjugation through element of Intg0. After this important result,
we prove that, given a semisimple complex Lie algebra g, any teo compact
forms of g are conjugate by an element of Intg. Then it follows the main
result on which our work is based: the Cartan involution of gR, which is the
complex Lie algebra g seen as a real one, are conjugate with respect to the
compact real forms of g. Then we de�ne what a Vogan diagram of the triple
(g0, h0,∆

+) and the abstract Vogan diagram with no arrows, since we study
also the case in which

h ⊂ k ⊂ g

where g = k⊕ p is the Cartan subalgebra of the complexi�cation g og g0 and
we reach the Borel de Siebenthal theorem. In the last part of the chapter
we develop the "push the button" algorithm, which helps us to achieve an

v
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alternative proof of the Borel de Siebentahl theorem and a direct algorithm
to determine if two Vogan diagram are equivalent, which means that they
correspond to the same real form.

The third chapter is about the Lie superalgebras and their real forms
and it is similar in structure to the �rst chapter treating the classical case.
In the �rst part we give the basic de�nitions for the Lie superalgebras as
the de�nition of classical Lie superalgebra and of Lie superlagebra of Cartan
type. Then we investigate the root systems and we give a presentation of the
root system for the classical families. After that we give the de�nition of real
form and we study, in particular, the real forms of A(m|n). At the end of
the chapter we introduce the notion ofVogan diagram and the abstract Vogan
diagram and the "push the button" algorithm in the super case.



Chapter 1

Lie algebras

This chapter does not want to be a detailed description of classical Lie
algebras but wants to establish the notation and recall some important de�-
nitions in order to help us with our work. Due to this purpose, we do not give
all the proofs of the theorems we will state, but we give always the references
where such proofs can be found.
At the end of the chapter, we can also �nd some examples of Lie algebras,
roots system and Dynkin diagrams.

1.1 Preliminar de�nitions

First of all, we have to de�ne what a Lie algebra is, then we de�ne what
semisimple and simple Lie algebra are.
At the end of the section we also introduce the notion of Cartan subalgebra.
We work in an arbitrary commutative �eld F with characteristic 0.

De�nition 1.1. Let g be a vector space g over a �eld F , with an operation
g× g→ g denoted (x, y)→ [x, y] and called the bracket or commutator of x
and y. g is called a Lie algebra over F , if the following axioms are satis�ed:

1. The bracket is bilinear;

2. [x, x] = 0, ∀x ∈ g;

3. [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, ∀x, y, z ∈ g.

It is useful for us to introduce the concept of morphism of Lie algebras
and gl(V ).

De�nition 1.2. A linear transformation φ : g → g′, where g, g′ are Lie
algebras, is called morphism if φ([x, y]) = [φ(x), φ(y)], ∀x, y ∈ g.

1



2 1. Lie algebras

Example 1.3. Let V be a �nite dimensional vector space over F and denote
with End(V ) the set of the linear transformations from V to V . If we de�ne
the bracket as [x, y] = xy−yx with x, y ∈ End(V ) we have that (End(V ), [, ])
is a Lie algebra and we call it gl(V ).

In order to study the structure of a Lie algebra, we have to de�ne the
notion of ideal.

De�nition 1.4. A subspace I of a Lie algebra g is called an ideal of g if
x ∈ g, y ∈ I implies [x, y] ∈ I.

Thanks to this de�nition, we are already able to de�ne what a simple Lie
algebra is.

De�nition 1.5. Let g be a Lie algebra. We call g simple if g has no ideals
except itself and 0, and if moreover [g, g] 6= 0 (i.e. g is not abelian).

Now we want to de�ne what a semisimple Lie algebra is. To reach our
purpose we need to go through the de�nition of solvable Lie algebra.

De�nition 1.6. De�ne a sequence of ideals of g, called derived series, by
g(0) = g, g(1) = [g, g], g(2) = [g(1), g(1)], . . . , g(i) = [g(i−1), g(i−1)]. g is called
solvable if g(n) = 0 for some n.

Next we assemble a few simple observations about solvability, for the
proof see [1], chapter 1.

Theorem 1.7. Let g be a Lie algebra,

a) If g is solvable, then so are all subalgebras and homomorphic images of
g.

b) If I is a solvable ideal of g such that g/I is solvable, then g itself is
solvable.

c) If I, J are solvable ideals of g, then so is I + J .

As a �rst application of this proposition we can prove the existence of
a unique and maximal solvable ideal called the radical of g and denoted by
Rad g.

De�nition 1.8. Let be g a Lie algebra. We call g a semisimple Lie algebra
if Radg = 0.

Theorem 1.9 (Cartan's Criterion). Let g be a subalgebra of gl(V ), V �nite
dimensional. Suppose that Tr(xy) = 0 ∀x ∈ [g, g], y ∈ g. Then g is solvable.

For the proof of this theorem see on [1], chapter 2.
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1.2 Root space decomposition

In this section g denotes a nonzero semisimple Lie algebra.
Our purpose is to study in detail the structure of g, via its adjoint represen-
tation. The Killing form will play a crucial role.
First of all, we have to introduce what a representation of a Lie algebra is
and in particular the adjoint one.

De�nition 1.10. A representation of a Lie algebra g is an homomorphism
of Lie algebras

φ : g→ gl(V )

If we de�ne the morphism adx : g → g, adxy = [x, y]. We have the
following de�nitions.

De�nition 1.11. Let be g a Lie algebra, given an element x of a Lie algebra
g, the adjoint representation is the morphism:

ad : g→ gl(V )

x→ adx

for all x ∈ g

Now we are ready to introduce the Killing form.

De�nition 1.12. Let g any Lie algebra, if x, y ∈ g we de�ne the Killing
form the follow bilinear form on g:

κ(x, y) = Tr(adxady)

With this new tools, now we can de�ne a toral subalgebra, show some
properties of its subalgebras and de�ne what a root system is.

De�nition 1.13. We call a subalgebra toral if it consists of semisimple
elements.

It is easy to see that a toral subalgebra is abelian too, which is veri�ed
in [1].
Now we �x a maximal toral subalgebra h of g, i.e. a toral subalgebra not
properly included in any other.
Since h is abelian, adgh is a commuting family of semisimple endomorphism
so it is simultaneously diagonalizable.
So we �nd that

g =
⊕

gα
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where gα = {x ∈ g|[h, x] = α(h)x ∀h ∈ h}, where α ranges over h∗.
Now we �nally give the de�nitions of root system and root space decomposi-
tion.

De�nition 1.14. The set of all nonzero α ∈ h∗ for which gα 6= 0 is denoted
by ∆ and its elements are called roots of g relative to h.

With the above notation we have what we call the root space decomposi-
tion also called root decomposition:

g = h
⊕
α∈∆

gα

For more details see in [1].
We can now continue with a simple observation about the root space decom-
position.

Theorem 1.15. If g = h
⊕

α∈∆ gα is a root decomposition, we have:

• For all α, β ∈ h∗, [gα, gβ] ⊂ gα+β.

• If x ∈ gα, α 6= 0, then adx is nilpotent.

• If α, β ∈ h∗, α + β 6= 0, then gα is orthogonal to gβ, relative to the
Killing form κ of g.

Let's now see some properties, which are all veri�ed in [1].

Theorem 1.16. Let ∆ a root system:

1. ∆ spans h∗;

2. If α ∈ ∆ then −α ∈ ∆;

3. Let α ∈ ∆, x ∈ gα, y ∈ g−α. Then [x, y] = κ(x, y)tα where tα ∈ h is
de�ned by κ(tα, h) = α(h), ∀h ∈ h;

4. If α ∈ ∆, then [gα, g−α] is one dimensional with basis tα;

5. α(tα) = κ(tα, tα), for α ∈ ∆;

6. If α ∈ ∆ and xα is any nonzero element of gα, then there exists yα ∈
g−α such that xα, yα, hα = [xα, yα] span a three dimensional simple

subalgebra of g isomorphic to sl(2, F ) via xα →
(

0 1
0 0

)
,

yα →
(

0 0
1 0

)
, hα →

(
1 0
0 −1

)
;
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7. hα =
2tα

κ(tα, tα)
; hα = −h−α;

8. If α ∈ ∆ the only scalar multiples of α which are roots are α,−α;

9. If α, β ∈ ∆, then β(hα) ∈ Z, and β − β(hα)α ∈ ∆, the numbers β(hα)
are called Cartan Integers;

10. If α, β, α + β ∈ ∆, then [gα, gβ] = gα+β;

11. Let α, β ∈ ∆, β 6= ±α. Let r, q b (respectively) the largest integers for
which β− rα, β+ qα are roots. Then all β+ iα ∈ ∆ (−r ≤ i ≤ q), and
β(hα) = r − q;

12. g is generated (as Lie algebra) by all the root spaces gα.

Now, we are at this point: we have g, which is a semisimple Lie algebra,
h a maximal toral subalgebra, ∆ ⊂ h∗ the set of roots and g = h ⊕α∈∆ gα
our root space decomposition.
Since the restriction to h of the Killing form is nondegenerate we can transfer
the form to h∗, letting (γ, δ) = κ(tγtδ), ∀γ, δ ∈ h∗. Since we know that ∆

spans h∗ we can choose a basis α1, . . . , αl and write β ∈ ∆ as β =
∑l

i=1 ciαi,
with ci ∈ F . It is possible to show that all the ci ∈ Q.
Now we can show the result of this section, proved in [1]

Theorem 1.17. Let be g a Lie algebra, h its maximal toral subalgebra, ∆ a
root system and E = R⊕Q EQ where EQ is the Q-subspace of h∗ spanned by
all the roots. Then:

1. ∆ spans E, and 0 does not belong to ∆;

2. If α ∈ ∆ then −α ∈ ∆, but no other scalar multiple of α is a root;

3. If α, β ∈ ∆, then β − 2(β, α)

(α, α)
α ∈ ∆;

4. If α, β ∈ ∆, then β − 2(β, α)

(α, α)
∈ Z.

1.3 Root Systems, Weyl Group, Cartan Ma-

trix, Dynkin Diagram

In this section we de�ne the notion of a root system by a few axioms,
what a re�ection and the Weyl group are. After that, we de�ne the Cartan
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matrix, that is a matrix strictly connected to the Lie algebra and last, but
not least, the Dynkin Diagram, which is a sort of graphic representation of
the Cartan Matrix which will be useful for the classi�cation.

1.4 Root systems and Weyl group

Let be E a �xed real euclidean space, i.e. a �nite dimensional vector
space over R endowed with a positive de�nite symmetric bilinear form (α, β).
Geometrically a re�ection in E is an invertible linear transformation leaving
pointwise �xed some hyperplane (subspace of dimension one) and sending
any vector orthogonal to that hyperplane into its negative. Evidently a
re�ection is orthogonal. Any nonzero vector α determines a re�ection σα,
with re�ecting hyperplane Pα = {β ∈ E|(β, α) = 0}. Of course, nonzero
vectors proportional to α yield the same re�ection. It is easy to write down

an explicit formula: σβ = β − 2(β, α)

α, α
= 〈β, α〉.

De�nition 1.18. A subset of ∆ of the euclidean space E is called a root
system in E if the following axioms are satis�ed:

1. ∆ is �nite, spans E, and does not contain 0;

2. If α ∈ ∆, the only multiples of α in ∆ are ±α;

3. If α ∈ ∆, the re�ection σα leaves ∆ invariant;

4. If α, β ∈ ∆, then 〈β, α〉 ∈ Z

De�nition 1.19. Let be ∆ a root system in E. We denote by W the sub-
group of GL(E) generated by the re�ection σα(α ∈ ∆) and we call it the
Weyl Group of ∆.

By the third and the �rst axioms respectively we can see that W per-
mutes the set ∆ and it is �nite. The following lemma shows how a certain
automorphism of E acts onW by conjugation, for the proof see in [1],chapter
3.

Lemma 1.20. Let ∆ be a root system in E, with Weyl group W. If σ ∈
GL(E) leaves ∆ invariant, then σσασ

−1 = σσα for all α ∈ ∆, and 〈β, α〉 =
〈σ(β), σ(α)〉 for all α, β ∈ ∆.
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The fourth axiom limits severely the possible angles occurring between
pairs of roots. Recall that the cosine of the angle θ between vectors α, β ∈ E
is given by the formula ‖α‖‖β‖ cos θ = (α, β).

Therefore, 〈β, α〉 =
2(β, α)

(α, α)
= 2
‖β‖
‖α‖

cos θ and 〈α, β〉〈β, α〉 = 4 cos2 θ. This

last number is a nonnegative integer; but 0 ≤ cos2 θ ≤ 1, and 〈α, β〉〈β, α〉
have like sign, so the following possibilities are the only ones when α 6= ±β
and ‖β‖ ≥ ‖α‖. Since 4 cos θ = 〈α, β〉〈β, α〉 we could have only a few values
for 〈α, β〉 and 〈β, α〉, values that are reported in the following table.

〈α, β〉 〈β, α〉 θ ||β||2/||α||2
0 0 π/2 undetermined
1 1 π/3 1
-1 -1 2π/3 1
1 2 π/4 2
-1 -2 3π/4 2
1 3 π/6 3
-1 -3 5π/6 3

Table 1.1: Values of 〈α, β〉 and 〈β, α〉

Lemma 1.21. Let α, β be nonproportional roots. If (α, β) > 0(i.e. if the
angle between α and β is strictly acute), then α− β is a root. If (α, β) < 0,
then α + β is a root.

This last lemma is proved in [1].
Let us introduce some important notions about root systems:

De�nition 1.22. A subset S ∈ ∆ is called a base if:

1. S is a base of E;

2. each root β can be written as β =
∑
kαα (α ∈ S) with integral coe�-

cients kα all nonnegative or all nonpositive.

Remark 1.23. We can denote with Π = Span{S} ∩∆

The roots in S are called simple. As a consequence of the �rst property
Card S = dimE = l and the expression for β in the second one tell us that
this expression is unique. Thanks to this fact we can de�ne the height of
a root by htβ =

∑
α∈S kα. If all the coe�cients are nonnegative we call β

a positive root and we denote it writing β ∈ ∆+, otherwise we will write
β ∈ ∆−.
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Figure 1.1: Root system of A2

Lemma 1.24. If S is a base of ∆, then (α, β) ≤ 0 for α 6= β in S, and α−β
is not a root.

Also this lemma is proved in [1].
It is possible to show that ∆ has a base, to reach this results we have to
introduce some new tools:

De�nition 1.25. Let be γ ∈ E, we call it regular if γ ∈ E−∪α∈∆Pα, where
Pα = {β ∈ E|(β, α) = 0}

Then if γ is regular, it is clear that ∆ = ∆+(γ)∪∆−(γ); we can call now
α ∈ ∆+(γ) decomposable if α = β1 + β2 for some β1, β2 ∈ ∆, indecomposable
otherwise. With the following theorem, and it is possible to show that this
∆ is a base, see in [1], chapter 3. Now we will see some behavior of simple
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roots:
All the proofs are on [1]:

Lemma 1.26. If α is positive but not simple, then α−β is a root (necessarily
positive) for some β ∈ S

Corollary 1.27. Each β ∈ ∆+ can be written in the form α1 + · · ·+αk (αi ∈
S not necessarily distinct) in a such way that each partial sum is a root.

Lemma 1.28. Let α be simple. Then σα permutes the positive roots other
than α.

Corollary 1.29. Set δ =
1

2

∑
β∈∆+ β. Then σα(δ) = δ − α for all α ∈ S.

Corollary 1.30. If σ = σ1 . . . σt is an expression for σ ∈ W in terms of
re�ections corresponding to simple roots, with t as small as possible, then
σ(α) ∈ ∆+.

Now we can �nally discuss some properties of the Weyl group, see [1],
chapter 3.

Theorem 1.31. Let S be a base of ∆, then:

1. If γ ∈ E regular, there exists σ ∈ W such that (σ(α), α) > 0,∀α ∈ S;

2. If S ′ is another base of ∆, then σ(S ′) = S for some σ ∈ W (so W acts
simply transitively on the set of bases);

3. If α is any root, there exist σ ∈ W such that σ(α) ∈ S;

4. W is generated by the σα, α ∈ S;

1.5 Cartan Matrix and Dynkin diagram

De�nition 1.32. Fix an ordering (α1, . . . , αl) of simple roots. The matrix
(〈αi, αj〉) is then called the Cartan matrix of ∆.

It is obvious that the matrix depends on the order we choose for the
simple roots, i.e. if we choose a di�erent order we will have a permutation
of the columns and the rows of that matrix, but it is not a problem because
we have already seen that the Weyl group acts transitively on the collection
of bases. Notice that the matrix is not singular since S is a base for E.
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Theorem 1.33. Let ∆′ ⊂ E ′ be another root system, with base S ′ = (α′1, . . . , α
′
l).

If 〈αi, αj〉 = 〈α′i, α′j〉 for 1 ≤ i, j ≤ l, then the bijection αi 7→ α′i extends
(uniquely) to an isomorphism Φ : E → E ′ mapping ∆ onto ∆′ and satisfying
〈Φ(α),Φ(β)〉 = 〈α, β〉 for all α, β ∈ Φ. Therefore, the Cartan matrix of ∆
determines ∆ up to isomorphism.

The proof of this last theorem is in [1]. If α, β are distinct positive roots,
we know that 〈α, β〉〈β, α〉 = 0, 1, 2, 3. Now we can de�ne the Coxeter graph
of ∆ which is a graph having l vertices, where l is the dimesion of our root
space, the i−th joined the to the j−th (i 6= j) by 〈αi, αj〉〈αj, αi〉 edges.
Whenever a double or triple edge occurs in the Coxeter graph of ∆, we can
add an arrow pointing to the shorter of the two roots. This additional infor-
mation allow us to recover the Cartan integers; we call the resulting �gure
Dynkin diagram of ∆.
If we recall that ∆ is called irreducible if and only if ∆ cannot be partioned
into two proper, orthogonal subset, we can easily understand that ∆ is ir-
reducible if and only if the Dynkin diagram is connected in the usual sense.
In general, we could have as many connected components of the Dynkin di-
agram as the partition of S into mutually orthogonal subsets, we will call
them Si. If Ei is the span of Si it is clear that E = E1 ⊕E2 ⊕ · · · ⊕Et. It is
possible to show that all the Ei are W-invariant .

Theorem 1.34. ∆ decomposes (uniquely) as the union of irreducible root
system ∆i (in subspaces Ei of E) such that E = E1⊕E2⊕· · ·⊕Et (orthogonal
direct sum).

The discussion we have already have show that it is su�cient to classify
the irriducibile root systems or the Dynkin diagrams, for the proof see in [1],
chapter 3. The possibilities of di�erent Dynkin diagram are restricted by the
angles that the edge of the graph can have, angles that are expressed in table
1.1.

Theorem 1.35. If ∆ is an irreducible root system of rank l, its Dynkin
diagram is one of the following:

Al, l ≥ 1

Bl, l ≥ 2

Cl, l ≥ 3
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Dl, l ≥ 4

G2

F4

E6

E7

E8

Proposition 1.36. Let g be a classical Lie algebra, its Dynkin diagram is
one of the Dynkin of the previous Theorem.

Remark 1.37. As a consequence of the last two theorem and of Theorem 1.33,
we have that if we have two classical Lie g, g′ algebras with the same Dynkin
diagram, g ∼= g′.

Example 1.38. We can introduce the four kind of classical Lie algebra with
their root systems.
The �rst one, which is called Am = sl(m + 1, F ) = {x ∈ gl(m + 1, F ) :
tr(x) = 0}. We have that its dimension is (m + 1)2 − 1 and a base is
{Ei,i − Ei+1,i+1, i = 1, . . . ,m}

⋃
{Ei,j : i 6= j, i, j = 1, . . . ,m− 1}.

If we de�ne εi ∈ h∗ = εi(diag(a1, . . . , an)) = ai we can give a basis of its root
system as follows:

∆Am−1 = {εi − εj, i 6= j, i, j = 1, . . . ,m}

so if we de�ne αi = εi − εi+1, i = 1, . . . ,m− 1 we have that

Sm−1 = {α1, . . . , αm−1}

and its Dynkin diagram is:

Am,m ≥ 1
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For the following ones we have to introduce the concept of a Lie algebra
associated to a bilinear form. Let f be a nondegenarate bilinear form, if s is
the matrix associated to f , our Lie algebra is:

Lf = {x ∈ gl(n, f) : xts+ sx = 0}

If we take s = J where J2 = Id we obtain two di�erent kind of Lie algebra.
We will have Bm = so(2m+ 1, F ) and a base is given by Ei,j − Ej∗,i∗ where
i∗ = n + 1− i and j∗ = n + 1− j and n = 2m + 1 and Dm = so(2m,F ). A
root systems for Bm and Dm is given by:

∆Bm = {±εi,±εi ± εj : i 6= j, i, j = 1, . . . ,m}
∆Dm = {±εi ± εj : i 6= j, i, j = 1, . . . ,m}

If we de�ne α : i = εiεi+1 and αm = εm we have the following base for Bm:
SBm = {α1, . . . , αm} and if we de�ne α : i = εiεi+1 for i = 1, . . . ,m − 1 and
αm = εm−1 − εm we have SDm = {α1, . . . , αm} and the Dynkin diagram are
the following:

Bm,m ≥ 2

Dm,m ≥ 4

Last but not least if we consider a bilinear form with the following matrix
we will obtain Cm = sp(2m,F ):

s =

(
0 J
−J 0

)
The root system is:

∆Cm = {±2εi,±εi ± εj : i 6= j, i, j = 1, . . . ,m}

and if we de�ne αi = εi − εi+1 for i = 1, . . . ,m − 1 and αm = εm we obtain
SCm = {α1, . . . , αm} as a basis and the following Dynkin diagram:

Cm,m ≥ 3



Chapter 2

Real Forms and Cartan

Decomposition

In this chapter we see what a compact Lie subalgebra and a Cartan
decomposition are and their relation to the root space decomposition.
To reach this purpose we need some properties of the Killing form and �nally
we introduce Vogan diagrams, which are strictly related with the Dynkin
diagrams explained in the previous chapter.

2.1 Compact Lie Algebras

Let us recall Lie second and third theorem. For its proof see[2] page 662.

Theorem 2.1. Every �nite-dimensional Lie algebra over R is isomorphic to
the Lie algebra of a simply connected analytic group.

Thanks to this theorem, we can now de�ne what a compact Lie subalgebra
is.

De�nition 2.2. Let g be a semisimple complex Lie algebra, we de�ne as
Int(g) the analytic subgroup of AutR(g) with Lie algebra ad(g). Thus Int(g)
is the identity component of Ad(G) and equals to Ad(G) if G is connected.

De�nition 2.3. Let g be a semisimple Lie algebra over R. Let k be a
subalgebra of g and K∗ th analytic subgroup of Int(g) which corresponds
(according to the second Lie theorem) to the subalgebra adg(k) of adg(g). The
subalgebra k is called compactly imbedded subalgebra of g if K∗ is compact.
The lie algebra g is said to be compact if it is compactly imbedded in itself
or equivalently if Int(g) is compact.

Lets see some properties and properties of the compact Lie algebras.

13
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Theorem 2.4. If G is a Lie group with Lie algebra g and if K is a compact
subgroup with corresponding Lie subalgebra k, then k is a compactly embedded
subalgebra of g. In particular, the Lie algebra of a compact Lie group is
always a compact Lie algebra.

Proof. Since K is compact, so is the identity component K0. Then Adg(K
0)

must be compact, being the continuous image of a compact group. The
groups Adg(K

0) and Intg(k) are both analytic connected subgroups of GL(g)
with Lie algebra adg(k) and hence are isomorphic as Lie groups. Therefore
Intg(k) is compact.

The next proposition and its corollary give properties of a compact Lie
algebra.

Remark 2.5. Let G be a compact Lie group, we have that G admits an
invariant measure under Ad which is the Haar measure, see on [2] page 239.
So when Ad(G) invariant product is de�ned as follows:

(x, y) =
1

|G|

∫
G

〈Ad(g)x,Ad(g)y〉dg

where 〈, 〉 is any product on g.

De�nition 2.6. A Lie algebra g is called reductive if its radical coincides
with its center.

Proposition 2.7. Let g be a Lie algebra over R, G its adjoint group. Then
the following statements are equivalent:

(i) g is reductive and [g, g] is of compact type;

(ii) G is compact;

(iii) If X ∈ g, adX is semisimple and has only pure imaginary eigenvalues.

Sketch of proof. (See on [4], chapter 4, for a complete proof). (i)⇒ (ii) Let
C be the center of g, g1 = [L,L]. Then Y y = Y for Y ∈ C, y ∈ G. So if
Int(G)1 is the adjoint group of [g, g], y → y|[g,g] is an isomorphism of G onto
G1. So G is compact.
(ii)⇒ (iii) Let G be compact, so it follows as we said in the previous remark,
that there is an inner product for g which is positive deinite and invariant
under G. It is easy to see that the adX(X ∈ g) are skew-symmetric with
respect to this inner product. A standard result in linear algebra implies that
all eigenvalues of adX are pure imaginary. If X ∈ g and m is a subspace of
g invariant under adX, then X leaves the orthogonal complement of m in g
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invariant. Hence adX is semisimple for all X ∈ g.
(iii) ⇒ (i) The adjoint representation of g is semisimple, so g is reductive.
Let [g, g] the derived algebra of g and ω the Casimir polynomial of the de-
rived algebra. So, according to the previous observation, we have that all
eiegenvalues of (adX)2 are ≤ 0, so ω(X) = (tr(X))2 ≤ 0. Moreover, if X ∈ g
and ω(X) = 0 we have that all the eigenvalues are equal to zero. So adX is
nilpotent, showing that adX = 0. Thus X = 0. −ω is therefore a positive
de�nite quadratic form on the derived algebra. If G1 is the adjoint group
of the derivate we have that it is a closed subgroup of GL([g, g]). On the
other hand, G1 is contained in the orthogonal group of the derived algebra,
with respect to ω, which is compact. So G1 is compact and we have proven
(i).

The next proposition is a kind of converse of the previous corollary.

Proposition 2.8. If the Killing form of a real Lie algebra g is negative
de�nite, then g is a compact Lie algebra.

Proof. By Cartan's criterion for semisimplicity, Theorem 1.9, g is semisimple.
We also have that Int(g) = (AutRg)0 (see [2], Proposition 1.97 and 1.98).
Consequently Int(g) is a closed subgroup of GL(g). On the other hand, the
negativity of the Killing form is an inner product on g in which every member
of adg is skew symmetric. Therefore the corresponding analytic group Intg
acts by orthogonal transformations. Since Intg is then exhibited as a closed
subgroup of the orthogonal group, it is compact.

2.2 Real Forms

In this section we introduce what a real form is and what a Cartan de-
composition and a Cartan involution are.

De�nition 2.9. Let V be a vector space over R of �nite dimension. A
complex structure on V is an R-linear endomorphism J of V such that J2 =
−Id, where Id is the identity mapping of V .

A vector space V over R with a complex structure J can be turned into
a vector space Ṽ over C, by putting

(a+ ib)X = aX + bJX, X ∈ V, a, b ∈ R

In fact J2 = −Id implies α(βX) = (αβX) for α, β ∈ C, so it is obvious that

dimCṼ = 1
2
dimRV . We call Ṽ the complex vector space associated to V.
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On the other hand, if we have the vector space E over C we can consider the
vector space ER over R where the multiplication by i is given by the complex

structure J and it is clear that E = ẼR.
A Lie algebra g over R is said to have a complex structure J , if J is a complex
structure over the vector space g and in addition

[X, JY ] = J [X, Y ], ∀X, Y ∈ g

From which simply follows:

[JX, JY ] = −[X, Y ], ∀X, Y ∈ g

So the complex vector space g̃ becomes a Lie algebra over C with the following
bracket operation:

[(a+ ib)X, (c+ id)Y ] = [aX + bJX, cY + idY ] =

= ac[X, Y ] + bcJ [X, Y ] + adJ [X, Y ]− bd[X, Y ]

In a similar way, we can introduce a complex structure J instead the multi-
plication for i of a complex Lie algebra to reach a real one.
Now suppose that V is an arbitrary �nite dimensional vector space over R, so
the product V ×V is a vector space too and we can choose the endomorphism
J : V × V : (X, Y )→ (−Y,X) which is a complex structure on V × V . The
complex space ˜(V × V ) is called complexi�cation of V and will be denoted
V C. In the same way we can de�ne g the complexi�cation of a Lie algebra
g0, where g0 is a real Lie algebra, writing X + JY with X, Y ∈ g0 and the
following bracket:

[X + JY, Z + JT ] = [X,Z]− [Y, T ] + J([Y, Z] + [X,T ])

So we will denote with g0 a real Lie algebra, g its complexi�cation and with gR

a Lie algebra over R with a complex structure J derived from multiplication
by i on g.

Lemma 2.10. Let κ0, κ and κR denote the Killing forms of the Lie algebras
g0, g and gR. Then

κ0(X, Y ) = κ(X, Y ) for X, Y ∈ g0

κR(X, Y ) = 2Re(κ(X, Y )) for X, Y ∈ gR

Proof. The �rst relation is obvious, for the second suppose Xi (1 ≤ i ≤ n) is
any basis of g; let B + iC denote the matrix of adXadY with respect to this
basis, B and C being real. Then X1, . . . , Xn, JX1, . . . , JXn is a basis of gR
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and since the linear transformation adXadY of gR commutes with J , it has
the matrix expression (

B −C
C B

)
from which the second relation above follows.

Due to this lemma we have the following.

Proposition 2.11. Let g a Lie algebra, g0, g, g
R, are all semisimple if and

only if one of them is.

De�nition 2.12. Let g be a Lie algebra over C. A real form of g is a
subalgebra g0 of the real algebra gR such that

gR = g0 ⊕ Jg0

In this case, each Z ∈ g can be uniquely written as

Z = X + iY, X, Y ∈ g0

Thus g is isomorphic to the complexi�cation of g0. The mapping σ of g onto
itself is given by σ : X + iY → X − iY (X, Y ∈ g0) is called the conjugation
of g with respect to g0. The mapping σ has the properties

σ(σ(X)) = X, σ(X + Y ) = σ(x) + σ(Y )

σ(αx) = ᾱσ(X), σ[X, Y ] = [σX, σY ]

for X, Y ∈ g, α ∈ C. Thus σ is not an automorphism of g, but it is an
automorphism of gR. We can now observe that the set g0 of �xed point of σ
is a real form of g and σ is the conjugation of g with respect to g0. We have
that Jg0 is the eigenspace of σ for the eigenvalue −1 and gR = g0 + Jg0.

De�nition 2.13. A real form of g that contains h0 for some Cartan subal-
gebra h is called split real form.

Example 2.14. Let us see an example of real form and of a compact subalge-
bra.
Let g = sl2C = span{h, Xα, X−α} where

Hα =

(
1 0
0 −1

)
Xα =

(
0 1
0 0

)
X−α =

(
0 0
−1 0

)
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We have the real form g0 = sl2R, which is split, and also another real form
u0 = su(2) = span{X, Y, Z} ⊂ sl2C where

X =

(
i 0
0 −i

)
Y =

(
0 i
i 0

)
Z =

(
0 1
−1 0

)
This is also a real form because spanC(X, Y, Z) = sl2C, but it is not split.
We have only to verify that su(2) is compact, that is a real form as sl2R is
obvious.
To see that u0 is compact we give as isomorphism Φ to soR(3) = {x ∈
gl3(R)|X = −X t} which is compact:

Φ :su(2)→ soR(3)

X → X̃

Y → Ỹ

Z → Z̃

where

X̃ =

 0 1 0
−1 0 0
0 0 0

 Ỹ =

0 0 0
0 0 1
0 −1 0

 Z̃ =

 0 0 1
0 0 0
−1 0 0


which generate soR(3), and Φ is well de�ned on the bracket.

Remark 2.15. Following the notation of the �rst chapter, for each α ∈ ∆ a
vector Xα ∈ gα can be chosen such that for all α, β ∈ ∆:

[Xα, X−α] = Hα, [H,Xα] = α(H)Xα for H ∈ h;

[Xα, Xβ] = 0 if α + β 6= 0 and α + β /∈ ∆;

[Xα, Xβ] = Nα,βXα,β, if α + β ∈ ∆

where the constant Nα,β is integral and satis�es

Nα,β = −N−α,−β

The {Hα, Xα, X−α, }α∈∆ form the Chevalley-Weyl basis.
To see that every semisimple Lie algebra has a Chevalley-Weyl basis see on
[3] page 176.

Theorem 2.16. Every semisimple Lie algebra g over C has a real form which
is compact.
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Sketch of proof. Let κ denote the Killing form of g. Let h be a Cartan subal-
gebra of g, and ∆ the root system. For each α ∈ ∆ we select Xα ∈ gα. Since
[Xα, X−α] = Hα implies κ(Xα, X−α) = 1, see Theorem 1.15 and consequently

κ(Xα −X−α, Xα −X−α) = −2

κ(i(Xα +X−α), i(Xα +X−α)) = −2

κ(Xα −X−α, i(Xα +X−α)) = 0

κ(iHα, iHα) = −α(Hα) < 0

Since κ(Xα, Xβ) = 0 if α+β 6= 0, it follows that κ is strictly negative de�nite
on the R-linear subspace

u0 =
∑
α∈∆

R(iHα) +
∑
α∈∆

R(Xα −X−α) +
∑
α∈∆

R(i(Xα +X−α))

Moreover g = u0 ⊕ iu0. Using Nα,β = −Nα,−β, where [Xα, Xβ] = Nα,βXα+β,
see Remark 2.15 which implies that Nα,β is real, we see thatX, Y ∈ u0 implies
[X, Y ] ∈ u0, so u0 is a real form of g, and due to the fact that the Killing
form is strictly negative, we have that it is compact.

2.3 Cartan Decomposition

In this section we will see what a Cartan decomposition and a Cartan
involution are, the connection between them and the connection to the max-
imal compact subalgebra of a given real Lie algebra.

De�nition 2.17. Let g0 be a semisimple Lie algebra over R, g its complex-
i�cation, σ the conjugation of g with respect to g0. A direct decomposition
g0 = k0 + p0 of g0 into a subalgebra k0 and a vector subspace p0 is called a
Cartan decomposition if there exists a compact real form u0 of g such that

σ · u ⊂ u, k0 = g0 ∩ u0, p0 = g0 ∩ (iu0)

Since every semisimple Lie algebra g over C has a real form which is
compact, we will see, in this section, that every semisimple Lie algebra g0

over R has a Cartan decomposition.

De�nition 2.18. An involutive automorphism θ of a semisimple Lie alge-
bra g0 is called a Cartan involution if the bilinear form κ(X, θY ) is strictly
positive de�nite.
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Let be g a semisimple Lie algebra over C and let R(g) the set of its real
forms.
Lets us de�ne also AInv(g) = {σ : g → g | σ2 = Id, σ antilinear}.
It is obvious that there exists a bijection between this two sets. Our goal
is to show what kind of relationship exists between R(g) and the Cartan
involutions. If we consider u ⊂ g, (we can consider it bacaues of Theorem
2.16), we can de�ne τu ∈ AInv(g) as the conjugation with respect to u and
ξσ = σ ◦ τu where σ ∈ AInv(g).
Last but not least also de�ne the following set:

A(g) = {η ∈ Int(g)|η−1 = τu ◦ η ◦ τu}

Theorem 2.19. The map:

AInv(g)→ A(g)

σ → ξσ = σ ◦ τu

is a bijection and ξσ ∈ AInv(g) if and only if σ ◦ τu = τu ◦ σ.

Proof. To prove that ξσ ∈ A(g) we have to check if ξ−1
σ = τu ◦ ξσ ◦ τu, but

ξ−1
σ = τu ◦ σ ◦ τu ◦ τu, so the inverse map is ξ ◦ τu = σξ.
We have now to see the second point of our statement, it is easy to see
because we have only to see what ξ2

σ is:

ξ2
σ = Id

σ ◦ τu ◦ σ ◦ τu = Id

σ ◦ τu = τu ◦ σ

We have now to see how the group Int(g) acts on the sets.

Proposition 2.20. Let be α ∈ Int(g), and R(g), AInv(g) and A(g) as in
the previous de�nition. Then we have the well de�ned actions:

i. α ◦ g0
def
= α(g0), g0 ∈ R(g)

ii. α ◦ σ def
= α ◦ σ ◦ α−1, σ ∈ AInv(g)

iii. α ◦ ξ def
= α ◦ ξ ◦ (τu ◦ α−1 ◦ τu), ξ ∈ A(g)
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Proof. The �rst point is obvious that is well de�ned so let us check the second
and the third one and also if the actions respect the bijections. ii)

(α ◦ σ)2 ?
= Id

(α ◦ σ)2 = α ◦ σ ◦ α−1 ◦ α ◦ σ ◦ α−1

(α ◦ σ)2 = α ◦ σ ◦ Id ◦ σ ◦ α−1

(α ◦ σ)2 = α ◦ Id ◦ α−1

(α ◦ σ)2 = Id

iii)

(α ◦ ξ ◦ (τu ◦ α−1 ◦ τu))−1 = (τu ◦ α−1 ◦ τu)−1 ◦ ξ−1 ◦ α−1

= τu ◦ α ◦ τu ◦ ξ−1 ◦ α−1

= τu ◦ α ◦ τu ◦ τu ◦ ξ ◦ τu ◦ α−1

= τu ◦ α ◦ ξ ◦ τu ◦ α−1

= τu ◦ (α ◦ ξ) ◦ τu

And now we will check that the actions respect the bijections: Consider the
map:

AInv(g)→ A(g)

σ → σ ◦ τu = ξσ

α ◦ σ ?→ α ◦ ξσ

If we remember that α ◦ σ = α ◦ σ ◦ α−1 we have:

α ◦ σ ◦ α−1 ◦ τu = α ◦ σ ◦ τu ◦ τu ◦ α−1 ◦ τu
= α ◦ ξσ ◦ τu ◦ α−1 ◦ τu

Meanwhile if we consider the inverse map:

A(g)→ AInv(g)

ξ → ξ ◦ τu
α ◦ ξ ?→ α ◦ ξ ◦ τu

This is easy to verify because: α ◦ ξ ◦ τu ◦ α−1 ◦ τu ◦ τu = α ◦ ξ ◦ τu ◦ α−1

Thanks to these veri�cation we can now give the following theorem.
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Theorem 2.21.

AInv(g)

Int(g)
∼=

A(g)

Int(g)
∼=

R(g)

Int(g)

Thanks to this Cartan's result we know that if we have σ ∈ AInv(g)/Int(g)
exists an alement ξσ which is a Cartan involution for every equivalence class
[σ], we post pone the proof later because we have to see some preliminar
results:

Lemma 2.22. Let g0 be in R(g), so there is an α ∈ Int(g) such that:

1. σα(g0) ◦ τu = τu ◦ σα(g0);

2. σα(g0) ◦ τu|α(g0) is a Cartan involution of α(g0)

Proof. The Hermitian form κτu on g× g given by

κτu(X, Y ) = −κ(X, τuY ), X, Y ∈ g

is strictly positive de�nite since u is compact. The linear transformation
N = στu where σ is the conjugation of g with respect to R(g) is an automor-
phism of the complex algebra g and hence leaves the Killing form invariant.
Using σ2 = τ 2

u = Id we obtain:

κ(NX, τY ) = κ(X,N−1τY ) = κ(X, τNY )

or

κτu(NX, Y ) = κτu(X,NY )

This shows that N is self-adjoint with respect to κτu . Let X1, . . . , Xn be
a basis of g with respect to which N is represented by a diagonal matrix.
Then the endomorphism P = N2 is represented by a diagonal matrix with
positive diagonal elements λ1, . . . , λn. For each t ∈ R, let P t denote the
linear transformation of g represented by the diagonal matrix with diagonal
elements (λi)

t > 0. Then each P t commutes with N . Let ckij denote the
constants determined by

[Xi, Xj] =
n∑
k=1

ckijXk

for 1 ≤ i, j ≤ n. Since P is an automorphism, we have

λiλjc
k
ij = (λk)c

k
ij, (1 ≤ i, j ≤ n)
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This equation implies

(λi)
t(λj)

tckij = (λk)
tckij, (t ∈ R),

which shows that each P t is an automorphism of g.
Consider now the mapping τ1 = P tτuP

−t of g into itself. The subspace P tu
is a compact real form of g and τ1 is the conjugation of g with respect to
this form. Moreover we have τuNτ

−1
u = N−1 so τuNτ

−1
u = P−1. By a simple

matrix computation the relation τuP = P−1τu implies τuP
t = P−tτu for all

t ∈ R. Consequently,

στ1 = σP tτuP
−t = στuP

−2t = NP−2t

τ1σ = (στ1)−1 = P 2tN−1 = N−1P 2t.

If t = 1
4
then στ1 = τ1σ. Thus the automorphism α = P

1
4 has the desired

properties. k0 is compactly imbedded in g0, and it is maximal. If k0 were
not maximal, let k1 be a compactly imbedded subalgebra of g0, properly
containing k0. Then there exists an element X 6= 0 in k1∩p0. Then τug0 ⊂ g0

and the bilinear form, as we have already seen, is symmetric and strictly
positive de�nite. Since:

κ([X, Y ], τuZ) = −κ(Y, [X, τuZ]) = κ(Y, [τuX, τuZ])

we have

κτu(adX(Y ), Z) = κτu(Y, adX(Z).

Thus adX has all its eigenvalues real, and not all zero. But then the power
eadX can not lie in a compact matrix group. This contraddicts the fact that
k1 is a compactly embedded subalgebra of g0.

Theorem 2.23. Let g be a complex semisimple Lie algebra, let u0 be a com-
pact real form of g, and let τ be the conjugation of g with respect to u0. If g
is regarded as a real Lie algebra gR, then τ is a Cartan involution of gR.

Proof. It is clear that τ is an involution. The Killing forms κg of g and κgR
are related by

κgR(Z1, Z2) = 2Reκg(Z1, Z2),

see Lemma 2.10. Write Z ∈ g as X + iY with X, Y ∈ u0. Then

κg(Z, τZ) = κg(X + iY, x− iY )

= κg(X,X) + κg(Y, Y )

= κu0(X,X) + κu0(Y, Y )
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and the right side is < 0 unless Z = 0. It follows that

(κgR)τ (Z1, Z2) = −κgR(Z1, τZ2) = −2Reκg(Z1, τZ2)

is positive de�nite on gR, and therefore τ is a Cartan involution of gR.

Corollary 2.24. If g0 is a real Lie algebra, then g0 has a Cartan involution

Proof. Let g be the complexi�cation of g0, and choose a compact real form
u of g. Let σ and τ be the conjugations of g with respect to g0 and u0. If
we regard g as a real Lie algebra gR, then σ and τ are involutions of gR and
the previous theorem shows that τ is a Cartan involution, so we can �nd
ϕ ∈ Int(gR) = Intg such that ϕτϕ−1 commutes with σ, see Theorem 2.21
Here ϕτϕ−1 is the conjugation of g with respect to ϕ(u0), which is another
real form of g. Thus

(κgR)ϕτϕ−1(Z1, Z2) = −2Reκg(Z1, ϕτϕ
−1Z2)

is positive de�nite on gR.
The Lie algebra g0 is characterized as the �xed set of σ. If σX = X, then

σ(ϕτϕ−1X) = ϕτϕ−1σX = ϕτϕ−1X.

Hence ϕτϕ−1 restricts to an involution θ of g0. We have

−κg0(X, θY ) = −κg(X,ϕτϕ−1Y ) =
1

2
(κgR)ϕτϕ−1(X, Y ).

Thus Bθ is positive de�nite on g0, and θ is a Cartan involution.

Corollary 2.25. If g0 is a real semisimple Lie algebra, then any two Cartan
involutions of g0 are conjugate via Intg0.

Proof. Let θ and θ′ be two Cartan involutions. Taking σ = θ′ in Theorem
2.22, we can �nd ϕ ∈ Int(g0) such that ϕθϕ−1 commutes with θ′. Here ϕθϕ−1

is another Cartan involution of g0. So we may as well assume that θ and θ′

commute from the outset. We shall prove that θ = θ′.
Since θ and θ′ commute, they have compatible eigenspace decomposition into
+1 and −1 eigenspaces. By simmetry it is enough to show that no nonzero
X ∈ g0 is in the +1 eigenspace for θ and the −1 eigenspace for θ′. Assuming
the contrary, suppose that θX = X and θ′X = −X. Then we have

0 < −κ(X, θX) = −κ(X,X)

0 < −κ(X, θ′X) = +κ(X,X),

contradiction. We conclude that θ = θ′.



2.3 Cartan Decomposition 25

Corollary 2.26. If g is a complex semisimple Lie algebra, then any two
compact real forms of g are conjugate via Intg.

Proof. Each compact real form has an associated conjugation of g that de-
termines it, and this conjugation is a Cartan involution of gR, by Theorem
2.23. Applying Corollary 2.25 to gR, we see that the two conjugations are
conjugated by a member of Int(gR). Since Int(gR) = Int(g) the corollary
follows.

Corollary 2.27. If g is a complex semisimple Lie algebra, then the only
Cartan involutions of gR are the conjugations with respect to the compact
real forms of g.

Proof. Theorem 2.16 and Theorem 2.23 produce a Cartan involution of gR

that is conjugations with respect to some compact real form of g. Any other
Cartan involution is conjugate to this one, according to Corollary 2.25, and
hence is also the conjugation with respect to a compact real form of g.

A Cartan involution θ of g0 yields the eigenspace decomposition

g0 = k0 ⊕ p0

of g0 into ±1 eigenspaces, and these must bracket according to the rules

[k0, k0] ⊆ k0, [k0, p0] ⊆ p0 [p0, p0] ⊆ k0

Since θ is an involution,

k0 and p0 are orthogonal under κg0 and under κθ.

In fact, ifX is in k0 and Y is in p0, then adXadY carries k0 to p0 and viceversa.
Thus it has trace 0, and κg0(X, Y ) = 0; since θY = −Y, κθ(X, Y ) = 0 also.
Since κθ is positive de�nite, the eigenspaces k0 nd p0 have the property that

κg0 , is

{
negative definite on k0

positive definite on p0

so we have a Cartan decomposition. Conversely a Cartan decomposition
determines a Cartan involution θ by the formula

θ =

{
+1 on k0

−1 on p0

Proposition 2.28. Let g0 a real semisimple Lie algebra and g its complexi-
�cation, θ is a Cartan involution of g0 if and only if:
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1)

g0 = k0 ⊕ p0,

[k0, k0] ⊆ k0, [k0, p0] ⊆ p0 [p0, p0] ⊆ k0;

2) κg0 is negative de�nite on k0 and positive de�nite on p0

Proof. Let θ be a Cartan involution and k0, p0 the ±1 eigenspaces, then 1)
and 2) are clear. We now have to show that an involution satisfying 1) and
2) is a Cartan decomposition.
This implication is also easy because we have only to give a compact real form
which has the desired properties, this compact, see the proof of Theorem 2.16
where we show why this is compact, real form is u = k0⊕ ip0 and we consider
the conjugation σ of g respect to g0.

Lemma 2.29. If g0 is a real semisimple Lie algebra and θ is a Cartan invo-
lution, then

(adX)∗ = −adθX, ∀X ∈ g0

where adjoint (·)∗ is de�ned relative to the inner product κθ.

Proof. We have

Bθ((adθX)Y, Z) = −κ([θX, Y ], θZ)

= κ(Y, [θX, θZ]) = κ(Y, θ[X,Z])

= −κθ(Y, (adX)Z) = −κθ((adX)∗Y, Z).

Proposition 2.30. If g0 is a real semisimple Lie algebra, then g0 is isomor-
phic to a Lie algebra of a real matrices that is close under transpose. If a
Cartan involution θ of g0 has been speci�ed, then the isomorphism may be
chosen so that θ is carried to negative transpose.

Proof. Let θ be a Cartan involution of g0 and de�ne the inner product Bθ on
g0. Since g0 is semisimple, g0

∼= adg0. The matrices of adg0 in an orthonormal
basis relative to κθ will be the required Lie algebra of matrices. We have only
to show that adg0 is close under adjoint. But this follows from Lemma 2.29
and the fact that g0 is closed under θ.
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We have already seen that every real semisimple Lie algebra has a Car-
tan subalgebra, now we want to investigate the conjugacy class of Cartan
subalgebras and some their relationship to each other.

Proposition 2.31. Any Cartan subalgebra h0 of g0 is conjugate via Intg0 to
a θ stable Cartan subalgebra.

Proof. Let h be the complexi�cation of h0, and let σ be the conjugation of g
with respect to g0. Let u0 be the compact real form constructed from h and
let τ be the conjugation of g with respect to u0. The construction of u0 has
the property that τ(h) = h. The conjugations σ and τ are involutions of gR,
and τ is a Cartan involution by Theorem 2.23. The conjugations σ and τ are
involutions of gR, and τ is a Cartan involution. Lemma 2.22 shows that the
element ϕ of IntgR = Intg given by ϕ = ((στ)2)

1
4 has the property that the

Cartan involution η̃ = ϕτϕ−1 of gR commutes with σ. Since σ(h) = h and
τ(h) = h, it follows that ϕ(h) = h. Therefore η̃(h) = h.
Since η̃ and σ commute, it follows that η̃(g0) = g0. Since h0 = h ∩ g0, we
obtain η̃(h0) = h0.
Put η = η̃|g0 , so that η(h0) = h0. Since η̃ is the conjugation of g with respect
to the compac real form ϕ(u0), the proof of Corollary 2.24 shows that η is a
Cartan involution of g0. Corollary 2.25 shows that η and θ are conjugate cia
Intg0, say θ = ψηψ−1 with ψ ∈ Intg0. Then ψ(h0) is a Cartan subalgebra of
g0, and

θ(ψ(h0)) = ψηψ−1ψ(h0) = ψ(ηh0) = ψ(h0).

shows that it is θ stable.

Thus it is su�cient to study θ stable Cartan subalgebras. When h0 is θ
stable, we can write h0 = t0⊕a0 with t0 ⊆ k0 and a0 ⊆ p0. We can de�ne the
compact dimension as dimt0 and the noncompact dimension as dima0 which
are unchanged when h0 is conjugated via Intg0 to another θ stable Cartan
subalgebra.
We say that a θ stable subalgebra h0 = t0 + a0 is maximally compact if
its compact dimension is as large as possible, maximally noncompact if its
noncompact dimension is as large as possible.

Theorem 2.32. Let t0 be a maximal abelian subspace of k0. Then h0 =
Zg0(t0) is a stable Cartan subalgebra of g0 of the form h0 = t0 ⊕ a0 with
a0 ⊆ p0.

Proof. The subalgebra h0 is θ stable and hence is a vector space direct sum
h0 = t0⊕a0, where a0 = h0∩p0. Since h0 is θ stable, it is reductive and [h0, h0]



28 2. Real Forms and Cartan Decomposition

is semisimple. We have [h0, h0] = [a0, a0], and [a0, a0] ⊆ t0 since a0 ⊆ p0 and
h0 ∩ k0 = t0. Thus the semisimple Lie algebra [h0, h0] is abelian and must be
0. Consequently h0 is abelian.
It is clear that h = (h0)C is maximal abelian in g, and adg0(t0) are skrew
adjoint, the members of adg0(a0) are selfadjoint, and t0 commutes with a0.
Finally, we have that h is a Cartan subalgebra of g, and hence h0 is a Cartan
subalgebra of g0.

With any θ stable subalgebra h0 = t0⊕a0, t0 is an abelian subspace of k0,
so h0 is maximally compact if and only if t0 is a maximal abelian subspace
of k0.

Proposition 2.33. Among θ stable Cartan subalgebras h0 of g0, the maxi-
mally noncompact ones are all conjugate via K, and the maximally compact
ones are all conjugate via K, where K = Intg0(k0).

Proof. Let h0 and h′0 be given Cartan subalgebras. In the �rst case, as we
observed above, h0 ∩ p0 and h′0 ∩ p0 are maximal abelian in p0 and there is
no loss of generality in assuming that h0 ∩ p0 = h′0 ∩ p0. Thus h0 = t0 ⊕ a0

and h′0 = t′0 ⊕ a0 where a0 is maximal abelian in p0. De�ne m0 = Zk0(a0.
Then t0 and t′0 are in m0 and are maximal abelian there. Let M = ZK(a0).
This is a compact subgroup of K with Lie algebra m0, and we let M0 be its
identity component. Now we have that t0 and t′0 are conjugate via M0, and
this conjugacy clearly �xes a0. Hence h0 and h′0 are conjugate via K.
In the second case, h0 ∩ k0 and h′0 ∩ k0 are maximal abelian in k0, so we can
assume that h0 ∩ k0 = h′0 ∩ k0. So Theorem 2.32 shows that h0 = h′0 and the
proof is complete.

If we examine the proof of the �rst part of this last proposition, we �nd
that we can adjust it to obtain root data that determine a Cartan subalgebra
up to conjugacy. As a consequence there are only �nitely many conjugacy
classes of Cartan subalgebras.

Lemma 2.34. Let h0 and h′0 be θ stable Cartan subalgebras of g0 such that
h0 ∩ p0 = h′0 ∩ p0. Then h0 and h′0 are conjugate via K.

Proof. Since the p0 parts of two Cartan subalgebras are the same and since
Cartan subalgebras are abelian, the k0 parts h0 ∩ k0 and h′0 ∩ k0 are both
contained in m̃ = Zk0(h0 ∩ p0). The Cartan subalgebras are maximal abelian

in g0. Let M̃ = ZK(h0 ∩ p0). This is a compact Lie group with Lie algebra

m̃0, and we let M̃0 be its identity component, so we have that h0 ∩ k0 and
h′0 ∩ k0 are conjugate via M̃0, and this conjugacy clearly �xes h0 ∩ p0. Hence
h0 and h′0 are conjugate via K.
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Lemma 2.35. Let a0 be a maximal abelian subspace of p0, and let Σ be
the set of restricted-roots of (g0, a0). Suppose that h0 is a θ stable Cartan
subalgebra such that h0 ∩ p0 ⊆ a0. Let Σ′ = {λ(h0 ∩ p0) = 0}. Then h0 ∩ p0

is the common kernel of all λ ∈ Σ′.

Proof. Let a′0 be the common kernel of all λ ∈ Σ′. Then h0 ∩ p0 ⊆ a′0, and
we are to prove that equality holds. Since h0 is a maximal abelian in g0, it
is enough to prove that h0 + a′0 is abelian.
Let g0 = a0 ⊕ m0 ⊕

⊕
λ∈Σ(g0)λ be the restricted-root space decomposition

of g0, and let X = H0 + X0 +
∑

λ∈Σ Xλ be an element of g0 that centralize
h0 ∩ p0. Bracketing the formula for X with H ∈ h0 ∩ p0, we obtain 0 =∑

λ∈Σ−Σ′ λ(H)Xλ, from which we conclude that λ(H)Xλ = 0 for all H ∈
h0 ∩ p0 and all λ ∈ Σ − Σ′. Since that λ's in Σ − Σ′ have λ(h0 ∩ p0) not
identically 0, we see that Xλ = 0 for all λ ∈ Σ − Σ′. Thus any X that
centralize h0 ∩ p0 is of the form

X = H0 +X0 +
∑
λ∈Σ′

Xλ

Since h0 is abelian, the elements X ∈ h0 are of his form, and a′0 commutes
with any X of this form. Hence h0 +a′0 is abelian, and the proof is complete.

Proposition 2.36. Up to conjugacy by Intg0, there are only �nitely many
Cartan subalgebras of g0.

Proof. Fix a maximal abelian subspace a0 of p0. Let h0 be a Cartan sub-
algebra. Without loss of generality we can assume that h0 is θ stable and
that h0 ∩ p0 is contained in a0. Lemma 2.35 associates to a h0 a subset of
the set Σ of restricted roots that determines h0 ∩ p0, and Lemma 2.34 shows
that h0 ∩ p0 determines h0 up to conjugacy. Hence the number of conjugacy
classes of Cartan subagebras is bounded by the number of subset of Σ.

2.4 Vogan Diagrams

We want to associate to a real Lie algebra g0 a diagram consisting of
the Dynkin diagram of g = (g0)C with some additional information superim-
posed. This diagram will be called Vogan diagram.
Let g0 be a real semisimple Lie algebra, let g be its complexi�cation, let θ be
a Cartan involution, let g0 = k0 ⊕ p0 be the corresponding Cartan decompo-
sition, and let κ the associated Killing form. Fix a Cartan subalgebra h ⊂ g,
we assume that

h ⊂ k ⊂ g.
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This makes h compact and θ stabilizes all of root spaces, fact that it cannot
always do. We have that ∆ = ∆k ⊕∆p where ∆k are the compact roots and
∆p the noncompact ones and that [k, p] ⊂ p and [k, k] ⊂ k and

θ is equal to 1 on k and to −1 on p.

For the general case see on [2], chapter VI section 8.

De�nition 2.37. Let g0 a real Lie algebra and g its complexi�cation. We
de�ne the Vogan diagram of the triple (g0, h0,∆

+) as the Dynkin diagram
of ∆+ with painted or not painted vertices, according as the corresponing
simple root is noncompact or compact.

Example 2.38. If g0 = su(3, 3), let us take θ to be negative conjugate trans-
pose, h0 to be the diagonal subalgebra. We have that ∆ = {εi − εj| 1 ≤ i 6=
j ≤ 6} and ∆+ to be determined by the conditions ε1 ≥ ε2 ≥ ε4 ≥ ε5 ≥ ε3 ≥
ε6, so we have that S = {ε1− ε2, ε2− ε4, ε4− ε5, ε5− ε3, ε3− ε6. The Dynkin
diagram is of type A5. In particular, θ acts as the identity in the Dynkin
diagram. The compact roots εi − εj are those with i and j in the same set
{1, 2, 3} or {4, 5, 6}, while the noncompact roots are those with i and j in
opposite sets. Then among the simple roots, ε1 − ε2 is compact, ε2 − ε4 is
noncompact etc. Hence the Vogan diagram is

If we use the standard ordering on the εi, with 1 ≤ i ≤ 6 and that a root εi−
εj is compact if i and j are in the same set {1, 2, 3} or {4, 5, 6}, noncompact if
i and j are in opposite sets we have that the only noncompact root is ε3−ε4.

Remark 2.39. Note that if we choose a real form we can have more associated
Vogan diagram, but if we choose a Vogan diagram we have only one real form
associated to it.

Theorem 2.40. Let g0 and g′0 be real semisimple Lie algebras. If two triples
(g0, h0,∆

+) and (g′0, h
′
0, (∆

′)+) have the same Vogan diagram, then g0 and g′0
are isomorphic.

Remark 2.41. This theorem is an analog for real semisimple Lie algebras of
the Isomorphism Theorem 1.33 for complex semisimple Lie algebras.
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Proof. Since the Dynkin diagrams are the same, the Isomorphism Theorem
1.33 shows that there is no loss of generality in assuming g0 and g′0 have
the same complexi�cation g. Let u0 = k0 ⊕ ip0 and u′0 = k′0 ⊕ ip′0 be the
associated compact real forms of g. By Corollary 2.25, there exists x ∈ Intg
such that xu′0 = u0. The real form xg′0 of g is isomorphic to g′0 and has
Cartan decomposition xg′0 = xk′0 ⊕ xp′0. Since xk′0 ⊕ ixp′0 = xu′0 = u0, there
is no loss of generality in assuming that u′0 = u0 from the outset. Then

θ(u0) = u0 and θ′(u0) = u0

Let h0 and h′0 be the Cartan subalgebras. We have that there exists a k ∈
Int(u0) with k(h′0) = h0. Therefore h0 and h′0 have the same complexi�cation,
which we denote h.
Now that the complexi�cation g and h have been aligned, the root systems
are the same. Let the positive systems given in the respective triples be ∆+

and ∆′+. Now we have that there exists k′ ∈ Intu0 normalizing u0 ∩ h with
k′∆′+ = ∆+. replacing g′0 by k

′g′0 and arguing as above, we may assume that
∆′+ = ∆+ from the outset. The next step is to choose normalizations of root
vectors relative to h. For this proof let κ be the Killing form of g. We start
with root vectors Xα produced from h, and then we construct a compact
real form ũ0 of g. The subalgebra ũ0 is just u0 ∩ h. By Corollary 2.25, there
exists g ∈ Intg such that gũ0 = u0. Then gũ0 = u0 is built from g(u0 ∩ h)
and the root vectors gXα. Since u0 ∩ h and g(u0 ∩ h) are maximal abelian
in u0, there exists u ∈ Intu0 with ug(u0 ∩ h) = u0 ∩ h. Then u0 is built from
ug(u0 ∩ h) and the root vectors ugXα. For α ∈ ∆, put Yα = ugXα. Then we
have established that

u0 =
∑
α∈∆

R(iHα) +
∑
α∈∆

R(Yα − Y−α) +
∑
α∈∆

Ri(Yα + Y−α).

We have not yet used the information that is superimposed on the Dynkin
diagram of ∆+. Since the automorphism of ∆+ de�ned by θ and θ′ are the
same, θ and θ′ have the same e�ect on h∗. Thus

θ(H) = θ′(H), ∀H ∈ h

Then

θ(Yα) = Yα = θ′(Yα), if α is unpainted

θ(Yα) = −Yα = θ′(Yα), if α is painted

This completes the proof.
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Let us now show all the real forms of Am with h ⊂ k ⊂ g and the
corresponding Vogan diagrams.

Example 2.42. Let g be sl(m+ 1,C), and let be B = {Eij|1 ≤ i, j ≤ m+ 1}
our basis of gl(m+ 1,C).
With this notation we take as our Cartan subalgebra:
h = {diag(x1, . . . , xm+1)|

∑m+1
i=0 xi = 0}. So we have that εi ∈ h∗ and if

we denote with αij = εi − εj our root system is ∆ = 〈αij〉 and that ∆+ =
{αij|i < j} and ∆− = {αij|j > i} and S = {αi,i+1|1 ≤ i ≤ m}.
Let us now consider the following basis H = {Hi = Eii − Ei+1,i+1|1 ≤ i ≤
m} ∩ {Eij}. We can de�ne the following scalar product:

〈∆〉R = (αi,i+1, αj,j+i) = αi,i+1(Hj)
def
=


2 j = i

−1 |j − i| = 1

0 else

Let us consider

su(p, q) = {X ∈ sl(m+ 1,C)| X∗Idp,q + Idp,qX = 0}

=

{
X =

(
A B
B∗ D

)
|A = −A∗, D = −D∗

}
where p+q = m+1, 1 ≤ p, q ≤ m. It is easy to show that its complexi�cation
is sl(m + 1,C). The Cartan decomposition of su(p, q) corresponding to the
Cartan involution θ(X) = −X∗ is

k0 =

(
A 0
0 D

)
, p0 =

(
0 B
B∗ 0

)
Now we can see that all the diagonal matrix of su(p, q) are in k0, so it is a
maximally compact Cartan subalgebra, θ acts trivially on S, so we have only
one simple root whose root space is not in k0 which is εp − εp+1, so we have
only one black vertex which is the p-th.

Thanks to Theorem 2.46 we will know that these are all the real forms of
Am.

Now we will investigate the question of existence.

De�nition 2.43. We de�ne an abstract Vogan diagram with no arrows to
be an abstract Dynkin diagram with a subset of the roots, which is to be
indicated by painting the vertices corresponding to the members of the sub-
set. Every Vogan diagram, restricted to the case h ⊂ k ⊂ g, is of course an
abstract Vogan diagram with no arrows.
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To have a full description about abstract Vogan diagram see on [2], chapter
VI.

Theorem 2.44. If an abstract Vogan diagram is given, then there exist a
real semisimple Lie algebra g0, a Cartan involution θ, a maximally compact
θ stable Cartan subalgebra h0, and a positive system ∆+ for ∆ = ∆(g, h)
such that the given diagram is the Vogan diagram of (g0, h0,∆

+).

Proof. Let g be a complex semisimple Lie algebra with the given abstract
Dynkin diagram as its Dynkin diagram, and let h be a Cartan subalgebra.
Put ∆ = ∆(g, h), and let ∆+ be the positive system determined by the given
data. Introduce root vectors Xα normalized and de�ne a compact real form
u0 of g in terms of h and the Xα. The formula for u0 is

u0 =
∑
α∈∆

R(iHα) +
∑
α∈∆

R(Xα −X−α) +
∑
α∈∆

Ri(Xα +X−α).

The given data determine an automorphism θ of the Dynkin diagram, which
extends linearly to h∗ and is isometric. Thus θ(∆) = ∆. Thanks to this
result we can transfer θ to h, retaining the same name. De�ne θ on the root
vectors Xα for simple roots by

θXα =

{
Xα if α is unpainted

−Xα if α is painted

We have that θ extends to an automorphism of g consistently with these
de�nitions on h and on the Xα's for α simple.
The main step is to prove that θu0 = u0. Let κ be the Killing form of
g. For α ∈ ∆, de�ne a constant aα by θXα = aαXθα. Then aαa−α =
κ(aαXθα, a−αX−θα) = κ(θXα, θX−α) = 1 shows that

aαa−α = 1.

We shall prove that

aα = ±1, ∀α ∈ ∆

To prove this, it is enough to prove the result dor α ∈ ∆+. We do so by
induction on the level of α. If the level is 1, then aα = ±1 by de�nition.
Thus it is enough to prove that if it holds for positive roots α and β and if
α + β is a root, then it holds for α + β. In the notation already used, we
have:

θXα+β = N−1
α,βθ[XαXβ] = N−1

α.β[θXα, θXβ]

= N−1
α,βaαaβ[Xθα, Xθβ] = N−1

α,βNθα,θβaαaβXθα+θβ].
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Therefore

aα+β = N−1
α,βNθα,θβaαaβ

Here aαaβ = ±1 by assumption, but we know that θ is an automorphism of
∆ and that the Nα,β and Nθα,θβ are real with

N2
α,β =

1

2
q(1 + p) = |α|2 =

1

2
q(1 + p)|θα|2 = N2

θα,θβ.

Hence aα+β = ±1.
Let us see that

θ(R(Xα −X−α + Ri(Xα +X−α)) ⊆ R(Xθα −X−θα) + Ri(Xθα +X−θα).

If x and y are real and if z = x+ yi, then we have

x(Xα −X−α) + yi(Xα +X−α) = zXα − z̄X−α.

is of the form wXθα − w̄X−θα, and this follows from the observations above.
Since θ carries roots to roots,

θ

(∑
α∈∆

R(iHα)

)
=
∑
α∈∆

R(iHα)

So we see that θu0 = u0. Let k and p be the +1 and −1 eigenspaces for θ in
g, so that g = k⊕ p. Since θu0 = u0, we have

u0 = (u0 ∩ k)⊕ (u0 ∩ p).

De�ne k0 = (u0 ∩ k) and p0 = (u0 ∩ p), so that

u0 = k0 ⊕ ip0.

Since u0 is a real form of g as a vector space, so is

g0 = k0 ⊕ p0.

Since θu0 = u0 and since θ is an involution, we have the bracket relations

[k0, k0] ⊆ k0, [k0, p0] ⊆ p0, [p0, p0] ⊆ k0.

Therefore g0 is closed under brackets and is a real form of g as a Lie algebra.
The involution θ is +1 on k0 and is −1 on p0; it is a Cartan involution of g0,
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since k0 ⊕ ip0 = u0 is compact.
So we have shown that θ maps u0 ∩ h to itself, and therefore

u0 = (u0 ∩ k ∩ h)⊕ (u0 ∩ ph)

= (k0 ∩ h)⊕ (ip0 ∩ h)

= (k0 ∩ h)⊕ i(p0h).

The abelian subspace u0 ∩ h is a real form of h, and hence so is

h0 = (k0 ∩ h)⊕ (p0 ∩ h).

The subspace h0 is contained in g0, and it is therefore a θ stable Cartan
subalgebra of g0. A real root α relative to h0 has the property that θα = −α.
Since θ preserves positivity relative to ∆+, there are no real roots, and so
h0 is maximally compact. Let us verify that ∆+ results from a lexicographic
ordering that takes i(k0∩h) before p0∩h. Let {βi}li=1 be the set of simple roots
of ∆+ in 1-element orbits under θ. Relative to a basis {αi}l+2m

i=1 consisting of
all simple roots, let {ωi} be the dual basis de�ned by 〈ωi, αj〉 = δij. We shall
write ωβj in place of ωi in what follows. We de�ne a lexicographic ordering
by using inner products with the ordered basis

ωβj1 , . . . , ωβjl

which takes i(k0 ∩ h) before p0 ∩ h. Let α be in ∆+, and write

α =
l∑

i=1

niβi.

Then

〈α, ωβj〉 = nj ≥ 0

If all these inner products are 0, then all coe�cients of α are 0, contradiction.
Thus α has positive inner product with the �rst member of our ordered basis
for which the inner product is nonzero, and the lexicographic ordering yields
∆+ as positive system. Consequently (g0, h0,∆

+) is a triple.
Our de�nitions of θ on h∗ and on the Xα for α simple make it clear that the
Vogan diagram of (g0, h0,∆

+) coincides with the given data.

Now we want to show that we can always choose the simple roots so that
we have one root painted in the Vogan diagram. Before doing this we show
another property of real Lie algebras.
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Theorem 2.45. Let g0 be a simple Lie algebra over R, and let g be its
complexi�cation. Then there are just two possibilities:

1. g0 is complex, i.e. g0 is of the form sR for some complex s, and then g
is in C isomrphic to s⊕ s.

2. g0 is not complex, and then g is simple over C.

Proof. 1. Let J be multiplication by
√
−1 in g0, and de�ne an R linear

map L : g → s ⊕ s by L(X + iY ) = (X + JY,X − JY ) for X and Y
in g0. We readily check that L is one-one and respects brackets. Since
the domain and range have real dimension, L is an R isomorphism.
Moreover L satis�es

L(i(X + iY )) = L(−Y + iX)

= (−Y + JX,−Y − JX)

= (J(X + JY ),−J(X − JY )).

This equation exhibits L as a C isomorphism of g with s⊕ s̄, where s̄
is the same real Lie algebra as g0 but where the multiplication by

√
−1

is de�ned as multiplication by −i.
Now we have to show that s̄ is C isomorphic to s. We already know
that s has a compact real form u0. The conjugation τ of s with respect
to u0 is R linear and respects brackets, and the claim is that τ is a C
isomorphism of s with s̄. In fact, if U and V are in u0, then

τ(J(U + JV )) = τ(−V + JU) = −V − JU
= −J(U − JV ) = −Jτ(U + JV )

and 1. follows.

2. Let bar denote conjugation of g with respect to g0. If a is a simple ideal
in g, then a ∩ ā and a + ā are ideals in g invariant under conjugation
and hence are complexi�cations of ideals in g0. Thus they are 0 or g.
Since a 6= 0, a + ā = g.
If a ∩ ā = 0, then g = a ⊕ ā. The inclusion of g0 into g, followed
by projection to a, is an R homomorphism ϕ of Lie algebras. If kerϕ
is nonzero, then kerϕ must be g0. In this case g0 is contained in ā.
But conjugation �xes g0, and thus g0 ⊆ a ∩ ā = 0, contradiction. We
conclude that ϕ is one-one. A dimensional count shows that ϕ is an R
isomorphism of g0 onto a. But then g0 is complex, contradiction.
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We conclude that a ∩ ā = g and hence a = g. Therefore g is simple, as
asserted.

Now we want to reduce the redundancy of the Vogan diagrams that come
out by having many choices for the positive system ∆+. The idea is that we
can always change ∆+ so that at most one simple root is painted.

Theorem 2.46 (Borel and de Siebenthal Theorem). Let g0 be a noncomplex
simple real Lie algebra, and let the Vogan diagram with no arrows of g0 be
given so that corresponds to the triple (g0, h0,∆

+). Then there exists a simple
system S ′ for ∆ = ∆(g, h), with the corresponding positive system ∆′+ such
that (g0, h0,∆

′+) is a triple and there is at most one painted simple root in
its Vogan diagram. Furthermore suppose that the automorphism associated
with the Vogan diagram is the identity, that S ′ = {α1, . . . , αl}, and that
{ω1, . . . , ωl} is the dual basis given by 〈ωj, αk〉 = δjk. Then the single painted
simple root αi may be chosen so that there is no i′ with 〈ωi − ωi′ , ωi′〉 > 0.

We start with two lemmas.

Lemma 2.47. Let ∆ be an irreducible abstract reduced root system in a real
vector space V , let S be a simple system, and let ω and ω′ be nonzero members
of V that is dominant relative to S. Then 〈ω, ω′〉 > 0.

Proof. The �rst step is to show that in the expansion ω =
∑

α∈S aαα, all the
aα are ≥ 0. Let us enumerate S as α1, . . . , αl so that

ω =

f∑
i=1

aiαi −
s∑

i=r+1

biαi = ω+ − ω−

with all ai ≥ 0 and all bi > 0. We shall show that ω− = 0. Since ω− = ω+−ω,
we have

0 ≤ |ω−|2 = 〈ω+, ω−〉 − 〈ω−, ω〉 =
r∑
i=1

s∑
j=r+1

aibj〈αi, αj〉 −
l∑

j=r+1

bj〈ω, αj〉.

The �rst term on the right side is ≤ 0 and the second term on the right side
is term-by-term ≤ 0 by hypothesis. Therefore the right side is ≤ 0, and we
conclude that ω− = 0. Thus we can write ω =

∑l
j=1 ajαj whit all aj ≥ 0.

The next step is to show from the irreducibility of ∆ that aj > 0 for all j.
Assuming the contrary, suppose that ai = 0. Then

0 ≤ 〈ω, αi〉 =
∑
j 6=i

aj〈αj, αi〉
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and every term on the right side is ≤ 0. Thus aj = 0 for every αj such
that 〈αj, αi〉 < 0. Since the Dynkin diagram is conneted, iteration of this
argument shows that all coe�cients are 0 once of them is 0.
Now we can complete the proof. For at least one index i, 〈αi, ω′〉 > 0 since
ω′ 6= 0. Then

〈ω, ω′〉 =
∑
j

aj〈αj, ω′〉 ≥ ai〈αi, ω′〉,

and the right side is > 0 since ai > 0. This proves the lemma.

Lemma 2.48. Let g0 be a noncomplex simple real Lie algebra, and let the
Vogan diagram of g0 be given that corresponds to the triple (g0, h0,∆

+). Let
V be the span of the simple roots that are imaginary, let ∆0 be the root system
∆ ∩ V , let H be the subset of it0 paired with V , and let Λ be the subset of H
where all roots of ∆0 take integer values and all noncompact roots of ∆0 take
odd-integer values. Then Λ is nonempty. In fact, if α1, . . . , αm is any simple
system for Λ0 and if ω1, . . . , ωm in V are de�ned by 〈ωj, αk〉 = δjk, then the
element

ω =
∑

i with αi noncompact

ωi.

is in Λ.

Proof. Fix a simple system α1, . . . , αm for ∆0, and let ∆+
0 be the set of

positive roots of ∆0. De�n ω, . . . , ωm by 〈ωj, αk〉 = δjk. If α =
∑m

i=1 niαi
is a positive root of ∆0, then 〈ω, α〉 is the sum of the ni for which αi is
noncompact. This is certainly an integer.
We shall prove by induction on the level

∑m
i=1 ni that 〈ω, α〉 is even if α is

compact, odd if α is noncompact. When the level is 1, this assertion is true
by de�nition. In the general case, let α and β be in ∆+

0 with α + β ∈ ∆,
and suppose that the assertion is true for α and β. Since the sum of the ni
for which αi is noncompact is additive, we are to prove that imaginary roots
satisfy

compact+compact=compact
compact+noncompact=noncompact
noncompact+noncompact=compact.

But this is immediate from Corollary 1.15 and the previous observation about
the behaviour of a θ Cartan involution with a Cartan decomposition.



2.4 Vogan Diagrams 39

Proof of Theorem 2.46. Observe that the Dynkin diagram of ∆0 is connected,
i.e., that the roots in the Dynkin diagram of ∆ �xed by the given automor-
phism form a connected set. There is no problem when the automorphism
is the identity, and we observe the connectedness in the other cases one at a
time by inspection.
Let ∆+

0 = ∆+ ∩ V . The set Λ is discrete, being a subset of a lattice, and the
previous lemma has just shown that it is nonempty. Let H0 be a member
of Λ with norm as small as possible. We know that we can choose a new
positive system ∆

′+
0 for ∆0 that makes H0 dominant. The main step is to

show that

at most one simple root of ∆
′+
0 is painted.

Suppose H0 = 0. If α is in ∆0, then 〈H0, α〉 is 0 and is not an odd integer.
By de�nition of Λ, α is compact. Thus all roots of ∆0 are compact, and the
assert is true.
Now suppose H0 6= 0. Let α1, . . . , αm be the simple roots of ∆0 relative to
∆
′+
0 abd de�ne ω1, . . . , ωm by 〈ωj, αk〉 = δjk. We can write H0 =

∑m
j=1 njωj

with nj = 〈H0, αj〉. The number nj is an integer since H0 is in Λ, and it is
≥ 0 since H0 is dominant relative to ∆

′+
0 .

Since H0 6= 0, we have ni > 0 for some i. Then H0 − ωi is dominant relative
to ∆

′+
0 , and Lemma 2.47 shows that 〈H0 − ωi, ωi〉 ≥ 0 with equality only if

H0 = ωi. If strict inequality holds, then the element H0 − 2ωi is in Λ and
satis�es

|H0 − 2ωi|2 = |H0|2 − 4〈H0 − ωi, ωi〉 < |H0|2

in contradiction with the minimal-norm condition on H0. Hence equality
holds, and H0 = ωi.
Since H0 is in Λ, a simple root αj in ∆

′+
0 is noncompact only if 〈H0, αj〉 is

an odd integer. Since 〈H0, αj〉 = 0 for j 6= i, the only possible noncompact
simple root in ∆

′+
0 is αi.

If the automorphism associated with the Vogan diagram is the identity, we
have proved the �rst conclusion of the theorem. For the second one we are
assuming that H0 = ωi; then an inequality 〈ωi − ωi′ , ωi′〉 > 0 would imply
that

|H0 − 2ωi′|2 = |H0|2 − 4〈ωi − ωi′ , ωi′〉 < |H0|2,

in contradiction with the minimal-norm condition on H0.
To complete the proof of the theorem, we have to prove the �rst conclusion
when the automorphism associated with the Vogan diagram is not the iden-
tity. Choose an element s ∈ W(∆0) with ∆+

0 = s∆+
0 , and de�ne ∆

′+ = s∆+.



40 2. Real Forms and Cartan Decomposition

Let the simple roots of ∆+ be β1, . . . , βl with β1, . . . , βl in ∆0. Then the
simple roots of ∆+′ are sβ1, . . . , sβl. Thus ∆+′ has at most one simple root
that is noncompact imaginary.

2.5 Graph Paintings

In this section we want to give a "graphic" algorithm to reduce the black
vertices of a Vogan diagram with no arrows and to see if two Vogan diagrams
are equivalent, which means that they correspond to the same real form.
By an abuse of terminology we identify the vertices of a Vogan diagram with
the roots of a simple system of g. We encode the information contained in
a Vogan diagram, by the pair consisting of a Dynkin diagram D and the
k − uple (i1, . . . , ik), where the i1 < · · · < ik are the black vertices.
We introduce an operation F [i] on the Vogan diagram which corresponds to
the action on the root system of the re�ections si of the noncompact root i.

De�nition 2.49. Let notation be as above, we de�ne the operation F [i] on
the Vogan diagram (D, (i1, . . . , ir)) as follows:

• The colors of the vertex i of D and all vertices not adjacent to i remain
unchanged.

• If the vertex j is joined to i by a double edge and j is long, the color
of j remains unchanged.

• Apart from the above exceptions, F [i] reverses the colors of all vertices
adjacent to i.

Example 2.50. Let (A5, (1, 3, 4)) be a Vogan diagram.

If we apply F [3] we have (1, 2, 3).

Proposition 2.51. Let (D, (i1, . . . , ir)) be the Vogan diagram corresponding
to the real form g0 with the choice of simple system S. The operation F [i] on
(D, (i1, . . . , ir)) gives a new Vogan diagram (D′, (i′1, . . . , i

′
r)) corresponding to

the choice of simple system si(S) where si is the re�ection in W, the Weyl
group associated with the root i ∈ {i1, . . . , ir}.
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Sketch of proof. Let α be a black vertex and β a simple root.
We have that

sαβ = β − 2
〈α, β〉
〈α, α〉

α

Since both α, β are simple, 2 〈α,β〉〈α,α〉 < 0. As we have seen in the �rst chapter,
Table 1.1, we have

2
〈α, β〉
〈α, α〉

= −1,−2,−3

We consider only the case 2 〈α,β〉〈α,α〉 = −1, leaving the other 2 cases as an exercise
to the reader. So we have that

Sαβ =

{
β + α if the vertices α, β are connected,

β if the vertices α, β are not connected.

Hence sα brings the simple system {α, β} to the simple system {−α, α+ β}.
If β is white we have that α+ β is black, so from a Vogan diagram in which
we had a black vertex α and a white vertex β we obtain a Vogan diagram
with two black vertices α, α+β. Viceversa if β is black, α+β is white, from
a Vogan diagram with two black vertices we obtain a Vogan with one black
vertex and one white vertex.

From now on we restrict ourself to consider g as one of the Lie alge-
bras belonging to the classical families An, Bn, Cn, Dn. Now we want to
show that applying F [i] a pair of painted vertices can be shifted leftward or
rightward.

Lemma 2.52. Let the notation be as above. If i1 < · · · < ik:

1. (D, (i1, . . . , ik)) ∼ (D, (i1, . . . , ir−1, ir−c, ir+1−c, ir+2, . . . , ik)) whenever
ir−1 < ir − c,

2. (D, (i1, . . . , ik)) ∼ (D, (i1, . . . , ir−1, ir+c, ir+1+c, ir+2, . . . , ik)) whenever
ir+1 + c < ir+2. We require ir+1 + c ≤ n+ 1 in Cn and ir+1 + c ≤ n+ 2
in Dn.

Proof. 1. Suppose we want to move ir.ir+1 leftward c steps, where ir−1 <
ir − c. It is equivalent to moving them 1 steps for c times, namely it
su�ces to show that

(D, (i1, . . . , ik)) ∼ (D, (i1, . . . , ir−1, ir − 1, ir+1 − 1, ir+2, . . . , ik)).
(2.1)
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By applying F [ir+1], F [ir+2], . . . , F ]ir+1−1] consecutively to (i1, . . . , ik)
we obtain 2.1 and the point follows.

2. It is similar to the �rst point and the restriction on Cn, Dn follows from
the properties of F [i].

Example 2.53. In (A9, (1, 5, 7, 9)), we can move the pair 5, 7 leftward three
steps and get (A9, (1, 5, 7, 9)) ∼ (A9, (1, 2, 4, 9)) with F [7], F [9], F [5], F [4],
F [6], F [3], F [4].

Now we see a way to reduce the number of painted vertices, that can
be used to �nd an alternative proof of Theorem 2.46. We show that, given
a Vogan diagram, using operations F [i] it is possible, by shifting leftward
or rightward the pairs of noncompact roots, to reduce the number of black
vertices.

Lemma 2.54. Let the notation be as above:

• In An, Bn, (D, (i1, . . . , ik)) ∼ (D, (i2 − i1, i3, . . . , ik)).

• In Cn, If i2 ≤ n− 1, (D, (i1, . . . , ik)) ∼ (D, (i2 − i1, i3, . . . , ik)).

• In Dn, If i2 ≤ n− 2, (D, (i1, . . . , ik)) ∼ (D, (i2 − i1, i3, . . . , ik)).

Proof. We divide the arguments for (i1, . . . , ik) into two cases.

i1 = 1 If i2 = 2 then F [1](D, (1, 2, i3, . . . , ik)) ∼ (D, (1, i3, . . . , ik)) and we
are done. So suppose that i2 > 2. Apply F [1], F [2], . . . , F [i2 − 1] to
(D, (1, i2, . . . , ik)), we get (D, (1, i2, . . . , ik)) ∼ (D, (i2 − i1, i3, . . . , ik)).

i1 > 1 By Lemma 2.52, (D, (i1, . . . , ik)) ∼ (D, (1, i2i1 + 1, i3, . . . , ik)) and this
is reduced to the �rst case. The extra conditions on Cn, Dn depends
on how F [i] acts, as in Lemma 2.52.

We now describe our algorithm based in the operation F [i]:

1. Using Lemma 2.1 we can shift pairs of noncompact roots to the left or
to the right;

2. Using Lemma 2.54 we can reduce the number of noncompact roots, one
by one.
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Our algorithm F [i] has another powerful property: if we consider only the
Vogan diagram with no arrows, we can use this algorithm to �nd when two
Vogan diagram are equivalent.

Theorem 2.55. Two Vogan diagrams with no arrows are equivalent if and
only if one can be transformed into the other by a sequence of F [i] operations.

Proof. The "if" part is obviuos since F [i] preserves equivalence classes, in fact
by Proposition 2.51 it correspond to a di�erent choice of simple system of the
same g, now we consider the converse. We recall that two equivalent Vogan
diagrams correspond to the same Lie algebra under di�erent choices of simple
systems, see Example 2.38. The Weyl group W = 〈Sαi〉 acts transitively on
the simple systems, and so it acts transitively on each equivalence class of
Vogan diagrams. Recall that F [i] acts as a re�ecition about the noncompact
simple root αi. let Wc and Wn denote the subgrous generated by re�ections
about the compact and noncompact simple roots, respectively. Clearly, W
is generated by Wc and Wn. Further, since Wc acts trivially on painting of
the Vogan diagrams, it follows that Wn acts transitively on each equivalence
class of Vogan diagrams. This proves the theorem.

We now can state the Borel de Siebenthal theorem, which follows from
our prevoius discussion.

Theorem 2.56 (Borel and de Siebenthal Theorem). Every Vogan diagram
with no arrows are equivalent to a Vogan diagram with only one vertex
painted.

Now we want to generalize the result of Theorem 2.55 and see another
connection to Theorem 2.46.

Corollary 2.57. If a connected graph Γ is a Dynkin dagram, then

1. every painting on Γ can be sempli�ed via a sequence of F [i] to a painting
with single painted vertex;

2. every connected subgraph of Γ satis�es the �rst property.

Proof. To prove the �rst point, let Γ be a Dynkin diagram. Suppose that
p is a painting on Γ. By Theorem 2.46, (Γ, p) ∼ (Γ, s), where s paints just
a single vertex of Γ. By Theorem 2.55 (Γ, p) can be transformed to (Γ, s)
with some F [i] operations. This proves the �rst properety. Since connected
subgraph of a Dynkin diagram correspond to simple subalgebras, the second
condition is trivial.

Example 2.58. If we consider the following Vogan diagram
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An

and denote the �rst black vertex with number 4, if you apply F [4] ◦ F [3] ◦
F [2] ◦ F [1] you have only one black vertex:



Chapter 3

Lie Superalgebras

At the beginning of this chapter we de�ne what a Lie superalgebra is and
some of its properties in order to have some preliminary notions to discuss
in the following chapter about their real forms.
Due to the this fact it is written only to give a few notions about this argu-
ment, we not give the proof of any proposition but we always give a reference.

3.1 Preliminary de�nitions

Let K be our ground �eld algebrically closed and of characteristic zero.

De�nition 3.1. A super vector space is a Z/Z2-graded vector space

V = V0 ⊕ V1

where the elements of V0 are called even and elements of V1 are called odd.

De�nition 3.2. The parity of v ∈ V , denoted by p(v) or |v|, is de�ned only
on non-zero homogeneus elements, that is elements of either V0 or V1:

p(v) = |v| =

{
0 if v ∈ V0

1 if v ∈ V1

We have that every element can be expressed as the sum of homogeneus
elements, so we can give all the de�nitions, theorems and proofs considering
only these elements.

De�nition 3.3. The superdimension of a super vector space V is the pair
(p, q) where dim(V0) = p and dim(V1) = q as ordinary vector spaces, we can
also write dim(V ) = p|q.

45
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Thanks to this de�nition we can de�ne also what a basis is: if dimV =
p|q we can �nd a basis {e1, . . . , ep} of V0 and a basis {ε1, . . . , εq} of V1 so
that V is canonically isomorphic to the K-vector space generated by the
{e1, . . . , ep, ε1, . . . , εq}. We can denote this K-vector space by Kp|q and we
will call (e1, . . . , ep, ε1, . . . , εq) the canonical basis of Kp|q. The (ei) form a

basis for Kp = Kp|q
0 and the (εj) form a basis for Kq = Kp|q

1 .

De�nition 3.4. A morphism from a super vector space V to a super vec-
tor space W is a linear map from V to W preserving Z/Z2-grading. Let
Hom(V,W ) denote the vector space of morphisms V → W .

Now we can de�ne what a Lie superalgebra is.

De�nition 3.5. A super Lie algebra is a super vector space g with a mor-
phism [, ] : g ⊗ g → g called superbraket, or simply bracket, which satis�es
the following condition:

1. Anti-Simmetry

[x, y] + (−1)|x||y|[y, x] = 0

for x, y ∈ g homogeneous.

2. The Jacobi-identity

[x, [y, z]] + (−1)|x||y|+|x||z|[y, [z, x]] + (−1)|y||x|+|x||z|[z, [x, y]] = 0

for x, y, z ∈ g homogeneous.

The most important case of Lie superalgebra is the algebra of endomor-
phism, as in the classical case, called gl(V ).
If we have that V = Km|n we can denote gl(V ) as gl(m|n). The even part
gl(m|n)0 consists of the matrices with entries in K corresponding to endo-
morphisms preserving the parity, while the odd one consists of matrices that
reverse the parity:

gl(m|n) = gl(m|n)0 ⊕ gl(m|n)1 =

{(
A 0
0 D

)}
⊕

{(
0 B
C 0

)}

where A and D are (m ×m)-matrices and (n × n)-matrices, and B and C
are (n×m)-matrices.
Then gl(m|n) is a Lie superalgebra with the following bracket:

[X, Y ] = XY − (−1)|X||Y |Y X
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Now we can de�ne the special linear Lie superalgebra, denoted by sl(m|n)
and the projective special linear Lie superalgebra psl(m|n) as

sl(m|n) = {X ∈ gl(m|n)|str(X) = 0}

where str is the supertrace, de�ned as follow:

str

(
A B
C D

)
= trA− trB

and psl(m|m) := sl(m|m)/KI2m.

De�nition 3.6. We say that a bilinear form f on a super vector space
V = V0 ⊕ V1 is super symmetric if

f(u, v) = (−1)|u||v|f(v, u)

for every homogeneus elements u, v ∈ V . We say also that it is consistent if
f(u, v) = 0 for u ∈ V0, v ∈ V1.

Now, we are ready to introduce the orthosymplectic Lie superalgebra.

De�nition 3.7. Let f be a non-degenerate consistent super symmetric bilin-
ear form on V , dimV = m+n. We de�ne the orthosymplectic Lie superalgebra
as

osp(V ) := {X ∈ gl(m|n)|f(X, u, v) = −(−1)|X||u|f(u,Xv)}

Notice that n has to be even since f de�nes a non-degenerate skew-
symmetric form on V1.

De�nition 3.8. We de�ne the strange series P (n) as

P (n) =

{(
A B
C −At

)}
⊂ gl(n+ 1|m+ 1)

where A ∈ sl(n+ 1), B is symmetric and C skew-symmetric.
The strange series Q(n) is de�ned as follows:

q(n) =

{(
A B
B A

)}
sq(n) are the matrices in q(n) with tr(B) = 0 and Q(n − 1) = psq(n) =
sq(n)/KI2n:

Q(n− 1) =

{(
A B
B A

)
|B ∈ sln

}
/KI2n
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3.2 Simple Lie Superalgebras

Simple Lie superalgebras have been classi�ed by Kac and play a key role
in many applications.

De�nition 3.9. Let g be a Lie superalgebra (always �nite-dimensional). We
say that g is simple if g is not abelian and it admits no non-trivial ideals. g is
of classical type if it is simple and g1 is completely reducible as a g0-module,
where the action is given by the bracket. g is basic if it is classical and it
admits a consistent, non-degenerate, invariant bilinear form, that is to say,
there exists a consistent, non-degenerate, bilinear form 〈, 〉 : g× g such that
〈X, [Y, Z]〉 = 〈[X, Y ], Z〉.

The simple Lie superalgebras divide into two main types: the classical
type and the Cartan type. We make a list of such Lie superalgebras, for the
proof see on [7].

Classical type. The classical type subdivides further into type 1 and type
2. Type 1 classical superalgebras are those for which g1 is not irreducible as
g0-module and type 2 are those for which g1 is an irreducible g0-module.

Classical type 1. These superalgebras are:

A(m|m) := sl(m+ 1|n+ 1), m 6= n

A(m|m) := psl(m+ 1|m+ 1),

C(n) := osp(2|2n− 2), P (n).

and g1 decomposes into two components as a g0 module.

Classical type 2. The type 2 superalgebras are those for which g1 is irre-
ducible, so that there is no compatible Z-grading. These Lie superalgebras
are:

B(m|n) := osp(2m+ 1|2n)

D(m|n) := osp(2m|2n)

D(2, 1;α), F (4), G(3), Q(n).

where D(2, 1;α) is a family with continuous parameter α ∈ K \ {0, 1}. Two
elements D(2, 1;α), D(2, 1; β) of this family are isomorphic if and only if
α and β lie in the same orbit under the action of the group generated by
α→ −1− α, α→ 1/α, see on [7].
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Cartan Type. Let Sym(V ) denote the symmetric algebra over the su-
per vector space V . If our super vector space has dimension m|n we can
create an isomorphism between this symmetric algebra with the following
polonomial algebra with m even indeterminates and n odds: Sym(V ) ∼=
K[x1, . . . , xm, ξ1, . . . , ξn] =: A. We de�ne W (m|n) := Der(A) as the superal-
gebra of derivations of A, which is in general in�nite-dimensional, however
when m = 0 it is �nite-dimensional. To semplify the notation we will write
W (n) instead of W (0|n). De�ne Θ(n) as the associative superalgebra over
A generated by θξ1, . . . , θξn with relations θξi ∧ θξj = −θξj ∧ θξi, (i 6= j).
This is a superalgebra with grading induced by deg(θξi) = 1. Now we can
introduce the following superalgebras:

S(n)
def
= {D ∈ W (n)|D(θξ1 ∧ · · · ∧ θξn) = 0}

S̃(n)
def
= {D ∈ |D((1 + ξ1ξ2 . . . ξn)θξ1 ∧ · · · ∧ θξn) = 0} for even n

which are subalgebras ofW (n) where some elements of Θ(n) are annihilated,
those elements are called volume forms.
Now we can introduce our last superalgebra called H(n) which is the com-
mutator of W (n) preserving a certain metric:

H(n)
def
= [H̃(n), H̃(n)] where H̃(n)

def
= {D ∈ W (n)|D(dξ2

1 + · · ·+ dξ2
n) = 0}

Finally, we can enunciate the following theorem.

Theorem 3.10. Every simple �nite-dimensional Lie superalgebra over K is
isomorphic to one of the following:

1. the classical Lie superalgebras, either isomorphic to a simple Lie algebra
or to one of the following classical Lie superalgebras:

A(m|n), B(m|n), C(n), D(m|n), P (n), Q(n),

for appropriate ranges of m and n,

F (4), G(3), D(2, 1;α), for α ∈ K \ {0;−1}

2. the Lie superalgebras of Cartan type:

W (n), S(n), S̃(n) for even n, H(n)
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3.3 Root Systems, Cartan Matrix, Dynkin Di-

agram

Similarly to the ordinary setting, for Lie superalgebras we have the notion
of Cartan subalgebras and the corresponding root decomposition.

De�nition 3.11. Let g be a simple Lie superalgebra. A subalgebra h ⊂ g
is a Cartan subalgebra if h is nilpotent, self-normalizing Lie subalgebra of g.
If α ∈ h∗0, we de�ne the super vector space

gα
def
= {X ∈ g|[h,X] = α(h)X for all h ∈ h0}

If gα 6= {0} for α ∈ h∗0 \{0} we say α is a root and gα a root space. A root
is even if gα ∩ g0 6= {0}, odd if gα ∩ g1 6= {0}. Notice that dim(gα) = 1|0 or
dim(gα) = 0|1 but in Q where a root can be both even and odd, see on [12]
for more details. As in the ordinary case, if we denote ∆ = ∆0 ∪∆1 as the
set of all roots we have:

g = h⊕
∑
α∈∆

gα.

For the proof of the root space decomposition, see on [7]

De�nition 3.12. Let g be a Lie classical superalgebra, we denote with κ the
Cartan-Killing form de�ned as follows:

κ(x, y) = str(ad(x), ad(y)),

where x, y ∈ g.

As one can easily check, this form is symmetric and consistent. However,
quite di�erently from what happens in the classical setting, it is not always
non-degenerate. In particular its restriction to a Cartan subalgebra of g may
be degenerate.
The fact that the Cartan�Killing form of a classical Lie superalgebra may be
degenerate prompts the de�nition of basic classical Lie superalgebras.

De�nition 3.13. A Lie superalgebra g is a basic classical Lie superalge-
bra if g is simple, g0 is reductive, and g admits a non-degenerate invariant
symmetric consistent bilinear form.

The following table summarizes the classi�cation of simple Lie superal-
gebras together with information about the existence of an invariant non-
degenerate symmetric bilinear form.
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Super Lie Algebra
Classical Lie Alegbra Cartan Type
Basic Strange

A(m|n), B(m|n), C(n), and D(m|n)

D(1, 2;α), G(3), F (4) P (n), Q(n) W (n), S(n), S̃(n), H(n)
As in the classical case we can introduce the Cartan matrix :

De�nition 3.14. The Cartan matrix A associated to the simple Lie super-
algebra g and the simple root system Π is de�ned as:

A = (aij) = (αi(hj))

As it happens in the classical theory, we can associate a Dynkin diagram
following the rules:

• Put as many nodes as simple roots.

• Connect the i-th node with the j-th node with |aijaji| links.

• The i-th node is white if αi is even, the j-th node is black if αj is odd
and aij 6= 0 and it is grey if αi is odd and αij = 0.

• The arrow goes from the long to the short root.

Unluckily, in the super case we do not have a bijection between Dynkin di-
agrams and Lie superalgebras, so we have to de�ne what a distinguished
root system, a distinguished Cartan matrix and a distinguished Dynkin di-
agram are. This fact happens beacuse a basic Lie superalgebra possesses
many equivalent simple root system, which correspond to many inequivalent
Dynkin diagrams. For a detailed discussion of this fact see on [12].

De�nition 3.15. For each basic Lie superalgebra, there exists a simple root
system for which the number of odd roots is the smallest one. Such a simple
root system is called the distinguished simple root system. The associated
Cartan matrix is called the distinguished Cartan matrix.

De�nition 3.16. The distinguished Dynkin diagram is the Dynkin diagram
associated to the distinguished simple root system to which corresponds the
distinguished Cartan matrix. It is constructed as follows: the even dots are
given by the Dynkin diagram of the even part g0 (it may be not connected)
and the odd dot corresponds to the lowest weight of the representation g1 of
g0.

Remark 3.17. All the Dynkin diagram we use in this discussion are the dis-
tinguished ones.
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3.4 The classical families: A(m|n), B(m|n),
C(n), D(m|n)

A(m|n). First we discuss about A(m|n) = sl(m + 1|n + 1) for m 6= n. Let
εi, δj ∈ h∗, 1 ≤ i ≤ m+1, 1 ≤ j ≤ n+1, de�ned as εi(diag(a1, . . . , am+n+2)) =
ai, i = 1, . . . ,m+1, and δj(diag(a1, . . . , am+n+2)) = am+1+j, j = 1, . . . , n+1.
Its root system is:

∆ = {εi − εj, δk − δl,±(εi − δk)},
∆0 = {±εi ± εj,±εi,±δk ± δl,±2δk}
∆1 = {±εi ± δk,±δk}, 1 ≤ k 6= l ≤ n.

And its simple root system:

Π = {α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , αm+1 = εm+1 − δ1,

αm+2 = δ1 − δ2, . . . , αm+n−1 = δn − δn+1}

For A(n|n), n > 1, the root system and the simple root system are the same,
the di�erence between them is that in this last one we have two relations
between εi and δk, ε1 + · · ·+ εm+1 = δ1 + · · ·+ δn+1 = 0 instead of εi and δk,
ε1 + · · ·+ εm+1 = δ1 + · · ·+ δn+1 in the �rst case.
Let us now turn to the construction of the Cartan matrix and the Dynkin
diagram associated to a classical Lie superalgebra g with a simple root system
Π = {αi}i∈I . For each simple root αi ∈ Π, �x elements ei ∈ gα, fi ∈ g−α and
set hi = [ei, fi] ∈ g0 which is de�ned up to a costant. If αi(hi) 6= 0, we �x it
by imposing that αi(hi) = 2.

In the case of A(m|n) we can choose ei = Ei,i+1 and fi = Ei+1,i, so we
have that hi = Eii − Ei+1,i+1 for i 6= m + 1, while hm+1 = [em+1, fm+1] =
em+1fm+1 + fm+1em+1 = Em+1,m+1 + Em+ 2,m+ 2.
The Cartan matrix has the form

A =



2 −1 0 . . . 0 . . . 0 . . . 0
−1 2 −1 . . . 0 . . . 0 . . . 0
...

...
...

...
...

...
...

...
...

2 −1 0
0 . . . −1 0 +1 . . . . . . . . .
0 . . . 0 −1 2 −1 . . . . . .
...

...
...

...
...

...
... −1 2


where the zero appears in row (m+ 1) because αm+1(hm+1) = 0.

So we have that the Dynkin diagram of A(m|n) is:
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A(m|n)

B(m|n). B(m|n) = osp(2m+ 1|2n), and we have that

h = {h = diag(a1, . . . , am,−a1, . . . ,−am, 0, b1, . . . , bn,−b1, . . . ,−bn)}.

Let εi, δj ∈ h∗ be: for h ∈ h, let εi(h) = a1, i = 1, . . . ,m and δj(h) = bj, j =
1, . . . ,m.
Its root system for m 6= 0 is

∆0 = {±εi ± εj,±εi,±δk ± δl,±2δk},
∆1 = {±εi ± δk,±δk} 1 ≤ i 6= j ≤ m, 1 ≤ k 6= l ≤ n.

and for m = 0 is

∆0 = {±δk ± δl,±2δk}, ∆1 = {±δk}, 1 ≤ k 6= l ≤ n

The simple root systems for B(m|n), B(0|n) are respectively

Π = {α1 = δ1 − δ2, . . . , αn−1 = δn−1 − δn, αn = δn − ε1,

αn+1 = ε1 − ε2, . . . , αm+n+1 = εm−1 − εm, αm+n = εm}

and

Π = {α1 = δ1 − δ2, . . . , αn−1 = δn−1 − δn, αn = δn}.

Then we have that the Cartan matrix for B(m|n) with m 6= 0 is

A =



2 −1 0 . . . 0 . . . 0 . . . 0
−1 2 −1 . . . 0 . . . 0 . . . 0
...

...
...

...
...

...
...

...
...

...
2 −1 0

0 . . . −1 0 +1 . . . . . . . . .
0 . . . 0 −1 2 −1 . . . . . .
...

...
...

...
...

...
...

...
...

...
0 . . . −1 2 −1
0 . . . 0 2 2


and for B(0|n) it is

A =


2 −1 0 . . . 0 . . . 0 . . .
−1 2 −1 . . . 0 . . . 0 . . .
...

...
...

...
...

...
...

...
0 . . . −1 2 −1
0 . . . 0 −2 2


The Dynkin diagram is
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B(m|n)

B(0|n)

C(n) = osp(2|2n− 2). We have that

h = {h = diag(a1,−a1, b1, . . . , bn−1,−b1, . . . ,−bn−1)}

De�ne ε1, δ1, . . . , δn−1 ∈ h∗ as follows: for h ∈ h, let ε1(h) = a1, . . . , εm(h) =
am, δ1(h) = b1, . . . , δn(h) = bn.
The root system is:

∆0 = {±εi ± εj,±2δk,±δk ± δl},
∆1 = {±εi ± δk}, 1 ≤ i 6= j ≤ m, 1 ≤ k 6= l ≤ n

Instead, the root system is:

Π = {α1 =δ1 − δ2, . . . , αn−1 = δn−1 − δn, αn = δn − ε1,

αn+1 = ε1 − ε2, . . . , αm+n−1 = εm−1 − εm, αm+n = εm−1 + εm}

We have that the Cartan matrix is

A =


0 +1 0 . . . 0 . . . 0 . . .
−1 2 −1 . . . 0 . . . 0 . . .
...

...
...

...
...

...
...

...
0 . . . −1 2 −2
0 . . . 0 −1 2


The Dynkin diagram is

C(n), n > 2

D(m|n). D(m|n) = osp(2m|2n). We have that

h = {h = diag(a1, . . . , am,−a1, . . . ,−am, b1, . . . , bn,−b1, . . . ,−bn)}.

The root system is:

∆0 = {±εi ± εj,±2δk ± δl},
∆1 = {±εi ± δk}, 1 ≤ i 6= j ≤ m, 1 ≤ k 6= l ≤ n
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And the simple root system:

Π = {α1 =δ1 − δ2, . . . , αn−1 = δn−1 − δn, αn = δn − ε1,

αn+1 = ε1 − ε2, . . . , αm+n−1 = εm−1 − εm, αm+n = εm−1 + εm}.

The Cartan matrix:

A =



2 −1 0 . . . 0 . . . 0 . . . 0
−1 2 −1 . . . 0 . . . 0 . . . 0
...

...
...

...
...

...
...

...
...

...
0 . . . −1 0 +1 . . . . . . . . . 0
0 . . . 0 −1 2 −1 . . . . . . 0
...

...
...

...
...

...
...

...
...

...
0 . . . −1 2 0
0 . . . −1 0 2


The Dynkin diagram is

D(m|n)

3.5 Real Forms of Lie Superalgebras

In this section we show the parallelism and the di�erences between Lie
superalgebras and Lie algebras and we discuss the real forms of A(m,n),m 6=
n using two di�erent methods: the algebraic one and the graph painting.
Before introducing what a real form of a classical semisimple complex Lie
superalgebra is, we have to introduce some de�nitions and theorems starting
from the de�nition of classical Lie superalgebra of the previous chapter.

De�nition 3.18. Let g be a classical Lie superalgebra over C. A semi-
morphism C of g is a semilinear transformation of g which preserves the
gradation, that is such that

C(X + Y ) = C(X) + C(Y )

C(αX) = ᾱC(X)

[C(X), C(Y )] = C([X, Y ])

for all X, Y ∈ g and α ∈ C.

All homomorphisms and semimorphisms of Lie superalgebras will be as-
sumed to preserve g0, g1.
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Proposition 3.19. Let g be a complex Lie superalgebra and let C be an
involutive semimorphism of g. Then gC = {x+ Cx|x ∈ g} is a real classical
Lie superalgebra.

Proof. From the de�nition of gC it is obvious that gC is a real simple Lie
superalgebra and that its complexi�cation is g: it is simple because g is
classical and so simple itself, and it is real because C is an involutive semi-
morphism. The only thing we have to check is that the representation
g0C = {x + Cx|x ∈ g0} on g1C = {x + Cx|x ∈ g1} is completely reducible.
Let Ṽ = V ⊗ C be invariant with respect to g0; hence, there exists a sub-
space W ′ supplementary to Ṽ in g1 and invariant by g0. The subspace
W = (I + C){w′ ∈ W ′|(I − C)W ′ ∈ iV } of g1C is supplementary to V
and invariant by g0C . Since C(I + C) = C + I, W ⊂ g1C , moreover, if
g ∈ g0C , [g, w] = (I + C)[g, w] = (I − C)[g, w′] = [g, (I + C)w′], so W is
invariant by g0C . Last but not least W is supplementary to V , if we have
w = (I + C)w′ ∈ V , 2w′ = (I + C)w′ + (I − C)w′ ∈ V + iV = Ṽ ; hence
w′ = 0 and thus w′ ∈ W ′ and W ∩ V = 0. On the other hand, if x ∈ g1C ,
one has x = w′ + v′ where w′ ∈ W ′ and v′ ∈ Ṽ . However, (I − C)w′ ∈ W ;
hence, 2x = (I + C)x = (I +X)w′ + (I + C)v′ ∈ W + V .

Proposition 3.20. If g is a real classical Lie superalgebra, its complexi�ca-
tion g̃ = g ⊗ C is a Lie superalgebra which is either classical or the direct
sum of two isomorphic ideals which are classical.

Proof. Let C be the conjugation in g̃ with respect to g. We note that the
representation of g̃0 = g0 ⊗ C on g̃1 = g1 ⊗ C is completely reducible. Let
indeed V be a complex subspace of g̃1 which is invariant by g̃0. Hence, V
is invariant by g0. Thus, there exists a subspace W ′ supplementary to V ′ in
g1 and invariant by g0. Then g̃1 = Ṽ ′ ⊕ W̃ ′ is invariant by g̃0, which proves
the �rst point. If g̃ is not simple, it contains a simple graded ideal S. Then
(I + C)S = g is a graded ideal of g so either (I + C)S = 0 or (I + C)S = g.
However, (I+C)S = 0 is impossible since S+CS = 0 implies iS+C(iS) 6= 0.
Hence, (I + C)S = g and g̃ = g + ig = (I + C)S + (I − C)S = S + CS.
Since S ∪ CS is an ideal of S, we have S ∪ CS = 0, which shows that g̃ is
the direct sum of the two ideals S and CS.

Proposition 3.21. Let g be a complex Lie superalgebra and let C and C ′ be
two involutive semimorphism of g. The real forms gC and gC′ are isomorphic
if and only if there exists an automorphism ϕ of g such that C ′ = ϕCϕ−1.

Proof. If C ′ = ϕCϕ−1, it is clear that gC = ϕgC′ . Conversely, assume there
exists an isomorphism ψ from gC into gC′ . The linear extension ϕ of ψ
to g = gC + igC is de�ned by ϕ(g + ig) = ψg + iψg, with g ∈ g, is an
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automorphism of g. Moreover, if g′ = ψg ∈ gC′ we have C
′g′ = g′ = ψg =

ϕg = φCg = ϕCϕ−1g′; hence, C ′ϕCϕ−1 is the identity on gC′ and thus also
on g.

As a consequence of the previous two propositions, now, we can say:

Proposition 3.22. Let g be a real classical Lie algebra, g. Then there are
only two possibilities:

• If the complexi�cation of g is not simple, g is a complex classical Lie
superalgebra considered as a real algebra;

• If the complexi�cation g̃ of g is simple, g is the subalgebra of �xed points
of an involutive semimorphism of g̃.

Now we see how to classify the involutive semimorphism in order to clas-
sify, after that, the real forms of A(m|n). Before the main proposition we
have to show a small Lemma:

Lemma 3.23. If g is not D(n) or B(n) (de�ned in paragraph 3.2) and ϕ0

is an inner automorphism of g0, there exists an automorphism ϕ = ϕ0 + ϕ1

of g.

Proof. Let ρ denote the representation of g0 on g1 and let B be any non-
degenerate invariant bilinear form of g. If ϕ0 = ead(n), ϕ1 = eρ(n) satisfy
ρ(ϕ0g)ϕ1 = ϕ1ρ(g) for all simple ideals of g0 and n ∈ g0. On the center of
g0ϕ0 is the identity. On each of the simple ideals of g0, the bilinear form
B is a multiple of the Killing form: hence ϕ0 is an isometry for B. On the
other hand, B(ρ(n)x, y) + B(x, ρ(n)y) = 0 for all x, y ∈ g1 implies that ϕ1

is also an isometry for B. Then we have for all g ∈ g0, B([ϕ1x, y], ϕ0g) =
B(ϕ1x, [ϕ1y, ϕ0g]) = B(ϕ1x, ϕa[y, g]) = B(x, [y, g]) = B([x, y], g) =
B(ϕ0[x, y], ϕ0g) and thus [ϕ1x, ϕ1y] = ϕ0[x, y].

Proposition 3.24. Le g be a complex classical Lie superalgebra and let
C = C0 + C1 be an involutive semimorphism of g. Assume C ′0 is an in-
volutive semimorphism of g0 conjugate to C0 in Aut(g0). Then there exists
an involutive semimorphism C = C ′0 + C ′1 of g which is conjugate to C in
Aut(g).

Proof. Assume C ′0 = ϕ0C0ϕ
−1
0 , where ϕ0 ∈ Aut(g0). If there exists ϕ =

ϕ0 +ϕ1 ∈ Aut(g), then C ′ = ϕCϕ−1 is an involutive semimorphism of g and
the proposition is proved. The existence of ϕ will follow from the previous
Lemma when ϕ0 is inner and g is not D(n) or B(n).
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Now we see that for a given real form g0C of the Lie subalgebra g0 there
exists, up to isomorphism, at most two real forms gC which contains g0C ,
we will see that these two forms are isomorphic. Let C = C0 + C1 and
C ′ = C ′0 + C ′1 be the two involutive semimorphism which have the same
restriction C ′0 = C0 to g0.

Lemma 3.25. If the representation ρ of g0 on g1 is irreducible, then C ′1 =
±C1.

Proof. The linear transformation C1C
′
1 of g commutes with ρ(g0); hence

C ′1 = λC1 and C2
1C
′2
1 = Id implies λλ̄ = 1. If x, y ∈ g, we have C0[x, y] =

[C ′1x,C
′
1y] = λ2[C1x,C1y] = λ2C0[x, y], so λ = ±1. If the representation ρ

of g0 on g1 is reducible, we write g1 = Y ′ ⊕ Y ′′ for the sum of the invariant
subspaces and if g0 is not semisimple, we denote by k0 the element of the
center of g0 such that ρ(k0)|Y ′ = Id and ρ(k0)|Y ′′ = −Id.

Lemma 3.26. Let us use the same notation and hypothesis of the previous
Lemma:

1. If C1 preserves Y ′ and Y ′′, then C0k0 = k0 and if C1 permutes Y ′ and
Y ′′, then C0k0 = −k0;

2. If C = C0 + C1 and C ′ = C0 + C ′1 preserve Y ′ and Y ′′, then they are
conjugate in Aut(g);

3. If they permute Y ′ and Y ′′, then C ′ is conjugate in Aut(g) to C0 + C1

or to C0 − C1.

where g1 is the direct sum of the two subspaces Y ′, Y ′′ and [Y ′, Y ′] = [Y ′′, Y ′′] =
0 and [Y ′, Y ′′] = g0.

Proof. 1. Since the decomposition of g1 into Y ′ and Y ′′ is unique, any
semimorphism of g preserves or permutes Y ′ and Y ′′. If g0 is not
semisimple, we set C0k0 = ak0, where aā = 1. Then [C0k0, C1y] =
C1[k0, y] = C1y with y ∈ Y ′, which implies a = 1 if C1Y

′ = Y ′ and
a = −1 if C1Y

′ = Y ′′.

2. If we set C1 = C ′+C ′′, where C ′ = C1|Y ′ and C ′′ = C1|Y ′′ , by the same
argument of the previous Lemma, we know that C ′ and C ′′ are unique
up to a factor of modulus 1, so we may write C ′1 = λC ′ + µC ′′. If
x ∈ Y ′ and y ∈ Y ′′, we have C0[x, y] = [λC ′x, µC ′′y] = λµ[C ′x,C ′′y] =
λµC0[x, y] and thus λµ = 1. However, the linear transformation ψ de-
�ned by ψy′ = λ1/2y′, ψy′′ = λ−1/2y′′, and ψg0 = g0 is an automorphism
og g and C0 + C ′1 = ψ(C0 + C1)ψ−1.
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3. Since C1C
′
1 preserves Y

′ and Y ′′ and commutes with ρ(g0), we may write
C ′1x = λC1x and C ′1y = µC1y for all x ∈ Y ′ and y ∈ Y ′′. From C2

1 =
C
′2
1 = Id, we deduce λ̄µ = 1 and C0[x, y] = [C ′1x,C

′
1y] implies as above

λµ = 1. We de�ne an automorphism ψ of g by ψy′ = λ−1/2y′, ψy′′ =
λ1/2y′′ and ψg0 = g0. If the real number λ is positive, we have C0+C ′1 =
ψ(C0 +C1)ψ−1 and if λ is negative, we have C0 +C ′1 = ψ(C0−C1)ψ−1.

3.6 Real Forms of A(m|n)
Now we considerm 6= n ,as we have said in the previous chapter, A(m|n) ∼=

sl(m|n).
If we write an element of A(m|n) as in the previous chapter:

X =

(
A B
C D

)
∈ sl(m+ 1|n+ 1)

we can now say that g0 is the direct sum of its one dimensional center K0

and of the two simple ideals K1 and K2 of the respective type Am and An
where:

• K0 = {X ∈ A(m|n)|C = D = 0, A = naIdm, B = maIdn, a ∈ C};

• K1 = {X ∈ A(m|n)|A = B = D = 0};

• K2 = {X ∈ A(m|n)|A = B = C = 0}.

The subspace g1 is the direct sum of the two invariant subspaces Y ′ = {X ∈
A(m|n)|A = B = D = 0} and Y ′′ = {X ∈ A(m|n)|A = B = C = 0}.
The representation ρ′ of K1 ⊕ K2 on Y ′ is the tensor product of the nat-
ural representation π1 of K1 and the contragradient representation πn−1 of
K2, which we will abbreviate ρ′ = π1(K1) ⊗ πn−1(K2). Similarly, ρ′′ =
πm−1(K1)⊗ π1(K2).
Both the natural representation π1 of Am and its contragradient πm are real
for the real form sl(m + 1,R), they are unreal for su∗(m + 1) and real for
su(p,m+1−p). Hence the only real forms ofK1⊕K2, for which the irreducible
representations ρ′ and ρ′′ are real, are sl(m,R)⊕sl(n,R) and su∗(m)⊕su∗(n)
if m and n are even.
For the real form su(p,m−p)⊕su(q, n−q) of K1⊕K2, we will see that exists
an extension to g of the semimorphism C0 which permutes Y ′ and Y ′′. We
now consider the real forms of K1⊕K2 in which K1C and K2C are of di�erent
types. Since the representations ρ′ and ρ′′ are never real, any extension of C0
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to g must permute Y ′ and Y ′′. However, the existence of a semilinear involu-
tion C1 permuting Y

′ and Y ′′ such that ρ′(C0X)C1 = C1ρ
′′(X), implies that

the weights of ρ′′ are conjugate to those of ρ′ ◦ C. But this never happens
and we check it in the following way:
If K1C ⊕K2C is of the form The weights of ρ′ ◦ C are conjugate to those of

su(p,m− o)⊕ sl(n,R) πm−1(K1)⊗ πn−1(K2)
su(p,m− o)⊕ su∗(n) πm−1(K1)⊗ πn−1(K2)
sl(m,R)⊕ su∗(n) π1(K1)⊗ πn−1(K2)

sl(m,R)⊕ su∗(q, n− q) π1(K1)⊗ π1(K2)
su∗(m)⊕ sl(n,R) π1(K1)⊗ πn−1(K2)

su∗(m)⊕ su∗(q, n− q) π1(K1)⊗ π1(K2)
while ρ′′ = πm−1(K1)⊗ π(K2).
The possible real forms are the following:

1. g0C = sl(m,R) ⊕ R, the involutive semimorphism is CX = X̄ and
it preserves Y ′ and Y ′′. With the notations of Lemma 3.26, we have
Ck0 = k0 and hence K0C = R.

2. g0C = su∗(m)⊕ su∗(n)⊕ R if m and n are even. The involutive semi-
morpshim is CX = MX̄M−1 where

M =

(
antidiag(−Idr, Idr)

antidiag(−Ids, Ids)

)
.

Again C preserves Y ′ and Y ′′, K0C = R.

3. g0C = su(p,m − p) ⊕ su(q, n − q) ⊕ iR. The involutive semimorphism
is C0X = −NX̄ tN if X ∈ g0 and C1X = iNX̄ tN if X ∈ g1, where
N = diag(−Idp, Idm−p,−Idq, Idn−q). Since C permutes Y ′ and Y ′′, it
follows that Ck0 = −k0 and K0C = iR.

We now prove that C0 may be chosen up to conjugacy in Aut(g0). Every
X ∈ Aut(g0) preserves the two ideals K1 and K2 and on each ideal is of the
form ψθ where θ is inner and ψ(X) = −X t. All the three C0, we have chosen
to de�ne the real forms, commutes with ψ, so any C ′0 conjugate to C0 is of the
form θCθ−1. Finally because of Lemma 3.26, all semimorphism extending
C0 are conjugate in the �rst two cases. In the third, we de�ne ϕ ∈ Aut(g)
as ϕ = ϕ0 + ϕ1, where ϕ0X = −NX tN if X ∈ g0 and ϕ1C1 = −C1ϕ1, thus
proving that C0 + C1 and C0 − C1 are conjugate by Aut(g).
Now we will investigate the case where m = n; the biggest di�erence be-
tween A(m|n),m 6= n and A(m|m) is that sl(m|m) is not semisimple, but
it has a one dimensional center. As we have said in the previous chapter,
we will consider sl(m|m)/KId2m. For the semimorphism C0 which preserve
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K1 and K2, we can apply the same reason of A(m|n) and we obtain the real
forms containing:

1. g0C = sl(m,R)

2. g0C = su∗(m)⊕ su∗(m) if m is even

3. g0C = su(p,m− p)⊕ su(q,m− q)

4. There is also the real form where g0C = sl(m,C) is the real alge-
bra of dimension 2(m2 − 1), de�ned by the semimorphism CX =
PC̄XP , with P = antidiag(Idm, Idm), which permutes the two ide-
als K1 and K2 of g0 and the subspaces Y ′, Y ′′ of g1.

The proof of the �rst three cases are the same of the previous ones, where we
have shown that all semimorphism extending C0 are conjugate in Aut(G).
The fourth is a little bit di�erent, the other possible semimorphism C0−C1 is
conjugate to C0 +C1 by the automorphism ϕ = ϕ0 +ϕ1, where ϕ0X = −X t

if X ∈ g0 and ϕ1X = iX t if X ∈ g1.
To prove that C1 may be chosen up to conjugacy by Aut(g0), it is su�cient
to show that any semimorphism of g0 extends to an automorphism of g.
Any element of Aut(g0) may be written as a product ψ0θ0η0 or ψ0θ0 or θ0

where θ0 is inner, ψ0X = −X t, and η0X = PXP . By Lemma 3.25, we know
that θ0 extends to g. Automorphisms of g extending ψ0 and η0 are de�ned,
respectively, by ψ1X = iX t and η1X = PXP if X ∈ g.

3.7 Vogan Diagrams

We have seen in section 2.4 what a Vogan diagram is, so now we want
to de�ne these diagrams in the super case. They are essential to classify the
real forms of the Lie superalgebras.
Our discussion is only about basic Lie superalgebras, where we have that the
Cartan subalgebra is totally even, hence this sempli�es our discussion. We
also are under the assumption that

h ⊂ k0 ⊂ g0

when h is a �xed Cartan subalgebra. Hence, let g denote a basic Lie super-
algebra

g = g0̄ ⊕ g1̄
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and let

g0̄ = k0̄ ⊕ p0̄

semisimple be the complexi�cation of a CArtan decomposition of the semisim-
ple part of the complex <lie algebra g0̄. We call g = k0̄ ⊕ p, p = p0̄ ⊕ b1̄ a
complex Cartan decomposition. It correspond to a unique real form gC of g,
see on [8]. This is not the general, but for clarity of exposition we restrict
ourselves to this. In this way we only obtain Vogan diagrams with no arrows.

De�nition 3.27. Let D be a distinguished Dynkin diagram. The Vogan
diagram of Lie superalgebras is the Vogan diagram of the even part of Lie
superalgebras. In addition to that:

1. The vertices �xed by the Cartan involution of the even part is painted
(or unpainted) depending whether the root is noncompact (or com-
pact).

2. The odd root remains unchanged.

De�nition 3.28. An abstract Vogan diagram with no arrow is an abstract
Dynkin diagram with the subset of noncompact roots which is indicated by
painting the vertices. Every Vogan diagram is of course an abstract Vogan
diagram of a Lie superalgebra.

Theorem 3.29. If an abstract Vogan diagram with no arrows is given, then,
there exists a real Lie superalgebra gC, a Cartan involution θ, a Cartan subal-
gebra and a positive system ∆+

0 for ∆ = ∆(g, h) such that the given diagram
is the Vogan diagram of (gC , h0,∆

+
0 ).

For the proof see on [9].
Now we present a modi�ed version of Borel-de Siebenthal theorem for Lie
superalgebras.

Theorem 3.30. Let gC be a non complex real Lie superalgebra and let the
Vogan diagram of gC be given that corresponding to the triple (gC , h0,∆

+).
Then exists a simple system Π′ for ∆ = ∆(g, h), with corresponding posi-
tive system ∆+, such that (gC , h0,∆

+) is a triple and there is at most two
painted simple root in its Vogan diagrams of A(m|n), D(m|n) and at most
three painted vertices in D(2, 1;α). Furthermore suppose the automorphism
associated with the Vogan diagram is the identity that Π′ = α1, . . . , αl and
that ω1, . . . , ωl is the dual basis for each even part such that 〈ωj, αk〉 = δjk/εkk
where εkk is the diagonal entries to make Cartan matrix symmetric. The dou-
ble painted simple root of even parts may be chosen so that there is no i′ with
〈ωi − ωi′ , ωi′〉 > 0 for each even part.
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To see the proof of Theorem 3.30 see on [9] and [8]. As in the classical
case we have the following properties for the roots:

compact+compact=compact
compact+noncompact=noncompact
noncompact+noncompact=compact.

3.8 Graph Paintings

In this section we study a procedure to obtain froam a given Vogan dia-
gram another equivalent one, with fewer noncompact vertices.
Recall that in the Dynkin diagram of Lie superalgebras, we have that vertices
can be white, grey, black or grey and white.

De�nition 3.31. Two Dynkin diagrams Γ, Γ′ are said to be related if they
represent the same basic Lie superalgebra, and we denote this by Γ ∼ Γ′.

As in the classical case, we can indicate the black and grey verices of a
Vogan diagram with the k − uple (i1, i1, . . . , ir) where 0 ≤ i1,≤ · · · ≤ ir ≤ n
where n is the number of vertices of our diagram and the grey or black ver-
tex appears odd number of times and a white vertex appears even number
of times.
Let g be a basic Lie superalgebra, with Cartan subalgebra h and root system
∆ ⊂ h∗. Fix a simple system Π ⊂ ∆. Its Dynkin diagram has Π as vertices,
and its edges depend on the pairing of roots under an invariant supersym-
metric form, since we do not ask for a positive de�nite form, roots may have
zero length. Write ∆ = ∆0 ∪∆1 for the even and odd roots. Let α ∈ Π, if
α is even, the its Weyl re�ection sα is an automorphism on ∆0 and ∆1, so
Π and sαΠ produce the same Dynkin diagram. If α is odd, we de�ne sα as
followes. Given β ∈ Π, we let sα(β) be

sα(β)


β − 2 (α,β)

(α,α)
α if (α, α) 6= 0,

β + α if (α, α) = 0 and (α, β) 6= 0,

β if (α, α) = (α, β) = 0,

−α if β = α

Theorem 3.32. For any α ∈ Π, sαΠ is again a simple system. For �xed
Π, its orbit under such sα, exhausts all simple systems of (g, h). Namely if
Π′ ⊂ ∆ is another simple system, then there is a sequence Π = Π1 → Π2 →
· · · → Πa = Π′ such that each Πi → Πi+1 is given by sα for some odd root
α ∈ Πi.
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The above method gives a practical way to �nd the Dynkin diagram
related to a given one.
Now we look what happen when α is grey. If β 6= α is perpendicular to α,
then β is not moved by sα, otherwise β changes by a multiple of α. Hence the
colors of the vertices that are not adjacent to α remain the same, as do the
edges attached to these vertices. Therefore, it su�ces to study the vertices
which are adjacent to α, and this is described by the next proposition.

Proposition 3.33. Let α be an odd root. Then the following table, in which
the grey vertices are indicated with a crossed one, reveals the e�ect of the odd
root re�ection sα.

For the proof see on [13]. Also in this case we have some combinatorial
rules.

Lemma 3.34. Let (Γ, (i1, i2, . . . , ir)) be a diagram as above.

a) (Γ, (i1, i2, . . . , ir)) ∼ (Γ, (i1 − 1, i2 − 1, i3, . . . , ir));

b) (Γ, (i1, i2, . . . , ir)) ∼ (Γ, (i2 − i1, i3, . . . , ir));

c) (Γ, (i)) ∼ (Γ, (n+ 1− i))

Proof. For part a), apply si1 , si1+1, . . . , si2−1 consecutively to (Γ, (i1, i2, . . . , ir)).
Namely,

(Γ, (i1, i2, . . . , ir))→ (Γ, (i1 − 1, i1, i1 + 1, i2, . . . , ir)) by si

→ · · · → (Γ, (i1 − 1, i2 − 2, i2 − 1, i2, i3, . . . , ir)) by si1+,, . . . , si2−2

→ (Γ, (i1 − 1, i2 − 1, i3, . . . , ir)). bysi2−1
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By applying a) inductively, we keep shifting the pair leftward and obtain

(Γ, (i1, i2, . . . , ir)) ∼ (Γ, ( i2 − i1 + 1, i3, . . . , ir))

Then apply s1, s2, . . . , si2−i1 we obtain b). For c) we have only to apply
sj, ∀j ∈ {i, . . . , n} to (i).

As in the classical case we can apply consecutively Lemma 3.34 to reach
a diagram with the minimum number of black and grey vertices.
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