ALMA MATER STUDIORUM UNIVERSITA' DI BOLOGNA

SCUOLA DI INGEGNERIA E ARCHITETTURA Sede di Forlì

Corso di Laurea in INGEGNERIA MECCANICA Classe LM-33

TESI DI LAUREA

in Progetto e costruzione di macchine

Analisi del comportamento a fatica di un laminato al variare della sequenza di impilamento e delle dimensioni

CANDIDATO

Danilo Baraccani

RELATORE

Giangiacomo Minak

CORRELATORE

Enrico Dolcini

Anno Accademico 2014/2015 Sessione II

Sommario

Sommario	3
Indice delle figure	5
Indice delle tabelle	9
Introduzione	11
Capitolo 1 - Materiali compositi a matrice polimerica	13
1.1 - Rinforzo	13
1.2 - Matrice	15
1.3 - CFRP	16
1.4 - Laminati	17
1.5 - Comportamento a fatica nei compositi	19
Capitolo 2 - Pianificazione delle prove sperimentali	21
2.1 - Introduzione	21
2.2 - Normativa di riferimento	21
2.3 - Progettazione dei test	23
Capitolo 3 - Realizzazione e caratterizzazione dei campioni	29
3.1 - Realizzazione dei campioni	29
3.2 - Caratterizzazione dei campioni	37
Capitolo 4 - Strumenti e procedura dei test	49
4.1 - Attrezzatura sperimentale	49
4.2 - Procedura dei test	52
Capitolo 5 - Risultati e analisi dei dati	55
5.1 - Prove di flessione statica	55
5.2 - Prove di flessione a fatica	72
Capitolo 6 - Test su provini con diversa sequenza di	
impilamento	89
6.1 - Caratterizzazione dei campioni serie-13A	90
6.2 - Risultati e analisi dati per le prove di flessione statica	92
6.3 - Risultati e analisi dati per le prove di flessione a fatica	97

Capitolo 7 - Conclusioni	101
7.1 - Considerazioni sui risultati ottenuti	101
7.2 - Limiti dello studio e prospettive future	105
Bibliografia	107
Appendici	109

Indice delle figure

Fig. 1 - Schema generale Materiali Compositi	13
Fig. 2 - Filamento di carbonio a confronto con capello umano	14
Fig. 3 - Tipologie di fibre	14
Fig. 4 (a, b, c) - Tessuto Plane, Tessuto Twill, Tessuto Satin	14
Fig. 5 - Schema generale Laminato	17
Fig. 6 - Modalità di propagazione delle fratture interlaminari	19
Fig. 7 - Specifiche del provino ad asse rettilineo come da Normativa di	
riferimento	22
Fig. 8 - Specifiche delle attrezzature di prova per il provino ad asse rettilia	neo
come da Normativa di riferimento	22
Fig. 9 - Provino in posizione di prova	23
Fig. 10 - Schema delle proporzioni nel test di flessione	24
Fig. 11 - Schema del carico nel test di flessione	25
Fig. 12 - Tipiche modalità di rottura nella prova per analisi dell'ILSS	25
Fig. 13 - Successione delle fasi di lavoro	27
Fig. 14 (a, b) - Rotoli di materiale pre-impregnato conservati in cella	
frigorifera (a), singolo rotolo pronto per il taglio (b)	29
Fig. 15 (a, b, c) - Taglio manuale delle sagome	30
Fig. 16 - Stampo e Controstampo in acciaio inox dopo l'applicazione del	
distaccante	30
Fig. 17 (a, b, c, d) - Laminazione manuale	31
Fig. 18 - Peel-ply	32
Fig. 19 - Tessuto assorbitore-aeratore	32
Fig. 20 (a, b, c) - Valvola a baionetta	32
Fig. 21 (a, b, c,) - Schema di realizzazione del sacco (a), immagini del sac	co
a vuoto prima (b) e dopo (c) l'aspirazione di aria	33
Fig. 22 - Autoclave: immagine e schema di funzionamento	34
Fig. 23 - Schema ciclo in autoclave a titolo di esempio	34
Fig. 24 - Laminato dopo la fase di estrazione	34
Fig. 25 - Utensile per la rifilatura della lastra	34
Fig. 26 - Immagini della sega circolare utilizzata per il taglio e di alcuni	
provini	35
Fig. 27 - Schemi di taglio piastra in config. 1 e config. 2	35
Fig. 28 - Provini ricavati dalle lastre laminate	36
Fig. 29 - Provini 8_26 e 14_13 etichettati	36
Fig. 30 - Sezioni di misura spessore e larghezza	37
Fig. 31 - Calibro digitale e bilancia digitale utilizzati per le misurazioni	
dimensionali	37
Fig. 32 - Levigatrice orbitale (disco con carta abrasiva)	45
Fig. 33 - Levigatrice orbitale (disco con panno per lucidatura)	45
Fig. 34 - Camera digitale - Moticam 3	46
Fig. 35 - Microscopio ottico	46
Fig. 36 - Dispositivo di illuminazione utilizzato per la messa a fuoco	46

Fig. 37 - Messa a fuoco provini intatti prima delle prove	46
Fig. 38 - Provino 8_05	47
Fig. 39 - Provino 9_47	47
Fig. 40 - Particolare al microscopio, INGRANDIMENTO 5x, Provino	
9_05	47
Fig. 41 - Particolare al microscopio, INGRANDIMENTO 5x, Provino	
8_09	47
Fig. 42 - Provino13_18	48
Fig. 43 - Provino 14_23	48
Fig. 44 - Particolare al microscopio, INGRANDIMENTO 5x, Provino	
13 18	48
Fig. 45 - Particolare al microscopio, INGRANDIMENTO 5x, Provino	
14_06	48
Fig. 46 - Pressa Idraulica: immagine e principali caratteristiche	49
Fig. 47 - Centralina acquisizione dati	49
Fig. 48 - Attrezzaggio completo per i test statici e a fatica	50
Fig. 49 - Schema e foto posizionamento provino sugli appoggi	51
Fig. 50 - Orientamento del provino	51
Fig. 51 - Termometro per controllo della <i>T</i> dell'olio	51
Fig. 52 - Diagramma delle tensioni per la sezione	55
Fig. 53 - Provino 13_02: Tensione-Spostamento, Tensione-Tempo	56
Fig. 54 - Provino 13_16: Tensione-Spostamento, Tensione-Tempo	56
Fig. 55 - Provino 13_28: Tensione-Spostamento, Tensione-Tempo	57
Fig. 56 - Provino 13_34: Tensione-Spostamento, Tensione-Tempo	57
Fig. 57 - Provino 13_40: Tensione-Spostamento, Tensione-Tempo	58
Fig. 58 - Provino 14_02: Tensione-Spostamento, Tensione-Tempo	58
Fig. 59 - Provino 14_14: Tensione-Spostamento, Tensione-Tempo	59
Fig. 60 - Provino 14_32: Tensione-Spostamento, Tensione-Tempo	59
Fig. 61 - Provino 14_38: Tensione-Spostamento, Tensione-Tempo	60
Fig. 62 - Provino 14_50: Tensione-Spostamento, Tensione-Tempo	60
Fig. 63 - Provino 8_01: Tensione-Spostamento, Tensione-Tempo	61
Fig. 64 - Provino 8_33: Tensione-Spostamento, Tensione-Tempo	61
Fig. 65 - Provino 8_55: Tensione-Spostamento, Tensione-Tempo	62
Fig. 66 - Provino 8_78: Tensione-Spostamento, Tensione-Tempo	62
Fig. 67 - Provino 8_98: Tensione-Spostamento, Tensione-Tempo	63
Fig. 68 - Provino 9_09: Tensione-Spostamento, Tensione-Tempo	63
Fig. 69 - Provino 9_10: Tensione-Spostamento, Tensione-Tempo	64
Fig. 70 - Provino 9_11: Tensione-Spostamento, Tensione-Tempo	64
Fig. 71 - Provino 9_12: Tensione-Spostamento, Tensione-Tempo	65
Fig. 72 - Distribuzione delle tensioni di rottura per la serie_13	66
Fig. 73 - Serie_13: confronto grafici Tensione-Spostamento	66
Fig. 74 - Distribuzione delle tensioni di rottura per la serie_14	67
Fig. 75 - Serie_14: confronto grafici Tensione-Spostamento	67
Fig. 76 - Distribuzione delle tensioni di rottura per la serie_8	68
Fig. 77 - Serie_8: confronto grafici Tensione-Spostamento	68

Fig. 78 - Distribuzione delle tensioni di rottura per la serie_9	69
Fig. 79 - Serie_9: confronto grafici Tensione-Spostamento	69
Fig. 80 - Istogramma riassuntivo dei valori di tensione di rottura per le pro	ve
statiche	70
Fig. 81 - Distribuzione delle tensioni di rottura per tutti i provini testati, a	
confronto con la curva teorica di distribuzione normale	71
Fig. 82 - Istogrammi cicli a rottura, riduzione di carico del 20%	79
Fig. 83 - Istogramma confronto <i>media serie</i> n° cicli a rottura, carico ridotto)
del 20%	79
Fig. 84 - Istogrammi cicli a rottura, riduzione di carico del 30%	80
Fig. 85 - Istogramma confronto <i>media serie</i> n° cicli a rottura, carico ridotto)
del 30%	80
Fig. 86 - Istogrammi cicli a rottura, riduzione di carico del 40%	81
Fig. 87 - Istogramma confronto <i>media serie</i> n° cicli a rottura, carico ridotto	
del 40%	81
Fig. 88 - Diagramma di Wöhler per provini serie_13 (a); Diagramma con	01
ascisse in scala logaritmica (b)	82
Fig. 89 - Diagramma di Wöhler per CC802-serie_13 (ascisse in scala	0 2
logaritmica)	82
Fig. 90 - Diagramma di Wöhler per provini serie_14 (a); Diagramma con	02
ascisse in scala logaritmica (b)	83
Fig. 91 - Diagramma di Wöhler per CC802-serie_14 (ascisse in scala	05
logaritmica)	83
Fig. 92 - Diagramma di Wöhler per provini serie_8 (a); Diagramma con	05
ascisse in scala logaritmica (b)	84
Fig. 93 - Diagramma di Wöhler per CC802-serie_8 (ascisse in scala	04
logaritmica)	84
Fig. 94 - Diagramma di Wöhler per provini serie_9 (a); Diagramma con	0-1
ascisse in scala logaritmica (b)	85
Fig. 95 - Diagramma di Wöhler per CC802-serie_9 (ascisse in scala	05
logaritmica)	85
Fig. 96 - Confronto tra diagrammi di Wöhler per serie_13 e serie_14	0.5
(configurazione 1)	86
Fig. 97 - Confronto tra diagrammi di Wöhler per serie_8 e serie_9	00
(configurazione 2)	86
Fig. 98 - Confronto tra diagrammi di Wöhler per serie_8 e serie_14 (n° di p	
PARI)	87
Fig. 99 - Confronto tra diagrammi di Wöhler per serie_9 e serie_13 (n° di p	
DISPARI)	87
,	91
Fig. 100 - Provino 13A_28 Fig. 101 Provino 13A_03: Tensione Spostamento, Tensione Tempo	91
Fig. 101 - Provino 13A_03: Tensione-Spostamento, Tensione-Tempo	
Fig. 102 - Provino 13A_12: Tensione-Spostamento, Tensione-Tempo	92
Fig. 103 - Provino 13A_23: Tensione-Spostamento, Tensione-Tempo	93
Fig. 104 - Provino 13A_27: Tensione-Spostamento, Tensione-Tempo	93
Fig. 105 - Provino 13A_32: Tensione-Spostamento, Tensione-Tempo	94

Fig. 106 - Distribuzione delle tensioni di rottura per la serie_13A	95
Fig. 107 - Serie_13A: confronto grafici Tensione-Spostamento	95
Fig. 108 - Istogramma riassuntivo dei valori di tensione di rottura per le	
prove statiche	96
Fig. 109 - Valori di tensione di rottura per serie 13 e 13A	96
Fig. 110 (a, b) - Istogramma cicli a rottura con riduzione carico 20%: sin	golo
provino serie_13A (a) e confronto dei risultati con serie_13 (b)	98
Fig. 111 - Istogramma cicli a rottura con riduzione carico 30%: singolo	
provino serie_13A (a) e confronto dei risultati con serie_13 (b)	98
Fig. 112 - Istogramma cicli a rottura con riduzione carico 40%: singolo	
provino serie_13A (a) e confronto dei risultati con serie_13 (b)	98
Fig. 113 - Diagramma di Wöhler per provini serie_13A (a); Diagramma di	con
ascisse in scala logaritmica (b)	99
Fig. 114 - Confronto tra diagrammi di Wöhler serie_13A/serie_13	99
Fig. 115 - Distribuzione degli sforzi di compressione e trazione in un	
laminato con numero di ply PARI e DISPARI	102
Fig. 116 - Diagramma di Wöhler serie_9 (ipotesi)	104
Fig. 117 - Rottura statica del provino 13A_03	117
Fig. 118 - Modalità di propagazione di una cricca nella rottura statica del	
provino 13A_03 (ingrandimento 5x)	117
Fig. 119 - Rottura del provino 13A_07, sottoposto a prove di fatica con	
carico massimo ridotto del 20%	117
Fig. 120 - Particolare ingrandito del principio della cricca a contatto con	la
traversa del provino 13_07 (ingrandimento 5x)	117
Fig. 121 - Rottura del provino 13A_18, sottoposto a prove di fatica con	
carico massimo ridotto del 40%	117
Fig. 122 - Particolare ingrandito della propagazione di rotture multiple de	el
provino 13_18 (ingrandimento 5x)	117

Indice delle tabelle

Tab. 1 - Proprietà Fibra di Carbonio e Resina Epossidica	16
Tab. 2 - Esempio Notazione di un laminato simmetrico con numero	
dispari di lamine e di un laminato non simmetrico con numero pari	
di lamine	18
Tab. 3 - Caratteristiche del pre-impregnato	23
Tab. 4 - Proprietà meccaniche del pre-impregnato	24
Tab. 5 - Dimensioni e configurazione dei provini testati	26
Tab. 6 - Caratterizzazione dimensionale serie_13	39
Tab. 7 - Caratterizzazione dimensionale serie_14	39
Tab. 8 - Caratterizzazione dimensionale serie_8	40
Tab. 9 - Caratterizzazione dimensionale serie_9	40
Tab. 10 - Volume, densità e sezione resistente serie_13	41
Tab. 11 - Volume, densità e sezione resistente serie_14	42
Tab. 12 - Volume, densità e sezione resistente serie_8	42
Tab. 13 - Volume, densità e sezione resistente serie_9	43
Tab. 14 - Valori densità misurata e teorica a confronto	44
Tab. 15 - Legenda: calcolo sezione resistente nominale per le diverse	
configurazioni	65
Tab. 16 - Risultati prova statica per provini della serie_13	66
Tab. 17 - Risultati prova statica per provini della serie_14	67
Tab. 18 - Risultati prova statica per provini della serie_8	68
Tab. 19 - Risultati prova statica per provini della serie_9	69
Tab. 20 - Risultati prove di fatica su provini della serie_13	73
Tab. 21 - Risultati prove di fatica su provini della serie_14	74
Tab. 22 - Risultati prove di fatica su provini della serie_8	75
Tab. 23 - Risultati prove di fatica su provini della serie_9	76
Tab. 24 - Calcoli per lo svolgimento del Q-test di Dixon	78
Tab. 25 - Calcoli per il Q-test per il provino 9_22	78
Tab. 26 - Dimensioni e configurazione della serie_13A	89
Tab. 27 - Caratterizzazione dimensionale serie_13A	90
Tab. 28 - Volume, densità e sezione resistente serie_13A	91
Tab. 29 - Risultati prova statica per provini della serie_13A	95
Tab. 30 - Risultati prove di fatica su provini della serie_13A	97

Introduzione

I materiali compositi, grazie alla combinazione delle proprietà dei singoli componenti di cui sono costituiti, in particolare la coesistenza di elevate caratteristiche meccaniche e pesi ridotti, rivestono da tempo un ruolo fondamentale nell'industria aeronautica e nel settore delle competizioni automobilistiche e motociclistiche. La possibilità di progettare i materiali in funzione della loro applicazione, unita alla riduzione dei costi di produzione, permette una crescente diffusione del loro utilizzo, e l'ampliamento delle applicazioni a moltissimi altri settori, sia per componenti di tipo strutturale, sia di tipo estetico.

La crescente diffusione dei materiali compositi ha reso necessario lo studio, sempre più approfondito, del comportamento e delle proprietà di tali materiali.

Nonostante la quantità di studi in merito, nell'ambito del comportamento a fatica dei compositi, non sono ancora presenti risultati attendibili per la previsione della resistenza e della vita a fatica in relazione ad un determinato tipo di sollecitazione; non almeno a livello dei materiali tradizionali.

L'obiettivo di questa tesi è indagare eventuali variazioni del comportamento a fatica di un laminato in CFRP in relazione al variare di parametri quali dimensioni e sequenza di impilamento delle ply.

Per tale scopo sono state realizzate delle prove per il calcolo del comportamento a fatica, in particolare prove di flessione in 3 punti, e si sono poi confrontati tra loro i risultati sperimentali e correlati al variare dei parametri di interesse.

L'attività è stata svolta in collaborazione con RI-BA Composites S.r.l. di Faenza, e con i laboratori dell'Università di Bologna, nella sede di Forlì.

Capitolo 1 - Materiali compositi a matrice polimerica

I materiali compositi sono materiali costituiti dalla combinazione tridimensionale di almeno due componenti, tra loro differenti per forma, stato, composizione chimica e struttura.

Più precisamente sono materiali polifasici le cui fasi non possono essere trasformate le une nelle altre per mezzo di trattamenti termici.

La combinazione così ottenuta può vantare proprietà chimicofisiche non riscontrabili nelle singole fasi che la compongono.

La maggior parte dei materiali compositi è formata da due componenti: un rinforzo, che ne determina le proprietà meccaniche, e una matrice, che ne determina le caratteristiche di applicazione.

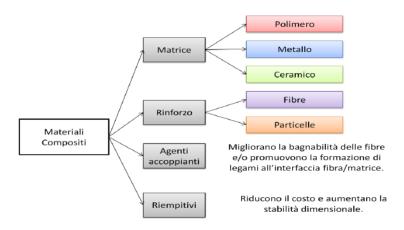


Figura 1 - Schema generale Materiali Compositi

1.1 - Rinforzo

Il rinforzo può essere utilizzato sotto forma di particelle o fibre, che a loro volta possono essere lunghe, unidirezionali o tessute, oppure corte, con orientamento casuale.

Ha la funzione principale di sostenere il carico, fornendo adeguata resistenza e rigidezza.

Le fibre possono essere costituite da diversi materiali, quali vetro, carbonio, aramide, boro, ecc, e la scelta dipende dalla particolare applicazione oltre che dal tipo di interazione con la matrice.

In particolare le fibre di carbonio sono ottenute tramite pirolisi a partire principalmente da poliacrilonitrile (PAN), che dopo alcuni passaggi consente di ottenere puri filamenti di carbonio con diametro dell'ordine di grandezza della decina di micron. Questi vengono intrecciati a formare yarn, o raggruppati in fasci a formare tow, usati a loro volta per ottenere unidirezionali e tessuti.

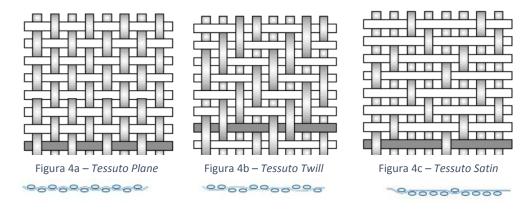


Figura 3 - Tipologie di fibre

Figura 2 - Filamento di carbonio a confronto con capello umano

Riportati a titolo di esempio 3 diversi tessuti, i quali si differenziano per la percentuale trama-ordito (n° di fibre 90° rispetto a quelle a 0°), che determina se il tessuto sia bilanciato o sbilanciato, e per lo stile (percorso dei "fili" di ordito rispetto a quelli di trama):

Ogni tipologia di tessuto presenta differenti caratteristiche, in base alle quali viene scelta per differenti componenti: stabilità, drappabilità, simmetria, bilanciamento e non ultime finitura superficiale ed estetica.

Le elevate caratteristiche meccaniche delle fibre di carbonio, in particolare il modulo e la resistenza, dipendono in parte dal precursore (PAN, pece, rayon) ed in parte dalle temperature differenti durante i processi di produzione dei filamenti (carbonizzazione, grafitizzazione, ...). Si distinguono infatti:

- HTS (High Tensile Strength): resistenza superiore a 4.000 MPa, modulo E fino a 250 GPa e allungamento a rottura attorno a 1,5-1,9%;
- HM (High Modulus): modulo tra 350 e 500 Gpa, resistenza attorno a 2.000 Mpa, e allungamento di 0,5%;
- IM (Intermediate Modulus): resistenza simile alle HTS, modulo tra 250 e 350 GPa, e allungamento attorno a 1,5%.

1.2 - Matrice

La matrice viene utilizzata allo scopo di tenere legate le fibre, di distribuire il carico sul rinforzo, e dare inoltre una forma definita al composito.

Anche la matrice può avere diversa natura: metallica, ceramica o polimerica.

In particolare i materiali polimerici, con riferimento alle proprietà derivanti dalla conformazione strutturale delle molecole, e alla loro variazione di viscosità con la temperatura, si distinguono in:

- <u>Termoplastici</u>: dopo la polimerizzazione, l'aumento di T comporta una diminuzione della viscosità permettendo la reversibilità del processo di indurimento (possono tornare allo stato fluido);
- Termoindurenti: materiali plastici che si presentano sotto forma di resine prima di essere polimerizzati; durante il processo di reticolazione, per effetto dell'aumento di temperatura, la viscosità dapprima cala, per poi crescere rapidamente. Una volta raggiunto il punto di gelificazione, si sono creati legami all'interno delle catene polimeriche tali da rendere il processo irreversibile (l'aumento della T porta a rammollimento e al degrado del materiale);
- <u>Elastomeri</u>: possono essere sia termoindurenti che termoplastici, e la caratteristica principale è proprio quella di poter subire elevate deformazioni elastiche, tornando nella situazione iniziale a riposo.

1.3 - CFRP

I CFRP (Carbon Fiber Reinforced Polymer) sono materiali compositi costituiti da una matrice polimerica e da un rinforzo in fibra di carbonio.

L'utilizzo di questa tipologia di materiale è in aumento, in moltissime applicazioni, grazie alla caratteristica di abbinare elevate prestazioni e basse densità, ottenendo proprietà e caratteristiche meccaniche specifiche migliori rispetto ai materiali convenzionali.

Tra le resine termoindurenti, le più utilizzate come matrici di materiali compositi per impieghi strutturali in abbinamento alle fibre di carbonio, sono quelle epossidiche, grazie alle migliori proprietà meccaniche, alla buona adesione con le fibre e alla bassa contrazione durante il processo di reticolazione.

A titolo di esempio viene riportata una tabella che riassume le proprietà dei due componenti:

		Fibra di carbonio	Resina epossidica
Densità [g/cm3]	ρ	1,7 ÷ 2,1	1,2
Tensione di rottura [MPa]	σ_r	1500 ÷ 3500	85
Modulo Elastico [GPa]	E _{xx}	230 ÷ 520	4,9
Tabella 1 – Proprietà Fibra di Carbonio e Resina Epossidica		Risultano poco resistenti a taglio e a T superiori a 500°C in presenza di ossigeno	Temperature di esercizio non superiori a 100° ÷ 200°C

Le caratteristiche del prodotti dipendono dalle proprietà dei singoli componenti (rinforzo e matrice), e dalla loro interazione: variano quindi in base alla quantità di fibra e matrice in esso contenute (percentuali in peso e in volume di rinforzo rispetto al totale del composito, M_f e V_f).

Un altro importante fattore che determina proprietà e caratteristiche del prodotto è la tecnologia di produzione, scelta di volta in volta tenendo presente forma, dimensioni e prestazioni richieste dal componente finale.

Una delle tecnologie di produzione di CFRP consiste nella sovrapposizione a freddo di preimpregnati, ovvero semi-lavorati costituiti da strati di fibre unidirezionali o tessuti, impregnati di resina ad uno stadio intermedio di polimerizzazione: la stratificazione (lay-up) viene seguita da una fase di formatura in stampo e infine da una reticolazione controllata in autoclave. Il ciclo di cura viene eseguito a combinazioni di temperatura e pressione ottimali, differenti per ogni tipo di materiale, dopo aver eseguito un processo detto "sacco a vuoto". Questa tecnologia permette di ottenere forme complesse, a fronte però di un basso livello di produttività.

Altre tecniche di produzione, in generale con produttività più alta ma utilizzabili solo per forme più semplici, sono ad esempio la pultrusione e il filament winding. La tecnologia del resin transfer moulding permette invece livelli di produttività elevati pure per forme complesse.

1.4 – Laminati

Si definisce laminato un materiale costituito da più strati, o lamine (layer) di materiale composito.

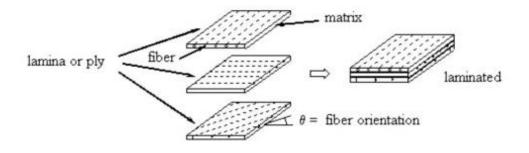


Figura 5 – Schema generale Laminato

I laminati vengono utilizzati, come materiali strutturali, laddove vi sia da un lato la necessità di elevate prestazioni meccaniche in termini di rigidezza, resistenza, e dall'altro l'esigenza di limitare il peso.

L'orientamento delle fibre permette l'ottimizzazione del comportamento meccanico lungo una o più direzioni specifiche, motivo per cui, in fase di progettazione, si va ad individuare, in relazione alle caratteristiche ricercate nel componente finale, la sequenza di impilamento più adatta per ogni situazione.

La sequenza di laminazione viene identificata a partire dalla lamina inferiore: per ogni ply si indica l'orientamento, separato dal successivo mediante una barra obliqua; si utilizzano pedici per indicare il numero di lamine consecutive con identico orientamento. Allo scopo di limitare la distorsione dei pannelli, dovuta sia alla contrazione termica a seguito del ciclo di consolidamento, che all'applicazione di carichi esterni, è frequente il ricorso a sequenze di laminazione simmetriche rispetto al piano di mezzeria del laminato: in questo caso è necessario specificare soltanto la prima metà della sequenza di stratificazione; i laminati simmetrici sono identificati dal pedice "s" applicato alla parentesi quadra.

n° lamine	orientamento	NOTAZIONE
1	90°	
2	45°	
3	45°	
4	0°	[90/45 ₂ /0] _s
5	45°	
6	45°	
7	90°	

n° lamine	orientamento	NOTAZIONE
1	90°	
2	+45°	
3	0°	[90/45/0/-45/90]
4	0°	[90/45/0/-45/90]
5	-45°	
6	90°	

Tabella 2 – Esempio Notazione di un laminato simmetrico con numero dispari di lamine (sopra) e di un laminato non simmetrico con numero pari di lamine (sotto)

1.5 – Comportamento a fatica nei compositi

A differenza dei materiali metallici, i materiali compositi sono materiali non omogenei e anisotropi anche a una scala di osservazione molto più grande di quella tipica della microstruttura dei materiali policristallini.

Una delle differenze fondamentali, rispetto ai materiali metallici, è la tendenza ad accumulare danno in modo diffuso e progressivo, piuttosto che a localizzarlo in una singola macro-frattura.

I meccanismi di danno, inoltre, sono molteplici: si può affermare che esistano 4 tipologie di danneggiamento ben riconoscibili e distinguibili nei materiali compositi:

- danneggiamento progressivo della matrice;
- danneggiamento dell'interfaccia fibra-matrice;
- rottura delle fibre a trazione e a compressione;
- fenomeni di delaminazione.

I primi tre meccanismi di danno sono di tipo intralaminare, ovvero avvengono all'interno dello spessore di una lamina, mentre l'ultimo è di tipo interlaminare ed è originato dalle componenti di sforzo agenti al di fuori del piano del laminato, ovvero gli sforzi interlaminari.

In dipendenza dalla sequenza di laminazione, dalla natura del materiale e dal tipo di processo produttivo, oltre che dalle condizioni ambientali e dal tipo di sollecitazione, i meccanismi di danno possono evolversi in maniera indipendente oppure simultanea, con eventuali interazioni reciproche, portando alla predominanza dell'uno rispetto all'altro.

In particolare le fratture per delaminazione possono avvenire secondo tre modalità di base, o secondo una combinazione delle stesse:

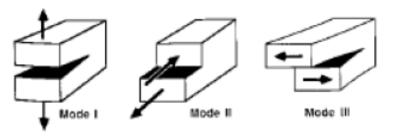


Figura 6 – Modalità di propagazione delle fratture interlaminari

Le delaminazioni di modo II e III sono promosse dagli sforzi di taglio interlaminare, mentre le de laminazioni in modo I sono innescate da sforzi normali interlaminari.

L'esecuzione di prove a fatica su provini in materiale composito provoca l'accumulo di danno, che evolve quindi secondo molteplici meccanismi: nelle sollecitazioni cicliche, la disomogeneità dello stato di sforzo e delle proprietà meccaniche a livello microstrutturale, può nucleare le diverse tipologie di danneggiamento anche per livelli di sforzo inferiori a quelli corrispondenti all'attivazione dei meccanismi di danno in condizioni quasistatiche.

Tale accumulo di danno porta ad una riduzione della resistenza e della rigidezza residue, riscontrabile eventualmente interrompendo il test a fatica ed eseguendo una prova statica a rottura.

Oltre un certo livello di accumulo nella prova a fatica si ha il cedimento finale del campione, che generalmente avviene di schianto.

Analogamente a quanto avviene nei materiali metallici, è possibile costruire un diagramma di Wöhler, noti il numero di cicli a cui è stato sottoposto il campione e l'ampiezza dell'oscillazione di carico.

Questo tipo di analisi permette di individuare alcune tendenze nella caratterizzazione del comportamento a fatica dei compositi, che rimane tuttavia un fenomeno complesso.

Motivo per il quale è spesso richiesta una caratterizzazione differente per ogni sequenza di laminazione.

Capitolo 2 – Pianificazione delle prove sperimentali

2.1 – Introduzione

Come anticipato, lo scopo di questo lavoro di tesi, e di conseguenza della campagna di prove sperimentali, è la caratterizzazione del comportamento a fatica di laminati simmetrici realizzati in CFRP, tutti con identico materiale, ma differenti tra loro per dimensioni e sequenza di laminazione.

2.2 - Normativa di riferimento

Al fine di realizzare uno studio che sia più aderente possibile a schemi e metodi di prova standardizzati, è stata effettuata una ricerca bibliografica all'interno delle normative di riferimento nel campo dei materiali compositi, ed in particolare riguardo standard e metodi inerenti prove di sforzo e sollecitazione sui laminati in CFRP.

Dalla ricerca è emersa l'assenza di una normativa unica di riferimento riguardante i test a fatica, in particolar modo test di flessione a fatica su campioni della tipologia trattata.

Tuttavia è sembrato corretto cercare un'impostazione di lavoro che si fondasse su indicazioni utili per realizzare prove confrontabili e ripetibili.

Questo riferimento è stato individuato nella normativa:

ASTM - D2344/D2344M – 13
"Standard Test Method for Short-Beam Strength of Polymer
Matrix Composite Materials and Their Laminates"

Tale normativa rappresenta uno standard per i test di flessione a 3 punti statici, ma è stata applicata come riferimento:

o per la realizzazione dei campioni, in merito a geometria, dimensioni e sequenze di laminazione:

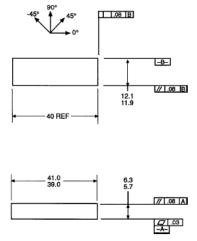


Figura 7 – specifiche del provino ad asse rettilineo come da Normativa di riferimento

La normativa stabilisce che i provini realizzati con dei tessuti devono seguire uno schema di laminazione in cui almeno il 10% delle fibre a 0° siano orientate nella direzione della lunghezza del provino.

Inoltre stabilisce anche che il laminato deve essere sia bilanciato che simmetrico.

Per tale motivo i provini sono stati realizzati seguendo uno schema di laminazione in cui tutte le ply hanno orientamento 0°/90°.

- o per le attrezzature di prova utilizzate;
- o per la predisposizione dei test, in particolare riguardo distanza e diametro dei cilindri di supporto e condizioni ambientali;

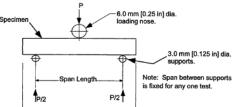


Figura 8 – specifiche delle attrezzature di prova per il provino ad asse rettilineo come da Normativa di riferimento

 per i parametri applicati, come velocità di avanzamento e condizioni di arresto della prova;

L'applicazione del carico è stata interrotta, come da normativa, se:

- si è riscontrata una caduta del 30% del carico applicato
- il campione si è spezzato in due parti
- la corsa della testa ha superato lo spessore nominale del campione.

La prova quasi-statica è condotta in controllo di deformazione, con una velocità di discesa dello spintore suggerita di 1 mm/min.

Il calcolo dell'*ILSS* viene fatto con la seguente formula, corrispondente allo sforzo di taglio massimo sulla sezione:

ILSS=0,75 F/A

o per una parte del calcolo statistico.

2.3 - Progettazione dei test

Per la valutazione del comportamento a fatica, è stato scelto il test di Interlaminar Shear Strength (ILSS): questo tipo di prova consiste nel vincolare i provini con due appoggi nella parte inferiore, caricati in mezzeria con un cuneo solidale alla traversa mobile della macchina.

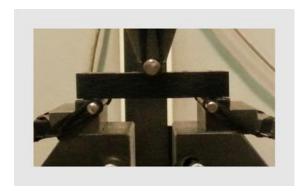


Figura 9 – Provino in posizione di prova

Eseguita in condizioni quasi-statiche, questa prova consente di ottenere la tensione di rottura (a flessione); dato a partire dal quale è possibile calcolare i parametri necessari per lo svolgimento dello stesso tipo di prova in condizioni dinamiche, ovvero con provini sottoposti a cicli di carico sinusoidali, con determinato rapporto di carico, carico massimo e frequenza. Test quest'ultimo che permette di ricavare il numero di cicli a rottura del campione.

Materiale

La caratterizzazione è stata effettuata per campioni realizzati con:

tessuto pre-impregnato SAATI CC802 ET445S 35%

CARATTERISTICHE	SAATI CC802 ET445S 35%	
Produttore	SAATI Composites	
Sistema di impregnazione	ET445S	
Tessuto	24K T700	
Tessitura	Twill 2x2	
Contenuto in resina [%]	35	
Densità teorica [g/cm³] [1]	1,47	
Grammatura [g/m²]	802	

Tabella 3 – Caratteristiche del pre-impregnato

$$\rho_{th} = \frac{1}{\frac{9}{9}_{rc}} + \frac{9}{9}_{fc}$$

$$\rho_{th} = \text{densità teorica del laminato}$$

$$\gamma_{rc} = \text{percentuale contenuto in resina}$$

$$\gamma_{fc} = \text{percentuale contenuto in fibra}$$

 ho_r = densità della resina, tipicamente 1,1 $\frac{g}{cm^3}$ ho_f = densità della fibra, tipicamente 1,8 $\frac{g}{cm^3}$

MECHANICAL PROPERTIES OF CC802 ET445S 35% 24K T700 FIBRE, 2X2 TWILL FABRIC

Cured Material Property	Unit	Actual Values Vf: 55.3%	Normalized Vf: 60.0%
Tensile Modulus 0°	GPa	62.8	68.1
Tensile Strength 0°	MPa	1051	1140
Poisson's ratio 0°	-	0.08	-
Compressive Modulus 0°	GPa	57.7	62.6
Compressive Strength 0°	MPa	546	593
In plane shear Modulus	GPa	4.38	
In plane shear Strength*	MPa	73.1	-
Interlaminar Shear Strength	MPa	61.8	-

Provini

Per semplicità si è scelto di realizzare campioni ad asse rettilineo e piano, seguendo uno schema di laminazione in cui tutte le ply hanno orientamento $0^{\circ}/90^{\circ}$.

Tabella 4 – Proprietà meccaniche del pre-impregnato

Per quanto riguarda il dimensionamento, si è tenuto conto dei seguenti fattori:

• <u>riferimento alle proporzioni da Normativa ASTM - D2344</u>:

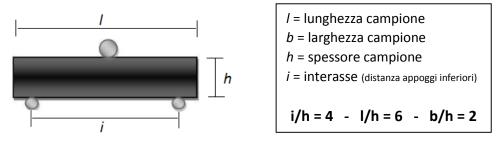
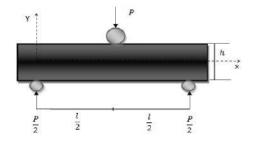



Figura 10 – Schema delle proporzioni nel test di flessione

• <u>carico massimo applicabile dalla macchina disponibile per i test</u>: ricerca di dimensioni tali che il campione possa rompersi a fatica statica (1 ciclo) a circa il 10% del carico massimo che può esercitare la macchina utilizzata, con conseguente <u>vincolo sul valore del carico</u> (*P*): 10 kN

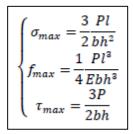


Figura 11 – Schema del carico nel test di flessione

- tensione di rottura: 1051 MPa (scheda tecnica)
- la <u>deformazione</u> che il provino subisce durante la prova non deve essere eccessiva, in dipendenza dall'attrezzaggio utilizzato, con conseguente <u>vincolo sulla freccia massima dei campioni sottoposti a flessione</u>: **f**_{max} = **10% i**
- modulo di young (E): 62.5 GPa (scheda tecnica)
- interlaminar shear strength: **61.8 MPa** (scheda tecnica)
- <u>necessità di diverse configurazioni</u>: allo scopo di indagare differenze nel comportamento in relazione a diversi spessori e differenti sequenze di impilamento (in relazione al numero, non all'orientamento)

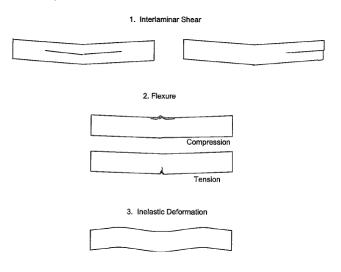


Figura 12 - Tipiche modalità di rottura nella prova per analisi dell'ILSS

Definendo:

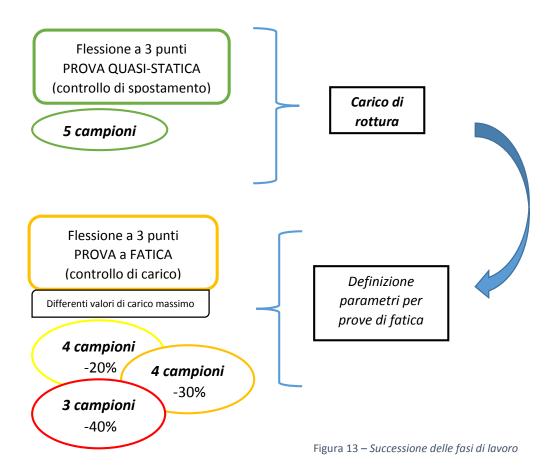
- \underline{h} \rightarrow spessore del campione
- $h_{\sigma} \rightarrow$ altezza dimensionata rispetto alla tensione di rottura
- $h_f \rightarrow$ altezza dimensionata rispetto alla freccia massima che il provino raggiungerà durante la flessione
- $h_{\tau} \rightarrow$ altezza dimensionata rispetto allo sforzo di taglio

$$h_{\sigma} = \sqrt{\frac{3}{2} \frac{Pl}{b\sigma_{max}}}$$

$$h_{f} = \sqrt[3]{\frac{1}{4} \frac{Pl^{3}}{Ebf_{max}}}$$

$$h_{\tau} = \frac{3P}{2h\tau}$$

affinché il provino non raggiunga il valore di freccia massima e non si verifichi frattura per trazione delle fibre, ma invece una rottura a taglio, dovrà risultare:


$$h_f < h_\sigma < \underline{h} < h_\tau$$

Ne consegue, noto il valore sperimentale del C.P.T. del materiale, pari a 0.77 mm, la seguente scelta delle configurazioni dei provini da testare:

	configurazione 1		configurazione 2	
lunghezza nominale I ₀ [mm]	60	60	40	40
larghezza nominale b o [mm]	20	20	13	13
spessore nominale h_0 [mm]	10,78	10,01	6,93	6,16
n° ply	14	13	9	8
interasse i [mm]	42		27	
	serie 14-ply	serie 13-ply	serie 9-ply	serie 8-ply

Tabella 5 – Dimensioni e configurazione dei provini testati

Per ogni tipologia di campione, ovvero per ognuna delle 4 differenti serie, la procedura di lavoro è la stessa, schematizzata in figura:

Le prove sperimentali effettuate sono dunque su 4 tipologie di provini (diverso n° di ply), differenziati in 2 configurazioni (dimensioni).

Per ogni serie sono stati testati 16 campioni, per un totale di 64 test.

Capitolo 3 - Realizzazione e caratterizzazione dei campioni

Come visto nel capitolo precedente, si è deciso di utilizzare per le prove sperimentali dei campioni ad asse piano e rettilineo, realizzati con materiale SAATI CC802 ET445S 35%.

Data l'impossibilità di realizzare direttamente i provini per motivi tecnologici, sono state create delle lastre dalle quali sono stati successivamente tagliati i provini.

Di seguito è riportato l'intero processo di realizzazione delle lastre, a partire dalla tecnica di laminazione manuale di pre-impregnati, fino alla successiva polimerizzazione in autoclave.

3.1 - Realizzazione dei campioni

Preparazione dei materiali e laminazione

I pre-impregnati vengono conservati in rotoli, all'interno di celle frigorifere alla temperatura di -18° C, che permette di mantenere inalterate le caratteristiche meccaniche e di lavorabilità per un periodo che arriva anche a dodici mesi dalla produzione (conservati a temperatura ambiente il materiale sarebbe già alterato dopo 4 settimane).

Figura 14 (a, b) – Rotoli di materiale pre-impregnato conservati in cella frigorifera (a), singolo rotolo pronto per il taglio (b)

Una volta prelevato il rotolo dalla cella è opportuno attendere che il materiale torni gradualmente a temperatura ambiente, dopodiché si passa al taglio delle sagome: un processo in genere automatizzato (plotter utilizzati insieme a software per la digitalizzazione delle sagome e ottimizzazione delle composizioni), ma nel caso in

esame, per la realizzazione di una piastra piana, svolto manualmente.

Figura 15 (a, b, c) – Taglio manuale delle sagome

Prima di procedere con la vera e propria sovrapposizione degli strati, è necessario preparare gli stampi: per facilitare l'operazione di estrazione del laminato dopo il ciclo di cura in autoclave, si è applicato sulle superfici di stampo e controstampo un distaccante a rapida polimerizzazione.

Le superfici delle piastre in acciaio che saranno a contatto con le lamine vengono pulite e attraverso un panno, si va ad applicare il primo strato di agente distaccante; in pochi minuti il film di distaccante inizia ad evaporare, momento in cui si procede con la seconda applicazione.

seconda Figura 16 – Stampo e Controstampo in acciaio inox dopo l'applicazione del distaccante

Dopo l'ultima (nel nostro caso 4-5 applicazioni), si attende almeno una trentina di minuti prima di utilizzare lo stampo.

L'utilizzo di un controstampo permetterà di ottenere una migliore compattazione delle ply, con conseguente maggiore uniformità di spessori, oltre che di avere una buona finitura su entrambe le superfici.

Una volta ultimata la preparazione degli stampi e delle sagome, si passa alla fase di laminazione vera e propria: si sovrappongono le sagome, in numero e orientamento stabiliti. Nel nostro caso, tutto le ply hanno orientamento $0^{\circ}/90^{\circ}$, e come visto si sono ottenute 4 differenti lastre con rispettivamente sovrapposizione di 8, 9, 13 e 14 strati.

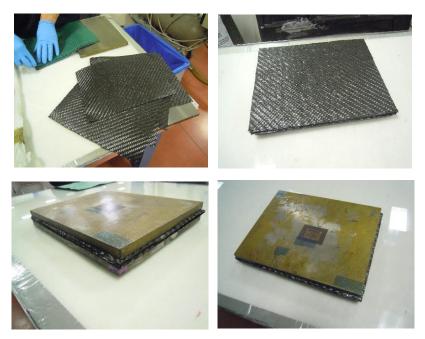


Figura 17 (a, b, c, d) - Laminazione manuale

L'applicazione di ogni singolo strato è stata effettuata manualmente, con l'utilizzo di una spatola in teflon per la stesura della ply, in modo da evitare grinze e stenderla in modo uniforme; le operazioni descritte sono state svolte in clean room, ovvero in ambiente con controllo di temperatura, umidità e particelle per m³.

Una volta terminata la fase di laminazione, si è passati alla preparazione del "sacco a vuoto", cioè l'insieme del sistema stampo-laminato-controstampo, e materiali ausiliari indispensabili per ottenere una buona compattazione in autoclave:

- peel-ply, pellicole di materiale distaccante

Figura 18 – Peel-ply

- *tessuto assorbitore-aeratore*, che facilita il processo di estrazione di aria dall'interno del sacco

Figura 19 – *Tessuto assorbitore-aeratore*

- *una valvola a baionetta*, che permette il collegamento alla linea del vuoto e l'estrazione dell'aria

- *il sacco*, in materiale ad alta deformabilità
- *l'elastomero*, per sigillare il sacco (nel nostro caso butilene)

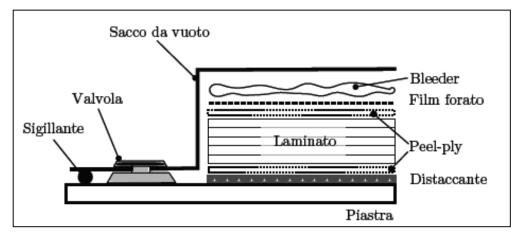


Figura 21 (a, b, c) – Schema di realizzazione del sacco (a), immagini del sacco a vuoto prima (b) e dopo (c) l'aspirazione di aria

L'aspirazione è fondamentale per ridurre la quantità d'aria intrappolata tra i diversi strati di materiale, oltre che per richiamare la resina a riempire meglio gli spazi tra le fibre; questo processo migliora le caratteristiche meccaniche del materiale e fornisce un ulteriore contributo alla compattazione del pezzo.

Il sacco deve essere perfettamente sigillato affinché il materiale venga sottoposto ad un ciclo di pressione e temperatura efficace; senza il sacco infatti, il pezzo non potrebbe subire alcuna compattazione perché non sarebbe soggetto a differenza di pressione.

Ciclo di cura ed estrazione

A questo punto si passa alla fase di polimerizzazione: il sacco viene sottoposto a un ciclo in autoclave, che consiste in aumento di pressione e temperatura, opportunamente progettato in dipendenza dal materiale.

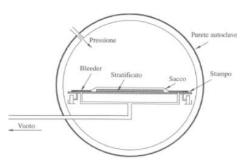


Figura 22 – Autoclave: immagine e schema di funzionamento

Figura 23 – Schema ciclo in autoclave a titolo di esempio

Terminato il ciclo in autoclave, che prende il nome di "cura" (dall'inglese *curing*), si passa alla fase di estrazione: si rimuove il sacco insieme a tutti i materiali ausiliari e con l'aiuto di un martello di gomma si separano stampo e controstampo dal laminato; infine si rimuovono eventuali bave di resina trafilate durante la polimerizzazione.

Figura 25 – Utensile per la rifilatura della lastra

Figura 24 – Laminato dopo la fase di estrazione

Avendo a disposizione solamente uno stampo e un controstampo con caratteristiche idonee al nostro scopo, si è ripetuto tutto il processo per ognuna delle quattro tipologie di provini soggetti alle prove sperimentali, ottenendo quindi quattro piastre.

Taglio

Il taglio delle lastre è stato effettuato con attrezzature da officina, in particolare mediante sega circolare, con larghezza di taglio 3mm.

Figura 26 - Immagini della sega circolare utilizzata per il taglio (destra), e di alcuni provini (sinistra)

Per motivi economici non è stato utilizzato il taglio ad acqua, in considerazione anche del fatto che per spessori dell'ordine dei 10 mm è possibile ottenere comunque tagli puliti, senza delaminazioni lungo la linea di taglio.

Nonostante le attrezzature utilizzate non consentano precisioni molto elevate su dimensioni così ridotte, si sono ottenuti risultati piuttosto buoni.

Sono riportati gli schemi di taglio delle lastre, per ricavare campioni in configurazione 1 e in configurazione 2:

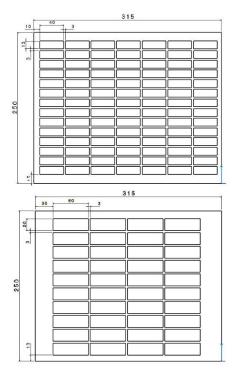
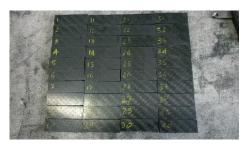


Figura 27 - Schemi di taglio piastra in config. 1 (inferiore) e config. 2 (superiore)


In fase di laminazione le ply sono state sovrapposte manualmente, quindi con una certa tolleranza di posizione, inoltre in fase di polimerizzazione il laminato può assestarsi e muoversi leggermente: il numero di campioni ottenuti non è per questo lo stesso previsto da disegno.

Serie $8 \rightarrow 98$ campioni Serie $9 \rightarrow 91$ campioni Serie $13 \rightarrow 40$ campioni Serie $14 \rightarrow 50$ campioni Per il riconoscimento dei provini sono state utilizzate etichette riportanti il codice identificativo:

dove:

- $xx \rightarrow \underline{n^{\circ} della serie}$ corrispondente al n° di strati [8, 9, 13, 14]
- $NN \rightarrow \underline{n^{\circ} progressivo a due cifre}$

Sono riportati alcune immagini dei provini realizzati:



Figura 28 – Provini ricavati dalle lastre laminate

Figura 29 (a, b, c) – *Provini 8_26 e 14_13* etichettati

Dopo aver ricavato tutti i campioni, si è proceduto alla loro caratterizzazione dimensionale, che ha permesso di selezionare quelli ottenuti con maggior precisione.

3.2 - Caratterizzazione dei campioni

Dimensioni e massa

La larghezza e lo spessore del campione sono state valutate prendendo tre sezioni differenti, in mezzeria e nelle vicinanze delle due estremità (vedi figura 30), mentre per la lunghezza si è presa un'unica misura.

Nelle tabelle seguenti viene riportato un solo valore anche per spessore e larghezza: questo corrisponde al valor medio delle misure sulle tre diverse sezioni del campione (le caratteristiche dimensionali sezione per sezione dei campioni utilizzati per le prove si possono trovare in Appendice A).

Figura 30 – Sezioni di misura spessore (Rosso) e larghezza (Verde)

Le misurazioni dimensionali sono state effettuate mediante *calibro digitale*, la massa è invece stata valutata tramite una *bilancia digitale* con sensibilità al millesimo di grammo:

Figura 31 – Calibro digitale (sinistra) e bilancia digitale (destra) utilizzati per le misurazioni dimensionali

Nelle tabelle seguenti (6, 7, 8, 9) vengono riportate le caratteristiche dimensionali e la massa di ogni campione utilizzato per le prove sperimentali, divise per sequenza di laminazione.

Si può notare che, nonostante il taglio sia di tipo manuale, è possibile raggiungere un buon livello di precisione e di ripetibilità.

Il massimo scostamento rispetto al valor medio, che troviamo sulla larghezza provino, non supera i tre punti percentuali; grazie all'utilizzo di stampo e controstampo invece, la variazione sullo spessore non supera su tutta la piastra, nel peggiore dei casi, gli 0.3 mm (in percentuale meno del 2%).

Le variazioni, misurate come errori percentuali, ottenute all'interno delle differenti serie sono inoltre paragonabili tra loro, e come mostrato da buoni valori della deviazione standard, la dispersione di dati attorno al valor medio è ridotta.

Equazione 1 – VALOR MEDIO
$$\bar{x} = \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right)$$
 Equazione 2 – DEVIAZIONE STANDARD
$$S_{n-1} = \sqrt{\frac{\left(\sum_{i=1}^{n} (x_i - \bar{x})^2 \right)}{(n-1)}}$$
 Equazione 3 – COEFFICIENTE di VARIAZIONE PERCENTUALE
$$CV = 100 \frac{S_{n-1}}{\bar{x}}$$

 $\overline{x} \rightarrow valor\ medio$

 $S_{n-1} \rightarrow deviazione standard$

 $CV \rightarrow coefficiente\ di\ variazione$

 $n \rightarrow numero \ di \ campioni \ per \ sequenza \ di \ laminazione$

 $x_i \rightarrow parametro\ misurato$

CONFIGURAZIONE 1:

Serie-13

n° provino	lunghezza / [mm]	larghezza ¹ b [mm]	spessore ¹ h [mm]	massa <i>m</i> [g]
13ply-02	60,14	20,08	10,34	19,139
13ply-03	60,15	20,04	10,32	19,206
13ply-08	60,19	20,11	10,31	19,180
13ply-10	60,19	20,05	10,30	19,126
13ply-12	60,04	20,08	10,31	19,141
13ply-14	60,17	20,06	10,32	19,227
13ply-16	60,14	20,06	10,30	19,167
13ply-26	60,18	20,04	10,30	19,062
13ply-27	60,11	20,13	10,30	19,112
13ply-28	60,10	20,15	10,30	19,113
13ply-29	60,11	20,00	10,27	19,015
13ply-34	59,14	20,43	10,29	19,216
13ply-35	59,22	20,41	10,32	19,170
13ply-37	59,45	20,40	10,29	19,191
13ply-39	59,63	20,43	10,27	19,299
13ply-40	59,64	20,31	10,29	19,231
MIN	59,14	20,00	10,27	19,02
MAX	60,19	20,43	10,34	19,30
errore min %	-1,29%	-0,84%	-0,34%	-0,77%
errore max %	0,46%	1,26%	0,34%	0,71%
mean value	59,91	20,17	10,30	19,16
s _{n-1}	0,36747	0,16000	0,01805	0,06959
CV %	0,613%	0,793%	0,175%	0,363%

Tabella 6 – Caratterizzazione dimensionale serie_13

CONFIGURAZIONE 1:

n° provino	lunghezza / [mm]	larghezza ¹ b [mm]	spessore ¹ h [mm]	massa <i>m</i> [g]
14ply-02	60,19	20,25	11,01	20,612
14ply-14	59,76	20,11	11,03	20,473
14ply-32	60,25	20,18	11,06	20,786
14ply-38	59,77	20,25	11,07	20,674
14ply-50	60,23	20,13	11,05	20,619
14ply-04	60,05	20,12	11,02	20,482
14ply-18	60,04	20,18	11,28	20,653
14ply-33	60,23	20,06	11,05	20,680
14ply-48	59,79	20,21	11,06	20,607
14ply-10	59,80	20,14	11,05	20,420
14ply-11	59,99	20,09	11,04	20,518
14ply-25	60,20	20,15	11,06	20,649
14ply-46	59,66	20,07	11,06	20,424
14ply-20	60,08	20,14	11,06	20,618
14ply-24	60,38	20,16	11,06	20,652
14ply-44	59,19	19,99	11,08	20,250
MIN	59,19	19,99	11,01	20,25
MAX	60,38	20,25	11,28	20,79
errore min %	-1,31%	-0,76%	-0,47%	-1,55%
errore max %	0,67%	0,55%	1,91%	1,05%
mean value	59,98	20,14	11,07	20,57
S _{n-1}	0,30069	0,06817	0,05902	0,13250
CV %	0,501%	0,338%	0,533%	0,644%

Tabella 7 – Caratterizzazione dimensionale serie_14

CONFIGURAZIONE 2:

Serie-8

n° provino	lunghezza / [mm]	larghezza ¹ b [mm]	spessore ¹ h [mm]	massa <i>m</i> [g]
8ply-01	40,23	13,40	6,46	5,269
8ply-33	40,47	13,52	6,42	5,393
8ply-55	40,13	13,51	6,35	5,332
8ply-78	40,39	13,34	6,38	5,306
8ply-98	39,98	13,44	6,33	5,248
8ply-03	40,10	13,43	6,40	5,258
8ply-25	40,29	13,26	6,41	5,243
8ply-51	40,51	13,57	6,39	5,421
8ply-75	40,28	13,46	6,42	5,298
8ply-15	40,08	13,13	6,40	5,123
8ply-66	40,51	13,42	6,37	5,318
8ply-91	40,43	13,44	6,38	5,329
8ply-22	40,49	13,33	6,38	5,402
8ply-12	40,11	13,42	6,38	5,285
8ply-54	40,45	13,53	6,40	5,377
8ply-77	40,38	13,36	6,42	5,307
MIN	39,98	13,13	6,33	5,12
MAX	40,51	13,57	6,46	5,42
errore min %	-0,80%	-2,09%	-0,94%	-3,46%
errore max %	0,52%	1,20%	0,99%	2,15%
mean value	40,30	13,41	6,39	5,31
S _{n-1}	0,17668	0,11065	0,02893	0,07366
CV %	0,438%	0,825%	0,453%	1,388%

Tabella 8 – Caratterizzazione dimensionale serie_8

CONFIGURAZIONE 2:

n° provino	lunghezza / [mm]	larghezza ¹ b [mm]	spessore ¹ h [mm]	massa <i>m</i> [g]
9ply-09	39,98	13,16	7,23	5,782
9ply-10	40,08	13,12	7,21	5,735
9ply-11	40,18	13,19	7,21	5,770
9ply-12	40,07	13,12	7,20	5,800
9ply-13	40,16	13,09	7,21	5,743
9ply-14	40,09	13,19	7,15	5,770
9ply-16	40,19	13,49	7,16	5,972
9ply-24	40,56	12,97	7,09	5,79
9ply-17	40,91	13,04	7,17	5,831
9ply-18	40,17	13,11	7,16	5,792
9ply-19	40,13	12,95	7,15	5,689
9ply-23	40,15	13,11	7,14	5,788
9ply-20	40,20	13,43	7,19	5,899
9ply-21	40,11	13,29	7,16	5,881
9ply-22	40,15	12,91	7,16	5,699
MIN	39,98	12,91	7,09	5,69
MAX	40,91	13,49	7,23	5,97
errore min %	-0,57%	-1,79%	-1,15%	-1,85%
errore max %	1,74%	2,63%	0,80%	3,04%
mean value	40,21	13,14	7,17	5,80
S _{n-1}	0,23074	0,16195	0,03595	0,07517
CV %	0,574%	1,232%	0,501%	1,297%

Tabella 9 – Caratterizzazione dimensionale seri_9

Volume e densità

A partire dalle misure dimensionali e dalla massa si ricavano per ogni provino i valori reali di volume e densità; nelle tabelle seguenti (10, 11, 12, 13) sono riportati pure i valori della sezione resistente, che risulteranno utili in seguito per il calcolo delle tensioni.

CONFIGURAZIONE 1:

n° provino	volume V [cm3]	densità ρ [g/cm3]	sezione resistente A [mm2]
13ply-02	12,5	1,5332	207,56
13ply-03	12,4	1,5437	206,85
13ply-08	12,5	1,5367	207,37
13ply-10	12,4	1,5384	206,55
13ply-12	12,4	1,5402	206,99
13ply-14	12,5	1,5440	206,95
13ply-16	12,4	1,5427	206,59
13ply-26	12,4	1,5353	206,31
13ply-27	12,5	1,5332	207,37
13ply-28	12,5	1,5325	207,51
13ply-29	12,3	1,5398	205,43
13ply-34	12,4	1,5454	210,26
13ply-35	12,5	1,5376	210,53
13ply-37	12,5	1,5380	209,88
13ply-39	12,5	1,5433	209,71
13ply-40	12,5	1,5427	209,02
MIN	12,35	1,53	205,43
MAX	12,51	1,55	210,53
errore min %	-0,81%	-0,43%	-1,14%
errore max %	0,45%	0,40%	1,31%
mean value	12,45	1,54	207,81
S _{n-1}	0,03684	0,00420	1,56283
CV %	0,296%	0,273%	0,752%

Tabella 10 – Volume, densità e sezione resistente per provini della serie_13

CONFIGURAZIONE 1:

Serie-14

n° provino	volume V [cm3]	densità ρ [g/cm3]	sezione resistente A [mm2]
14ply-02	13,4	1,5355	223,02
14ply-14	13,3	1,5438	221,92
14ply-32	13,4	1,5465	223,09
14ply-38	13,4	1,5437	224,06
14ply-50	13,4	1,5383	222,54
14ply-04	13,3	1,5391	221,62
14ply-18	13,7	1,5114	227,60
14ply-33	13,4	1,5487	221,70
14ply-48	13,4	1,5419	223,52
14ply-10	13,3	1,5339	222,61
14ply-11	13,3	1,5421	221,79
14ply-25	13,4	1,5384	222,96
14ply-46	13,2	1,5415	222,08
14ply-20	13,4	1,5399	222,85
14ply-24	13,5	1,5338	223,00
14ply-44	13,1	1,5449	221,45
MIN	13,11	1,51	221,45
MAX	13,67	1,55	227,60
errore min %	-1,94%	-1,79%	-0,63%
errore max %	2,23%	0,63%	2,13%
mean value	13,37	1,54	222,86
S _{n-1}	0,11979	0,00850	1,46372
CV %	0,896%	0,553%	0,657%

Tabella 11 – Volume, densità e sezione resistente per provini della serie_14

CONFIGURAZIONE 2:

n° provino	volume V [cm3]	densità ρ [g/cm3]	sezione resistente A [mm2]
8ply-01	3,5	1,5142	86,50
8ply-33	3,5	1,5361	86,75
8ply-55	3,4	1,5476	85,85
8ply-78	3,4	1,5431	85,13
8ply-98	3,4	1,5417	85,14
8ply-03	3,4	1,5255	85 <i>,</i> 95
8ply-25	3,4	1,5318	84,95
8ply-51	3,5	1,5441	86,67
8ply-75	3,5	1,5217	86,43
8ply-15	3,4	1,5219	83,99
8ply-66	3,5	1,5352	85,51
8ply-91	3,5	1,5380	85,70
8ply-22	3,4	1,5683	85,07
8ply-12	3,4	1,5385	85,64
8ply-54	3,5	1,5343	86,64
8ply-77	3,5	1,5323	85,77
MIN	3,37	1,51	83,99
MAX	3,51	1,57	86,75
errore min %	-2,57%	-1,41%	-2,03%
errore max %	1,61%	2,11%	1,19%
mean value	3,46	1,54	85,73
sn-1	0,03893	0,01255	0,76326
CV %	1,127%	0,817%	0,890%

Tabella 12 – Volume, densità e sezione resistente per provini della serie_8

CONFIGURAZIONE 2:

Serie-9

n° provino	volume V [cm3]	densità ρ [g/cm3]	sezione resistente A [mm2]
9ply-09	3,8	1,5200	95,15
9ply-10	3,8	1,5126	94,60
9ply-11	3,8	1,5100	95,10
9ply-12	3,8	1,5323	94,46
9ply-13	3,8	1,5152	94,38
9ply-14	3,8	1,5261	94,31
9ply-16	3,9	1,5384	96,59
9ply-24	3,7	1,5524	91,96
9ply-17	3,8	1,5245	93,50
9ply-18	3,8	1,5361	93,87
9ply-19	3,7	1,5311	92,59
9ply-23	3,8	1,5401	93,61
9ply-20	3,9	1,5197	96,56
9ply-21	3,8	1,5409	95,16
9ply-22	3,7	1,5356	92,44
MIN	3,71	1,51	91,96
MAX	3,88	1,55	96,59
errore min %	-2,10%	-1,24%	-2,47%
errore max %	2,40%	1,53%	2,44%
mean value	3,79	1,53	94,28
S _{n-1}	0,05126	0,01202	1,35628
CV %	1,352%	0,786%	1,439%

Tabella 13 – Volume, densità e sezione resistente per provini della serie_9

E' possibile confrontare i valori della densità ottenuti tramite le misure, con il valore teorico ottenuto utilizzando dati ricavati dalla scheda tecnica e la formula seguente:

Equazione 3 – CALCOLO
DELLA DENSITA' TEORICA

$$\rho_{th} = \frac{1}{\frac{\%_{rc}}{\rho_r} + \frac{\%_{fc}}{\rho_f}}$$

 ho_{th} = densità teorica del laminato $ho_{rc}
ightharpoonup$ percentuale contenuto in resina ightharpoonup 35% $ho_{fc}
ightharpoonup$ percentuale contenuto in fibra ho 65% $ho_r
ightharpoonup$ densità della resina ho 1,1 g/cm³ $ho_f
ightharpoonup$ densità della fibra ho 1,8 g/cm³

Si ottengono i due valori seguenti:

	densità p [g/cm³]	densità teorica P th
MIN	1,510	[g/cm ³]
MAX	1,568	
errore min %	-1,71%	
errore max %	2,08%	
mean value	1,536	1,472
S _{n-1}	0,00998	
CV %	0,650%	

Tabella 14 – Valori densità misurata e teorica a confronto

Si può ipotizzare che la differenza tra i due valori (intorno al 4%), possa essere imputabile al fatto che la densità di ciascun provino è stata calcolata in modo indiretto come rapporto tra massa e volume del singolo esemplare, considerandone le dimensioni medie. In essa sono perciò contenuti gli errori dovuti alle imprecisioni nel taglio e agli strumenti di misura, oltre allo squeezing non uniforme. Inoltre i valori utilizzati per il calcolo teorico non possono che essere approssimati.

Caratterizzazione tramite camera digitale e microscopio ottico

Allo scopo di verificare il corretto posizionamento delle ply, e di ottenere immagini di provini intatti con le quali poter effettuare confronti una volta effettuati i test, si è deciso di utilizzare una camera digitale e microscopio ottico, a disposizione nel laboratorio hangar dell'università.

Per ottenere immagini nitide, è stato necessario lucidare la superficie dei provini scelti per la caratterizzazione al microscopio.

L'operazione di lucidatura è stata effettuata in due passaggi, tramite una *levigatrice orbitale*:

Figura 32 – Levigatrice orbitale (disco con carta abrasiva)

1. Lavorazione tramite dischi abrasivi a differenti granulometrie, in modo da ridurre progressivamente i difetti introdotti durante il taglio con sega circolare:

Disco con carta abrasiva grana grossa *P80*Disco con carta abrasiva grana grossa *P180*Disco con carta abrasiva grana media *P320*Disco con carta abrasiva grana media *P600*Disco con carta abrasiva grana fine *P1200*

2. Lavorazione tramite panno per lucidatura imbevuto di allumina, in modo da rendere omogenea e quindi meglio osservabile la superficie del provino

Disco con panno per lucidatura imbevuto di ossido di allumina $3 \div 1 \mu m$

Disco con panno per lucidatura imbevuto di ossido di allumina $0.05 \, \mu m$

Figura 33 – Levigatrice orbitale (disco con panno per lucidatura)

Il liquido lubrificante e refrigerante è in entrambi i casi acqua.

Una volta effettuata l'operazione di lucidatura, si è passati all'osservazione e all'importazione delle immagini tramite la camera digitale *Moticam 3*, in grado di catturare immagini a diversi ingrandimenti, con e senza l'ausilio di un microscopio ottico:

Figura 35 – *Microscopio ottico*

Figura 34 – *Camera digitale – Moticam 3*

Figura 36 – Dispositivo di illuminazione utilizzato per la messa a fuoco



Figura 37 – Messa a fuoco provini intatti prima delle prove

Tramite lucidatura e lavoro di messa a fuoco è stato possibile evidenziare il contrasto tra fibra e matrice, osservare quindi la disposizione dei layer e l'assenza di difetti dovuti alle lavorazioni.

Riportate di seguito le immagini ottenute per alcuni provini appartenenti a ciascuna configurazione:

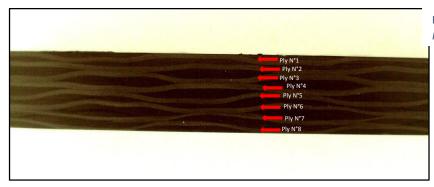


Figura 38 - Provino 8 05

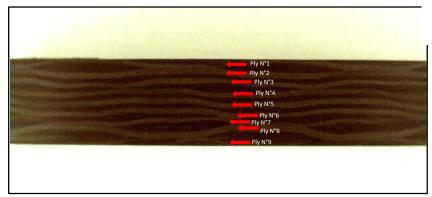


Figura 39 -Provino 9 47

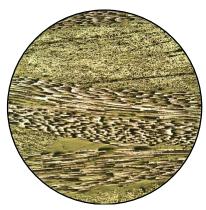


Figura 41 – Particolare al microscopio, INGRANDIMENTO 5x_Provino intatto 8_09

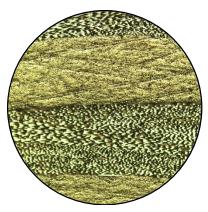


Figura 40 – Particolare al microscopio, INGRANDIMENTO 5x Provino intatto 9 05

Ply N"1

Ply N"2

Ply N"3

Ply N"5

Ply N"5

Ply N"6

Ply N"7

Ply N"8

Ply N"9

Ply N"10

Ply N"11

Ply N"12

Ply N"12

Figura 42 - Provino 13 18

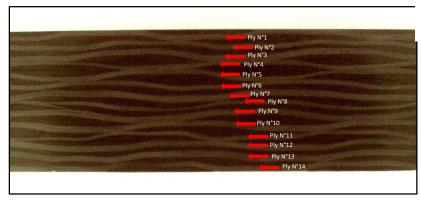


Figura 43 - Provino 14 23

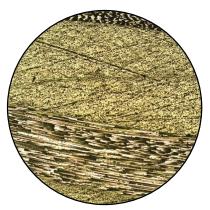


Figura 44 – Particolare al microscopio, INGRANDIMENTO 5x Provino intatto 13 18

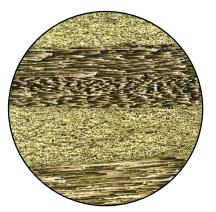


Figura 45 – Particolare al microscopio, INGRANDIMENTO 5x Provino intatto 14 06

Capitolo 4 - Strumenti e procedura dei test

Tutte le prove sono state condotte a temperatura e umidità ambiente, presso i laboratori dell'Università di Bologna, sede di Forlì.

4.1 - Attrezzatura sperimentale

La macchina utilizzata per le prove sperimentali è la *pressa idraulica Italsigma FPF* (figura 46), di cui sono sotto riportate le specifiche principali:

Figura 46 – Pressa idraulica: immagine e principali caratteristiche

Forza massima	100 [kN]
Corsa cilindro	100 [mm]
Pressione di esercizio	21 [MPa]
Pressione massima cilindro di sollevamento	7 [MPa]

La macchina è controllata mediante software implementato LabView MTS-main con attraverso l'uso di differenti attrezzaggi può essere utilizzata sia per le prove di trazionecompressione, sia per le prove di flessione statica e ciclica. Consente di effettuare prove sia in controllo sia in controllo di di carico, spostamento, entrambi utili per ottenere i dati ricercati in questa campagna di prove.

Figura 47 – Centralina acquisizione dati

In figura 48 è riportato l'attrezzaggio utilizzato sia per i test statici che per le prove di fatica:

- ✓ il *blocco inferiore* è costituito da una parte fissa collegata al cilindro della pressa, all'interno della quale scorrono due parti mobili di cui è possibile stabilire la distanza (in modo da poter variare l'interasse in base alle dimensioni del provino); il provino è a contatto con due cilindri metallici vincolati alle due parti mobili tramite due blocchetti di metallo sagomati;
- ✓ il *blocco superiore* è costituito da un cuneo metallico vincolato alla cella di carico, il quale funge da supporto per il cilindro che effettuerà la compressione sul provino.

Figura 48 – Attrezzaggio completo per i test statici e a fatica

La normativa presa come riferimento (ASTM D2344/D2344M), suggerisce di utilizzare per il cilindro superiore un diametro di 6 mm mentre per gli appoggi inferiori un diametro di 3 mm; per ragioni pratiche, in considerazione della minima variazione e della scarsa rilevanza della modifica sulla dinamica dei test, sono stati utilizzati cilindri inferiori di diametro leggermente maggiore, pari a 4 mm.

Dovendo testare serie di provini con due diverse configurazioni, l'interasse (distanza tra gli assi dei due appoggi inferiori) risulta di 42 mm per la configurazione 1, e di 27 mm per la configurazione 2.

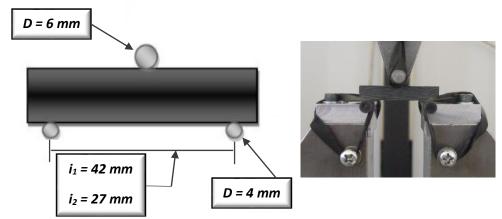


Figura 49 – Schema e foto posizionamento provino suali appoggi

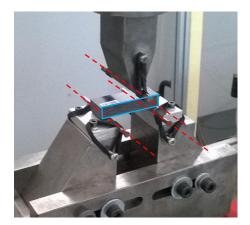


Figura 50 – Orientamento del provino

Il posizionamento del provino sull'attrezzaggio è identico per i test statici e per le prove di fatica: il singolo esemplare viene adagiato sugli appoggi inferiori in modo da essere centrato rispetto al cilindro superiore, ed in modo che l'asse dei cilindretti metallici sia perpendicolare alla superficie laterale del provino.

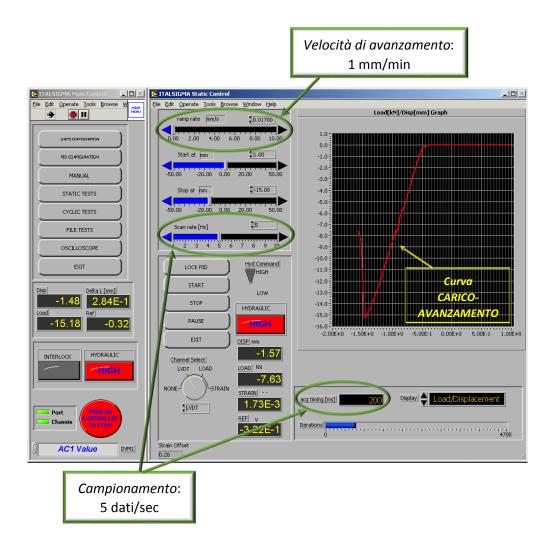
Per evitare problemi legati all'innalzamento della temperatura dell'olio durante l'esecuzione dei test di fatica, che hanno richiesto spesso ore di esercizio continuativo della macchina durante i mesi estivi, è stato necessario mettere in funzione l'impianto di raffreddamento collegato alla pressa.

Cambiamenti importanti di temperatura all'interno del circuito oleodinamico durante le prove, oltre a non poter superare un certo limite superiore per ragioni di sicurezza,

Figura 51 – Termometro per controllo della T dell'olio

portano a variazioni della viscosità che hanno come conseguenza una diminuzione della precisione nell'applicazione dei carichi da parte della pressa, evidentemente a discapito delle prove sperimentali.

4.2 - Procedura dei test


In questa sezione vengono riportate le procedure utilizzate durante la campagna di prove sperimentali, in particolare per i test di flessione statici e per le prove a fatica.

<u>Test di flessione statico</u>

La prova consiste nell'applicazione di un carico crescente fino al raggiungimento della rottura del provino.

In accordo con la normativa presa come riferimento, la prova si svolge in *controllo di spostamento*, imponendo al punzone (cilindro superiore) una velocità di spostamento pari a *1 mm/min*.

Una volta posizionato correttamente il provino sull'afferraggio, si impostano i limiti di sicurezza della macchina di prova, e i parametri richiesti per lo svolgimento del test e per l'acquisizione di dati:

L'applicazione del carico, in accordo con la normativa, va sospesa al raggiungimento di uno dei seguenti eventi:

- > caduta del 30% del carico applicato
- > provino si spezza in due parti
- corsa della testa supera lo spessore nominale del provino

Durante i test la sospensione del carico è sempre stata effettuata a seguito della caduta del carico applicato.

Le prove statiche così effettuate permettono di acquisire dati, che elaborati portano a diagrammi <u>tensione-tempo</u> e <u>tensione-spostamento</u> (riportati nel capitolo 5), consentendo un primo confronto tra i comportamenti delle diverse configurazioni.

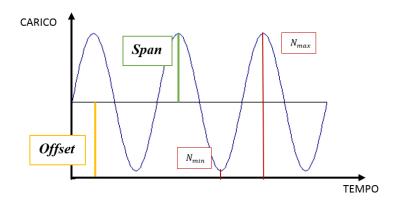
Test di flessione a fatica

A partire dai dati ottenuti con i test statici, in particolare noto il carico di rottura per ogni differente serie di provini (calcolato come media della tensioni di rottura di 5 campioni su cui è stata effettuata la prova statica), si procede al calcolo dei parametri macchina necessari per effettuare le prove di fatica.

In questo caso si impone un carico con andamento sinusoidale (siamo quindi in *controllo di carico*), che viene ripetuto sino alla rottura del provino, determinando così il numero di cicli a cui esso ha resistito prima del cedimento.

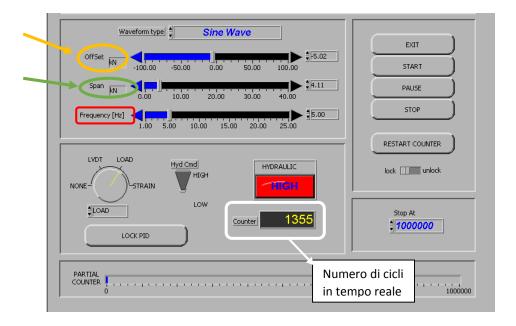
Si è deciso di imporre un rapporto di carico R= 0.1 e di effettuare le prove ad una frequenza di 5 Hz, in modo da evitare sui campioni zone di surriscaldamento che, al di sopra di alcuni valori critici, potrebbero portare al degrado di porzioni della matrice, influendo sul comportamento a fatica.

$$R \rightarrow N_{min} = 0.1 N_{max}$$


$$frequenza \rightarrow 5 Hz$$

I parametri macchina da calcolare per imporre il carico sinusoidale sono:

Offset
$$\rightarrow \frac{N_{max} + N_{min}}{2} = \frac{1.1 N_{max}}{2} \rightarrow VALORE MEDIO$$
spettro di carico


$$Span \rightarrow \frac{N_{max} - N_{min}}{2} = \frac{0.9 N_{max}}{2} \rightarrow \frac{AMPIEZZA}{dello}$$

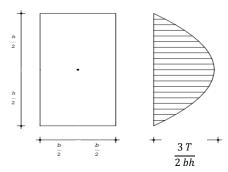
$$spettro di carico$$

Nel capitolo seguente vengono riportate le tabelle con i valori calcolati e i parametri imposti.

La figura sottostante rappresenta parte dell'interfaccia video durante lo svolgimento dei test:

Capitolo 5 - Risultati e analisi dei dati

In questa sezione vengono riportati i dati ottenuti ed elaborati a partire dalle prove effettuate sui campioni, allo scopo di descrivere il comportamento del materiale testato, e capire le differenze tra le diverse configurazioni adottate.


5.1 - Prove di flessione statica

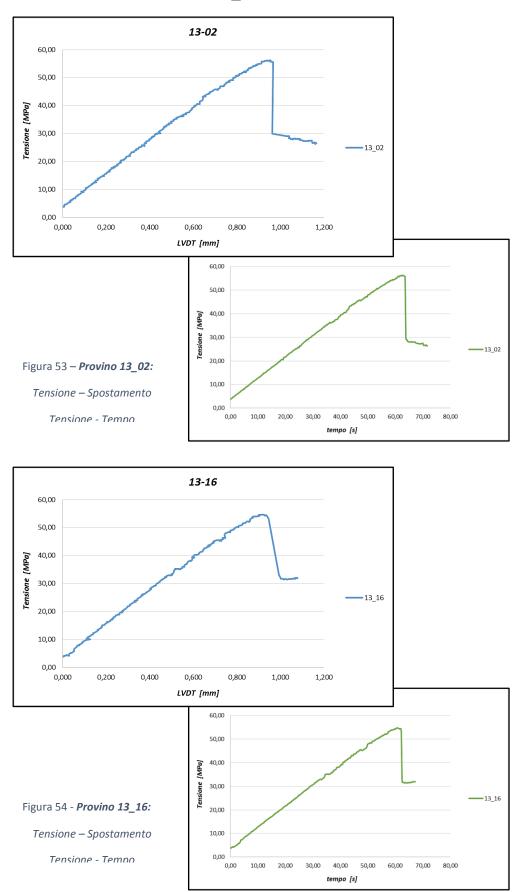
Per ogni provino testato a flessione statica, i dati che otteniamo sono riassunti in un file di testo e suddivisi in quattro colonne: TEMPO (ms), CARICO (kN), LVDT (mm), DELTA L (mm).

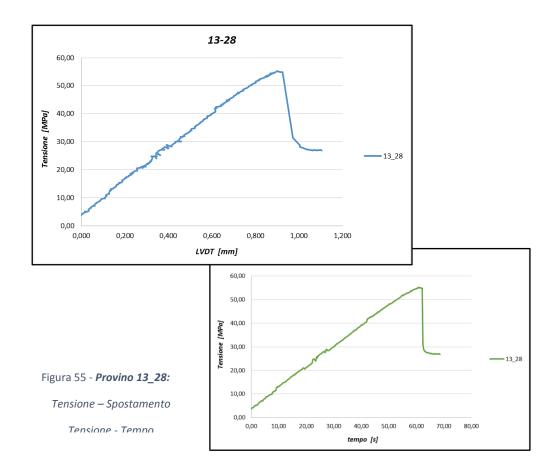
Ricordando che la frequenza di campionamento è 5 Hz, e conoscendo la sezione resistente di ciascun provino (tabelle 10, 11, 12, 13), i dati sono stati elaborati tramite excel:

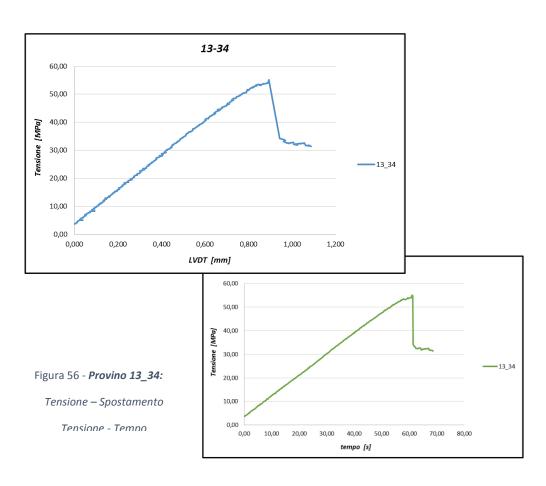
- escludendo i valori del carico al di sotto di 1 kN in quanto affetti in gran parte da rumore;
- calcolando le tensioni (*ILSS*) in accordo con la Normativa di riferimento (ASTM - D2344/D2344M – 13):

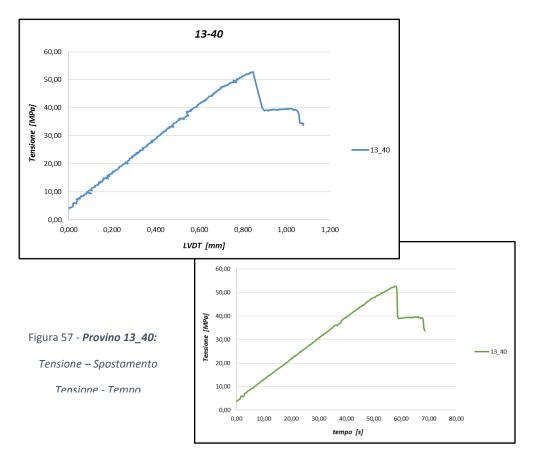
$$F^{sbs} = 0.75 \times \frac{P_m}{b \times h}$$

dove:

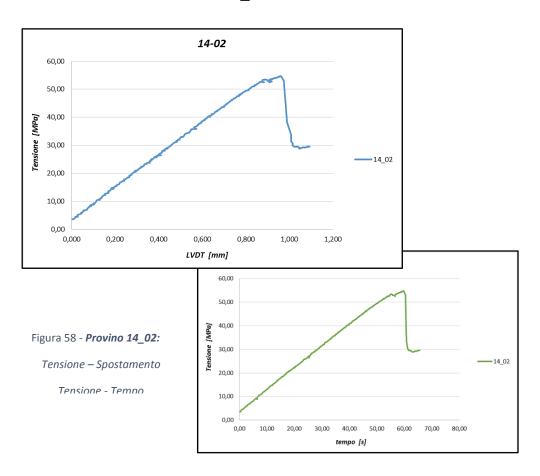

Figura 52 – Diagramma delle tensioni per la sezione

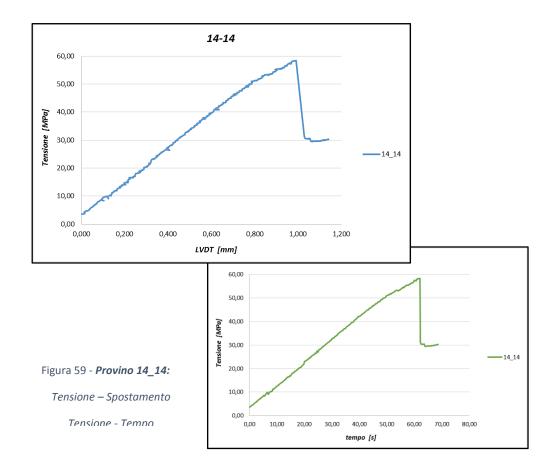

- $F^{sbs} \rightarrow$ short-beam strength, [MPa]
- $P_m \rightarrow$ carico massimo osservato durante il test, [N]
- $b \rightarrow \text{base del provino, [mm]}$
- $h \rightarrow$ spessore del provino, [mm]

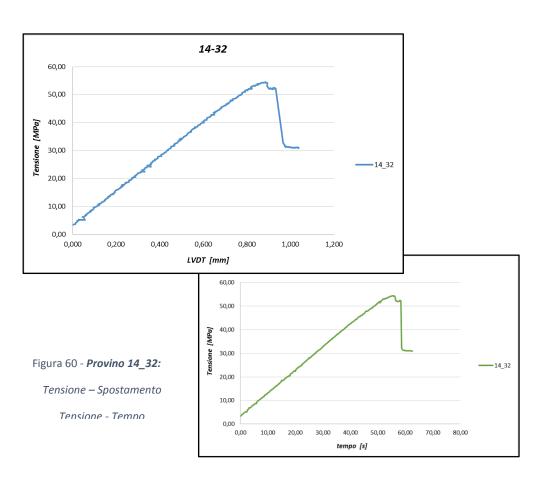

Per ogni test sono stati ricavati e vengono riportati di seguito:

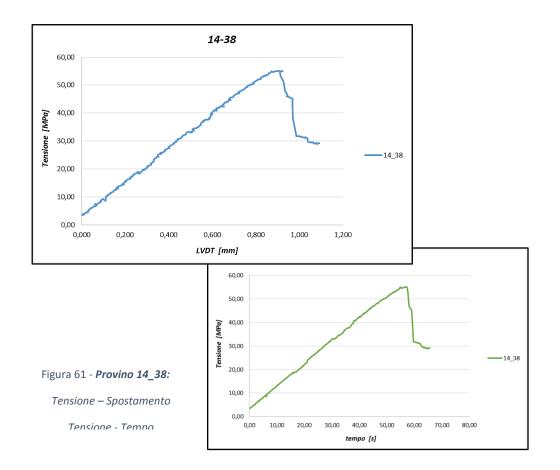

- ➤ Grafico TENSIONE TEMPO
- ➤ Grafico TENSIONE –SPOSTAMENTO

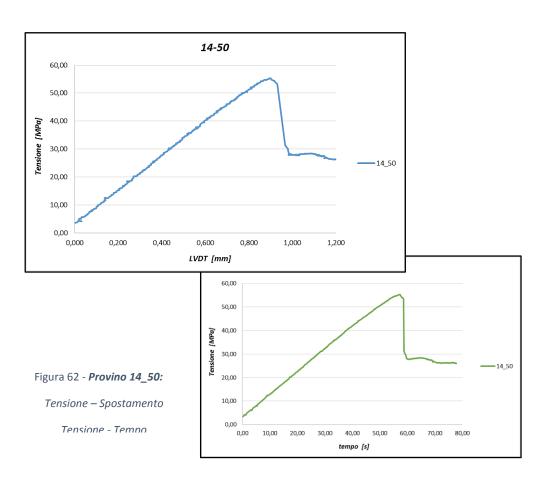
CONFIGURAZIONE 1: Serie_13

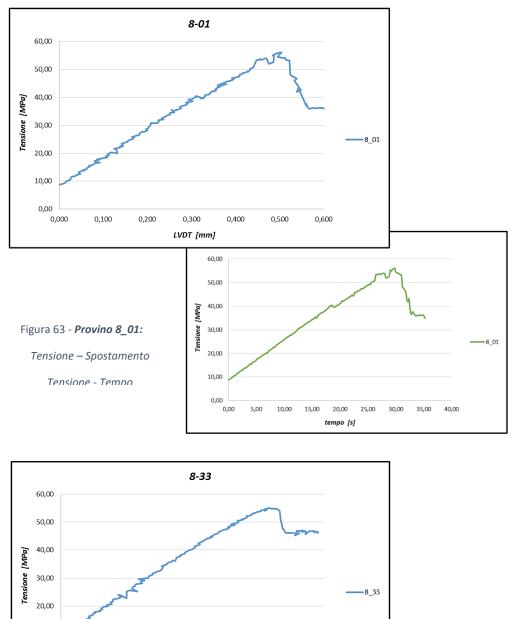


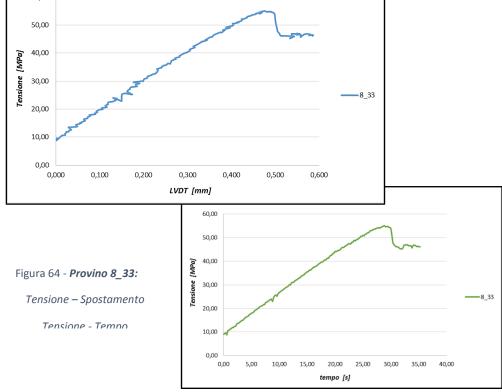


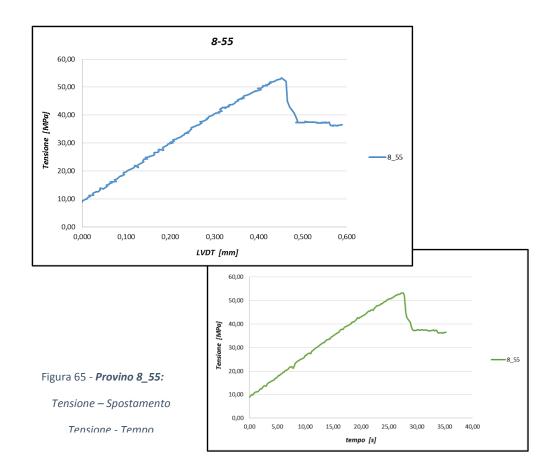


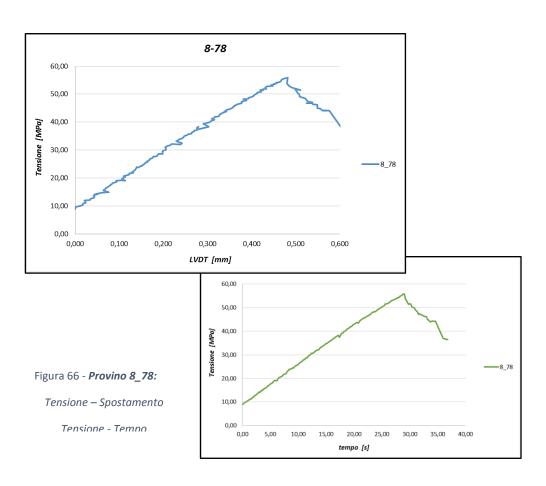


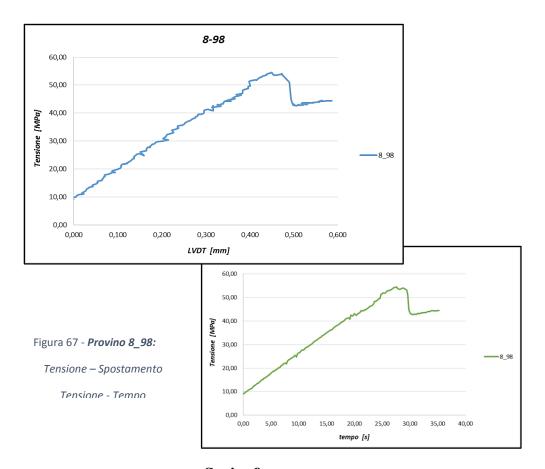

CONFIGURAZIONE 1: Serie_14

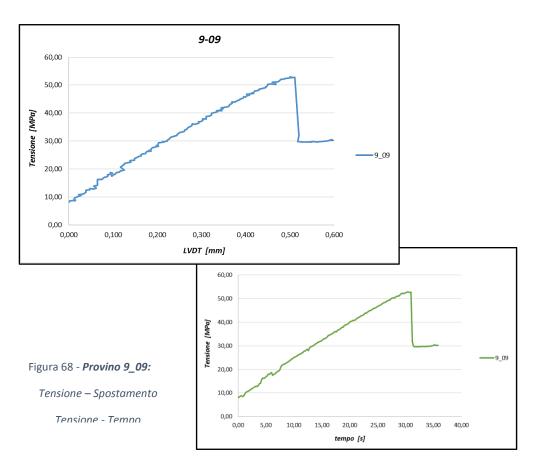


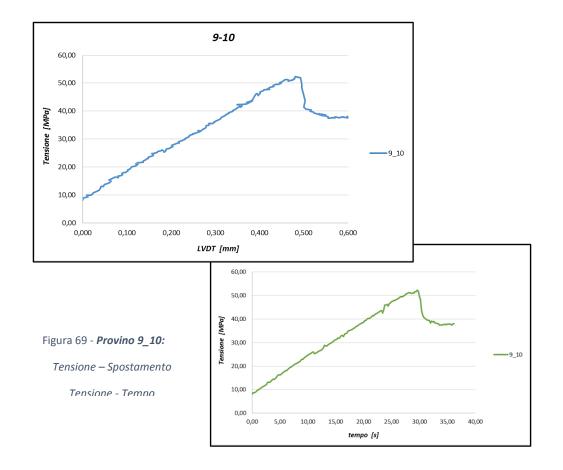


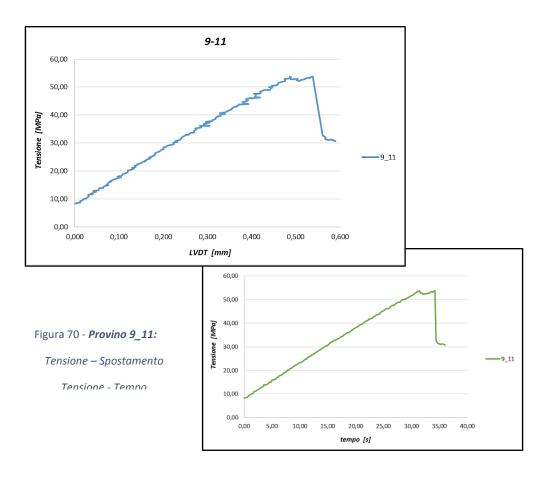


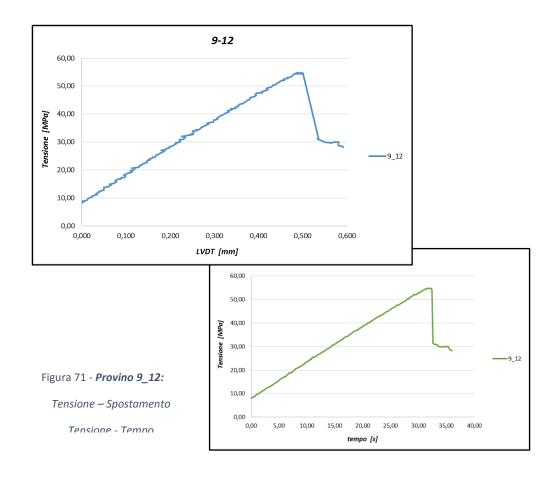



CONFIGURAZIONE 2: Serie_8









CONFIGURAZIONE 2: Serie_9

<u>Analisi e confronto</u>

Sono stati messi a confronto i dati emersi dai precedenti grafici, allo scopo di verificare la ripetibilità del test di flessione statica e l'attendibilità dei risultati all'interno delle diversi campioni. Attraverso il calcolo di parametri come <u>valor medio</u>, <u>deviazione</u> <u>standard</u> e conseguente <u>coefficiente di variazione</u> (equazioni 1, 2, 3), nonché la sovrapposizione delle <u>curve tensione-tempo</u> e <u>tensione-spostamento</u>, si è giunti ai seguenti risultati.

sezione resist	sezione resistente nominale*							
valore sperimentale del C.P.T. [mm]	0,77	0,77	0,77	0,77				
n° ply	8	9	13	14				
spessore nominale [mm]	6,16	6,93	10,01	10,78				
larghezza nominale [mm]	13	13	20	20				
sezione resistente nominale [mm²]	80,08	90,09	200,2	215,6				

Tabella 15 – Legenda: calcolo della sezione resistente nominale per le diverse configurazioni

Serie_13:

n° provino	carico di rottura [kN]	sezione resistente nominale* [mm²]	tensione max nominale [Mpa]	sezione resistente reale [mm²]	tensione max reale [Mpa]
13_02	15,56	200,2	58,292	207,56	56,22
13_16	15,08	200,2	56,494	206,59	54,75
13_28	15,28	200,2	57,243	207,51	55,23
13_34	15,44	200,2	57,842	210,26	55,08
13_40	14,69	200,2	55,032	209,02	52,71
mean value					54,80
sn-1					1,290
CV %					2,35%

Tabella 16 – Risultati prova statica per provini della serie_13

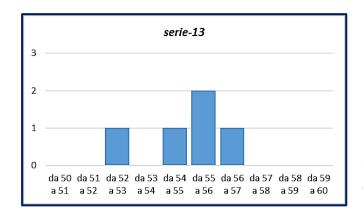


Figura 72 – Distribuzione delle tensioni di rottura ottenute per la serie 13

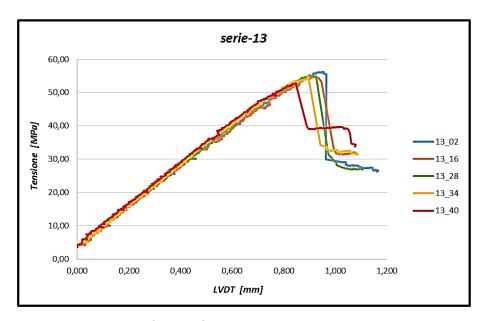


Figura 73 – *Serie_13:* confronto grafici Tensione - Spostamento

Serie 14:

n° provino	carico di rottura [kN]	sezione resistente nominale* [mm²]	tensione max nominale [Mpa]	sezione resistente reale [mm²]	tensione max reale [Mpa]
14_02	16,28	215,6	56,633	223,02	54,75
14_14	17,28	215,6	60,111	221,92	58,40
14_32	16,19	215,6	56,320	223,09	54,43
14_38	16,47	215,6	57,294	224,06	55,13
14_50	16,40	215,6	57,050	222,54	55,27
mean value					55,60
sn-1					1,602
CV %					2,88%

Tabella 17 – Risultati prova statica per provini della serie_14

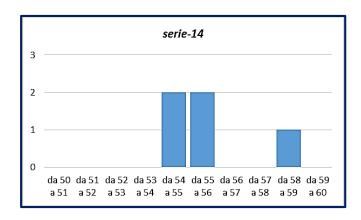


Figura 74 – Distribuzione delle tensioni di rottura ottenute per la serie 14

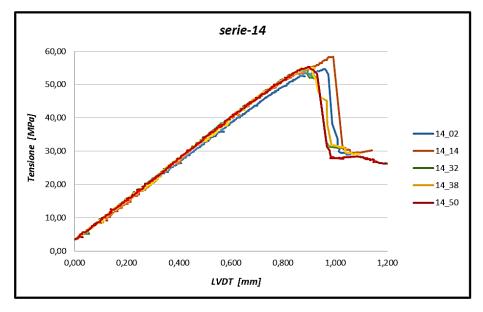


Figura 75 – **Serie_14:** confronto grafici Tensione - Spostamento

Serie_8:

n° provino	carico di rottura [kN]	sezione resistente nominale* [mm²]	tensione max nominale [Mpa]	sezione resistente reale [mm²]	tensione max reale [Mpa]
8_01	6,47	80,08	60,568	86,50	56,07
8_33	6,37	80,08	59,678	86,75	55,09
8_55	6,09	80,08	57,046	85,85	53,21
8_78	6,34	80,08	59,369	85,13	55,85
8_98	6,19	80,08	57,964	85,14	54,52
mean value					54,95
sn-1					1,151
CV %					2,09%

Tabella 18 – Risultati prova statica per provini della serie_8

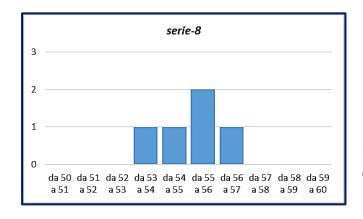


Figura 76 – Distribuzione delle tensioni di rottura ottenute per la serie_8

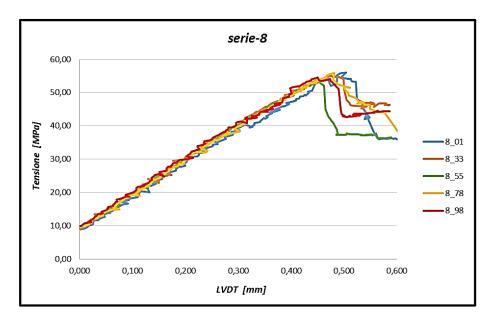


Figura 77 – Serie_8: confronto grafici Tensione - Spostamento

Serie_9:

n° provino	carico di rottura [kN]	sezione resistente nominale* [mm²]	tensione max nominale [Mpa]	sezione resistente reale [mm²]	tensione max reale [Mpa]
9_09	6,71	90,09	55,894	95,15	52,92
9_10	6,60	90,09	54,928	94,60	52,31
9_11	6,82	90,09	56,735	95,10	53,75
9_12	6,91	90,09	57,542	94,46	54,88
mean value					53,47
sn-1					1,110
CV %					2,08%

Tabella 19 – Risultati prova statica per provini della serie_9

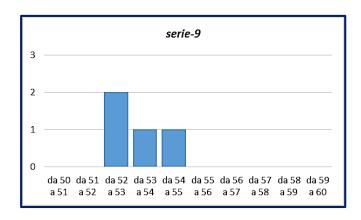


Figura 78 – Distribuzione delle tensioni di rottura ottenute per la serie 9

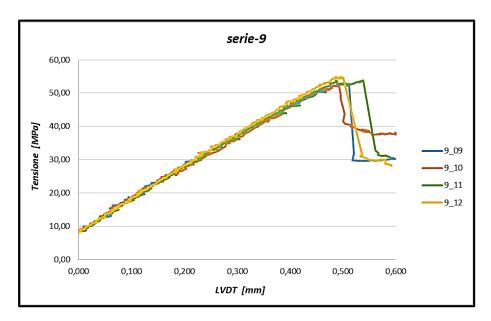


Figura 79 – **Serie_9:** confronto grafici Tensione - Spostamento

L'andamento della tensione rispetto al tempo e allo spostamento del punzone (cilindretto superiore) risulta essere dello stesso tipo per le quattro tipologie di provini, confermando l'affidabilità della prova.

Dall'analisi dei dati, come ci si aspettava, emergono differenze poco significative in termini di *tensione di rottura statica (ILSS)*, proprio perché, pur variando le configurazioni, trattasi di prove sullo stesso tipo di materiale.

Come mostrato nei grafici seguenti, i valori medi di rottura per le singole serie si aggirano tutti nell'intorno del *valor medio 54,77 MPa*.

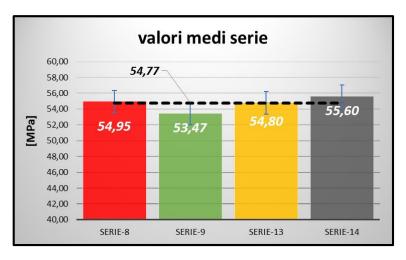
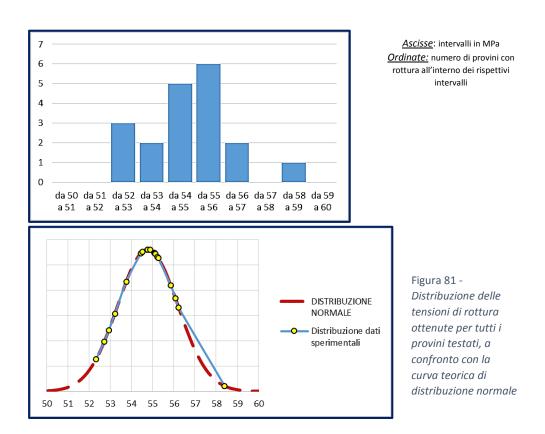



Figura 80 – Istogramma riassuntivo dei valori di tensione di rottura ottenuti per le prove statiche

Inoltre per tutte le serie emergono bassi valori di deviazione standard e conseguentemente piccoli *coefficienti di variazione*, compresi tra il 2,08% della serie_9 e il 2,88% della serie_14.

Al fine di confermare la bontà dei dati ottenuti, che saranno la base di partenza per le successive prove di fatica, è stata effettuata inoltre un'analisi statistica, in particolare si è cercato di valutare la ripetibilità delle prove tramite il <u>test di Fisher</u> (vedi appendice C), applicato a ciascuna coppia di campioni (serie 8 – serie 9; serie 8 – serie 13; serie 8 – serie 14; serie 9 – serie 13; serie 9 – serie 14; serie 13 – serie 14).

La figura sottostante mostra la distribuzione dei valori ottenuti con le prove sperimentali a confronto con una curva gaussiana, mettendo in luce una buona sovrapponibilità: se ne deduce che a livello statistico, gli errori risultano di tipo casuale, perciò non legato a difetti della procedura di prova.

Questo tipo di risultati mostra la ripetibilità e la validità delle procedure di prova, e consente di passare alle prove di fatica.

5.2 - Prove di flessione a fatica

Per ogni tipologia di provini, i test sono stati effettuati imponendo un carico sinusoidale (con rapporto di carico R=0.1), tale che il valore di carico massimo N_{max} fosse ridotto in percentuale del 20%, 30%, e 40% rispetto al carico di rottura (kN) medio della rispettiva serie campione.

Tutte le prove sono state effettuate con una frequenza di 5 Hz.

Di seguito sono riportate le tabelle con i risultati ottenuti in termini di:

- % di riduzione del carico massimo;
- carico massimo (di rottura statica) e parametri macchina di offset e span conseguenti;
- *n*° *di cicli a rottura* per ciascun provino e valore medio per ciascuna serie;
- *tensioni max ILSS* di ciascun provino e valore medio per ciascuna serie

* carico massimo [kN]	valor medio dei carichi di rottura statici
	diminuito rispettivamente del 20-30-40 %

* tensione max [MPa]	calcolata in accordo con la normativa ASTM
	D 2344/D 2344M (equazione xx)

% carico	n° provino	* carico massimo [kN]	sezione resistente [mm²]	* tensione max [MPa]	n° cicli a rottura
Prove S	ГАТІСНЕ	15,210		54,80	1
	13_08		207,4	44,01	1818
	13_14	12 100	207,0	44,10	3139
	13_29	12,168	205,4	44,42	2384
200/	13_37		209,9	43,48	1858
-20%		Offset 6,70 Span 5,48			
	Media			44,00	2300
	st.dev			0,390	616
	CoV			0,89%	26,79%
	13_10		206,5	38,66	13481
	13 12		207,0	38,58	16746
	13 27	10,647	207,4	38,51	10712
	13 35		210,5	37,93	9505
-30%		Offset 5,86 Span 4,79		. ,	
	Media			38,42	12611
	st.dev			0,332	3220
	CoV			0,86%	25,53%
	13_03		206,8	33,09	24288
	13_03	9,126	206,8	33,18	31790
	13_20	3,120	209,7	32,64	45257
400/	12_23	Offset 5,02	209,7	32,04	43237
-40%		Span 4,11			
	Media			32,97	33778
	st.dev			0,289	10625
	CoV			0,88%	31,45%

Tabella 20 – Risultati prova di fatica su provini della serie_13

% carico	n° provino	* carico mass	simo [kN]	sezione resistente [mm²]	* tensione max [MPa]	n° cicli a rottura
Prove S	TATICHE	16,524			55,60	1
	14_04			221,6	44,74	832
	14_18	13,2	10	227,6	43,56	1005
	14_33	13,2	19	221,7	44,72	2183
	14_48			223,5	44,36	1373
-20%	_	Offset	7,27		,	
		Span	5,95			
	Media	,	,		44,34	1348
	st.dev				0,551	600
	CoV				1,24%	44,54%
	14_10	11,567		222,6	38,97	14242
	14_11			221,8	39,11	4219
	14_25	,		223,0	38,91	12532
	14_46			222,1	39,06	6739
-30%		Offset	6,36			
		Span	5,21			
	Media				39,01	9433
	st.dev				0,092	4732
	CoV				0,24%	50,16%
	14.20			222.0	22.27	40122
	14_20	0.04	4	222,9	33,37	40132
	14_24	9,91	.4	223,0	33,34	46538
	14_44	- 44		221,5	33,58	45535
-40%		Offset	5,45			
		Span	4,46			
	Media				33,43	44068
	st.dev				0,129	3446
	CoV				0,38%	7,82%

Tabella 21 – Risultati prova di fatica su provini della serie_14

% carico	n° provino	* carico massimo [kN]	sezione resistente [mm²]	* tensione max [MPa]	n° cicli a rottura
Prove S	ГАТІСНЕ	6,292		54,95	1
	8 03		86,0	43,92	1445
	8 25		85,0	44,44	857
	8 51	5,033	86,7	43,56	1638
	8_75		86,4	43,67	4567
-20%	0_/3	Offset 2,77	33).	13,07	1307
		Span 2,27			
	Media			43,90	2127
	sn-1			0,390	1660
	CV%			0,89%	78,07%
	0.15		84.0	20.22	12166
	8_15		84,0	39,33	12166
	8_66	4,404	85,5	38,63	3793
	8_91	, -	85,7	38,54	8986
200/	8_22		85,1	38,83	11560
-30%		Offset 2,42			
		Span 1,98			
	Media			38,83	9126
	sn-1			0,352	3813
	CV%		<u> </u>	0,91%	41,79%
	8 12		85,6	33,06	220722
	8 54	3,775	86,6	32,68	64293
	8_77	3,7.73	85,8	33,01	54967
400/	0_//	Offset 2,08	03,0	33,01	J4307
-40%		Span 1,70			
	Media			32,92	113327
	sn-1			0,206	93123
	CV%			0,63%	82,17%

Tabella 22 – Risultati prova di fatica su provini della serie_8

% carico	n° provino	* carico massimo [kN]	sezione resistente [mm²]	* tensione max [MPa]	n° cicli a rottura
Prove S	TATICHE	6,760		53,47	1
	9 13		94,4	42,97	6344
	_		,		
	9_14	5,408	94,3	43,01	3954
	9_16		96,6	41,99	1247
-20%	9_24		92,0	44,11	2358
-20%		Offset 2,97 Span 2,43			
	Media			43,02	3476
	st.dev			0,864	2212
	CoV			2,01%	63,63%
	0.47			27.05	0074
	9_17		93,5	37,96	9654
	9_18	4,732	93,9	37,81	12293
	9_19	.,	92,6	38,33	6950
200/	9_23		93,6	37,91	14282
-30%		Offset 2,60 Span 2,13			
	Media	<i>Span</i> 2)15		38,00	10795
	st.dev			0,227	3188
	CoV			0,60%	29,53%
	9_20		96,6	31,50	105452
	9_21	4,056	95,2	31,97	104108
	9_22		92,4	32,91	500000
-40%		Offset 2,23			
,,		Span 1,70			
	Media			32,13	236520
	st.dev			0,716	228181
	CoV			2,23%	96,47%

Tabella 23 – Risultati prova di fatica su provini della serie_9

Analisi e confronto

Dalle tabelle riportanti i risultati, concentrandosi sulla colonna che evidenzia i diversi n° di cicli a rottura, risulta subito evidente che per alcune serie risultano alti valori di deviazione standard e coefficiente di variazione. Per tale motivo sono stati isolati i dati "sospetti", ovvero distanti dalla media in modo più marcato rispetto agli altri, e si è verificata la loro attendibilità, *dal punto di vista statistico*, tramite un semplice test statistico, il Q - test di Dixon.

Per effettuare il Q - test al fine di individuare i dati errati, si devono disporre i dati in ordine di valore crescente, e quindi per ognuno calcolare il coefficiente Q_{calc} , definito come rapporto tra DIVARIO (differenza tra il valore del dato anomalo e il valore del dato ad esso più vicino) e DISPERSIONE (ampiezza dell'intervallo di valori).

I valori ottenuti, che ovviamente dipendono dalla dimensione del set di dati, vengono poi confrontati con tabelle che riportano i valori critici di Q_{tab} per l'intervallo di confidenza desiderato:

se
$$Q_{calc} > Q_{tab} \rightarrow$$
 il dato "anomalo" va eliminato, con affidabilità pari alla percentuale riportata (nel nostro caso 90%)

I risultati "sospetti" che sono stati analizzati riguardano il numero di cicli a rottura delle seguenti prove:

- test con carico ridotto del 20% per la serie_8:
 provino 8_25 → n° cicli a rottura 875
 provino 8 75 → n° cicli a rottura 4567
- test con carico ridotto del 30% per la serie_8:
 provino 8_66 → n° cicli a rottura 3793
- test con carico ridotto del 40% per la serie_8:
 provino 8_12 → n° cicli a rottura 220722

set di dati in ordine crescente	DIVARIO	DISPERSIONE	Q calc	Q _{tab}	Risultato del Q-test
857	588	3710	0,158	0,765	ATTENDIBILE
1445					
1638					
4567	2929	3710	0,789	0,765	NON ATTENDIBILE
3793	5193	8373	0,620	0,765	ATTENDIBILE
8986					
11560					
12166					
54967					
64293					
220722	156429	165755	0,944	0,941	NON ATTENDIBILE

Tabella 24 – Calcoli per lo svolgimento del Q-test di Dixon

Sono quindi da scartare i dati riguardanti i provini 8_75 e 8_12.

Dalla tabella 23, che riporta i risultati della serie_9, emerge inoltre un ulteriore dato anomalo, ovvero il numero di cicli a rottura del provino 9_22: durante la campagna di prove in realtà non è stato raggiunto il limite di rottura. Per motivi legati alle tempistiche, e all'utilizzo della macchina di prova, si è deciso di fissare a 500.000 cicli il valore massimo per il test, assumendo tale limite come soglia della vita a fatica infinita.

set di dati in ordine crescente	DIVARIO	DISPERSIONE	Q _{calc}	Q _{tab}	Risultato del Q-test
104108					
105452					
500000	394548	395892	0,997	0,941	NON ATTENDIBILE

Tabella 25 – Calcoli per il Q-test di Dixon per il provino 9_22

Pertanto anche questo dato va eliminato ai fini del calcolo statistico, ma tenuto bene in considerazione in fase di analisi del comportamento a fatica dei laminati in tessuto pre-impregnato SAATI CC802 ET445S 35%.

Al fine di mettere a confronto i dati, ed avere una visione d'insieme che permetta di valutarli ed analizzarli, sono di seguito riportati gli istogrammi con i valori ottenuti dalle prove di fatica:

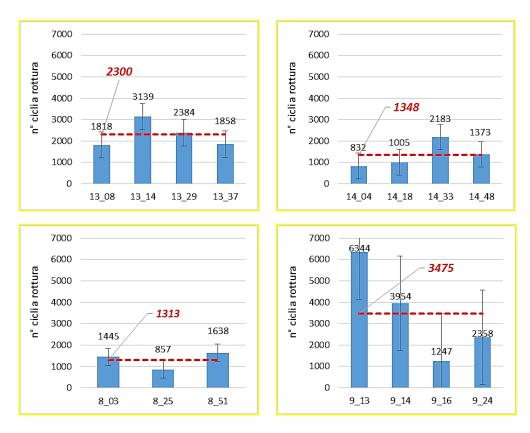


Figura 82 – Istogrammi Cicli a Rottura con riduzione di carico del 20%

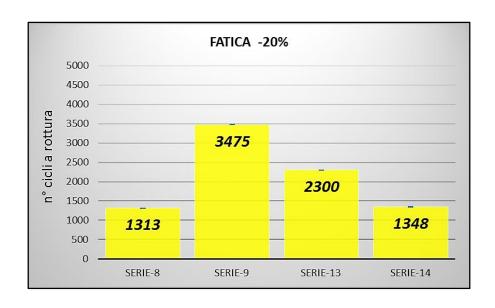


Figura 83 – Istogramma confronto MEDIA SERIE n° cicli a rottura per carico ridotto del 20%

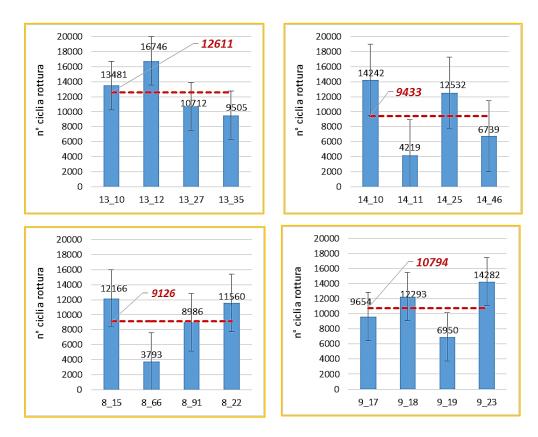


Figura 84 – Istogrammi Cicli a Rottura con riduzione di carico del 30%

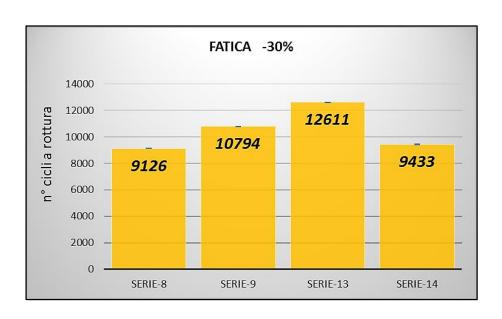
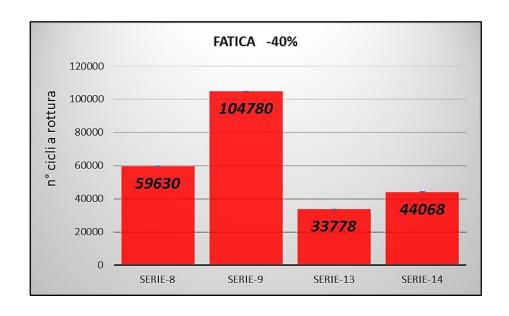
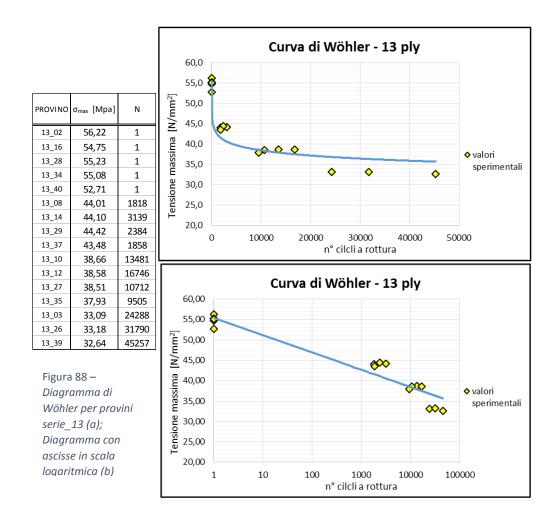
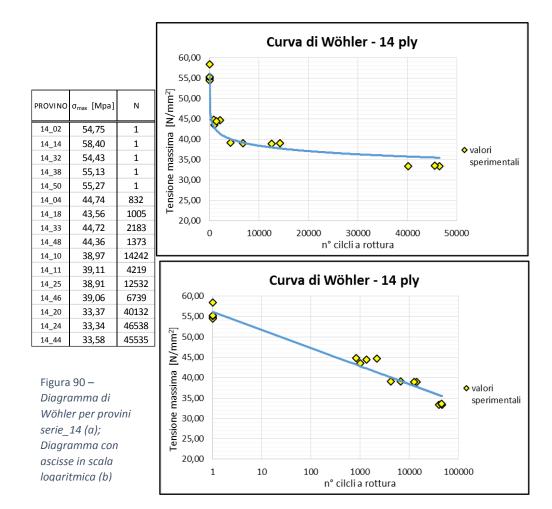


Figura 85 – Istogramma confronto MEDIA SERIE n° cicli a rottura per carico ridotto del 30%

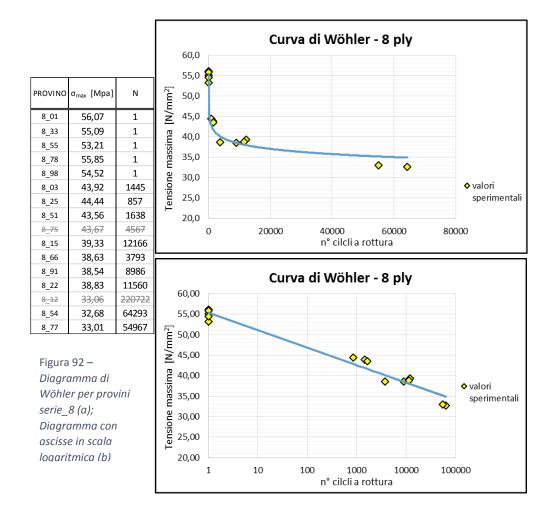


Figura 86 – Istogrammi Cicli a Rottura con riduzione di carico del 40%

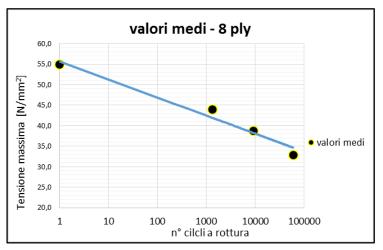



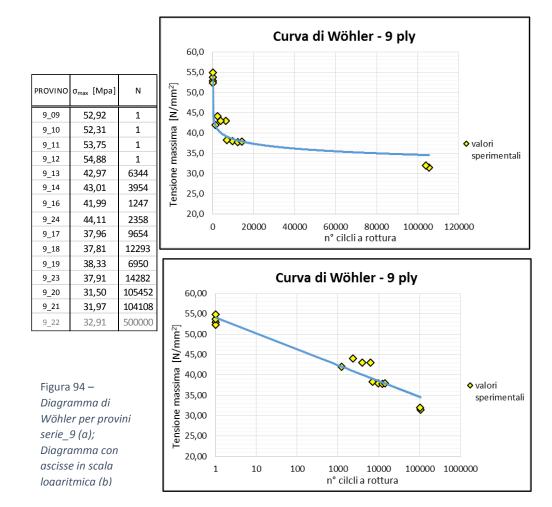

Figura 87 – Istogramma confronto MEDIA SERIE n° cicli a rottura per carico ridotto del 40%

Successivamente si è passati alla costruzione dei *diagrammi di Wöhler*, che permettono di comprendere meglio il comportamento a fatica delle differenti serie di provini testati.

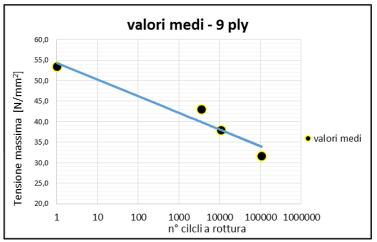

Nelle pagine a seguire sono riportati diagrammi delle singole serie, seguiti da sovrapposizioni utili al confronto.

	serie 13										
TEST	media valori σ_{max} [Mpa]	media valori N		60,0	Vā	llori med	li - 13 pl	У			
statico	54,797	1		55,0							
-20%	44,003	2300	I _	33,0							
-30%	38,419	12611	[N/mm ²]	50,0							
-40%	32,968	33778	ŢĒ								
				45,0			•				
			Tensione massima	35,0				``	• valori medi		
Figura	a 89 –		l e	30,0							
	Diagramma di Wöhler per CC802-serie_13 (ascisse in scala logaritmica)		iagramma di Wöhler		nsio	25,0					
(ascis			Te	20,0	10		1000 1 cli a rottura		00000		




	serie 14											
TEST	media valori σ_{max} [Mpa]	media valori N		60,0	Va	lori m	edi - 1	4 ply				
statica	55,596	1										
-20%	44,343	1348		55,0								
-30%	39,014	9433	n ²]	50,0								
-40%	33,429	44068	ΙĒ									
			[N/mm ²]	45,0								
			ла	40,0								
			assii	35,0						• valori medi		
Figura	a 91 –		l e	30,0					Ŭ			
	Diagramma di Wöhler		ngramma di Wöhler		Tensione massima	25,0						
,	C802-serie_	_14	l e	20,0								
	se in scala itmica)			1	10	100 n°	1000 cilcli a ro	1000 ttura	00 10	00000		

serie 8						
TEST	media valori σ_{max} [Mpa]	media valori N				
statica	54,947	1				
-20%	43,971	1313				
-30%	38,832	9126				
-40%	32,869	59630				


Figura 93 –
Diagramma di Wöhler
per CC802-serie_8
(ascisse in scala
logaritmica)

serie 9						
TEST	media valori σ_{max} [Mpa]	media valori N				
statica	53,465	1				
-20%	43,019	3476				
-30%	38,001	10795				
-40%	31,735	104780				

Figura 95 Diagramma di Wöhler
per **CC802-serie_9**(ascisse in scala
logaritmica)

Sovrapposizione dei *diagrammi di Wöhler* per le due configurazioni:

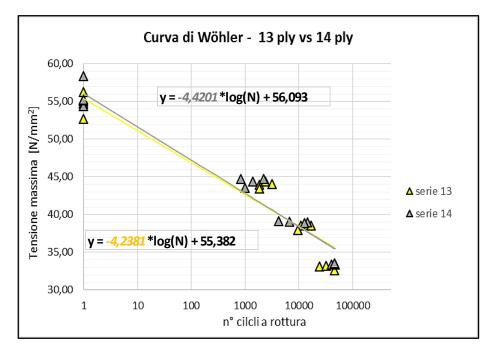


Figura 96 - Confronto tra diagrammi di Wöhler per serie_13 e serie_14 (configurazione 1)

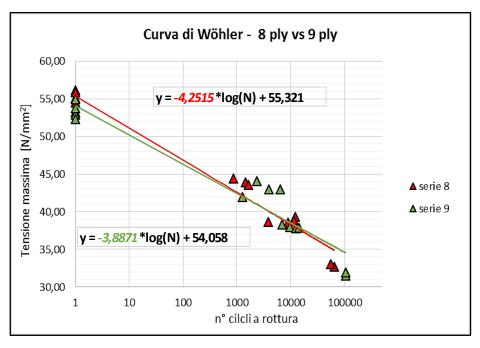


Figura 97 - Confronto tra diagrammi di Wöhler per serie_8 e serie_9 (configurazione 2)

Sovrapposizione dei *diagrammi di Wöhler* per n° pari o dispari di ply:

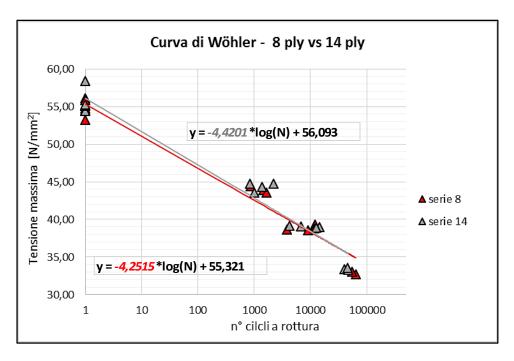


Figura 98 - Confronto tra diagrammi di Wöhler per **serie_8** e **serie_14** (n° di ply PARI)

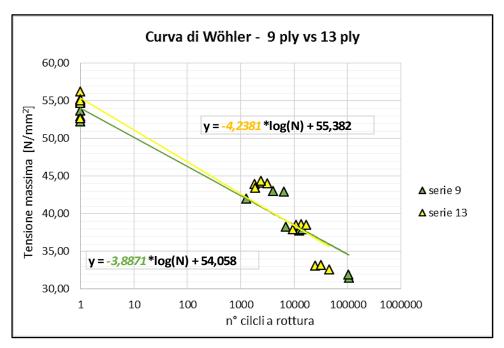


Figura 99 - Confronto tra diagrammi di Wöhler per serie_ e serie_13 (n° di ply DISPARI)

Capitolo 6 - Test su provini con diversa sequenza di impilamento

A valle dei test effettuati per le diverse serie di campioni, si è deciso di ripetere lo stesso tipo di prove su un'altra tipologia di provini: è stata introdotta un'ulteriore variabile.

Le precedenti prove erano state effettuate allo scopo di indagare il comportamento del materiale CC802 in relazione a diversi spessori e a sequenze di impilamento differenti in quanto a numero di strati.

La campagna di prove di cui sono presentati i risultati in questa sezione, prende in considerazione l'orientamento delle ply: i test statici e a fatica sono stati effettuati su campioni del tutto analoghi a quelli della serie-13, variando l'orientamento della ply centrale, disposta a 45°.

Il dimensionamento, i riferimenti alla normativa, le procedure, la successione delle fasi di lavoro e i calcoli statistici sono tutti effettuati in modo analogo alle prove presentate nei capitoli precedenti:

MATERIALE	analogo ai test precedenti
lunghezza nominale I o [mm]	60
larghezza nominale b ₀ [mm]	20
spessore nominale h_0 [mm]	10,01
n° ply	13
<u>Sequenza di</u> <u>laminazione</u>	[0 ₆ /45] _S
interasse <i>i</i> [mm]	42
	serie 13A

Tabella 26 – Dimensioni e configurazione della serie 13A

6.1 - Caratterizzazione dei campioni serie-13A

Dimensioni e massa

n° provino	lunghezza / [mm]	larghezza ¹ b [mm]	spessore ¹ h [mm]	massa <i>m</i> [g]
13A_03	59,99	19,99	10,15	18,577
13A_12	59,95	20,03	10,17	18,564
13A_23	59,98	20,02	10,13	18,605
13A_27	59,96	20,06	10,16	18,674
13A_32	59,92	20,05	10,12	18,555
13A_04	60,04	20,00	10,17	18,615
13A_07	59,97	20,08	10,16	18,645
13A_13	59,93	20,02	10,15	18,597
13A_25	59,94	20,03	10,20	18,464
13A_05	60,01	20,04	10,17	18,629
13A_14	59,92	20,05	10,14	18,567
13A_22	59,93	20,00	10,14	18,575
13A_28	59,97	20,07	10,17	18,666
13A_06	59,96	20,01	10,16	18,644
13A_18	59,99	20,12	10,16	18,699
13A_26	59,98	19,99	10,17	18,643
MIN	59,92	19,99	10,12	18,46
MAX	60,04	20,12	10,20	18,70
errore min %	-0,08%	-0,21%	-0,39%	-0,77%
errore max %	0,13%	0,41%	0,43%	0,49%
mean value	59,97	20,04	10,16	18,61
S _{n-1}	0,03347	0,03483	0,01878	0,05757
CV %	0,056%	0,174%	0,185%	0,309%

Tabella 27 – Caratterizzazione dimensionale serie_13A

Come per le altre configurazioni, pure nel caso dei provini della serie 13A, gli errori dimensionali dovuti all'imprecisione del taglio manuale sono piuttosto ridotti, e non superano il punto percentuale.

Anche il valore della densità è in linea con quello ottenuto per le altre serie di provini (tabella 28): il valore medio delle altre serie differisce dai 1,52 g/cm³ della serie 13A di solo 1'1,04%.

Volume e densità

n° provino	volume V [cm³]	densità $ ho$ [g/cm³]	sezione resistente A [mm²]
13A_03	12,2	1,5260	202,93
13A_12	12,2	1,5204	203,67
13A_23	12,2	1,5287	202,90
13A_27	12,2	1,5283	203,78
13A_32	12,2	1,5264	202,87
13A_04	12,2	1,5248	203,33
13A_07	12,2	1,5237	204,05
13A_13	12,2	1,5276	203,14
13A_25	12,2	1,5077	204,31
13A_05	12,2	1,5237	203,74
13A_14	12,2	1,5236	203,37
13A_22	12,2	1,5283	202,80
13A_28	12,2	1,5254	204,05
13A_06	12,2	1,5292	203,33
13A_18	12,3	1,5256	204,32
13A_26	12,2	1,5291	203,27
MIN	12,15	1,51	202,80
MAX	12,26	1,53	204,32
errore min %	-0,40%	-1,13%	-0,34%
errore max %	0,45%	0,28%	0,41%
mean value	12,20	1,52	203,49
S _{n-1}	0,03247	0,00520	0,50967
CV %	0,266%	0,341%	0,250%

Tabella 28 – Volume, densità e sezione resistente per provini della serie_13A

Caratterizzazione tramite camera digitale e microscopio ottico

Tramite lucidatura e lavoro di messa a fuoco è stato possibile mettere in evidenza la struttura del laminato: nell'immagine seguente si può facilmente notare la sovrapposizione dei 13 strati, con il differente orientamento della ply centrale.

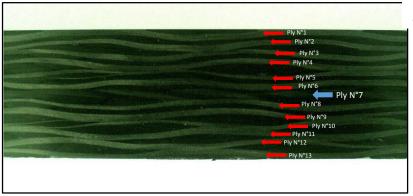
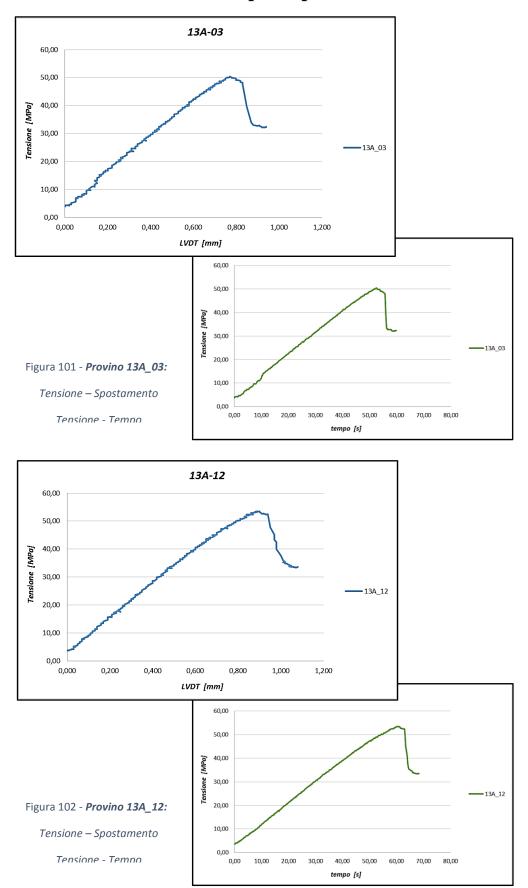
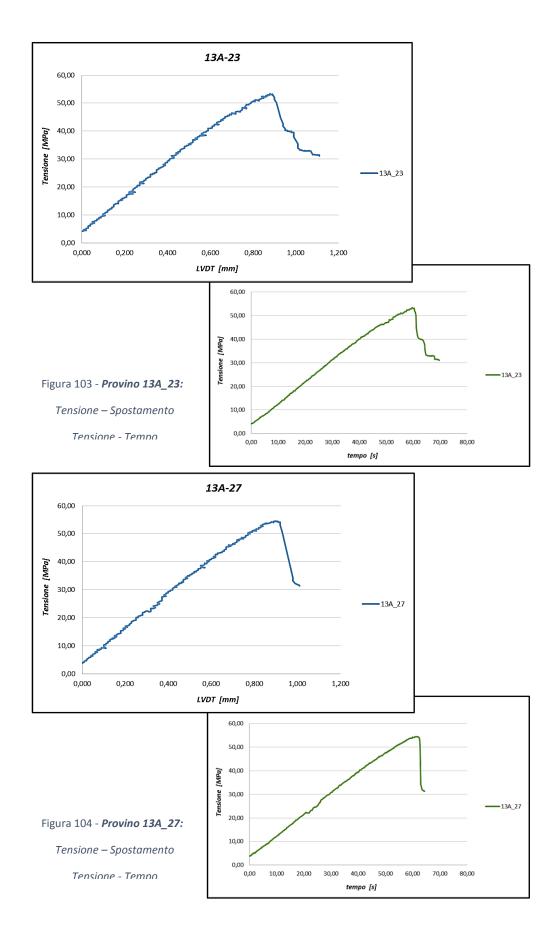
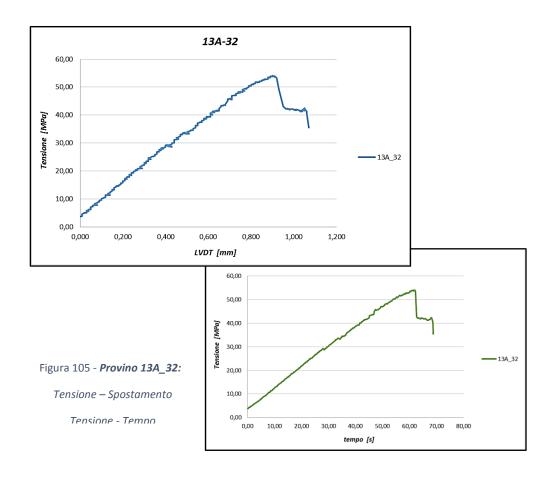
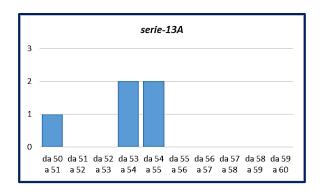





Figura 100 - Provino 13A_28

6.2 - Risultati e analisi dati per le prove di flessione statica



I grafici precedenti sono stati ottenuti in modo analogo a quelli del capitolo 5, elaborando i dati in output dalla macchina, e calcolando le tensioni attraverso l'equazione vista a pagina 55.

I risultati principali sono messi in evidenza nella tabella e nei grafici seguenti:

n° provino	carico di rottura [kN]	sezione resistente nominale* [mm²]	tensione max nominale [Mpa]	sezione resistente reale [mm²]	tensione max reale [Mpa]
13A_03	13,63	200,2	51,061	202,93	50,37
13A_12	14,54	200,2	54,471	203,67	53,54
13A_23	14,45	200,2	54,133	202,90	53,41
13A_27	14,83	200,2	55,557	203,78	54,58
13A_32	14,63	200,2	54,808	202,87	54,09
mean value	14,416				53,20
sn-1	0,461				1,646
CV %	3,20%				3,09%

Tabella 29 – Risultati prova statica per provini della serie_13A

Ascisse: intervalli in MPa Ordinate: numero di provini con rottura all'interno dei rispettivi intervalli

Figura 106 - Distribuzione delle tensioni di rottura ottenute per la serie_13A

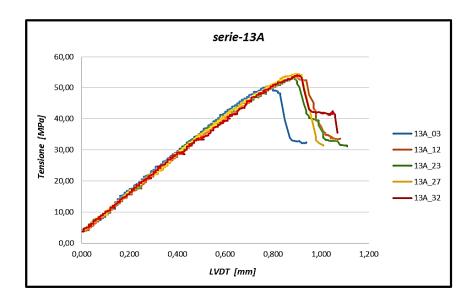


Figura 107 - Serie_13A: confronto grafici Tensione - Spostamento

Il dato sulla *tensione di rottura statica (ILSS)* risulta il più basso tra le diverse configurazioni testate, ed in particolare è interessante notare la discrepanza con il valore della serie_13, che differisce dalla 13A solamente per l'orientamento della ply centrale.

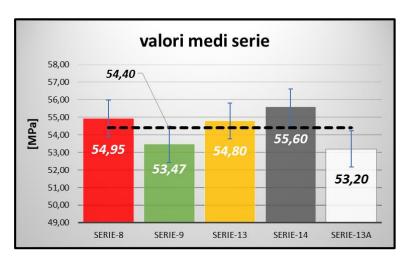
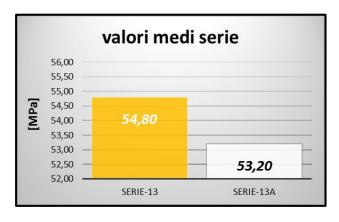
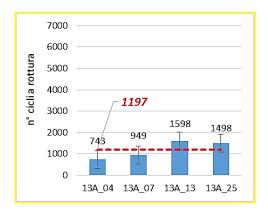


Figura 108 - Istogramma riassuntivo dei valori di tensione di rottura ottenuti per le prove statiche




Figura 109 - Valori di tensione di rottura ottenuti per serie 13 e 13A

6.3 - Risultati e analisi dati per le prove di flessione a fatica

Si riportano in tabella e in forma grafica i risultati delle prove di fatica sui provini della serie 13A; in particolare, per motivi analoghi alle prove statiche, si evidenzia il confronto con la serie 13.

% carico	n° provino	* carico massimo [kN]		sezione resistente [mm²]	* tensione max [MPa]	n° cicli a rottura
						_
Prove STATICHE		14,416			53,20	1
	404 04				10.51	
	13A_04	11,533		203,3	42,54	743
	13A_07			204,0	42,39	949
	13A_13			203,1	42,58	1598
	13A_25			204,3	42,34	1498
-20%		Offset	6,34			
		Span	5,19			
	Media	,			42,46	1197
	st.dev				0,117	416
	CoV				0,27%	34,75%
	13A_05	10,091		203,7	37,15	6946
-30%	13A_14			203,4	37,21	5395
	13A_22			202,8	37,32	10201
	13A 28			204,0	37,09	5938
	_	Offset	5,55			
		Span	4,54			
	Media				37,19	7120
	st.dev				0,098	2152
	CoV				0,26%	30,23%
-40%	13A_06			203,3	31,90	58773
	13A_18	8,650		204,3	31,75	100973
	13A_26			203,3	31,91	109747
		Offset	4,76			
		Span	3,89			
	Media				31,86	89831
	st.dev				0,092	27252
	CoV				0,29%	30,34%

Tabella 30 – Risultati prove di fatica su provini della serie_13A

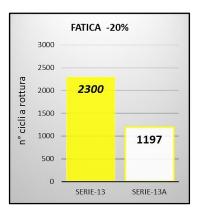
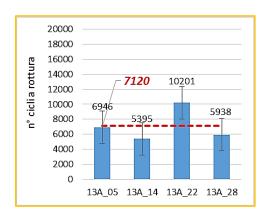



Figura 110 (a, b) - Istogramma CICLI a ROTTURA con riduzione di carico del 20%:

per singolo provino serie_13A (a) e confronto dei risultati con la serie_13 (b)

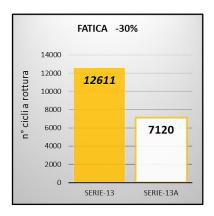
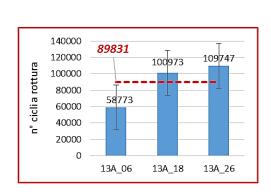



Figura 111 (a, b) - Istogramma CICLI a ROTTURA con riduzione di carico del 30%:

per singolo provino serie_13A (a) e confronto dei risultati con la serie_13 (b)

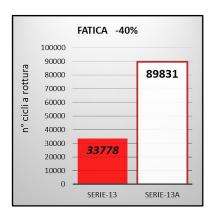
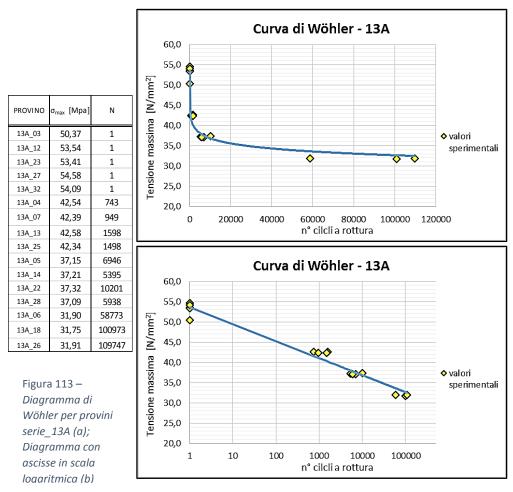



Figura 112 (a, b) - Istogramma CICLI a ROTTURA con riduzione di carico del 40%:

per singolo provino serie_13A (a) e confronto dei risultati con la serie_13 (b)

Si riportano ora i *diagrammi di Wöhler* per la serie_13A, e la sovrapposizione con il diagramma ottenuto per la serie_13.

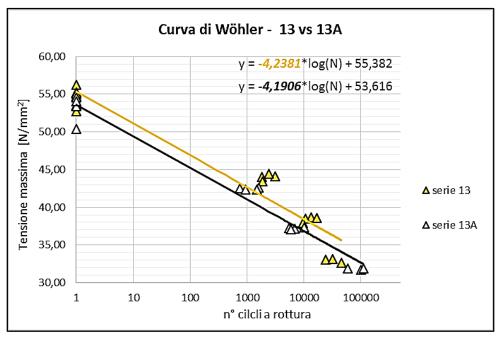


Figura 114 – Confronto tra diagrammi di Wöhler per serie_13A e serie_13

Capitolo 7 - Conclusioni

7.1 - Considerazioni sui risultati ottenuti

A valle dello svolgimento della campagna di prove sperimentali, e dell'elaborazione dei dati ottenuti, è possibile fare alcune considerazioni.

- I) le *prove statiche* mostrano valori di tensioni di rottura (ILSS) simili per tutte le serie di provini testati; l'unico campione che si differenzia in modo leggermente più significativo è quello costituito da provini con orientamento della ply centrale a 45°. Il valore ottenuto per la *serie 13A* è infatti pari a *53,2 MPa*, che è inferiore a quello di tutte le altre serie, ed in particolare è più basso del 3% rispetto al valore *54,8 MPa* della *serie 13*.
- II) le prove di fatica mostrano differenze più marcate nel comportamento tra le diverse configurazioni rispetto alle statiche. Evidenziano che, pur eseguendo le prove su campioni costituiti dello stesso materiale (tessuto pre-impregnato SAATI CC802 ET445S 35%), per comprendere le dinamiche del comportamento a fatica, sono da tenere in considerazione anche altre variabili: non ultime le dimensioni del laminato (in termine di n° di ply) e la sequenza di impilamento.

N° di ply di cui è costituito il laminato:

I risultati mostrano che ad un maggior numero di lamine, non necessariamente corrisponde un comportamento a fatica migliore. In particolare diminuendo il carico del 40%, i provini delle *serie 13 e 14* hanno raggiunto il limite di rottura a n° di cicli decisamente inferiore rispetto a quelli delle *serie 8 e 9* (rispettivamente *34.000* e *44.000*, rispetto a *60.000* e *105.000* cicli).

Analizzando i *diagrammi di Wöhler* inoltre, si nota come le *pendenze delle rette* che rappresentano le *serie 13 e 14* siano molto simili alla pendenza della retta della *serie 8*; sono tuttavia maggiori di quella della *serie 9*, ad indicare un comportamento a fatica peggiore.

La spiegazione di questo comportamento potrebbe essere ricercata indagando sulle modalità di propagazione delle cricche, e più nello

specifico sulle modalità di trasferimento del carico durante il test di fatica. Sembra infatti esserci contraddizione con una teoria ricorrente in letteratura e riguardante rotture a fatica per carichi di trazione: si afferma che le fratture della matrice, all'interfaccia con gli strati di fibra, tendono a rallentare il loro avanzamento. Si può ipotizzare che nel caso di prove di flessione in 3 punti, variando la tipologia di sollecitazione (e conseguentemente il tipo di sforzo e di trasferimento del carico), le dinamiche di interazione tra fibra e matrice siano differenti, e portino a comportamenti a fatica meno legati al n° di lamine.

A monte delle prove sperimentali era stato ipotizzato, analizzando un lavoro di tesi che tratta temi simili a quelli del presente elaborato, che il comportamento a fatica potesse essere condizionato dal numero di ply dispari o pari di cui è costituito il laminato: in un laminato composto da un numero dispari di layer, uno di questi si trova a cavallo della mezzeria e viene quindi sottoposto a sforzi alternati di compressione e trazione; in un laminato con numero pari di layer invece questo non accade.

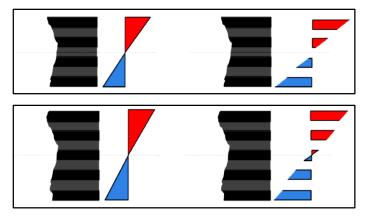
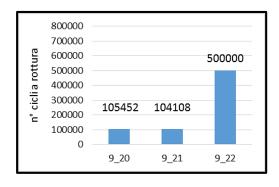


Figura 115 – Distribuzione degli sforzi di compressione e trazione in un laminato con numero di ply PARI (sora) e DISPARI (sotto)


Questo può far pensare che il numero dispari di strati porti a peggiori performance durante il test di flessione a fatica. Tuttavia i dati ottenuti in questo studio portano a rigettare un'ipotesi di questo tipo, in quanto per riduzioni di carico del 20% e 30% sono stati riscontrati comportamenti a fatica migliori proprio per le serie con 9 e 13 ply, rispetto a quelle con 8 e 14.

<u>Sequenza di impilamento</u> (orientamento della ply centrale, nel confronto serie 13-serie 13A):

Dalle prove risulta un miglior comportamento a fatica con carichi ridotti del 20% e 30% per la *serie 13*, con tutte le *ply a 0/90*°; mentre la rottura sopraggiunge più tardi (90.000 cicli rispetto a 34.000) per carico ridotto del 40% nella *serie 13A*, con *ply centrale orientata a 45*°. Ne risultano diagrammi di Wöhler con coefficienti angolari delle rette analoghi, ma con la retta della serie 13A traslata verso il basso (di una quota pari al valore di tensione a rottura statica).

Il differente orientamento della ply centrale ha quindi un effetto negativo sulla tensione di rottura statica, e conseguentemente sul comportamento a fatica del materiale CC-802.

III) si riportano i dati ottenuti per le prove a fatica con carico massimo ridotto del 40% su tutti provini della *serie* 9:

come anticipato nel capitolo 5, per motivi di tempo e disponibilità della pressa idraulica, il *provino* 9_22 non è stato portato a rottura, ma si è assunto come limite del presente studio il valore di 500.000 cicli.

I risultati ottenuti portano alla formulazione di un'interessante ipotesi riguardo il comportamento del *provino* 9_22, così differente da quello degli altri: potrebbe essere spiegato assumendo che, per la configurazione 1, la riduzione del carico del 40% si trova nell'intorno di un "*ginocchio*" nella curva di Wöhler (vedi figura seguente).

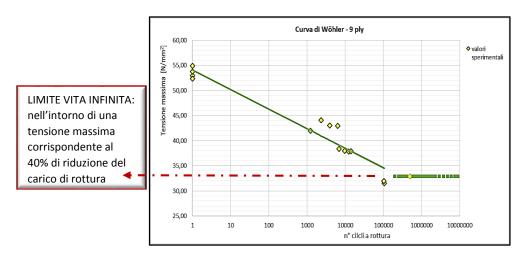
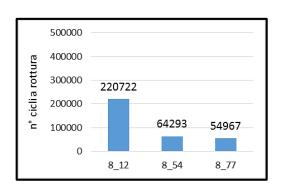



Figura 116 – Diagramma di Wöhler serie 9 (ipotesi)

Il dato "anomalo" sarebbe quindi dovuto al fatto che, lavorando nelle vicinanze di carichi corrispondenti al limite di vita infinita, una pur piccola differenza di tensione (dovuta ai pur ridotti errori di taglio provini e alle variabilità durante i test, o anche a microscopici difetti del laminato), può significare a livello di n° di cicli a rottura una differenza macroscopica.

Questa ipotesi trova conferma pure applicata all'altro campione in configurazione 1, ovvero la *serie* 8, di cui si riportano i dati:

7.2 - Limiti dello studio e prospettive future

L'analisi del comportamento a fatica nei materiali compositi presenta una grande numero di variabili, che risulta difficile correlare tra loro, in parte per la scarsa bibliografia reperibile sull'argomento, e in parte per motivi legati alle tempistiche e agli strumenti utilizzati per una campagna di prove svolta durante un lavoro di tesi. Questi i motivi principali per i quali questo elaborato è da intendersi come un punto di partenza, come spunto di riflessione per sviluppare ipotesi di lavoro future.

Il limite principale del presente studio è rappresentato dal numero di cicli ridotto a cui è stato possibile testare i campioni: per un'analisi del comportamento a fatica sarebbe opportuno indagare la vita dei provini anche nell'ordine di grandezza dei 10⁶ cicli.

È utile mettere in luce inoltre, che per ottenere una validità maggiore a livello di dati, sarebbe opportuno effettuare campagne di prove sperimentali con campioni statistici di dimensioni decisamente più elevate: questo permetterebbe di correlare con maggior sicurezza i risultati ottenuti per i provini al comportamento che effettivamente può avere un laminato, con vantaggi a livello progettuale.

Un'altra problematica che non è stato possibile superare, è legata alla precisione del circuito in retroazione del controllo di carico (controllo PID) durante le prove di fatica.

Per le motivazioni sopra elencate, questo elaborato potrebbe avere la funzione di aprire nuove prospettive di studio, volte alla verifica delle interpretazioni che sono state date ai valori ottenuti, alla conferma di un comportamento dello stesso tipo in CFRP con differenti caratteristiche, piuttosto che all'approfondimento dei temi trattati in riferimento anche ad altri materiali compositi.

Bibliografia

- [1] ASTM International, «ASTM D2344/D2344M Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates», 2013.
- [2] SAATI Composites, «Composites Technical Data MECHANICAL PROPERTIES OF CC802 ET445S».
- [3] J. A. Bailie, R. P. Ley, A. Pasricha, «A SUMMARY AND REVIEW OF COMPOSITE LAMINATE DESIGN GUIDELINES, SECTION 9 STACKING SEQUENCE AND INTERLAMINAR FREE EDGE STRESSES», 1997.
- [4] Andrew Makeev, «Interlaminar shear fatigue behavior of glass/epoxy and carbon/epoxy composites», 2013.
- [5] G. Sala, L. Di Landro, A. Airoldi, P. Bettini, «Tecnologie e materiali aerospaziali, Cap.46 - Effetto della fatica e dell'ambiente sui compositi».
- [6] A. Leva, «INTRODUZIONE AL PID INDUSTRIALE», Aprile 2000.
- [7] B. Zuccarello, «Progettazione meccanica con materiali non convenzionali, Cap.9 La fatica nei compositi», 2008.
- [8] Daniel Gay, Suong V. Hoa, Stephen W. Tsai, «Composite Materials Design and Applications», CRC Press LLC.
- [9] S. Naldi, «Analisi di sensibilità della grammatura sulla vita a fatica di un laminato in CFRP», Tesi di laurea, a.a. 2013/2014.
- [10] F. Scotti, «Il test di Student», 25 febbraio 2006.

Appendici

- A Tabelle caratterizzazione dimensionale
- ${\it B}$ Caratterizzazione Rotture microscopio ottico
- C F-TEST
- D T-TEST

A - Tabelle caratterizzazione dimensionale

				lunghezza	massa m
n° provino	n° misura	spessore z [mm]	larghezza x [mm]	y [mm]	[g]
	1	10,33	20,06		
13ply - 02	2	10,33	20,04		
100., 02	3	10,35	20,14		
	mean value	10,34	20,08	60,14	19,139
	2	10,31	20,06 20,04		
13ply - 03	3	10,35 10,31	20,04		
	mean value	10,32	20,04	60,15	19,206
	1	10,31	20,18	33,23	,
12-4. 00	2	10,32	20,09		
13ply - 08	3	10,3	20,07		
	mean value	10,31	20,11	60,19	19,18
	1	10,29	20		
13ply - 10	2	10,32	20,1		
	3	10,3	20,04	CO 10	10 120
	mean value 1	10,30 10,33	20,05 20,12	60,19	19,126
	2	10,33	20,05		
13ply - 12	3	10,3	20,08		
	mean value	10,31	20,08	60,04	19,141
	1	10,33	20,07		
13ply - 14	2	10,3	20,06		
13piy - 14	3	10,32	20,05		
	mean value	10,32	20,06	60,17	19,227
	1	10,33	20,18		
13ply - 16	2	10,28	19,99		
	3 maan yalua	10,28	20,02	60 14	19,167
	mean value 4	10,30 10,31	20,06 19,92	60,14	13,107
	5	10,29	20,08		
13ply - 26	6	10,29	20,11		
	mean value		20,04	CO 10	19,062
	mean value	10,30	20,04	60,18	13,002
	7	10,29	20,19	60,18	15,002
13nlv - 27				60,18	13,002
13ply - 27	7	10,29 10,31 10,31	20,19 20,16 20,03	-	
13ply - 27	7 8 9 mean value	10,29 10,31 10,31 10,30	20,19 20,16 20,03 20,13	60,11	19,112
13ply - 27	7 8 9 mean value	10,29 10,31 10,31 10,30 10,31	20,19 20,16 20,03 20,13 20,21	-	
13ply - 27 13ply - 28	7 8 9 mean value 1 2	10,29 10,31 10,31 10,31 10,31 10,28	20,19 20,16 20,03 20,13 20,21 20,09	-	
	7 8 9 mean value 1 2 3	10,29 10,31 10,31 10,31 10,31 10,28 10,31	20,19 20,16 20,03 20,13 20,21 20,09 20,14	60,11	19,112
	7 8 9 mean value 1 2 3 mean value	10,29 10,31 10,31 10,31 10,31 10,28 10,31 10,30	20,19 20,16 20,03 20,13 20,21 20,09 20,14 20,15	-	
13ply - 28	7 8 9 mean value 1 2 3	10,29 10,31 10,31 10,31 10,31 10,28 10,31 10,27	20,19 20,16 20,03 20,13 20,21 20,09 20,14 20,15	60,11	19,112
	7 8 9 mean value 1 2 3 mean value	10,29 10,31 10,31 10,31 10,31 10,28 10,31 10,30	20,19 20,16 20,03 20,13 20,21 20,09 20,14 20,15	60,11	19,112
13ply - 28	7 8 9 mean value 1 2 3 mean value 1 2	10,29 10,31 10,31 10,31 10,31 10,28 10,31 10,27 10,27	20,19 20,16 20,03 20,21 20,21 20,09 20,14 20,04 19,97	60,11	19,112
13ply - 28	7 8 9 mean value 1 2 3 mean value 1 2 3 mean value 3	10,29 10,31 10,31 10,31 10,28 10,31 10,27 10,27 10,27 10,27 10,27	20,19 20,16 20,03 20,21 20,21 20,09 20,14 20,04 19,97 20	60,11	19,112 19,113
13ply - 28 13ply - 29	7 8 9 mean value 1 2 3 mean value 1 2 3 mean value 1 2 3 mean value 1 2	10,29 10,31 10,31 10,31 10,28 10,31 10,27 10,27 10,27 10,27 10,27 10,31 10,3	20,19 20,16 20,03 20,13 20,21 20,09 20,14 20,04 19,97 20 20,00 20,35 20,43	60,11	19,112 19,113
13ply - 28	7 8 9 mean value 1 2 3	10,29 10,31 10,31 10,31 10,28 10,31 10,27 10,27 10,27 10,27 10,27 10,31 10,3 10,3	20,19 20,16 20,03 20,13 20,21 20,09 20,14 20,15 20,04 19,97 20 20,35 20,43 20,5	60,11	19,112 19,113 19,015
13ply - 28 13ply - 29	7 8 9 mean value 1 2 3	10,29 10,31 10,31 10,31 10,28 10,31 10,27 10,27 10,27 10,27 10,31 10,3 10,27 10,27	20,19 20,16 20,03 20,13 20,21 20,09 20,14 20,15 20,04 19,97 20 20,35 20,43 20,5	60,11	19,112 19,113
13ply - 28 13ply - 29	7 8 9 mean value 1 2 3 mean value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10,29 10,31 10,31 10,31 10,28 10,31 10,27 10,27 10,27 10,27 10,31 10,3 10,27 10,31 10,3 10,27	20,19 20,16 20,03 20,13 20,21 20,09 20,14 20,15 20,04 19,97 20 20,35 20,43 20,5 20,43 20,4	60,11	19,112 19,113 19,015
13ply - 28 13ply - 29	7 8 9 mean value 1 2 3	10,29 10,31 10,31 10,31 10,28 10,31 10,27 10,27 10,27 10,27 10,31 10,3 10,27 10,31 10,3 10,27	20,19 20,16 20,03 20,13 20,21 20,09 20,14 20,15 20,04 19,97 20 20,35 20,43 20,5 20,43 20,4 20,44	60,11	19,112 19,113 19,015
13ply - 28 13ply - 29 13ply - 34	7 8 9 mean value 1 2 3	10,29 10,31 10,31 10,31 10,28 10,31 10,27 10,27 10,27 10,27 10,31 10,3 10,27 10,31 10,3 10,27	20,19 20,16 20,03 20,13 20,21 20,09 20,14 20,15 20,04 19,97 20 20,35 20,43 20,5 20,43 20,5 20,44 20,44 20,38	60,11 60,10 60,11	19,112 19,113 19,015
13ply - 28 13ply - 29 13ply - 34	7 8 9 mean value 1 2 3	10,29 10,31 10,31 10,31 10,28 10,31 10,27 10,27 10,27 10,27 10,31 10,3 10,27 10,31 10,3 10,27	20,19 20,16 20,03 20,13 20,21 20,09 20,14 20,15 20,04 19,97 20 20,35 20,43 20,5 20,43 20,4 20,44	60,11	19,112 19,113 19,015
13ply - 28 13ply - 29 13ply - 34 13ply - 35	7 8 9 mean value 1 2 3	10,29 10,31 10,31 10,31 10,28 10,31 10,27 10,27 10,27 10,27 10,31 10,3 10,27 10,31 10,3 10,27 10,31 10,33 10,27 10,31 10,33 10,31 10,33 10,31 10,33	20,19 20,16 20,03 20,13 20,21 20,09 20,14 20,15 20,04 19,97 20 20,35 20,43 20,5 20,43 20,5 20,44 20,44 20,38 20,41	60,11 60,10 60,11	19,112 19,113 19,015
13ply - 28 13ply - 29 13ply - 34	7 8 9 mean value 1 2 3 mean value 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1	10,29 10,31 10,31 10,31 10,28 10,31 10,27 10,27 10,27 10,27 10,31 10,3 10,27 10,31 10,3 10,27 10,31 10,33 10,27 10,31 10,33 10,31 10,33 10,31 10,33	20,19 20,16 20,03 20,13 20,21 20,09 20,14 20,15 20,04 19,97 20 20,35 20,43 20,5 20,43 20,5 20,44 20,44 20,38 20,41 20,43	60,11 60,11 59,14	19,112 19,113 19,015
13ply - 28 13ply - 29 13ply - 34 13ply - 35	7 8 9 mean value 1 2 3 mean value	10,29 10,31 10,31 10,31 10,28 10,31 10,27 10,27 10,27 10,27 10,31 10,31 10,32 10,31 10,33 10,31 10,33 10,31 10,32 10,31 10,32 10,31 10,32 10,31 10,32 10,31	20,19 20,16 20,03 20,13 20,21 20,09 20,14 20,15 20,04 19,97 20 20,35 20,43 20,5 20,44 20,44 20,38 20,44 20,38 20,43 20,43 20,44 20,38 20,44 20,48 20,40 20,43 20,40 20,40	60,11 60,10 60,11	19,112 19,113 19,015
13ply - 28 13ply - 29 13ply - 34 13ply - 35	7 8 9 mean value 1 2 3 mean value 1 1 2 3 mean value 1 1 2 3 mean value 1	10,29 10,31 10,31 10,31 10,28 10,31 10,28 10,31 10,27 10,27 10,27 10,27 10,31 10,31 10,31 10,33 10,31 10,33 10,31 10,32 10,31 10,32 10,31 10,32 10,32 10,31 10,32 10,31	20,19 20,16 20,03 20,13 20,21 20,09 20,14 20,15 20,04 19,97 20 20,35 20,43 20,5 20,43 20,5 20,44 20,38 20,44 20,38 20,44 20,38 20,40 20,40 20,42 20,36 20,42	60,11 60,11 59,14	19,112 19,113 19,015 19,216
13ply - 28 13ply - 29 13ply - 34 13ply - 35	7 8 9 mean value 1 2 3	10,29 10,31 10,31 10,31 10,31 10,28 10,31 10,27 10,27 10,27 10,27 10,31 10,3 10,27 10,31 10,33 10,31 10,33 10,31 10,32 10,31 10,32 10,31 10,32 10,32 10,31 10,32 10,31 10,32 10,32 10,31	20,19 20,16 20,03 20,13 20,21 20,09 20,14 20,15 20,04 19,97 20 20,35 20,43 20,5 20,44 20,38 20,44 20,38 20,44 20,38 20,40 20,42 20,36 20,42 20,42 20,43	60,11 60,11 59,14	19,112 19,113 19,015 19,216
13ply - 28 13ply - 29 13ply - 34 13ply - 35	7 8 9 mean value 1 2 3	10,29 10,31 10,31 10,31 10,28 10,31 10,28 10,31 10,27 10,27 10,27 10,27 10,31 10,3 10,27 10,31 10,33 10,31 10,33 10,31 10,32 10,31 10,32 10,32 10,31 10,32	20,19 20,16 20,03 20,13 20,21 20,09 20,14 20,15 20,04 19,97 20 20,35 20,43 20,5 20,44 20,44 20,38 20,44 20,38 20,40 20,42 20,36 20,42 20,43 20,42 20,43 20,42 20,43 20,42 20,43	60,11 60,11 59,14 59,22	19,112 19,113 19,015 19,216 19,17
13ply - 28 13ply - 29 13ply - 34 13ply - 35	7 8 9 mean value 1 2 3 mean value 1	10,29 10,31 10,31 10,31 10,28 10,31 10,27 10,27 10,27 10,27 10,31 10,3 10,27 10,31 10,33 10,31 10,33 10,31 10,32 10,31 10,32 10,32 10,31 10,32 10,32 10,31 10,32 10,32 10,31 10,32 10,32 10,31 10,32 10,32 10,31 10,32 10,32 10,31 10,32 10,32 10,32 10,32 10,32 10,32 10,32 10,32 10,32 10,32 10,32	20,19 20,16 20,03 20,13 20,21 20,09 20,14 20,15 20,04 19,97 20 20,35 20,43 20,5 20,44 20,44 20,38 20,44 20,48 20,42 20,36 20,42 20,43 20,42 20,43 20,42 20,43 20,42 20,43 20,44 20,43 20,44	60,11 60,11 59,14	19,112 19,113 19,015 19,216
13ply - 28 13ply - 29 13ply - 34 13ply - 35	7 8 9 mean value 1 2 3 mean value 1 1 2 3 mean value 1 1 2 3 mean value 1 1 1 2 3 mean value 1	10,29 10,31 10,31 10,31 10,28 10,31 10,27 10,27 10,27 10,27 10,31 10,3 10,27 10,31 10,33 10,31 10,33 10,31 10,31 10,32 10,32 10,31 10,32 10,27 10,29 10,29 10,26 10,28 10,26 10,29	20,19 20,16 20,03 20,13 20,21 20,09 20,14 20,15 20,04 19,97 20 20,35 20,43 20,5 20,44 20,44 20,38 20,44 20,38 20,44 20,43 20,42 20,43 20,42 20,43 20,42 20,43 20,42 20,43 20,42 20,43 20,43 20,44 20,43 20,44 20,43 20,44 20,43 20,43 20,42	60,11 60,11 59,14 59,22	19,112 19,113 19,015 19,216 19,17
13ply - 28 13ply - 29 13ply - 34 13ply - 35	7 8 9 mean value 1 2 3	10,29 10,31 10,31 10,31 10,28 10,31 10,28 10,31 10,27 10,27 10,27 10,27 10,31 10,3 10,27 10,31 10,33 10,31 10,33 10,31 10,32 10,31 10,32 10,32 10,27 10,29 10,29 10,26 10,28 10,26 10,29 10,29 10,29	20,19 20,16 20,03 20,13 20,21 20,09 20,14 20,15 20,04 19,97 20 20,35 20,43 20,5 20,44 20,44 20,38 20,44 20,38 20,44 20,43 20,42 20,36 20,40 20,42 20,43 20,42 20,43 20,42 20,43 20,43 20,42 20,43 20,42 20,43 20,43 20,43 20,43 20,43 20,43 20,43 20,43 20,43 20,43 20,43 20,43 20,43	60,11 60,11 59,14 59,22	19,112 19,113 19,015 19,216 19,17
13ply - 28 13ply - 29 13ply - 34 13ply - 35 13ply - 37	7 8 9 mean value 1 2 3 mean value 1 1 2 3 mean value 1 1 2 3 mean value 1 1 1 2 3 mean value 1	10,29 10,31 10,31 10,31 10,28 10,31 10,27 10,27 10,27 10,27 10,31 10,3 10,27 10,31 10,33 10,31 10,33 10,31 10,31 10,32 10,32 10,31 10,32 10,27 10,29 10,29 10,26 10,28 10,26 10,29	20,19 20,16 20,03 20,13 20,21 20,09 20,14 20,15 20,04 19,97 20 20,35 20,43 20,5 20,44 20,44 20,38 20,44 20,38 20,44 20,43 20,42 20,43 20,42 20,43 20,42 20,43 20,42 20,43 20,42 20,43 20,43 20,44 20,43 20,44 20,43 20,44 20,43 20,43 20,42	60,11 60,11 59,14 59,22	19,112 19,113 19,015 19,216 19,17

n° provino	n° misura	spessore z [mm]	larghezza x [mm]	lunghezza	massa m
	1	40.00	20.22	y [mm]	[g]
	1	10,99	20,32		
14ply - 02	3	11,01 11,04	20,18		
	mean value	11,04 11,01	20,25 20,25	60,19	20,612
	1	11,05	20,25	00,13	20,012
	2	11	20,22		
14ply - 04	3	11	19,88		
	mean value	11,02	20,12	60,05	20,482
	1	11,09	20,07	·	•
	2	11,02	20,17		
14ply - 10	3	11,05	20,18		
	mean value	11,05	20,14	59,80	20,42
	1	11,01	20,1		
14-4. 11	2	11,05	20,09		
14ply - 11	3	11,06	20,08		
	mean value	11,04	20,09	59,99	20,518
	1	11,06	20,11		
14ply - 14	2	11,04	20,12		
1+μι y - 14	3	11	20,11		
	mean value	11,03	20,11	59,76	20,473
	1	11,08	20,2		
14ply - 18	2	11,05	20,13		
,,	3	11,07	20,22		
	mean value	11,07	20,18	60,04	20,653
	1	11,07	20,09		
14ply - 20	2	11,03	20,17		
.,	3	11,09	20,17		
	mean value	11,06	20,14	60,08	20,618
	1	11,05	20,1		
14ply - 24	3	11,08	20,3		
	mean value	11,06 11,06	20,07 20,16	60,38	20 652
	meun vuiue	11,00	20,10	00,30	20,652
	1	11.06	20.21		
	1 2	11,06 11.06	20,31		
14ply - 25	2	11,06	20,1		
14ply - 25	2	11,06 11,07	20,1 20,05	60.20	20.649
14ply - 25	2 3 mean value	11,06 11,07 11,06	20,1 20,05 20,15	60,20	20,649
	2 3 mean value 7	11,06 11,07 11,06 11,05	20,1 20,05 20,15 20,19	60,20	20,649
14ply - 25 14ply - 32	2 3 mean value	11,06 11,07 11,06 11,05 11,07	20,1 20,05 20,15	60,20	20,649
	2 3 mean value 7 8	11,06 11,07 11,06 11,05	20,1 20,05 20,15 20,19 20,21	60,20	
	2 3 mean value 7 8 9	11,06 11,07 11,06 11,05 11,07 11,05	20,1 20,05 20,15 20,19 20,21 20,13		
14ply - 32	2 3 mean value 7 8 9 mean value	11,06 11,07 11,06 11,05 11,07 11,05	20,1 20,05 20,15 20,19 20,21 20,13 20,18		
	2 3 mean value 7 8 9 mean value	11,06 11,07 11,06 11,05 11,07 11,05 11,06	20,1 20,05 20,15 20,19 20,21 20,13 20,18 20,01		
14ply - 32	2 3 mean value 7 8 9 mean value 1 2	11,06 11,07 11,06 11,05 11,07 11,05 11,05 11,05	20,1 20,05 20,15 20,19 20,21 20,13 20,18 20,01 20,12		20,786
14ply - 32	2 3 mean value 7 8 9 mean value 1 2 3	11,06 11,07 11,05 11,05 11,05 11,05 11,05 11,05 11,05	20,1 20,05 20,15 20,19 20,21 20,13 20,18 20,01 20,12 20,06	60,25	20,786
14ply - 32 14ply - 33	2 3 mean value 7 8 9 mean value 1 2 3 mean value 1 2	11,06 11,07 11,05 11,07 11,05 11,05 11,05 11,05 11,05 11,05 11,05	20,1 20,05 20,15 20,19 20,21 20,13 20,01 20,12 20,06 20,06 20,2 20,24	60,25	20,786
14ply - 32	2 3 mean value 7 8 9 mean value 1 2 3 mean value 1 2 3	11,06 11,07 11,05 11,07 11,05 11,05 11,05 11,05 11,05 11,05 11,06 11,05 11,06	20,1 20,05 20,15 20,19 20,21 20,13 20,01 20,12 20,06 20,06 20,2 20,24 20,3	60,25	20,786 20,68
14ply - 32 14ply - 33	2 3 mean value 7 8 9 mean value 1 2 3 mean value 1 2 3 mean value 3 mean value	11,06 11,07 11,05 11,07 11,05 11,05 11,05 11,05 11,05 11,05 11,05 11,06 11,05 11,09	20,1 20,05 20,15 20,19 20,21 20,13 20,01 20,12 20,06 20,06 20,2 20,24 20,3 20,25	60,25	20,786 20,68
14ply - 32 14ply - 33	2 3 mean value 7 8 9 mean value 1 2 3 mean value 1 2 3 mean value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11,06 11,07 11,06 11,05 11,07 11,05 11,05 11,05 11,05 11,05 11,05 11,06 11,05 11,06 11,07	20,1 20,05 20,15 20,19 20,21 20,13 20,01 20,12 20,06 20,06 20,2 20,24 20,3 20,25 20,21	60,25	20,786 20,68
14ply - 32 14ply - 33 14ply - 38	2 3 mean value 7 8 9 mean value 1 2 3 mean value 1 2 3 mean value 1 2 3	11,06 11,07 11,06 11,07 11,05 11,05 11,05 11,05 11,05 11,05 11,06 11,05 11,06 11,07 11,07	20,1 20,05 20,15 20,19 20,21 20,13 20,01 20,12 20,06 20,2 20,24 20,3 20,25 20,21 20,07	60,25	20,786 20,68
14ply - 32 14ply - 33	2 3 mean value 7 8 9 mean value 1 2 3	11,06 11,07 11,06 11,07 11,05 11,07 11,05 11,05 11,05 11,05 11,06 11,05 11,06 11,07 11,07 11,1	20,1 20,05 20,19 20,21 20,13 20,18 20,01 20,12 20,06 20,2 20,24 20,3 20,25 20,21 20,07 19,68	60,25 60,23 59,77	20,786 20,68 20,674
14ply - 32 14ply - 33 14ply - 38	2 3 mean value 7 8 9 mean value 1 2 3	11,06 11,07 11,06 11,07 11,05 11,07 11,05 11,05 11,05 11,05 11,06 11,05 11,06 11,07 11,07 11,11 11,08	20,1 20,05 20,15 20,19 20,21 20,13 20,01 20,12 20,06 20,2 20,24 20,3 20,25 20,21 20,07 19,68 19,99	60,25	20,786 20,68 20,674
14ply - 32 14ply - 33 14ply - 38	2 3 mean value 7 8 9 mean value 1 2 3 mean value 1 2 3 mean value 1 2 3 mean value 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11,06 11,07 11,06 11,07 11,05 11,07 11,05 11,05 11,05 11,05 11,06 11,05 11,07 11,07 11,107 11,06	20,1 20,05 20,19 20,21 20,13 20,18 20,01 20,12 20,06 20,2 20,24 20,3 20,25 20,21 20,07 19,68 19,99 20,17	60,25 60,23 59,77	20,786 20,68 20,674
14ply - 32 14ply - 33 14ply - 38	2 3 mean value 7 8 9 mean value 1 2 3 mean value 1 2	11,06 11,07 11,06 11,07 11,05 11,05 11,05 11,05 11,05 11,05 11,06 11,05 11,07 11,07 11,107 11,06 11,06 11,06	20,1 20,05 20,19 20,21 20,13 20,18 20,01 20,12 20,06 20,2 20,24 20,3 20,25 20,21 20,07 19,68 19,99 20,17 20	60,25 60,23 59,77	20,786 20,68 20,674
14ply - 32 14ply - 33 14ply - 38 14ply - 44	2 3 mean value 7 8 9 mean value 1 2 3	11,06 11,07 11,06 11,07 11,05 11,05 11,05 11,05 11,05 11,06 11,05 11,07 11,07 11,07 11,07 11,07 11,07 11,06 11,06 11,06 11,06 11,06 11,07	20,1 20,05 20,15 20,19 20,21 20,13 20,18 20,01 20,12 20,06 20,2 20,24 20,3 20,25 20,21 20,07 19,68 19,99 20,17 20 20,05	60,25 60,23 59,77	20,786 20,68 20,674 20,25
14ply - 32 14ply - 33 14ply - 38 14ply - 44	2 3 mean value 7 8 9 mean value 1 2 3	11,06 11,07 11,06 11,07 11,05 11,07 11,05 11,05 11,05 11,06 11,05 11,07 11,07 11,07 11,07 11,07 11,07 11,06 11,06 11,06 11,06 11,06 11,07 11,06 11,07	20,1 20,05 20,19 20,21 20,13 20,18 20,01 20,12 20,06 20,2 20,24 20,3 20,25 20,21 20,07 19,68 19,99 20,17 20 20,05 20,05	60,25 60,23 59,77	20,786 20,68 20,674 20,25
14ply - 32 14ply - 33 14ply - 38 14ply - 44	2 3 mean value 1 1 2 3 mean value 1 1 1 2 3 mean value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11,06 11,07 11,06 11,07 11,06 11,07 11,05 11,05 11,05 11,05 11,06 11,07 11,07 11,07 11,07 11,07 11,106 11,06 11,06 11,06 11,06 11,06 11,07 11,07	20,1 20,05 20,19 20,21 20,13 20,18 20,01 20,12 20,06 20,2 20,24 20,3 20,25 20,21 20,07 19,68 19,99 20,17 20 20,05 20,27	60,25 60,23 59,77	20,786 20,68 20,674 20,25
14ply - 32 14ply - 33 14ply - 38 14ply - 44	2 3 mean value 1 2 3	11,06 11,07 11,06 11,07 11,05 11,07 11,05 11,05 11,05 11,06 11,05 11,07 11,07 11,07 11,07 11,107 11,06 11,06 11,06 11,06 11,07 11,07 11,06 11,07 11,07	20,1 20,05 20,19 20,21 20,13 20,18 20,01 20,12 20,06 20,2 20,24 20,3 20,21 20,07 19,68 19,99 20,17 20 20,05 20,27 20,28	60,25 60,23 59,77	20,786 20,68 20,674 20,25
14ply - 32 14ply - 33 14ply - 38 14ply - 44	2 3 mean value 1 2 3	11,06 11,07 11,06 11,07 11,06 11,07 11,05 11,05 11,05 11,05 11,06 11,07 11,07 11,07 11,07 11,06 11,06 11,06 11,07 11,06 11,07 11,06 11,07 11,06	20,1 20,05 20,19 20,21 20,13 20,18 20,01 20,12 20,06 20,2 20,24 20,3 20,21 20,07 19,68 19,99 20,17 20 20,05 20,27 20,28 20,08	60,25 60,23 59,77 59,19	20,786 20,68 20,674 20,25 20,424
14ply - 32 14ply - 33 14ply - 38 14ply - 44	2 3 mean value 1	11,06 11,07 11,06 11,07 11,05 11,07 11,05 11,05 11,05 11,05 11,06 11,07 11,07 11,07 11,07 11,06 11,06 11,06 11,07 11,07 11,06 11,07 11,07 11,06 11,07 11,06 11,06 11,07 11,06 11,06 11,06 11,07 11,06 11,06 11,06 11,06 11,06	20,1 20,05 20,19 20,21 20,13 20,18 20,01 20,12 20,06 20,2 20,24 20,3 20,25 20,21 20,07 19,68 19,99 20,17 20 20,05 20,27 20,28 20,08 20,21	60,25 60,23 59,77	20,786 20,68 20,674 20,25
14ply - 32 14ply - 33 14ply - 38 14ply - 44	2 3 mean value 1 1 2 3 mean value 1 1 2 1 1 2 3 mean value 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11,06 11,07 11,06 11,07 11,05 11,05 11,05 11,05 11,05 11,05 11,05 11,06 11,07 11,07 11,07 11,07 11,106 11,06 11,07 11,06 11,07 11,06 11,07 11,06 11,07 11,06 11,07 11,06 11,07 11,06 11,07 11,06 11,07 11,06	20,1 20,05 20,19 20,21 20,13 20,18 20,01 20,12 20,06 20,2 20,24 20,3 20,21 20,07 19,68 19,99 20,17 20 20,05 20,27 20,28 20,08 20,21 20,17	60,25 60,23 59,77 59,19	20,786 20,68 20,674 20,25 20,424
14ply - 32 14ply - 33 14ply - 38 14ply - 44	2 3 mean value 7 8 9 mean value 1 2 3	11,06 11,07 11,06 11,07 11,05 11,05 11,05 11,05 11,05 11,05 11,05 11,06 11,07 11,07 11,07 11,107 11,06 11,06 11,07 11,06 11,07 11,06 11,07 11,06 11,07 11,06 11,07 11,06 11,07 11,06	20,1 20,05 20,19 20,21 20,13 20,18 20,01 20,12 20,06 20,2 20,24 20,3 20,21 20,07 19,68 19,99 20,17 20 20,05 20,27 20,28 20,08 20,21 20,17 20,16	60,25 60,23 59,77 59,19	20,68 20,674 20,25 20,424
14ply - 32 14ply - 33 14ply - 38 14ply - 44 14ply - 46	2 3 mean value 1 1 2 3 mean value 1 1 2 1 1 2 3 mean value 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11,06 11,07 11,06 11,07 11,05 11,05 11,05 11,05 11,05 11,05 11,05 11,06 11,07 11,07 11,07 11,07 11,106 11,06 11,07 11,06 11,07 11,06 11,07 11,06 11,07 11,06 11,07 11,06 11,07 11,06 11,07 11,06 11,07 11,06	20,1 20,05 20,19 20,21 20,13 20,18 20,01 20,12 20,06 20,22 20,24 20,3 20,25 20,21 20,07 19,68 19,99 20,17 20 20,05 20,27 20,28 20,08 20,21 20,17 20,16 20,07	60,25 60,23 59,77 59,19	20,786 20,68 20,674 20,25 20,424

n° provino	n° misura	spessore z [mm]	larghezza x [mm]	lunghezza	massa m
	1	6.46	12.64	y [mm]	[g]
	2	6,46 6,46	13,64 13,17		
8 ply - 01	3	6,45	13,38		
	mean value	6,46	13,40	40,23	5,269
	1	6,41	13,59	40,23	3,203
	2	6,4	13,35		
8 ply - 03	3	6,39	13,35		
	mean value	6,40	13,43	40,10	5,258
	1	6,39	13,5		
0 . 13	2	6,37	13,48		
8 ply - 12	3	6,39	13,27		
	mean value	6,38	13,42	40,11	5,285
	1	6,41	13,15		
8 ply - 15	2	6,39	13,19		
Spiy-13	3	6,39	13,05		
	mean value	6,40	13,13	40,08	5,123
	1	6,45	13,48		
8 ply - 22	2	6,44	13,45		
~., 	3	6,46	13,47		
	mean value	6,45	13,47	40,49	5,402
	1	6,4	13,55		
8 ply - 25	2	6,4	13,26		
	3	6,42	12,97	40.20	F 242
	mean value	6,41	13,26	40,29	5,243
	2	6,44	13,52		
8 ply - 33	3	6,42 6,39	13,54 13,5		
	mean value	6,42	13,52	40,47	5,393
	1	6,38	13,59	40,47	3,333
	2	6,4	13,56		
8 ply -51	3	6,38	13,56		
	mean value	6,39	13,57	40,51	5,421
	1	6,39	13,53	ĺ	Í
		0,33			
0.1.54	2	6,4	13,52		
8 ply -54		·			
8 ply - 54	2	6,4	13,52	40,45	5,377
8 ply - 54	2	6,4 6,42	13,52 13,54	40,45	5,377
	2 3 mean value 1 2	6,4 6,42 6,40	13,52 13,54 13,53	40,45	5,377
8 ply - 54 8 ply - 55	2 3 mean value 1	6,4 6,42 6,34 6,35 6,37	13,52 13,54 13,48 13,52 13,54	-	
	2 3 mean value 1 2 3 mean value	6,4 6,42 6,40 6,34 6,35 6,37	13,52 13,54 13,53 13,48 13,52 13,54 13,51	40,45	5,377 5,332
	2 3 mean value 1 2 3 mean value	6,4 6,42 6,40 6,34 6,35 6,37 6,37	13,52 13,54 13,53 13,48 13,52 13,54 13,54 13,46	-	
	2 3 mean value 1 2 3 mean value 1 2	6,4 6,42 6,40 6,34 6,35 6,37 6,37 6,37	13,52 13,54 13,53 13,48 13,52 13,54 13,54 13,46 13,42	-	
8 ply - 55	2 3 mean value 1 2 3 mean value 1 2 3	6,4 6,42 6,40 6,34 6,35 6,37 6,37 6,39 6,36	13,52 13,54 13,48 13,52 13,54 13,54 13,46 13,42 13,37	40,13	5,332
8 ply - 55	2 3 mean value 1 2 3 mean value 1 2 3 mean value 3 mean value	6,4 6,42 6,34 6,35 6,37 6,37 6,39 6,36	13,52 13,54 13,53 13,48 13,52 13,54 13,51 13,46 13,42 13,37	-	
8 ply - 55	2 3 mean value 1	6,4 6,42 6,34 6,35 6,37 6,37 6,39 6,36 6,37	13,52 13,54 13,53 13,48 13,52 13,54 13,54 13,46 13,42 13,37 13,42 13,55	40,13	5,332
8 ply - 55	2 3 mean value 1 2 3	6,4 6,42 6,34 6,35 6,37 6,37 6,39 6,36 6,41 6,41	13,52 13,54 13,53 13,48 13,52 13,54 13,51 13,46 13,42 13,37 13,42 13,5 13,43	40,13	5,332
8 ply - 55 8 ply - 66	2 3 mean value 1 2 3 3	6,4 6,42 6,34 6,35 6,37 6,37 6,39 6,36 6,41 6,42 6,43	13,52 13,54 13,53 13,48 13,52 13,54 13,51 13,46 13,42 13,37 13,42 13,5 13,43 13,46	40,13 40,51	5,332 5,318
8 ply - 55 8 ply - 66	2 3 mean value 1 2 3	6,4 6,42 6,34 6,35 6,37 6,37 6,39 6,36 6,36 6,41 6,42 6,43	13,52 13,54 13,53 13,48 13,52 13,54 13,51 13,46 13,42 13,37 13,42 13,5 13,43 13,46 13,46	40,13	5,332
8 ply - 55 8 ply - 66 8 ply - 75	2 3 mean value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6,4 6,42 6,34 6,35 6,37 6,37 6,39 6,36 6,41 6,42 6,43	13,52 13,54 13,53 13,48 13,52 13,54 13,51 13,46 13,42 13,37 13,42 13,5 13,43 13,46 13,46 13,46 13,46	40,13 40,51	5,332 5,318
8 ply - 55 8 ply - 66	2 3 mean value 1 2 3	6,4 6,42 6,34 6,35 6,37 6,37 6,39 6,36 6,41 6,42 6,43 6,43 6,42	13,52 13,54 13,53 13,48 13,52 13,54 13,51 13,46 13,42 13,37 13,43 13,46 13,46 13,46 13,46 13,37 13,37	40,13 40,51	5,332 5,318
8 ply - 55 8 ply - 66 8 ply - 75	2 3 mean value 1 2 3	6,4 6,42 6,34 6,35 6,37 6,37 6,39 6,36 6,41 6,42 6,43	13,52 13,54 13,53 13,48 13,52 13,54 13,51 13,46 13,42 13,37 13,42 13,5 13,43 13,46 13,46 13,46 13,46	40,13 40,51	5,332 5,318
8 ply - 55 8 ply - 66 8 ply - 75	2 3 mean value 1 2 3	6,4 6,42 6,34 6,35 6,37 6,37 6,39 6,36 6,41 6,42 6,43 6,43 6,42 6,43 6,42 6,43	13,52 13,54 13,48 13,52 13,54 13,51 13,46 13,42 13,37 13,43 13,43 13,46 13,46 13,37 13,37 13,33 13,38	40,13 40,51 40,28	5,332 5,318 5,298
8 ply - 55 8 ply - 66 8 ply - 75 8 ply - 77	2 3 mean value 1 2 3	6,4 6,42 6,34 6,35 6,37 6,37 6,39 6,36 6,41 6,42 6,43 6,43 6,42 6,43 6,42 6,43	13,52 13,54 13,48 13,52 13,54 13,51 13,46 13,42 13,37 13,43 13,46 13,43 13,46 13,37 13,33 13,38 13,38	40,13 40,51 40,28	5,332 5,318 5,298
8 ply - 55 8 ply - 66 8 ply - 75	2 3 mean value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6,4 6,42 6,34 6,35 6,37 6,37 6,39 6,36 6,41 6,42 6,43 6,43 6,42 6,43 6,42 6,43	13,52 13,54 13,48 13,52 13,54 13,54 13,46 13,42 13,37 13,43 13,46 13,46 13,47 13,37 13,38 13,38 13,36 13,36 13,24	40,13 40,51 40,28	5,332 5,318 5,298
8 ply - 55 8 ply - 66 8 ply - 75 8 ply - 77	2 3 mean value 1 2 3	6,4 6,42 6,34 6,35 6,37 6,37 6,39 6,36 6,41 6,42 6,43 6,42 6,43 6,42 6,43 6,42 6,43	13,52 13,54 13,48 13,52 13,54 13,51 13,46 13,42 13,37 13,43 13,46 13,43 13,46 13,37 13,33 13,38 13,38 13,36 13,24 13,35	40,13 40,51 40,28	5,332 5,318 5,298 5,307
8 ply - 55 8 ply - 66 8 ply - 75 8 ply - 77	2 3 mean value 1 2 3	6,4 6,42 6,34 6,35 6,37 6,37 6,39 6,36 6,41 6,42 6,43 6,42 6,43 6,42 6,43 6,42 6,43	13,52 13,54 13,53 13,48 13,52 13,54 13,51 13,46 13,42 13,37 13,43 13,46 13,37 13,33 13,38 13,38 13,38 13,24 13,35 13,42	40,13 40,51 40,28 40,38	5,332 5,318 5,298 5,307
8 ply - 55 8 ply - 66 8 ply - 75 8 ply - 77	2 3 mean value 1	6,4 6,42 6,34 6,35 6,37 6,37 6,39 6,36 6,41 6,42 6,43 6,42 6,43 6,42 6,43 6,42 6,43 6,42 6,43	13,52 13,54 13,53 13,48 13,52 13,51 13,46 13,42 13,37 13,43 13,46 13,46 13,37 13,33 13,38 13,38 13,36 13,24 13,35 13,42 13,35 13,42 13,35	40,13 40,51 40,28 40,38	5,332 5,318 5,298
8 ply - 55 8 ply - 66 8 ply - 75 8 ply - 77	2 3 mean value 1 1 2 3 mean value 1 1 2 1 1 2 3	6,4 6,42 6,34 6,35 6,37 6,37 6,39 6,36 6,41 6,42 6,43 6,43 6,42 6,43 6,42 6,43 6,44 6,43 6,42 6,43	13,52 13,54 13,48 13,52 13,54 13,51 13,46 13,42 13,37 13,43 13,46 13,43 13,46 13,37 13,33 13,38 13,38 13,36 13,24 13,35 13,42 13,44	40,13 40,51 40,28 40,38	5,332 5,318 5,298 5,307 5,306
8 ply - 55 8 ply - 66 8 ply - 75 8 ply - 77	2 3 mean value 1	6,4 6,42 6,40 6,34 6,35 6,37 6,39 6,36 6,37 6,41 6,42 6,43 6,43 6,42 6,41 6,42 6,43 6,42 6,41 6,42 6,37 6,41 6,38 6,38 6,38 6,38 6,38	13,52 13,54 13,48 13,52 13,54 13,54 13,51 13,46 13,42 13,37 13,43 13,46 13,37 13,33 13,38 13,38 13,38 13,34 13,41 13,45 13,41 13,45 13,46	40,13 40,51 40,28 40,38	5,332 5,318 5,298 5,307
8 ply - 55 8 ply - 66 8 ply - 75 8 ply - 77	2 3 mean value 1 1 2 3 mean value 1 1 2 3 mean value 1 1 1 2 3 mean value 1 1 1 2 3 mean value 1	6,4 6,42 6,40 6,34 6,35 6,37 6,39 6,36 6,37 6,41 6,42 6,43 6,42 6,43 6,42 6,41 6,42 6,37 6,41 6,38 6,37 6,38 6,38 6,38 6,38	13,52 13,54 13,53 13,48 13,52 13,54 13,51 13,46 13,42 13,37 13,43 13,46 13,37 13,33 13,38 13,38 13,38 13,34 13,41 13,45 13,41 13,45 13,44 13,44	40,13 40,51 40,28 40,38	5,332 5,318 5,298 5,307 5,306
8 ply - 55 8 ply - 66 8 ply - 75 8 ply - 77	2 3 mean value 1 2 3	6,4 6,42 6,40 6,34 6,35 6,37 6,39 6,36 6,37 6,41 6,42 6,43 6,42 6,43 6,42 6,41 6,42 6,37 6,41 6,38 6,38 6,38 6,38 6,38 6,38 6,38	13,52 13,54 13,53 13,48 13,52 13,54 13,51 13,46 13,42 13,37 13,43 13,46 13,37 13,38 13,38 13,38 13,38 13,34 13,41 13,45 13,41 13,45 13,46 13,44 13,44 13,43	40,13 40,51 40,28 40,38	5,332 5,318 5,298 5,307 5,306
8 ply - 55 8 ply - 66 8 ply - 75 8 ply - 77 8 ply - 78	2 3 mean value 1 1 2 3 mean value 1 1 2 3 mean value 1 1 1 2 3 mean value 1 1 1 2 3 mean value 1	6,4 6,42 6,40 6,34 6,35 6,37 6,39 6,36 6,37 6,41 6,42 6,43 6,42 6,43 6,42 6,41 6,42 6,37 6,41 6,38 6,37 6,38 6,38 6,38 6,38	13,52 13,54 13,53 13,48 13,52 13,54 13,51 13,46 13,42 13,37 13,43 13,46 13,37 13,33 13,38 13,38 13,38 13,34 13,41 13,45 13,41 13,45 13,44 13,44	40,13 40,51 40,28 40,38	5,332 5,318 5,298 5,307 5,306

	°:		larghezza x [mm]	lunghezza	massa m
n° provino	n° misura	spessore z [mm]	rargnezza x [mm]	y [mm]	[g]
	1	7,25	13,16		
9ply - 09	2	7,22	13,15		
) Sp., US	3	7,22	13,16		
	mean value	7,23	13,16	39,98	5,782
	1	7,22	13,14		
9ply - 10	2	7,2	13,08		
55.7 20	3	7,2	13,13		
	mean value	7,21	13,12	40,08	5,735
	1	7,2	13,17		
9ply - 11	2	7,21	13,2		
55.7 ==	3	7,21	13,19		
	mean value	7,21	13,19	40,18	5,77
	1	7,23	13,11		
9ply - 12	2	7,2	13,11		
<i>sp.y</i> ==	3	7,18	13,14		
	mean value	7,20	13,12	40,07	5,8
	1	7,22	13,01		
9ply - 13	2	7,2	13,07		
Jp.y - 13	3	7,2	13,18		
	mean value	7,21	13,09	40,16	<i>5,743</i>
	1	7,14	13,12		
9ply - 14	2	7,16	13,15		
Spiy-14	3	7,16	13,3		
	mean value	7,15	13,19	40,09	5,77
	1	7,18	13,46		
9ply - 16	2	7,14	13,43		
3piy-10	3	7,17	13,57		
	mean value	7,16	13,49	40,19	5,972
	1	7,16	12,99		
9ply - 17	2	7,15	13,08		
<i>3ρι</i> γ-17	3	7,2	13,06		
	mean value	7,17	13,04	40,91	5,831
	1	7,15	13,07		
9ply - 18	2	7,16	13,1		
3piy-10	3	7,16	13,16		
	mean value	7,16	13,11	40,17	5,792
	1	7,16	12,93		
9ply - 19	2	7,15	12,93		
3piy-13	3	7,15	13		
	mean value	7,15	12,95	40,13	5,689
	1	7,19	13,47		
9ply - 20	2	7,18	13,36		
Jp1y - 20	3	7,2	13,45		
	mean value	7,19	13,43	40,20	5,899
	1	7,14	13,35		
9ply - 21	2	7,16	13,33		
Spiy-ZI	3	7,19	13,2		
	mean value	7,16	13,29	40,11	5,881
	1	7,15	12,91		
9ply - 22	2	7,16	12,91		
3piy - 22	3	7,17	12,92		
	mean value	7,16	12,91	40,15	5,699
	1	7,14	13,1		
9ply - 23	2	7,14	13,13		
3piy - 23	3	7,13	13,09		
	mean value	7,14	13,11	40,15	5,788
	1	7,09	12,92		
9ply - 24	2	7,1	12,95		
3piy - 24	3	7,09	13,03		
	mean value	7,09	12,97	40,56	<i>5,7</i> 9

n° provino	n° misura	spessore z [mm]	larghezza x [mm]	lunghezza	massa m
			10.00	y [mm]	[g]
	1	10,14	19,99		
13A_ 03	2	10,16	19,97		
_	3	10,15	20,02		10
	mean value	10,15	19,99	59,99	18,577
	1	10,17	19,97		
13A_ 04	2	10,17	20,00		
_	3	10,16	20,03	CO 04	40.645
	mean value	10,17	20,00	60,04	18,615
	2	10,16	20,05		
13A _05		10,16	20,02		
	3	10,18 10,17	20,05	CO 01	10.020
	mean value 1	10,17	20,04	60,01	18,629
	2		19,98		
13A_ 06	3	10,16 10,16	20,02		
	mean value	10,16	20,02	59,96	18,644
	1	10,17	20,12	33,30	10,044
	2		20,12		
13A_ 07	3	10,17 10,15	-		
	mean value	10,15 10,16	20,04 20,08	59,97	18,645
	mean value	10,17	20,08	וב,כנ	10,045
	2	10,17	20,01		
13A_ 12	3	10,19	20,00		
	mean value	10,13	20,03	59,95	18,564
	1	10,15	20,00	33,33	10,304
	2	10,15	20,04		
13A_ 13	3	10,14	20,02		
	mean value	10,15	20,02	59,93	18,597
	1	10,15	20,04	33,33	10,337
	2	10,14	20,04		
13A_ 14	3	10,14	20,07		
	mean value	10,14	20,05	59,92	18,567
	1	10,14	20,14	55,52	20,007
	2	10,16	20,08		
13A_ 18	3	10,17	20,13		
	mean value	10,16	20,12	59,99	18,699
	1	10,15	20,02	,	,
22	2	10,15	20,01		
13A_ 22	3	10,12	19,97		
	mean value	10,14	20,00	59,93	18,575
	1	10,15	20,02		
124 22	2	10,12	20,01		
13A_ 23	3	10,13	20,04		
	mean value	10,13	20,02	59,98	18,605
	1	10,19	20,01		
13A_ 25	2	10,22	20,01		
13/1_23	3	10,19	20,07		
	mean value	10,20	20,03	59,94	18,464
	4	10,17	19,94		
13A_ 26	5	10,13	20,03		
-5/5	6	10,20	20,01		
	mean value	10,17	19,99	<i>59,98</i>	18,643
	7	10,16	20,06		
13A_27	8	10,18	20,08		
	9	10,13	20,05		
	mean value	10,16	20,06	59,96	18,674
	1	10,17	20,03		
	2	10,15	20,13		
13A 28			20,05		
13A _28	3	10,18			
13A_ 28	mean value	10,17	20,07	59,97	18,666
13A _28	mean value 1	10,17 10,14	20,07 20,04	59,97	18,666
13A_28 	mean value 1 2	10,17 10,14 10,11	20,07 20,04 20,08	59,97	18,666
	mean value 1	10,17 10,14	20,07 20,04	59,97 59,92	18,666 18,555

B - Caratterizzazione delle rotture statiche e del danneggiamento a fatica tramite camera digitale e microscopio ottico

Figura 117 – Rottura statica del provino 13A_03

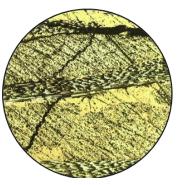


Figura 118 – Modalità di propagazione di una cricca nella rottura statica del provino 13A_03 (ingrandimento 5x)

Figura 119 – Rottura del provino 13A_07, sottoposto a prove di fatica con carico massimo ridotto del 20%

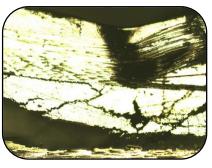


Figura 120 – Particolare ingrandito del principio della cricca a contatto con la traversa del provino 13_07 (ingrandimento 5x)

Figura 121 – Rottura del provino 13A_18, sottoposto a prove di fatica con carico massimo ridotto del 40%

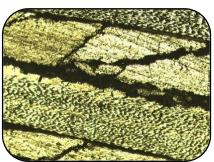
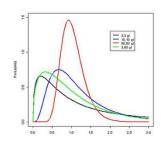



Figura 122 – Particolare ingrandito della propagazione di rotture multiple del provino 13_18 (ingrandimento 5x)

C - Test di precisione: TEST F

Il test F per il confronto di due varianze è un test di ipotesi basato sulla distribuzione F di Fisher-Snedecor e volto a verificare l'ipotesi che due popolazioni che seguono entrambe distribuzioni normali abbiano la stessa varianza.

È stato effettuato per i campioni testati staticamente, in modo da avere una conferma della ripetibilità della prova.

Il test considera il <u>rapporto di due varianze</u> s^2 (relative ai campioni):

$$F_0=rac{s_\chi^2}{s_y^2}$$
 , dove x e y sono di volta in volta il numero corrispondente alle serie a confronto

Il valore ottenuto, che è maggiore di uno (la varianza superiore va posta al numeratore), va confrontato con un valore tabulato, in modo da "accettare" o "rigettare" $\underline{l'ipotesi\ nulla\ H_0}$:

H₀: le popolazioni da cui sono stati estratti campioni sono normali e le varianze delle popolazioni sono identiche.

/	df _l =1	2	3	4	5	6	7	8
df ₂ =1	161.4476	199.5000	215.7073	224.5832	230.1619	233.9860	236.7684	238.8827
2	18.5128	19.0000	19.1643	19.2468	19.2964	19.3295	19.3532	19.3710
3	10.1280	9.5521	9.2766	9.1172	9.0135	8.9406	8.8867	8.8452
4	7.7086	6.9443	6.5914	6.3882	6.2561	6.1631	6.0942	6.0410
5	6.6079	5.7861	5.4095	5.1922	5.0503	4.9503	4.8759	4.8183

F Table for $\alpha = 0.05$

	2					
	S g 2	1,325		n-1	4	
serie-8 / serie-9	S g 2	1,233		n-1	3	
	F ₀	1,075	<	F _{0.05:4:3}	9,117	H₀ ACCETTATA
	2	4.000				
	S 13 2	1,665		n-1	4	
serie-8 / serie-13	S g 2	1,325		n-1	4	
	F ₀	1,257	<	F _{0,05;4;4}	6,388	H₀ ACCETTATA
	2					
	S 14 2	2,566		n-1	4	
serie-8 / serie-14	S 8 2	1,325		n-1	4	
	F ₀	1,937	<	F _{0.05:4:4}	6,388	H₀ ACCETTATA
	S 13 2	1.005	-	- 1		
assis O /assis 13		1,665		n-1	4	
serie-9 / serie-13	5 g ²	1,233		n-1	3	II ACCETTATA
<u> </u>	F ₀	1,351	<	F _{0,05;4;3}	9,117	H₀ ACCETTATA
	2					
	S 14	2,566		n-1	4	
serie-9 / serie-14	S _g ²	1,233		n-1	3	
1	F ₀	2,082	<	F _{0,05;4;3}	9,117	H ₀ ACCETTATA
	2					
	S 14 2	2,566		n-1	4	
serie-13 / serie-14	S 13 2	1,665		n-1	4	
	F ₀	1,541	<	F _{0.05:4:4}	6,388	H ₀ ACCETTATA
	S 13A 2	2,711		n-1	4	
serie-13A / serie-8	S ₈ ²	1,325		n-1	4	
	F ₀	2,046	<	F _{0,05;4;4}	6,388	H ₀ ACCETTATA
	- 0	_,,,,,,		- 0,05; 4; 4	1,555	1,0 1100=111111
	S 13A 2	2,711		n-1	4	
serie-13A / serie-9	S _g ²	1,233		n-1	3	
	F ₀	2,199	<	F _{0,05;4;4}	9,117	H ₀ ACCETTATA
				1		
		2.744		n-1	4	
	S 13A 2	2,711				
serie-13A / serie-13	\$ 13A	1,665		n-1	4	
serie-13A / serie-13	S 13A		<	n-1 F _{0,05;4;4}	6,388	H ₀ ACCETTATA
serie-13A / serie-13	5 _{13A} 5 ₁₃ 7 7	1,665	<		•	H ₀ ACCETTATA
erie-13A / serie-13	S 13A S 13	1,665	<		•	H ₀ ACCETTATA
erie-13A / serie-13	5 _{13A} 5 ₁₃ 7 7	1,665 1,628	<	F _{0,05;4;4}	6,388	H ₀ ACCETTATA

- ✓ Non ci son evidenze per rigettare l'ipotesi nulla;
- ✓ Le varianze calcolate dai campioni sono compatibili con l'ipotesi nulla che i campioni provengano da popolazioni con varianze uguali;
- ✓ Non ci sono evidenze di errori sistematici nello svolgimento delle prove;
- ✓ Per un confronto sulle medie campionarie, il test T è appropriato.

D - Test di accuratezza: TEST T

Si vanno a considerare le medie dei campioni (presi a due a due) per valutare se la differenza è significativa; si impiega il test di Student per il confronto tra medie.

L'*ipotesi nulla* presuppone che le due medie a confronto siano estratte dalla stessa popolazione, imputando le differenze riscontrate nelle medie campionarie a variazioni casuali ($\mu_1 = \mu_2$).

Usando il test di Student possiamo calcolare la probabilità che l'ipotesi nulla non sia vera (cioè che le medie μ_1 e μ_2 in realtà sono diverse e quindi le medie campionarie sono diverse non solo per fattori casuali dovuti alla estrazione del campione).

Il test si considera significativo se la probabilità è minore del 5%, ovvero quando si ottiene $P(T \le t) < 0.05$.

Partendo dai dati è possibile effettuare il test di Student usando delle tabelle (concetto analogo al test F, confronto tra un valore calcolato e uno tabulato), oppure utilizzando uno strumento informatico: si riportano i risultati ottenuti utilizzando Excel.

Come si vede di seguito, a causa della dimensione campionaria ridotta, in pochi casi il test risulta significativo, motivo per cui sarebbe opportuno approfondire i temi trattati in questo elaborato aumentando la dimensione dei campioni statistici. • <u>Confronto tra medie campionarie</u>: prova di flessione a fatica con carico massimo ridotto del 20%

	serie-8	serie-13
Media	1313,333333	2299,75
Varianza	165492,3333	379554,9167
Osservazioni	3	4
Varianza complessiva	293929,8833	
Differenza ipotizzata per le medie	0	
gdl	5	
Stat t	-2,382210494	
P(T<=t) una coda	0,031496124	
t critico una coda	2,015048373	
P(T<=t) due code	0,062992247	
t critico due code	2,570581836	

	serie-8	serie-9
Media	1313,333333	3475,75
Varianza	165492,3333	4890757,583
Osservazioni	3	4
Varianza complessiva	3000651,483	
Differenza ipotizzata per le medie	0	
gdl	5	
Stat t	-1,634455891	
P(T<=t) una coda	0,081545464	
t critico una coda	2,015048373	
P(T<=t) due code	0,163090927	
t critico due code	2,570581836	

	serie-8	serie-14
Media	1313,333333	1348,25
Varianza	165492,3333	360584,9167
Osservazioni	3	4
Varianza complessiva	282547,8833	
Differenza ipotizzata per le medie	0	
gdl	5	
Stat t	-0,086005921	
P(T<=t) una coda	0,467399792	
t critico una coda	2,015048373	
P(T<=t) due code	0,934799583	
t critico due code	2,570581836	

	serie-9	serie-13
Media	3475,75	2299,75
Varianza	4890757,583	379554,9167
Osservazioni	4	4
Varianza complessiva	2635156,25	
Differenza ipotizzata per le medie	0	
gdl	6	
Stat t	1,024516917	
P(T<=t) una coda	0,172554981	
t critico una coda	1,943180281	
P(T<=t) due code	0,345109963	
t critico due code	2,446911851	

	serie-9	serie-14
Media	3475,75	1348,25
Varianza	4890757,583	360584,9167
Osservazioni	4	4
Varianza complessiva	2625671,25	
Differenza ipotizzata per le medie	0	
gdl	6	
Stat t	1,856796856	
P(T<=t) una coda	0,056361574	
t critico una coda	1,943180281	
P(T<=t) due code	0,112723147	
t critico due code	2,446911851	

	serie-13	serie-14
Media	2299,75	1348,25
Varianza	379554,9167	360584,9167
Osservazioni	4	4
Varianza complessiva	370069,9167	
Differenza ipotizzata per le medie	0	
gdl	6	
Stat t	2,211983583	
P(T<=t) una coda	0,034477351	
t critico una coda	1,943180281	
P(T<=t) due code	0,068954702	
t critico due code	2,446911851	

• <u>Confronto tra medie campionarie</u>: prova di flessione a fatica con carico massimo ridotto del 30%

	serie-8	serie-13
Media	9126,25	12611
Varianza	14542148,25	10369520,67
Osservazioni	4	4
Varianza complessiva	12455834,46	
Differenza ipotizzata per le medie	0	
gdl	6	
Stat t	-1,396369039	
P(T<=t) una coda	0,106038575	
t critico una coda	1,943180281	
P(T<=t) due code	0,212077149	
t critico due code	2,446911851	

	serie-8	serie-9
Media	9126,25	10794,75
Varianza	14542148,25	10163026,25
Osservazioni	4	4
Varianza complessiva	12352587,25	
Differenza ipotizzata per le medie	0	
gdl	6	
Stat t	-0,671370483	
P(T<=t) una coda	0,263486222	
t critico una coda	1,943180281	
P(T<=t) due code	0,526972443	
t critico due code	2,446911851	

	serie-8	serie-14
Media	9126,25	9433
Varianza	14542148,25	22391238
Osservazioni	4	4
Varianza complessiva	18466693,13	
Differenza ipotizzata per le medie	0	
gdl	6	
Stat t	-0,100949693	
P(T<=t) una coda	0,46143963	
t critico una coda	1,943180281	
P(T<=t) due code	0,922879259	
t critico due code	2,446911851	

	serie-9	serie-13
Media	10794,75	12611
Varianza	10163026,25	10369520,67
Osservazioni	4	4
Varianza complessiva	10266273,46	
Differenza ipotizzata per le medie	0	
gdl	6	
Stat t	-0,801648919	
P(T<=t) una coda	0,226662865	
t critico una coda	1,943180281	
P(T<=t) due code	0,45332573	
t critico due code	2,446911851	

	serie-9	serie-14
Media	10794,75	9433
Varianza	10163026,25	22391238
Osservazioni	4	4
Varianza complessiva	16277132,13	
Differenza ipotizzata per le medie	0	
gdl	6	
Stat t	0,477335173	
P(T<=t) una coda	0,325006897	
t critico una coda	1,943180281	
P(T<=t) due code	0,650013795	
t critico due code	2,446911851	

	serie-13	serie-14
Media	12611	9433
Varianza	10369520,67	22391238
Osservazioni	4	4
Varianza complessiva	16380379,33	
Differenza ipotizzata per le medie	0	
gdl	6	
Stat t	1,110470212	
P(T<=t) una coda	0,154653113	
t critico una coda	1,943180281	
P(T<=t) due code	0,309306225	
t critico due code	2,446911851	

• <u>Confronto tra medie campionarie</u>: prova di flessione a fatica con carico massimo ridotto del 40%

	serie-8	serie-13
Media	59630	33778,33333
Varianza	43487138	112889842,3
Osservazioni	2	3
Varianza complessiva	89755607,56	
Differenza ipotizzata per le medie	0	
gdl	3	
Stat t	2,989154583	
P(T<=t) una coda	0,029084941	
t critico una coda	2,353363435	
P(T<=t) due code	0,058169882	
t critico due code	3,182446305	

	serie-8	serie-9		
Media	59630	104780		
Varianza	43487138	903168		
Osservazioni	2	2		
Varianza complessiva	22195153			
Differenza ipotizzata per le medie	0			ipotesi null
gdl	2		t _{calc} > t _{crit}	RIGETTAT <i>A</i>
Stat t	-9,583600093		Calc Crit	MOLITAIA
P(T<=t) una coda	0,005356605			
t critico una coda	2,91998558			
P(T<=t) due code	0,010713211	-		
t critico due code	4,30265273			

	serie-8	serie-14		
Media	59630	44068,33333		
Varianza	43487138	11872542,33		
Osservazioni	2	3		
Varianza complessiva	22410740,89			
Differenza ipotizzata per le medie	0			ipotesi null
gdl	3		t _{calc} > t _{crit}	RIGETTATA
Stat t	3,600962712		Calc Crit	MOLITATA
P(T<=t) una coda	0,018368607			
t critico una coda	2,353363435			
P(T<=t) due code	0,036737214	-		
t critico due code	3,182446305			

	serie-9	serie-13		
Media	104780	33778,33333		
Varianza	903168	112889842,3		
Osservazioni	2	3		
Varianza complessiva	75560950,89			
Differenza ipotizzata per le medie	0			ipotesi nul
gdl	3		$ t_{calc} > t_{crit}$	RIGETTAT
Stat t	8,947680313		1 -caic 1crit	
P(T<=t) una coda	0,001472712			
t critico una coda	2,353363435			
P(T<=t) due code	0,002945424	-		
t critico due code	3,182446305			

	serie-9	serie-14		
Media	104780	44068,33333		
Varianza	903168	11872542,33		
Osservazioni	2	3		
Varianza complessiva	8216084,222			
Differenza ipotizzata per le medie	0			ipotesi null
gdl	3		1+ 1 > +	RIGETTATA
Stat t	23,20226257		$ \mathbf{t}_{calc} > \mathbf{t}_{crit}$	RIGETTATA
P(T<=t) una coda	8,76906E-05			
t critico una coda	2,353363435			
P(T<=t) due code	0,000175381			
t critico due code	3,182446305			

	serie-13	serie-14
Media	33778,33333	44068,33333
Varianza	112889842,3	11872542,33
Osservazioni	3	3
Varianza complessiva	62381192,33	
Differenza ipotizzata per le medie	0	
gdl	4	
Stat t	-1,595637258	
P(T<=t) una coda	0,092900825	
t critico una coda	2,131846786	
P(T<=t) due code	0,185801649	
t critico due code	2,776445105	

• <u>Confronto tra medie campionarie</u>: prova di flessione a fatica per la serie-13 a confronto con la serie-13° (ply centrale a 45°)

	serie-13	serie-13A		
Media	2299,75	1197		
Varianza	379554,9167	173007,3333		
Osservazioni	4	4		
Varianza complessiva	276281,125			
Differenza ipotizzata per le medie	0			ipotesi nu
gdl	6		t _{calc} > t _{crit}	RIGETTAT
Stat t	2,966992554		Calc Crit	RIGETTAT
P(T<=t) una coda	0,012527455			
t critico una coda	1,943180281			
P(T<=t) due code	0,025054911	—		
t critico due code	2,446911851			

	serie-13	serie-13A		
Media	12611	7120		
Varianza	10369520,67	4631862		
Osservazioni	4	4		
Varianza complessiva	7500691,333			_
Differenza ipotizzata per le medie	0			ipotesi null
gdl	6		t _{calc} > t _{crit}	RIGETTATA
Stat t	2,835409529		Calc Crit	MOLITATA
P(T<=t) una coda	0,014872835			
t critico una coda	1,943180281			
P(T<=t) due code	0,02974567	-		
t critico due code	2,446911851			

	serie-13	serie-13A		
Media	33778,33333	89831		
Varianza	112889842,3	742695292		
Osservazioni	3	3		
Varianza complessiva	427792567,2			
Differenza ipotizzata per le medie	0			ipotesi null
gdl	4		t _{calc} > t _{crit}	RIGETTATA
Stat t	-3,319137859		calc crit	MOLITAIA
P(T<=t) una coda	0,0147011			
t critico una coda	2,131846786			
P(T<=t) due code	0,029402199			
t critico due code	2,776445105			