Angeli, Alessia
(2015)
Punti razionali di ordine finito su una curva ellittica.
[Laurea], Università di Bologna, Corso di Studio in
Matematica [L-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
Abstract
Questa tesi nasce dal voler approfondire lo studio delle curve piane di grado 3 iniziato nel corso di Geometria Proiettiva. In particolare si andrà a studiare la legge di gruppo che si può definire su tali curve e i punti razionali di ordine finito appartenenti alle curve ellittiche. Nel primo capitolo si parla di equazioni diofantee, dell’Ultimo Teorema di Fermat, dell'equazione e della formula di duplicazione di Bachet. Si parla inoltre dello stretto rapporto tra la geometria, l'algebra e la teoria dei numeri nella teoria delle curve ellittiche e come le curve ellittiche siano importanti nella crittografia. Nel secondo capitolo vengono enunciate alcune definizioni, proposizioni e teoremi, riguardanti polinomi e curve ellittiche. Nel terzo capitolo viene introdotta la forma normale di una cubica. Nel quarto capitolo viene descritta la legge di gruppo su una cubica piana non singolare e la costruzione geometrica che porta ad essa; si vede il caso particolare della legge di gruppo per una cubica razionale in forma normale ed inoltre si ricavano le formule esplicite per la somma di due punti appartenenti ad una cubica. Nel capitolo cinque si iniziano a studiare i punti di ordine finito per una curva ellittica con la legge di gruppo dove l'origine è un flesso: vengono descritti e studiati i punti di ordine 2 e quelli di ordine 3. Infine, nel sesto capitolo si studiano i punti razionali di ordine finito qualsiasi: viene introdotto il concetto di discriminante di una cubica e successivamente viene enunciato e dimostrato il teorema di Nagell-Lutz.
Abstract
Questa tesi nasce dal voler approfondire lo studio delle curve piane di grado 3 iniziato nel corso di Geometria Proiettiva. In particolare si andrà a studiare la legge di gruppo che si può definire su tali curve e i punti razionali di ordine finito appartenenti alle curve ellittiche. Nel primo capitolo si parla di equazioni diofantee, dell’Ultimo Teorema di Fermat, dell'equazione e della formula di duplicazione di Bachet. Si parla inoltre dello stretto rapporto tra la geometria, l'algebra e la teoria dei numeri nella teoria delle curve ellittiche e come le curve ellittiche siano importanti nella crittografia. Nel secondo capitolo vengono enunciate alcune definizioni, proposizioni e teoremi, riguardanti polinomi e curve ellittiche. Nel terzo capitolo viene introdotta la forma normale di una cubica. Nel quarto capitolo viene descritta la legge di gruppo su una cubica piana non singolare e la costruzione geometrica che porta ad essa; si vede il caso particolare della legge di gruppo per una cubica razionale in forma normale ed inoltre si ricavano le formule esplicite per la somma di due punti appartenenti ad una cubica. Nel capitolo cinque si iniziano a studiare i punti di ordine finito per una curva ellittica con la legge di gruppo dove l'origine è un flesso: vengono descritti e studiati i punti di ordine 2 e quelli di ordine 3. Infine, nel sesto capitolo si studiano i punti razionali di ordine finito qualsiasi: viene introdotto il concetto di discriminante di una cubica e successivamente viene enunciato e dimostrato il teorema di Nagell-Lutz.
Tipologia del documento
Tesi di laurea
(Laurea)
Autore della tesi
Angeli, Alessia
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
cubiche legge di gruppo su una cubica punti di ordine 2
punti di ordine 3 punti razionali di ordine finito
Nagell-Lutz
Data di discussione della Tesi
25 Settembre 2015
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Angeli, Alessia
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
cubiche legge di gruppo su una cubica punti di ordine 2
punti di ordine 3 punti razionali di ordine finito
Nagell-Lutz
Data di discussione della Tesi
25 Settembre 2015
URI
Statistica sui download
Gestione del documento: