
Alma Mater Studiorum · Università di Bologna

Scuola di Scienze
Corso di Laurea in Fisica

Predicting CMS datasets popularity

with Machine Learning

Relatore:
Prof. Daniele Bonacorsi

Correlatore:
Prof. Valentin Kuznetsov

Presentata da:
Luca Giommi

Sessione II
Anno Accademico 2014/2015

Ita fac, mi Lucili: vindica te tibi, et tempus quod adhuc aut auferebatur aut
subripiebatur aut excidebat collige et serva. [...] Fac ergo, mi Lucili, quod facere te
scribis, omnes horas complectere; sic fiet ut minus ex crastino pendeas, si hodierno

manum inieceris. Dum differtur vita transcurrit. Omnia, Lucili, aliena sunt,
tempus tantum nostrum est; in huius rei unius fugacis ac lubricae possessionem

natura nos misit, ex qua expellit quicumque vult.
[Seneca, Epist. ad Lucil. I]

Contents

1 High Energy Physics at LHC 1
1.1 Overview of the LHC accelerator 1

1.1.1 Electromagnets . 2
1.1.2 Radiofrequency cavities . 3
1.1.3 Luminosity and other characteristic parameters 4

1.2 The experiments at LHC . 5
1.2.1 ALICE . 5
1.2.2 ATLAS . 6
1.2.3 CMS . 7
1.2.4 LHCb . 7
1.2.5 Other experiments at LHC 8

1.3 The CMS experiment . 9
1.3.1 The magnet . 11
1.3.2 The tracker . 11
1.3.3 ECAL . 12
1.3.4 HCAL . 13
1.3.5 The muon detectors . 13
1.3.6 Data Acquisition and Trigger 14

2 The CMS Computing Model 17
2.1 WLCG and the CMS Computing Tiers 18

2.1.1 Tier-0 and CMS-CAF . 19
2.1.2 Tier-1s . 20
2.1.3 Tier-2s and Tier-3s . 21

2.2 The CMS data and simulation model 21
2.2.1 CMS data organization . 23
2.2.2 Workflows in CMS Computing 23
2.2.3 CMS data location . 25

2.3 CMS services and operations . 25
2.3.1 Grid computing . 25
2.3.2 Data management . 26
2.3.3 Workload management . 26
2.3.4 Distributed analysis . 27

2.4 A crucial metric: the CMS data popularity 27

v

vi CONTENTS

3 Machine Learning 31
3.1 Introduction . 31
3.2 What is Machine Learning? . 32
3.3 Supervised Learning . 33
3.4 Unsupervised Learning . 35
3.5 Supervised Learning in more detail 38

4 Big Data Analytics techniques in CMS: the DCAFPilot 43
4.1 Introduction to Analytics in CMS 43

4.1.1 Approach to data and metadata 44
4.1.2 Structured data and beyond 45
4.1.3 A use-case: CMS data popularity and the DCAFPilot 46

4.2 The DCAFPilot components and functionalities 48
4.2.1 dataframe . 49
4.2.2 merge_csv . 49
4.2.3 transform_csv . 50
4.2.4 model . 50
4.2.5 check_prediction . 51
4.2.6 popular_datasets . 51
4.2.7 verify_prediction . 51

4.3 How to use DCAFPilot: build, tune, run a model 52

5 Analysis and discussion of results 55
5.1 Choice of the best classifier . 56
5.2 Choice of the best dataframes splitting 59

5.2.1 Overfitting . 59
5.2.2 Cross-validation . 60
5.2.3 Cross validation on DCAFPilot 60

5.3 Definition of popularity metrics . 62
5.3.1 Studies of single cuts . 63
5.3.2 Study of combined cuts . 68

5.4 Study of different datatiers . 78
5.5 Studies of time-series . 84

Conclusions 91

Bibliography 93

Sommario

Questa tesi discute l’architettura, lo sviluppo e l’utilizzo di una tecnica di
“supervised Machine Learning (classification)” al fine di soddisfare le necessità
dell’esperimento CMS in termini di predizione della “popolarità” dei dataset di
CMS su Grid.

L’esperimento CMS ha completato il suo primo periodo di presa dati a LHC
(Run-1). Dopo il long shutdown (LS1), CMS sta ora raccogliendo dati di collisioni p-
p a 13 TeV come energia nel centro di massa in Run-2. L’esperienza nelle operazioni
di calcolo di CMS che è stata sviluppata negli ultimi anni è enorme, come è assai
ampio il volume dei metadati raccolti nei database di CMS e relativi alle operazioni
relative ai workflow di CMS condotte sui Tiers della Worldwide LHC Computing
Grid. Tali dati sono stati raramente oggetto di campagne di data mining, ma sono
cruciali per una migliore comprensione delle modalità con cui sono state condotte
computing operations di grande successo in Run-1. Essi sono fondamentali per
costruire una modellizzazione adattiva del sistema di calcolo di CMS, che permetta
ottimizzazioni dettagliate e puntuali nonchè predizioni sul comportamento futuro
dei sistemi. In CMS è stato lanciato un progetto di Data Analytics e, all’interno di
esso, un’attività specifica pilota che mira a sfruttare tecniche di Machine Learning
per predire la popolarità dei dataset di CMS. Si tratta di un’osservabile molto
delicata, la cui eventuale predizione premetterebbe a CMS di costruire modelli di
data placement più intelligenti, ampie ottimizzazioni nell’uso dello storage a tutti i
livelli Tiers, e formerebbe la base per l’introduzione di un solito sistema di data
management dinamico e adattivo. Questa tesi descrive il lavoro fatto sfruttando un
nuovo prototipo pilota chiamato DCAFPilot, interamente scritto in python, per
affrontare questa sfida.

Il Capitolo 1 offre un’introduzione alla Fisica delle Altre Energie a LHC.

Il Capitolo 2 descrive il Modello di Calcolo di CMS con maggiore attenzone al
settore del data management, introducendo e discutendo anche il concetto di
popolarità.

Il Capitolo 3 offre una breve introduzione a concetti basilari di Machine Learning.

Il Capitolo 4 descrive il contesto del progetto CMS Data Analytics, nonchè
l’architettura e le funzionalità del prototipo pilota DCAFPilot.

Il Capitolo 5 presenta e discute i risultati ottenuti. Un riassunto di essi e i
prossimi passi in tale attività sono presentati nelle Conclusioni.

vii

Abstract

This thesis presents the design, development and exploitation of a supervised
Machine Learning classification system aimed at attacking the very concrete need
of the prediction of the “popularity” of the CMS datasets on the Grid.

The CMS experiment has completed its first data taking period at the LHC
(Run-1). After a long shutdown (LS1), CMS is now collecting data on p-p collisions
at 13 TeV of centre-of-mass energy in Run-2. The amount of experience collected in
CMS computing operations during the last few years is enormous, and the volume
of metadata in CMS database systems which describes such experience in operating
all the CMS workflows on all the Worldwide LHC Computing Grid Tiers is huge as
well. Data mining efforts into all this information have rarely been done, but are of
crucial importance for a better understanding of how CMS did successful operations,
and to reach an adequate and adaptive modelling of the CMS operations, in order
to allow detailed optimizations and eventually systems behaviour predictions. A
Data Analytics project has been launched in CMS and, within this area of work,
a specific activity on exploiting machine learning techniques to predict dataset
popularity has been launched as a pilot project. The popularity of a dataset is an
important observable to predict, as its control would allow a more intelligent data
placement, large optimizations in the storage utilization at all Tiers levels, and
would form the basis of a solid, self-tuning, adaptive dynamic data management
system. This thesis describes the work done exploiting a new pilot prototype called
DCAFPilot, entirely written in python, to attack this kind of challenge.

Chapter 1 gives an introduction to High Energy Physics at the LHC.

Chapter 2 describes the CMS Computing Model, with main focus on the data
management sector, introducing and discussing also the concept of popularity.

Chapter 3 offers a brief introduction to basic machine learning concepts.

Chapter 4 describes the context of the CMS Data Analytics project, and the
architecture and functionalities of the DCAFPilot prototype.

Chapter 5 presents and discuss the results obtained. A summary and the next
steps foreseen in this activity are presented in the Conclusions.

ix

Chapter 1

High Energy Physics at LHC

1.1 Overview of the LHC accelerator
The Large Hadron Collider (LHC) [1, 2] is a two-ring particle accelerator and

collider (Figure 1.1) built by the European Organization for Nuclear Research
(CERN). It is located beneath the Franco-Swiss border near Geneva in Switzerland
where the Large Electron-Positron collider (LEP) previously existed [3]. The
purpose of the LHC is to give scientists an experimental apparatus that would
enable them to test theories in high energy physics, such as the existence of the
Higgs boson, the search for supersymmetries, the search for particles that would
indicate the existence of dark matter etc . One of its recent results was the discovery
of the Higgs boson, publicly announced on July 4th 2012, predicted by the Standard
Model [4]. LHC consists of a 27 km long circular ring, designed to accelerate protons
and heavy ions at high energies . LHC is characterised by two accelerated beams
travel in opposite directions inside different channels in the same pipe at ultrahigh
vacuum.

Figure 1.1: The LHC tunnel.

The acceleration process for protons is done in five steps (see Figure 1.2).

1

2 CHAPTER 1. HIGH ENERGY PHYSICS AT LHC

Initially, hydrogen atoms are ionized in order to produce protons and then they
are injected in the LINAC 2, a linear accelerator. When protons reach an energy
of 50 MeV they subsequently enter the Booster where their energy goes up to 1.4
GeV. After that, they enter the Proton Synchrotron (PS) where 277 electromagnets
push the protons to 99,9% the speed of light: at this point, each proton has an
energy of 25 GeV . Then, proton bunches are accelerated in the Super Proton
Synchrotron (SPS), a circular particle accelerator with a circumference of 7 km.
After protons have reached an energy of 450 GeV, they are injected into the LHC
in two separate pipes in which they move in opposite directions; here, through
magnets, the particles can be accelerated up to their maximum designed energy
of 7 TeV. Currently this is the maximum energy of each proton beam reachable
after the last improvement completed in March 2015 from which began RUN-2,
the second LHC data taking period. The two LHC channels intersect in the four
caverns (where the four detectors are installed). Here protons can collide and the
products of the collisions can be revealed.

The vacuum system is necessary so the particles do not lose energy in the
acceleration process due to impacts with the molecules that constitute air. The
LHC vacuum system is made up of three individual vacuum systems: the insulation
vacuum for cryomagnets, the insulation vacuum for helium distribution, and the
beam vacuum.

Figure 1.2: The LHC accelerator complex at CERN.

1.1.1 Electromagnets

There is a large variety of magnets in the LHC (dipoles, quadrupoles, sextupoles,
octupoles, decapoles) giving a total of about 9600 magnets. Each type of mag-
net contributes to optimizing a particle’s trajectory: dipoles have the function to

1.1. OVERVIEW OF THE LHC ACCELERATOR 3

maintain the beams in their circular orbit, while quadrupoles are used to focus the
beam down to the smallest possible size at the collision points, thereby maximizing
the chance of two protons smashing head-on into each other. The dipoles of the
LHC represented the most important technological challenge in LHC design. In
a proton accelerator like the LHC, the maximum energy that can be achieved is
directly proportional to the strength of the dipole field, given a specific acceleration
circumference. At the LHC the dipole magnets are superconducting electromagnets,
which are able to provide the very high field of 8.3 T over their length. None
solution could have been designed using ‘warm’ magnets instead of superconducting
ones. The LHC dipoles use niobium-titanium (NbTi) cables, which become super-
conducting below a temperature of 10 K, that is, they conduct electricity without
resistance: indeed LHC operates at 1.9 K, even lower than the temperature of outer
space, 2.7 K).

Figure 1.3: Cross section of LHC dipole.

1.1.2 Radiofrequency cavities

Along LHC length there are radiofrequency (RF) cavities that are metallic
chambers containing an electromagnetic field. Their primary purpose is to accelerate
charged particles and to divide protons in packages keeping them grouped. To
prepare an RF cavity to accelerate particles, an RF power generator supplies an
electromagnetic field. The RF cavity is molded to a specific size and shape so
that electromagnetic waves become resonant and build up inside the cavity (see
Figure 1.4). Charged particles passing through the cavity feel the overall force and

4 CHAPTER 1. HIGH ENERGY PHYSICS AT LHC

direction of the resulting electromagnetic field, which transfers energy to push them
forwards along the accelerator. The field in an RF cavity is made to oscillate (switch
direction) at a given frequency, so timing the arrival of particles is important. On
the Large Hadron Collider (LHC), each RF cavity is tuned to oscillate at 400 MHz.
The ideally timed proton, with exactly the right energy, will see zero accelerating
voltage when the LHC is at full energy. Protons with slightly different energies
arriving earlier or later will be accelerated or decelerated so that they stay close to
the energy of the ideal particle. In this way, the particle beam is sorted into discrete
packets called “bunches”. During the energy-boosting process the protons in the
bunches shift collectively to see an overall acceleration on each passage through the
cavities, picking up the energy needed to keep up with the increasing field in the
LHC powerful magnets. Top energy is reached in around 15 minutes, the bunches
having passed the cavities around 1 million times. The 16 RF cavities on the LHC
are housed in four cylindrical refrigerators called cryomodules – two per beam –
which keep the RF cavities working in a superconducting state, without losing
energy to electrical resistance.

Figure 1.4: Schematic drawing of a superconducting cavity.

In LHC, at operation conditions, each proton beam is divided into 2808 bunches,
each one of them has about 1011 protons. Their dimension is not constant along
the circumference when they travel far from the collision point: their size is about
few centimetres length and 1 millimeter width. Otherwise in the collision points
protons are collimated and the packages are compressed to about 16 nm. At full
luminosity the packages are separated by about 7m (25 ns).

1.1.3 Luminosity and other characteristic parameters

An important parameter which characterizes a particle accelerator is the machine
luminosity (L) defined as:

L =
frevnbN

2
b γr

4πεnβ∗ F (1.1)

1.2. THE EXPERIMENTS AT LHC 5

where frev is the revolution frequency, nb is the number of bunches per beam, Nb

is the number of particles in each colliding beam, εn is the normalized transverse
beam emittance, β∗ is the beta function at the collision point, γr is a relativistic
factor, and F the geometric luminosity reduction factor. The number of events
that occur each second is:

Nevent = Lσevent (1.2)

Following are listed some of the most relevant parameters of LHC.

Table 1.1: LHC main technical parameters.

Quantity value

Circumference (m) 26 659
Magnets working temperature (K) 1.9
Number of magnets 9593
Number of dipoles 1232
Number of quadrupoles 392
Number of radiofrequency cavities per beam 8
Protons nominal energy (TeV) 7
Ions nominal energy (TeV/nucleon) 2.76
Maximum intensity of the magnetic field (T) 8.33
Design luminosity (cm−2 s−1) 10× 1034

Number of proton bunches per beam 2808
Number of protons per bunch 1.1× 1011

Minimum distance between bunches (m) ∼ 7
Revolutions per second 11 245
Collisions per second (milions) 600

1.2 The experiments at LHC

Four experiments (and others smaller) at the Large Hadron Collider (LHC) use
detectors to analyse the myriad of particles produced by collisions in the accelerator.
These experiments are run by large collaborations of scientists from institutes all
over the world. Each experiment is distinct, and characterized by detectors and
subdetectors. The main four experiments are ALICE, ATLAS, CMS and LHCb
while among other secondary experiments are for example TOTEM, LHCf and
MoEDAL. The main experiments are installed in four caverns built around the four
collision points.

1.2.1 ALICE

The Large Ion Collider Experiment (ALICE) [5, 6] is a general-purpose, heavy-
ion detector which studies the strong interaction, in particular quark-gluon plasma
at extreme values of energy density and temperature during the collision of heavy
nuclei (Pb). Collisions in the LHC generate temperatures more than 100000 times

6 CHAPTER 1. HIGH ENERGY PHYSICS AT LHC

hotter than the centre of the Sun. For part of each year the LHC provides collisions
between lead ions, recreating in the laboratory conditions similar to those just
after the Big Bang. Under these extreme conditions protons and neutrons “melt”,
freeing the quarks from their bonds with the gluons. This is a state of matter
called quark-gluon plasma. ALICE studies as it expands and cools, observing how
it progressively gives rise to the particles that constitute the matter of our universe
today. In order to study quark-gluon plasma the ALICE collaboration uses a
10,000-tonne detector which is 26 m long, 16 m high, and 16 m wide. The detector
sits in a vast cavern 56 m below ground close to the village of St Genis-Pouilly in
France, receiving beams from the LHC. The collaboration counts more than 1000
scientists from over 100 physics institutes in 30 countries.

Figure 1.5: The ALICE detector.

1.2.2 ATLAS

A Toroidal LHC ApparatuS (ATLAS) [7, 8] is an experiment whose main purpose
is to investigate new physics beyond the Standard Model, exploiting the extremely
high energy at the LHC. Besides it searches the existence of dark matter and extra
dimensions. The detector is made by four main layers: the magnet system, that
bends the trajectories of charged particles; the Inner Detector, which measures the
path of charged particles; the calorimeters, which identify photons, electrons, and
jets; the Muon Spectrometer, which recognises the presence of muons.

The interactions in the ATLAS detectors create an enormous flow of data. To
digest it, ATLAS uses an advanced “trigger” system to tell the detector which events
to record and which to ignore. A complex data-acquisition and computing systems
are then used to analyse the collision events recorded. At 46 m long, 25 m high and
25 m wide, the 7000-tonne ATLAS detector is the largest volume particle detector
ever constructed. It sits in a cavern 100 m below ground near the main CERN site,

1.2. THE EXPERIMENTS AT LHC 7

close to the village of Meyrin in Switzerland. More than 3000 scientists from 174
institutes in 38 countries work on the ATLAS experiment (February 2012).

Figure 1.6: The ATLAS detector.

1.2.3 CMS

The Compact Muon Solenoid (CMS) [9, 10] is a general-purpose detector at
the Large Hadron Collider (LHC). It has a broad physics programme ranging from
studying the Standard Model, including the Higgs boson, to searching for extra
dimensions and particles that could make up dark matter. Although it has the same
scientific aims as the ATLAS experiment, it uses different technical solutions and a
different magnet-system design. The CMS detector is built around a huge solenoid
magnet. This takes the form of a cylindrical coil of superconducting cable that
generates a field of 4 Tesla, that is about 100,000 times the magnetic field of the
Earth. The field is confined by a steel “yoke” that forms the bulk of the detector’s
14,000-tonne weight. An unusual feature of the CMS detector is that instead of
being built in-situ, like the other giant detectors of the LHC experiments, it was
constructed in 15 sections at ground level before being lowered into an underground
cavern near Cessy in France and reassembled. The whole detector is 21 metres
long, 15 metres wide and 15 metres high. The CMS experiment is one of the largest
international scientific collaborations in history, involving 4300 particle physicists,
engineers, technicians, students and support staff from 182 institutes in 42 countries
(February 2014).

1.2.4 LHCb

The Large Hadron Collider beauty (LHCb) [11, 12] experiment is specialized in
investigating the slight differences between matter and antimatter by studying the

8 CHAPTER 1. HIGH ENERGY PHYSICS AT LHC

Figure 1.7: The CMS detector.

"beauty quark". Instead of surrounding the entire collision point with an enclosed
detector as do ATLAS and CMS, the LHCb experiment uses a series of subdetectors
to detect mainly forward particles, those thrown forwards by the collision in one
direction. The first subdetector is placed close to the collision point, with the others
following one behind the other over a length of 20 metres. The 5600-tonne LHCb
detector is made up of a forward spectrometer and planar detectors. It is 21 metres
long, 10 metres high and 13 metres wide, and sits 100 metres below ground near the
village of Ferney-Voltaire, France. About 700 scientists from 66 different institutes
and universities make up the LHCb collaboration (October 2013).

Other experiments at LHC include LHCf, TOTEM, and MoEDAL which are
briefly presented in the following paragraphs.

1.2.5 Other experiments at LHC

The Large Hadron Collider forward (LHCf) [13, 14] experiment uses particles
thrown forward by collisions in the Large Hadron Collider as a source to simulate
cosmic rays in laboratory conditions. Cosmic rays are naturally occurring charged
particles from outer space that constantly bombard the Earth’s atmosphere; they
collide with nuclei in the upper atmosphere, triggering a cascade of particles that
reaches ground level.

When protons meet head-on at the Large Hadron Collider (LHC), the collisions
provide a micro-laboratory to investigate many phenomena, including the protons
themselves and their cross section. This is the physics that the TOTEM [15, 16]
experiment is designed to explore, by taking precise measurements of protons as
they emerge from collisions at small angles. This region is known as the ’forward’
direction and is inaccessible by other LHC experiments. As CERN’s ’longest’
experiment, TOTEM detectors are spread across almost half a kilometre around

1.3. THE CMS EXPERIMENT 9

Figure 1.8: The LHCb detector.

the CMS interaction point.
In 2010 the Large Hadron Collider (LHC) approved its seventh experiment: the

Monopole and Exotics Detector at the LHC (MOEDAL) [17]. The prime motivation
of MOEDAL is to search directly for the magnetic monopole, a hypothetical particle
with a magnetic charge. This detector has deployed around the same intersection
region as the LHCb detector.

1.3 The CMS experiment

The CMS is a general-purpose detector at the LHC. It is designed to investigate
a wide range of physics, including the search for the Higgs boson, extra dimensions
and particles that could show the presence of dark matter. CMS is also designed to
measure the properties of already discovered particles with unprecedented precision
and be on the lookout for completely new, unpredicted phenomena. Although it
has the same scientific goals as the ATLAS experiment, it uses different technical
solutions and a different magnet-system. The CMS detector is built around a huge
solenoidal magnet. This takes the form of a cylindrical coil of superconducting
cable that generates a field of 4 T which is confined by a steel “yoke” that forms
the bulk of the detector’s 12,500-tonne weight. When protons will collide at their
maximum designed energy (

√
s = 14TeV), 109 collisions/s will occur and therefore

the online selection process has to trigger only 100 events/s to be saved.
CMS is built around a huge superconducting solenoid and different layers of

detectors measure the different particles and use this key data to build up a picture
of events at the heart of the collision. The detector is like a giant filter where each
layer is designed to stop, track or measure a different type of particle emerging
from proton-proton and heavy ion collisions; in finding the energy and momentum

10 CHAPTER 1. HIGH ENERGY PHYSICS AT LHC

of a particle are obtained clues to its identity and particular patterns of particles
or “signatures” are indications of new and exciting physics. The detector consists
of layers of different material that exploit the properties of particles to catch and
measure the energy and momentum of each one. In order to work correctly, CMS
needs:

• a high quality central tracking system to give accurate momentum measure-
ments;

• a high resolution method to detect and measure electrons and photons
(through an electromagnetic calorimeter);

• a “hermetic” hadron calorimeter, designed to entirely surround the collision
point and prevent particles from escaping;

• a high performance system to detect and measure muons.

Therefore the detector is made up of five concentric layers (see Figure 1.9):
the tracker, the electromagnetic calorimeter (ECAL), the magnet, the hadronic
calorimeter (HCAL), and the muon detector.

Figure 1.9: Section of the CMS detector.

Particles emerging from collisions first meet a tracker, made entirely of silicon,
that charts their positions as they move through the detector, allowing scientists to
measure their momentum; outside the tracker are calorimeters that measure the
energy of particles. In measuring the momentum, the tracker should interact with
the particles as little as possible, whereas the calorimeters are specifically designed

1.3. THE CMS EXPERIMENT 11

to stop particles in their tracks. Besides muon tracks are measured by four layers
of muon detectors, while the neutrinos escape from CMS undetected, although
their presence can be indirectly inferred from the “missing transverse energy” in
the event.

Figure 1.10: Section of the CMS detector.

1.3.1 The magnet

The CMS magnet is a solenoid, that is a coil of superconducting wire, and
creates a magnetic field when electricity flows through it. In CMS the solenoid
has an overall length of 13 m and a diameter of 7 m and creates a magnetic field
of about 4 T. It is the largest magnet of its type ever constructed and allows the
tracker and calorimeter detectors to be placed inside the coil, resulting in a detector
that is overall “compact”, compared to detectors of similar weight.

1.3.2 The tracker

The momentum of particles is crucial in helping us to build up a picture of
events at the heart of the collision. One method to evaluate the momentum of a
particle is to track its path through a magnetic field and the CMS tracker records
the paths taken by charged particles by finding their positions at a established
number of key points. The tracker can reconstruct the paths of high-energy muons,
electrons and hadrons as well as it can see tracks coming from the decay of very
short-lived particles such as b-quarks. Moreover, it needs to record particle paths
accurately in order to disturb particles as little as possible. It does this by taking
position measurements so accurate that tracks can be reliably reconstructed using
just a few measurement points and each measurement is accurate to 10 µm. It
is also the most inner layer of the detector and so receives the highest volume
of particles: the construction materials were therefore carefully chosen to resist

12 CHAPTER 1. HIGH ENERGY PHYSICS AT LHC

radiation. The final design consists of a tracker made entirely of silicon: internally,
at the core of the detector, there are three pixels levels (pixel detector) and, after
these, particles pass through ten microstrip detectors levels, up to reach a 130 cm
ray from the beam pipe. As particles travel through the tracker the pixels and
microstrips produce tiny electric signals that are amplified and detected.

The pixel detector (about the size of a shoebox) contains 65 million pixels,
allowing to track the paths of particles emerging from the collision with extreme
accuracy. It is also the closest detector to the beam pipe, with cylindrical layers at
4, 7 and 11 cm and disks at either end, and so it is crucial in reconstructing tracks
of very short-lived particles. However, being so close to the collision means that
the number of particles passing through is huge: indeed the rate at 8 cm from the
beam line amounts to about 10 million particles per square centimetre per second.
Despite this huge number of particles passing through, the pixel detector is able to
disentangle and reconstruct all the tracks. When a charged particle passes through,
it gives enough energy to electrons to be ejected from the silicon atoms, creating
electron-hole pairs. Each pixel uses electric current to collect these charges on the
surface as a small electric signal which is then amplified.

After the pixels and on their way out of the tracker, particles pass through ten
layers of silicon strip detectors, reaching out to a radius of 130 centimetres; this part
of the tracker contains 15,200 highly sensitive modules with a total of 10 million
detector strips read by 80,000 microelectronic chips. Each module consists of three
elements: a set of sensors, its mechanical support structure and readout electronics.

(a) CMS Silicon pixel detector (b) Tracker layers seen by normal
plane to beams

Figure 1.11: Schematic views of the CMS Tracker design.

1.3.3 ECAL

The Electromagnetic Calorimeter (ECAL) measures the energy of photons and
electrons. In order to find them with the necessary precision in the very strict
conditions of the LHC -high magnetic field, high levels of radiation and only 25
nanoseconds between collisions - requires very particular detector materials. The
lead tungstate crystal is made primarily of metal and it is heavier than stainless
steel, but with a touch of oxygen in this crystalline form it is highly transparent and
“scintillates” when electrons and photons pass through it. This means the cystal

1.3. THE CMS EXPERIMENT 13

produces light in proportion to the particle’s energy. Photodetectors are glued
onto the back of each of the crystals to detect the scintillation light and convert it
to an electrical signal that is amplified and processed. The ECAL, made up of a
barrel section and two ”endcaps”, forms a layer between the tracker and the HCAL.
The cylindrical “barrel” consists of 61,200 crystals formed into 36 “supermodules”,
each weighing around three tonnes and containing 1700 crystals. The flat ECAL
endcaps seal off the barrel at either end and are made up of almost 15,000 further
crystals. For extra spatial precision, the ECAL also contains Preshower detectors
that sit in front of the endcaps. These allow CMS to distinguish between single
high-energy photons (often signs of exciting physics) and the less interesting close
pairs of low-energy photons.

1.3.4 HCAL

The Hadron Calorimeter (HCAL) measures the energy of “hadrons”, particles
made of quarks and gluons (for example protons, neutrons, pions and kaons);
additionally it provides indirect measurement of the presence of non-interacting,
uncharged particles such as neutrinos.

Measuring these particles is important as they can tell us if new particles such as
the Higgs boson or supersymmetric particles (much heavier versions of the standard
particles we know) have been formed.

As these particles decay they may produce new particles that do not leave record
of their presence in any part of the CMS detector and to spot these the HCAL must
be “hermetic”, that is make sure it captures, to the extent possible, every particle
emerging from the collisions. This way if we see particles shoot out one side of
the detector, but not the other, with an imbalance in the momentum and energy
(measured in the sideways “transverse” direction relative to the beam line), we can
deduce that we’re producing “invisible” particles.

The HCAL is a sampling calorimeter, meaning it finds a particle’s position,
energy and arrival time using alternating layers of “absorber” and fluorescent
“scintillator” materials that produce a rapid light pulse when the particle passes
through. Special optic fibres collect up this light and feed it into readout boxes
where photodetectors amplify the signal. When the amount of light in a given
region is summed up over many layers of tiles in depth, called a “tower”, this total
amount of light is a measure of a particle’s energy.

1.3.5 The muon detectors

As the name “Compact Muon Solenoid” suggests, detecting muons is one of
CMS’s most important tasks. Muons are charged particles that are just like electrons
and positrons, but are 200 times heavier; we expect them to be produced in the
decay of a number of potential new particles: for instance, one of the clearest
"signatures" of the Higgs boson is its decay into four muons.

Because muons can penetrate several metres of iron without interacting, unlike
most particles they are not stopped by any of CMS calorimeters. Therefore,
chambers to detect muons are placed at the very edge of the experiment where they
are the only particles likely to register a signal.

14 CHAPTER 1. HIGH ENERGY PHYSICS AT LHC

A particle is measured by fitting a curve to hits among the four muon stations,
which sit outside the magnet coil and are interleaved with iron "return yoke" plates
(shown in red in Figure 1.12a). By tracking its position through the multiple layers
of each station, combined with tracker measurements, the detectors precisely trace a
particle’s path. This gives a measurement of its momentum: we know that particles
travelling with more momentum bend less in a magnetic field. As a consequence,
the CMS magnet is very powerful so we can bend even the paths of very high-energy
muons and calculate their momenta.

In total there are 1400 muon chambers: 250 drift tubes (DTs) and 540 cathode
strip chambers (CSCs) track the particles’ positions and provide a trigger, while 610
resistive plate chambers (RPCs) form a redundant trigger system, which quickly
decides to keep the acquired muon data or not. Because of the many layers of
detector and different specialities of each type, the system is naturally robust and
able to filter out background noise.

DTs and RPCs are arranged in concentric cylinders around the beam line (“the
barrel region”) whilst CSCs and RPCs, make up the “endcaps” disks that cover the
ends of the barrel.

(a) (b)

Figure 1.12: Pictorial view of a muon passing through the CMS muon detectors (a) and
paths of different particles traversing different CMS subdetectors (b).

1.3.6 Data Acquisition and Trigger

When CMS is performing at its peak, about one billion proton-proton interac-
tions will take place every second inside the detector. There is no way that data
from all these events could be read out, and even if they could, most would be less
likely to reveal new phenomena: they might be low-energy glancing collisions for
instance, rather than energetic, head-on interactions.

We therefore need a “trigger” that can select the potentially interesting events
(such as those which will produce a Higgs particle or a supersymmetric particle)

1.3. THE CMS EXPERIMENT 15

and reduce the rate to just a few hundred “events” per second, which can be read
out and stored on computer disk for subsequent analysis.

However, with groups of protons colliding 40 million times per second there
are only ever 25 ns before the next lot arrive. The solution is to store the data
in pipelines that can retain and process information from many interactions at
the same time. To not confuse particles from two different events, the detectors
must have very good time resolution and the signals from the millions of electronic
channels must be synchronised so that they can all be identified as being from the
same event.

There is a trigger system organized in two levels.
The first one is based on hardware (Level-1 (L1) Trigger), based on a data

selection process extremely fast and completely automatic that selects data according
to a physics interest, for example an high energy value or a unusual combination
of interacting particles in a event. This kind of trigger acts asynchronously in the
phase of signals reception and performs a first selection that reduce the frequency of
the acquiring data to some hundreds of events per second. Then they are transferred
and saved in storage spaces for following analysis on storage, and passed on to the
next step.

The second level of trigger is based on software (High-Level Trigger (HLT)). It
is a software system implemented in a filter farm of about one thousand commercial
processors. The HLT has access to the complete read-out data and can therefore
perform complex calculations similar to those made in the analysis off-line software,
if required for specially interesting events. The HLT contains many trigger paths,
each corresponding to a dedicated trigger (such as a single-electron trigger or a
3-jets-with-MET trigger). A path consists of several steps (software modules), each
module performing a well-defined task such as the reconstruction of physics objects
(electrons, muons, jets, MET, etc).

The rate reduction capability is designed to be at least a factor of 106 for the
combined L1 Trigger and HLT. Events frequency that exits from the second level
of trigger is about 100 Hz.

Chapter 2

The CMS Computing Model

During LHC operation, the accelerator produces a huge amount of data that
has to be stored and later analysed by scientists. The frequency of collisions p-p
or of heavy ions in each detector is 109Hz that produce roughly 1 PB per second
of data for each detector. As described in previous chapter, the flux of data is
selected by a trigger system that reduces the data stack produced to some hundreds
of MB (MegaBytes) per second. To deal with all this data, a complex computing
infrastructure has been designed and deployed, characterized by computing centers
distributed worldwide known as the Worldwide LHC Computing Grid.

Including data produced by physics simulations and by detectors, LHC Com-
puting has to manage roughly 15 PB of data each year in operating conditions. In
addition to this, each computing model at LHC has to guarantee the access and
the possibility to run jobs on a computer center somewhere on the globe, even if
the user isn’t at CERN. Basic requirements necessary to build a computing system
like this are:

• ability to store and manage original and derived data

• performant reconstruction code (to allow frequent re-reconstruction)

• Streamed Primary Datasets (to allow priority driven distribution and process-
ing)

• distribution of Raw and Reconstructed data together (to allow easy access to
raw detector information)

• compact data formats (to allow hosting multiple copies at multiple sites)

• consistent production reprocessing and bookkeeping

Additionally the computing environment has to manage also analysis process,
in what is referred to chaotic user analysis

The software that allows users to access computers distributed across the
network is called "middleware" because it sits between the operating systems of the
computers and the physics-applications software that can solves a user’s particular
problem.

Each project acting on Grid must be equipped with a solid Computing Model.
It includes the description of the whole hardware, software components that are

17

18 CHAPTER 2. THE CMS COMPUTING MODEL

developed to supply to the collection, distribution and analysis of the huge of data
produced, the management and interaction of each components through a certain
number of tools and services in real time.

Each HEP experiment, such as the LHC experiments (and therefore also CMS),
uses a set of components so-called “middleware-layer", but each experiment also
adds some software autonomously projected and developed to carry out functions
of specific interest of that experiment: this software represents all that we call
"application layer". Common solutions for more experiments, and also for the
single experiment, also have to operate in coherent way on resources that coexist in
computing worldwide centers.

2.1 WLCG and the CMS Computing Tiers
The Worldwide LHC Computing Grid (WLCG) project [18, 19] is a global

collaboration for building and maintaining a data storage and analysis infrastructure
required by the experiments at the LHC. The main purpose of this infrastructure is
to provide computing resources to store, distribute and analyse the data produced
by LHC to all the users of the collaboration regardless of where they might be.
This idea of a shared computing infrastructure is at the basis of the concept of
the Grid. The WLCG cooperates with several Grid projects such as the European
Grid Infrastructure (EGI) [20] and Open Science Grid (OSG) [21]. As mentioned
in the previous section, the middleware projects provide the software layers on top
from which the experiments add their own (different) application layer. At the
middleware layer, the main building blocks that make up the infrastructure are the
logical elements of a Grid site, namely:

• the Computing Element (CE) service, that manages the user’s requests for
computational power at a Grid site;

• the Worker Node (WN), where the computation actually happens on a site
farm;

• the Storage Element (SE), that gives access to storage and data at a site.
Data are stored on tapes and disks: tapes are used as long-term secure storage
media whereas disks are used for quick data access for analysis;

• the User Interface (UI), the machine on which users interact with the Grid;

• central services, that help users access computing resources. Some examples
are data catalogues, information systems, workload management systems, and
data transfer solutions.

WLCG provides access to computing resources which include data storage
capacity, processing power, sensors, visualization tools and more. Users make job
requests from one of the many entry points into the system. A job request can
include anything: storage, processing capacity, or availability of analysis software,
for example. The computing Grid establishes the identity of the user, checks their
credentials and searches for available sites that can provide the resources requested.

2.1. WLCG AND THE CMS COMPUTING TIERS 19

Users do not have to worry about where the computing resources are coming from,
they can tap into the Grid computing power and access storage on demand.

Figure 2.1: Servers at the CERN Data Centre from Tier 0 of the Worldwide LHC
Computing Grid.

The Worldwide LHC Computing Grid is composed by four levels, or “Tiers”,
called 0, 1, 2 and 3. Each Tier is made up of several computer centres and provides
a specific set of services. Between them the tiers process, store and analyse all the
data from the Large Hadron Collider. The Tier is a computing center that provides
storage capacity, CPU power and network connectivity. The structure made by
Tiers was formalized by the MONARC model, that foresees a rigid hierarchy. The
number associated to the Tier means that, minor is the number and more are
services and functionality offered, hence a bigger site in terms of storage, CPU,
network and of the so-called availability required. A computer center that take
part to WLCG for one or more LHC experiments could theoretically cover different
roles and perform different functions for each experiments: indeed for instance a
Tier could have the function of Tier 1 for Alice and of Tier 2 for CMS.

2.1.1 Tier-0 and CMS-CAF

Tier-0 and CMS CERN Analysis Facility (CAF) are located at CERN. From
2012 Tier-0 was extended linking it with Wigner Research Centre fo Physics in
Budapest, that works remotely and ensure more availability allowing T-0 to be
operative also in case of problems in main seat. The role of Tier-0 is to receive
RAW data from detectors and store them into tapes, collecting them in data fluxes
and starting a first quick rebuilding of events. All of the data from the LHC passes
through this central hub, but it provides less than 20 of the Grid’s total computing
capacity. Tier 0 distributes the raw data and the reconstructed output to Tier-1s,
and reprocesses data when the LHC is not running. The T-0 of CMS classifies
rebuilt data (collected in RECO) in additional 50 primary datasets and it make
them available to be transferred to T-1s. The mechanism through which integrity

20 CHAPTER 2. THE CMS COMPUTING MODEL

Figure 2.2: Transfer throughput, or transmission capacity actually used of a communi-
cation channel.

and availability are applied provide that data are stored in secure way in two copies:
one is saved at CERN (cold copy) and one is distribute to Tier-1s (hot copy). The
task to send copies to Tier-1s is always of T-0: to this aim the transfer capacity of
data is fundamental and it was created an infrastructure of a dedicated fiber-optic
network that allowsto reach the rate of 120 Gbps with Tier-1s.

CMS-CAF has the aim to provide support to all activities that require a very
short time latency and a very quick asynchronous access to RAW data from T-0,
such as the diagnostic detector, services related to performance management of
trigger or calibrations.

2.1.2 Tier-1s

Tier-1 consists of 13 computer centres in different part of the world (Italy,
Germany, France, Spain, USA, Russia, England and others) large enough to store
LHC data. They are responsible for storing data and their reprocessing. Their
main role is to make available physical space where it is possible to store the "hot
copies" of real and simulated data of CMS, in order to accede it quickly. Besides
it is necessary that they have a relevant computing power and a quick cache disk.
This allows that data can be reprocessed at each recalibration, selected in a way to
choose which of them are more useful to physic analysis and quickly transferred to
T-2s. Another aim of Tier-1s is to store simulated data that the Tier-2s produce.
Optical-fibre links working at 10 gigabits per second connect CERN to each of the
13 Tier-1 centres around the world.

2.2. THE CMS DATA AND SIMULATION MODEL 21

2.1.3 Tier-2s and Tier-3s

Tier 2s are typically universities and other scientific institutes that can store
sufficient data and provide adequate computing power for specific analysis tasks.
They handle a proportional share of the production and reconstruction of simulated
events. There are around 155 Tier 2 sites around the world. Individual scientists
can access the Grid through local (or Tier 3) computing resources, which can consist
of local clusters in a university department or even an individual PC; there is no
formal engagement between WLCG and Tier 3 resources.

Figure 2.3: Structure with Tiers of CMS computing model.

2.2 The CMS data and simulation model

CMS data is arranged into a hierarchy of data tiers. Each physics event is
written into each data tier, where each tier contains different levels of information
about the event. The three main data tiers written in CMS are:

• RAW: full event informations from the Tier-0, containing ’raw’ detector
informations (detector particles hits, etc). RAW data are not directly used
for analysis.

• RECO ("RECOnstructed data"): the output from first-pass processing by
the Tier-0. This layer contains reconstructed physics objects, but it’s still very
detailed. RECO data can be used for analysis, but are too big for frequent
use when CMS has collected a substantial data sample.

• AOD ("Analysis Object Data"): this is a "distilled" version of the RECO
event information, and is expected to be used for most analyses. AOD provides
a trade-off between event size and complexity of the available information in
order to optimize flexibility and speed for analyses.

22 CHAPTER 2. THE CMS COMPUTING MODEL

Figure 2.4: CMS data tiers and their characteristics.

The workflow of named “data reconstruction” in CMS consists in the passage
from informations contained in RAW data, through subsequent reprocessing stages,
up to formats containing objects of interest for physics analysis.

The workflow of named “simulation reconstruction”, foresees that a first step is
executed (“kinematics”) based on several Monte Carlo generator events, following
by a second step (“simulation”) that simulates the detector answer when generated
interactions occur, and finally there is a third step ("reconstruction") where, to
simulate a real bunch crossing, the single interaction is combined with pile-up events
and then rebuilt. In the end of this phase, the CMS data model expected that
reference formats are called AOD and AODSIM respectively.

Therefore CMS uses a number of event data formats with varying degrees of
detail, size, and refinement. Starting from RAW data produced from the online
system, successive degrees of processing refine this data, apply calibrations and
create higher level physics objects.

2.2. THE CMS DATA AND SIMULATION MODEL 23

The table in Figure 2.4 describes the various CMS event formats. It is important
to note that this table corresponds to the LHC startup period and assumes a
canonical luminosity of L = 2 · 1033cm−2s−1. The determinations of the data
volume include the effects of re-processing steps with updated calibrations and
software and the copying of data for security and performance reasons.

2.2.1 CMS data organization

To extract a physics information useful for a high energy physics analysis, a
physicist has to combine a variety of blocks:

• reconstructed information from the recorded detector data, specified by a com-
bination of trigger paths and possibly further selected by cuts on reconstructed
quantities,

• Monte Carlo samples which simulate the physics signal under investigation,

• background samples (specified by the simulated physics process).

These informations are stored into datasets and event collections. Dataset consti-
tutes a set of structured data in related form, or a matrix made by data in which
each column represents a variable and each row represents a member of the dataset.
Their dimension may vary into range 1-100 TB. Datasets are split off at the T-0 and
distributed to the T-1s. An event collection is the smallest unit within a dataset
that a user can select. Typically, the reconstructed information needed for the
analysis would all be contained in one or a few event collection(s). The expectation
is that the majority of analyses should be able to be performed on a single primary
dataset. Data are stored as ROOT files. The smallest unit in computing space is the
file block which corresponds to a group of ROOT files likely to be accessed together.
This requires a mapping from the physics abstraction of the event to the file location.
CMS has a global data catalogue called the Dataset Bookkeeping System (DBS)
[22] which provides mapping between the physics abstraction (dataset or event
collection) and the list of fileblocks corresponding to this abstraction. The locations
of these fileblocks within the CMS grid (several centers can provide access to the
same fileblock) are resolved by the PhEDEx (the Physics Experiment Data EXport
service) [23, 24]. PhEDEx is responsible for transporting data around the CMS
sites, and keeps track of which data exists at which site.

2.2.2 Workflows in CMS Computing

A workflow can be described simply as "what we do to the data". There are
three principle places where workflows are executed in CMS:

• At Tier-2 Centres: Monte Carlo events are generated, detector interactions
simulated.

• At the Tier-0 Center: data is received from the CMS detector experiment
and it is "repacked" (i.e. events from the unsorted online streams are sorted
into physics streams of events with similar characteristics). Reconstruction

24 CHAPTER 2. THE CMS COMPUTING MODEL

algorithms are run, AOD is produced, and RAW, RECO and AOD are
exported to Tier-1 sites.

• Half of the T-2 resources (CPU and disk storage) is devoted to Monte Carlo
simulation and half to distributed analysis. Network connection with T-1s
and among the T-2s is vital to data exchange. This is where most of the user
activities happen. The user: prepares analysis code, sends code to site where
there is appropriate data, then run your code on the data and collect the
results. The process of finding the sites with data and CPU, running the jobs,
and collecting the results is all managed for you (via the grid) by CRAB.

The management of grid jobs is handled by a series of systems. The aim is to
schedule jobs onto resources according to the policy and priorities of CMS, to assist
in monitoring the status of those jobs, and to guarantee that site-local services can
be accurately discovered by the application once it starts executing in a batch at
the site. These issues should be invisible to the user.

The essential elements of the flow of real physics data through the hardware
tiers are:

• T0 to T1:

– scheduled, time-critical, continuous during data-taking periods

– reliable transfer needed for fast access to new data

• T1 to T1:

– redistributing data, generally after reprocessing (e.g. processing with
improved algorithms)

• T1 to T2:

– Data for analysis at Tier-2s

Figure 2.5: Fraction of data traffic in different T2-T2 routes (example from 2010).

Monte Carlo generated data is typically produced at a T-2 center, and stored at
its associated T-1 and made available to the whole CMS collaboration (Figure 2.5).

2.3. CMS SERVICES AND OPERATIONS 25

For completeness, it is worth adding that these are the main data flows as from
the original CMS computing model. As from Run 1 and Long Shutdown 1, the
model has been evolved and expanded to support also other relevant data flows (e.g.
among T-2s). An example is shown in Figure 2.5. This level of details in the model
evolution is anyway only briefly cited here, and not deeply discussed in this thesis.

Figure 2.6: Graphic representation of CMS dataflows (as from the Computing Model
effective in Run-1).

2.2.3 CMS data location

CMS does not use a central catalogue to store informations about location of
each file in each site. Each file is biunivocally linked to a Logical File Name, that
is the name used to refer to the physical file in all statements [25]. It is possible
to know the existence and the position of a file through a mapping of this LFN
with sites in which exists, carried out and stored by central services of Grid. Each
site that contains replies has inside a local catalogue, the Trivial File Catalog
(TFC), that in turn contains a local mapping of the LFN through the Physical
File Name (PFN). The advantages linked to this implementation and managing
of data are due to the freedom given to the several sites regard to the manage of
their storage: indeed it is not necessary to contact the central services of Grid for
internal operations at the site.

2.3 CMS services and operations

2.3.1 Grid computing

The integration of the resources at CMS Computing Centres into a single
coherent system relies upon Grid middleware which presents a standardised interface
to storage and CPU facilities at each WLCG site. The Grid allows remote job
submission and data access with security. A number of CMS-specific distributed
computing services operate above the generic Grid layer, allowing higher-level data
and workload management functions. These services require CMS-specific software

26 CHAPTER 2. THE CMS COMPUTING MODEL

agents to run at some sites, in addition to generic Grid services. CMS also provides
specialised user-intelligible interfaces to the Grid for job submission, and tools to
monitor a large-scale data production and processing. An overview of the CMS
Computing Services components is shown in Figure 2.7.

The CMS Computing Model executes a pattern in which jobs move towards
data and it is possible to identify two distinct systems, even if interacting: the CMS
Data Management System, to which is given the data managing task, and the CMS
Workload Management System, that has the aim to manage jobs flux.

2.3.2 Data management

CMS requires tools to catalogue the data which exist, to track the location of
the corresponding physical data files on site storage systems, and to manage and
monitor the flow of data between sites. In order to simplify the data management
problem, the data management system therefore defines higher-level concepts
including: dataset, a logical collection of data grouped by physical-meaningful
criteria; event collection, roughly corresponding to an experiment “run” for a given
dataset definition. To provide the connection between abstract datasets and physical
files, a multi-tiered catalogue system is used. The Dataset Bookkeeping System
provides a standardised and queryable means of cataloguing and describing event
data. It is the principle means of data discovery for the user, answering the question
“which data of this type exists in the system?” A second catalogue system, the Data
Location Service, provides the mapping between file blocks to the particular sites at
which they are located, including the possibility of replicas at multiple sites. Local
File Catalogues at each site map logical files onto physical files in local storage.
The data transfer and placement system is responsible for the physical movement
of fileblocks between sites on demand; it is currently implemented by the PhEDEx
system. This system must schedule, monitor and verify the movement of data in
conjunction with the storage interfaces at CMS sites, ensuring optimal use of the
available bandwidth.

2.3.3 Workload management

Processing and analysis of data at sites is typically performed by submission of
jobs to a remote site via the Grid workload management system. These jobs are
based on the CMS software framework (CMSSW) and the output of such jobs is
stored by the Data Management System. A standard job performs the necessary
setup, executes a CMSSW application upon data are present on local storage
at the site, arranges for any produced data to be made accessible via Grid data
management tools, and provides logging information. This process is supported by
several CMS-specific services. A parameter set management system, implemented
with either global or local scope according to the application, allows the storage
and tracking of the configuration of CMSSW applications submitted to the Grid. A
job bookkeeping and monitoring system allows users to track, monitor, and retrieve
output from jobs currently submitted to and executing at remote sites.

Some main characteristics of the WMS of CMS are: the reading access opti-
mization, the minimization of job dependence from the Worker Nodes (WN) of

2.4. A CRUCIAL METRIC: THE CMS DATA POPULARITY 27

Grid, the job distribution according to the policy that they have to satisfy and to
the priority inside the Virtual Organization.

2.3.4 Distributed analysis

For a generic CMS physicist is available a dedicated tool (CRAB) for workflow
management. It allows to submit user-specific jobs to a remote computing element
which can access data previously transferred to a close storage element. CRAB
takes care of interfacing with the user environment, it provides data-discovery and
data-location services, and also Grid infrastructure. It also manages the status
reporting, monitoring, and user job output which can be put on a user-selected
storage element. Via a simple configuration file, a physicist can thus access data
available on remote sites as easily as he can access local data: all infrastructure
complexities are hidden to him as much as possible. There is also a client-server
architecture available, so the job is not directly submitted to the Grid but to a
dedicated CRAB server, which, in turn, handles the job on behalf of the user,
interacting with the Grid services.

Figure 2.7: Overview of the CMS Computing Services.

2.4 A crucial metric: the CMS data popularity

One of the requirements for an experiment as CMS that does a large resources
use, is to create computing models based on solutions that permits to optimize the
net usage and the available storage. As shown in Figure 2.8, hundreds of users
submit everyday about 200000 jobs, providing to the Grid a workload that executes
jobs of the order of ten million. At the same time, the resources managing regards
tens of PB (PetaByte) of data, quantity that will increase in Run-2.

28 CHAPTER 2. THE CMS COMPUTING MODEL

(a) Daily users on Grid (b) Analysis jobs per users

Figure 2.8: Two example of quantities monitored by the CMS Dashboard, related to
the CMS distributed analysis on Grid.

Figure 2.9: Volume of data resident on CMS Tiers in 2012 (from PhEDEx).

2.4. A CRUCIAL METRIC: THE CMS DATA POPULARITY 29

Regarding the scale of the CMS Grid infrastructure, the control and the op-
timization of storage resources through automated procedures is a complex task.
Currently, CMS does not have a system that can localize worldwide inefficiencies,
in terms of allocated and unused space. This causes in computing operations of
computing model a progressive reduction of the actually available storage space,
of difficult identification. For this and with the target to reach a dynamic data
placement which optimizes resources allocation, the CMS popularity service was
developed, originally inspired by a similar experience of the ATLAS experiment.
In this way is introduced in CMS the concept of the “data popularity”, that is an
observable able to quantify the interest of the analysis community for data samples
or Monte Carlo simulations, on the base of number of access, local or remote,
successful or failed, to files by users’ job. The CMS Popularity Service aim is to
monitor which data are more used, measuring their popularity in time, so tracking
time evolution of:

• dataset name

• number of access

• outcome of reading access (success or failure)

• CPU hours spent in accessing

• number of unique users that execute the access

The wotk on CMS data popularity is currently at a stage where such information
can be used to trigger ad-hoc cancellation of unaccessed replicas and trigger ad-hoc
replication of frequently access datasets. This system is in production since almost
1 year. Despite extremely useful for CMS Computing Operations, a substantial
limitation of the system is that its intelligence is static, i.e. relies on a fixed algorithm
that does not learn for experience and does not evolve/improve/auto-tune over
time. The work presented in the following aims to demonstrate the effectiveness of
a prototype that could equip CMS with a simple data popularity prediction system,
whose impact on the resource utilization optimization is potentially very large.

Chapter 3

Machine Learning

3.1 Introduction
Machine Learning [26] is one of the most exciting recent technologies. People

probably use a learning algorithm dozens of times a day without knowing it. Every
time we use a web search engine like Google or Bing, one of the reasons that works
so well is because a learning algorithm, one implemented by Google or Microsoft,
has learned how to rank web pages. Every time we use Facebook or Apple’s
photo typing application and it recognizes our friends’ photos, that is also machine
learning. Every time we read our email and our spam filter saves you from having
to wade through tons of spam email, that is also a learning algorithm. The dream
is that someday somebody will build machines as intelligent as us. We are a long
way away from that goal, but many researchers believe that the best way towards
that goal is through learning algorithms that try to mimic how the human brain
learns.

There is autonomous robotics, computational biology, tons of disciplines that
machine learning is having an impact on. There are some other examples of machine
learning.

• Database mining is one of the reasons machine learning has so pervaded is
the growth of the web and the growth of automation. All this means that we
have much larger data sets than ever before. So, for example tons of Silicon
Valley companies are today collecting web click data, also called clickstream
data, and are trying to use machine learning algorithms to mine this data to
understand the users better and then to serve them better. With the advent
of automation, we now have electronic medical records, so if we can turn
medical records into medical knowledge, then we can start to understand
disease better. With automation again, biologists are collecting lots of data
about gene sequences, DNA sequences, and so on, and machines running
algorithms are giving us a much better understanding of the human genome,
and what it means to be human. And in engineering as well, in all fields
of engineering, we have larger and larger data sets that we are trying to
understand using learning algorithms.

• A second range of machinery applications is ones that we cannot pro-
gram by hand. So for example, some researchers worked on autonomous

31

32 CHAPTER 3. MACHINE LEARNING

helicopters for many years. They just did not know how to write a computer
program to make this helicopter fly by itself. The only thing that worked
was having a computer learn by itself how to fly this helicopter (helicopter
whirling).

• Learning algorithms are also widely used for self-customizing programs.
Every time you go to Amazon or Netflix or iTunes Genius, and it recommends
the movies or products and music to you, that is a learning algorithm. If
you think about it they have million users; there is no way to write a million
different programs for your million users. The only way to have software give
these customized recommendations is to learn by itself to customize itself to
users’ preferences.

• Finally learning algorithms are being used today to understand human
learning and to understand the brain. Researches are using these to
make progress towards the big AI (Artificial Intelligence) dream.

Nowadays, as we have seen, the adoption of Machine Learning techniques is
speeding up due to a growing number of use cases in Big Data Analytics and Data
Science domains.

3.2 What is Machine Learning?
Several specialists gave correct and valuable definition of what Machine Learning

actually consists of. One of the most adequate (and operational) definition comes
from Professor Tom Mitchell, from Carnegie Mellon University:

A computer program is said to learn from experience E with respect
to some task T and some performance measure P, if its performance on
T, as measured by P, improves with experience E.

Following this sentence, the key that connects past behaviour to future behaviour
is the experience “E”. Focusing on a task “T” (e.g. the car traffic pattern at an
intersection), the experience “E” contains the data about all the traffic patterns
that happened in the past: this is fed to a Machine Learning algorithm, which
indeed learn about “T” from “E” and it will improve – as measured by “P”, the
metric chosen as performance measure - in predicting future traffic patterns.

In this sense, Machine Learning can hence solve problems that cannot be solved
by numerical means alone. Another way of stating the same is that Machine
Learning is the discipline that gives computers the ability to learn without being
explicitly programmed.

There are several different types of learning algorithms. The main two types are
what we call supervised learning and unsupervised learning. In supervised learning
the idea is that we are going to teach the computer how to do something, whereas
in unsupervised learning we are going to let it learn by itself. In the following
section will be described in general way this two different kind of learnings.

3.3. SUPERVISED LEARNING 33

3.3 Supervised Learning

In order to a better understanding of supervised learning, we give an example
[27]. Suppose that a student collects data sets about American house price and
wants to plot it. In Figure 3.1 on the horizontal axis, there is the size of different
houses in square feet, and on the vertical axis, the price of different houses in
thousands of dollars.

Figure 3.1: First example of supervised learning as discussed in the text [27].

Given this data, let’s say you have a friend who owns a house for example of
750 square feet and he wants to know how much he can get for the house. So how
can the learning algorithm help us? One thing a learning algorithm might be able
to do is put a straight line through the data or to fit a straight line to the data and,
based on that, it looks like maybe the house can be sold for maybe about $150,000.
But maybe this is not the only learning algorithm we can use. There might be a
better one. For example, instead of sending a straight line to the data, we might
decide that it is better to fit a quadratic function or a second-order polynomial to
this data. And if we do that, and make a prediction here, maybe we can sell the
house for closer to $200,000. Each of these two different possibilities would be a
fine example of a learning algorithm. So this is an example of a supervised learning
algorithm. And the term supervised learning refers to the fact that we gave the
algorithm a data set in which the "right answers" were given. That is, we gave it a
data set of houses in which for every example in this data set, we told it what is
the right price so what is the actual price that, that house sold for and the toss
of the algorithm was to just produce more of these right answers for new houses.
To define with a bit more terminology this is also called a regression problem and
for regression problem we mean we are trying to predict a continuous value output
namely the price. So technically we guess prices can be rounded off to the nearest
cent. So prices are actually discrete values, but usually we think of the price of a
house as a real number, as a scalar value, as a continuous value number and the
term regression refers to the fact that we are trying to predict the sort of continuous
values attribute.

34 CHAPTER 3. MACHINE LEARNING

There is also another supervised learning example. Imagine that we want to
look at medical records and try to predict of a breast cancer as malignant or
benign. Let’s see a collected data set and suppose in your data set you have on
your horizontal axis the size of the tumor and on the vertical axis we put one or
zero, yes or no, whether or not these are examples of tumors we have seen before
are malignant–which is one–or zero if not malignant or benign.

Figure 3.2: Second example of supervised learning as discussed in the text [27].

In Figure 3.2 we have five examples of benign tumors shown down, and five
examples of malignant tumors shown with a vertical axis value of one.

And let’s say we have a friend who tragically has a breast tumor, and we know
her breast tumor size. The machine learning question is, can you estimate what is
the probability, what is the chance that a tumor is malignant versus benign? To
introduce a bit more terminology this is an example of a classification problem.
The term classification refers to the fact that here we are trying to predict a
discrete value output: zero or one, malignant or benign. And it turns out that in
classification problems sometimes you can have more than two values for the two
possible values for the output. As a concrete example maybe there are three types
of breast cancers and so you may try to predict the discrete value of zero, one, two,
or three with zero being benign. But this would also be a classification problem,
because this other discrete value set of output corresponding to no cancer, or cancer
type one, or cancer type two, or cancer type three. In classification problems there
is another way to plot this data. We might use a slightly different set of symbols to
plot this data. We might use different symbols to denote benign and malignant, or
negative and positive examples. So instead of drawing crosses, we draw O’s for the
benign tumors and we use X’s to denote malignant tumors (as shown in figure 3.2).
All we did was we took these, the data set on top and we just mapped it down and
started to use different symbols, circles and crosses, to denote malignant versus
benign examples. Now, in this example we use only one feature or one attribute,

3.4. UNSUPERVISED LEARNING 35

mainly, the tumor size in order to predict whether the tumor is malignant or benign.
In other machine learning problems we could have more than one feature, more
than one attribute, for example we can add to tumor size, the age of the patients.
Now let’s say that instead of just knowing the tumor size, we know both the age
of the patients and the tumor size. In that case maybe our data set will look like
those in figure 3.3.

Figure 3.3: Further elaboration of the second example of supervised learning as discussed
in the text [27].

And a different set of patients, they look a little different, whose tumors turn
out to be malignant, as denoted by the crosses. So given a data set like that in
figure 3.3, what the learning algorithm might do is throw the straight line through
the data to try to separate out the malignant tumors from the benign ones and, so
the learning algorithm may decide to throw the straight line like that to separate
out the two classes of tumors. In this example we had two features, namely, the age
of the patient and the size of the tumor. In other machine learning problems we
will often have more features, and remaining in the previous example we can have
clump thickness of the breast tumor, uniformity of cell size of the tumor, uniformity
of cell shape of the tumor, and so on. And it turns out the case of great interest of
learning algorithms that can deal with, not just two or three or five features, but an
infinite number of features. So how do we deal with an infinite number of features?
How do we even store an infinite number of things on the computer when your
computer is gonna run out of memory? It turns out that when we talk about an
algorithm called the Support Vector Machine", there will be a neat mathematical
trick that will allow a computer to deal with an infinite number of features.

3.4 Unsupervised Learning
In this section, we will talk about the second major type of machine learning

problem, called Unsupervised Learning. In Unsupervised Learning, we are given
data that does not have any labels or that all has the same label.

It is possible to find some structure in the data on Figure 3.4? Given this data
set, an Unsupervised Learning algorithm might decide that the data lives in two

36 CHAPTER 3. MACHINE LEARNING

(a) (b)

Figure 3.4: More on supervised vs unsupervised learning (see text for explanaton) [27].

different clusters. And also Supervised Learning algorithm may break these data
into these two separate clusters. So this is called a clustering algorithm. And this
turns out to be used in many places. One example where clustering is used is in
Google News (Figure 3.5)

Figure 3.5: Example of Google News [28], where ‘clustering’ is used (see text).

What Google News does is everyday it goes and looks at tens of thousands or
hundreds of thousands of new stories on the web and it groups them into cohesive
news stories. So for each story we can read the same news from different websites.
So what Google News has done is look for tens of thousands of news stories and
automatically cluster them together. So, the news stories that are all about the
same topic get displayed together.

It turns out that clustering algorithms and Unsupervised Learning algorithms
are used in many other problems as well. Below is explained one on understanding
genomics, an example of DNA microarray data.

3.4. UNSUPERVISED LEARNING 37

Figure 3.6: DNA microarray data.

The idea is put a group of different individuals and for each of them, you measure
how much they do or do not have a certain gene. Technically you measure how
much certain genes are expressed. So these colors, red, green, gray and so on, they
show the degree to which different individuals do or do not have a specific gene
(Figure 3.6). And what you can do is then run a clustering algorithm to group
individuals into different categories or into different types of people.

So this is Unsupervised Learning because we are not telling the algorithm in
advance that these are type 1 people, those are type 2 persons, those are type 3
persons and so on and instead what we are saying is here is a bunch of data. I do
not know what is in this data. We do not know who is and what type. We do not
even know what the different types of people are, but can we automatically find
structure in the data, form automatically clusters of individuals that belongs to
different types that we do not know in advance? Because we are not giving the
algorithm the right answer for the examples in our data set, this is Unsupervised
Learning.

Unsupervised Learning or clustering is used for a bunch of other applications.
It is used to organize large computer clusters. In large data centers, that is large
computer clusters, researchers try to figure out which machines tend to work
together and if you can put those machines together, you can make your data center
work more efficiently.

This second application is on social network analysis. So given knowledge
about which friends we email the most or given your Facebook friends, can we
automatically identify which are cohesive groups of friends, also which are groups
of people that all know each other?

Another application is on market segmentation caused by the fact that companies
have huge databases of customer information.

So, can we look at customer data set and automatically discover market segments
and automatically group our customers into different market segments so that we
can automatically and more efficiently sell or market our different market segments
together? Again, this is Unsupervised Learning because we have all this customer
data, but we do not know in advance what are the market segments and for the
customers in our data set, you know, we do not know in advance who is in market
segment one, who is in market segment two, and so on. But we have to let the
algorithm discover all this just from the data.

Finally, it turns out that Unsupervised Learning is also used for astronomical

38 CHAPTER 3. MACHINE LEARNING

data analysis and these clustering algorithms gives interesting useful theories of
how galaxies are born.

All of these are examples of clustering, which is just one type of Unsupervised
Learning. Another type can be explained through the so called “cocktail party
problem”. So, there is a party, room full of people, all sitting around, all talking
at the same time and there are all these overlapping voices because everyone is
talking at the same time, and it is almost hard to hear the person in front of you.
So maybe at a cocktail party with two people, two people talking at the same
time, and it is a somewhat small cocktail party. And we are going to put two
microphones in the room so there are microphones, and because these microphones
are at two different distances from the speakers, each microphone records a different
combination of these two speaker voices. Maybe speaker one is a little louder
in microphone one and maybe speaker two is a little bit louder on microphone
2 because the 2 microphones are at different positions relative to the 2 speakers,
but each microphone would cause an overlapping combination of both speakers’
voices. So we can do, is take these two microphone recorders and give them to an
Unsupervised Learning algorithm called the cocktail party algorithm, and tell the
algorithm find structure in this data for you. And what the algorithm will do is
listen to these audio recordings and say: it sounds like the two audio recordings
are being added together or that have being summed together to produce these
recordings that we had. Moreover, what the cocktail party algorithm will do is
separate out these two audio sources that were being added or being summed
together.

3.5 Supervised Learning in more detail
In this thesis, which has a naturally limited scope in the overall efforts in applying

Machine Learning techniques to complex problem, we focus on an application of
a “supervised” Machine Learning. In this approach, a program is “trained” on a
predefined set of “training examples”, which then facilitates its ability to reach an
accurate conclusion when given new data.

Our problem may be formalized as follows. We have multiple data points x,
and a “predictor” h(X) (i.e. some metric of interest about x). This predictor may
be written as simple as:

h(x) = θ0 + θ0x (3.1)

Training examples (x-train) are used to optimize h(x): for each x-train, we have a
y known in advance, so each h(x-train) instead given by my model may be compared
with the true value y with a simple difference, i.e. y-h(x-train). If we have a large
set of x-train values, each with a known corresponding value of true y, we may use
the model to compute all h(x-train) and estimate the “wrongness” of h(x) itself by
computing all values of y-h(x-train). I can then tweak θ0 and θ1 – thus tweaking
h(x) – to make h(x) “less wrong”. This process may be repeated over and over until
the system has converged on the “best” values of Theta-0 and Theta-1. In this
way, the predictor becomes “trained” and it is ready to challenge itself against some
“real world” predicting. Note however that the goal of Machine Learning is never to
make “perfect” guesses. The “best” values – as written above – i.e. how “good” or

3.5. SUPERVISED LEARNING IN MORE DETAIL 39

“better” than others they are, depend essentially on which level of precision in the
prediction one’s problem needs, which quality of Machine Learning models we can
afford to apply, e.g. also taking into account the non-infinite amount of computing
resources we may have available to run a Machine Learning model. Ultimately,
the thing to remember is that the goal of any successful Machine Learning effort
is never to reach perfection, but only and always to make guesses that are good
enough to be useful for the problem under study.

In the directions to follow to build a successful Machine Learning model, much
care must be given to the choice of the training data. Regardless of how such data is
operationally divided into in the model implementation (e.g. training vs validation
vs test sub-samples) and considering instead “training data” the whole set of data
used to build up the model, it is worth underlying that this must be a statistically
significant random sample – as Machine Learning builds heavily on statistics. If
the sample is not random, the price to pay is that the machine learns patterns in
the data that are not actually there. If the sample is not large enough, the price
to pay is that the machine will not learn enough, or (even worse) reach inaccurate
conclusions. In terms of how making sure that θ0 and θ1 are better at each step of
this iterative process, the “wrongness” (as quoted above) must be minimized. The
key ingredient here is to have a “cost (loss) function”, i.e. find θ0 and θ1 for our
predictor h(x) such that our cost function is as small as possible.

As a final remarks, at this stage of the introduction of Machine Learning ap-
proaches, it must be reminded that a supervised Machine Learning system can be
either a “regression” system or a “classification” system. In a regression system, the
value being predicted falls somewhere on a continuous spectrum (e.g. question to
answer could be “how many/much?”). In a classification system, the value being
predicted is discrete, a yes-or-no (e.g. question to answer could be “is this guess true
or false?”). Major differences exist in the design of the predictor h(x) and of the cost
(loss) function. In particular, all the logic behind the latter is of particular interest
in this thesis. In a Machine Learning classification system, the most important
question to ask ourselves is “what is the cost of a guess to be wrong?”. If I guessed 0
and it turned out to be 1, or viceversa, I was completely wrong, and as one cannot
be more wrong than completely wrong, the penalty (cost) in this case must be
maximum. Alternatively, if the correct value was 0/1 and we guessed 0/1, this
is good and the selected cost function should not add any cost for each time this
happens. But there are other cases to consider: if the guess was right but one
was not completely confident (e.g. y=1 but h(x) = 0.75) this should have a cost
but it should also be relatively low; on the other hand, if the guess was wrong
and one was not completely confident (e.g. y=1 but h(x) = 0.25), this should
come with some significant cost, but still not as much as if one was completely wrong.

When evaluating a classifier, there are different ways of measuring its perfor-
mance. For supervised learning with two possible classes, all measures of perfor-
mance are based on four variables obtained from applying the classifier to the test
set: TP (true positive), TN (true negative), FP (false positive), FN (false negative).
True Positive are those which we guess true (1) and really are true, True Negative
are those which we guess false (0) and really are false, False Positive are those which
we guess true and really are false, False Negative are those which we guess false

40 CHAPTER 3. MACHINE LEARNING

and really are true. In predictive analytics, a table of confusion (sometimes also
called a confusion matrix (Figure 3.7), is a table with two rows and two columns
that reports the number of false positives, false negatives, true positives, and true
negatives. The entries in a confusion matrix are counts, i.e. integers.

Figure 3.7: Confusion matrix.

The total of the four entries TP+TN+FP+FN=n is the number of train examples.
In this thesis true and false classifier is restrict to the concept of data popularity. As
it will be shown in following pages, we focus on DCAFPilot that is a pilot project
that has the goal of creating a system (for CMS) which can predict which datasets
will become popular even before datasets will be available on Grids for further
analysis. The concept of popularity is complicated and will be explain better in
a later chapter, but at this point, once the concept of popularity is defined, the
classifier has the goal to predict if a dataset will be popular or unpopular in the
future. In order to evaluate the classifiers and find the best way to apply them,
there are some estimators that help us to choose the best. For example there are:
Accuracy, Precision (or Positive predictive value, that is the proportion of predicted
positives which are actual positive), Recall (that is the proportion of actual positives
which are predicted positive) and F1 (that is the harmonic mean of precision and
sensitivity(or true positive rate)). They are calculated as:

• Accuracy = (TP+TN)/n

• Precision = TP/(TP+FP)

• Recall = TP/(TP+FN)

• F1 = 2TP/(2TP+FP+FN)

Accuracy is not a reliable metric for the real performance of a classifier, because
it will yield misleading results if the data set is unbalanced (that is, when the
number of samples in different classes vary greatly). For example, if there were
95 elements of type A and only 5 elements of type B in the data set, the classifier
could easily be biased into classifying all the samples as cats. The overall accuracy
would be 95%, but in practice the classifier would have a 100% recognition rate for
the A class but a 0% recognition rate for the B class.

3.5. SUPERVISED LEARNING IN MORE DETAIL 41

For our purposes, in particular, the FPR (False Positive Rate or FP/(FP+TN))
is relevant. In general both FP and FN data are relevant because, as the name
suggests, they are wrong predictions but the first one is heavier as error because
it cause the erroneously popular classification of a data that involves a series of
concauses on the system such as the production of more copies of the data. In this
way, more storage capacity is needed and economically involves an higher expense.
Otherwise FN data don’t involve more storage capacity because they are classify
as unpopular but they are not. So here the problem is that there will be less copies
on Grid and at the same time their access will be elevated, due to the fact that
they are popular and this causes transfer latencies. The disadvantage is that, when
a user request a FN data, he has to wait more time to really have it, but sooner or
later will arrive. So the problem is not economically but is the time. Because of
everything is said our next goal mainly will be reduce FPR.

In the following, a supervised Machine Learning classification system designed
and used to attack the CMS dataset popularity problem, will be presented and
discussed.

Chapter 4

Big Data Analytics techniques in
CMS: the DCAFPilot

4.1 Introduction to Analytics in CMS

The CMS experiment at the LHC accelerator at CERN designed and imple-
mented a Computing model that allowed successful Computing operations in Run-1
and gave a crucial contribution to the discovery of the Higgs boson by the ATLAS
and CMS experiments. The workflow management and data management sectors of
the model have been operated at full capacity exploiting WLCG resources for years.
Around the massive volume of original and derived physics data from proton-proton
and heavy-ions collisions in CMS, plenty of other data and metadata about the
performances of the computing operations have been also collected and rarely (or
never) examined. This latter sample is a wild mixture of non-physics heterogeneous
data, both structured and unstructured, which well fits to deeper investigation with
Big Data analytics approaches. In the context of CMS R&D activities, exploratory
projects have been started to extract some values from this dataset and to seek for
patterns, correlations as well as ways to simulate the Computing Model itself.

The CMS experiment launched a Data Analytics project, whose goal is manyfold
and depends on the timeline. As a long-term goal (2-3 years), the project aims to
build adaptive datadriven models of CMS Data Management (DM) and Workload
Management (WM) activities - as part of the overall CMS Computing Model -
with the target to be able to predict future behaviours of the CMS systems in
operations from the detailed measurements of their performances in the past. As a
medium-term goal (hopefully within LHC Run-2 already, aiming for incremental
improvements), the project aims to improve the use of CMS computing resources.
As a short-term goal (within Run-2), the projects aim to concretely support the CMS
Computing Operations team as much as possible through deeper understanding of
the CMS data collected over the years. In this sense, understanding the "data" - by
which we mean any (meta-)data produced by any Computing Operations activity
since Run-1 started - is extremely valuable in itself. The reason for such modelling
to be adaptive is that models elaborated in the past aren’t going to apply to the
future for long, and only adaptive modelling itself will give CMS confidence and
predictive power in the long term.

43

44CHAPTER 4. BIG DATA ANALYTICS TECHNIQUES IN CMS: THE DCAFPILOT

4.1.1 Approach to data and metadata

During Run-I CMS built an operations model that worked and successfully
met all requirements. It served well the CMS physics program, according to all
possible metrics. But apart from Run-1 success we cannot claim that we fully
understand the system and neither know how efficient we were during this time
of operations. For example, the data transfers to Tier-2 sites exceed expectations
as from the MONARC model, moreover we have no model to shape this kind of
traffic. Another example, researchers filled the disk storage at the Tier-2 level with
plenty of data useful for physics analyses, but a large fraction of AOD/AODSIM
storage is left un-accessed for long periods of time which accounts for inefficient
resource utilisation. These are only a few examples which strongly suggest that
deep understanding of all system components is required to improve its utilisation.
In the Computing operations during Run-1 and the first long shutdown (LS1)
period, all computing systems collected plenty of data about operations themselves,
e.g. monitoring data, accounting information, machine logs, etc. All of them were
archived, but rarely (or never) accessed by anyone. This data comprises information
about transfers, job submissions, site efficiencies, release details, infrastructure
performance, analysis throughput, and much more (Figure 4.1).

Figure 4.1: Source of structured and unstructured data to the CMS Analytics project.

This precious data set is left unanalysed so far because researchers mainly
monitor their systems in near-time for debugging purposes, rather than analyse
what happened in the past and study in depth systems behaviour. Additionally,

4.1. INTRODUCTION TO ANALYTICS IN CMS 45

they never fixed holes in their monitoring data and validated (most of) them with
decent care. Therefore such data can be considered as incomplete and not suitable
for further analysis. The quality of the data, and a careful work on data preparation
before the analysis, is one of the main components which leads to success stories in
any Big Data analytics project. In our case we must pay significant attention to the
four big V’s: the Volume (scale of the data), Velocity (analysis of streaming data),
Variety (different forms of data), Veracity (uncertainty of data). The data Volume
here is not negligible in itself, but definitely manageable with respect to the LHC
collisions data we deal with. The Velocity is partially relevant, i.e. we aim to a
quick availability of analytics results, but having a real-time feedback from the data
is not actually a requirement. The Variety is very relevant, as we deal with a very
irregular data set, consisting of structured, semi-structure and unstructured data
(see next section). The Veracity is also extremely delicate, as the data integrity and
the ability to trust the data analysis outcome to make decisions is crucial.

4.1.2 Structured data and beyond

Structured information (see Figure 4.1, blue color) represents a variety of
CMS Computing activities which are stored across multiple data services. For
example, the DBS system is the CMS source for physics meta-data; the PhEDEx
transfer management database offers data transfer service and data replica catalog
functionalities; the Popularity Database (PopDB) collects dataset user access
information (e.g. access frequency, which replicas are accessed on Tiers of the WLCG,
the amount of CPU used); SiteDB (and REBUS, eventually) gives authoritative
information about site pledges, deployed resources, and manpower onsite, while
CERN Dashboard stands as a massive repository of details on Grid jobs (and
beyond). In addition to structured data, plenty of data in the CMS Computing
ecosystem is completely unstructured (see Figure 4.1, red color). This type of
information is hard to collect and process, but it represents potentially very rich
content.

For instance, the CMS HyperNews system offers today more than 400 different
fora, representing de-facto a reference on several years of user activities (announce-
ments, information on user activities, insight into change of focus in the physics
interests of individuals/groups over time, hot topics, etc.). But to be useful, it
requires social data mining efforts on several aspects of collaboration-level activities.

The tickets offers a view on infrastructure issues reporting/tracking, via different
tracking systems used over the years (e.g. Savannah, GGUS), and complemented
by activity-based ELOGs, topical e-groups, etc.

The CERN-based twikies offer a content that stands as a knowledge graph that
could be mapped to user activities and physics interests, and help to model their
evolution over the time.

Hot periods of CMS physics analysis can be tracked via the CMS calendar of
events (as well as non-CMS calendars), the CMS sub-projects planning information,
list of major conferences and workshops, etc. Such information can also lead to
identification of seasonal cycles within different physics communities. To this extent,
also the Vidyo logs may turn up to be useful, in terms of knowing who regularly
attends specific meetings.

46CHAPTER 4. BIG DATA ANALYTICS TECHNIQUES IN CMS: THE DCAFPILOT

Finally, CMSWEB cluster front-end logs (actually, semi-structured data in this
case) serve all data sources to users, thus might be mined to extract valuable
information on user activities.

Figure 4.2: Descripton of the DCAFPilot workflow and components.

4.1.3 A use-case: CMS data popularity and the DCAFPilot

In CMS the Dynamic Data Placement [29] team is relying on historical informa-
tion of datasets popularity to add (remove) replicas of existing datasets that appear
to be most (least) desired by end-users. The goal of this activity is to balance
resource utilisation at different sites by replicating more replicas of popular dataset.
But this approach has one flaw, it reacts to spikes of the dataset popularity after
the fact. Therefore it would be desired to have a system in place which can predict
which datasets will become popular even before datasets will be available on Grids
for further analysis.

The DCAFPilot (Data and Computing Analysis Framework Pilot) [30] is a pilot
project to understand the metrics, the analysis workflow and necessary tools (with
possible technology choices) needed to attack this problem. The framework has
been recently exploited to investigate the feasibility of this analytics approach for
the CMS data popularity use-case.

In a nutshell, the pilot architecture is shown in Figure 4.2. Data is collected
from CMS data services by a DCAF core that uses MongoDB for its internal

4.1. INTRODUCTION TO ANALYTICS IN CMS 47

cache. So far, informations are collected from the following CMS structured data-
services: DBS, PhEDEx, PopDB, SiteDB, Dashboard (see [31] for more details on
the CMS systems). A data-frame generator toolkit has been developed to collect
and transform data from CMS data services, and to extract necessary bits for
a subset of popular and un-popular datasets. The data-frame is fed to machine
learning algorithms (both python and R code used) for data analysis. A quantitative
estimate of the popularity is given for specific types of datasets, which may be fed
back to the CMS computing infrastructure as a useful input to daily operations
and strategical choices.

The data collection flows, in some more details, works as follows. All datasets
from DBS are collected into the internal cache. Popular datasets are queried from
PopDB with a weekly granularity. For all of these datasets more information is also
extracted from DBS, PhEDEx, SiteDB and the Dashboard. This information is
complemented with random set of unpopular datasets (to avoid bias in later stage
machine learning algorithms). All such information is stored in different data-frame
files, that can be fed to any ML library for whatever purpose one may have. At
the moment, all data from 2013 and 2014 years have already been pre-processed
and are available for analysis. At this stage, a prediction of which dataset(s) may
become popular is given, in the form of their probability versus each dataset name.

Some statistics from a dry run of the machinery are reported below. Five data
services were queried (4 DBS instances used) and 10 APIs were used. The internal
MongoDB cache was fed with about 220k datasets, 900+ release names, 500+ SiteDB
entries, 5k people’s DNs. In total, about 800k queries were placed. Anonymisation of
potentially sensible information is done via the internal cache. The final data-frame
is constructed out of 78 variables, and made out of 52 dataframe files, roughly 600k
row in total. Each file is worth 1 week of CMS meta-data (approximately 600kB
gzipped), and it has about 1k popular datasets with a roughly 1:10 ratio of popular
vs unpopular samples randomly mixed. The data-frame can be visualised real-time
in terms of live data, correlations, and also exploring different data popularity
metrics (e.g. number of users accessing a dataset versus total CPU used to process
it).

Once the data collection is finalised, the actual analysis can start. First of
all, a data transformation is needed to transform the data into a suitable format
for machine learning techniques. Then, a specific machine learning approach
must be chosen, e.g. classification (it allows only to classify into categories, e.g.
popular or unpopular) versus regression (it allows to predict real values of the
chosen metrics, e.g. number of accesses) vs online learning techniques (so far
a classification approach has been adopted). The following step is to train and
validate the machine learning model. This is done by splitting the data into train
and validation sets. The model chosen as the best one is then applied to such new
data to make predictions, and such predictions are regularly verified with PopDB
fresh data once metrics become available.

Within the DCAFPilot project we have completed a major milestone to build-
up the machinery, i.e. collect data on regular intervals, transform them into ML
data-format, run various ML algorithms and yield and compare predictions. At this
moment several ML algorithms are adopted within DCAFPilot project: a regular
set of scikit-learn classifiers [32], e.g. Random Forest, SGDClassifier, SVC, etc.,

48CHAPTER 4. BIG DATA ANALYTICS TECHNIQUES IN CMS: THE DCAFPILOT

the online learning algorhtm, Vowpal Wabbit, by Yahoo, and gradient boosting tree
solution (xgboost, the eXtreme Gradient Boosting).

The preliminary results are quite encouraging. For instance we are able to
predict with reasonable accuracy a portion of the 2014 data set. All the results
have to be taken as preliminary, but they already give interesting indications, and
once they will be considered solid they will offer valuable information to tune
CMS computing operations. A few examples may clarify how. A few false-positive
popularity predictions would imply a little wasted bandwidth and disk space for
a while, but not much. On the other hand, a false-negative can mean a few days
delay in a specific analysis. The experience of the Higgs announcement - in which
data taken two weeks earlier was included, with plots produced that same morning
- is teaching us that in hot periods a delay of few days could be important.

So far DCAFPilot project is capable of collecting the data, transforming them
into ML suitable format, run various ML algorithms and make a predictions. The
final predictions can be verified posteriorly by comparing them with data collected
in PopDB. With such machinery in place we are ready to start full analysis. Our
approach is the following: collect historical data on weekly basis, run them through
transformation and modeling steps, compare different classifiers and built best
predictive model, and, finally apply this model to new set of data we expect to have.
The latter can be collected from Request Manager and DBS CMS data-system by
the time data-ops team start processing the datasets.

4.2 The DCAFPilot components and functionali-
ties

This section lists and described the DCAFPilot python components and how
they are run.

There are several tools which are available in DCAFPilot project:

• dataframe, to collect information from various CMS data-providers and repre-
sent it in anonymized form of the dataset suitable for data analysis;

• merge_csv, a tool to merge multiple CSV files into single one;

• transform_csv, a tool to transform generic dataframe into classification prob-
lem;

• model, a tool to train ML algorithm;

• pred2dataset, a tool to convert prediction into human/CMS data format;

• check_prediction, a tool to test predicted values against provided data;

• popular_datasets, a tool that get popular datasets from popularity DB;

• verify_predictions, a tool to cross-check predictions against popDB data.

4.2. THE DCAFPILOT COMPONENTS AND FUNCTIONALITIES 49

Figure 4.3: Graphical representation of possible workflows in DCAFPilot. A full de-
scription is in the text.

4.2.1 dataframe

dataframe --start=20150101 --stop=20150108 --newdata
--verbose=1 --fout=new-20150101-20150108.csv

Through dataframe tool we keep dataframe from DBS giving, as --start and
--stop arguments, the beginning and the end of temporal window of datasets that
we want to catch, putting them into a csv file. So in dataframe we have all data
in DBS presents on the start day of week and all dataframes created during the
week. The dataframes that we create are always relative to one week. Besides in
dataframe we know for example how many times a dataset is accessed in that week,
but this dataset could be created the first day of the weak but also the last.

4.2.2 merge_csv

merge_csv --fin=path_to_data --fout=2014.csv.gz

This is a tool that has the aim of collect together a given number of dataframe
creating a csv file. It has 78 variables such as id, dataset, size, tier, naccess, nusers,
totcpu, etc. So as --fin argument we pass the dataframes path that we want to
merge and as --fout we pass the name of the file that the tool will produce after
it has run (in this case it produces a file that contains all 2014 dataframes). This
process is applied two times, in order to produce train and valid sets.

50CHAPTER 4. BIG DATA ANALYTICS TECHNIQUES IN CMS: THE DCAFPILOT

4.2.3 transform_csv

transform_csv --fin=train.csv.gz --fout=train_clf.csv.gz
--target=naccess--target-thr=100
--drops=nusers,totcpu,rnaccess,rnusers,rtotcpu,nsites,
s_0,s_1,s_2,s_3,s_4,wct

The aim of this tool is to transform a file into a classification one, into a suitable
format for Machine Learning. So in this passage, starting from train.csv.gz as
--fin argument, is created a new classification file (train_clf.csv.gz) in which is
add a column (target) where the datasets have 0 (zero) or 1 (one) value according
to the fact that in fixed target column (in this example is naccess) they have a
value higher than a fixed one (target threshold). In addition to this some column
of the original file are deleted. The level of cut, given by the target threshold, is
linked to the concept of popularity. Indeed in target column we have the answer to
the question: this dataset is popular? If the answer is true, then target column has
1, otherwise has 0.

As described in the previous section, DCAFPilot focuses on the concept of data
popularity, trying to understand from a huge amount of data which are popular
and unpopular and from what this build a predictive model in order to optimize
the storage use and job latencies on Grid. As will be discussed in the next chapter,
the definition of popularity itself in this context needs to be tailored to allow its
adequate prediction. We will see that the concept of popularity builds from the
possibilities of CMS to afford storage space and to accept latencies, joint to a good
reliability of the model.

So we can use different target column (such as naccess, nusers, totcpu) with
different threshold, creating our definition of popularity.

transform script can be used both to create a classification file for train file
and for valid file.

4.2.4 model

model --learner=RandomForestClassifier--idcol=id
--target=target --trainfile=train_clf.csv.gz
--scaler=StandardScaler --newdata=valid_clf.csv.gz
--predict=pred.txt

This tool creates a model that gives us prediction about popularity. So after
having chosen a classifier (passed as --learner argument), in this example we
pass as arguments to model train_clf.csv.gz as train file, and valid_clf.csv.gz as
newdata. Here the train set is used to build our model, a validation set is used to
tune our model parameters, e.g. run cross-validation, etc. The option --newdata
will accept both either validation set or totally new data. The difference between
then is the following. In validation set we know our labels, i.e. if dataset was
popular or not, while in new data we do not know them. The former case then can
be used to test the prediction of our model (since we know the labels), while in

4.2. THE DCAFPILOT COMPONENTS AND FUNCTIONALITIES 51

later case we will get predictions but we will have no other information to know if
they are good or bad.

Besides we ask model script to yield prediction into pred.txt file. This file
contains dataset_id,dbs,prediction triplets.

Through pred2dataset we convert prediction into human/CMS data format
giving a path of the data with type of it (AOD, AODSIM, USER. . .) and the
prediction.

4.2.5 check_prediction

check_prediction --fin=valid_clf.csv.gz --fpred=pred.txt
--scorer=accuracy,precision,recall,f1,tp,tn,fp,fn

With check_prediction we verify the reliability of the model giving some
parameters (accurancy, precision, recall, F1, TP, TN, FP, FN) comparing in this
case the valid data with pred.txt. The validation set here contains labels so when
we will run a model over these data it will make predictions and you can compare
predictions with real labels. Usually the quality of the fit is measured by statistical
parameters that are those in --scorer arguments.

4.2.6 popular_datasets

popular_datasets --start=20150101
--stop=20150108 > popdb-20150101-20150108.txt

popular_datasets is a tool to extract popular datasets from popDB. popdb-
YYYYMMDD1-YYYYMMDD2.txt is a file with historical information about dataset
usage. It contains NACC, TOTCPU, NUSERS, COLLNAME, RNACC, RNUSERS,
RTOTCPU columns. The difference between this and dataframe tool is that
here every time we run it we obtain different values of naccess, totcpu, nusers,
etc., because they are related to informations updated to the run moment of
popular_datasets, informations about dataframes, that exist during the period
passed as argument, but up to the present; conversely dataframe tool create a csv
in which there are informations of dataframes, that exist during the period passed
as argument, but related to the week itself. So if we use popular_datasets
we obtain different values on time, they change with time, while when we use
dataframe tool we obtain static informations that don’t depend on the moment
in which we run the script.

4.2.7 verify_prediction

verify_predictions --pred=pred.txt.out
--popdb=popdb-20150101-20150108.txt

This tool will compare prediction pairs from pred.txt.out file (that is produced
by the model) and popdb one. We have to underline an important thing: popdb
file and the file produced by popular_dataset (popdb-XXX-YYY.txt) that here

52CHAPTER 4. BIG DATA ANALYTICS TECHNIQUES IN CMS: THE DCAFPILOT

behaves as valid file to build pred.txt.out, must to be related to the same temporal
window. The verify_prediction will only look at matches and tell us how
many datasets we predicted as popular and unpopular. This time we don’t know
what is FP/FN rates and can’t know accuracy, precision metrics, we only have
a prediction. But we can tell that our model has certain FP/FN rates because I
studied it before with some validation data.

4.3 How to use DCAFPilot: build, tune, run a
model

There are two clear example about we can use the model: in the first one we
compare predictions given by the model with the valid set (that has labels); in the
second one we compare prediction with popdb file which not contains labels but
only informations (such as naccess, nusers, totcpu) up to the run moment. So we
will present all steps of this two different proceedings.

When we have data and build a model, to fit them we want to check how good
or bad our model is. For that purpose usually a user split data into training set
and test set. The train set is used to build a model and test set is used to verify
the model. Usually the train set is also split into two subsets where one is used for
finding fit parameters and another for cross-validation [33] (train and valid subsets).
Here 70%/30% splitting for train/valid is common practice, but any other split
level close to the previous is fine too. The point is how much data we want to use
for fit and how much we want to do cross-validation.

The validation set here contains labels so when we will run a model over these
data it will make predictions and we can compare predictions with valid labels
itself. Usually the quality of the fit is measured by statistical parameters, such
as accuracy, precision, recall, etc. Now we back to definitions we used. The data
file(s), dataframe-XXX.csv, is what we collect from CMS data-services. Then for
example we merge them into 2014.csv. Then we split merged file into train.csv and
valid.csv. But yet these files need to be transformed into suitable format for ML.
This is done via transform_csv script. Once this is done we can start train our
model, e.g.

model --learner=RandomForestClassifier --idcol=id
--target=target --scaler=StandardScaler
--predict=pred.txt--train-file=train_clf.csv.gz
--newdata=valid_clf.csv.gz

Here we told model script to use train_clf file and give valid_clf file as "new-
data". We also ask model script to yield prediction into pred.txt file. This
file contains dataset_id,dbs,prediction triplets. Using this file we can invoke
check_prediction script to find out some statistical metrics which can tell us
how my model performed over data, e.g.

check_prediction --fin=valid_clf.csv.gz --fpred=pred.txt

4.3. HOW TO USE DCAFPILOT: BUILD, TUNE, RUN A MODEL 53

--scorer=accuracy,precision,recall,f1

But as we can see we need to supply valid_clf file in order to extract labels
and compare them with prediction ones (which come from pred.txt). Using these
informations we can find out accuracy, precision, etc. metrics. So this script just
check my model using file valid_clf and pred.txt files. In check_prediction we
use labels in valid sets, conversely we crate a model through valid set but without
using labels.

The pred2dataset script is used only to convert pred.txt file (which is again
dataset_id,dbs,prediction triplets) into human readable format as prediction and
dataset name.

All this is shown in the left side of Figure 4.3. Now we pass on the right side.

To get new data we invoke the following script

dataframe --start=XXX --stop=YYY
--newdata --fout=new-XXX-YYY.csv

We only specify some time window for the dataframe and supplied --newdata
flag. The newly created file new-XXX-YYY.csv will contain the same meta-data,
but it does not have any labels, since it is new data.

Now we will need to transform it, we drop some attributes, etc.

transform_csv --fin=new-XXX-YYY.csv
--fout=newdata-XXX-YYY.csv
--target=naccess --target-thr=10
--drops=nusers,totcpu,rnaccess,rnusers,rtotcpu,nsites,
s_0,s_1,s_2,s_3,s_4,wct

Now, we have newdata-XXX-YYY.csv which is suitable for ML.
Then we can run our model script again

model --learner=RandomForestClassifier --idcol=id
--target=target --scaler=StandardScaler
--train-file=train_clf.csv.gz
--newdata=newdata-XXX-YYY.csv --predict=pred.txt

Here we supplied the same options as before, but for --newdata we put a file
which we just created. We also asked to write out pred.txt file. This file will again
contains dataset_id,dbs,prediction triplets.

We can convert it into human readable format, like

pred2dataset --fin=pred.txt --fout=pred.txt.out

and we will have prediction and dataset pairs but apart from valid_clf which
we discussed above we don’t have labels in this case. Therefore we can’t apply

54CHAPTER 4. BIG DATA ANALYTICS TECHNIQUES IN CMS: THE DCAFPILOT

check_prediction script here since we don’t have labels, but what we can
do is "wait" once data will be appear in Pop DB. If we choose time interval
XXX-YYY as one week, we will need to wait another week and some data will
appear in Pop DB. Therefore, we will wait, e.g. one week, and then invoke new script

popular_datasets --start=XXX
--stop=YYY > popdb-XXX-YYY.txt

This time we can invoke another script verify_prediction which will
compare prediction pairs from pred.txt.out file and popdb one. This script will
only look at matches and tell us how many datasets we predicted as popular and
unpopular. This time we don’t know what is FP/FN rates and we don’t know
accuracy, precision metrics. We only have prediction. But we can tell that my
model has certain FP/FN rates because we studied it before with some validation
data.

Chapter 5

Analysis and discussion of results

In this chapter the steps that have brought to choose the best model to predict
popularity of new CMS datasets will be described. Before going into the details of
the analysis and the discussion of the results, it is worth to make a point regarding
what the actual goal of the measurement is, which is/are the observable(s) chosen
to measure it, and what is the rationale behind its/their choice.

As discussed previously, the goal is to perform popularity predictions that would
allow an a-priori intelligent data placement instead of the existing a-posteriori
datasets cancellations or additional replication according to a static algorithm. In
this sense, the work documented in this thesis has a goal that can be quantified in
terms of the FP rate (FPR) alone, i.e. "how much can we afford to produce a high
number of FP?”. In fact, a FP means that we have predicted as popular a dataset
that turns out not to be actually popular at all. This “mistake” gives an overhead
in data placement, because this dataset will be unnecessarily replicated worldwide.
The key point here is to quantify which is the cost that I am willing to accept for
my “mistake”. In order to estimate this, this simple exercise was made. DBS was
queried for the average number of newly registered datasets per week in 2014, and
this number turned out to be 565±300, so we can assume for simplicity to that 500
new datasets are created every week. Given the average dataset size is 2 TB, this
corresponds to 1 PB per week. If we allowed 1% of this amount to be FP, it would
imply that every week 5 datasets (10 TB) will be transferred and never accessed.
As we move few PBs per week, this amount is indeed very acceptable. So a FPR
as low as roughly 1% is a more than acceptable price to pay. This parameter just
drives everything. This parameters will tell you which algorithm is more acceptable,
how good it must be, how much you can spend to tune the model, etc. E.g. if a
new hardware architecture would allow you to run DCAFPilot in a “better” way
(in any sense) and will offer you a FPR reduction that is sensible, probably it will
be worth doing it, otherwise it will not be. So, FPR will be our main driving factor
in the following. Of course it is not the only one. For example, the FN rate (FNR)
is also interesting. A FN means that we have predicted as unpopular a dataset
that turns out to be actually popular. By doing this different kind of “mistake”,
we do not replicate such dataset, so the price we pay is in terms of increase in
the latency of CRAB jobs which can run on fewer sites (or will have to access the
dataset remotely). But, thinking about it, this “mistake” case is just like doing
nothing, i.e. it is as the system is today. While the FPR implies a transfer, a cost

55

56 CHAPTER 5. ANALYSIS AND DISCUSSION OF RESULTS

you pay, the FNR is not a price paid for sure, as the dataset may not be requested
by anyone, and if it is, the price may be lower, just a slightly increased latency. So,
indeed, FPR gives the higher price and will be our main driver, and FNR will be a
second, lower-priority driver in the discussions in the following part of this chapter.

As a result of the discussion above, we will focus on FPR, that is calculated as
FPR = FP/(FP + TN), on FNR , that is calculated as FNR = FN/(FN + TP),
having a look at TP also. Additionally we want a model that has high levels of
accuracy, precision, recall and F1, that means that our model fits very well the
data.

5.1 Choice of the best classifier

As already explained in the previous chapter, the model is built on the basis of
a ML classifier. A classifier is an algorithm that implements the ML classification,
details of which are reported in Chapter 3. There are several different classifiers and
in this thesis we have tried some of them. Before starting, it is worth reminding
that all tests in this section were done using dataframes of the whole 2014 split in
70% for train and 30% for valid sets, and we use check_prediction comparing
predictions to valid set. Below results for different naccess cuts are shown, in order
to better understand the behaviour of different classifiers.

We have tried to study the best suited classifier by applying two different cuts,
namely naccess>10 and naccess>60. It is possible to see through Tables 5.1, 5.3
and Figures 5.2, 5.4, 5.5 that there are some differences between values of the two
different cuts.

Figure 5.1: Results of performance studies of different ML classifiers upon applying a
naccess>10 cut, in terms of Accuracy, Precision, Recall and F1 scorers.

The choice of naccess as a cut to compare classifiers among each other is quite a
natural one, as the definition of popularity - to be discussed later - will definitely be
connected to the application of a cut (eventually, a combined cut) that must include
at least this observables. On the basis of the Tables and Figures shown above, it
can be seen that some scorers - like GaussianNB and Ridge Classifier - yield very
high FPR. These must be excluded in this study, but there is no strong reason

5.1. CHOICE OF THE BEST CLASSIFIER 57

Figure 5.2: Graphical view of the results from the performance studies of different
ML classifiers upon applying a naccess>10 cut (same data as from the
corresponding Table), in terms of different scorers.

Figure 5.3: Results of performance studies of different ML classifiers upon applying a
naccess>60 cut, in terms of Accuracy, Precision, Recall and F1 scorers.

58 CHAPTER 5. ANALYSIS AND DISCUSSION OF RESULTS

Figure 5.4: Graphical view of the results from the performance studies of different
ML classifiers upon applying a naccess>60 cut (same data as from the
corresponding Table), in terms of different scorers.

Figure 5.5: FPR variability as a function of different classifiers, displayed for both
naccess>10 (blue dots) and naccess>60 (red squares) cuts.

5.2. CHOICE OF THE BEST DATAFRAMES SPLITTING 59

in favour of adopting one or another of the remaining ones. Given the amount of
positive feedback in the literature on RandomForestClassifier, and given it seems
one of the most adequate given the time of the problem we study and the statistics
we can rely on, we decided to adopt RandomForestClassifier in this study. All the
results shown later in this chapter are hence obtained with such classifier.

5.2 Choice of the best dataframes splitting

In order to create a model and to verify its reliability, we have to split our
datasets into three different sets:

• training set is used to build the model. It contains a set of data that has
preclassified target and predictor variables;

• validation set is used to adjust the model, tuning internal model parameters;

• test set is used to apply our chosen prediction algorithm on it, in order to see
how it is performing and thus have an idea about our algorithm’s performance
on data the algorithm has never seen before.

It is not easy to choose which is the best way to split our overall set of data into
training vs validation vs test sets. Two important ML concepts need to be taken
into account: overfitting and cross validation, which are briefly discussed in the
following subsections.

5.2.1 Overfitting

In statistics and in Machine Learning, overfitting [34] occurs when a statistical
model describes random error or noise instead of the underlying relationship.
Overfitting generally occurs when a model is excessively complex, such as have
too many parameters against the number of observations. A model that has been
overfit will generally have poor predictive performance, as it can exaggerate in
minor fluctuations in the data. The possibility of overfitting exists because the
criterion used for training the model is not the same as the criterion used to judge
the efficacy of a model. Indeed, a model is typically trained by maximizing its
performance on some set of training data, while its efficacy is determined not by its
performance on the training data but by its ability to perform well on unseen data.
Overfitting occurs when a model begins to "memorize" training data rather than
"learning" to generalize from trend.

The potential for overfitting depends not only on the number of parameters and
data but also the conformability of the model structure with the data shape, and
the magnitude of model error compared to the expected level of noise or error in
the data.

However, especially in cases where learning was performed too long or where
training examples are rare, the learner may adjust to very specific random features
of the training data, that have no causal relation to the target function. In this

60 CHAPTER 5. ANALYSIS AND DISCUSSION OF RESULTS

process of overfitting, the performance on the training examples still increases while
the performance on unseen data becomes worse.

Both in statistics and in Machine Learning, in order to avoid overfitting, it is
necessary to implement some particular techniques, such as cross-validation, that
shows when a further training does not produce a better generalization.

5.2.2 Cross-validation

Cross-validation [33] is a statistics technique used in cases in which there is a
sufficiently large number of available dataframes. In particular the k-fold cross-
validation consists on subdivision of the whole dataset in k parts of the same
numerosity and, at each passage, the (1/k)th part of dataset become the vali-
dation dataset, while the remaining part become the training dataset. In this
way for each k-part, the model will be trained, avoiding overfitting problems, but
also asymmetric sampling (and so affected by bias) of training dataset, typical of
dataset subdivision in only two parts (or training and validation datasets). In other
words, the data sample is divided in groups of the same dataframes quantity, ex-
cluding iteratively a group at time, trying to predict it through non-excluded groups.

5.2.3 Cross validation on DCAFPilot

So there are two possibilities in order to split dataframes. Either we split
datasets into 60%/20%/20% for training/validation/test sets or we use the same
group of data for validation and test through a 70%/30% split. Because of the fact
that we use only 2014 dataframes, it is better to use 70%/30% split in order to have
more statistics for training and validation, using anyway cross-validation to avoid
overfitting. Thus subsequently will be shown which is the behaviour of Accuracy,
Precision, Recall, F1 and FPR through a table (Figure 5.6) and plots (Figure 5.7,
Figure 5.8), starting from using 2014 and split it into first 2014 four weeks for train
set and the rest of 2014 for valid set. The next passages is obtained adding 4 weeks
at time to the train set, subtracting them from the valid set. In previous table and
plots we refer to the percentage of 2014 dataframes belonging to train and valid sets.
Values are also referred to naccess>100 cut. Observing all the parameters, it is
possible to say that increasing dataframes into train set Accuracy slowly oscillates
around 0.95%, Precision overcoming 50%/50% subdivision decreases, Recall and F1
increases, FPR starting from 53.8% train increases very quickly. Because of we are
interested not only on FPR (that behind has economic motivation) but above all on
a good level of predictability, something close to 70%/30% split for train and valid
sets seems to be the choice that optimizes as much as possible all the parameters.

As from this study, we opted for a 70% training set size and a 30% valid set
size, and we stick to this throughout all the studies presented in the rest of the
work of this thesis.

5.2. CHOICE OF THE BEST DATAFRAMES SPLITTING 61

Figure 5.6: Values of Accuracy, Precision, Recall, F1 and FPR in cases of different 2014
datasets split into train and valid sets.

Figure 5.7: Accuracy, Precision, Recall, F1 trend in cases of different 2014 datasets split
into train and valid sets.

62 CHAPTER 5. ANALYSIS AND DISCUSSION OF RESULTS

Figure 5.8: FPR trend in cases of different 2014 dataset split into train and valid sets.

5.3 Definition of popularity metrics
In this section we refer to “cuts” as the selection applied to the available set of

variables in order to apply a certain definition of data popularity. The available
variables that are primarily used in this analysis are:

• naccess: number of accesses to a CMS dataset

• totcpu: total CPU time (in hours) spent on running on a CMS dataset

• nusers: number of users accessing a CMS dataset

One may define the popularity in different ways. From a CMS data management
standpoint, a dataset may be defined “popular” if it attracts a lot of accesses. From
a computing facilities standpoint, a dataset may be defined “popular” if a lot of
CPU hours are kept busy while serving this dataset to analysis users. From a
user community perspective, a dataset may be defined “popular” if a lot of users
access it via the CMS distributed analysis tools. So, depending on which is the
choice of the actual popularity metrics, its definition may be different, and different
subsets of CMS datasets may be popular according to one definition, and less
popular according to another one. But it is crucial to mention at this point that,
from the standpoint of a ML-based analysis of the problem - despite it may sound
contradictory - the actual chosen definition of popularity does not matter much in
itself: of course it needs to be reasonable, but what matter is that a definition is
taken that allows the DCAFPilot system to predict – on the basis of that definition
- what will be popular or not and keep a low FPR while doing it. To reach this
goal, it is important to study the characteristic of the aforementioned variables and
the effects of different popularity definition cuts in some details. This will be done

5.3. DEFINITION OF POPULARITY METRICS 63

in the following sections, exploiting three main popularity metrics, using a set of
dataframes that corresponds to roughly the metadata from the first three quarters
of year 2014 for the part of general explanation of datasets behaviour relative to
each metric. At the same time we analize single cuts in which now we use a set of
dataframes that corresponds to whole 2014 metadata, splitted into 70%/30% for
train/valid sets using RandomForestClassifier as classifier. Here we pay attention
first of all to minimize FPR but at the same time we want that %TP (where %TP
is equal to ratio between TP and the number of whole valid datasets) is enough high
so that our model also predicts correctly significant quantities of data. Secondly we
also want that FNR (where FNR = FN/(FN + TP)) is quite low because also
FN has a cost, albeit in a reduced way, and latencies.

5.3.1 Studies of single cuts

Number of access

The number of accesses (naccess in the following) is a golden variable in our set
as it counts the individual accesses to the CMS datasets and it is among the most
easy and natural metric to be used in order to quantify the actual popularity of a
dataset. Its distribution in terms of probability density is shown in Figure 5.9.

Figure 5.9: naccess distribution in terms of probability density.

Over the 420k datasets quoted above (corresponding to datasets of the first
three quarters of year 2014), naccess had mean ∼ 292, median 0, skewness 95 and
kurtosis 10323 (we do not quote errors because is not relevant for the discussion).

64 CHAPTER 5. ANALYSIS AND DISCUSSION OF RESULTS

The global distribution is right-skewed (positive skewness indicates that the
mean of the data values is larger than the median) and leptokurtic (positive kurtosis
indicates a peaked distribution). As can be seen for the median value, indeed, the
vast majority of the datasets were not accessed at all during the indicated period. In
fact, only 50834 datasets out of 420k recorded at least 1 access, and – if datasets with
naccess=0 are excluded from the pool – the distribution becomes one with a larger
mean (∼ 2419), larger median (244), smaller skewness (34) and smaller kurtosis
(1265), thus indicating a less peaked distribution. As expected, when applying more
stringent cuts on naccess, the mean and median increase, the skewness decreases (the
distribution becomes more symmetric) and the kurtosis decreases (the distribution
becomes flatter). The value of all such statistical moments for no cuts on naccess,
as well as for naccess>0, >10 and >100 are shown in Figure 5.10.

Figure 5.10: Statistical moments for several naccess cuts.

In terms of popularity metric definition, it is tempting to declare that naccess for
a dataset must exceed an high value to justify that such dataset is indeed “popular”.
But there is nothing solid apart from a random way to fix a threshold for this. Now
using whole 2014 dataframes in the way previously explained, the DCAF model
was run for a wide set of reasonable choices of naccess cuts. Fixing n=178462, that
represents the number of datasets contained into validation set, we represent in the
following plots %TP (that is %TP=TP/n, Figure 5.15), %TN (that is %TN=TN/n,
Figure 5.16), %FP (that is %FP=FP/n, Figure 5.17), %FN (that is %FN=FN/n,
Figure 5.18), FPR (Figure 5.19) and FNR (Figure 5.20).

We can see that the majority of datasets are correctly predicted as TN. Indeed,
we know from CMS Operations that most of the CMS datasets are residing on disks
at Computing centres and are not accessed so frequently, so this is correct. The
same information, as it is obviously correlated, is shown in the %TP plot (Figure
5.15). The results show that if the naccess cut (naccess > n) moves to larger n,
we are defining as “popular” those datasets which have a high number of accesses,
thus resulting in a lower %TP and a higher %TN (Figure 5.16). On the other
hand, whenever we cut on naccess, the fraction of FP (Figure 5.17) is stable around
0.6-1.4%, and similar for %FN (around 0.6-1.8, Figure 5.18): this shows that the
fraction of datasets for which the model gives a wrong predictions (in both ways) is
only slightly sensible to the naccess threshold.

In Figure 5.19 and 5.20, the FPR, FNR rates are shown. As explained earlier,
we focus primarily on the FPR, with an eye also on the FNR. In terms of the naccess
cut alone, we observed that FPR oscillates between 0.6 and 1.5% for different values
of n. This would indicate that any value of n would leave us with a relatively
“small” cost to pay in terms of FPR, which is good - so we can choose our preferred
operational point. On the other hand, looking at FNR, we observe than larger
values of n cause FNR to raise from about 8% to up to 30%. Despite this is not our
primary metric of interest, given that any value of n is safe from a FPR standpoint,

5.3. DEFINITION OF POPULARITY METRICS 65

it is hence preferable to choose a smaller value of n so that it minimizes the FNR
as well. Looking at both plots altogether, each cut under n=40 (or similar) seems a
reasonable choice.

Number of users

The number of users (nusers in the following) is another interesting variable to
study, which counts the individuals who used their own Grid certificate through
the CRAB distributed analysis toolkit to access the CMS datasets. Its distribution
in terms of probability density is shown in Figure 5.11.

Figure 5.11: nusers distribution in terms of probability density.

It seems obvious to think of an high number of users accessing a dataset as a
reasonable measure of the actual popularity of such dataset. On the other hand, it
is sometimes not so straightforward: in CMS Physics groups it is quite frequent that
very few “power users” submit jobs to the Grid for the entire team: for example,
a large fraction of massive Grid jobs submissions for the analyses in the Higgs
working group were performed by just few PhD students or young researchers to
collect pre-analyzed data to share with all their colleagues in the team. In other
words, also in this case choosing a good threshold may not be as easy as one may
think.

Checking over the total of 420k datasets in the whole set of dataframes used in
this study (first three quarters of 2014), nusers had mean ∼ 0.3, median 0, skewness
13 and kurtosis 286. Of course, the vast majority of naccess=0 in the previous
section is correlated with nusers=0 in this section. In fact, only ∼ 51k datasets

66 CHAPTER 5. ANALYSIS AND DISCUSSION OF RESULTS

out of 420k recorded at least 1 individual accessing the dataset, and – if datasets
with nusers=0 are excluded from the pool – the distribution has a larger mean
and median, and a smaller skewness and kurtosis. Applying more stringent cuts on
nusers, the mean and median increase further, and the skewness and the kurtosis
decrease further. In this specific case, though, it does not make much sense to
increase n in nusers>n a lot, as the dataset which recorded the maximum amount
of users accessing it is around 83 individuals: a threshold at 50 was investigated,
resulting in a too low statistics samples to be actually meaningful. The values of
the statistical moments for no cuts on nusers, as well as for nusers>0, >10 and
>50 are shown in Figure 5.12.

Figure 5.12: Statistical moments for several nusers cuts.

We move now to analyse the nusers cut alone in terms of popularity metric
definition, as we did so far with the naccess cut alone (using whole 2014 datasets).
We see that all trends (Figures 5.21, 5.22, 5.23, 5.24, 5.25, 5.26)becomes very stable
if n is greater than some units. It is evident that the nusers metrics may not be
the appropriate one to cut against, as it usually peaks at very low values of n, and
becomes flat soon after (even if FNR in Figure 5.26 increases regularly with n). In
this study at this stage it seems that we may not be using nusers as a variable in a
combined cut, despite some combined plot are shown (see later for more details).

Total CPU hours

The total number of CPU hours spent to analyse a CMS dataset (totcpu in
the following) is a third and last interesting variable to consider. This gives the
computing facilities perspective of popularity, namely a dataset is more popular
than others if the CPUs at Grid sites have been used to access it more than others.
Its distribution in terms of probability density is shown in Figure 5.13.

Again, an high value of totcpu stands a reasonable choice to reflect the actual
popularity of a dataset. Over the total of 420k datasets in the whole set of first
three quarters 2104 dataframes used in this study, totcpu had mean 226, median 0,
skewness 29 and kurtosis 1231. As in the two previous studies, the vast majority
of naccess=0 and nusers=0 are correlated with totcpu=0 in this section. Looking
at actual figures, fact, only ∼ 47k datasets out of 420k caused at least some CPU
hours to be spent in analyzing them, – if datasets with totcpu=0 are excluded from
the overall sample – the distribution has a much larger mean, a larger median, and
smaller skewness and kurtosis. Applying more stringent cuts on totcpu, as observed
before, the mean and median increase further, and the skewness and the kurtosis
decrease further – as expected. In this specific case, though, it does make sense to
increase n in totcpu>n quite a bit, as even after a cut at n=500, still about 11k
datasets are left in the sample. The values of the statistical moments for no cuts
on totcpu, as well as for totcpu>0, >10, >50, >100, >200 and >500 are shown in
Figure 5.14.

5.3. DEFINITION OF POPULARITY METRICS 67

Figure 5.13: totcpu distribution in terms of probability density.

Figure 5.14: Statistical moments for several totcpu cuts.

Despite a larger set of tests is needed in this case, in terms of popularity metric
definition a similar study previously done for naccess and nusers will be applied
as well for totcpu using whole 2014 datasets. As the case of naccess, %TP (Figure
5.27) decrease and %TN (Figure 5.28) increase with n, but here %FP (Figure 5.29)
decreases quickly from 2.5% up to about 0.25% starting from about totcpu>50 and
then it oscillates. This oscillation at high n values is not too significant because it
is only a statistic effect (long tails of distribution where a reduced datasets fraction
is acceded using a lot of CPU, but in general their contribution is not relevant).
Besides %FN (Figure 5.30)increases from about 0.2% up to about 1.4% quite quickly
with some oscillations and then from about naccess>100 cut %FN decrease. At the
same time %FPR and %FNR(Figures 5.19, 5.32) has a trend quite similar to %FP
and %FN. Analysing all these trends we can say that from %TP plot for example
each cut with totcpu lower than 40 is quite good (even if %TP became half of its
value at totcpu>0 cut), from %FPR plot cut at high value of totcpu is better, from
%FNR plot cut at low value of totcpu is better. So in order to use totcpu as a

68 CHAPTER 5. ANALYSIS AND DISCUSSION OF RESULTS

popularity metric, a reasonable choice of the cut is that each cut below totcpu>40
could be fine.

5.3.2 Study of combined cuts

In order to find out the best cut to apply to the machinery, in this section the
results about combined cuts will be exposed.

naccess & nusers

In this section we study a combined on naccess and nusers. The trend of
%TP(Figure 5.33), FPR (Figure 5.34) and FNR (Figure 5.35) does not depends on
naccess>n cut for n greater than 7. For any cut on nusers>n with n>=2, whatever
naccess cut is applied %TP goes under 1.5% and so there is no reason to do this
kind of cut due to the too low level of datasets predicted as popular. At the same
time FPR goes under 2% (that is a quite good target) but FNR goes over 40%.
So, as we have already discussed in the single cut on nusers, a combined cut with
nusers is not a good choice because, as we can see from these plots, there is not a
cut that at the same time give us good %TP, FPR, FNR levels.

nusers & totcpu

In this combined cut, overcome about nusers>3 cut for %TP (Figure 5.36),
nusers>6 cut for FPR (Figure 5.37)the trend does not depend on totcpu cut, while
for FNR (Figure 5.38) the trend depends, although weakly, by totcpu cut. For any
cut on nusers>n with n>=2 %TP goes under about 1.5% and so there is no reason
to do this kind of cut due to the too low level of datasets predicted as popular. At
the same time FPR goes under 2% (that is a quite good target) but FNR goes over
about 40%. So, as we have already discussed in the single cut on nusers and into
naccess & nusers cut, a combined cut with nusers is not a good choice because, as
we can see from these plots, there is not a cut that at the same time give us good
%TP, FPR, FNR levels.

naccess & totcpu

As we can see in the FPR plot (Figure 5.40) if we apply a naccess>10 cut or
each other cut with naccess>10 (i.e. naccess>20, naccess>30 etc.), totcpu>10,
totcpu>15 and totcpu>20 cuts goes under 1.20% and they are about always under
FPR level of totcpu>0 and tocpu>5 cuts. Instead in FNR plot (Figure 5.41), we
can see that between the three previous choice totcpu>10 has always the lowest
level of FNR up to naccess>50 cut. As we want also the value of %TP (Figure
5.39) as high as possible, it is better to do a lower cut on naccess, and for each
naccess cut we have that totcpu>10 cut has an higher %TP value with respect to
the others totcpu>15 and totcpu>20 cuts.

So through all plots of combined cuts it is possible to summarize that nac-
cess>10 & totcpu>10 cut is reasonably the best choice that give us the best
configuration of %TP, FPR, FNR levels. Then the values of Accuracy, Precision,

5.3. DEFINITION OF POPULARITY METRICS 69

Figure 5.15: Fraction of all CMS datasets which are true positive (TP) for the naccess
cut. This plot and the following ones always relate to positive and negative
in terms of our machine learning study of dataset popularity.

Figure 5.16: Fraction of all CMS datasets which are true negative (TN) for the naccess
cut.

70 CHAPTER 5. ANALYSIS AND DISCUSSION OF RESULTS

Figure 5.17: Fraction of all CMS datasets which are false positive (FP) for the naccess
cut.

Figure 5.18: Fraction of all CMS datasets which are false negative (FN) for the naccess
cut.

5.3. DEFINITION OF POPULARITY METRICS 71

Figure 5.19: False positive rate (FPR) for the naccess cut.

Figure 5.20: False negative rate (FNR) for the naccess cut.

72 CHAPTER 5. ANALYSIS AND DISCUSSION OF RESULTS

Figure 5.21: Fraction of all CMS datasets which are true positive (TP) for the nusers
cut.

Figure 5.22: Fraction of all CMS datasets which are true negative (TN) for the nusers
cut.

5.3. DEFINITION OF POPULARITY METRICS 73

Figure 5.23: Fraction of all CMS datasets which are false positive (FP) for the nusers
cut.

Figure 5.24: Fraction of all CMS datasets which are false negative (FN) for the nusers
cut.

74 CHAPTER 5. ANALYSIS AND DISCUSSION OF RESULTS

Figure 5.25: False positive rate (FPR) for the nusers cut.

Figure 5.26: False negative rate (FNR) for the nusers cut.

5.3. DEFINITION OF POPULARITY METRICS 75

Figure 5.27: Fraction of all CMS datasets which are true positive (TP) for the totcpu
cut.

Figure 5.28: Fraction of all CMS datasets which are true negative (TN) for the totcpu
cut.

76 CHAPTER 5. ANALYSIS AND DISCUSSION OF RESULTS

Figure 5.29: Fraction of all CMS datasets which are false positive (FP) for the totcpu
cut.

Figure 5.30: Fraction of all CMS datasets which are false negative (FN) for the totcpu
cut.

5.3. DEFINITION OF POPULARITY METRICS 77

Figure 5.31: False positive rate (FPR) for the totcpu cut.

Figure 5.32: False negative rate (FNR) for the totcpu cut.

78 CHAPTER 5. ANALYSIS AND DISCUSSION OF RESULTS

Recall, F1, %TP, FPR and FNR of the model using this combined cut, are reported
in Figure 5.42.

From now on, we will apply a combined cut as follows: naccess>10 & nac-
cess>10 .

It is also interesting to see which is the behaviour of nusers before and after the
cut for whole 2014 dataframes. We know that in 2014 there are 587636 datasets and
after the naccess>10 & totcpu>10 cut 42005 dataframes remain, only the 7.15% on
the total, and then the highest value of nusers is 83. In Figure 5.43 the percentage of
dataframes related to a nusers value greater than a fixed value, calculated over the
whole 2014 dataframes or over 2014 dataframes that has naccess>10 and totcpu>10
values are shown.

5.4 Study of different datatiers

So far, we studied all CMS datasets altogether. In this section we study different
data tiers separately. In fact, as we have already discussed in previous chapters, there
is a variety of different data tiers in CMS (AOD, AODSIM, RAW, RECO,USER,
etc.). In order to understand which are the data tiers that are more interesting for
a deeper study, Tables 5.44 and 5.45 show a summary of many features of all data
tiers.

It is possible to see that the most present datatier in 2014 datasets is USER
(with the 44.6% on the total) and then there is AODSIM (with the 12.9%). All
the other datatiers are under 8% and in general (also for USER and AODSIM) the
percentage of datasets non accessed in very high, with an average of 88.45%.

So just from this observation, it is evident that a vast majority of the storage
in CMS is filled but not accessed in reading mode by anyone for long times. Of
course, a data not accessed today may not imply the lack of an access sometime
soon in the next future, but the probability that such a no-access pattern continues
is actually very high.

The results of our model applied to all datatiers individually are shown in Figure
5.46 and 5.47.

Figure 5.47 shows that there are some peaks of FPR (the most relevant are
RAWRECOSIMHLT with 30% and AODSIM with 9.5%) which have both an
accessing percentage lower than the mean, where in the first case this difference
is weaker than the second case but AODSIM has much and much more datasets
than RAWRECOSIMHLT, so this two combined things can lead to an high FPR.
Another aspect is that we have run our model on single datatier, but the model
originally is built starting from whole 2014 datasets and so it could be not able to
predict unpopular datatiers or popular ones but in exiguous number.

Figure 5.47 also shows that FPR is quite high for some data tiers (but not for
the others) when applying a combined cut as explained in a previous section. This
may imply that such combined cut may not be the optimal one for all data tiers,
and special tuning of the cuts would be adequate for specific data tiers. This is a
wide investigation in itself and was not pursued further in the scope of this thesis,
and it has been left as a possible study to perform in the future.

5.4. STUDY OF DIFFERENT DATATIERS 79

Figure 5.33: Fraction of all CMS datasets which are true positive (TP) for the naccess
& nusers cut. This plot and the following ones always relate to positive
and negative in terms of our machine learning study of dataset popularity.

Figure 5.34: False positive rate (FPR) for the naccess & nusers cut.

80 CHAPTER 5. ANALYSIS AND DISCUSSION OF RESULTS

Figure 5.35: False negative rate (FNR) for the naccess & nusers cut.

Figure 5.36: Fraction of all CMS datasets which are true positive (TP) for the nusers
& totcpu cut.

5.4. STUDY OF DIFFERENT DATATIERS 81

Figure 5.37: False positive rate (FPR) for the nusers & totcpu cut.

Figure 5.38: False negative rate (FNR) for the nusers & totcpu cut.

82 CHAPTER 5. ANALYSIS AND DISCUSSION OF RESULTS

Figure 5.39: Fraction of all CMS datasets which are true positive (TP) for the naccess
& totcpu cut.

Figure 5.40: False positive rate (FPR) for the naccess & totcpu cut.

5.4. STUDY OF DIFFERENT DATATIERS 83

Figure 5.41: False negative rate (FNR) for the naccess & totcpu cut.

Figure 5.42: Measured value of scorers for a combined cut on naccess>10 and totcpu>10.

Figure 5.43: Fraction of datasets after applying a nusers cut.

84 CHAPTER 5. ANALYSIS AND DISCUSSION OF RESULTS

5.5 Studies of time-series

In this section we try to study which is the best time window of the data on
which we build and train the model, in view of its application for prediction purpose
in subsequent time windows.

In all studies in this work, we must define and use a time window whose
dataframes are exploited to build and tune the model, and then we apply such
model to a “future” window to get a prediction. But, it is not given for granted that
there is an always-good choice to choose such time window. A possible approach is
e.g. to make the time window grow as time passes (this approach is called rolling
in this section). Another possible approach is e.g. to make the time window split
as time passes by keeping its size fixed (this approach is called translational in this
section).

Figure 5.48 shows FPR results for a rolling approach: starting from 70%/30%
datasets subdivision (of 2014) for train/valid sets, we add each time a dataframe
week to the global set of datasets, maintaining as much as possible the initial
proportion between train and valid. The x-axis shows the number of week that
constitutes the whole group of train plus valid datasets. From the plot we can see
that FPR oscillates and goes from a minimum of about 1% up to a maximum of
about 3.1%. This shows that FPR correctly does not stray too much from the FPR
value obtained with all 2014 datasets (that represents the minimum).

Figure 5.49 shows FPR results for a translational approach: starting from
70%/30% datasets subdivision (of 2014, so 12 months) for train/valid sets, we
translate each time the group of datasets forward of a week, in order to maintain
unchanged the number of dataframe weeks (but the number of datasets could
change). The x-axis shows the number of dataframe weeks contained in valid set,
since that at each step in which we add a new week, a new dataframe week will be
added to valid set at the expense of a 2014 dataframe week that will be removed (the
first one of the previous valid set). Also here it is possible to see that FPR oscillates
and goes from a minimum of about 1% up to a maximum of about 3.25%. This
shows that FPR correctly does not stray too much from the FPR value obtained
with original 2014 datasets (that represents the minimum).

Figure 5.50 shows the same kind of exercise of the previous plot but now initially
we consider not all 2014 datasets but only the datasets of the 2014 first half. So
train set is made by 18 weeks, instead valid set is made by 8 weeks. The x-axis
shows the number of the starting train week, so for example the point 25 is linked
to a train set that starts from the 25-th week and ends to the 25+18=43-th week,
while valid set starts from the 44-th week and ends to the 44+8=52-th week of
2014. So from this point valid set starts to contain some 2015 dataframes week. In
this plot the result is different from the previous time-series exercises: FPR is very
low for small x and starting from x=13 there is a quite steep increase in FPR that
culminates with a peak at x=29 with FPR about equal to 4% (that corresponds to
train start=2014 29-th week, train stop=2014 47-th week, valid start=2014 48-th
week, valid stop= 2015 3-th week). After this point FPR decreases at the same rate
to low values. So problems start when valid set contains the period near Christmas:
indeed train set is made by data up to November 2014, so a normal working period
at CMS, but valid set is made by December datasets and first three 2015 weeks

5.5. STUDIES OF TIME-SERIES 85

datasets (over the last November week), in which there are festivities and there
is much less work at CMS, with a low level of datasets access. This fact affects
just FPR because the model, trained through datasets of a normal working period,
tends to predict a popular dataset in train set as popular dataset in the period of
valid set, but it is wrong and the validation action is not sufficient to prevent this
fact.

In conclusion, in order to have more statistics it is better in order to create a
good predictive model, but not too big because otherwise overfitting problem may
occur. Overfitting seems not to exist in case of one year or a little more of datasets
period.

As a final note, it is worth noting that some of the results obtained in this
thesis work have already been presented to an International Conference, and the
proceedings have been accepted and are being processed for publication [35].

86 CHAPTER 5. ANALYSIS AND DISCUSSION OF RESULTS

Figure 5.44: Some features of all datatier kinds.

5.5. STUDIES OF TIME-SERIES 87

Figure 5.45: Some features of all datatier kinds.

88 CHAPTER 5. ANALYSIS AND DISCUSSION OF RESULTS

Figure 5.46: Values of some model parameters in naccess>10 cut & totcpu>10 cut for
some datatiers.

Figure 5.47: FPR in naccess>10 cut & totcpu>10 cut for some datatiers.

5.5. STUDIES OF TIME-SERIES 89

Figure 5.48: FPR trend for the rolling approach in the time-series analysis, with a
variable time window.

Figure 5.49: FPR trend for the translational approach in the time-series analysis, with
a time window of 12 months.

90 CHAPTER 5. ANALYSIS AND DISCUSSION OF RESULTS

Figure 5.50: FPR trend for the translational approach in the time-series analysis, with
a time window of 6 months.

Conclusions

This thesis presented and discussed the design, development and exploitation of
a supervised Machine Learning classification system aimed at attacking the very
concrete need of the prediction of the “popularity” of the CMS datasets on the Grid.

The DCAFPilot prototype has been largely exploited to perform this task,
helping to find and fix fragilities and hence to strenghten the code itself. The
popularity problem has been explored and analysed from a Machine Learning
perspective, and a quick cost analysis has been performed to identify the “false
positive rate” (FPR) as the main metric to be kept under control. More than a dozen
of different machine learning classifiers have been tested, and RandomForestClassifier
has been chosen as adequate. Different split proportions of the data used to train
and validate the model have been tested, and a 70%/30% split has been chosen
as optimal. The definition of popularity has been explored, in terms of studies of
cuts on 3 different variables, namely naccess, nusers, totcpu (see Chapter 5 for
details). The impact of cuts on each of the 3 variables alone have been studied,
yielding indications on the thresholds to set for the cuts on each variable individually.
Combined cuts on 2 out of these 3 variables have also been studied, showing that
nusers can be dropped as the least useful one, and identifying the combined cut
on naccess and totcpu as the one that offers an acceptably low FPR. The golden
combined cut was identified to be naccess>10 & totcpu>10 (see Chapter 5 for
details). These studies, done on all CMS datasets altogether, were also prepared
to be fully repeated on different data tiers separately (this part of the work would
have required a large amount of time, well beyond the scope of this thesis, so it was
prepared but not brought to completion). The problem of identifying the best time
window of the data on which we build and train a model, in view of its application
for prediction purposes in a subsequent time window, was also attacked in a “time
series” study. About the latter, a “rolling" approach - that allows the time window
of the model training grow with time - as well as a “translational" approach - that
makes the time window slip as time passes by keeping its size fixed - were both
set-up and run. In the latter approach, a working point was found between two
extremes, i.e. using too few data to train the model - and hence have a useless
model with no predictive power - and using too much data to train the model
- and hence experience overfitting issues thus resulting again in a useless model:
this working point was found in using basically 1 year worth of data to train and
validate the model (a solution that also allows to avoid seasonal effects). All this
studies and set-up have allowed to prepare DCAFPilot for a dry run on popularity
that allowed to achieve a prediction with Accuracy 0.984, Precision 0.846, Recall
0.896, F1 0.871, FPR 1.01%.

91

92 CHAPTER 5. ANALYSIS AND DISCUSSION OF RESULTS

Plans for the short term are to run this prototype as a production service
for CMS and regularly perform predictions of the CMS datasets popularity in
an automated manner, and eventually feed this information to CMS Computing
Operations teams to drive their choices and optimize their operational actions.
Plans for the longer term are to evaluate other areas (aside from the popularity)
where the same DCAFPilot approach could be exploited as effectively as in this case.

Some of the results of this work have been presented to an International Confer-
ence on Grid and Distributed Computing topics, and the proceedings of which I
am co-author have been submitted and accepted for publication ([35]).

Bibliography

[1] Oliver Sim Brüning et al. LHC Design Report. Ed. by CERN library copies.
Vol. 1, 2, 3. 2012. url: http://ab-div.web.cern.ch/ab-div/
Publications/LHC-DesignReport.html (cit. on p. 1).

[2] Lyndon Evans and Philip Bryant. “LHC Machine”. In: Journal of Instrumen-
tation 3.08 (2008). Ed. by IOPscience, S08001. url: http://iopscience.
iop.org/1748-0221/3/08/S08001 (cit. on p. 1).

[3] S. Myers R. ABmann M. Lamont. “A Brief History of the LEP Collider”. In:
Suppl. 109, 17-31 (2002). Ed. by Nucl.Phys. B (cit. on p. 1).

[4] S. Chatrchyan et al. [CMS Collaboration]. “Observation of a new boson at a
mass of 125 GeV with the CMS experiment at the LHC”. In: Phys. Lett. B
716 (2012). Ed. by IOPscience, p. 30 (cit. on p. 1).

[5] The ALICE Collaboration et al. “The ALICE experiment at the CERN LHC”.
In: Journal of Instrumentation 3.08 (2008). Ed. by IOPscience, S08002. url:
http://iopscience.iop.org/1748-0221/3/08/S08002 (cit. on
p. 5).

[6] The Alice Collaboration. url: http://aliceinfo.cern.ch (cit. on
p. 5).

[7] The ATLAS Collaboration et al. “The ATLAS Experiment at the CERN
Large Hadron Collider”. In: Journal of Instrumentation 3.08 (2008). Ed.
by IOPscience, S08003. url: http://iopscience.iop.org/1748-
0221/3/08/S08003 (cit. on p. 6).

[8] The Atlas Collaboration. url: http://atlas.web.cern.ch/Atlas/
Collaboration (cit. on p. 6).

[9] The CMS Collaboration et al. “The CMS experiment at the CERN LHC”.
In: Journal of Instrumentation 3.08 (2008), S08004. url: http://stacks.
iop.org/1748-0221/3/i=08/a=S08004 (cit. on p. 7).

[10] The CMS Collaboration. url: http://cms.web.cern.ch (cit. on p. 7).

[11] The LHCb Collaboration et al. “The LHCb Detector at the LHC”. In: Journal
of Instrumentation 3.08 (2008). Ed. by IOPscience, S08005. url: http:
//iopscience.iop.org/1748-0221/3/08/S08005 (cit. on p. 7).

[12] The LHCb Collaboration. url: http://lhcb.web.cern.ch/lhcb (cit.
on p. 7).

93

http://ab-div.web.cern.ch/ab-div/Publications/LHC-DesignReport.html
http://ab-div.web.cern.ch/ab-div/Publications/LHC-DesignReport.html
http://iopscience.iop.org/1748-0221/3/08/S08001
http://iopscience.iop.org/1748-0221/3/08/S08001
http://iopscience.iop.org/1748-0221/3/08/S08002
http://aliceinfo.cern.ch
http://iopscience.iop.org/1748-0221/3/08/S08003
http://iopscience.iop.org/1748-0221/3/08/S08003
http://atlas.web.cern.ch/Atlas/Collaboration
http://atlas.web.cern.ch/Atlas/Collaboration
http://stacks.iop.org/1748-0221/3/i=08/a=S08004
http://stacks.iop.org/1748-0221/3/i=08/a=S08004
http://cms.web.cern.ch
http://iopscience.iop.org/1748-0221/3/08/S08005
http://iopscience.iop.org/1748-0221/3/08/S08005
http://lhcb.web.cern.ch/lhcb

94 Bibliography

[13] The LHCf Collaboration et al. “The LHCf detector at the CERN Large Hadron
Collider”. In: Journal of Instrumentation 3.S08006 (2008). Ed. by IOPscience.
url: http://iopscience.iop.org/1748-0221/3/08/S08006
(cit. on p. 8).

[14] The LHCf experiment. url: http://home.web.cern.ch/about/
experiments/lhcf (cit. on p. 8).

[15] The TOTEM Collaboration et al. “The TOTEM Experiment at the CERN
Large Hadron Collider”. In: Journal of Instrumentation 3.S08007 (2008). Ed.
by IOPscience. url: http://iopscience.iop.org/1748-0221/3/
08/S08006 (cit. on p. 8).

[16] The TOTEM Collaboration. url: http://totem.web.cern.ch/Totem/
(cit. on p. 8).

[17] The MOEDAL Collaboration. url: http://home.web.cern.ch/
about/experiments/moedal (cit. on p. 9).

[18] J. D. Shiers. “The Worldwide LHC Computing Grid (worldwide LCG)”. In:
ComputerPhysics Communications 219-223 (2007) (cit. on p. 18).

[19] WLCG Project. url: http://www.cern.ch/lcg (cit. on p. 18).

[20] European Grid Infrastructure (EGI). url: http://www.egi.eu/ (cit. on
p. 18).

[21] Open Science Grid (OSG). url: http://www.opensciencegrid.org
(cit. on p. 18).

[22] M Giffels, Y Guo, and D Riley. “Data Bookkeeping Service 3 – Providing event
metadata in CMS”. In: Journal of Physics: Conference Series. Conference
Series 513.4 (2014), p. 042022. url: http://stacks.iop.org/1742-
6596/513/i=4/a=042022 (cit. on p. 23).

[23] Tony Wildish et al. “From toolkit to framework - the past and future evolution
of PhEDEx”. In: Journal of Physics. Conference Series 396.3 (2012). Ed. by
IOPscience, p. 032118. url: http://iopscience.iop.org/1742-
6596/396/3/032118 (cit. on p. 23).

[24] J. Rehn et al. “PhEDEx high-throughput data transfer management system”.
In: CHEP06 (2006). Ed. by GridPP. url: http://www.gridpp.ac.uk/
papers/chep06_tuura.pdf (cit. on p. 23).

[25] CRAB. url: https://twiki.cern.ch/twiki/bin/view/CMSPublic/
SWGuideCrab (cit. on p. 25).

[26] Machine Learning. url: http://www.wikiwand.com/en/Machine_
learning (cit. on p. 31).

[27] Machine Learning tutorial. url: https://class.coursera.org/ml-
005/lecture (cit. on pp. 33–36).

[28] Google News. url: https://news.google.it/ (cit. on p. 36).

[29] Dynamic Data Placement. url: https://twiki.cern.ch/twiki/bin/
viewauth/CMS/DynData (cit. on p. 46).

http://iopscience.iop.org/1748-0221/3/08/S08006
http://home.web.cern.ch/about/experiments/lhcf
http://home.web.cern.ch/about/experiments/lhcf
http://iopscience.iop.org/1748-0221/3/08/S08006
http://iopscience.iop.org/1748-0221/3/08/S08006
http://totem.web.cern.ch/Totem/
http://home.web.cern.ch/about/experiments/moedal
http://home.web.cern.ch/about/experiments/moedal
http://www.cern.ch/lcg
http://www.egi.eu/
http://www.opensciencegrid.org
http://stacks.iop.org/1742-6596/513/i=4/a=042022
http://stacks.iop.org/1742-6596/513/i=4/a=042022
http://iopscience.iop.org/1742-6596/396/3/032118
http://iopscience.iop.org/1742-6596/396/3/032118
http://www.gridpp.ac.uk/papers/chep06_tuura.pdf
http://www.gridpp.ac.uk/papers/chep06_tuura.pdf
https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideCrab
https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideCrab
http://www.wikiwand.com/en/Machine_learning
http://www.wikiwand.com/en/Machine_learning
https://class.coursera.org/ml-005/lecture
https://class.coursera.org/ml-005/lecture
https://news.google.it/
https://twiki.cern.ch/twiki/bin/viewauth/CMS/DynData
https://twiki.cern.ch/twiki/bin/viewauth/CMS/DynData

Bibliography 95

[30] DCAF pilot. url: https://github.com/dmwm/DMWMAnalytics/
tree/master/Popularity/DCAFPilot (cit. on p. 46).

[31] V. Kuznetsov N. Magini M. Giffels Y. Guo and T. Wildish. “The CMS Data
Management System”. In: J.Phys (2014) (cit. on p. 47).

[32] scikit-learn. url: http://scikit-learn.org/stable/" (cit. on
p. 47).

[33] Cross-validation. url: http : / / www . wikiwand . com / en / Cross -
validation_(statistics) (cit. on pp. 52, 60).

[34] Overfitting. url: http://www.wikiwand.com/en/Overfitting (cit.
on p. 59).

[35] Kuznetsov V. Wildish T. Bonacorsi D. Giommi L. “Exploring patterns
and correlations in CMS Computing operations data with Big Data ana-
lytics techniques”. In: oral presentation at International Symposium on Grids
and Clouds (ISGC), Academia Sinica (ASGC), Taipei, Taiwan (). Ed. by
SISSA Proceedings Of Science. url: http://pos.sissa.it/archive/
conferences/239/008/ISGC2015_008.pdf (cit. on pp. 85, 92).

https://github.com/dmwm/DMWMAnalytics/tree/master/Popularity/DCAFPilot
https://github.com/dmwm/DMWMAnalytics/tree/master/Popularity/DCAFPilot
http://scikit-learn.org/stable/"
http://www.wikiwand.com/en/Cross-validation_(statistics)
http://www.wikiwand.com/en/Cross-validation_(statistics)
http://www.wikiwand.com/en/Overfitting
http://pos.sissa.it/archive/conferences/239/008/ISGC2015_008.pdf
http://pos.sissa.it/archive/conferences/239/008/ISGC2015_008.pdf

	Dedica
	Contents
	Sommario
	1 High Energy Physics at LHC
	1.1 Overview of the LHC accelerator
	1.1.1 Electromagnets
	1.1.2 Radiofrequency cavities
	1.1.3 Luminosity and other characteristic parameters

	1.2 The experiments at LHC
	1.2.1 ALICE
	1.2.2 ATLAS
	1.2.3 CMS
	1.2.4 LHCb
	1.2.5 Other experiments at LHC

	1.3 The CMS experiment
	1.3.1 The magnet
	1.3.2 The tracker
	1.3.3 ECAL
	1.3.4 HCAL
	1.3.5 The muon detectors
	1.3.6 Data Acquisition and Trigger

	2 The CMS Computing Model
	2.1 WLCG and the CMS Computing Tiers
	2.1.1 Tier-0 and CMS-CAF
	2.1.2 Tier-1s
	2.1.3 Tier-2s and Tier-3s

	2.2 The CMS data and simulation model
	2.2.1 CMS data organization
	2.2.2 Workflows in CMS Computing
	2.2.3 CMS data location

	2.3 CMS services and operations
	2.3.1 Grid computing
	2.3.2 Data management
	2.3.3 Workload management
	2.3.4 Distributed analysis

	2.4 A crucial metric: the CMS data popularity

	3 Machine Learning
	3.1 Introduction
	3.2 What is Machine Learning?
	3.3 Supervised Learning
	3.4 Unsupervised Learning
	3.5 Supervised Learning in more detail

	4 Big Data Analytics techniques in CMS: the DCAFPilot
	4.1 Introduction to Analytics in CMS
	4.1.1 Approach to data and metadata
	4.1.2 Structured data and beyond
	4.1.3 A use-case: CMS data popularity and the DCAFPilot

	4.2 The DCAFPilot components and functionalities
	4.2.1 dataframe
	4.2.2 merge_csv
	4.2.3 transform_csv
	4.2.4 model
	4.2.5 check_prediction
	4.2.6 popular_datasets
	4.2.7 verify_prediction

	4.3 How to use DCAFPilot: build, tune, run a model

	5 Analysis and discussion of results
	5.1 Choice of the best classifier
	5.2 Choice of the best dataframes splitting
	5.2.1 Overfitting
	5.2.2 Cross-validation
	5.2.3 Cross validation on DCAFPilot

	5.3 Definition of popularity metrics
	5.3.1 Studies of single cuts
	5.3.2 Study of combined cuts

	5.4 Study of different datatiers
	5.5 Studies of time-series

	Conclusions
	Bibliography

