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ABSTRACT 

 

In this study we provide a baseline data on semidemersal fish assemblages and biology in a 

heterogeneous and yet less studied portion of the shelf of Antalya Gulf. The distribution of 

fish abundance in three transects subjected to different fisheries regulations (fishery vs non 

fishery areas), and including depths of 10, 25, 75, 125, 200 m, was studied between May 

2014 and February 2015 in representative months of winter, spring, summer and autumn 

seasons. A total of 76 fish species belonging to 40 families was collected and semidemersal 

species distribution was analyzed in comparison with the whole community. Spatial 

distribution of fish was driven mainly by depth and two main assemblages were observed: 

shallow waters (10-25; 75 m) and deep waters (125-200 m). Significant differences among 

transects were found for the whole community but not for the semidemersal species. 

Analysis showed that this was due to a strong relation of these species with local 

environmental characteristics rather than to a different fishing pressure over transects. 

Firstly all species distribute according to the bathymetrical gradient and secondly to the 

bottom type structure. Semidemersal species were then found more related to zooplankton 

and suspended matter availability. The main morphological characteristics, sex and size 

distribution of the target semidemersal species Spicara smaris (Linnaeus, 1758), Saurida 

undosquamis (Richardson, 1848), Pagellus acarne (Risso, 1827) were also investigated. 
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1. INTRODUCTION 

 

1.1. The ecological framework 

Marine ecosystems provide key services which are essential for maintaining life on our 

planet. Marine services are provided both at a global scale with oxygen production, nutrient 

cycles or carbon fixation and at regional and local scales with bioremediation of waste and 

pollutants or stabilizing coastlines, to name a few examples. These services also include 

important economic benefits for humans such as food provision and tourism (Atkins et al., 

2011; Balmford et al., 2010).  

Ecosystem dynamics are an integrated response of the various ecosystem components to 

the several drivers that act independently but that can have synergistic or antagonistic 

effects. Living marine resources are affected by three main drivers: anthropogenic, 

trophodynamic and environmental processes (Fu et al., 2012). The interaction of these 

drivers is not easy to be disentangled, making it difficult to determine precisely which 

changes are results of direct human influence. It is clear, however, that deteriorating 

biodiversity impairs the marine ecosystem's capacity to maintain the services working 

properly (Worm et al., 2006).  

Among anthropogenic drivers, over-exploitation of marine resources through fisheries 

activities is the most important in many marine ecosystems. The world’s oceans are at or 

near maximum sustainable fishery yields. United Nations Food and Agriculture 

Organization's estimation that “75% of the world's fisheries are fully- or over-exploited” has 

been widely quoted (UN FAO 2000). While the consequences of overharvesting are 

expressed in social, economic, cultural and ecological changes, the ecological consequences 

of overfishing often are undocumented and may be poorly known or overlooked. 

Geographical distribution, biomass and abundance, reproduction, recruitment, growth, and 

energy allocation of fish populations may respond differently due to these changes 

(Jørgensen et al., 2008). At the population level, impacts of fishing are direct and indirect. 
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First of all fisheries remove the oldest, largest individuals from the exploited populations. In 

this way sex ratio can be modified since many species are hermaphrodites and can change 

sex once they reach a certain size. As a result, the reproductive potential of a species can be 

altered, following in a negative outcome for recruitment (Hamilton et al., 2007). Indirect 

effects include genetic selection affecting growth rates and reproductive output through a 

decreasing in age and size at maturation (Enberg et al., 2012). There are potential indirect 

effects driven by overexploitation also at the community level. Fishing is typically a size-

selective agent of mortality and, therefore, it is unlikely to be the natural cause of mortality. 

Most of the fish removed by fishing activities are in the middle or near the top of food webs 

in their habitats and thus fishing can be considered as the removal of a keystone predator. 

Depletion of the largest species tends to release predation pressure which can result in a 

better survival rate of the smallest species with the modification of the food web 

propagation (Stevens et al., 2000). When a species is less abundant because of 

overexploitation, ecological niche doesn’t remain free but is occupied by other species, often 

resulting in competition and then accentuating even more the effects due to fishing. In 

addition this circumstance can be intensified by exotic introductions which often take 

opportunistic advantage replacing native species. The ecological effects of fishing are 

therefore substantially greater and more complex than simply the removal of biomass. 

Furthermore, the trawl net has a very low selectivity and studies available show that 26% of 

the world's catch is discarded annually (Alverson et al., 1998). Discarding is usually caused by 

economic or regulatory constraints because the fish are too small to be retained or the 

species are unmarketable. This phenomenon can then be a substantial component of fishing 

mortality and may aggravate overfishing (Hilborn et al., 2003). In addition bottom trawling 

often reduces hard substrate and simplifies the ground topography determining consistent 

and persistent alterations of the benthic habitats (Jennings et Kaiser, 1998). 

 

As previously introduced, for a full comprehension of the dynamics that underlie marine 

communities, it would be necessary to consider, in addition to the disturbance caused by 
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human activities, also the potential effects on the ecosystem determined by changes in 

certain environmental and climatic variables. Fishing through the removal of biomass from a 

complex of species that feed one other is certain to have an impact on the ecosystem. 

Likewise, changes in primary production can affect the amount of available food that is 

propagated towards the higher trophic levels, leading to changes in the flux of energy that 

are noticeable throughout the food-web. Primary producers, the phytoplanktonic organisms, 

depend on sunlight in the upper pelagic layers of the ocean and absorb nutrients from water 

in order to reproduce and grow. The phytoplankton provides the primary food source for the 

zooplankton and together they form the first step of the oceanic food chain. Indeed fish rely 

on the density and distribution of zooplankton which is the initial prey item for almost all 

fish larvae (Pershing et al., 2005). 

Temperature, salinity, currents, river inputs, storm runoff have an effect on marine 

communities that could interact with the influence exerted by fishing (Kennish et al., 2002; 

Lloret et al., 2001). The natural factors can affect a population during various stages of the 

life cycle: the recruiting (Abella et al., 2008), the development of eggs (Horne and Smith, 

1997; Alvarez et al., 2001), the larval stage (Sebatés et al., 2007). The temperature definitely 

plays a significant importance in the life cycle of ectothermic organisms, unable to maintain 

a body temperature different from the external one. Numerous studies suggest that surface 

temperature of water may have some effects on the population dynamics of fish stocks and 

even small changes at deeper waters are, however, related to what happens at the surface 

(Palomera et al., 2007; Nunn et al., 2010). Moreover, the phases of the biological cycle most 

sensitive to temperature are the larval development, growth, sexual development and the 

production of eggs (Hidalgo et al., 2011), steps that in the majority of cases occur in the 

vicinity of the coastline, area showing wide variations in chemical and physical parameters. 

The wind, currents and storms are fundamental factors for water column mixing and 

especially in lifting of deep waters, which is often associated with an increase in the content 

of dissolved nutrients. In addition water mixing turns out to be very important also for the 

movement and the spatial distribution of the planktonic organisms, which can in turn 
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strongly affect larval dispersal and therefore breeding success and fish survival (Palomera et 

al., 2007; Lloret et al., 2001).  

Local habitat structure and its related abiotic and biotic parameters play also an important 

role in determining fish assemblage and abundance. Structural characteristics like sediment 

grain size, rocky reliefs, presence of vegetation or connectivity, can affect many behavioral 

strategies such as search for suitable recruitment zones, shelter from predators, day-time 

distribution, competition, predation, feeding habits (Robertson and Lenanton, 1984; Orth et 

al., 1984; Edgar and Shaw, 1995). 

Finally, studies at global scale illustrate the wide range in nutrients availability fuelling 

fisheries production. Nutrients availability, under different conditions of enrichment and 

irrespectively of the sources, has a differential effect on local pelagic, and on demersal-

benthic stocks (Caddy and Bakun, 1994). Under extreme oligotrophic conditions, local 

populations of small pelagic fish on the continental shelf are food-limited and generally small 

or migratory, and demersal or benthic forms tend to predominate in the landings. Moderate 

enrichment increases the productivity of both resident populations of small planktivorous 

and of demersal fishes. However if nutrient inputs to the photic zone exceed then extra 

production is exported to the benthic habitat and can lead to hypoxia close to the bottom, 

which negatively impacts demersal community. This may still, however, promote growth of 

resident small pelagic stocks that continue to profit from nutrient- induced blooms of 

planktonic organisms. The pelagic/demersal ratio (the ratio of small pelagic fish to demersal 

fish plus benthic landings) from fisheries landing data has been used in many studies as 

proxy reflecting the impact of differential nutrient enrichment levels on marine systems (de 

Leiva et al., 2000; Caddy et al., 2000). 

Hence the importance of understanding the ecological dynamics and how they respond to 

the various external pressures in order to ensure the sustainability of marine resources.  
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1.2. The study area 

1.2.1. Environmental characteristics  

 
                        Fig. 1.1: Physical map of the Gulf of Antalya. 

 
The Gulf of Antalya locates in the North-eastern Levantine Sea, one of the major basins of 

the Eastern Mediterranean (Fig. 1.1). The Antalya Gulf has a coastline of about 680 km in 

length, with an average depth exceeding 1000 m and reaching a maximum of 2500 m. The 

western and the eastern parts of the gulf differ by their bathymetric and oceanographic 

characteristics. The width of the continental shelf ranges from less than 1 to 8 km, being 

wider in the east and steeper in the western part. In many places mountains rise up 

immediately behind the coasts to form the Western Taurus Mountain belt, reaching heights 

up to 3070 m. Numerous rivers reach the sea providing a large fresh water supply. The main 

streams and Managavat River reach the sea in the eastern part of the shelf causing lower 

salinity comparing to the western part.  

The variability of meteorological conditions is one of the distinguishing characteristics of the 

Eastern Mediterranean. This is because the region is a pathway for extratropical cyclones 

during winter and spring (Bingel et al., 1993). Circulation and current patterns off the coast 

of the gulf of Antalya can be related to wind-stress, thermoaline flux and barotropical 
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components. As a result surface currents flow in different direction throughout the year 

(Vigo et al., 2005). The water formed in Aegean Sea sinks into the deepest parts of the basin. 

This sinking water transports all nutrients down in the deeper layers. In addition high 

temperature and salinity, geophysical, arid climatic conditions and low nutrient supply from 

external sources, make Levantine Sea extremely depleted and one of the most oligotrophic 

seas (Bingel et al., 1993).  

The productivity of the study area is thus strongly influenced by local processes resulting in a 

local seasonal production. The majority of the streams which drain coastal hinterland to 

supply sediment into the gulf are of ephemeral nature and flow unsteadily throughout the 

year. Observations of high nitrate and phosphate levels in the surface waters are observed 

during late winter and spring due to the heavy rainfall and intense river input. Moreover 

large amounts of terrigenous material may be transported to the coast especially after 

snowmelt.  

In addition to low nutrients concentrations, the eastern Mediterranean has low plankton 

biomass and production. Phytoplankton production is principally dominated by the extent 

and duration of winter mixing of the water column due to due to storms and turbulence, 

providing transportations of nutrients from the deeper layer. Chlorophyll concentrations 

previously recorded in the Levantine basin are low, not exceeding 1 μg/L. The Chl-a 

concentrations vary seasonally occurring with higher values during late winter, with the 

onset of mixing of the upper layers (Bingel et al., 1993).  Also zooplankton distribution is 

affected by environmental variables. The species are evenly distributed in the water column 

due to mixing process during winter and they aggregate in the surface water down to 25 m 

depth where optimum temperature is present in spring and autumn.   

At last Antalya gulf is under the influence of pollution due to the intense tourism activities, 

commercial and tourist boat traffic, residential areas with dense population. Antalya region, 

with a resident population of 1.98 million, in 2010 hosted the 32% of overall tourism activity 
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of Turkey with more than 8.5 million visitors occurring especially during summer along the 

coastline. This causes an increase of land-based pollutants and river discharges to the sea 

(Güven et al., 2013). 

 

1.2.2. The Demersal Fishery  

Turkey, with its favorable geographic position, has a great access to the fish resources. The 

entire coastline spans more than 8,400 km in length and borders four distinct sea basins: the 

Mediterranean to the south, the Aegean to the west, the Sea of Marmara in the north-west 

between the European and Asian lands, and the Black Sea to the north. The total national 

catch between 1991 and 2008 averaged 474,000 tons per year, fluctuating between 317,000 

and 589,000 tons (SUBIS, http://www.ulakbim.gov.tr). Fisheries resources are disparate and 

vary substantially between the basins. Black Sea landings represent 75% of total national 

landings. Here fisheries are largely dominated by the abundant occurrence of small pelagics, 

the most important species of which are the anchovy and the horse mackerel (FAO, 2011). In 

Mediterranean and Aegean Seas important demersal and semi-pelagic stocks of fish and 

shrimps dominate. Tuna and other large pelagics such as bonito, bluefish and mullet are also 

important in the Mediterranean.  

 

 

Fig. 1.2: Yields of Turkish Mediterranean fishing fleet for the years 1996-2010 (DIE,1996-2010) 



8 
 

Fishery in the Turkish Mediterranean is mainly coastal and artisanal, with relatively high 

number of small professional fishing boats whose operations are limited to coastal shallow 

zone and do not  expand to the continental shelf. It operates in biologically poor waters and 

landing of relatively high price (Bingel et al., 1993). Annual yields of the Turkish fleet in the 

Mediterranean are given in Figure 1.2. However it should also be taken into account that 

since the collection of the fisheries statistics are based on fishermen’s questionnaires, it 

could not be strictly reliable and the values could not always reflect the real catch data 

(Bingel et al., 1993). On the basis of the fish data set of the years 1978-1991, a maximum 

sustainable yield (MSY) (only for trawl fishery) of 7,770 tons was found (Gücü and Bingel, 

1994).  

The gulf of Antalya due to sudden increase in depth of the shelf is very limited for trawling. A 

total of 4509 tons is the annual fisheries production of the region, with 3094 tons belonging 

to aquaculture, which is a rapidly developing sector, and an amount of 1415 tons of products 

obtained by hunting. Small scale fishery has an important role as for the rest of the southern 

coast of Turkey. There are 690 fishing vessels and 97% are smaller than 12 m length. Gill and 

trammel nets with different combinations of gear characteristics and mesh sizes are 

traditionally used (Olguner et al., 2013). Fisheries activities are forbidden during the whole 

year within 2 miles from the coast. Moreover the gulf comprises two different regions, an 

area opened to fisheries activity and a protected area. The first area comprises the coast 

between Lara district and the city of Side, the latter goes from Side to Gazipașa. Here bottom 

trawling activity is forbidden from 9 Years within the R.G. 26.02.2005/ 25739. 

Studies on the fish assemblages in the Gulf of Antalya are extremely limited. Few studies 

concerning the demersal fish community of the shallow continental shelf area of the North-

eastern Levant Sea are available. Predominant catches are bottom-dwelling species of high 

diversity including Red Sea emigrants (Bingel et al., 1993). The faunal composition of the 

Turkish Mediterranean coast has been changed dramatically due to the construction of Suez 

Channel in 1869 which allowed the introduction of numerous Indo-Pacific species from the 
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Red Sea (Galil 2009). The impacts of Lessepsian species in the Levantine basin of the 

Mediterranean have proven to be considerably high, where they are replacing native 

species. In total 62 species of non-native marine fishes arrived to NE Mediterranean by 

natural dispersal via the Suez Canal (Goren and Galil, 2005). Invasive species have become a 

major component of commercial catches and study conducted between 1980 and 1984 in 

the North-eastern Turkish coasts showed that Lessepsian fishes constituted up to 74.5% of 

fish landings during the study period (Gücü and Bingel, 1994b). 

Bingel et al., (1993) listed economically important and locally marketed species in the 

Levantine Sea as follows: Brushtooth lizardfish (Saurida undosquamis), Red mullet (Mullus 

barbatus), Goldband goatfish (Upeneus moluccensis), Common sole (Solea solea), Common 

pandora (Pagellus erythrinus), European hake (Merluccius merluccius), the Common shrimp 

(Penaeus sp.) and the Common cuttlefish (Sepia officinalis). Species with the highest 

percentage in main catch was Saurida undosquamis. In addition, when applying the yield per 

recruit (Y/R) model to the stocks whose population parameter were estimated, showed that 

except Saurida undosquamis all other stocks were overfished in the region. 
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1.3. Target species 

1.3.1. Spicara smaris (Linnaeus, 1758) 

 

Fig. 1.3: Adult specimen of Spicara smaris (Linnaeus, 1758)  

Spicara smaris (Linnaeus, 1758), commonly known as picarel, is a bony fish of the 

Centracanthidae family. This species is distributed in the eastern Atlantic from Portugal to 

Marocco and throughout the Mediterranean Sea and the Black Sea. The picarel is a sociable 

fish, forming large schools over seagrass beds and sandy or muddy bottoms and can be 

generally found at a depth range from 15 to 170 m. It grows to a max length of 20 cm but a 

more common length is 14 cm (FISHBASE, http.//www.fishbase.org). It is a more slender fish 

than the congener Spicara maena and can be distinguished by the related species by having 

lower scale number (75-81) along the lateral line, vomerin teeth usually absent and a linear 

snout shape. Its back is grey-brown and it has a silvery flank with a distinctive large black 

spot. Males are usually larger than female and become brighter at the breeding time. It is a 

protogynous sequential hermaphrodite, individuals maturing as females and turning into 

males later. All individuals over about TL = 17 cm are males. Reproduction takes place once 

per year from February to May (WoRMS, www.marinespecies.org). Spicara smaris is a 

zooplanktivorous fish. Copepoda are the most important food item and it can also 

occasionally prey upon fish larvae (Karachle et al., 2014). The Picarel is a species with minor 
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but increasing commercial fisheries importance and among the ten most abundant fish 

species caught in Turkey (Harlioğlu 2011).   

 

 

1.3.2. Saurida undosquamis (Richardson, 1848) 

 

 

 Fig. 1.3: Adult spiecemen of Saurida undosquamis (Richardson, 1848)  

The brushtooth lizardfish, Saurida undosquamis (Richardson, 1848), is a Lessepsian fish. The 

natural distribution range of S. undosquamis includes the Indo-West Pacific Ocean from the 

Red Sea and Eastern Africa to southern Japan and Australia. In Mediterranean it was 

recorded first in Israel (Ben-Tuvia, 1953), becoming one of the most successful invaders 

throughout the Levant basin. The brushtooth lizardfish is currently the most exploited alien 

fish in Turkey, comprising almost one-third of the commercial trawl catch in the north-

eastern Levant (Cinar et al., 2005). Common lengths range from TL = 20-30 cm although 

individuals up to 50 cm were reported (FISHBASE http.//www.fishbase.org). The body is 

slender and cylindrical. The head is slightly depressed with a large mouth and long jaws from 

which stick out numerous needle-like teeth. It appears brown-beige on the back with silvery 

white belly and a series of dark spots along the lateral line. It is found in zones above 100 m 

over sand or mud bottoms of coastal waters and feeds mainly on pelagic fishes (anchovy) 
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and, to a lesser extent, on crustaceans and other invertebrates. Spawning season lasts from 

March to December (WoRMS, www.marinespecies.org)  

 

 

1.3.3. Pagellus acarne (Risso, 1827) 

  

Fig. 1.4: Adult specimen of Pagellus acarne (Risso, 1827) 

The Axillary Seabream is a widely distributed species along the northern and eastern Atlantic 

coasts from Norway to Senegal and the Mediterranean Sea. It can be found on various types 

of sea bottoms, especially seagrass beds and sand, down to a depth of 500 m, but more 

common between 40 and 100 m with the young found nearer to the shore. This species is 

omnivorous, with preference for a carnivorous diet based on fishes (Morato et al., 2003). 

Reproduction occur between September and November in the eastern Mediterranean Sea. It 

is a protandric hermaphrodite (most individuals are first males, then become females at 2-7 

years. It is typically a schooling species. The maximum TL is 36 cm (FISHBASE, 

http.//www.fishbase.org). Pagellus acarne is a highly-valued commercial species along the 

eastern Atlantic coasts and the Mediterranean Sea, targeted main by bottom-trawl and 

artisanal fleets (IUNC, www.iuncredlist.org). 
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1.4. Objectives of the study 

This study was designed to investigate the ecology of semidemersal fish species on the shelf 

of Antalya gulf in space and time. For this purpose fish distribution was analyzed at different 

strata, for two distinct areas (one opened and one closed to fishery) and during different 

seasons over a year. For an exhaustive comprehension of the dynamics that determine the 

fish assemblages pattern it was necessary a comparison of semidemersal species with all 

those fishes that coexist in the study area sharing the same resources and subjected to the 

same environmental conditions and external pressures.  

Summing up, the aims of this study were to explore: 

- Fish species composition and abundance 

- Seasonal changes in distribution 

- Different pattern along a bathymetrical gradient 

- Semidemersal species in relation to the whole community  

- Main morphological characteristics and sex distribution of target species  

- Distributional difference due to the prohibition of hunting 

- Definition of the main environmental parameters affecting the community 
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2. MATERIAL AND METHODS 

 

Data used in this study were collected within the framework of the Project n. 

2014.01.0111.001 supported by Scientific Research Coordination Unit of Akdeniz University. 

 

2.1. Study area and field sampling 

 

 

 

 

 

 

 

  

Fig. 2.1: The study area showing the stations and transects over the basic sampling  scheme 

(Surfer 12-Golden software).  

The study area encompassed a strip of coast in the north-eastern part of Antalya Gulf. 

Sampling stations were located along a range of depth extending from 10 to 200 m over the 

inner portion of the continental shelf. Samples were collected over 6-10 consecutive days in 

four different seasons covering a period of a year: May, August, October 2014 and February 

2015. For each cruise three transects have been considered over two different regions: one 

transect was located in the Lara-Side region opened to fisheries while two were in the 

Gașipasa-Side protected area (Fig. 2.1). There were 5 fixed trawling stations for each 

transect, located at 10-25-75-125-200 m depth. All sampling was conducted during daylight 

hours between sunrise and sunset. Effort was equally distributed among seasons and all 

stations were visited during every cruise. A total amount of 79 hauls were performed over all 

the study. 
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2.2. Trawling  

Resources were sampled on board R/V “Akdeniz Su”, 26,5m length, of the Fisheries Faculty 

of Akdeniz University. In all the fish samplings the same gear was used: a polyethylene 

bottom trawl net with 44 mm mesh size.  

During the hauls, towing speed varied around 2.5 knots, and towing duration was limited to 

30 minutes. The starting time and coordinates of the haul were recorded as the moment 

when the warp was tightened and towing started. The end of the haul was registered as the 

moment of the beginning of warp hauling. The exact location of sampling hauls for the 

starting of the operation was found when the desired depth was observed from the echo 

sounder. 

 

                Fig. 2.2: The head rope of the trawl net visible at the end of a hauling operation. 
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2.3. Deck work 

2.3.1. Environmental parameters 

The environmental parameters considered in this study (Tab. 2.1) include the collection of 

physical, chemical, biological and geological data. All the parameters have been generally 

collected just before the sampling or at the end of the trawl operation. 

Tab. 2.1: List of the environmental parameters considered in the study with their respective unit 

measure and abbreviations used in the analysis. Surface water: SSx, Subsurface water: SuSx, Near 

Bottom water: NBx. 

Physical-chemical parameters Biological parameters 

Secchi disk depth (m); Secchi  Seston - 1 mm (g); Se1 

Oxygen (mg/L); SSOx, SuOx, NBOx Seston - 0,5 mm (g); S2  

Temperature (°C); SST, SuT, NBT Seston - 0,063 mm (g); S3 

Salinity (PSU); SSS, SuSS, NBS Bioseston - 1 mm (g); Bi1  

pH; SSpH, SuSpH, NBpH Bioseston - 0,5 mm (g); Bi2 

Conductivity (S/m); SSC, SuSC, NBC Bioseston - 0,063 mm (g); Bi3 

Density, sigma-t; SSD, SuSD, NBD Tripton - 1mm (g); Tr1  

Total Suspended Matter (mg/mL); STSM, SuTSM, NBTSM Tripton - 0,5mm (g); Tr2 

Chl-a (mg/mL); SSChl, SuSChl, NBChl Tripton - 0,063mm (g); Tr3 

 

2.3.1.1. Physical parameters 

Secchi disk depth: The Secchi disk is a plain white circular disk of 30 cm in diameter used to 

measure the transparency of the water. The disk is slowly lowered by hand into the water 

column until the reflectance equals the intensity of light backscattered from the water and it 

is no longer visible. The distance at which the disk disappears from the sight, called the 

Secchi depth, is taken as a measure of transparency. It is related to water turbidity and can 

be affected by the colour of the water, algae, and suspended sediments. 

Water temperature, salinity, density, dissolved oxygen, pH: the values of water temperature, 

salinity, dissolved oxygen, pH, and conductivity have been recorded for each station at the 

surface, subsurface and bottom depth. The water samples have been sampled through a 
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polyethylene Nansen bottle lowered on a cable to the appropriate depth. Once collected, 

seawater was immediately analyzed through a portable multi-parameter probe provided 

with three sensors: a pH electrode, a dissolved oxygen sensor and a conductivity cell.   

 

2.3.1.2. Chemical parameters 

Total suspended material: Seawater collected through the Nansen bottle was used to 

determine the suspended material at surface, subsurface and bottom depth. One litre of 

water was filtered onto GF/D 25 mm glass fibre filters through a vacuum pump and stored in 

the freezer for laboratory analysis.  

Chlorophyll a: Samples were taken from three different depths from each station trough a 

Nansen bottle: at 1 meter depth, at the maximum depth where the Secchi disk disappears 

from sight, and near the bottom for the shallow depth stations or until 75 m for the deepest 

ones. One litre of seawater was filtered through Whatman GF/F filters (with a 0.7 mm pore 

size and 47 mm diameter) using a vacuum of less than 0.5 atm. The filters were stored in a 

freezer until laboratory analysis. 

 

2.3.1.3. Biological parameters 

Zooplankton samples were collected by means of a Nansen Closing Net (100 m mesh size 

and (0.57/2)²π mouth opening area) with messenger-operated closing mechanism. The open 

net was brought to the greatest scheduled depth and the sample was concentrated inside a 

metal collecting bucket with side window covered with sieve gauze. At the end of the tow, 

the outer side of the net was sprayed down with surface seawater to concentrate the 

organisms in the collecting bucket. The sample was size-fractionated through a sieve series 

(1, 0.5, 0.063 mm) and each size fraction was filtered on board onto GF/D 25 mm glass fibre 

filters through a vacuum pump (Fig. 2.3). Samples were frozen until laboratory processing.  
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Fig. 2.3: Organisms and non-living matter obtained after seawater filtration on board. 

 

 

2.3.2. Fish collection 

For each trawl the material caught was separated: fish, benthic organisms, no-living organic 

and inorganic materials such litters and garbage. The fishes were sorted and identified to 

species or occasionally to higher taxonomic level. Then the total weight was measured for 

each species. Very large samples were subsampled by weight for some abundant species 

according to the fish size (1/3 for large size and 1/6 for small size). Total number amount of 

fish was then estimated from the abundance of subsample. For cartilaginous fishes 

morphometric parameters, weight and sex were determined individually on board before 

being thrown back into the sea. The remaining fish was preserved with 5% formaldehyde 

and stored for laboratory analysis.  

Litter was sorted and weighted according to the material properties (metal, nylon, plastic, 

etc.) and then stored to be disposed ashore.  
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2.4. Laboratory work 

2.4.1. Environmental parameters 

2.4.1.1. Chemical parameters 

Total suspended material: In laboratory samples were defrosted at room temperature. Each 

filter was dried in an oven at 60 °C for 24 hours and weighted on an analytical balance 

(Radawak A220) for determination of the dry weight.  

Chlorophyll a: Chlorophyll measurements were made with acetone extraction method. 

Filters were homogenized in 10 mL of 90% acetone solution and maintained in the dark and 

cold. After 24 h, samples were centrifuged and absorbance was subsequently measured at 

665 645 630 nm wavelength at spectrophotometer. The filtered samples were bleached with 

a solution of 90 % acetone at 750 nm. Final Chl-a (mg/mL) value was calculated dividing by 

the volume of the filtered seawater according to the equation: 

           Chla (mg/mL)= ( 11,85 A665 - 1,54 A645 - 0,08 A630)*V * I-1   *V7 

   Where:  V=aceton volume (mL), V= filtered water (mL), I= cell length cm, A= absorbance 

 

2.4.1.2. Biological parameters 

Samples were defrosted at room temperature. Each filter (which represents a single size-

fraction of the tow) was dried in an oven at 60 °C for 24 hours and weighted on the 

analytical balance Radwak AS220 for determination of the dry weight. The filters then were 

ashed in a muffle furnace at 500 °C for 5-6 hours, and reweighed for ash. Three aliquots of 

filtered seawater were treated as above for blanks determination. The mean dry weight 

blank was subtracted from the measured dry weights for determination of the total organic 

and non-living matter (Seston). The ash weight, which represents the inorganic fraction 

(Tripton), was subtracted from the dry weight for determination of the organic fraction 

(Bioseston).  
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2.4.1.2. Geological parameters 

The information about bottom types, bottom sediments and aquatic plants is encoded in the 

echo signal of the echosounder, stored and acquired simultaneously with GPS data. During 

surveys different echoes can be observed on the oscilloscope and echogram of the 

echosounder when sampling hard or soft bottom. Hard bottom will produce a sharp bottom 

echo with high amplitude while a soft bottom will produce an elongated echo with lower 

amplitude. In order to classify the different bottom types the Fractal dimension method 

implemented in BioSonics Bottom Classifier VBT was used in this study. In the VBT software, 

the Fractal Dimension is a measure of the irregularity of an echo envelope obtained from the 

bottom. By classifying the echo envelope in terms of its fractal dimension, we define the 

shape of the envelope by associating it with a FD number. Since the echo envelopes 

associated with different bottom types show regularities in shape, one can expect that we 

can classify the bottom echo in terms of FD. Different bottom categories are colour coded at 

the same time and displayed on the map with the location of each VBT report acquired with 

GPS data. 

 

2.4.2. Fish analysis 

In the laboratory species identification was checked by the Mediterranee et mer Noire 

Volume II (Fischer, 1973) and for Lessepsian species by the Atlas of Exotic Species in the 

Mediterranean on the CIESM website. For each specimen total length (TL, ± 0.01 cm) was 

recorded and after being dried with paper total weight was measured with the digital 

balance Precisa XB620M (W, ± 0.01 g). For each individual sex was determined according to 

dimension and macroscopic aspects (vascularization, eggs or sperm visibility, color) of 

gonads. Specimens whose sex determination was not possible because badly decomposed 

or deformed were classified as “not identified”. 
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2.5. Statistical analysis  

2.5.1. Preliminary work 

Raw data values of abundance and biomass from the field work were standardized according 

to the swept area of the different stations. The swept area was estimated from:  

A=D*hr*X2 

where D is the distance covered by the trawl over the ground when trawling, calculated from 

acoustic lines, and X2 is the fraction of the head-rope length, hr, which is equal to the width 

of the path swept by the trawl, the wing spread hr*X2. A value of 0.5 was chosen for X2 

according to the model of the trawl as suggested by Pauly (1980). The catch per unit area 

(CPUA) was then estimated by dividing the catch by the swept area (in squared km) 

obtaining abundance per unit area (N / km2) and biomass per unit area (kg / Km2).  

Standardized data have been organized over two different matrices for abundance and 

biomass with the list of the fish species as first column and the sampling stations as first row. 

Information used to classify the diet of adults for each species was obtained from FAO 

species identification sheets (Fisher et al., 1987) and from FISHBASE (ICLARM. 

http.//www.fishbase.org), to broaden our fish species codification to be consistent with 

trophic considerations. First of all, flatfishes and bottom dwellers whose habits depend 

entirely on the ground were excluded. “Semidemersal” fishes were classified as those 

species, mainly zooplanktivorous, living above the seafloor. These species can play a crucial 

role in the flux of energy from low to high trophic levels of benthic and pelagic food webs 

being preyed by larger demersal and pelagic fishes. “SD” abbreviation was used to group all 

those fish species which are generally considered demersal in habits but that can tear away 

from the bottom in some part of the day or can feed on the same resources of 

semidemersals. Some pelagic species have been also found. In this study a comparison was 

made between the semidemersal species and the whole community constituted by the all 

SD and semidemersal fishes.  
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2.5.2. Numerical indices 

The qualitative and comparative descriptions among the species in the whole area were 

based on the following three numerical indices (Holden and Raitt 1974): 

- Dominance (D%): occurrence percentage of each species among stations; 

- Frequency of occurrence (FO%): occurrence percentage of each species among the total 

frequency of occurrence of all species in the study area; 

-Numerical occurrence (NO%): occurrence percentage of each species among the total 

abundance/biomass of all species in the whole study area. 

According to the Soyer’s Index and to the Dominance values the species were classified as 

follow over the study area:  D<25% rare, 25%<D<50% common, D>50% constant. 

 

2.5.3. Target species 

Selection of the target species was made considering their ecological and economical 

importance and the order of numerical indices. The same analysis for the determination of 

the main morphometric relationships, sex ratio and length-frequency distribution were 

applied for each species.  

The length-weight relationship for fishes is expressed by the equation W=aLb where W is the 

total weight, L is the total length, and a and b are parameters estimated by linear regression 

of logarithmically transformed length-weight data (Ricker, 1973). In general, a b value lower 

than 3.0 represents fish that become less rotund as length increases and a b value higher 

than 3.0 represents fish that become more rotund as length increases. When b is equal to 

3.0, growth may be isometric meaning that the shape does not change as fish grows 

(Anderson and Neumann, 1996). The degree of association between the variables length and 

weight was computed by the determination coefficient, r². Student’s t test was used to find 

out whether the coefficient b was significantly different from 3 (H°: b = 3). In this case 
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growth can show negative allometry (b < 3) or positive allometry (b > 3). Regression curves 

were determined by IBM SPSS 21 software. 

The sex ratio is expressed as the proportion of the different sexes from the pooled data.  

Statistical differences between changes in the number of females and males were 

determined using the chi-square test. The chi-square test shows if there is significant 

deviation from the expected ratio of 1:1. 

The pooled length measures, standardized for each station according to subsample, were 

counted for length-frequencies. The length-frequency distributions were then separated into 

cohorts and an arbitrary age was assigned to each of those cohorts by means of 

Bhattacharya’s Method in FISAT_II software (FAO-ICLARM Fish Stock Assessment Tools, 

VERSION 1.2.0). The optimal class interval was determined through the COST function. 

 

2.5.4. Faunistic characteristics 

The abundance and biomass values and the diversity indices were calculated for each station 

for both semidemersal and the combined species. The following diversity indices were 

considered: 

- S: Species richness 

- d: Margalef’s index  

- J’: Pielou’s evenness index 

- H’: Shannon-Winer diversity index 

Three-way ANOVA was undertaken to test the differences in each number of species, 

abundance, biomass and the diversity indices among season, depth and the transects at 

p>0.05 by the IBM SPSS 21 software.  
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2.5.5. Assemblage structure: tests and ordinations 

We used multivariate statistical tests to search for patterns of community structure in space 

and time for both the all fishes and the semidemersal species. PRIMER analytical software 

(vers. 6.1.6, PRIMER-E Ltd, Plymouth, U.K.) with PERMANOVA+ (Anderson et al., 2008) was 

used for all multivariate routines. 

 

2.5.5.1. Permutational analysis of variance (PERMANOVA) 

We first tested for differences among main effects (seasons, transects and depth) and 

interaction terms by using a type-III permutational multivariate analysis of variance 

(PERMANOVA) in a three-way crossed design. PERMANOVA is a semiparametric group 

difference test directly analogous to multivariate analysis of variance but with pseudo-F 

ratios and P-values generated by resampling (permutation) the resemblance measures of 

the data; thus it is less sensitive to assumptions of parametric tests that are frequently 

violated by community data sets (Anderson et al., 2008). For all biotic data we used the Bray-

Curtis coefficient to construct resemblance matrices. Transects and depths were treated as 

fixed effects: the examination and testing of variations in community structure between 

transects and depths was the a priori objective of the study. Seasons were treated as 

random effects because there was no a priori reason for the timing of the study. After this 

global test, pairwise comparisons were made between the levels of each significant factor. 

 

2.5.5.2. Species clustering and ordination 

Cluster analysis and non-metric multidimensional scaling (MDS), were applied to create 

graphical summaries of relationships among samples and to highlight geographical patterns 

in fish assemblage composition. MDS constructs a map of the samples in a specified number 

of dimensions and operates on the rank orders of the elements in the resemblance matrix, 

rather than on the resemblance matrix itself. A stress value ranging from 0 to 1.0 is used to 
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measure the reliability of the ordination, with zero indicating a perfect fit and with values 

>0.3 indicating that points are close to being arbitrarily placed in the graph.  

 

2.5.5.3. Representative species 

Where group differences in community structure were found, we used another exploratory 

method to identify those species most responsible for the difference. For any two groups, 

SIMPER (similarity percentages) calculates the percent contribution each species makes to 

the total between group dissimilarity (Clarke and Warwick, 2001). SIMPER identifies a small 

subset of species that are more consistently present or more abundant in one group than 

another, thus helping to reveal the major contributors to each group’s biotic identity and 

simplifying the interpretation of community patterns.  

 

2.5.6. Relations between biotic and environmental variables  

2.5.6.1. BIO-ENV analysis 

The multivariate non-parametric technique BIO-ENV, implemented in the PRIMER analytical 

software (vers. 6.1.6, PRIMER-E Ltd, Plymouth, U.K.) with PERMANOVA+ (Anderson et al., 

2008), was applied to assess the potential matches between environmental variables and 

the species composition of sampling sites. In this approach, a triangular resemblance matrix 

was first created for each group of fish using abundance and biomass normalized data and 

Euclidean distance. BIO-ENV attempts to find the best combination of environmental 

variables that maximize the match, measured using Spearman rank correlation (r) between 

sites in terms of their species composition and environmental gradient. Significance of the 

rank correlation was determined using permutation testing. 

 



26 
 

2.5.6.2. Canonical analysis 

Multivariate analysis was also undertaken using the method of canonical correlation 

(CanCorr) in the Canoco for windows 4.5 statistical package. This approach seeks to find 

linear combinations of explanatory variables (the environmental parameters) and response 

variables (the various measures of abundance and biomass of fishes) along canonical axes. 

All fish abundance were log-transformed (log10(B+1)) prior to the analysis. A matrix of the 

explanatory variables was used to quantify variation in the matrix of response variables. 

This method also provides some measures of statistical significance in terms of the canonical 

relationships among variables. 
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3. RESULTS 
 

3.1. Environmental parameters 

3.1.1 Physical, chemical, biological characteristics 

Annual sea surface water temperature (SST) was found 22.79 ± 4.65 °C, with maximum 

values in August (29.72 ± 1.01 °C) followed by October and May months (24.26 ± 1.05 and 

21.29 ± 1.00 °C respectively) and reaching the minimum values in February (16.7 ± 0.74 °C) 

as shown in Figure 3.1. At increasing depths seawater gets colder but the seasonal changes 

are still respected. The average subsurface water temperature (SSuT) and near bottom 

water temperature (NBT) were found 22.4 ± 4.16 °C and 21.06 ± 3.45 °C respectively. The 

only exception was February, with higher temperature for SSuT and NBT than the SST (17.34 

±0.48 °C and 17.29 ± 0.37 °C respectively). In general sea surface at 10 and 25 m was less 

salty than off-shore, with an annual average of 39.02 ± 3.00 PSU. May had the lowest SSS 

values (38.46 ± 1.52). To be noticed that at 25 meter, in proximities of the third transect, 

stations had the lowest salinity regardless of the sampling season, with values around 28.5 

PSU (Fig.3.3). Down to greater depths salinity values increased and were found more stable:  

SSuS and NBS were found 39.87 ± 1.28 PSU and 39.91 ± 0.52 respectively. 

Sea surface oxygen was found around 8.61 ± 0.73 mg/L concentration overall the year, with 

a slight increase nearing to the bottom. Annual chlorophyll surface concentration was found 

1.51 ± 1.46 mg/mL, with the highest values off-shore at 125 and 200 m. This concentration 

decreases with depth, reaching near the bottom an annual concentration of 0.78 ± 1.22 

mg/mL. All zooplanktonic fractions decreased with depth, especially the 0,063 mm size that 

was 0.0041 ± 0.0017 g at 10 m reaching a concentration of 0.0009 ± 0.0003 at 200 m (Fig. 

3.2). February had the highest values in concentration, decreasing gradually during the year. 

Interesting that the highest concentration was found along the third transect. Total 

suspended matter had the maximum values at the sub-surface strata (0.270 ± 0.26) and 

highest concentrations were found in May and near the coast. Secchi disk revealed that the 

water was more transparent in August and October, especially at 125 and 200 m (Fig. 3.4). 
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Fig. 3.1: Average Surface seawater Temperature (SST) in the study area during the different seasons 
(Surfer 12 - Golden software). 
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Fig. 3.2: Annual Bioseston (1, 0.5, 0.063 fractions) concentration over the study area (Surfer 12 - 

Golden software).   
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Fig. 3.3: Annual sea surface water salinity (SSS) in the study area (Surfer 12 - Golden software).  

 

 

 

Fig. 3.4: Secchi depth measured over the different seasons (x-axis: sampling stations depths; y-axis: 

column water depth). 
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3.1.2. Seabed classification 

 

                        
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5: The study area showing the different bottom types from the acoustic-survey lines, during all 

the cruises:   Fine sandy mud;  Mud;  Sand;  Coarse muddy sand;  rocks covered by 

Poseidonia;   Lost bottom. 

 

According to the acoustic results, five main bottom classes were identified in the study area 

corresponding to the predominant sediment type: mud, fine sandy mud, sand, coarse 

muddy sand and rocks covered by Posidonia (Fig. 3.5). The bottom type changes along the 

bathymetric gradient. At shallow depths, near the coast, a continuous strip of sand occurs, 

occasionally followed by some coarse muddy sand strata. In the eastern part, the superficial 

sediment pattern becomes more complex, due to the irregular presence of a rocky ground 

covered by vegetation. Down to greater depths a muddy bottom predominates, interrupt by 

fine sandy mud. In general the sea bed shows a quite constant pattern throughout the study 

period. Only fine sandy mud is unevenly distributed during the different seasons, probably 

because of the periodical water supply from the inland transporting terrigenous material.     
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3.2. Fish assemblages 

3.2.1 Species composition  

A total of 76 fish species belonging to 40 families were recorded in the study (Tab. 3.1).  

According to the feeding type 33 species (43%) were semidemersal, 33 species (43%) were 

semidemersal-demersal, 10 species (14%) were pelagic fish. Considering the different 

zoogeographical affinity of fishes, 48 species (63%) were Atlantic-Mediterranean, 22 species 

(30%) were Indo-Pacific, 4 species (5%) were cosmopolitan and 2 species (2%) were endemic 

of the Mediterranean.  

Tab. 3.1: Fish species collected on the continental shelf of the study area. A-M: Atlantic-

Mediterranean, C: Cosmopolitan, IP: Indo-Pacific, M: Mediterranean. SD:  semidemersal-demersal. 
Family Species Feeding type Origin 

Apogonidae Ostorhinchus fasciatus SEMIDEMERSAL IP 
Apogonidae  Apogon queketti SEMIDEMERSAL IP 
Apogonidae  Apogon smithii SEMIDEMERSAL IP 
Apogonidae  Apogonichthyoides pharaonis SEMIDEMERSAL IP 
Argentinidae Argentina sphyraena SEMIDEMERSAL A-M 
Argentinidae Glossanodon leioglossus SEMIDEMERSAL A-M 
Atherinidae Atherina hepsetus SEMIDEMERSAL A-M 
Caproidae Capros aper SD A-M 
Carangidae Alepes djedaba SEMIDEMERSAL IP 
Carangidae Caranx crysos SEMIDEMERSAL A-M 
Carangidae Trachurus mediterraneus SEMIDEMERSAL A-M 
Carangidae Trachurus trachurus SEMIDEMERSAL A-M 
Carangidae Trichiurus lepturus SEMIDEMERSAL C 
Carapidae Carapus acus SD M 
Carcharhinidae Carcharhinus plumbeus SD M 
Centracanthidae Centracanthus cirrus SEMIDEMERSAL A-M 
Centracanthidae Spicara maena SEMIDEMERSAL A-M 
Centracanthidae Spicara smaris SEMIDEMERSAL A-M 
Centriscidae Macroramphosus scolopax SD A-M 
Cepolidae Cepola macrophthalma SD A-M 
Champsodontidae Champsodon capensis SEMIDEMERSAL IP 
Champsodontidae Champsodon nudivittis SEMIDEMERSAL IP 
Champsodontidae Champsodon vorax SD IP 
Chlorophthalmidae Chlorophthalmus agassizi SD C 
Clupeidae Alosa fallax PELAGIC A-M 
Clupeidae Herklotsichthys punctatus PELAGIC IP 
Clupeidae Sardina pilchardus PELAGIC A-M 
Clupeidae Sardinella aurita PELAGIC A-M 
Clupeidae Sardinella maderensis PELAGIC A-M 

https://en.wikipedia.org/wiki/Apogonidae
http://www.marinespecies.org/aphia.php?p=taxdetails&id=125518
http://www.marinespecies.org/aphia.php?p=taxdetails&id=125518
http://www.marinespecies.org/aphia.php?p=taxdetails&id=125518
https://it.wikipedia.org/wiki/Argentinidae
https://it.wikipedia.org/wiki/Argentinidae
https://it.wikipedia.org/wiki/Atherinidae
https://it.wikipedia.org/wiki/Caproidae
https://en.wikipedia.org/wiki/Carangidae
https://en.wikipedia.org/wiki/Carangidae
https://it.wikipedia.org/wiki/Carangidae
https://it.wikipedia.org/wiki/Carangidae
https://it.wikipedia.org/wiki/Carangidae
https://en.wikipedia.org/wiki/Requiem_shark
https://it.wikipedia.org/wiki/Centracanthidae
https://it.wikipedia.org/wiki/Centracanthidae
https://it.wikipedia.org/wiki/Centracanthidae
https://it.wikipedia.org/wiki/Centriscidae
https://it.wikipedia.org/wiki/Cepolidae
https://it.wikipedia.org/wiki/Chlorophthalmidae
https://it.wikipedia.org/wiki/Clupeidae
https://en.wikipedia.org/wiki/Clupeidae
https://it.wikipedia.org/wiki/Clupeidae
https://it.wikipedia.org/wiki/Clupeidae
https://it.wikipedia.org/wiki/Clupeidae
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Dasyatidae Dasyatis centroura SD A-M 
Dasyatidae Dasyatis pastinaca SD A-M 
Dussumieriidae Etrumeus teres SEMIDEMERSAL A-M 
Engraulidae Engraulis encrasicolus PELAGIC A-M 
Fistulariidae Fistularia commersonii SEMIDEMERSAL IP 
Haemulidae Pomadasys incisus SEMIDEMERSAL A-M 
Haemulidae Pomadasys stridens SEMIDEMERSAL IP 
Labridae Pteragogus pelycus SD IP 
Leiognathidae Equulites klunzingeri SD IP 
Macrouridae Coelorinchus caelorhincus SEMIDEMERSAL A-M 
Macrouridae Hymenocephalus italicus SEMIDEMERSAL A-M 
Merlucciidae Merluccius merluccius SD A-M 
Mugilidae Liza saliens SEMIDEMERSAL A-M 
Mullidae Mullus surmuletus SD A-M 
Mullidae Upeneus moluccensis SD IP 
Mullidae Upeneus pori SD IP 
Myliobatidae Pteromylaeus bovinus SD A-M 
Nemipteridae Nemipterus randalli SD IP 
Rajidae Raja asterias   SD A-M 
Rajidae Raja clavata   SD A-M 
Rajidae Raja miraletus SD A-M 
Rajidae Raja oxyrinchus SD A-M 
Scaridae Sparisoma cretense SD A-M 
Scombridae Scomber japonicus PELAGIC IP 
Sebastidae Helicolenus dactylopterus SD A-M 
Serranidae Anthias anthias SEMIDEMERSAL A-M 
Serranidae Epinephelus aeneus SD A-M 
Serranidae Epinephelus haifensis SD A-M 
Siganidae Siganus rivulatus SEMIDEMERSAL IP 
Sillaginidae Sillago suezensis SD IP 
Sparidae Dentex dentex SEMIDEMERSAL A-M 
Sparidae Dentex macrophthalmus SEMIDEMERSAL A-M 
Sparidae Dentex maroccanus SEMIDEMERSAL A-M 
Sparidae Diplodus annularis SD A-M 
Sparidae Diplodus vulgaris SD A-M 
Sparidae Lithognathus mormyrus SD A-M 
Sparidae Pagellus acarne SEMIDEMERSAL A-M 
Sparidae Sparus aurata SD A-M 
Sphyraenidae Sphyraena chrysotaenia PELAGIC IP 
Sphyraenidae Sphyraena sphyraena PELAGIC A-M 
Sphyraenidae Sphyraena viridensis PELAGIC A-M 
Synodontidae Saurida undosquamis SEMIDEMERSAL IP 
Synodontidae Synodus saurus SEMIDEMERSAL A-M 
Terapontidae Pelates quadrilineatus SD IP 
Trachichthyidae Hoplostethus mediterraneus SD C 
Trichiuridae Lepidopus caudatus SD A-M 
Zeidae Zeus faber SEMIDEMERSAL C 

https://it.wikipedia.org/wiki/Dasyatidae
https://it.wikipedia.org/wiki/Dasyatidae
https://en.wikipedia.org/wiki/Dussumieriidae
https://it.wikipedia.org/wiki/Engraulidae
https://it.wikipedia.org/wiki/Fistulariidae
https://it.wikipedia.org/wiki/Haemulidae
https://it.wikipedia.org/wiki/Haemulidae
https://it.wikipedia.org/wiki/Labridae
https://it.wikipedia.org/wiki/Leiognathidae
https://it.wikipedia.org/wiki/Macrouridae
https://it.wikipedia.org/wiki/Macrouridae
https://it.wikipedia.org/wiki/Merlucciidae
https://it.wikipedia.org/wiki/Mugilidae
https://it.wikipedia.org/wiki/Mullidae
https://it.wikipedia.org/wiki/Mullidae
https://it.wikipedia.org/wiki/Mullidae
https://it.wikipedia.org/wiki/Myliobatidae
https://en.wikipedia.org/wiki/Nemipteridae
https://it.wikipedia.org/wiki/Scaridae
https://it.wikipedia.org/wiki/Scombridae
https://it.wikipedia.org/wiki/Sebastidae
https://it.wikipedia.org/wiki/Serranidae
https://it.wikipedia.org/wiki/Serranidae
https://it.wikipedia.org/wiki/Serranidae
https://en.wikipedia.org/wiki/Sillaginidae
https://it.wikipedia.org/wiki/Sparidae
https://it.wikipedia.org/wiki/Sparidae
https://it.wikipedia.org/wiki/Sparidae
https://it.wikipedia.org/wiki/Sparidae
https://it.wikipedia.org/wiki/Sparidae
https://it.wikipedia.org/wiki/Sparidae
https://it.wikipedia.org/wiki/Sparidae
https://it.wikipedia.org/wiki/Sparidae
https://it.wikipedia.org/wiki/Sphyraenidae
https://it.wikipedia.org/wiki/Sphyraenidae
https://it.wikipedia.org/wiki/Sphyraenidae
https://it.wikipedia.org/wiki/Synodontidae
https://it.wikipedia.org/wiki/Synodontidae
https://ca.wikipedia.org/wiki/Terapontidae
https://it.wikipedia.org/wiki/Trachichthyidae
https://it.wikipedia.org/wiki/Trichiuridae
https://it.wikipedia.org/wiki/Zeidae
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3.2.2. Numerical indices 
 
Constant and common fish species identified in the study area according to Soyer index (D%) 

are given in the table 3.2. The constant species, over 50% in Dominance, are Upeneus 

moluccensis, Spicara smaris, Saurida undosquamis. The first two species have high NO% for 

both biomass and abundance. Saurida undosquamis has NO% high for biomass and low for 

abundance which means occurrence of relatively few individuals but large in size. Among the 

common species ones with the highest dominance value are Pagellus acarne, 

Macroramphosus scolopax and Spicara maena.  

 
Tab. 3.2: List of the dominant and common species according to numerical indices: Dominance D%, 
Frequency of Occurrence FO%, Numerical Occurrence for biomass NO%(B) and Numerical 
Occurrence for abundance NO%(A). 

Species Feeding type D% FO% NO%(B) NO%(A) 

Upeneus moluccensis SD 67.09 6.02 4.87 5.62 

Spicara smaris SEMIDEMERSAL 60.76 5.45 7.25 5.33 

Saurida undosquamis SEMIDEMERSAL 53.16 4.77 3.97 0.93 

Pagellus acarne SEMIDEMERSAL 43.04 3.86 5.77 5.22 

Macroramphosus scolopax SD 40.51 3.63 0.85 5.18 

Spicara maena SEMIDEMERSAL 39.24 3.52 1.81 0.81 

Merluccius merluccius SD 35.44 3.18 1.96 0.52 

Upeneus pori SD 35.44 3.18 4.06 5.33 

Trachurus mediterraneus SEMIDEMERSAL 34.18 3.06 0.54 0.44 

Dasyatis pastinaca SD 32.91 2.95 12.14 0.19 

Argentina sphyraena SEMIDEMERSAL 31.65 2.84 3.29 8.84 

Equulites kluzingeri SD 31.65 2.84 2.27 7.69 

Nemipterus randalli SD 31.65 2.84 0.86 0.48 

Fistularia commersonii SEMIDEMERSAL 29.11 2.61 0.38 0.50 

Dentex maroccanus SEMIDEMERSAL 27.85 2.50 13.56 10.47 

Epinephelus aeneus SD 27.85 2.50 1.74 0.37 

Diplodus annularis SD 25.32 2.27 2.83 2.83 

Lithognathus mormyrus SD 25.32 2.27 2.88 1.79 

Raja clavata   SD 25.32 2.27 4.32 0.32 

Raja miraletus SD 25.32 2.27 3.27 0.16 
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3.2.3. Target species 

Selection of the following species was made according to their ecological and economical 

importance and to the order of dominance and frequency of occurrence over the study area.    

3.2.3.1. Spicara smaris (Linnaeus, 1758) 

Spicara smaris was found all over the 10-200 m range depth, with the highest mean biomass 

values occurring at around 75 - 125 m depth (Fig. 3.6). 

Fig.3.6: Spicara smaris: average biomass distribution (kg/Km²) at the different sampling 

stations over all the seasons (Surfer 12 - Golden software). 

 

   

A total of 2,272 individuals ranging from about 6 to 16 cm total length were measured in 

laboratory. Among them 1,324 were females; 464 were males; 253 were hermaphrodites 

and 231 were not identified. The total length of males ranged from 8.0 to 20.8 cm, with a 

mean of 13.1 ± 1.9 cm, and females ranged from 7.0 to 16.7 cm with a mean of 10.9 ± 1.7 

hermaphrodites ranged from 9.80 to 15.6 with a mean of 12.5 ± 1.2 cm. The exponent of the 

length-weight relationship calculated for females and males (Fig. 3.7) is significantly different 

from the 3 value (P < 0.05) for both sexes, showing allometric negative growth for females 

(b=2.97± 0.02) and allometric positive growth for males (b=3.12 ± 0.03).  
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Fig. 3.7: Spicara smaris: Regression curves for length-weight relationship estimation:                       

W=0.0076TL3.1377 for females (above) and W=0.0063TL3.1886 for males (below) calculated by BM SPSS 

21 software. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The sex-ratio of the samples was calculated as 1:2.85 in a strong favor of females and the 

chi-square (p<0.05) test shows that there is a significant deviation from the expected ratio 

1:1. A few immature individuals, smaller than 7 cm; were classified as juveniles. The mean 

length of males is larger than females. Females were observed more frequently than males 

in the samples and no male was observed in the length classes smaller than 16.7 cm.  Above 
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this limit the contribution of males gradually increases while occurrence of females gets 

smaller. This trend reflects the proterogynous sexual behavior of this species, as also 

indicated by the mean total length of the hermaphrodite individuals collocating in between 

the transition phase from female to male. Seven different classes were found for frequency-

length distribution analyzed through Bhattacharya’s Method (Fig. 3.8). The optimal class 

interval of 0.3 cm was determined according to the COST function. The highest frequency 

values were found for the 2+ group at 11.5 cm mean total length. The lowest frequency was 

found for the last 6+ group with a mean total length of 18.9 cm. Separation index is high 

enough (S.I.>2) to show an appreciable distinction between the classes (Tab. 3.3).  

 

Fig. 3.8: Spicara smaris: Length-frequency distribution for the total number of individuals as 

cumulated frequencies overall the sampling period (FISAT_II software). 

 

 

Tab. 3.3: Spicara smaris: Summary of results of the identification of the first seven main modal 

components for length-frequency distribution using the Battacharya’s method (FISAT_II software). 

 

Group Comp.Mean S.D. Population S.I. 

0+ 6.7 0.61 617 n.a 

1+ 8.8 0.82 15060 2.19 

2+ 11.5 0.89 58753 2.21 

3+ 13.5 0.53 19945 2.09 

4+ 14.9 0.35 4038 2.07 

5+ 15.6 0.32 664 2 

6+ 18.9 0.41 544 2.32 
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3.2.3.2. Saurida undosquamis (Richardson, 1848) 

  

The brushtooth lizardfish was found between 10 and 125 m depths, with the highest mean 

biomass values occurring at around 25 m (Fig. 3.9). 

Fig.3.9: Saurida undosquamis: biomass distribution (kg/Km²) at the different sampling stations 

averaged over all the seasons (Surfer 12 - Golden software). 

 

 
 

 

The length of the 370 individuals caught during the trawl operations ranged between 6 and 

34 cm. Among them 231 were females; 111 were males; 4 were juveniles and 24 were not 

identified. Females ranged between 10.0 – 33.6 cm TL with an average of 24.21 ± 4.4 cm TL 

while males were between 9.5 and 30.7 cm TL, averaging 18.6 ± 4.1 cm TL. 

The slope of the regression equation for length-weight relationship is significantly different 

from the 3 value (P < 0.05) indicating a positive allometric growth for males (b= 3.09±0.05) 

while it is not significant for females (b=3.06 ± 0.04) which show isometric growth (Fig. 3.10).  
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Fig. 3.10: Saurida undosquamis: Regression curves for length-weight relationship estimation: 

W=0.0053TL3.062 for females (above) and W=0.0049TL3.091 for males (below) calculated by the IBM 

SPSS 21 software.  

 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

The overall sex ratio was 1:2.9 in favor of females and the chi-square (p<0.05) test shows 

that there is a significant deviation from the expected ratio 1:1. The mean total length size of 

females seems larger than males one.  
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Frequency-length distribution for a class interval of 0.5 cm given by COST function displays 

six different groups (Fig. 3.11). The highest number of frequency values was found for the 3+ 

class at around 23.2 cm mean length (Tab. 3.4). 

 

Fig. 3.11: Saurida undosquamis: Length-frequency distribution for the total number of individuals as 

cumulated frequencies overall the sampling period (FISAT_II software). 

 

 
 
 

 

Tab. 3.4: Saurida undosquamis: Summary of results of the identification of the first six main modal 

components for length-frequency distribution using the Battacharya’s method (FISAT_II software). 

 

Group Comp.Mean S.D. Population S.I. 

0+ 8.6 0.72 86 n.a 

1+ 13.5 1.12 594 2.67 

2+ 19.4 1.33 2196 2.46 

3+ 23.2 1.78 2444 2.07 

4+ 28.0 1.14 2056 2.15 

5+ 32.1 0.26 202 2.18 
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3.2.3.3. Pagellus acarne (Risso, 1827) 

Pagellus acarne was sampled from 10 to 200 meters throughout the study period (Fig. 3.12). 

Fig. 3.12: Pagellus acarne: biomass distribution (kg/Km²) at the different sampling stations averaged 

over all the seasons (Surfer 12 - Golden software). 

 
 

A number of 1074 individuals ranging from 5 to 20 cm TL was stored for laboratory analyses. 

Among them 2261 were females; 1914 were males; 54 were juveniles and 264 were not 

identified. Females of P. acarne ranged between 9.9 and 19.7 cm TL with an average of 

14.6±2.1 cm TL. Males were between 8.5 and 19.3 cm TL, averaging 12.0±2.0 cm TL. 

The exponent of the length-weight relationship is significantly different from 3 (P < 0.05) for 

both females and males with b: 3.16 ± 0.5 and b: 3.15 ± 0.2 respectively, indicating a positive 

allometric growth (Fig. 3.13). 
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Fig. 3.13: Pagellus acarne: Regression curves for length-weight relationship estimation: 

W=0.008TL3.157 for females (above) and W=0.008TL3.145 for males (below) calculated by IBM SPSS 

21 software.  

 
 

 

 

 

 

 

 

 

The sex-ratio of the samples was calculated as 1:0.29 in a strong favor to males. Immature 

individuals smaller than 8.5 cm could not be sexed, therefore they were classified as 

juveniles.  
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The mean length and the range of size the males were larger than females. Males were 

observed more frequently than females in the samples and the contribution of males 

gradually increases while occurrence of females gets smaller. Indeed this species shows 

proterandric sequential hermaphroditism. 

Frequency-length distribution shows five different groups (Fig. 3.14). The class with the 

highest number of frequency values was 1+ with a mean total length of 10.6 cm; the lowest 

frequency value was found for the last group 4+ (Tab. 3.5). The interval class size of 0.3 cm 

was selected according to COST function. 

 

Fig. 3.14: Pagellus acarne: Length-frequency distribution for the total number of individuals 

as cumulated frequencies overall the sampling period (FISAT_II software). 

 

 

 

Tab. 3.5: Pagellus acarne: Summary of results of the identification of the first six main modal 

components for length-frequency distribution, using the Battacharya’s method (FISAT_II 

software). 

 

Group Comp. Mean S.D. Population S.I. 

0+ 7.4 1.03 1375 n.a 

1+ 10.6 1.15 13795 2.23 

2+ 13.4 1.23 9187 2.08 

3+ 16.5 0.82 2258 2.14 

4+ 19.7 0.33 184 2.24 

 

 



44 
 

3.2.4. Faunistic characteristics 

The diversity indices and the total abundance and biomass, calculated separately for the 

combined and the semidemersal species are given respectively in Tables 3.8 and 3.9. 

In both cases August season has the highest abundance and biomass values but diversity 

indices relatively lower than the other seasons. Considering the different areas, stations 

along the third transect have the highest biomass values respect to the first and the second, 

especially for semidemersal fishes. Looking at the factor depth the Species Richness, 

Margalef’s index and Shannon index are higher at 25 m depth and at the deepest station, 

while the 75 m and especially 10 m stations have the lowest diversity values. Pielou’s 

evenness seems to remain constant. Fishes were sampled in larger quantities at 125 m and 

200 m stations.  

Three-way ANOVA results for the significance of the faunistic characteristics between depth, 

transects and seasons and their interactions for the combined fish species are shown in 

Table 3.6. Species Richness index terms are all significant (P<0.05) except for the season and 

the interaction transectxseason. Margalef’s index, which takes in account the sample size 

also, shows the same results apart from the term transect. Abundance differs significantly 

for the depth only. Shannon-Winer index differs for depth and for transectxdepth term. 

Pielou’s evenness and biomass were all non significant. Regarding semidemersal species 

depth is the only significant term over Species Richness and Abundance. Shannon-Winer 

index differs significantly for depth again and for the interaction transectxseason. Biomass 

also is significant over the transect (Tab. 3.7).  
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Tab. 3.6: Summary table of three-way ANOVA results of the faunistic characters for the 

combined species over all the stations: S=Species Richness, A=Abundance, d=Margalef’s index, 

J’=Pielou’s evenness index, H’(loge)=Shannon diversity index, B= Biomass. 

 

S N d J' H'(loge) B 

Factors Sig. Sig. Sig. Sig. Sig. Sig. 

Transect *0.026   0.128   0.077 0.575   0.908 0.141 

Depth *0.036 *0.037 *0.044 0.369 *0.024 0.568 

Season   0.753   0.562   0.729 0.832   0.731 0.566 

Transect * Depth *0.048   0.664 *0.051 0.058 *0.033 0.092 

Transect * Season   0.176   0.794   0.173 0.078   0.067 0.466 

Depth * Season *0.020   0.701 *0.014 0.873   0.650 0.208 

 

 

Tab. 3.7: Summary table of three-way ANOVA results of the faunistic characters for the 

semidemersal species over all the stations: S=Species Richness, A=Abundance, d=Margalef’s index, 

J’=Pielou’s evenness index, H’(loge)=Shannon diversity index, B= Biomass. 

 

 
S N d J' H'(loge) B 

Factors Sig. Sig. Sig. Sig. Sig. Sig. 

Transect   0.216   0.267 0.536 0.209   0.754 *0.034 

Depth *0.014 *0.008 0.065 0.357  *0.020   0.162 

Season   0.613   0.738 0.603 0.751   0.848   0.347 

Transect * Depth   0.129   0.788 0.200 0.891   0.688   0.280 

Transect * Season   0.160   0.810 0.063 0.648   0.042   0.651 

Depth * Season   0.086   0.785 0.086 0.852   0.650   0.251 
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Tab. 3.8: Faunistic characters for the combined species over all the stations and transects: S=Species 

Richness. A=Abundance (N/km²). d=Margalef’s index. J’=Pielou’s evenness index. H’(loge)=Shannon 

diversity index. B=Biomass (kg/km²). 
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Tab. 3.9: Faunistic characters for semidemersal species over all the stations and the transects: 

S=Species Richness. A=Abundance (N/km²). d=Margalef’s index. J’=Pielou’s evenness index. 

H’(loge)=Shannon diversity index. B=Biomass (kg/km²). 
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3.2.5. Multivariate biotic pattern 

3.2.5.1. Permutational analysis of variance (PERMANOVA) 

Considering the all semidemersal-demersal and semidemersal fish species all main effects 

and interactions in the three-way PERMANOVA are significant in both abundance and 

biomass (Tab. 3.10 and 3.12). 

For the semidemersal species differences in community structure are significant for the main 

effects season and depth and for the interactions seasonxdepth and transectxdepth but are 

not significant for the factors transect and seasonxtransect in both abundance (transect: 

pseudo-F=2.26. P=0.469; seasonxtransect: pseudo-F=1.34; P=0.134) and biomass (transect: 

pseudo-F=1.64. P= 0.101; seasonxtransect: pseudo-F=1.07; P= 0.335) (Tab. 3.11 and 3.13) 

Subsequent pairwise comparisons for the term transect in the total community (Table 3.14) 

show differences between level 1 and 2 in both abundance (pseudo-t=1.85. P=0.045) and 

biomass (pseudo-t=1.96. P=0.03). 

 

 

Tab. 3.10: Three-way PERMANOVA on log-transformed (log10(N+1)) abundances values and Bray-

Curtis dissimilarities for all semidemersal-demersal and semidemersal fishes. Asterisk (*) indicates 

P<0.5. 

Factor Df SS MS Pseudo-F P(perm) 

Se 3 8000 2666.7 2.70 *0.001 

Tr 2 6487.6 3243.8 2.26 *0.015 

De 4 86726 21682 11.03 *0.001 

SexTr 6 8607.7 1434.6 1.45 *0.049 

SexDe 12 23589 1965.8 1.99 *0.002 

TrxDe 8 13788 1723.6 1.75 *0.002 

Res 24 23687 986.95                  

Total 59 170890                   
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Tab. 3.11: Three-way PERMANOVA on log-transformed (log10(N+1)) abundances values and Bray-

Curtis dissimilarities for semidemersal fishes.  Asterisk (*) indicates P<0.5. 

Factor df SS MS Pseudo-F P(perm) 

Se 3 10848 3616 2.96 *0.001 

Tr 2 3351 1675.5 1.02 0.469 

De 4 82640 20660 9.60 *0.001 

SexTr 6 9837.2 1639.5 1.34 0.134 

SexDe 12 25834 2152.8 1.76 *0.006 

TrxDe 8 18283 2285.4 1.87 *0.009 

Res 24 29361 1223.4                  

Total 59 180150       

 

 

Tab. 3.12: Three-way PERMANOVA on log-transformed(log10(N+1))  biomass values and Bray-Curtis 

dissimilarities for all semidemersal-demersal and semidemersal fishes.  Asterisk (*) indicates P<0.5. 

Factor df SS  MS Pseudo-F P(perm) 

Se 3 8466.3 2822.1 2.27 *0.001 

Tr 2 8351 4175.5 2.40 *0.017 

De 4 85723 21431 9.78 *0.001 

SexTr 6 10443 1740.5 1.40 *0.053 

SexDe 12 26323 2193.6 1.76 *0.001 

TrxDe 8 15377 1922.2 1.55 *0.006 

Res 24 29838 1243.2                 

Total 59 184520            

 

Tab. 3.13: Three-way PERMANOVA on log-transformed (log10(N+1)) biomass values and Bray-Curtis 

dissimilarities semidemersal fishes.  Asterisk (*) indicates P<0.5. 

Factor df SS MS Pseudo-F P(perm) 

Se 3 10851 3617.2 2.11 *0.008 

Tr 2 6009.1 3004.6 1.64 0.101 

De 4 79386 19847 7.99 *0.001 

SexTr 6 10992 1832 1.07 0.355 

SexDe 12 29804 2483.7 1.45 *0.015 

TrxDe 8 20301 2537.6 1.48 *0.024 

Res 24 41099 1712.5                  

Total 59 1.98E+05                   
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Tab. 3.14: Results of PERMANOVA pairwise tests for differences in the all semidemersal-demersal 

and semidemersal fish assemblage. for both log-transformed (log10(N+1)) abundance and biomass. 

between the transect levels. Asterisk (*) indicates P<0.05. 

    Abundance   Biomass 

Pairs Pseudo-t P(perm) Pseudo-t P(perm) 

1. 2 1.85      *0.045 1.96        *0.03 

1. 3 1.51 0.092 1.49 0.159 

2. 3 1.03 0.377 1.23 0.278 

 

 

3.2.5.2 Species clustering and ordination 

Cluster analysis of the species abundance and biomass data for semidemersal-demersal and 

Semidemersal species reveals three distinct species assemblage groups: 10-25 m. 75 m and 

125-200 m. The MDS ordination also shows a clear distribution of the samples according to 

the depth gradient and confirms the grouping of the dendrogram (Fig. 3.10 and 3.12).  

Considering the semidemersal species. the main factor contributing to the distribution of the 

samples is always the depth with the stations grouping almost in the same way for both 

abundance and biomass. For the same level of slicing (30%). samples in Cluster analysis are a 

little more unevenly distributed and MDS plots show the 125-200 m group collocating clearly 

apart while in the other group. composed of the shallower depths. stations lightly overlap 

(Fig. 3.11 and 3.13).   

The factors transect and season do not seem to contribute in the distribution of the fish 

assemblages in  these configurations. 
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Fig. 3.10: Dendrogram (above) and Multidimesional Scaling ordination (below) performed on log-

transformed (log10(N+1)) fish abundance of the semidemersal-demersal and Semidemersal species; 

resemblance was based on Bray-Curtis similarity. Labels show the depth and the season for each 

haul.  
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Fig. 3.11: Dendrogram (above) and Multidimensional Scaling ordination (below) performed on log-

transformed (log10(N+1)) fish abundance of the Semidemersal species; resemblance was based on 

Bray-Curtis similarity. Labels show the depth and the season for each haul.  
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Fig. 3.12: Dendrogram (above) and Multidimensional Scaling ordination (below) performed on log-

transformed (log10(N+1)) fish biomass of the semidemersal-demersal and Semidemersal species; 

resemblance was based on Bray-Curtis similarity. Labels show the depth and the season for each 

haul.  
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Fig. 3.13: Dendrogram (above) and Multidimensional Scaling ordination (below) performed on log-

transformed (log10(N+1)) fish biomass of the Semidemersal species; resemblance was based on Bray-

Curtis similarity. Labels show the depth and the season for each haul.  

 

 



55 
 

3.2.5.3. Representative species 

According to the bathymetric gradient. pair comparisons of the consecutive depth groups 

show the lowest dissimilarity in species contribution (Tab. 3.16). Overall the pair of depths. 

the lowest dissimilarity values corresponds to the 125-200 m group (Σ(dissimilarity)=55.78%) 

followed by the 10-25 m group (Σ(dissimilarity)=61.53%). Among the consecutive pair of 

groups the highest dissimilarity value is given by the 75-125 m (Σ(dissimilarity)=73%). These 

results reflect the grouping of sampling stations displayed by Cluster analysis and MDS plots.  

Looking at the single species contribution to within depth groups similarity. this separation is 

present as well (Tab. 3.15). For instance Upeneus pori is the first species contributing to 

similarity (40.31%) for 10 .m group followed by Fistularia commersoni (20.68%). These 

species can be found at 25 m depth but with a lower contribution. disappearing at 75 m 

depth.  Saurida undosquamis and Equulites klunzingeri have the highest contribution value 

(11.45% and 10.25% respectively) for the 25 m stations. Spicara smaris gives the highest 

contribution to the 75 m group (33.29%). followed by S. undosquamis (20.75%). but is also a 

constant species in the study area. occurring throughout the groups.  New contributor 

species like Macroramphosus scolopax (27.99%). Dentex maroccanus (11.4%). Pagellus 

acarne(9.26%) appear in the 125 m group. These species can be found with a lower 

contribution in the 200 m group too. Here the most important contributor is  Argentina 

sphyraena (20.54%). 
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Tab. 3.15: species contribution to within depth groups similarity for the whole community. 

determined by using the SIMPER (similarity percentages) routine. Species are listed in order of 

decreasing percent similarity contribution with a 90% cumulative dissimilarity cut-off imposed.  

Species Av.Abund Av.Sim Contribution% 

 
      

Group 10 Σ(similarity) = 39.45 
   

Upeneus pori 6.69 15.94 40.31 
Fistularia commersonii 3.63 8.18 20.68 
Lithognathus mormyrus 3.93 5 12.65 
Equulites kluzingeri 3.67 3.58 9.04 
Dasyatis pastinaca 2.04 1.66 4.2 
Spicara smaris 1.75 1.27 3.21 

    Group 25 Σ(similarity) = 59.24 
   

Saurida undosquamis 5.16 6.79 11.45 
Equulites kluzingeri 5.77 6.07 10.25 
Upeneus pori 5.66 5.9 9.95 
Nemipterus randalli 4.41 5.89 9.95 
Epinephelus aeneus 4.41 5.79 9.78 
Upeneus moluccensis 4.99 5.39 9.1 
Diplodus annularis 4.83 4.83 8.15 
Spicara smaris 4.36 3.85 6.51 
Fistularia commersonii 3.75 3.69 6.23 
Lithognathus mormyrus 3.68 2.72 4.6 
Group 75 Σ(similarity) = 39.69 

   
Spicara smaris 6.32 13.21 33.29 
Saurida undosquamis 4.18 8.24 20.75 
Upeneus moluccensis 4.77 6.43 16.2 
Spicara maena 2.84 2.83 7.12 
Nemipterus randalli 2.65 2.03 5.1 
Dasyatis pastinaca 2.11 1.84 4.64 
Raja miraletus 1.21 0.65 1.64 
Mullus surmuletus 1.27 0.63 1.58 

    Group 125 Σ(similarity) = 44.86 
   

Macroramphosus scolopax 7.73 12.56 27.99 
Upeneus moluccensis 5.32 6.48 14.43 
Dentex maroccanus 5.33 5.11 11.4 
Pagellus acarne 4 4.15 9.26 
Spicara smaris 3.4 2.33 5.19 
Merluccius merluccius 2.71 2.08 4.65 
Raja miraletus 2.15 1.94 4.33 
Trachurus trachurus 2.4 1.56 3.47 
Champsodon nudivittis 2.04 1.27 2.84 
Centracanthus cirrus 2.58 1.24 2.77 
Spicara maena 2.13 1.17 2.61 
Argentina sphyraena 2.09 0.86 1.92 

    Group 200 Σ(similarity) = 56.60 
   

Argentina sphyraena 7.92 11.63 20.54 
Macroramphosus scolopax 5.78 7.14 12.61 
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Upeneus moluccensis 5.79 6.25 11.03 
Merluccius merluccius 4.77 6.1 10.78 
Dentex maroccanus 5.85 5.8 10.25 
Glossanodon leioglossus 4.75 3.87 6.83 
Capros aper 3.81 3.45 6.1 
Pagellus acarne 4.34 3.4 6 
Trachurus trachurus 3.08 2.63 4.64 
Raja clavata 2.24 1.72 3.04 

    

 

Tab. 3.16: species contribution to between depth groups dissimilarity for the whole community. 

determined by using the SIMPER (similarity percentages) routine. Species are listed in order of 

decreasing percent dissimilarity contribution with a 90% cumulative dissimilarity cut-off imposed.  

Species Av.Abund Av.Abund Av.Diss Contribution% 

          
10 vs. 25. Σ(dissimilarity) = 61.53 Group 10 Group 25                  
Nemipterus randalli 0 4.41 4.68 7.6 
Saurida undosquamis 1.02 5.16 4.42 7.18 
Upeneus moluccensis 1.63 4.99 4.25 6.91 
Equulites kluzingeri 3.67 5.77 4.15 6.74 
Diplodus annularis 1.89 4.83 3.95 6.42 
Spicara smaris 1.75 4.36 3.83 6.23 
Epinephelus aeneus 1.1 4.41 3.73 6.07 
Lithognathus mormyrus 3.93 3.68 3.25 5.28 
Upeneus pori 6.69 5.66 3.06 4.97 

     10 vs. 75. Σ(dissimilarity) = 82.77 Group 10 Group 75                  
Upeneus pori 6.69 0.3 8.58 10.37 
Spicara smaris 1.75 6.32 6.91 8.34 
Upeneus moluccensis 1.63 4.77 5.38 6.5 
Saurida undosquamis 1.02 4.18 4.8 5.8 
Fistularia commersonii 3.63 0.57 4.66 5.62 
Lithognathus mormyrus 3.93 0.24 4.57 5.52 
Equulites kluzingeri 3.67 1.16 4.23 5.11 
Spicara maena 0.3 2.84 3.87 4.67 

     25 vs. 75. Σ(dissimilarity) = 65.8 Group 25 Group 75                  
Upeneus pori 5.66 0.3 5.12 7.78 
Equulites kluzingeri 5.77 1.16 4.77 7.25 
Diplodus annularis 4.83 0.21 4.16 6.32 
Epinephelus aeneus 4.41 0.32 4.1 6.23 
Fistularia commersonii 3.75 0.57 3.37 5.13 
Spicara smaris 4.36 6.32 3.22 4.89 
Lithognathus mormyrus 3.68 0.24 3.19 4.84 
Nemipterus randalli 4.41 2.65 3.02 4.59 
Upeneus moluccensis 4.99 4.77 2.94 4.47 

     10 vs. 125. Σ(dissimilarity) = 91.29 Group 10 Group 125                  
Macroramphosus scolopax 0.61 7.73 7.73 8.47 
Upeneus pori 6.69 0 7.19 7.88 
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Dentex maroccanus 0 5.33 5.36 5.87 
Upeneus moluccensis 1.63 5.32 5.01 5.48 
Pagellus acarne 1.18 4 4.19 4.59 
Fistularia commersonii 3.63 0 4.16 4.55 

     25 vs. 125. Σ(dissimilarity) = 83.93 Group 25 Group 125                  
Macroramphosus scolopax 0.24 7.73 6.19 7.37 
Equulites kluzingeri 5.77 0 4.63 5.52 
Upeneus pori 5.66 0 4.57 5.44 
Dentex maroccanus 0 5.33 4.13 4.92 
Nemipterus randalli 4.41 0 3.73 4.45 

     75 vs. 125. Σ(dissimilarity) = 73.06 Group 75 Group 125                  
Macroramphosus scolopax 1.13 7.73 6.74 9.23 
Dentex maroccanus 0.26 5.33 4.95 6.77 
Spicara smaris 6.32 3.4 4.21 5.76 
Pagellus acarne 1.58 4 3.92 5.37 
Saurida undosquamis 4.18 1.63 3.58 4.9 
Upeneus moluccensis 4.77 5.32 3.28 4.49 

     10 vs. 200. Σ(dissimilarity) = 93.94 Group 10 Group 200                  
Argentina sphyraena 0 7.92 8.26 8.79 
Upeneus pori 6.69 0 6.83 7.27 
Dentex maroccanus 0 5.85 5.71 6.08 
Macroramphosus scolopax 0.61 5.78 5.21 5.54 
Glossanodon leioglossus 0 4.75 4.93 5.25 
Upeneus moluccensis 1.63 5.79 4.88 5.2 
Merluccius merluccius 0 4.77 4.85 5.17 

     25 vs. 200. Σ(dissimilarity) = 89.59 Group 25 Group 200 
  Argentina sphyraena 0 7.92 6.29 7.02 

Dentex maroccanus 0 5.85 4.44 4.95 
Upeneus pori 5.66 0 4.39 4.9 
Macroramphosus scolopax 0.24 5.78 4.29 4.78 
Equulites kluzingeri 5.77 0.54 4.23 4.72 

     75 vs. 200. Σ(dissimilarity) = 81.64 Group 25 Group 200 
  Argentina sphyraena 0 7.92 7.74 9.48 

Spicara smaris 6.32 0.74 5.7 6.98 
Dentex maroccanus 0.26 5.85 5.26 6.45 
Glossanodon leioglossus 0 4.75 4.62 5.65 
Macroramphosus scolopax 1.13 5.78 4.58 5.61 
Merluccius merluccius 0.55 4.77 4.2 5.14 
Saurida undosquamis 4.18 0.24 4 4.89 
Pagellus acarne 1.58 4.34 3.89 4.77 

     125 vs. 200. Σ(dissimilarity) = 55.78 Group 125 Group 200 
  Argentina sphyraena 2.09 7.92 4.97 8.91 

Glossanodon leioglossus 1.89 4.75 3.83 6.87 
Dentex maroccanus 5.33 5.85 3.2 5.74 
Capros aper 1.35 3.81 2.89 5.18 
Spicara smaris 3.4 0.74 2.84 5.09 
Pagellus acarne 4 4.34 2.75 4.93 
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3.3. Relations between biotic and environmental variables  

3.3.1. BIO-ENV analysis 

BIO-ENV procedure shows that depth is the variable matching the best results with biotic 

data overall the cases considered. with a slight higher correlation for the combined species 

than for the semidemersal species as shown table 3.17 and 3.18. 

Immediately after the depth variable. for the combined species the best correlation is given 

by the combination depth/bottom type. and depth/near bottom suspended matter (Tab. 

3.17). 

For the semidemersal species the best combinations together with depth are tripton (1 mm; 

0.5 mm; 0.063mm). near bottom suspended matter and bioseston (0.063 mm) as shown in 

Table 3.18. 

 

Tab. 3.17: Results of BIOENV analysis showing the number of abiotic variables with best 

match the biotic matrix of the all semidemersal-demersal and semidemersal species and for 

abundance (left) and biomass (right): 1=Depth. 3=SuTSM. 4=NBTSM. 16=SspH. 24=Se1. 

26=Se3. 29=Bi3. 30=Tr1. 31=Tr2. 32=Tr3. 33=Bottom type.  

No.Vars Correlation Selections 
 

No.Vars Correlation Selections 

1 0.747 1 
 

1 0.609 1 
2 0.66 1;4 

 
2 0.554 1;31 

2 0.657 1;33 
 

2 0.545 1;4 
2 0.628 1;30 

 
2 0.542 1;30 

2 0.622 1;31 
 

2 0.526 1;29 
2 0.621 1;29 

 
2 0.523 1;16 

3 0.612 1;29;33 
 

2 0.523 1;32 
2 0.61 1;24 

 
2 0.52 1;26 

2 0.607 1;3 
 

2 0.518 1;24 
3 0.605 1;4;33 

 
3 0.512 1;4;30 
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Tab. 3.18: Results of BIOENV analysis showing the number of abiotic variables witch best 

match the biotic matrix of the semidemersal species and for abundance (left) and biomass 

(right): 1=Depth. 3=SuTSM. 4=NBTSM. 16=SspH. 24=Se1. 26=Se3. 29=Bi3. 30=Tr1. 31=Tr2. 

32=Tr3. 33=Bottom type. 

No.Vars Correlation Selections 
 

No.Vars Correlation Selections 

1 0.733 1 
 

1 0.591 1 
2 0.661 1;33 

 
2 0.538 1;30 

2 0.648 1;4 
 

2 0.534 1;31 
2 0.622 1;30 

 
2 0.532 1;4 

3 0.612 1;29;33 
 

2 0.524 1;29 
3 0.609 1;4;33 

 
2 0.523 1;24 

2 0.605 1;29 
 

2 0.52 1;33 
2 0.605 1;31 

 
3 0.515 1;4;30 

2 0.604 1;24 
 

2 0.513 1;32 
3 0.598 1;24;33 

 
2 0.513 1;26 

 

 

3.3.2. Canonical analysis 

The ordination diagrams CCA reveal the general relationship between faunal distribution and 

the set of environmental variables sampled in the study area.  

Considering the CCA results for abundance values of the all semidemersal-demersal and 

semidemersal fishes. all four canonical axes together explained 47.8% of the variability and 

the first axes contributed 23.9%. Depth and bottom type explained the 35.8% in the total 

variation by a strong correlation with the first and the second axes respectively (Tab. 3.19). 

The rest of the variability associated with the fish assemblages was explained by STSM. NBS. 

NBChl and pH values on the third axes and by Secchi depth. oxygen and temperature values 

on the fourth axes. Sampling stations distribution in the diagrams reflects the depth 

gradient. The shallower depth stations. in the upper left part of the plot. were correlated 

with zooplankton (0.063 mm in particular) and near bottom Chlorophyll. The deepest 

stations were collocated in the lower part. with 200 m samples slightly correlated with 
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Secchi depth. SSS and SuS. The stations at 300 m form a separate group to the upper right 

part (Fig. 3.14). The validity of significance of both first canonical axis (F=4.390. p=0.0020) 

and all the axes (F=1.700. p=0.0020) was proved by the Monte Carlo test. Canonical analysis 

performed on biomass values for the all species reveals a similar correlation of the 

environmental parameters with the axes. All four axes explained 49.4% of the variability 

(F=2.044. p=0.0020) and the first contributed 24.2% (F=7.648. p=0.002) (Fig. 3.16; Tab. 3.21)   

In the CCA plot performed on abundance values of semidemersal species all four axes 

explained 46.1% of the total variation with a contribution of the first axes of 19.9%. Depth 

and bottom type explained 31% of the variability on the first two axes. lower value 

compared to the total community. Oxygen. salinity and chlorophyll parameters were related 

to the third axes (Tab. 3.20). The validity of significance of both first canonical axis (F=5.788. 

p=0.0020) and all the axes (F=1.817. p=0.0020) was proved by the Monte Carlo test. 

Considering canonical analysis performed on biomass values of semidemersal fishes. all four 

axes together explained 49.9% of the variability (Tab. 3.22). The first axes contributed 21.2% 

and was strongly correlated with depth as for the previous cases. The second axes (33.2%) 

had the strongest correlation with bottom type and a weaker correlation with zooplankton 

(0.063 mm). Looking at the sampling stations distribution on the plot (Fig. 3.17). the deepest 

stations (100-200 m) overlap. correlated with Secchi depth. SSS and SSuS. A more separate 

group of 10 m stations collocates in the upper part. The validity of significance of both first 

canonical axis (F=6.252. p=0.0020) and all the axes (F=1.850. p=0.0020) was proved by the 

Monte Carlo test.  
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Figure 3.14. Biplot of CCA (Plane 1-2) performed on log-transformed (log10(N+1)) density values (N) of 

the all semidemersal-demersal and semidemersal fishes and environmental variables (arrows) at 

depth samples) on three transects (T1. T2. and T3) in four sampling months (May. August. October 

and February). Arrows refer to the direction and relative importance of environmental variables (see 

Table 2.1 for abbreviations of the parameters) in the ordination. 
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Table 3.19. Summary of statistical measures of the all semidemersal-demersal and semidemersal fish 

species characteristics and environmental variables for CCA (see Table 2.1 for abbreviations of 

the parameters). 

Environmental variables Species Axis 1 Species Axis 2 Species Axis 3 Species Axis 4 

 Depth    0.962 -0.070 -0.040 0.016 
 STSM     0.036 -0.038 0.197 0.070 
 SuTSM    0.101 0.118 -0.031 -0.115 
 NBTSM    -0.035 -0.124 0.027 -0.065 
 Sechi    0.491 -0.203 -0.004 0.324 
 SSOx     -0.168 0.106 0.026 -0.442 
 SuSOx    -0.038 0.137 0.107 -0.486 
 NBOx     0.089 -0.184 0.258 -0.368 
 SST      0.054 -0.123 -0.047 0.398 
 SuST     0.037 -0.126 -0.056 0.405 
 NBT      0.006 -0.101 -0.075 0.396 
 SSS      0.334 -0.227 -0.013 0.097 
 SuSS     0.386 -0.203 -0.140 0.081 
 NBS      -0.250 0.156 -0.406 -0.031 
 SspH     0.001 0.042 -0.317 0.093 
 SuSpH    0.048 0.082 -0.373 -0.139 
 NbpH     0.026 0.063 -0.275 0.126 
 SSD      0.238 -0.155 -0.032 -0.128 
 SuSD     0.242 -0.037 -0.087 -0.276 
 NBD      0.200 0.011 0.008 -0.338 
 SSChl    0.050 0.013 0.268 -0.272 
 SuSChl   -0.019 0.040 0.277 -0.376 
 NBChl    -0.547 0.090 0.359 -0.190 
 Se1      -0.348 0.230 -0.011 0.111 
 Se2      -0.332 0.098 -0.034 0.000 
 Se3      -0.431 0.164 0.128 0.157 
 Bi1      -0.340 0.076 -0.092 0.069 
 Bi2      -0.379 0.150 0.088 -0.029 
 Bi3      -0.686 0.280 0.004 0.179 
 Tr1      -0.301 0.114 0.034 0.039 
 Tr2      -0.224 0.072 -0.098 0.034 
 Tr3      -0.353 0.136 0.146 0.137 
 BT       0.124 -0.844 -0.093 0.012 

Eigenvalues 0.698 0.349 0.184 0.166 
Species-environment correlations 0.986 0.918 0.9 0.904 

Cumulative percentage variance   
 of species data 13.7 20.6 24.2 27.4 
 of species-environment relation 23.9 35.8 42.1 47.8 
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Figure 3.15. Biplot of CCA (Plane 1-2) performed on log-transformed (log10(N+1)) density values (N) of 

the all semidemersal-demersal and semidemersal fishes and environmental variables (arrows) at 

depth samples) on three transects (T1. T2. and T3) in four sampling months (May. August. October 

and February). Arrows refer to the direction and relative importance of environmental variables (see 

Table 2.1 for abbreviations of the parameters) in the ordination. 
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Table 3.20. Summary of statistical measures of semidemersal fish species characteristics and 

environmental variables for CCA (see Table 2.1 for abbreviations of the parameters). 

Environmental variables Species Axis 1 Species Axis 2 Species Axis 3 Species Axis 4 

 Depth    0.927 -0.139 0.067 -0.012 

 STSM     0.051 -0.041 -0.097 -0.249 

 SuTSM    0.105 0.153 -0.130 0.072 

 NBTSM    -0.075 -0.096 -0.124 0.065 

 Sechi    0.381 -0.305 0.176 -0.083 

 SSOx     -0.117 0.221 -0.408 0.140 

 SuSOx    -0.019 0.241 -0.501 0.106 

 NBOx     0.047 -0.102 -0.495 -0.037 

 SST      0.016 -0.227 0.396 -0.091 

 SuST     0.003 -0.227 0.409 -0.089 

 NBT      -0.026 -0.203 0.418 -0.067 

 SSS      0.260 -0.258 0.009 -0.113 

 SuSS     0.327 -0.210 0.079 -0.015 

 NBS      -0.242 0.235 0.141 0.254 

 SspH     -0.029 0.063 0.294 0.081 

 SuSpH    0.077 0.083 0.254 0.093 

 NbpH     -0.016 0.093 0.309 -0.013 

 SSD      0.188 -0.106 -0.191 -0.019 

 SuSD     0.208 0.047 -0.280 0.101 

 NBD      0.200 0.113 -0.365 0.051 

 SSChl    0.072 0.028 -0.329 0.086 

 SuSChl   0.013 0.090 -0.427 0.111 

 NBChl    -0.491 0.108 -0.278 -0.099 

 Se1      -0.292 0.203 0.051 -0.071 

 Se2      -0.274 0.123 -0.071 -0.034 

 Se3      -0.372 0.098 0.163 -0.083 

 Bi1      -0.304 0.116 0.100 0.103 

 Bi2      -0.329 0.205 -0.047 -0.199 

 Bi3      -0.627 0.305 0.196 -0.133 

 Tr1      -0.270 0.093 -0.041 -0.036 

 Tr2      -0.182 0.075 -0.012 0.046 

 Tr3      -0.292 0.062 0.145 -0.091 

 BT       0.052 -0.779 0.024 0.123 

Eigenvalues 0.649 0.361 0.253 0.236 

Species-environment correlations 0.969 0.883 0.902 0.826 

Cumulative percentage variance   

 of species data 11.4 17.7 22.2 26.3 

 of species-environment relation 19.9 31 38.8 46.1 
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Figure 3.16. Biplot of CCA (Plane 1-2) performed on log-transformed (log10(B+1)) biomass values (B) 

of the all SD and semidemersal fishes and environmental variables (arrows) at depth samples) on 

three transects (T1. T2. and T3) in four sampling months (May. August. October and February). 

Arrows refer to the direction and relative importance of environmental variables (see Appendix II for 

abbreviations of the parameters) in the ordination. 
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Table 3.21. Summary of statistical measures of the all semidemersal-demersal and semidemersal fish 
species characteristics and environmental variables for CCA (see Table 2.1 for abbreviations of the 
parameters). 

Environmental variables Species Axis 1 Species Axis 2 Species Axis 3 Species Axis 4 

 Depth    0.962 -0.107 -0.002 0.001 

 STSM     0.018 0.010 0.269 -0.101 

 SuTSM    0.110 0.073 -0.078 -0.001 

 NBTSM    -0.044 -0.114 0.023 -0.125 

 Sechi    0.520 -0.255 -0.311 -0.177 

 SSOx     -0.221 0.161 0.312 0.035 

 SuSOx    -0.099 0.209 0.325 -0.028 

 NBOx     0.017 -0.138 0.374 -0.228 

 SST      0.107 -0.177 -0.283 0.002 

 SuST     0.090 -0.181 -0.284 0.009 

 NBT      0.061 -0.156 -0.297 0.027 

 SSS      0.357 -0.256 -0.077 -0.043 

 SuSS     0.419 -0.249 -0.106 0.076 

 NBS      -0.174 0.074 -0.221 0.281 

 SspH     0.057 -0.025 -0.343 0.182 

 SuSpH    0.085 0.070 -0.208 0.332 

 NbpH     0.079 -0.013 -0.324 0.179 

 SSD      0.238 -0.160 0.067 0.013 

 SuSD     0.242 -0.037 0.119 0.093 

 NBD      0.181 0.020 0.232 0.019 

 SSChl    -0.013 0.054 0.260 -0.143 

 SuSChl   -0.090 0.120 0.318 -0.112 

 NBChl    -0.591 0.181 0.174 -0.219 

 Se1      -0.354 0.277 -0.043 -0.026 

 Se2      -0.358 0.117 -0.086 -0.011 

 Se3      -0.437 0.211 0.177 -0.043 

 Bi1      -0.353 0.118 -0.084 -0.003 

 Bi2      -0.409 0.195 0.019 -0.069 

 Bi3      -0.688 0.308 -0.043 0.027 

 Tr1      -0.302 0.140 0.020 -0.058 

 Tr2      -0.217 0.054 -0.116 0.073 

 Tr3      -0.361 0.183 0.202 -0.046 

 BT       0.080 -0.886 -0.027 -0.008 

Eigenvalues 0.726 0.395 0.189 0.17 

Species-environment correlations 0.988 0.945 0.867 0.887 

Cumulative percentage variance   

 of species data 14.5 22.4 26.2 29.6 

 of species-environment relation 24.2 37.4 43.7 49.4 
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Figure 3.17: Biplot of CCA (Plane 1-2) performed on log-transformed (log10(B+1)) biomass values (B) 

of semidemersal fishes and environmental variables (arrows) at depth samples) on three 

transects (T1. T2. and T3) in four sampling months (May. August. October and February). 

Arrows refer to the direction and relative importance of environmental variables (see Table 2.1 

for abbreviations of the parameters) in the ordination. 
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Table 3.22. Summary of statistical measures of semidemersal fish species characteristics and 

environmental variables for CCA (see Table 2.1 for abbreviations of the parameters). 

Environmental variables Species Axis 1 Species Axis 2 Species Axis 3 Species Axis 4 

 Depth    0.9033 -0.2153 0.0161 0.0978 

 STSM     0.0395 0.0213 -0.1991 0.1225 

 SuTSM    0.116 0.1185 -0.0501 -0.127 

 NBTSM    -0.1225 -0.0534 -0.1786 -0.2114 

 Sechi    0.3363 -0.3699 0.1104 0.0334 

 SSOx     -0.1016 0.3284 -0.1577 -0.0118 

 SuSOx    -0.0111 0.3577 -0.2221 -0.0414 

 NBOx     -0.0365 0.0037 -0.4396 0.0366 

 SST      0.0077 -0.3341 0.143 0.0128 

 SuST     -0.0041 -0.3351 0.1542 0.0181 

 NBT      -0.0242 -0.313 0.1749 0.0073 

 SSS      0.2475 -0.3113 -0.0689 0.1497 

 SuSS     0.3297 -0.3194 0.0135 0.1061 

 NBS      -0.1474 0.1941 0.3375 0.0343 

 SspH     -0.039 0.0174 0.3425 0.1657 

 SuSpH    0.096 0.0274 0.2603 0.3151 

 NbpH     -0.0168 0.0597 0.2863 0.2688 

 SSD      0.187 -0.0863 -0.1041 0.1435 

 SuSD     0.2251 0.0647 -0.0941 0.0546 

 NBD      0.1883 0.1766 -0.1434 0.0484 

 SSChl    0.0391 0.0666 -0.2416 -0.3108 

 SuSChl   -0.0052 0.1524 -0.2514 -0.3343 

 NBChl    -0.4826 0.1476 -0.2323 -0.2111 

 Se1      -0.2719 0.268 0.0089 0.0268 

 Se2      -0.2689 0.1942 -0.0403 0.0278 

 Se3      -0.3523 0.1115 0.1374 -0.0263 

 Bi1      -0.3035 0.1376 0.1252 -0.0795 

 Bi2      -0.3226 0.3569 -0.0852 0.3624 

 Bi3      -0.6026 0.4335 0.1978 0.2289 

 Tr1      -0.2703 0.1549 -0.0943 -0.0912 

 Tr2      -0.1651 0.0579 0.0822 -0.164 

 Tr3      -0.2664 0.0538 0.1137 -0.0427 

 BT       -0.099 -0.759 -0.0267 0.1109 

Eigenvalues 0.677 0.385 0.296 0.235 

Species-environment correlations 0.967 0.902 0.889 0.836 

Cumulative percentage variance   

 of species data 12.2 19.1 24.5 28.7 

 of species-environment relation 21.2 33.2 42.5 49.9 
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4. DISCUSSION 

Abundance and biomass data from an annual survey of coastal marine fishes captured on 

the shelf of Antalya gulf revealed significant differences in semidemersal fish assemblages 

based on depth. different sampling areas. and seasons. These patterns were mirrored by 

changes in various oceanographic and geographic variables collected along with the fish 

samples. indicating that the fish communities were responding to seasonal and relatively 

small-scale spatial variability in environment.  

Multivariate ordination placed samples with similar fish communities in arrangements that 

correspond mostly with the bathymetric gradient. Two groups were identified: a well-

defined association formed by depth strata ranging from 125 to 200 m and another 

constituted by the shallower ones. slightly more dispersed among the 10 - 25 m and the 75 

m in depth. Heterogeneity in communities was due primarily to difference in occurrence of a 

set of common species. most of which were regularly caught with different abundance in 

both transect and during both months of the study. Thus community patterns were not 

driven by sudden turnover of dominant taxa across different sampling areas or between 

seasons. but rather by gradients in local abundance along the depth. This spatial distribution 

was also confirmed by SIMPER routine. The dominant species Spicara smaris and Upeneus 

moluccensis occurred. with different abundance. at all depths. At 10 m depth a few species 

with low abundance were present: Upeneus pori. Fistularia commersoni. Lithognatus 

Mormyrus. Equulites Klunzingeri. Spicara smaris were the most important in contribution. At 

25 m species richness increased: the previous species were still present. with a lower 

contribution. and new dominant ones were added (Saurida Undosquamis. Nemipterus 

Randalli. Epinephelus Aeneus. Upeneus moluccensis and Diplodus annularis). At 75 m species 

richness decreased again. some of the previous species disappeared and were replaced only 

by a few others. Spicara smaris. Saurida undosquamis and Upeneus moluccensis were found 

in order of importance. At the deeper stations the catches changed in quality and in 

quantity: some species were still shared with the shallower stations and the new ones had 



71 
 

high abundance and biomass. Macroramphosus scolopax. Upeneus moluccensis. Dentex 

maroccanus. Pagellus acarne. Spicara smaris. Merluccius merluccius were the main species 

caught in order of importance at 100 m. At the deepest stations (125 – 200 m) the 

contribution of this species slightly decreased and Argentina sphyraena. Glossanodon 

leioglossus. Capros aper occurred more frequently. 

Comparing the distribution of semidemersal fish assemblages and of the whole fish 

community (semidemersal-demersal. semidemersal and pelagic fish) an important 

difference can be found in regard to the term transect. PERMANOVA tests showed that the 

distribution of semidemersal fishes doesn’t change significantly over the different sampling 

areas while considering the whole community this factor is significant. In particular Pairwise 

comparisons showed that the first transect (collocated in the area opened to fisheries 

activities) was significantly different from the second one (AREA). In general biomass and 

abundance seemed gradually increased going from the first to the third transect. with the 

second one in an intermediate position.  

Anyway it is necessary to take into account the relation with the environmental variables. As 

expected. both the BIO-ENV and CCA analysis showed that the strongest correlation existed 

between the fish assemblages and the depth. The second most important factor affecting 

the distribution and diversity of the community was the bottom type. The different 

assemblages identified through SIMPER analysis strongly reflected the qualitative structure 

of the seabed. Fish assemblages of the shallower stations were sampled over a sandy/coarse 

muddy sand ground. Over 75 m there was an abrupt change and the fishes caught at 125 -

200 m inhabit a bottom mostly muddy. occasionally interrupted by fine sandy mud.  

Moreover it is important to note that the eastern part of the study area has a great 

heterogeneity: the second and the third transects in their shallower part presented a patchy 

ground. alternating sand and rocks covered by Posidonia. These plants provide food and 

shelter to several species and to a high number of juveniles (Hemminga and Duarte. 2000).  

The shallower stations near the coast are also directly exposed to fresh water supply. 
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particularly important in providing nutrients and thus in regulating the food chain especially 

in an oligotrophic sea. Indeed during spring. when the riverine input was greater. the lowest 

salinity values were recorded. together with higher chlorophyll-a concentration. Notably the 

lowest salinity values were recorded along the third transect. where a river flows.  

BIO-ENV analysis revealed that the community depended not only on the bottom type but 

also on the availability of total suspended matter and zooplankton. Seston. bioseston. 

tripton and total suspended matter. maybe due to nutrient supplies from the inland. were 

found in higher concentration near the coast and CCA showed the correlation of these 

variables with the fish assemblages present at the shallower stations. Zooplankton is the 

most important food item of semidemersal fishes and both these analyses showed a 

stronger correlation of the smaller fraction of bioseston with the semidemersal species in 

comparison to the whole community. It is important to note that the biomass of 

semidemersal species is more related to zooplankton than abundance. Biomass of these 

fishes was found significantly different over the transects. with the highest values in the 

third one and zooplankton was also found in greater concentration in the same area.  

Considering the strong correlation between the fish assemblages and the environmental 

characteristics. it’s likely to assume that the changing distribution of semidemersal species 

and of the whole community over the transects is not due to a different fishery pressure but 

to the use of ecosystem’s resources in a different way. It must be emphasized that a few 

studies have analyzed the biology and distribution of fish species on the shelf of Antalya gulf 

and time-series data are not available to detect a trend in catches and then to evaluate the 

possible level of overexploitation.  

Analysis of target species in this study can’t define exactly the state of exploitation of the 

stocks but give an indicative image of population compositions. Spicara smaris. as 

mentioned above. is a constant species in the habitat. with the greatest abundance between 

75 and 125 m. Sex ratio was strongly shifted in favour of females and this was due to the fact 



73 
 

that this species exhibits a proteroginic sexual behaviour and the most of the individuals 

were caught under the size of sexual inversion at 11.5 cm mean TL (+2).  The last cohort (+6) 

was composed by a low number of males. The low presence of larger individuals and the 

modification of sex ratio are usually a signal of overexploitation with the alteration of the 

reproductive potential. especially for hermaphrodite species (Hamilton et al.. 2007). Pagellus 

acarne population showed a similar trend. This species is a proterandric hermaphrodite and 

the sex-ratio was in strong favor of males. with abundant small individuals of 10.6 cm TL 

(1+).  

For Saurida undosquamis the situation was different: this species had a sex ratio shifted in 

favor of females but the length frequencies were more evenly distributed among the 

different cohorts. The common total length for these fishes ranges from 20 to 30 cm and 

individuals larger than 30 cm TL were caught. Indeed. as previously introduced. this invasive 

species is a successful alien species invader become a common sight in Turkish catches. The 

native confamiliar Synodus saurus was classified as a rare species in this study with a 

Dominance value of 20.25% and a Frequency of Occurrence of 1.82%.  

The IUCN Red List of Threatened Species (www.iucnredlist.org) denotes that there are no 

major threats known for Spicara smaris but that the invasive fish Fistularia commersonii. 

which was found to prey on this species in the eastern Mediterranean. may constitute an 

upcoming threat since this fish is a successful colonizer of the Levantine Sea. In our study F. 

commersonii was found as one of the higher contributor for the shallower stations. Here 

Spicara smaris was less abundant probably limited by the presence of this species. Instead at 

intermediate stations the picarel was found dominant together with Saurida undosquamis. 

These semidemersal species could share the same habitat without competition because they 

have different food items: the picarel feeds on larvae and zooplankton (Karachle et al.. 2014) 

while the lizardfish preys are mainly anchovy (Golani 1993). Thus a decrease in abundance of 

this species in the study area could be due primarily to the presence of an active predator in 

addition to an eventual fish overexploitation. Moreover Spicara smaris is preyed both by 
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larger native demersal/benthopelagic (e.g. Conger conger. Merluccius merluccius. Muraena 

helena. Phycis phycis. Scorpaena scrofa. Uranoscopus scaber. Zeus faber) and pelagic fishes 

(Sarda sarda) (Özbilgin et al.. 2007). Thus. given its relatively high abundance in Turkish 

waters. a depletion of this species in the habitat could modify the flux of energy from low to 

high trophic levels of the Levantine benthic and pelagic food webs.  
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5. CONCLUSIONS 

In this study we provide a baseline data on semidemersal fish abundance in a highly 

heterogeneous and yet less studied portion of the shelf of Antalya gulf. This analysis reveals 

that the spatial distribution of fish assemblages is strongly dependent on the environmental 

characteristics. Seasonal changes are certainly important to ensure the basic processes on 

which the life cycle of these fishes depends. however species composition of semidemersal 

fishes remains constant overall the year. First of all species distribute according to the depth 

gradient and to the seabed structure. Ecological processes of the communities are then finer 

regulated by food availability and physical-chemical characteristics of the water column.  

For a better comprehension of these processes. it would be interesting to investigate in 

future studies how other environmental parameters like nutrient level concentrations or  

photosynthetically active radiation could affect the ecology of the semidemersal 

assemblages.  

Finally fishes seem to respond mostly to small scale changes in habitat gradient rather than 

to fishery pressure. Hence the importance of taking into account the ecological functions 

that structure these fish communities in order to evaluate the effects of future perturbations 

such as climate-induced oceanographic changes. variation in fishing pressure. enrichment of 

nutrients in an area increasingly subject to anthropogenic stress or establishment of new 

invasive species. In this framework single-species management strategies do not fully 

incorporate ecological interactions and environmental factors. Therefore an ecosystem 

based management is necessary to evaluate the effects of future perturbations. First of all it 

requires a more holistic approach. with a comprehensive understanding of the fundamental 

physical and biological dynamics and how they respond to human-induced changes. 

Secondly. it is fundamental the development of governance systems which have ecosystem 

health and sustainability. rather than short-term economic gain. as their primary goals (Large 

et al.. 2013; Link. 2002). 
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