
ALMA MATER STUDIORUM
UNIVERSITÀ DI BOLOGNA

SCUOLA DI INGEGNERIA E ARCHITETTURA
CAMPUS DI CESENA

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA E SCIENZE
INFORMATICHE

APPLYING THE REACTIVE PROGRAMMING
PARADIGM: TOWARD A MORE DECLARATIVE

APPLICATION DEVELOPMENT APPROACH

Elaborata nel corso di: Programmazione Avanzata e Paradigmi

Supervisor:
Prof. ALESSANDRO RICCI
Co-supervisor:
Prof. PHILIPP HALLER

Student:
ALESSANDRO ZOFFOLI

ACADEMIC YEAR 2014–2015
SESSION I

KEYWORDS

Reactive Programming

Declarative

Streams

State

Side effects

To my family.

Contents

Introduction xi

1 Reactive programming 1
1.1 Functional Reactive Programming 2

1.1.1 Behaviors and Event Streams 3
1.2 Evaluation model . 4
1.3 Glitches . 6
1.4 Lifting . 8
1.5 Reactive confusion . 9

2 State of the union 11
2.1 Scala.React . 11

2.1.1 Reactive . 12
2.1.2 Evaluation model . 15

2.2 RxJava . 16
2.2.1 Observable . 16
2.2.2 Subscription . 24
2.2.3 Scheduler . 25
2.2.4 Subject . 26
2.2.5 RxAndroid . 29

2.3 ReactiveCocoa . 30
2.3.1 Event and Signal . 31
2.3.2 ProperyType . 36
2.3.3 Action . 37

2.4 Akka Streams . 38
2.4.1 Source . 39
2.4.2 Sink . 40

vii

2.4.3 Flow and RunnableFlow 41
2.4.4 Graph . 43

3 Towards reactive mobile application development 47
3.1 Abstracting the retrieval, manipulation and presentation of

data . 47
3.1.1 On Android . 48
3.1.2 On iOS . 51

3.2 Choosing an architectural pattern 52
3.2.1 State of the art in iOS 52
3.2.2 State of the art in Android 55
3.2.3 Toward a common architecture: MVVM 55

3.3 A case study . 57
3.3.1 A common architecture 57
3.3.2 Implementation on Android 60
3.3.3 Implementation on iOS 71
3.3.4 Considerations . 78

4 Towards reactive event processing 79
4.1 Building a processing pipeline: a case study 79

4.1.1 Implementation on Akka streams 80
4.2 Implementation on RxScala 87

4.2.1 Considerations . 90

5 A conclusive comparison 91
5.1 Operators, Expressions, Declarativness 91
5.2 Hot and Cold, Push and Pull, Back-pressure 92
5.3 Solving problems the reactive way 93

A Functional Programming 95
A.0.1 Entities and value objects 95
A.0.2 Services . 96

A.1 Algebraic data types . 96
A.2 ADTs and Immutability . 99
A.3 Referential trasparency . 102

A.3.1 Equational reasoning 103
A.4 Patterns . 103

A.4.1 Monoid . 103

viii

A.4.2 Functor . 105
A.4.3 Monad . 106

B Future and Promises 111
B.1 Futures . 112
B.2 Promises . 115

C Reactive Streams 117
C.1 Subscriber . 119
C.2 Subscription . 120
C.3 Publisher . 120
C.4 Processor . 121

ix

x

Introduction

After almost 10 years from “The Free Lunch Is Over” article, where the
need to parallelize programs started to be a real and mainstream issue, a
lot of stuffs did happened:

• Processor manufacturers are reaching the physical limits with most
of their approaches to boosting CPU performance, and are instead
turning to hyperthreading and multicore architectures;

• Applications are increasingly need to support concurrency;

• Programming languages and systems are increasingly forced to deal
well with concurrency.

The article concluded by saying that we desperately need a higher-level
programming model for concurrency than languages offer today.

This thesis is an attempt to propose an overview of a paradigm that aims
to properly abstract the problem of propagating data changes: Reactive
Programming (RP). This paradigm proposes an asynchronous non-
blocking approach to concurrency and computations, abstracting from the
low-level concurrency mechanisms.

The first chapter of this thesis will introduce the basics of RP, starting
from simple abstractions and then exploring their main advantages and
drawbacks.

The second chapter will present a detailed overview of some of the most
popular and used frameworks that enable the developer to put RP principles
in practice. This chapter will present the main abstractions and APIs for
each framework, with a particular attention for the style and approach that
the framework itself suggests in respect to the host language used.

xi

The third chapter will propose an approach to solve a particular kind of
modern applications: mobile applications. This chapter will consider iOS
and Android as the reference platforms, and will then explore a common
architectural approach to better express and implement mobile applications.
It won’t be a surprise that RP will have a central role in this chapter.

The fourth chapter will propose an approach to implement event pro-
cessing application. This kind of applications will have an increasing role
in our days, and RP expressiveness can be useful to model and express
applications that interact and compute a lot of real-time data.

Finally, the fifth chapter will conclude the thesis, with some final note
and comparison.

xii

Chapter 1

Reactive programming

When using the imperative programming paradigm, the act of capturing
dynamic values is done only indirectly, through state and mutations. In
this context, the idea of dynamic/evolving values is not a first class value in
the paradigm. Moreover, the paradigm can only capture discrete evolving
values, since the paradigm itself is temporally discrete.

Reactive programming is a programming paradigm that aims to provide
a more declarative way to abstract computations and mutations.

Wikipedia defines reactive programming as:

a programming paradigm oriented around data flows and the
propagation of change. This means that it should be possible to
express static or dynamic data flows with ease in the program-
ming languages used, and that the underlying execution model
will automatically propagate changes through the data flow.

In this definition emerges some key concepts:

• expressing computations in terms of data flows

• change is propagated in a composable way

• the language or framework has to support declarativeness

• all the “plumbing work” is done by the execution model, ensuring that
the actual computation respects the semantics

One of the best examples to describe reactive programming is to think
of a spreadsheet, in which there’re three cells, A, B and C and A is de-
fined as the sum of B and C. Whenever B or C changes, A updates itself.

1

2 CHAPTER 1. REACTIVE PROGRAMMING

The example is really simple and it’s also something that we’re used to
know. Reactive programming is all about propagating changes throughout
a system, automatically.

This chapter will focus on Functional Reactive Programming and
Reactive Programming, in an attempt to provide formal definitions.

1.1 Functional Reactive Programming

Functional reactive programming has its origin with Fran (Functional re-
active animation), a Haskell library for interactive animations by Conal
Elliott. Elliott found it difficult to express the what of an interactive ani-
mation abstracting from the how, and built a set of expressive and recursive
data types, combined with a declarative programming language.

Informally, functional reactive programming is a programming paradigm
that brings a notion of time in the functional programming paradigm, pro-
viding a conceptual framework for implementing reactive systems. In fact,
FRP let the application achieve reactivity by providing constructs for spec-
ifying how behaviors change in response to events.

Elliott says that FRP is all about two main things: denotative and
temporally continuos. Infact, he also likes the term “denotative, continuous-
time programming” to replace functional reactive programming, since it
reduces the confusion.

Always about the denotative part, he means that the paradigm should
be founded on a precise, simple, implementation-independent, composi-
tional semantics that exactly specifies the meaning of each type and build-
ing block. The compositional nature of the semantics then determines the
meaning of all type-correct combinations of the building blocks.

From an Elliott’s quote:

Denotative is the heart and essence of functional programming,
and is what enables precise and tractable reasoning and thus a
foundation for correctness, derivation, and optimization.

About the continuous time part, there’s some confusion. Some claim
that it’s an idea somehow unnatural or impossible to implement considering
the discrete nature of computers. To these issues, Elliott answers in the
following way:

2

CHAPTER 1. REACTIVE PROGRAMMING 3

This line of thinking strikes me as bizarre, especially when com-
ing from Haskellers, for a few reasons: Using lazy functional
languages, we casually program with infinite data on finite ma-
chines. We get lovely modularity as a result [. . .]. There are
many examples of programming in continuous space, for in-
stance, vector graphics, [. . .] I like my programs to reflect how
I think about the problem space rather than the machine that
executes the programs, and I tend to expect other high-level
language programmers to share that preference.

Another name that Elliott suggests for continuous is resolution-independent,
and thus able to be transformed in time and space with ease and without
propagating and amplifying sampling artifacts. As an example, he proposes
the “finite vs infinite” data structure issue:

We only access a finite amount of data in the end. However,
allowing infinite data structures in the middle makes for a much
more composable programming style. Each event has a stream
(finite or infinite) of occurrences. Each occurrence has an asso-
ciated time and value.

Fran integrates general ideas from synchronous data-flow languages into
the non-strict, pure functional language Haskell. It takes a monadic ap-
proach and encapsulates operations over time-varying values and discrete
events into data structures that are evaluated by an interpreter loop. The
main idea of FRP is to model user inputs as functions that change over
time.

1.1.1 Behaviors and Event Streams

FRP introduces two special abstractions:

• behaviors or signals, values that are continuous functions of time.

• event streams, values which are discrete functions of time.

Behaviors are dynamic/evolving values, and are first class values in
themselves. Behaviors can be defined and combined, and passed into and
out of functions.

3

4 CHAPTER 1. REACTIVE PROGRAMMING

Behaviors are built up out of a few primitives, like constant (static)
behaviors and time (like a clock), and then with sequential and parallel
combination. n-behaviors are combined by applying an n-ary function (on
static values), “point-wise”, i.e., continuously over time.

In other terms, a Behavior simply sends values over time until it
either completes, or errors out, at which point it stops sending values
forever.

Examples of behaviours are the following:

• time

• a browser window frame

• the cursor position

• the position of an image during an animation

• audio data

• . . .

Events enable to account for discrete phenomena, and each of it has a
stream (finite or infinite) of occurrences. Each occurrence is a value paired
with a time. Events are considered to be improving list of occurrences.

Formally, the points at which an event stream is defined are termed
events and events are said to occur on an event stream.

Examples of event streams are the following:

• timer events

• key presses

• mouse clicks

• MIDI data

• network packets

• . . .

Every instance of FRP conceptually includes both behaviors and events.
The classic instance of FRP takes behaviors and events as first-class values.

1.2 Evaluation model

The core of languages that support Reactive Programming is about how
changes are propagated. From the programmer’s point of view this

4

CHAPTER 1. REACTIVE PROGRAMMING 5

should be as much transparent as possible. In other words, a change of a
value is automatically propagated to all dependent computations without
the user has to manually propagate the changes by himself.

At the language level this means that there should be a mechanism that
is triggered when there’s an event occurrence at an event source. This mech-
anism will fire a notification about the changes to dependent computations
that will possibly trigger a recomputation, and so on.

The issue of who initiates the propagation of changes is a really impor-
tant decision in designing a language or a framework that supports RP.

In simple terms the question is whether the source should push new data
to its dependents (consumers) or the dependents should pull data from the
event source (producer).

Figure 1.1: Push- Versus Pull-based evaluation model, from the paper “A
survey on Reactive Programming”

In the literature there are two main evaluation models:

• Pull-Based, in which the computation that requires a value has to
pull it from the source. The propagation is said to be demand-driven.
The pull model has been implemented in Fran, also thanks to the
lazy evaluation of Haskell. A main trait of this approach is that the
computation requiring the value has the liberty to only pull the new
values when it actually needs it. From another point of view, this trait
can lead to a significant latency between an occurrence of an event
and when its reactions are triggered.

5

6 CHAPTER 1. REACTIVE PROGRAMMING

• Push-Based, in which when the event source has new data it pushes
the data to its dependent computations. The propagation is said to
be data-driven. An example of a recent implementation that uses this
model is Scala.React, that will be introduced later in this thesis. This
approach also brings the issue of wasteful recomputation, since every
new data that is pushed to the consumer triggers a recomputation.

Typically, reactive programming languages use either a pull-based or
push-based model, but there are also languages that employ both ap-
proaches. In latter case there’ve both the benefits of the push-based model
(efficiency and low latency) and those of the pull-based model (flexibility of
pulling values based on demand).

1.3 Glitches

A glitch is a temporary inconsistency in the observable state. Due
to the fact that updates do not happen instantaneously, but instead take
time to compute, the values within a system may be transiently out of
sync during the update process. This may be a problem, depending on how
tolerant the application is of occasional stale inconsistent data. For example,
consider a computation that is run before all its dependent expressions are
evaluated and that can result in fresh values being combined with stale
values.

The paper “A Survey on Reactive Programming” by Bainomugisha et
al. depict the problem with the following program:

var1 = 1

var2 = var1 * 1

var3 = var1 + var2

The image related to the program above shows how the state of the
program results incorrect (var3 is evaluated as 3 instead of 4) and that this
also leads to a wasteful recomputation (since var3 is computed one time
more than the necessary).

Glitches only happen when using a push-based evaluation model and can
be avoided by arranging expressions in a topologically sorted graph. This
implementation detail ensures that an expression is always evaluated after
all its dependants have been evaluated.

6

CHAPTER 1. REACTIVE PROGRAMMING 7

Figure 1.2: Momentary view of inconsistent program state and recomputa-
tion.

7

8 CHAPTER 1. REACTIVE PROGRAMMING

1.4 Lifting

The term lifting is used to depict the process of converting an ordinary
operator to a variant that can operate on behaviors. This process is essential
for the end user of the language/framework, since it ensures conciseness and
composability. In other words, lifting is used to move from the non-reactive
world to reactive behaviors.

Lifting a value creates a constant behavior while lifting a function
applies the function continuously to the argument behaviors. There
is no similar lifting operation for events, since an event would need an
occurrence time as well as a value.

Lifting an operation can be formalized by the following definition, as-
suming functions that only take one parameter (generalising to functions
that take multiple arguments is trivial):

lift : f(T)→ flifted(Behavior < T >).

The flifted function can now be applied to behaviors that holds values of
type T . Lifting enables the language or framework to register a dependency
graph in the application’s dataflow graph.

Starting from the previous definition, the evaluation of a lifted function
called with a behavior at the time step i can be formalized as follows:

flifted(Behavior < T >)→ f(Ti).

where Ti is the value of the behavior at the time step i.
In the literature there are at least three main lifting strategies:

1. Implicit lifting, that happens when an ordinary language operator
is applied on behaviour and it is automatically lifted. Dynamically
typed languages often use implicit lifting. Formally:

f(b1)→ flifted(b1).

2. Explicit lifting, usually used by statically typed languages. In this
case the language provides a set of combinators to lift ordinary oper-
ators to operate on behaviors. Formally:

lift(f)(b1)→ flifted(b1).

8

CHAPTER 1. REACTIVE PROGRAMMING 9

3. Manual lifting, when the language does not provide lifting operators.
Formally:

f(b1)→ f(currentV alue(b1)).

1.5 Reactive confusion

In these days reactive programming and functional reactive pro-
gramming are two terms that create a lot of confusion, and maybe are
also over-hyped.

The definitions that come from Wikipedia are still pretty vague and
only FRP introduced by Connal Elliott has a clear and simple denotative
semantics. In advance to this, Elliott himself doesn’t like the name he gave
to the paradigm.

The concepts behind these newly introduced paradigms are pretty simi-
lar. Reactive programming is a paradigm that facilitates the development of
applications by providing abstractions to express time-varying values and
automatically propagating the changes : behaviors and events. Functional
reactive programming can be considered a “sibling” of reactive program-
ming, providing composable abstractions. Elliot identifies the key advan-
tages of the functional reactive programming paradigm as: clarity, ease of
construction, composability, and clean semantics.

In 2013 Typesafe launched http://www.reactivemanifesto.org, which tried
to define what reactive applications are. The reactive manifesto didn’t in-
troduce a new programming paradigm nor depicted RP as we intended RP
in this thesis. What the reactive manifesto did instead was to depict some
really relevant computer science principles about scalability, resilience and
event-driven architectures, and RP is one of the tools of the trade.

Erik Meijer, in his talk “Duality and the End of Reactive”, concluded
that all the hype and the buzzwords around the “reactive world” has no
sense, and that the core of the paradigm is all about composing side
effects. In his talk and related papers, he depicted the duality that links
enumerables and observables.

In short, an enumerator is basically a getter with the ability to fail
and/or terminate. It might also return a future rather than a value. An
iterable is a getter that returns an iterator. If we take the category-
theoretic dual of these types we get the observer and observable types.

9

10 CHAPTER 1. REACTIVE PROGRAMMING

Table 1.1: The essential effects in programming
One Many

Synchronous T/Try[T] Iterable[T]
Asynchronous Future[T] Observable[T]

And this conclusion is what let us to relate all the principal effects in pro-
gramming, where in one axis there’s is the nature of the computation (sync
or async) and in the other one there’s the cardinality of the result (one or
many).

10

Chapter 2

State of the union

The previous chapter quickly introduces the basic notions of RP. This chap-
ter will give an overview of the state of the art for RP frameworks.

This thesis author arbitrarily choose four relevant libraries:

• Scala.React

• RxJava

• ReactiveCocoa

• Akka Streams

2.1 Scala.React

Scala.React is a framework that has been introduced with the paper “Dep-
recating the Observer Pattern” from Maier, Odersky and Rompf. The key
concepts around Scala.React originate in Elliot’s FRP, and Scala.React aims
to provide a combinator-based approach for reactive programming.

The paper depicts how the observer pattern should be considered an
anti-pattern, since it violates a lot of software engineering principles such as
encapsulation, composability, separation of concerns, scalability, uniformity,
abstraction, semantic distance..

The authors aims to provide and depict an efficient use of object-oriented,
functional, and data-flow programming principles to overcome the limita-
tions of the existing approaches.

After many years from its presentation, the framework seems to be an
academic library that can be neglectable in favor of the RxScala/RxJava

11

12 CHAPTER 2. STATE OF THE UNION

library. For the author of this thesis, the paper is really meaningful in the
context of this thesis, since it introduces a set of abstractions that are close
to the original model of FRP from Elliot.

2.1.1 Reactive

Following the idea to provide APIs that starts with basic event handling
and ends in an embedded higher-order dataflow language, the framework
introduces a generic trait Reactive, that factors out the possible concrete
abstractions in the following way:

trait Reactive[+Msg, +Now] {

def current(dep: Dependant): Now

def message(dep: Dependant): Option[Msg]

def now: Now = current(Dependent.Nil)

def msg: Msg = message(Dependent.Nil)

}

The trait Reactive is defined based on two type parameters: one for
the message type an instance emits and one for the values it holds.

Starting from the previous base abstraction, two further types can be
defined:

trait Signal[+A] extends Reactive[A,A]

trait Events[+A] extends Reactive[A,Unit]

The difference between the two types can be seen directly in the types:

• In Signal, Msg and Now types are identical.

• In Events, Msg and Now types differ. In particular, the type for
the type parameter Now is Unit. This means that for an instance
of Events the notion of “current value” has no sense at all.

The two subclasses need to implement two methods, which obtain reac-
tive’s current message or value and create dependencies in a single turn.

The next two sections will better examine the two abstraction introduced
here.

NB: the examples and code provided in this chapter have been taken
directly from the paper itself.

12

CHAPTER 2. STATE OF THE UNION 13

Events

The first type to take in consideration is the Event type.
To simplify the event handling logic in an application, the framework

provides a general and uniform event interface, with EventSource. An
EventSource is an entity that can raise or emit events at any time. For
example:

val es = new EventSource[Int]

es raise 1

es raise 2

To attach a side-effect in response to an event, an observer has to ob-
serve the event source, providing a closure. Continuing with the previous
example, the following code prints all events from the event source to the
console.

val ob = observe(es) { x =>

println("Receiving " + x)

}

...

ob.dispose()

observe() returns an handle of the observer,that can be used to unin-
stall and dispose the observer prematurely, via its dispose() method. This
is a common pattern in all of the other frameworks/libraries presented in
this thesis.

The basic types for events handling are pretty neat and simple to reason
about, since they are first-class values. The usage of these types starts to
be helpful only if combined with a set of operators, that enables developers
to build better and declarative abstraction.

For example, the Events trait defines some common operators as follows:

def merge[B>:A](that: Events[B]): Events[B]

def map[B](f: A => B): Events[B]

def collect[B](p: PartialFunction[A, B]): Events[B]

When building abstractions, the developer doesn’t need to take care of
the events propagation, since the framework itself provides this.

13

14 CHAPTER 2. STATE OF THE UNION

Signal

The Signal type represents the other half of the story.
In programming a large set of problems is about synchronizing data

that changes over time, and signals are introduced to overcome these
needs.

In simple words, a Signal is the continuous counterpart of trait Events
and represents time-varying values, maintaining:

• its current value

• the current expression that defines the signal value

• a set of observers: the other signals that depend on its value

A concrete type for Signal is the Var, that abstract the notion of vari-
able signal and is defined as follows:

class Var[A](init: A) extends Signal[A] {

def update(newValue: A): Unit = ...

}

A Var’s current value can change when somebody calls an update()

operation on a it or the value of a dependant signal changes.
Constant signals are represented by Val:

class Val[A](value: A) extends Signal[A]

To compose signals, the framework doesn’t provide combinator methods
at all, but introduce the notion of signal expressions, indeed. To better
explain the concept, let’s look at a simple example.

val a = new Var(1)

val b = new Var(2)

val sum = Signal{ a()+b() }

observe(sum) { x => println(x) }

a()= 7

b()= 35

14

CHAPTER 2. STATE OF THE UNION 15

Signals are primarily used to create variable dependencies as seen above.
In other words, the framework itself already performs all the “plumbing
work” of connecting the dependencies and propagating the changes.

The framework and the Scala language provide a convenient and simple
syntax to get and update the current value of a Signal, and also to create
variable dependencies between signals. For example:

• the code Signal{ a()+b() } creates a dependencies that binds the
changes from a and b to be propagated and evaluated in the sum signal

• the code a()= 7 is evaluated as a.update(7)

• the framework also provide an implicit converter that enables to create
easily Val signals

2.1.2 Evaluation model

Scala.React’s propagation model is push-driven, and uses a topologically
ordered dependency graph. This implementation detail ensures that an
expression is always evaluated after all its dependants have been evaluated,
so glitches can’t happen.

Scala.React proceeds in propagation cycles. The system is either in a
propagation cycle or, if there are no pending changes to any reactive, idle.
The model of time the system use is a discrete one.

Every propagation cycle has two phases: first, all reactives are synchro-
nized so that observers, which are run in the second phase, cannot observe
inconsistent data. During a propagation cycle, the reactive world is paused,
i.e., no new changes are applied and no source reactive emits new events or
changes values.

A propagation cycle proceeds as follows:

1. Enter all modified/emitting reactives into a priority queue with the
priorities being the reactives’ levels.

2. While the queue is not empty, take the reactive on the lowest level
and validate its value and message. The reactive decides whether it
propagates a message to its dependents. If it does so, its dependents
are added to the priority queue as well.

15

16 CHAPTER 2. STATE OF THE UNION

Table 2.1: The essential effects in programming
One Many

Synchronous T/Try[T] Iterable[T]
Asynchronous Future[T] Observable[T]

2.2 RxJava

The table represents a possible classification of the effects in programming.
All the theory and the development of the reactive extensions libraries

started with an intuition of Erik Meijer, that theorized that iterable/iterator
are dual to observable/observer. And this hypothesis is what let us to
relate all the principal effects in programming, where in one axis there’s is
the nature of the computation (sync or async) and in the other one there’s
the cardinality of the result (one or many).

The appendix on futures and promises covers the case of a computa-
tion that returns a single value. This chapter will focus on the abstraction
of Observables, analyzing RxJava as a case of study.

As the title of the repository states, RxJava is a library for composing
asynchronous and event-based programs using observable sequences for the
JVM.

The library was heavily inspired by Rx.NET by Microsoft and is de-
veloped by Netflix and other contributors. The code is open source and
recently, after 2 years of development, has reached the 1.0 version.

RxJava is also conform to the Reactive Streams initiative (see the ap-
pendix), and this means that the hard problem of propagating and reacting
to back-pressure has been incorporated in the design of RxJava already,
and also that it interoperate seamlessly with all other Reactive Streams
implementations.

2.2.1 Observable

The fundamental entity of RxJava is the Observable type. An observable
is a sequence of ongoing event ordered in time.

An Observable can emit 3 types of item:

• values

• error

16

CHAPTER 2. STATE OF THE UNION 17

• completion event

RxJava provides a really nice documentation, with also some graphical
diagrams, called marble diagrams.

Figure 2.1: A marble diagram

A marble diagram depicts how a an Observable and an Operator be-
have:

• observables are timelines with sequence of symbols

• operators are rectangles, that accepts in input the upper observable
and return in output the lower one

In RxJava, an Observable is defined over a generic type T, the type of
its values, as follows:

class Observable<T> { ... }

An Observable can emit - in order - zero, one or more values, an
error or a completion event.

An Observable is an immutable entity, so the only way to change the
sequence of values it emits is through the application of an operator and
the subsequent creation of a new Observable.

17

18 CHAPTER 2. STATE OF THE UNION

An entity can subscribe its interest in the values coming from an Observalbe

through its subscribe() method, that accepts one, two or three Action

parameters (that correspond to the onNext(), onError() and onComplete(

) callbacks).
The classic “Hello, World” example in RxJava and Java 8 is the follow-

ing:

Observable.just("Hello, world!").subscribe(s -> System.out.println(s));

The Observable type provides some convenience methods that return
an observable with the given specification. An incomplete list of these is
the following:

• just(): convert an object or several objects into an Observable that
emits that object or those objects

• from(): convert an Iterable, a Future, or an Array into an Observ-
able

• empty(): create an Observable that emits nothing and then com-
pletes

• error(): create an Observable that emits nothing and then signals
an error

• never(): create an Observable that emits nothing at all

• create(): create an Observable from scratch by means of a function

• defer(): do not create the Observable until a Subscriber subscribes;
create a fresh Observable on each subscription

• . . .

Usually, observables created with these methods are used in conjunction
with other observables and operators, to create more complex logics.

Operator

In RxJava, operators are what enable the developer to model the actual
computation. An operator allows performing almost every type of ma-
nipulation on the source observer in a declarative way.

Expressing a computation in terms of a stream of values is translated in
building a chain of proper operators. Usually, looking at the signatures

18

CHAPTER 2. STATE OF THE UNION 19

and at the types of the operators is really helpful when choosing which
operator is the right one for the goal to achieve.

An operator, to be applicable to an Observable, has to implement the
Operator interface and has to be lifted. The lift function lifts a function
(inside an Operator) to the current Observable and returns a new Observ-
able that when subscribed to will pass the values of the current Observable
through the Operator function.

Operators are methods of the Observable class, so creating a chain
of operators starting from a source observable is a pretty straightforward
process.

RxJava provides a huge set of operators, and a lot of them is defined in
terms of other ones. What follows is only a small introductive subset.

Map
Map is an operator that returns an Observable that applies a specified

function to each item emitted by the source Observable and emits the
results of these function applications. Its marble diagram is the following.

Figure 2.2: Map operator

To better clarify the concept of lifting introduced previously, let’s also
look at the definition and implementation for Map.

public final <R> Observable<R> map(Func1<? super T, ? extends R> func) {

return lift(new OperatorMap<T, R>(func));

}

19

20 CHAPTER 2. STATE OF THE UNION

...

public final class OperatorMap<T, R> implements Operator<R, T> {

private final Func1<? super T, ? extends R> transformer;

public OperatorMap(Func1<? super T, ? extends R> transformer) {

this.transformer = transformer;

}

public Subscriber<? super T> call(final Subscriber<? super R> o) {

return new Subscriber<T>(o) {

public void onCompleted() {

o.onCompleted();

}

public void onError(Throwable e) {

o.onError(e);

}

public void onNext(T t) {

try {

o.onNext(transformer.call(t));

} catch (Throwable e) {

onError(OnErrorThrowable.addValueAsLastCause(e, t));

}

}

};

}

}

FlatMap
FlatMap returns an Observable that emits items based on applying

a function that is supplied to each item emitted by the source
Observable, where that function returns an Observable, and then
merging those resulting Observables and emitting the results of this merger.

Filter
Filter is quite obvious.

20

CHAPTER 2. STATE OF THE UNION 21

Figure 2.3: FlatMap operator

Figure 2.4: Filter operator

21

22 CHAPTER 2. STATE OF THE UNION

Scan
Scan returns an Observable that applies a specified accumulator

function to the first item emitted by a source Observable, then feeds
the result of that function along with the second item emitted by the
source Observable into the same function, and so on until all items have
been emitted by the source Observable, and emits the final result from the
final call to your function as its sole item.

Figure 2.5: Scan operator

Take
Take returns an Observable that emits only the first n items emitted by

the source Observable.
A complex example

// Returns a List of website URLs based on a text search

Observable<List<String>> query(String text) { ... }

// Returns the title of a website, or null if 404

Observable<String> getTitle(String URL){ ... }

query("Hello, world!") // -> Observable<List<String>>

.flatMap(urls -> Observable.from(urls)) // -> Observable<String>

.flatMap(url -> getTitle(url)) // -> Observable<String>

.filter(title -> title != null)

.doOnNext(title -> saveTitle(title)) // extra behavior

22

CHAPTER 2. STATE OF THE UNION 23

Figure 2.6: Take operator

// -> Observable<Pair<Integer, String>>

.map(title -> new Pair<Integer, String>(0, title))

.scan((sum, item) -> new Pair<Integer, Word>(sum.first + 1, item.second))

.take(5)

.subscribe(indexItemPair ->

System.out.println("Pos: " + indexItemPair.first + ": title:" +

indexItemPair.second));

The example starts with the hypothesis of having two methods that
returns observable, for example coming from the network layer of an appli-
cation. query return a list of url given a text and getTitle returns the
title of a website or null.

The computation aims to return all the title of the websites that match
the “Hello, World!” string.

The code itself is pretty self-explanatory, and shows how concise and
elegant a computation can be using the approach suggested by RxJava in
respect to its imperative-style counterpart.

Error handling

The previous sections introduced the basics of Observable and Operator.
This section will introduce how errors are handled in RxJava.

23

24 CHAPTER 2. STATE OF THE UNION

As introduced previously, every Observable ends with either a single call
to onCompleted() or onError().

What follows is an example of a chain of operators that contains some
transformation that may also fail.

Observable.just("Hello, world!")

.map(s -> potentialException(s))

.map(s -> anotherPotentialException(s))

.subscribe(new Subscriber<String>() {

@Override

public void onNext(String s) { System.out.println(s); }

@Override

public void onCompleted() { System.out.println("Completed!"); }

@Override

public void onError(Throwable e) { System.out.println("Ouch!"); }

});

The onError() callback is called if an Exception is thrown at any
time in the chain, thus the operators don’t have to handle exceptions in
first place since they are propagated to the Subscriber, which has to
manage all the error handling.

2.2.2 Subscription

In RxJava, Subscription is an abstraction that represents the link between
an Observable and a Subscriber.

A subscription is a quite simple type:

public interface Subscription {

public void unsubscribe();

public boolean isUnsubscribed();

}

The main usage for subscription is in its unsubscribe() method, that
can be used to stop the chain, terminating wherever it is currently
executing code.

24

CHAPTER 2. STATE OF THE UNION 25

CompositeSubscription is another useful type, that simplify the man-
agement of multiple and related subscriptions. A composite subscription
comes with an algebra that defines the behaviors of its methods:

• add(Subscription s), adds a new Subscription to the Compos-
iteSubscription; if this is unsubscribed, will explicitly unsubscribing
the new Subscription as well

• remove(Subscription s), removes a Subscription from the Com-
positeSubscription, and unsubscribes the Subscription

• unsubscribe(), unsubscribes to all subscriptions in the Composite-
Subscription

• unsubscribing inner subscriptions has no effect on the composite sub-
scription

2.2.3 Scheduler

In the previous sections a lot of concepts have been introduced. This section
will cover one of the most important aspects of the framework: schedulers.

A scheduler is an object that schedules unit of work, and it’s implemented
through the the Scheduler type. This type allows to specify in which
execution context the chain or part of the chain has to run. In particular,
the developer can choose in which thread:

• an Observable has to run, with subscribeOn()

• a Subscriber has to run, with observeOn()

The framework already provide some schedulers:

• immediate(), that executes work immediately on the current thread

• newThread(), that creates a new Thread for each job

• computation(), that can be used for event-loops, processing call-
backs and other computational work

• io(), that is intended for IO-bound work, based on an Executor
thread-pool that will grow as needed

A really nice feature is the fact that applying the execution of a chain
to a particular scheduler doesn’t break the chain of operators, keeping the
code clean and with a good level of declarativness.

25

26 CHAPTER 2. STATE OF THE UNION

An example of usage of schedulers is the following, in which an image is
fetched from the network and then processed. A network request is a typical
io-bound operation and it’s performed in io() scheduler, while a processing
operation is a cpu-bound operation and it’s performed in a computation()

scheduler.

myObservableServices.retrieveImage(url)

.subscribeOn(Schedulers.io())

.observeOn(Schedulers.computation())

.subscribe(bitmap -> processImage(bitmap));

2.2.4 Subject

Subject is a further entity that is provided by the framework. A Subject is
a sort of bridge or proxy that acts both as an observer and as an Observable:

• because it is an observer, it can subscribe to one or more observ-
ables

• because it is an Observable, it can pass through the items it observes
by re-emitting them, and it can also emit new items

Subject has the “power” of turning a cold observable hot. In
fact, when a Subject subscribes to an Observable, it will trigger that
Observable to begin emitting items (and if that Observable is “cold” —
that is, if it waits for a subscription before it begins to emit items). This
can have the effect of making the resulting Subject a “hot” Observable

variant of the original “cold” Observable.

The framework provides a wide range of subjects, each one with its own
semantics. What follows is an overview of the main popular and used.

PublishSubject

PublishSubject emits to an observer only those items that are emitted by
the source Observable(s) subsequent to the time of the subscription. This
means that an observer will not receive the previous emitted items.

26

CHAPTER 2. STATE OF THE UNION 27

Figure 2.7: PublishSubject

Figure 2.8: ReplaySubject

27

28 CHAPTER 2. STATE OF THE UNION

ReplaySubject

ReplaySubject emits to any observer all of the items that were emitted
by the source Observable(s), regardless of when the observer subscribes.
To keep the memory consumption limited, this subject also use a bounded
buffer that enable to discard old items when the limit size has been reached.

AsyncSubject

Figure 2.9: AsyncSubject

An AsyncSubject caches and only remember the last value of the Ob-
servable, and only after that source Observable completes emits that value.

BehaviorSubject

When an observer subscribes to a BehaviorSubject, it begins by emitting
the item most recently emitted by the source Observable (or a seed/default
value if none has yet been emitted) and then continues to emit any other
items emitted later by the source Observable(s).

In practice, it’s really similar to the Behavior notion from Elliot’s FRP.

28

CHAPTER 2. STATE OF THE UNION 29

Figure 2.10: BehaviorSubject

2.2.5 RxAndroid

The previous sections cover all the main topic of RxJava. This section will
go a step further, introducing some additional features that bring RxJava
to the Android ecosystem.

RxAndroid is a separate module of RxJava that gives some useful
bindings to the developer.

The AndroidSchedulers package provides some specific scheduler for
the Android threading system.

The additional schedulers provided are:

• AndroidSchedulers.mainThread(), that will execute an action on
the main Android UI thread

• AndroidSchedulers.handlerThread(Handler handler), that uses
the provided Handler to execute an action

A typical example of the usage of mainThread() is the following, that
performs a download in the scheduler io() and the show the image to the
user:

service.getImage(url)

29

30 CHAPTER 2. STATE OF THE UNION

.subscribeOn(Schedulers.io())

.observeOn(AndroidSchedulers.mainThread())

.subscribe(bitmap -> myImageView.setImageBitmap(bitmap));

ViewObservable is another feature that adds some bindings for an-
droid View that returns observables of events that come from the UI, such
as:

• clicks(), that emits a new item each time a View is clicked

• text(), that emits a new item each time a TextView’s text content
is changed

• input(), same as above, for CompoundButtons

• itemClicks(), same as above, for AdapterViews

These methods are useful to bind the events from the user of an applica-
tion, reifying its action and reacting with some operation, in a declarative
way.

2.3 ReactiveCocoa

ReactiveCocoa (RAC) is an opensource framework for FRP, developed by
Github for the iOS and OS X platforms. RAC has been around for some
years now. It started as an Objective-C framework and now it’s object
of an almost-complete rewrite using the brand new language introduced by
Apple, Swift.

At the time of writing (may/june/july 2015), RAC 3.0 is in beta. The 3.0
version offers new APIs in Swift, that are also mostly backward compatible
with version 2.0 (that is written in Objective-C).

Using Swift, the APIs now have a better and cleaner form. In fact, Swift
is a language that allows to build composable abstraction pretty easily, sup-
porting immutability (value types vs reference types), high-order functions,
optionals, custom operators, etc. . .

In the community of iOS and OS X developers RAC is an emerging
trend that is clearly gaining the attention of an increasing number of users,
confirming the general trend of RP and FRP in our industry.

30

CHAPTER 2. STATE OF THE UNION 31

2.3.1 Event and Signal

The first abstraction that the framework introduces is the notion of event.
An event enables to account for discrete phenomena, and each of which has
a stream (finite or infinite) of occurrences. Each occurrence is a value paired
with a time. Events are considered to be improving list of occurrences. Or,
in simpler words, events are things that happen.

In RAC, events are first-class citizens, with the following type:

public enum Event<T, E: ErrorType> {

case Next(Box<T>)

case Error(Box<E>)

case Completed

case Interrupted

}

The Event type, taken alone, doesn’t say much. It’s just an enum with
some possible related values.

In Swift, an enum is a value type that defines a common type
for a group of related values and enables you to work with those
values in a type-safe way within your code.

The other fundamental type in RAC is the Signal type, defined as:

public final class Signal<T, E: ErrorType>

A signal is just a sequence of events in time that is conforms to the
grammar Next* (Error | Completed | Interrupted)?. The grammar in-
troduces a precise semantics and clarify the meaning of the concrete possible
instances for the Event type:

• .Next represents an event that carry information of a given type T

• .Error represents an event that carry an error of a given type E

• .Completed represents a successful terminal event

• .Interrupted represents an event that indicates that the signal has
been interrupted

31

32 CHAPTER 2. STATE OF THE UNION

Just like RxJava’s Observable, also RAC’s signal can be distincted in two
main categories: hot and cold signals. The main difference from RxJava’s
implementation is that in RAC this fundamental distinction can be found di-
rectly in the types. In fact, RAC defines Signalas hot and SignalProducer

as cold signals.
NB : the previous introduction of Signal is general and applicable on

both Signal and SignalProducer.
The next sections will go deeper and explore more on Signals and Sig-

nalProducers.

Signal

As introduced previously, Signal implements the abstraction of hot signal
as a signal that typically has no start and no end.

A typical practical example for this type can be represented by the press
events of a button or the arrival of some notifications. They are just events
that happens with no relevance of the fact that someone is observing them.

Using a popular philosophical metaphor:

If a tree falls in a forest and no one is around to hear it, it does
make a sound.

Looking at the documentation, a Signal is defined as a push-driven
stream that sends Events over time. Events will be sent to all observers
at the same time. So, if a Signal has different observers subscribed to its
events, every observer will always see the same sequence of events.

The documentation says another crucial thing that clarifies the mod-
elling choice made by the developers:

Signals are generally used to represent event streams that are
already “in progress”, like notifications, user input, etc. To rep-
resent streams that must first be started, see the SignalProducer
type.

The RAC’ maintainers decided to keep the distinction between hot
and cold Signal at the type level, so RAC offers both the Signal and
SignalProducer types.

The Signal type is defined as follows:

32

CHAPTER 2. STATE OF THE UNION 33

class Signal<T, E: ErrorType> {

...

}

Signal is parameterized over T, the type of the events emitted by the
signal and E, the type that denotes the errors.

A Signal can be created by passing to the initializer a generator clo-
sure, which is then invoked with a sink of type SinkOf<Event<String,
NoError>>. The sink is then used by the closure to forward events to
the Signal through the sendNext() method. A similar approach has been
implemented also by Akka Streams.

In many cases, a stream of events that has no start and no
end can’t terminate with an error. A simple example of this case is
a stream of press events from a button. To overcome this possibility, RAC
introduces the type NoError, meaning that the signal can’t error out.

For the “button example”, the type for the related signal might be
Signal<Void, NoError>, which means:

• the user of the signal only cares about the occurrence of the event, no
further information will be provided

• the signal can’t error out, since in this particular case it has no sense
to model the fact that a button press can fail

The button example is just one of many others. If we consider the
amount of events that come from the UI, a lot of trivial examples come out
quickly:

• a signal that models the changes of a text field

• a signal that models the arrival of notifications (remote, local, etc. . .)

• any other signal created combining other signals

• . . .

An example for the creation of a Signal is the following, taken from a
blog post of Colin Eberhardt, where a new String is produced every second.

func createSignal() -> Signal<String, NoError> {

var count = 0

return Signal {

33

34 CHAPTER 2. STATE OF THE UNION

sink in

NSTimer.schedule(repeatInterval: 1.0) { timer in

sendNext(sink, "tick #\(count++)")

}

return nil

}

}

To attach some side effect at each Next, Error or Completed event
that is produced by a Signal, an observer has to register its interest using
observe. The observe operator accepts some closures or functions for any
of the event types the user of the API is interested in.

The real deal in using Signals is their power in term of declarativeness
when combining Signals with operators to create new Signals to work with.

In RAC, all operations that can be applied to signals are simply free
functions, in contrast to the “classical-method-definition-on-the-Signal-
type approach”. As an example, the map operator signature is defined as
follows, with the Signal on which the transformation will be applied passed
as an argument:

public func map<T, U, E>(transform: T -> U)

(signal: Signal<T, E>) -> Signal<U, E> {

...

}

To keep the APIs fluent RAC also introduces the pipe-forward operator
|>, defined as follows:

public func |> <T, E, X>(signal: Signal<T, E>,

transform: Signal<T, E> -> X) -> X {

return transform(signal)

}

The |> operator doesn’t do anything special, since it only creates a
specification.

RAC already offers a numbers of built in operators as free functions,
such as combineLatest, zip, takeUntil, concat, . . .

A complete but simple example of usage of all of the aspects introduced
is the following:

34

CHAPTER 2. STATE OF THE UNION 35

createSignal()

|> map { $0.uppercaseString }

|> observe(next: { println($0) })

The beauty of this approach is that the chain of operations fits the
types of each operation, so when the code compiles (and if the user of the
APIs has learned the semantics of each operators) the computation acts as
expected. All the relevant work for the newcomers of the paradigm consist
in taking the time needed to learn the basics and play with the types and
the operators.

SignalProducer

The previous section introduced Signal as the type that implements the
“hot signal” abstraction. This section will cover the other half of the story.

In RAC, “cold signals” are implemented with the SignalProducer

type, defined as follows:

public struct SignalProducer<T, E: ErrorType> {

...

}

The generic types are the same as its “hot” counterpart, and also the
initializer is pretty similar, with a generator closure:

func createSignalProducer() -> SignalProducer<String, NoError> {

var count = 0

return SignalProducer {

sink, disposable in

NSTimer.schedule(repeatInterval: 0.1) { timer in

sendNext(sink, "tick #\(count++)")

}

}

}

Using a popular philosophical metaphor, again:

If a tree falls in a forest and no one is around to hear it, it
doesn’t make a sound.

35

36 CHAPTER 2. STATE OF THE UNION

Or, in other words, if no one subscribes to the SignalProducer, nothing
happens. For SignalProducer, the terminology for subscribing to its events
is start().

If more than one observer subscribe to the same SignalProducer, the re-
sources are allocated for each observer. In the example above, every time an
observer invoke the start() method on the same SignalProducer instance,
a new instance of NSTimer is allocated.

Also on SignalProducers can be applied a wide range of operators. RAC
doesn’t implement all the operators twice for Signal and SignalOperator, but
it offers a pipe-forward operator that lifts the operators and transformation
that can be applied to Signal to also operate on SignalProducer.

The implementation of |>, that applies on the SignalProducer type using
Signal’s operator, is the following:

public func |> <T, E, U, F>(producer: SignalProducer<T, E>,

transform: Signal<T, E> -> Signal<U, F>) -> SignalProducer<U, F> {

return producer.lift(transform)

}

2.3.2 ProperyType

The previous sections introduced the abstractions that RAC offers to de-
scribe signal. This section will introduce other collateral but useful types.

PropertyType is a protocol that, when applied to a property, allows
the observation of its changes. Its definition is as follows:

public protocol PropertyType {

typealias Value

var value: Value { get }

var producer: SignalProducer<Value, NoError> { get }

}

The semantics of this protocol is neat: - the getter return the current
value of the property - the producer return a producer for Signals that will
send the property’s current value followed by all changes over time

Starting from this protocol, RAC introduces: - ConstantProperty, that
represents a property that never change - MutableProperty, that represents

36

CHAPTER 2. STATE OF THE UNION 37

a mutable property - PropertyOf, that represents a read-only view to a
property

These types are really usefull when used in combination with the <~
operator, that binds properties together. The bind operator comes in three
flavors:

/// Binds a signal to a property, updating the property’s

/// value to the latest value sent by the signal.

public func <~ <P: MutablePropertyType>(property: P, signal:

Signal<P.Value, NoError>) -> Disposable {}

/// Creates a signal from the given producer, which will

/// be immediately bound to the given property, updating the

/// property’s value to the latest value sent by the signal.

public func <~ <P: MutablePropertyType>(property: P,

producer: SignalProducer<P.Value, NoError>)

-> Disposable { }

/// Binds ‘destinationProperty‘ to the latest values

/// of ‘sourceProperty‘.

public func <~ <Destination: MutablePropertyType,

Source: PropertyType where Source.Value == Destination.Value>

(destinationProperty: Destination,

sourceProperty: Source) -> Disposable { }

What these operators do is to create the wires that link each property to
each others, in a declarative manner. Each property is observable, through
its inner SignalProducer.

2.3.3 Action

The last concept that RAC APIs introduce is the notion of Action.
An action is something that will do some work in the future. An action

will be executed with an input and will return an output or an error. Its
type is generic, and it’s exposed as:

public final class Action<Input, Output, Error: ErrorType>

37

38 CHAPTER 2. STATE OF THE UNION

The constructor of an Action accepts a closure or a function that creates
a SignalProducer for each input, with the type Input -> SignalProducer<Output,
Error>).

A practical and useful use of Action is in conjunction with CocoaAction,
which is another type that wraps an Action for use by a GUI control, with
key-value observing, or with other Cocoa bindings.

2.4 Akka Streams

Akka Streams is a library that is developed on top akka actors, and aims
to provide a better tool for building ephemeral transformation pipelines.

Akka actors are used as a building block to build a higher abstraction.
Some of the biggest issues on building systems on untyped actor are the
following:

• actors does not compose well

• actors are not completely type safe

• dealing with an high number of actors, with also a complex logic
behind each behaviors, is really error prone and bring back an evil
concept: global state.

An actor can be seen as a single unit of consistency.
From the introduction of the documentation of akka streams:

Actors can be seen as dealing with streams as well: they send
and receive series of messages in order to transfer knowledge
(or data) from one place to another. We have found it tedious
and error-prone to implement all the proper measures in order
to achieve stable streaming between actors, since in addition to
sending and receiving we also need to take care to not overflow
any buffers or mailboxes in the process. Another pitfall is that
Actor messages can be lost and must be retransmitted in that
case lest the stream have holes on the receiving side. When
dealing with streams of elements of a fixed given type, Actors
also do not currently offer good static guarantees that no wiring
errors are made: type-safety could be improved in this case.

38

CHAPTER 2. STATE OF THE UNION 39

To overcome these issues, the developers behind Akka started developing
Akka Streams, a set of APIs that offers an intuitive and safe way to build
stream processing pipelines, with a particular attention to efficiency
and bounded resource usage.

Akka Streams is also conform to the Reactive Streams initiative (see the
appendix), and this means that the hard problem of propagating and react-
ing to back-pressure has been incorporated in the design of Akka Streams
already, and also that Akka Streams interoperate seamlessly with all other
Reactive Streams implementations.

In Akka Streams, a linear processing pipeline can be expressed using the
following building blocks:

• Source: A processing stage with exactly one output, emitting data
elements whenever downstream processing stages are ready to receive
them, respecting their demand.

• Sink: A processing stage with exactly one input, signalling demand
to the upstream and accepting data elements in response, as soon as
they’re produced.

• Flow: A processing stage which has exactly one input and output,
which connects its upstream and downstreams by transforming the
data elements flowing through it.

• RunnableFlow: A Flow that has both ends attached to a Source
and Sink respectively, and is ready to be run().

The APIs also offer another core abstraction to build computation graphs:

• Graphs: A processing stage with multiple flows connected at a single
point.

The next sections will depict all the core abstractions introduced here.

2.4.1 Source

In Akka Streams, a Source is a set of stream processing steps that has one
open output. In Scala, the Source type is defined as follows:

final class Source[Out]

39

40 CHAPTER 2. STATE OF THE UNION

The Out type is the type of the elements the source produces.

It either can be an atomic source or it can comprise any number of
internal sources and transformation that are wired together. Some examples
of the former case is given from the following code, that shows some of the
utility constructor for the Source type.

// Create a source from an Iterable

Source(List(1, 2, 3))

// Create a source from a Future

Source(Future.successful("Hello Streams!"))

// Create a source from a single element

Source.single("only one element")

// an empty source

Source.empty

An example of the latter case is when a Flow is attached to a Source,
resulting in a composite source, as in the following example.

val tweets: Source[Tweet] = Source(...)

val filter: Flow[Tweet, Tweet] = Flow[Tweet].filter(

t => t.hashtags.contains(hashtag))

val compositeSource: Source[Tweet] = tweets.via(filter)

The via() method transforms a source by appending the given pro-
cessing stages, and it’s the glue that enables to build composite sources.

2.4.2 Sink

The dual to the Source type is the Sink type, which abstracts a set of
stream processing steps that has one open input and an attached output.
In Scala the Sink type is defined as follows:

final class Sink[In]

40

CHAPTER 2. STATE OF THE UNION 41

The In type is the type of the elements the sink accepts.
It either can be an atomic sink or it can comprise any number of internal

sinks and transformation that are wired together. Some examples of the
former case is given from the following code, that shows some of the utility
constructor for the Sink type.

// Sink that folds over the stream and returns a Future

// of the final result as its materialized value

Sink.fold[Int, Int](0)(_ + _)

// Sink that returns a Future as its materialized value,

// containing the first element of the stream

Sink.head

// A Sink that consumes a stream without doing

// anything with the elements

Sink.ignore

// A Sink that executes a side-effecting call for every

// element of the stream

Sink.foreach[String](println(_))

An example of the latter case is given by a Flow that is prepend to a
Sink to get a new composite sink, as in the following example:

val sum: Flow[(Long, Tweet), (Long, Tweet)] =

Flow[(Long, Tweet)].scan[(Long, Tweet)](0L, EmptyTweet)(

(state, newValue) => (state._1 + 1L, newValue._2))

val out: Sink[(Long, Tweet)] = Sink.foreach[(Long, Tweet)]({

case (count, tweet) => println(count + " Current tweet: "

+ tweet.body + " - " + tweet.author.handle)

})

val compositeOut: Sink[(Long, Tweet)] = sum.to(out)

2.4.3 Flow and RunnableFlow

The previous sections introduced the two ends of a computation. This
section will introduce the Flow abstraction: a processing stage which has

41

42 CHAPTER 2. STATE OF THE UNION

exactly one input and one output. In Scala, the Flow type is defined as
follows.

class Flow[In, Out]

The Out type is the type of the elements the flow returns and the In

type is the type of the elements the flow accepts.
A RunnableFlow is a flow that has both ends attached to a source and

sink, and represents a flow that can run. A trivial example of RunnableFlow
in action is the following:

val in: Source[Tweet] = Source(...)

val out: Sink[Tweet] = Sink.foreach(println)

val runnableFlow: RunnableFlow = in.to(out)

runnableFlow.run()

As already introduced, Akka Streams implements an asynchronous non-
blocking back-pressure protocol standardised by the Reactive Streams speci-
fication, and the user doesn’t have to manually manage back-pressure han-
dling code manually since this is already provided by the library itself with
a default implementation.

In this regards, there are two main scenarios: slow publisher with
fast subscriber and fast publisher with slow subscriber.

The best scenario is the former, where all the items produced by the
publisher are always delivered to the subscriber with no delay due to a
lack of demand. In fact, the protocol guarantees that the publisher will
never signal more items than the signalled demand, and since the subscriber
however is currently faster, it will be signalling demand at a higher rate,
so the publisher should not ever have to wait in publishing its items. This
scenario is also referred as push mode, since the publisher is never delayed
in pushing items to the subscriber.

The latter case if more problematic, since the subscriber is not able to
keep the pace of the publisher in accepting incoming items and needs to
signal its lack of demand to the publisher. Since the protocol guarantees
that the publisher will never signal more items than the signalled demand,
there the following strategies available:

• not generate items, if it can control its production

42

CHAPTER 2. STATE OF THE UNION 43

• buffering the items within a bounded queue, so the items can be pro-
vided when more demand is signalled

• drop items until more demand is signalled

• as an ultimate strategy, tear down the stream if none of the previous
strategies are applicable

This latter scenario is also referred as pull mode, since the subriber drives
the flow of items.

2.4.4 Graph

Since not every computation is or can be expressed as a linear processing
stage pipeline, Akka Streams also provide a graph-resembling DSL for build-
ing stream processing graphs, in which each node can has multiple inputs
and outputs.

The documentation refers to graph operation as junctions, in which
multiple flows are connected at a single point, enabling to perform any kind
of fan-in or fan-out.

The Flow graph APIs provide a pretty straight forward abstraction:

• Flows represent the connection within the computation graph

• Junctions represent the fan-in and fan-out point to which the flows
are connected

The APIs already provide some of the most useful juctions, like the
following:

• Merge[In] - (N inputs , 1 output) picks randomly from inputs pushing
them one by one to its output

• Zip[A,B] – (2 inputs, 1 output) is a ZipWith specialised to zipping
input streams of A and B into an (A,B) tuple stream

• Concat[A] – (2 inputs, 1 output) concatenates two streams (first con-
sume one, then the second one)

• Merge[In] – (N inputs , 1 output) picks randomly from inputs pushing
them one by one to its output

• Broadcast[T] – (1 input, N outputs) given an input element emits to
each output

43

44 CHAPTER 2. STATE OF THE UNION

The documentation also provide a simple but brilliant example that
illustrates how the DSL provided by the library can be used to express graph
computation keeping a great level of declarativeness and code readability.

The following image shows a graph that expresses a computation in
which:

• the edges are flows

• the nodes are a sink, a source and two junctions

Figure 2.11: A handwritten graph expressing a computation

The corresponding computation can be implemented as follows:

val g = FlowGraph.closed() {

implicit builder: FlowGraph.Builder[Unit] =>

import FlowGraph.Implicits._

val in = Source(1 to 10)

val out = Sink.ignore

val bcast = builder.add(Broadcast[Int](2))

val merge = builder.add(Merge[Int](2))

val f1, f2, f3, f4 = Flow[Int].map(_ + 10)

in ~> f1 ~> bcast ~> f2 ~> merge ~> f3 ~> out

bcast ~> f4 ~> merge

}

When building and connecting each component, the compiler will check
for type correctness and this is a really useful things. The check to control
whether or not all elements have been properly connected is done at run-
time, though.

The framework also provides the notion of partial graph. A partial
graph is a graph with undefined sources, sinks or both, and it’s useful to

44

CHAPTER 2. STATE OF THE UNION 45

structure the code in different components, that will be then connected with
other components. In other words, the usage of partial graphs favours code
composability.

In many cases it’s also possible to expose a complex graph as a simpler
structure, such as a Source, Sink or Flow, since these concepts can be viewed
as special cases of a partially connected graph:

• a source is a partial flow graph with exactly one output

• a sink is a partial flow graph with exactly one input

• a Flow is a partial flow graph with exactly one input and exactly one
output

One last feature that this section will depict and that Akka Stream
supports is the possibility to insert cycles in flow graphs. This feature is
potentially dangerous, since it may lead to deadlock or liveness issues.

The problems quickly arise when there’re unbalanced feedback loops in
the graph. Since Akka Stream is based on processing items in a bounded
manner, if a cycle has an unbounded number of items (for example, when
items always get reinjected in the cycle), the back-pressure will deadlock
the graph very quickly.

A possible strategy to avoid deadlocks in presence of unbalanced cy-
cles is introducing a dropping element on the feedback arc, that will
drop items when back-pressure begins to act.

A brilliant example from the documentation is the following, where a
buffer() is used with a 10 items capacity and a dropHead strategy.

FlowGraph.closed() { implicit b =>

import FlowGraph.Implicits._

val merge = b.add(Merge[Int](2))

val bcast = b.add(Broadcast[Int](2))

source ~> merge ~> Flow[Int].map {

s => println(s); s } ~> bcast ~> Sink.ignore

merge <~ Flow[Int].buffer(10, OverflowStrategy.dropHead) <~ bcast

}

An alternative approach in solving the problem is by building a cycle
that is balanced from the beginning, by using junctions that balance

45

46 CHAPTER 2. STATE OF THE UNION

the inputs. Thus, the previous example can also be solved in the following
manner, with:

• a ZipWith() junction, that will balance the feedback loop with the
source

• a Concat() combined with another Source() with an initial ele-
ment that performs an initial “kick-off”. In fact, using a balancing
operator to balance a feedback loops require an initial element in the
feedback loop, otherwise we fall in the “chicken-and-egg” problem.

FlowGraph.closed() { implicit b =>

import FlowGraph.Implicits._

val zip = b.add(ZipWith((left: Int, right: Int) => left))

val bcast = b.add(Broadcast[Int](2))

val concat = b.add(Concat[Int]())

val start = Source.single(0)

source ~> zip.in0

zip.out.map { s => println(s); s } ~> bcast ~> Sink.ignore

zip.in1 <~ concat <~ start

concat <~ bcast

}

46

Chapter 3

Towards reactive mobile
application development

The first chapter introduced the literature and the main concepts of the
RP paradigm, and the second one depicted some of the main popular and
used libraries and framework for RP. This chapter will propose a concrete
application of the paradigm to some practical use cases that recur pretty
frequently when developing mobile application nowadays.

Thus, this chapter will focus its attention on mobile application devel-
opment, in both the Android and iOS platforms.

The main idea that brings RP to mobile application development is
in the abstraction that considers an app as a function, or as a flow of
user inputs that are continuously evaluated, filtered, combined, and so on,
producing a some sort of outputs and effects.

3.1 Abstracting the retrieval, manipulation

and presentation of data

The first use case proposed is about a quite common set of actions, such as
the retrieval, manipulation and presentation of some sort of data.

Every simple or complex application has at least a part in the app life-
cycle in which it queries some provider (a cache, a local database, a Rest
API) to fetch some resource, so this initial use case can be considered as a
foundational building block for every application.

47

48
CHAPTER 3. TOWARDS REACTIVE MOBILE APPLICATION

DEVELOPMENT

The abstraction of event streams can be used to model this use case in
a pretty straight-forward way.

In the case of a web request, the stream will either emit one value -
containing the body of the response - and succeed, or fail with an error.

In the case of more complex request-response configuration (e.g. a re-
quest that opens a websocket, that then emits and push new data over a
long time) the stream will emit more values, as long as the flow of items
continues, or terminate if a failure occurs.

Abstracting the reception of items is only the first part of the scenario
introduced. Once the application got some kind of data, a certain number
of processing stages can be run over these data. Thus, the notion of event
streams and operators fits really nicely also on this part.

To demonstrate a possible solution of this scenario using an approach
based on RP, lets introduce a sample use case:

The application has to query a webservice that returns a list of
words for a given month. Each word refers to a specific day,
month and year. The application should show all the words in
the given month, sorted by date, with the first one highlighted
with a different color.

3.1.1 On Android

After introducing the use case, the first thing to do is to write down the
types involved in the computation and to provide a class that handles the
network requests, returning an observable with the response. This class will
be part of the network layer of the application, and will expose methods
like the following:

public Observable<List<Word>> getWords(int month, int year);

As a reference, the Word type is the following:

public class Word {

public long id;

public String word;

public int day;

public int month;

48

CHAPTER 3. TOWARDS REACTIVE MOBILE APPLICATION
DEVELOPMENT 49

public int year;

}

The semantics for this observable is pretty simple:

• it yields a single results (the response body) or an error (a network
error, or a server error, etc..)

• it starts the computation each times a consumer subscribes itself to
the observable

NB: for this kind of request, the behavior would also have been imple-
mented with a future.

Once the network layer is in place, all the transformation needed can be
expressed in term of operators.

myServiceProvider.getWords(month, year)

// network operations in io scheduler

.subscribeOn(Schedulers.io())

// Observable<List<Word>> -> Observable<Word>

.flatMap(wordList -> Observable.from(wordList))

// sort elements

.toSortedList((l, r) -> { ...sort predicate... })

// Observable<List<Word>> -> Observable<Word>

.flatMap(list -> Observable.from(list))

// build an Observable<Pair<Integer, Word>>

// (the integer value is the index)

.map(word -> new Pair<>(0, word))

.scan((sum, item) -> new Pair<>(sum.first + 1, item.second))

// build list adapter, highlighting the first element

// Observable<Pair<Integer, Word>> -> Observable<WordListItem>

.map(indexItemPair -> {

WordListAdapter.WordListItem item

49

50
CHAPTER 3. TOWARDS REACTIVE MOBILE APPLICATION

DEVELOPMENT

= new WordListAdapter.WordListItem(indexItemPair.second);

item.setHighlighted(...); // highlight current day item

return item;

})

.toList() // converting to list, since the adapter need a list

// UI update on main thread

.observeOn(AndroidSchedulers.mainThread())

// subscribing to items, errors, ...

.subscribe(

wordItemList -> {

setListAdapter(

new WordListAdapter(wordListActivity, wordItemList));

},

throwable -> {

...

}

);

The code shows some transformations and some usage of the most com-
mon operators of RxJava.

In the code snippet, flatMap is used to transform an Observable<List<Word>>
to an Observable<Word>. This is a pretty common transformation when
dealing with list of elements, and since operators like map, filter, etc..
need to operate on single elements, this operation is essential to build the
chain.

Another pattern is the usages of map in conjunction with scan, to ac-
cumulate the result of a computation. The code presented does the trivial
job of associating to each element its index in the observable, but it’s a use
case useful enough to deserve a citation.

The WordListAdapter and WordListItem classes provide the presenta-
tion of the items.

One last thing to note is the usage of subscribeOn and observeOn, to
keep the main thread responsive.

50

CHAPTER 3. TOWARDS REACTIVE MOBILE APPLICATION
DEVELOPMENT 51

3.1.2 On iOS

On iOS, the problem can be solved using the same conceptual abstractions.
Starting with a network provider that expose the call to the APIs with

the following method signature:

func getWords(month: Int, year: Int) -> SignalProducer<[Word], NSError>

As a reference, the type Word is defined as follows:

public struct Word {

public let id: Int

public let word: String

public let day: Int

public let month: Int

public let year: Int

init(id: Int, word: String, day: Int, month: Int, year: Int){

self.id = id

self.word = word

self.day = day

self.month = month

self.year = year

}

}

Also on iOS, the semantics for this signal producer is pretty simple and
similar to the android counterpart:

• it yields a single results (the response body) or an error (a network
error, or a server error, etc..)

• it starts the computation each times a consumer subscribes itself on
the signal producer

getWords(month, year)

// sort

|> map { words in words.sorted(...) }

51

52
CHAPTER 3. TOWARDS REACTIVE MOBILE APPLICATION

DEVELOPMENT

// SignalProducer<[Word]> -> SignalProducer<Word>

|> flatMap(FlattenStrategy.Merge, {

words in SignalProducer(values: words) })

// build an SignalProducer<(Int, Word)>

// (the integer value is the index)

|> map { word in (0, word) }

|> scan((0, nil), { (last, current) in (last.0 + 1, current.1) })

// observe on UI thread

|> observeOn(UIScheduler())

// start and subscribe to elements, errors, ...

|> start(next: { elem in self.updateView(elem)})

Almost every step of the chain is the same as its android counterpart.
The main difference is that RAC doesn’t offer a method to sort the ele-
ments of a SignalProducer, so, in this case, the elements are filtered at the
beginning of the chain using a method of the Array type.

3.2 Choosing an architectural pattern

This section will explore a fundamental aspect of mobile application devel-
opment: the architectural pattern.

When developing a mobile applications, usually the target platform im-
plicitly or explicitly suggests an architecture.

3.2.1 State of the art in iOS

In the iOS world, Apple encourages the usage of the Model-View-Controller
(MVC) architectural pattern. Quoting the “Start Developing iOS Apps
Today” Apple’s documentation:

MVC assigns the objects in an app to one of three roles: model,
view, or controller. In this pattern, models keep track of your
app’s data, views display your user interface and make up the

52

CHAPTER 3. TOWARDS REACTIVE MOBILE APPLICATION
DEVELOPMENT 53

content of an app, and controllers manage your views. By re-
sponding to user actions and populating views with content from
the data model, controllers serve as a gateway for communica-
tion between the model and views.

Figure 3.1: Traditional MVC in iOS

In its original abstraction, in MVC:

• the user manipulates a view and, as a result, an event is generated

• a controller receives the event and manage apply an application-specific
strategy

• this strategy can consist in requesting a model object to update its
state or in requesting a view object to change its appearance.

• the model object notifies all objects who have registered as observers
when its state changes; if the observer is a view object, it may update
its appearance accordingly.

However, in an attempt to enhance code reusability, Apple suggests de-
velopers to adopt a modified version of MVC, in which there’s a strong
isolation from models and views, and in which controllers act an intermedi-
ary between one or more of an application’s view objects and one or more
of its model objects.

Even if views and view controllers are technically distinct components
and Apple suggests to keep these decoupled, they are almost always paired.
There are a lot reason that cause this trend of strictly coupling a view and
its controller:

53

54
CHAPTER 3. TOWARDS REACTIVE MOBILE APPLICATION

DEVELOPMENT

Figure 3.2: Cocoa version of MVC

• the framework provides a big set of components in which a controller
already has and manages a view (UIViewController, UITableViewController,
UICollectionViewController, UISplitViewController, TabBarController,
. . .)

• the UIViewController class usually contains a lot of UI-related code

• storyboards, that enable developers or designers to define GUIs, rea-
son in term of view controllers and “segue” between view controllers

With this said, it is reasonable to modify the previous model with an
update in which the view and the view controller are paired together.

Figure 3.3: A revised iOS application architecture, in which the view and
the controller are coupled

The iOS community, during the years, has adopted (also unconsciously)
this architectural pattern to design applications. This has often led to what
is called the “Massive View Controller” anti-pattern. The term “Massive”
is used to denote the use and abuse of the view controller entity to host
most of the application logic, grouping functionalities that don’t strictly
relate to the controller entity.

54

CHAPTER 3. TOWARDS REACTIVE MOBILE APPLICATION
DEVELOPMENT 55

3.2.2 State of the art in Android

Android’s documentation is less explicit about the architectural pattern
that developers should use.

At first sight, the overall architecture looks similar at iOS’s architecture,
with the notion of Activity that is similar to UIViewController and the
notion of View that is similar to UIView.

But, more in depth, things are far more complicated. Thus, the main
flaw comes from the assumption that there should be only one running
Activity at a time, and that this Activity should be tied down to a single
main view. To overcome this limitation, Android introduced the Fragment

class. This new abstraction allows an activity to show and manage a certain
number of fragments, but still has some limitations like, for example, the
possibility of manage stack of fragments.

From this point of view, the iOS platform offers clearer abstractions,
with the notion of viewcontrollers, views and viewcontroller containers,
which allow the developer to express multi-level view hierarchy in a cleaner
way.

Many developers suggest that what Android is offering is a broken ab-
straction.

Knowing the limitations of the abstractions that the platform offers, the
most popular architectural pattern for Android is a variant of MVC (similar
to Apple’s variant), in which the Activity (and related fragments) is both
the view and the controller. Google encourages developers to split each
view in a fragment, and then each fragment should interact with its parent
activity, also to coordinate his actions and commands with other fragments.

3.2.3 Toward a common architecture: MVVM

On both the platforms, the MVC architectural pattern and its variations
don’t seem to be a perfect fit.

In this section and in the following ones a new architectural pattern
will be proposed to better model mobile applications: the Model-View-
ViewModel pattern.

The reason of the introduction of MVVM in this thesis is that this
pattern is an application pattern that isolates the user interface from the
underlying business logic, and, as introduced in the previous section, one of
the biggest issue of the usage of the MVC pattern is the fact that in both

55

56
CHAPTER 3. TOWARDS REACTIVE MOBILE APPLICATION

DEVELOPMENT

Android and iOS there’s not a clear distinction between the view and the
controller entities.

The MVVM pattern consists of the following parts:

• the Model, which provides a view-independent representation of busi-
ness entities;

• the View, which is the user interface, displaying information to the
user and firing events in response to user interactions;

• the ViewModel, which is the bridge between the view and the model.
Each View has at least a corresponding ViewModel. The ViewModel
retrieves data from the Model and manipulates it into the format
required by the View, wrapping the presentation logic. It notifies the
View if the underlying data in the model is changed, and it updates
the data in the Model in response to UI events from the View.

Figure 3.4: The MVVM architectural pattern

Looking at the diagram, it’s clear that the view-model:

• sits between the model and the view, wrapping all the presenta-
tion logic

• receives the events and commands from the view

• updates the view once the model has been updated

The main reason to use MVVM is the it reduces the complexity of
one’s viewcontrollers or activities and makes one’s presentation logic easier
to test.

56

CHAPTER 3. TOWARDS REACTIVE MOBILE APPLICATION
DEVELOPMENT 57

RP frameworks are a good fit in MVVM, since they allow to bind the
views with their associated view-models, allowing the proper syn-
chronization to reflect the changes in both directions.

3.3 A case study

To illustrate the application of the MVVM pattern in conjunction with RP
frameworks, let’s introduce a simple-but-effective use case.

The use case is an app for iOS and Android, that will:

• fetch a web service to request a list of words;

• each words has a set of attributes, such as: an id, a title, a day, a
month and a year which is related to, and an url to an image;

• after querying the web service, the result should be showed in a list.
Each list item should display all the attributes, with also the image;

• a detail view should be opened when the user taps on an item.

The requirements are pretty trivial for an experienced developer that
use to work following the “standard” way to develop mobile applications,
but in this thesis author’s opinion is a pretty significative example, since it
allows demonstrating a lot of concepts:

• abstracting the retrieval, manipulation and presentation of data (also
see the previous dedicated section);

• presenting an uniform abstraction, applicable on both the platforms;

• proper separation of concerns, applying MVVM.

3.3.1 A common architecture

Starting from the requirements and with MVVM in mind, what follows is
the proposed overall system architecture.

NB: the diagram is incomplete, and shows only the relevant building
block of the system. The convention used here to express the abstraction
of stream of items is the RxJava’s Observable type.

What immediately emerges looking at the diagram is how the MVVM
pattern is applied to model the requirements.

57

58
CHAPTER 3. TOWARDS REACTIVE MOBILE APPLICATION

DEVELOPMENT

Figure 3.5: The overall architecture

58

CHAPTER 3. TOWARDS REACTIVE MOBILE APPLICATION
DEVELOPMENT 59

The Model provides a view-independent representation of the business
entities. In this case, it’s pretty trivial to express the model of the Word
class.

The View doesn’t show something relevant at this stage, since it heavily
depends on platform-specific abstractions, and for this reason it will be
better depicted in the next two sections.

The ViewModel is the bridge between the view and the model, wrap-
ping all the presentation logic. In particular, there are two concrete types
of viewmodels:

• WordListViewModel, that represent the viewmodel for the list view,
as a whole;

• WordViewModel, that represent the viewmodel for a single item of the
list.

WordListViewModel use a WordService, that is a class that wraps all
the network and parsing operations, returning a WordResponse, which con-
tains an array of Word. WordListViewModel has two MutableProperty:

• isLoading, that indicates if there’s a fetch request running

• words, that contains the updated list of words

WordViewModel is a pretty simple entity, only containing some ConstantProperty,
referring to the word attributes. The number of instances of WordViewModel
will be equal to the number of Word returned by the WordService.

MutableProperty and ConstantProperty are two abstractions that help
in binding the viewmodel to the view, allowing to set up the automatic up-
date of the view layer when the model gets updated.

Note that this architecture is platform-agnostic and there are no refer-
ence to a specific platform or native abstractions, except for the Observable
type (which can be easily traduced in SignalProducer, in this specific con-
text).

Is this RP?

Looking at the whole architecture, a question may arise. Is this RP?
The answer to this question is not trivial, at first glance. In the intro-

duced architecture RP abstraction are used as building block to compose
the overall architecture.

59

60
CHAPTER 3. TOWARDS REACTIVE MOBILE APPLICATION

DEVELOPMENT

For example, the WordService class returns an Observable. This im-
mediately suggests a whole set of considerations about the underlying com-
putation.

Other examples are the MutableProperty and ConstantProperty classes,
which under the hood are implemented as Subject (or Signal/SignalProducer).

In conclusion, RP abstractions can be used as means to properly build
the overall architecture.

3.3.2 Implementation on Android

The previous section proposed an overall architecture for the use case. This
section will depict a possible implementation for the Android platform.

Model

Starting from the model, things are pretty straightforward.
The Word type only contains some read-only properties and a construc-

tor.

public class Word {

public final long id;

public final String word;

public final int day;

public final int month;

public final int year;

public final String imageUrl;

public Word(int id, String word, int day,

int month, int year, String imageUrl) {

this.id = id;

this.word = word;

this.day = day;

this.month = month;

this.year = year;

this.imageUrl = imageUrl;

}

60

CHAPTER 3. TOWARDS REACTIVE MOBILE APPLICATION
DEVELOPMENT 61

}

The WordResponse class only wraps an array of Word, and also the logic
for failed requests (that is omitted for the sake of concisness).

public class WordResponse {

final public Word[] words;

WordResponse(Word[] words) {

this.words = words;

}

}

Finally, the WordService class only exposes a public method that re-
turns an Observable<WordResponse>. Also in this case, the real imple-
mentation of this method is not important for the purpose of this thesis,
and it’s omitted. The real important thing of this class is the return type
of the method signature.

public class WordService {

public WordService() { ... }

public Observable<WordResponse>

getWords(int month, int year) {

...

}

}

Data binding

To better understand the following steps, it’s necessary to introduce the ab-
straction of MutableProperty and ConstantProperty. On the iOS coun-
terpart, ReactiveCocoa already offers the corresponding abstraction. Rx-
Java and RxAndroid don’t directly offer the conceptual equivalent, but it’s
pretty easy to build the same abstraction starting from a BehaviorSubject.

public interface Val<T> {

T value();

boolean hasValue();

61

62
CHAPTER 3. TOWARDS REACTIVE MOBILE APPLICATION

DEVELOPMENT

Observable<T> observe();

}

The Val interface introduces the notion of a value of type T.

public interface Var<T> extends Val<T> {

void put(T value);

}

The Var interface introduces a variable of a type T.

public class MutableProperty<T> implements Var<T> {

private final BehaviorSubject<T> subject;

private Val<T> val;

protected MutableProperty() {

subject = BehaviorSubject.create();

}

protected MutableProperty(T defaultValue) {

subject = BehaviorSubject.create(defaultValue);

}

public static <T> MutableProperty<T> create() {

return new MutableProperty<>();

}

public static <T> MutableProperty<T> create(T defaultValue) {

return new MutableProperty<>(defaultValue);

}

@Override public void put(T value) {

subject.onNext(value);

}

@Override public synchronized Val<T> asVal() {

if (val == null) {

62

CHAPTER 3. TOWARDS REACTIVE MOBILE APPLICATION
DEVELOPMENT 63

val = ConstantProperty.of(this);

}

return val;

}

@Override public T value() {

return subject.getValue();

}

@Override public boolean hasValue() {

return subject.hasValue();

}

@Override public Observable<T> observe() {

return subject.asObservable();

}

}

The MutableProperty implements the Var interface, and represents the
abstraction of a property that is updated over the time. This kind of
property has a notion of current value (that can also be absent) and can be
observed, returning an Observable.

public class ConstantProperty<T> implements Val<T> {

private final Var<T> var;

protected ConstantProperty(Var<T> var) {

this.var = var;

}

public static <T> ConstantProperty<T> of(Var<T> var) {

return new ConstantProperty<>(var);

}

public static <T> ConstantProperty<T> create(T val) {

return ConstantProperty.of(new MutableProperty(val));

}

63

64
CHAPTER 3. TOWARDS REACTIVE MOBILE APPLICATION

DEVELOPMENT

@Override public T value() {

return var.value();

}

@Override public boolean hasValue() {

return var.hasValue();

}

@Override public Observable<T> observe() {

return var.observe();

}

}

The ConstantProperty implement a property that can have a single-
assignment (constant) value.

ViewModel

Moving to the viewmodel layer, things start to become interesting.

public class WordListViewModel {

private static final String TAG

= WordListViewModel.class.getSimpleName();

public final MutableProperty<Boolean> isLoading =

MutableProperty.create(false);

public final MutableProperty<List<WordViewModel>> words =

MutableProperty.create(new LinkedList<>());

public WordListViewModel(WordService wordService) {

wordService.getWords(1, 2015)

.doOnSubscribe(() -> this.isLoading.put(true))

.observeOn(AndroidSchedulers.mainThread())

.flatMap(wordResponse ->

Observable.from(wordResponse.words))

64

CHAPTER 3. TOWARDS REACTIVE MOBILE APPLICATION
DEVELOPMENT 65

.map(word -> new WordViewModel(word))

.toList()

.subscribe(wordViewModelList -> {

this.isLoading.put(false);

this.words.put(wordViewModelList);

},

throwable -> {

this.isLoading.put(false);

Log.e(TAG, throwable.getMessage());

});

}

}

As previously introduced in the architecture diagram, the WordListViewModel
class has two public MutableProperties and exposes a constructor that re-
ceives a WordService.

When an instance of WordListViewModel is created, the viewmodel pro-
vides to build the chain of computations needed to perform its job. In this
case, it starts a fetch request using the WordService instance, and then
setting all the proper side-effects.

If everything completes fine, the two mutable properties are updated as
follows:

• in isLoading is put false, so any view that observe that property
will be notified of the termination of the request

• in words is put a List

public class WordViewModel {

final public ConstantProperty<String> wordTitle;

final public ConstantProperty<Integer> day;

final public ConstantProperty<Integer> month;

final public ConstantProperty<Integer> year;

final public ConstantProperty<String> imageUrl;

public WordViewModel(Word word) {

this.wordTitle = ConstantProperty.create(word.word);

this.day = ConstantProperty.create(word.day);

65

66
CHAPTER 3. TOWARDS REACTIVE MOBILE APPLICATION

DEVELOPMENT

this.month = ConstantProperty.create(word.month);

this.year = ConstantProperty.create(word.year);

this.imageUrl = ConstantProperty.create(word.imageUrl);

}

}

The WordViewModel class is even simpler, since it only contains a set of
ConstantProperty, abstracting the set of attributes of the Word class.

View

The view layer is represented by three main components:

• an Activity, named MainActivity

• a Fragment, named MainActivityFragment, that is contained in the
MainActivity

• a RecyclerView.Adapter, named WordListAdapter, that is necessary
to implement a list view in Android

The MainActivity’s only job is to instantiate a MainActivityFragment,
so its code is omitted.

public class MainActivityFragment extends Fragment {

private RecyclerView mRecyclerView;

private ProgressBar mProgressBar;

private WordListAdapter mAdapter;

...

@Override public void onResume() {

super.onResume();

if (mRecyclerView.getAdapter() != null) return;

final WordService wordService = new WordService();

final WordListViewModel wordListViewModel

= new WordListViewModel(wordService);

// bind ui to current loading status

66

CHAPTER 3. TOWARDS REACTIVE MOBILE APPLICATION
DEVELOPMENT 67

wordListViewModel.isLoading.observe()

.observeOn(AndroidSchedulers.mainThread())

.subscribe(ViewActions.setVisibility(mProgressBar));

// bind the adapter view with the view model

mAdapter = new WordListAdapter(wordListViewModel.words.observe());

mRecyclerView.setAdapter(mAdapter);

// observe selection event and

// show another view with the selected content

mAdapter.getSelectedWordViewModelObservable()

.observeOn(AndroidSchedulers.mainThread())

.subscribe(selectedWordViewModel ->

Toast.makeText(getActivity(),

selectedWordViewModel.wordTitle.value(),

Toast.LENGTH_SHORT).show());

}

}

MainActivityFragment is a really crucial point of the application. In
this class is created a WordService, that is then passed to a newly created
WordListViewModel.

The fragment then binds the viewmodel’s properties:

• to set the visibility of a progress bar;

• to show the list of items, through an adapter.

The last thing that the fragment performs is to register its interest in the
item selection events from the adapter. In this simple use case, the fragment
just shows a message in a Toast, but in more real use case scenario this
can be the entry point for a fragment transaction or for the launch of a new
activity.

public class WordListAdapter

extends RecyclerView.Adapter<WordListAdapter.WordViewHolder> {

private List<WordViewModel> mViewModels = new LinkedList<>();

private PublishSubject<WordViewModel> mAdapterSelectedItemSubject;

67

68
CHAPTER 3. TOWARDS REACTIVE MOBILE APPLICATION

DEVELOPMENT

/**

* Constructor that returns a WordListAdapter, with an observable

* containing a list of viewmodels

*

* @param viewModelsObservable an observable with

* the list of viewmodels

*/

public WordListAdapter(Observable<List<WordViewModel>>

viewModelsObservable) {

super();

viewModelsObservable.subscribe(next -> updateItems(next));

mAdapterSelectedItemSubject = PublishSubject.create();

}

public void updateItems(List<WordViewModel> items) {

mViewModels.removeAll(mViewModels);

mViewModels.addAll(items);

notifyDataSetChanged();

}

public Observable<WordViewModel>

getSelectedWordViewModelObservable() {

return mAdapterSelectedItemSubject.asObservable();

}

@Override

public WordViewHolder

onCreateViewHolder(ViewGroup viewGroup, int i) {

View view = LayoutInflater

.from(viewGroup.getContext())

.inflate(R.layout.word_list_item, viewGroup, false);

return new WordViewHolder(view);

}

68

CHAPTER 3. TOWARDS REACTIVE MOBILE APPLICATION
DEVELOPMENT 69

@Override

public int getItemCount() { return mViewModels.size(); }

@Override

public void onBindViewHolder(WordViewHolder holder, int i) {

WordViewModel item = mViewModels.get(i);

holder.bindItem(item);

}

@Override

public void onViewRecycled(WordViewHolder holder) {

holder.viewRecycledBehavior.onNext(null);

holder.viewRecycledBehavior = BehaviorSubject.create();

}

/**

* ViewHolder for the item

*/

class WordViewHolder extends RecyclerView.ViewHolder

implements View.OnClickListener {

private WordViewModel mItem;

private TextView mDayTextView; private TextView mMonthTextView;

private TextView mYearTextView; private TextView mWordTextView;

private ImageView mImageView;

BehaviorSubject<Void> viewRecycledBehavior;

public WordViewHolder(View itemView) {

super(itemView);

itemView.setOnClickListener(this);

... // bind ui elements to fields

}

public void bindItem(WordViewModel item) {

mItem = item;

69

70
CHAPTER 3. TOWARDS REACTIVE MOBILE APPLICATION

DEVELOPMENT

mItem.day.observe().map(d -> d.toString())

.subscribe(ViewActions.setText(mDayTextView));

mItem.month.observe().map(m -> m.toString())

.subscribe(ViewActions.setText(mMonthTextView));

mItem.year.observe().map(y -> y.toString())

.subscribe(ViewActions.setText(mYearTextView));

mItem.wordTitle.observe()

.subscribe(ViewActions.setText(mWordTextView));

viewRecycledBehavior = BehaviorSubject.create();

mImageView.setImageDrawable(null);

item.imageUrl.observe()

.takeUntil(viewRecycledBehavior.asObservable())

.subscribeOn(Schedulers.io())

.map(url -> downloadImage(url))

.observeOn(AndroidSchedulers.mainThread())

.subscribe(d -> mImageView.setImageDrawable(d));

}

private Drawable downloadImage(String imageUrl) {...}

@Override public void onClick(View v) {

mAdapterSelectedItemSubject.onNext(mItem);

}

}

}

The class WordListAdapter contains a lot of boilerplate code that di-
rectly depend on the underlying abstractions. The relevant code is in the
ViewHolder class, in which:

• a WordViewModel is used to retrieve the properties that describe a
Word model class;

• the onClick events are pushed through a PublishSubject<WordViewModel>.
This subject is then exposed as an Observable<WordViewModel>,

70

CHAPTER 3. TOWARDS REACTIVE MOBILE APPLICATION
DEVELOPMENT 71

and will inform each subscriber when the user selects an item of the
list;

• given the url of the image, the image is downloaded and showed with-
out blocking the main thread.

3.3.3 Implementation on iOS

This final section will depict an implementation on the iOS platform for the
introduced architecture.

Model

The Word type only contains some read-only properties and a constructor,
just like the Android counterpart.

struct Word {

let id: Int

let word: String

let day: Int

let month: Int

let year: Int

let imageUrl: String

init(id: Int, word: String, day: Int, month: Int,

year: Int, imageUrl: String){

self.id = id

self.word = word

self.day = day

self.month = month

self.year = year

self.imageUrl = imageUrl

}

}

The WordResponse struct only wraps an array of Word, and also the
logic for failed requests (that is omitted for the sake of concisness).

71

72
CHAPTER 3. TOWARDS REACTIVE MOBILE APPLICATION

DEVELOPMENT

struct WordResponse {

let words: [Word]

init(values: [Word]) {

words = values

}

}

The WordService class only exposes a public method that returns an
SignalProducer<WordResponse>. Also in this case, the real implementa-
tion of this method is not important for the purpose of this thesis, and it’s
omitted.

class WordService {

init() {}

func getWords(month: Int, year: Int)

-> SignalProducer<WordResponse, NSError> {

...

}

}

Data binding

The additional data binding layer introduced in Android, in iOS and RAC is
already in place, with the MutableProperty and ConstantProperty types
that are already depicted in the section about RAC.

ViewModel

Also the viewmodel layer is pretty the same as its Android counterpart. All
the abstraction used are similar, and even the name are pretty much the
same, so there’s no need to repeat the description of the code.

The only things that are relevant in this implementation are the types
used and the chain of operators.

class WordListViewModel {

72

CHAPTER 3. TOWARDS REACTIVE MOBILE APPLICATION
DEVELOPMENT 73

let isLoading = MutableProperty<Bool>(false)

let words = MutableProperty<[WordViewModel]>([WordViewModel]())

private let wordService: WordService

init(wordService: WordService) {

self.wordService = wordService

// retrieve the words, create a viewmodel for each words,

// and update the overall view model

self.wordService.getWords(1, year: 2015)

|> on(started: { self.isLoading.put(true) })

|> flatMap(FlattenStrategy.Latest,

{ SignalProducer(values: $0.words) })

|> map({ WordViewModel(word: $0)})

|> collect

|> observeOn(QueueScheduler.mainQueueScheduler)

|> start(next: {

wordViewModelList in

self.isLoading.put(false)

self.words.put(wordViewModelList)

}, error: {

self.isLoading.put(false)

println("Error \($0)")

})

}

}

The same arguments are valid for the WordViewModel class.

class WordViewModel {

let wordTitle: ConstantProperty<String>

let day: ConstantProperty<Int>

let month: ConstantProperty<Int>

let year: ConstantProperty<Int>

let imageUrl: ConstantProperty<String>

73

74
CHAPTER 3. TOWARDS REACTIVE MOBILE APPLICATION

DEVELOPMENT

init (word: Word) {

self.wordTitle = ConstantProperty(word.word)

self.day = ConstantProperty(word.day)

self.month = ConstantProperty(word.month)

self.year = ConstantProperty(word.year)

self.imageUrl = ConstantProperty(word.imageUrl)

}

}

View

The view layer is represented by three main components: - a UIViewController,
named WordsViewController, that contains a UITableView; - a UITableViewCell,
named WordCellView; - an helper class, named TableViewBindingHelper,
that make it easier to bind a table view with a viewmodel;

The entry point of the application is the WordsViewController class,
which is shown at app launch. The implementation is pretty similar to the
implementation of the MainActivityFragment of the previous section.

The view controller creates a WordService, which then is passed to a
WordListViewModel.

After these operations, it binds the viewmodel’s properties: - to set the
visibility of the load activity indicator; - to show the list of items, through
an helper class.

The last thing that the view controller performs is to register its interest
in the item selection events from the table view. In this simple use case,
the view controller just shows a message in an alert view, but in more real
use case scenario this can be the entry point for a presentation of another
view controller or other actions.

class WordsViewController: UIViewController {

@IBOutlet weak var loadActivityIndicator: UIActivityIndicatorView!

@IBOutlet weak var wordsTable: UITableView!

private var bindingHelper: TableViewBindingHelper<WordViewModel>!

override func viewDidLoad() {

74

CHAPTER 3. TOWARDS REACTIVE MOBILE APPLICATION
DEVELOPMENT 75

super.viewDidLoad()

let wordService = WordService()

let viewModel = WordListViewModel(wordService: wordService)

// bind ui to current loading status

loadActivityIndicator.rac_hidden

<~ viewModel.isLoading.producer |> map { !$0 }

wordsTable.rac_alpha

<~ viewModel.isLoading.producer

|> map { $0 ? CGFloat(0.5) : CGFloat(1.0) }

// bind the table view with the view model

bindingHelper = TableViewBindingHelper(tableView: wordsTable,

sourceSignal: viewModel.words.producer, nibName: "WordCell")

// observe selection event and show another

// view with the selected content

bindingHelper.getTableViewSelectedItemSignal()

|> observeOn(UIScheduler())

|> observe(next: { self.showWordDetail($0) })

}

func showWordDetail(wordViewModel: WordViewModel) {

// simply showing an alert..

let alert = UIAlertView(title: "Selection",

message: "You selected: \(wordViewModel.wordTitle.value)",

delegate: nil,

cancelButtonTitle: nil, otherButtonTitles: "Ok")

alert.show()

}

}

The WordCellView class represents a single cell in the table view, and
use the property of the viewmodel to which is bind to show the values of
the current word.

75

76
CHAPTER 3. TOWARDS REACTIVE MOBILE APPLICATION

DEVELOPMENT

class WordCellView: UITableViewCell, ReactiveView {

@IBOutlet weak var yearLabel: UILabel!

... // other ui stuff

func bindViewModel(viewModel: AnyObject) {

let triggerSignal

= self.rac_prepareForReuseSignal.asSignal() |> toVoidSignal

if let wordViewModel = viewModel as? WordViewModel {

// bind the text of the labels to its value

yearLabel.rac_text <~ wordViewModel.year.producer

|> map { "\($0)" }

monthLabel.rac_text <~ wordViewModel.month.producer

|> map { "\($0)" }

dayLabel.rac_text <~ wordViewModel.day.producer

|> map { "\($0)" }

wordLabel.rac_text <~ wordViewModel.wordTitle.producer

// download the image

picImageSignalProducer(wordViewModel.imageUrl.value)

|> startOn(scheduler)

|> takeUntil(triggerSignal)

|> observeOn(QueueScheduler.mainQueueScheduler)

|> on(started: { self.wordImageView.image = nil })

|> start(next: {

self.wordImageView.image = $0

})

}

}

private func picImageSignalProducer(imageUrl: String)

76

CHAPTER 3. TOWARDS REACTIVE MOBILE APPLICATION
DEVELOPMENT 77

-> SignalProducer<UIImage, NoError> {

...

// download and returns the image

}

}

The TableViewBindingHelper is a helper class, that save the developer
a lot of boilerplate code. The relevant part of the code is the following, which
illustrates an initializer that takes a SignalProducer of items (viewmodels
for the cells of the table view) and a public method that returns a Signal of
items, representing the items selected by the user.

// a helper that makes it easier to bind to UITableView instances

// initial implementation:

// http://www.scottlogic.com/blog/2014/05/11/

class TableViewBindingHelper<T: AnyObject>

: NSObject, UITableViewDelegate {

//MARK: Properties

...

//MARK: Public API

init(tableView: UITableView,

sourceSignal: SignalProducer<[T], NoError>, nibName: String) {

...

sourceSignal.start(next: {

data in

// reload the table view each time a new array

// of viewmodels is set

self.dataSource.data = data.map { $0 as AnyObject }

self.tableView.reloadData()

})

}

// returns a Signal which emits the items selected by the user

func getTableViewSelectedItemSignal() -> Signal<T, NoError> {

...

}

77

78
CHAPTER 3. TOWARDS REACTIVE MOBILE APPLICATION

DEVELOPMENT

}

3.3.4 Considerations

The usage of Rx as a gateway to bind the viewmodel to the view and as a
wrapper for computations that imply latency and/or possible failures
seems to be a good fit, even if the problems related to memory leaks and re-
source disposal have not been taken care with a particular attention. Thus,
the code proposed may have some issues and should be considered only a
proof of concept at the moment.

Both the implementation of the proposed architecture seems to be pretty
elegant and similar in respect of each other. Also the name of each compo-
nent is consistent over the platforms, where possible.

One could also think to create a meta-meta-model that allows describ-
ing the architecture of the application with some high-level DSL and then
generate the code for both the platforms, but this argument goes outside
the scope of this thesis.

78

Chapter 4

Towards reactive event
processing

The previous chapter depicted a possible approach to apply RP techniques
to the context of mobile applications development.

This chapter will instead introduce a possible application of RP princi-
ples and abstractions to a different context: events processing.

Event processing is a method of tracking and analyzing streams of in-
formation about things that happen, and deriving a conclusion from them.

Also in this chapter, to better understand and see how RP plays a fun-
damental role in the game, a use case will be introduced, discussed and
solved.

4.1 Building a processing pipeline: a case

study

The use case proposed to demonstrate the application of RP to the event
processing context is an example of sentiment analysis.

From the Wikipedia definition:

Sentiment analysis (also known as opinion mining) refers to the
use of natural language processing, text analysis and computa-
tional linguistics to identify and extract subjective information
in source materials.

79

80 CHAPTER 4. TOWARDS REACTIVE EVENT PROCESSING

The requirements the the application needs to satisfy are the following:

• the application should monitor and elaborate the sentiment toward
two popular brands: Apple and Google;

• the analysis should be performed starting from the information taken
from Twitter, by reading and elaborating what people tweets;

• the computation should assign to each tweet a “static score”, de-
termined by the relevance of the tweet’s author (determined by its
number of followers);

• after that, the application should infer if the tweet express a positive
or negative comment;

• every tweet should be computed and grouped to the respective brand,
and the result should be accumulated, so the users can have an idea
of which brand has a better sentiment.

NB: This approach to sentiment analysis is for sure oversimplified and
not correct at all, but in this thesis author’s opinion what really matters
about this case study is not the correctness of the analysis method, but the
application of the abstractions introduced in this thesis to solve problems.

4.1.1 Implementation on Akka streams

Using Akka Streams abstractions, building a processing pipeline that solves
the problem introduced by the requirements is a pretty straight-forward
process.

In Akka Streams, to build a processing pipeline the first thing to get
is a Source. In this case, let’s start with an utility class that takes care
of interacting to Twitter’ APIs, exposing a method listenAndStream that
returns a Source[Tweet, Unit].

class TwitterStreamListener(filter: Array[String],

config: Configuration) {

// ...

def listenAndStream: Source[Tweet, Unit] = { ... }

}

80

CHAPTER 4. TOWARDS REACTIVE EVENT PROCESSING 81

This method will introduce tweets regarding our two brands as they are
published.

Once we get the source of our items, two further steps to performs are
the ones that assign to each tweet a “static score”, and then a valuation.

val g = FlowGraph.closed() {

implicit builder: FlowGraph.Builder[Unit] =>

import akka.stream.scaladsl.FlowGraph.Implicits._

// our targets brands

val filters: scala.collection.immutable.List[String]

= "google" :: "apple" :: List()

val twitterStreamListener =

new TwitterStreamListener(filters.toArray, twConfigBuilder.build())

val in: Source[Tweet, Unit] = twitterStreamListener.listenAndStream

// assign a "static" score

val mapToScore: Flow[Tweet, (Tweet, Double), Unit]

= Flow[Tweet].map(tweet => (tweet,

(1.0 + 1.01 * tweet.author.followerCount)))

// extract the "sentiment" from the tweet (not implemented for real..)

val mapToValutation: Flow[(Tweet, Double), (Tweet, Double), Unit]

= Flow[(Tweet, Double)].map(tweetScoreTuple =>

if (/*... positive or negative content? ...*/)

(tweetScoreTuple._1, tweetScoreTuple._2)

else (tweetScoreTuple._1, -tweetScoreTuple._2)

)

// build the pipeline

in ~> mapToScore ~> mapToValutation

}

At this point, the last node of the linear graph has type Flow[(Tweet,

Double), (Tweet, Double), Unit], meaning that: - it accepts a tuple
containing a Tweet and a Double, and it puts out the same type; - looking
at the code itself, if returns a stream of pairs of tweets and valuations.

81

82 CHAPTER 4. TOWARDS REACTIVE EVENT PROCESSING

The next step allows to determine in which category (brand) each tweet
in the stream belongs to. This step is needed, since the informations that
come from the APIs refer to both the brands.

// for each tweet, detect in which category the tweet

// has been returned, and return a tuple with this

// additional information (so we can now group the

// tweet for category)

val mapWithCategory: Flow[(Tweet, Double), (String, Double), Unit]

= Flow[(Tweet, Double)].mapConcat(tuple =>

filters

.filter(f => tuple._1.body.toLowerCase.contains(f.toLowerCase))

.map(matchedFilter => (matchedFilter, tuple._2)))

// build the pipeline

in ~> mapToScore ~> mapToValutation ~> mapWithCategory

Note that now the stream puts out a tuple of String and Double, that
correspond to the current category and valuation for the Tweet arrived from
the input. At this stage, the other further informations about the tweet are
no more necessary.

At this point, the stream of tuples needs to be grouped for brand, and
then reduced by applying a function that aggregates all the partial result
to compose a result. In this simplified case, this function is a sum.

// ...

// groups the tweets for brand and sum the valuations

def sumReducedByKey: Flow[(String, Double), (String, Double), Unit]

= reduceByKey(

filters.length,

groupKey = (elem: (String, Double)) => elem._1,

foldZero = (key: String) => (0.0))(fold

= (count: Double, elem: (String, Double)) => elem._2 + count)

// generic reduce by key function

def reduceByKey[In, K, Out](maximumGroupSize: Int,

groupKey: (In) => K,

82

CHAPTER 4. TOWARDS REACTIVE EVENT PROCESSING 83

foldZero: (K) => Out)(fold: (Out, In) => Out):

Flow[In, (K, Out), Unit] = {

val groupStreams = Flow[In].groupBy(groupKey)

val reducedValues = groupStreams.map {

case (key, groupStream) =>

groupStream.runFold((key, foldZero(key))) {

case ((key, aggregated), elem) =>

val newAggregated = fold(aggregated, elem)

// println("Folding: key: " + key +

" aggregate: " + newAggregated)

(key, newAggregated)

}

}

reducedValues

.buffer(maximumGroupSize, OverflowStrategy.fail)

.mapAsyncUnordered(4)(identity)

}

// build the pipeline

in ~> mapToScore ~> mapToValutation

~> mapWithCategory ~> sumReducedByKey ~> out

This step of the pipeline is the most difficult to understand at first sight.
By mapping over the groups that contains only the data for a single

brand, and using runFold (that automatically materializes and runs each
sub-stream it is used on) what is returned is a stream with elements of
Future[(String, Double)]. Finally, this stream is flattened by calling
mapAsyncUnordered(4)(identity), that gets the values out of the futures
and then injects these values in the returned stream.

One last thing to note is the presence of a buffer between the mapAsyn-
cUnordered and the actual stream of futures.

From the documentation, where the reduceByKey approach has been
taken:

The reason for this is that the substreams produced by groupBy()
can only complete when the original upstream source completes.

83

84 CHAPTER 4. TOWARDS REACTIVE EVENT PROCESSING

This means that mapAsync() cannot pull for more substreams
because it still waits on folding futures to finish, but these fu-
tures never finish if the additional group streams are not con-
sumed. This typical deadlock situation is resolved by this buffer
which either able to contain all the group streams (which en-
sures that they are already running and folding) or fails with an
explicit failure instead of a silent deadlock.

Putting all the pieces together, and adding a limit to 1000 tweets for the
sake of brevity, the overall code looks like the following.

object MainStreamingExample extends App {

// ... config twitter APIs and client ...

// ActorSystem & thread pools

val execService: ExecutorService

= Executors.newCachedThreadPool()

implicit val system: ActorSystem

= ActorSystem("ciaky")

implicit val ec: ExecutionContext

= ExecutionContext.fromExecutorService(execService)

implicit val materializer = ActorMaterializer()

val g = FlowGraph.closed() {

implicit builder: FlowGraph.Builder[Unit] =>

import akka.stream.scaladsl.FlowGraph.Implicits._

// our targets brands

val filters: scala.collection.immutable.List[String]

= "google" :: "apple" :: List()

val twitterStreamListener

= new TwitterStreamListener(filters.toArray, twConfigBuilder.build())

val in: Source[Tweet, Unit] = twitterStreamListener.listenAndStream

val out: Sink[(String, Double), Future[Unit]]

= Sink.foreach[(String, Double)](t =>

84

CHAPTER 4. TOWARDS REACTIVE EVENT PROCESSING 85

println("[Out] key: " + t._1 + " partial score: " + t._2))

// limit the elaboration to 1000 tweets

val take: Flow[Tweet, Tweet, Unit] = Flow[Tweet].take(1000)

// assign a "static" score

val mapToScore: Flow[Tweet, (Tweet, Double), Unit]

= Flow[Tweet].map(tweet => (tweet,

(1.0 + 1.01 * tweet.author.followerCount)))

// extract the "sentiment" from the tweet (not implemented for real..)

val mapToValutation: Flow[(Tweet, Double), (Tweet, Double), Unit]

= Flow[(Tweet, Double)].map(tweetScoreTuple =>

if (/*... positive or negative content? ...*/)

(tweetScoreTuple._1, tweetScoreTuple._2)

else (tweetScoreTuple._1, -tweetScoreTuple._2)

)

// for each tweet, detect in which category the tweet

// has been returned, and return a tuple with this

// additional information (so we can now group the tweet for category)

val mapWithCategory: Flow[(Tweet, Double), (String, Double), Unit]

= Flow[(Tweet, Double)].mapConcat(tuple =>

filters

.filter(f => tuple._1.body.toLowerCase.contains(f.toLowerCase))

.map(matchedFilter => (matchedFilter, tuple._2))

)

// groups the tweets for category and sum the valuations

def sumReducedByKey: Flow[(String, Double), (String, Double), Unit]

= reduceByKey(

filters.length,

groupKey = (elem: (String, Double)) => elem._1,

foldZero = (key: String) => (0.0))(

fold = (count: Double, elem: (String, Double))

=> elem._2 + count)

85

86 CHAPTER 4. TOWARDS REACTIVE EVENT PROCESSING

// generic reduce by key function

def reduceByKey[In, K, Out](maximumGroupSize: Int,

groupKey: (In) => K,

foldZero: (K) => Out)(fold: (Out, In) => Out)

: Flow[In, (K, Out), Unit] = {

val groupStreams = Flow[In].groupBy(groupKey)

val reducedValues = groupStreams.map {

case (key, groupStream) =>

groupStream.runFold((key, foldZero(key))) {

case ((key, aggregated), elem) =>

val newAggregated = fold(aggregated, elem)

println("Folding: key: " + key

+ " aggregate: " + newAggregated)

(key, newAggregated)

}

}

reducedValues

.buffer(maximumGroupSize, OverflowStrategy.fail)

.mapAsyncUnordered(4)(identity)

}

// build the pipeline

in ~> take ~> mapToScore ~> mapToValutation

~> mapWithCategory ~> sumReducedByKey ~> out

}

g.run()

}

Even if Akka Streams processing stages are executed concurrently by
default, the approach adopted for the reduceByKey function leads to a
sequential processing stage for the reduction phase, with no parallelization
at all.

86

CHAPTER 4. TOWARDS REACTIVE EVENT PROCESSING 87

4.2 Implementation on RxScala

Also using RxScala (RxJava ported to Scala) abstractions, building a pro-
cessing pipeline that solves the problem introduced by the requirements is
a pretty simple process.

To build a processing pipeline the first thing to get is a Observable.
Following what it was done for the previous implementation, let’s start with
an utility class that takes care of interacting to Twitter’ APIs, exposing a
method listenAndStream that returns an Observable[Tweet].

class TwitterStreamListener(filter: Array[String],

config: Configuration) {

// ...

def listenAndStream: Observable[Tweet] = { ... }

}

Once we get the source of tweets, two further steps to perform are the
ones that assign to each tweet a “static score”, and then a valuation.

val filters: scala.collection.immutable.List[String]

= "google" :: "apple" :: List() // our targets brands

val twitterStreamListener

= new TwitterStreamListener(filters.toArray,

twConfigBuilder.build())

twitterStreamListener.getTweetObservable

.map(tweet =>

(tweet, (1.0 + 1.01 * tweet.author.followerCount)))

.map(tweetScoreTuple =>

if (/*... positive or negative content? ...*/)

(tweetScoreTuple._1, tweetScoreTuple._2)

else (tweetScoreTuple._1, -tweetScoreTuple._2)

)

At this point, the resulting observable has type Observable[(Tweet,

Double)], meaning that:

87

88 CHAPTER 4. TOWARDS REACTIVE EVENT PROCESSING

• it accepts a tuple containing a Tweet and a Double, and it puts out
the same type;

• looking at the code itself, if returns a stream of pairs of tweets and
valuations.

As in the previous implementation, the next step allows determining in
which category (brand) each tweet in the stream belongs to. This step is
needed, since the informations that come from the APIs refer to both the
brands. To perform the work, a simple flatMap will take care of this job.

//...

.flatMap(tuple => {

val matchedFilters = filters

.filter(f => tuple._1.body.toLowerCase.contains(f.toLowerCase))

.map(matchedFilter => (matchedFilter, tuple._2))

Observable.from(matchedFilters)

})

Note that, also with this implementation, now the stream puts out a
tuple of String and Double, that correspond to the current category and
valuation for the Tweet arrived from the input.

At this point, the stream of tuples needs to be grouped for brand, and
then reduced by applying a function that aggregates all the partial result
to compose a result. This step has a really short and concise syntax in this
RxScala’s implementation.

val groupKey: ((String, Double)) => String = tuple => tuple._1

val foldZero: (String) => Double = key => 0.0

val fold: (Double, (String, Double)) => Double

= (count: Double, elem: (String, Double)) => elem._2 + count

//...

.groupBy(groupKey)

.flatMap {

case (key, groupStream) =>

groupStream.scan((key, foldZero(key))) {

case ((key, aggregated), elem) =>

(key, fold(aggregated, elem))

88

CHAPTER 4. TOWARDS REACTIVE EVENT PROCESSING 89

}

}

The groupBy operator creates a new observable for each brand. Each
sub-observable is then reduced and flattened.

Putting all pieces together, the overall code is the following.

object MainRxExample extends App {

// ... config twitter APIs and client ...

val filters: scala.collection.immutable.List[String]

= "google" :: "apple" :: List() // our targets brands

val twitterStreamListener

= new TwitterStreamListener(filters.toArray,

twConfigBuilder.build())

val groupKey: ((String, Double)) => String = tuple => tuple._1

val foldZero: (String) => Double = key => 0.0

val fold: (Double, (String, Double)) => Double

= (count: Double, elem: (String, Double)) => elem._2 + count

twitterStreamListener.getTweetObservable

// assign a "static" score

.map(tweet => (tweet, (1.0 + 1.01 * tweet.author.followerCount)))

// extract the "sentiment" from the tweet

.map(tweetScoreTuple =>

if (/*... positive or negative content? ...*/)

(tweetScoreTuple._1, tweetScoreTuple._2)

else (tweetScoreTuple._1, -tweetScoreTuple._2)

)

// groups the tweets for brand and sum the valuations

.flatMap(tuple => {

val matchedFilters = filters

.filter(f => tuple._1.body.toLowerCase.contains(f.toLowerCase))

89

90 CHAPTER 4. TOWARDS REACTIVE EVENT PROCESSING

.map(matchedFilter => (matchedFilter, tuple._2))

Observable.from(matchedFilters)

})

// groups the tweets for brand and sum the valuations

.groupBy(groupKey)

.flatMap {

case (key, groupStream) =>

groupStream.scan((key, foldZero(key))) {

case ((key, aggregated), elem) =>

(key, fold(aggregated, elem))

}

}

.subscribe(t => println("[Out] key: " + t._1

+ " partial score: " + t._2))

}

4.2.1 Considerations

The usage of both the library seems to be a good fit for the simple case
study introduced.

The implementation that uses Akka Stream looks a little bit more ver-
bose, since there’s some “setup and wiring work” that needs to take place,
but the final result looks pretty elegant.

The implementation that uses RxScala is pretty clean and straight-
forward, indeed.

For both the solutions, the most important thing to note is the fact that
all the computations is build starting from the definition of a static-typed
chain of operators (or flows).

90

Chapter 5

A conclusive comparison

This thesis started with an overview of RP, that introduced the foundations
and the main aspects of the paradigm, and then continued with a detailed
overview of some of the most popular or relevant frameworks that allow the
application of the paradigm in different platforms and languages, with also
some practical use cases.

This final section will attempt to wrap everything up, with a conclusive
comparison of each library peculiarities and the approach to RP that each
library suggests, with also some subjective opinions.

5.1 Operators, Expressions, Declarativness

In regards to expressing a computation in terms of a flow of in-
termediate steps, the approach that Scala.React suggests with its signal
expressions is the main difference in respect to all other approaches, which
are instead based on the presence of operators. Scala.React’s Signal type
has no operator at all, and lets the developer to build a “reactive” compu-
tation with an imperative-style code, at least in appearance. In Fact, signal
expressions and the magic behind Var and Val implicit conversion looks
natural to a developer with an object oriented background.

All the other libraries introduce an approach based on operators, indeed:

• RxJava offers a wide range of methods in the Observable type;

• ReactiveCocoa offers a wide range of free functions, used in combi-
nation with the pipe-forward operator |> on the Signal and SignalProducer

91

92 CHAPTER 5. A CONCLUSIVE COMPARISON

type to give the user an elegant way to build a chain of operators with-
out losing the purity of the approach based on free functions;

• Akka Streams offers a (still) minimal but effective set of components,
with the fundamental abstraction defined in terms of the Flow, Sink
and Source type, and the ability to build linear or graph computations
simply using the to ~> operator.

All the libraries previously introduced presented a high level of declara-
tivness, with a good level of integration in the ecosystem they belong to:

• Scala.React does an amazing job in solving the issues of the “stan-
dard” observer pattern leveraging on the construct offered by the Scala
language;

• RxJava offer a pretty straight-forward implementation of Rx to the
Java ecosystem. Both the implementation and the interfaces really
benefitted by the advent of Java 8 and lambda expression (or, in
Android, Retrolambda) in the language ecosystem;

• RAC has come a long way from its Objective-C years, and now, with
Swift and the current 3.0 version, offers a nice and clean set of inter-
faces and abstractions;

• Akka Streams is, in this thesis author’s opinion, the most impressive
approach to modelling computation declaratively. The approach of
building a graph-resembling DSL to express not-linear computation
is a feature that really helps in keeping the code clean and intuitive,
even if the initial learning curve and some of the magic behind the
library is a thing to always keep in consideration when evaluating a
tool.

5.2 Hot and Cold, Push and Pull, Back-pressure

Another aspect that distinguishes the libraries is the way they abstract the
notion of who actually starts the computation, and thus, the propa-
gation of changes.

In this regards, RAC offer a pretty straight forward abstraction putting
this distinction directly at type level: the Signal type is producer-driven,
so the changes are pushed to the subscribers as they happens/are produced,
while the SignalProducer type is demand driven, so the changes are pulled.

92

CHAPTER 5. A CONCLUSIVE COMPARISON 93

In RxJava this distinction is not obvious, but there’re a set of types and
operators that helps when building observables that should be producer-
driven or demand-driven. For example, the Subject type is usually used to
“warm” a cold observable into a hot observable. RxJava is also conforming
to Reactive Streams, just like Akka Streams. Being conform to Reactive
Streams means that for both libraries is valid the principle that a producer
can never send more items than a consumer can handle, using the so called
“dynamic push-pull” approach.

In practice, the usage of this feature really depends from the use case
to satisfy. For example, for Akka Streams and RxJava the conformation to
Reactive Streams was a pretty straight forward process (engineers from Net-
flix, Typesafe, etc.. all find it problematic having a consumer overwhelmed
by a production of items they can handle), since those frameworks are used
to process an high number of items and also to build infrastructures and
services. In the context of mobile applications, currently RAC doesn’t di-
rectly solve this issue, since RAC maintainers believe that figuring out the
behavior of side effects is far more important, since effects dominate GUI
applications.

5.3 Solving problems the reactive way

Coming from an OO background, applying RP seems quite unnatural at
first, since the way that most developers learnt programming is typically
with an imperative approach.

What RP propose is a more declarative approach to solving problems,
that leverages to some well defined principles:

• a set of minimal abstractions, that allow to wrap computations in
which latency plays a main role, in an elegant way;

• a set of operators with a clear semantics, that allows to build typesafe
and statically-typed computation chains, without worrying about clas-
sic concurrency issues but focusing mainly on better expressing what
each computation should do.

How these principles fits real-world problems is currently a topic of dis-
cussion and this thesis only covered two main contexts of modern applica-
tions.

93

94 CHAPTER 5. A CONCLUSIVE COMPARISON

94

Appendix A

Functional Programming

As introduced previously, functional programming doesn’t allow side effects
and mutable state. Mutable state may be easily represented by any variable
that is not stable or final, and can be changed or updated inside of an
application. A mutation is the act of updating some state in place.

A simple example that shows how fast the things become incidentally
complex is given by the following simple example from a Justin Spahr-
Summers’s talk from Github:

var visible // 2 states

var enabled // 4 states

var selected // 8 states

var highlighted // 16 states

In other words, state management quickly become hard to maintain and
unpredictable. By avoiding mutable state a programmer has the assurance
that no one else can possibly have changed his application’s state, and can
reason about what a value will be at a given time.

This chapter will cover just a small introduction of functional domain
modelling and immutable data structures using Scala as the reference lan-
guage.

A.0.1 Entities and value objects

In functional domain modelling, a system may be represented through the
following main domain elements: entities, value objects and services.

95

96 APPENDIX A. FUNCTIONAL PROGRAMMING

Each entity has a unique identity. An entity may have many attributes,
and each attribute may changes in course of the lifetime of the system.
When an attribute within an entity changes, the identity itself is still the
same. In this meta-model, attributes are abstracted by value objects.

A value object is immutable by definition and can be freely shared across
entities. This doesn’t mean that an entity’s attributes can’t change. To clear
this concept, let’s consider the following example, with an entity person
within a system, which is univocally identified by an unique id and that
has an “address” attribute. Now the difference between the two concepts is
immediate: when we talk of a person we usually refer to a specific instance
of person, while when we talk of an address we just refer to the value part.

Functional programming aims to model as much immutability as
possible, so a possible approach to model entities and attributes is the
following:

• remember that an entity has an identity that cannot change, so it’s
semantically mutable

• remember that a value object has a value that cannot change, so it’s
semantically immutable

The fact that an entity is semantically mutable doesn’t prevent us from
using immutable constructs for its implementation.

A.0.2 Services

The last element of this meta-model is the service, which is a more macro
level abstraction than entity and value object. In short, a service models
a use case, encapsulating a complete operation that has a certain value to
user of the system.

A service usually involves multiple entities and value objects, that in-
teract according to specific business rules to deliver specific functionalities.

A.1 Algebraic data types

From Wikipedia:

In computer programming, particularly functional programming
and type theory, an algebraic data type is a kind of composite

96

APPENDIX A. FUNCTIONAL PROGRAMMING 97

type, i.e. a type formed by combining other types. Two com-
mon classes of algebraic type are product types, i.e. tuples and
records, and sum types, also called tagged or disjoint unions or
variant types.

The definition introduces some new terminologies: Sum Type and Prod-
uct Type.

Wikipedia defines Sum Type as:

a data structure used to hold a value that could take on several
different, but fixed types. Only one of the types can be in use
at any one time, and a tag field explicitly indicates which one is
in use.

An example of a Sum Type in the scala library is Either, that represents
a value of one of two possible types. Instances of Either are either an
instance of Left or Right. A common use of Either is as an alternative to
Option for dealing with possible missing values and convention dictates that
Left is used for failure and Right is used for success.

The implementation of Either is something like:

sealed abstract class Either[+A, +B]{...}

final case class Left[+A, +B](a: A) extends Either[A, B] {...}

final case class Right[+A, +B](b: B) extends Either[A, B] {...}

Basically, Sum Types express an OR of types. Remembering that in
logic OR is presented by a plus, we can say that algebraically: type Either
= Left + Right.

Wikipedia defines Product Type as:

another, compounded, type in a structure. The “operands” of
the product are types, and the structure of a product type is
determined by the fixed order of the operands in the product.

A Product Type is nothing more than a cartesian product of data types.
A trivial example may be the following:

97

98 APPENDIX A. FUNCTIONAL PROGRAMMING

sealed trait Animal {

def uniqueId: Long

def name: String

def owner: Option[Person]

}

case class Dog(uniqueId: Long, name: String,

owner: Option[Person], microchipId: String) extends Animal

case class Hamster(uniqueId: Long, name: String,

owner: Option[Person]) extends Animal

//...

In this example, a Dog data type is the collection of all valid combina-
tions of the tuple (Long, String, Option, String). So, algebraically, we can
say: type Dog = Long x String x Option x String.

Always in this example, we also have that Animal is a Sum Type, since
an Animal is a Dog, OR an Hamster, and so on..

Sum Type and Product Type are really important in functional domain
modelling, since they provide the abstraction needed for structuring the
various data of the domain model.

The values of a Sum Type are typically grouped into several classes,
called variants. As the name suggests, variants let us model the variations
within a specific data type. Each variant has its own constructor, which
takes a specified number of arguments with specified types.

Product Types represent a larger abstraction instead, that allows to
clubbing together some types and tagging it with a new data type. This
extra tag could also be avoided, simply expressing every Product Type in
terms of a tuple of types, but in functional domain modelling it’s always
convenient to express an entity with a tagged data type.

Values of algebraic data types are analyzed with pattern matching,
which helps keep functionality local to the respective variant of algebraic
data type. Pattern matching identifies a value by its constructor or field
names and extracts the data it contains. Starting from the previous exam-
ple, a trivial example of pattern matching:

var myAnimal: Animal = ???

98

APPENDIX A. FUNCTIONAL PROGRAMMING 99

val noise = myAnimal match {

case Dog(uniqueId, name, owner, microchipId) => "bau!"

case Hamster(uniqueId, name, owner) => "squit!"

}

Algebraic data structures, pattern matching and the power of a strongly
typed language like Scala really help in the domain modelling phase.

A.2 ADTs and Immutability

The previous section introduced ADTs as composed types and depicted Sum
Type and Product Type. This section will explain how to achieve referen-
tially trasparency through immutability, avoiding in-place mutations.

The importance of having immutable data structures is to research in
the fact that they simplify the management of parallel and concurrent sys-
tems. If data structures are immutables, they can be freely shared between
different execution contexts, without any fears.

To better understand what does it mean to have an immutable data
structure, let’s consider the following example from the book “Functional
Programming in Scala”:

// List data type

sealed trait List[+A]

// data constructors

case object Nil extends List[Nothing]

case class Cons[+A](head: A, tail: List[A]) extends List[A]

The operation of addition of an element to the front of the list can be
performed without modify or copy the object itself, just reusing the
actual list with a new element at the beginning.

val initialList:List[Int] = Cons(1, Cons(2, Nil))

val myList = Cons(0, initialList)

This approach can be obviously used also to remove an element from
the list (in the following example, the 1 to the front).

99

100 APPENDIX A. FUNCTIONAL PROGRAMMING

val initialList:List[Int] = Cons(1, Cons(2, Nil))

val myList1 = initialList match {

case Cons(1, xs) => xs

case l: List[Int] => l

}

This property of reuse object instead of modifying or copying the object
itself is called sharing.

The introduction of this chapter depicted three elements as the funda-
mental domain elements: entities, value objects and services. So, how do
ADTs relate to these elements? As previously written, a value object is
semantically immutable, so abstracting this with an ADT is a good choice.
For example, let’s consider the following example:

[] case class Address(no: String, street: String, city: String, state:
String, zip: String)

If an application, at a given time, has an instance of an address and needs
to modify an attribute (e.g. the zip code), all it has to do is to generate
a new instance of the object with the updated attribute, avoiding in
place mutation (no vars, no setters). Scala also offer a copy method to
further simplify the job.

val initialAddress = Address("10", "Via Sacchi", "Cesena", "IT", "47522")

val newAddress = initialAddress.copy(zip = "47523")

This approach may looks nice at a first sight, but doesn’t scale well,
unfortunately. To see the problem, just consider a new entity that uses the
address as a value object.

case class Person(id: Long, name: String, address: Address)

The entity Person is semantically mutable, but it’s implemented with an
ADT. The first part of this chapter already stated the fact that an entity is
semantically mutable doesn’t prevent us from using immutable constructs
for its implementation, and this is a brilliant proof of concept.

Back to the issues with when using copy for creating a new ADTs with
modified fields, let’s consider the following simple example.

100

APPENDIX A. FUNCTIONAL PROGRAMMING 101

val initPerson = Person(0, "Alessandro", initialAddress)

val newPerson = initPerson.copy(address = initPerson.address.copy(zip = "47523"))

It immediately appears that the code is getting bad. And things only
get worse when there are multiple level of nesting of the objects. A better
abstraction to solve this problem is given by Lenses. Lenses are ADTs, and
in Scala can be implemented as follows:

case class Lens[O, V](

get: O => V,

set: (O, V) => O

)

From the implementation it emerges that Lenses:

• are parametrized (on O and V types)

• have a getter method, which takes an object with type O and return
a value of type V

• have a setter method, which takes an object of type O and returns a
new instance of the object set to the value

To demonstrate that lenses just work as the copy method introduced
below, let’s consider the following example:

val newAddress2 = addressZipLens.set(initialAddress, "47523")

newAddress == newAddress2 //> res0: Boolean = true

The compare on the final line asserts that the addresses created with
the two different techniques are equals.

To solve the problem related to the multiple level of nesting attribute
update it is necessary to introduce a generic compose function, implemented
as follows:

def compose[Outer, Inner, Value](

outer: Lens[Outer, Inner],

inner: Lens[Inner, Value]

) = Lens[Outer, Value](

get = outer.get andThen inner.get,

set = (obj, value) => outer.set(obj, inner.set(outer.get(obj), value)))

101

102 APPENDIX A. FUNCTIONAL PROGRAMMING

Compose, as the name suggests, takes care of composing two lenses.
Lens composition is really helpful to maintain the code clean and safe, as
the following sample will demonstrate.

val personAddressZipLens: Lens[Person,String]

= compose(personAddressLens, addressZipLens)

newPerson2 = personAddressZipLens.set(initPerson, "47523")

newPerson == newPerson2 //> res1: Boolean = true

As the previous example, also in this case the result is the same as the
case when copy was used instead. Lenses offer a view on data, allowing to
get and modify the data the functional way.

A.3 Referential trasparency

An important concept in functional programming is referential transparency.
Referential transparency is a property of programs, which makes it easier
to verify, optimize, and parallelize programs.

From Wikipedia’s definition:

Referential transparency and referential opacity are prop-
erties of parts of computer programs. An expression is said to
be referentially transparent if it can be replaced with its value
without changing the behavior of a program (in other words,
yielding a program that has the same effects and output on the
same input). The opposite term is referential opaqueness.

A necessary, but not sufficient, condition for referential transparency is
the absence of side effects. In simple words, it’s all about the fact that an
expression can be replaced with its value. This obviously requires that the
expression (that could be a function call, for example) has no side effects
and always return the same output on the same input.

In other words, referential transparency means that the value of expres-
sion can depend only on the values of its parts, and not on any other facts
about them or about the execution context.

The opposite of referential transparency is referential opacity, where the
value does change when evaluated, and the expression cannot be replaced
by a single value without altering the way a program executes.

102

APPENDIX A. FUNCTIONAL PROGRAMMING 103

A trivial but effective example of referential transparency has been in-
troduced in the previous section, with the code snippet about lists. Using
immutable lists, the act of adding, removing or updating a value in those
data structures results in new lists being created with the changed values,
and any part of the program still observing the original lists sees no change.

A.3.1 Equational reasoning

The previous section introduced and depicted referential transparency. The
importance of referential transparency expressions is that they make substi-
tution model work and the substitution model helps equational reasoning
work.

A possible definition of equational reasoning is the process of interpreting
code by substituting equals-for-equals.

Equational reasoning is an important property, since it keeps the models
easy to reason about and easy to validate. The correctness of the properties
of a model that respect equational reasoning can be verified just as the
properties of a math theorem.

A.4 Patterns

The previous sections of this chapter introduced the basics of functional
domain modelling, by using algebraic data types, and the importance of
referential transparency.

This final section will go deeper, and cover three functional design pat-
tern: monoids, functors and monads. These patterns are really im-
portant to fully understand the usage of algebraic data type to model the
domain.

The pattern introduced in this section are abstract, meaning that they
don’t operate on just one specific data type bar on all data types that share
a common algebra.

A.4.1 Monoid

Monoid is an ubiquitous pattern that come up frequently in programming,
even if we are not aware of it. To introduce monoids, let’s consider an
example about the concatenation operation for List and String types:

103

104 APPENDIX A. FUNCTIONAL PROGRAMMING

• the concatenation operation is a binary operation and is associative

• both List and String have an identity element and the operation ap-
plied with the identity yields the same value as the other argument

The points depicted above are a valid algebra for the abstraction of a
monoid. In Scala a monoid can be expressed as follows.

trait Monoid[A] {

def op(a1: A, a2: A): A

def zero: A

}

More formally, a monoid needs to satisfy the following laws:

• Left identity : op(zero, a) == a

• Right identity : op(a, zero) == a

• Associativity : op(a1, op(a2, a3)) == op(op(a1, a2), a3)

Back to the initial example, with the given definition List and String
concatenation can be expressed as monoids as follows.

val stringMonoid = new Monoid[String] {

def op(a1: String, a2: String) = a1 + a2

def zero = ""

}

def listMonoid[A] = new Monoid[List[A]] {

def op(a1: List[A], a2: List[A]) = a1 ++ a2

def zero = Nil

}

The benefits of having operations that operate on different data types
modelled as monoids is given by the fact that monoids offer parametricity
and the ability to abstract over behaviors.

A brilliant example that illustrates the power of monoids is given when
they are used in conjunction with lists and list folding functions. Looking
at foldLeft function definition:

def foldLeft[B](z: B)(f: (B, A) => B): B

104

APPENDIX A. FUNCTIONAL PROGRAMMING 105

and in the particular case of A = B:

def foldLeft(z: A)(f: (A, A) => A): A

it can be observed that the function signature perfectly matches the
signature of op operation on the monoid type.

This brings to a really nice proof of concept about the practical usage
of monoids, like in the following example.

val words = List("Hello", "world")

val t = words.foldLeft(stringMonoid.zero)(stringMonoid.op)

A.4.2 Functor

The previous section introduced an ubiquitous pattern that recurs fre-
quently in programming, monoid. This section will make a further step
towards the king abstraction of functional programming, which will be in-
troduced in the next one.

In the Scala standard library there are some classes that provide a map

function. For example:

def map[B](f: (A) => B): List[B]

def map[B](f: (A) => B): Option[B]

In the classes of the example, the effect of map is:

• for List, map applies the function f on each element of the list

• for Option, map applies the function f only if the element is instance
of Some and return Some of the result, otherwise it returns None

All these function signatures are pretty the same, with the only difference
of the concrete type involved. As always in programming, when there are
things that are pretty the same, it’s possible that factorize the behavior and
create a new abstraction. In this case, the abstraction it’s all about a data
type that implements map and it’s called functor. In Scala, if a data type
F implements map, F is a functor. An implementation of this abstraction
can be represented by the following trait.

105

106 APPENDIX A. FUNCTIONAL PROGRAMMING

trait Functor[F[_]] {

def map[A, B](fa: F[A])(f: A => B): F[B]

}

NB: in the example provided above (from the Scala library), the sig-
natures of the map function are different from the signature of map in the
trait introduced below. The reason of this difference is due to the object
oriented nature of the classes in the Scala library. The new signature has
a more “functional” approach, with an additional parameter (the first one)
that takes the object to map on.

With this new abstraction defined, it’s possible to define functors ex-
plicitly for List and Option in the following way, reusing the object oriented
implementation provided by the Scala standard library:

def listFunctor: Functor[List] = new Functor[List] {

def map[A, B](a: List[A])(f: A => B): List[B] = a map f

}

def optionFunctor: Functor[Option] = new Functor[Option] {

def map[A, B](a: Option[A])(f: A => B): Option[B]

= a.map(f).orElse(None)

}

Functors are nothing more that an abstraction that has the capability
of mapping over some data structure, with functions.

A.4.3 Monad

The concept of monad comes from category theory, and is one of the most
important topics in functional programming development.

From Wikipedia:

In functional programming, a monad is a structure that repre-
sents computations defined as sequences of steps: a type with
a monad structure defines what it means to chain operations,
or nest functions of that type together. This allows the pro-
grammer to build pipelines that process data in steps, in which

106

APPENDIX A. FUNCTIONAL PROGRAMMING 107

each action is decorated with additional processing rules pro-
vided by the monad. As such, monads have been described as
“programmable semicolons”; a semicolon is the operator used
to chain together individual statements in many imperative pro-
gramming languages, thus the expression implies that extra code
will be executed between the statements in the pipeline.

From a Erik Meijer’s quote:

Monads are return types that guide you through the happy path.

From a Martin Odersky’s quote:

Monads are parametric types with two operations flatMap and
unit that obey some algebraic laws.

An other definition can be: >Monads are abstract computations that
help us mimic the effects of typically impure actions like exceptions, IO,
continuations etc. while providing a functional interface to the users.

All this quotes and definitions help to give us the idea of what a monad
is. Formally, a monad is just a type, and can be defined as follows:

trait Monad[M[_]] extends Functor[M] {

def unit[A](a: => A): M[A]

def flatMap[A,B](ma: M[A])(f: A => M[B]): M[B]

def map[A,B](ma: M[A])(f: A => B): M[B] =

flatMap(ma)(a => unit(f(a)))

}

Monad extends functor, implementing map. The trait introduced above
is generic, so each type that implements a unit and a flatMap and respects
some laws (depicted below) is a monad.

NB: in the literature, flatMap is often called bind and unit is often
called return.

Two examples of monads are represented by Option and List. Starting
from the definition of Monad, they can be defined as follows (reusing the
implementation provided by the Scala standard library):

107

108 APPENDIX A. FUNCTIONAL PROGRAMMING

val optionMonad = new Monad[Option] {

def unit[A](a: => A) = Some(a)

def flatMap[A,B](ma: Option[A])(

f: A => Option[B]) = ma flatMap f

}

val listMonad = new Monad[List] {

def unit[A](a: => A) = List(a)

def flatMap[A,B](ma: List[A])(f: A => List[B]) = ma flatMap f

}

From the example, it’s easy to note that unit is different for each monad.
For example, for the List type unit is List(a) and for the Option type
unit is Some(a).

A more object oriented definition for monad is the following.

trait M[T] {

def flatMap[U](f: T => M[U]): M[U]

def unit[T](x: T): M[T]

}

with map defined as m flatMap (x => unit(f(x))).
As introduced previously, monads need to satisfy three laws: associativ-

ity, left unit and right unit.

Associativity

The associativity law is about the order of composition, and demands
that for any monad mand any two functions f and g, it must not make a
difference whether you apply f to m first and then apply g to the result, or
if you first apply g to the result of f and then in turn flatMap this over m.
Formally:

m flatMap f flatMap g == m flatMap (x => f(x) flatMap g)

Left unit

The left unit law demands that flatMap must behave in such a way that for
any function f passed to it, the result is the same as calling f in isolation.
Formally:

108

APPENDIX A. FUNCTIONAL PROGRAMMING 109

unit(x) flatMap f == f(x)

The left unit law can be considered the most important law, since it
guarantees that flatMap let’s you apply a transformation to the value con-
tained in a monad, without leaving the monad. In other words, monads
promote and allow containment and chainability of transformations.

Right unit

The right unit law demands that applying unit to a monad has no effects
at all (or, better, has the same outcome as not calling it at all). Formally:

m flatMap unit == m

Usually the term monad is also used informally, to describe a type that
has flatMap and unit, without any attention about the monad laws. An
example of this is given by the Try type, which has a Success case that
contains a value and a Failure case that contains an exception.

abstract class Try[+T]

case class Success[T](x: T) extends Try[T]

case class Failure(ex: Exception) extends Try[Nothing]

Try is often used to wrap the result of a computation inside a container
type. The important thing about Try is that is handles exception, through
materialization.

def map[S](f: T => S): Try[S] = this match {

case Success(value) => Try(f(value))

case failure: Failure(t) => failure

}

def flatMap[S](f: T => Try[S]): Try[S] = this match {

case Success(value) =>

try { f(value) } catch { case NonFatal(t) => Failure(t) }

case failure: Failure(t) => failure

}

At first sight Try looks like a monad, implementing flatMap (and unit),
but formally it doesn’t respect the left unit law.

109

110 APPENDIX A. FUNCTIONAL PROGRAMMING

110

Appendix B

Future and Promises

The appendix about Functional Programming introduced the main patterns
and principles that help when dealing with computations that imply some
effects. Moving a step forward, we can consider also the latency as an effect.

The following table represents a possible classification of the effects in
programming.

This section will introduce a first abstraction to achieve sequential com-
position of actions that can take time to complete and that can also fail:
Future[T].

Future and Promise are two really powerful abstractions that can be
classified in the asynchronous programming category.

Wikipedia defines Futures and Promises as follows:

In computer science, future, promise, and delay refer to con-
structs used for synchronization in some concurrent program-
ming languages. They describe an object that acts as a proxy
for a result that is initially unknown, usually because the com-
putation of its value is yet incomplete. [. . .]

A future is a read-only placeholder view of a variable, while a

Table B.1: The essential effects in programming
One Many

Synchronous T/Try[T] Iterable[T]
Asynchronous Future[T] Observable[T]

111

112 APPENDIX B. FUTURE AND PROMISES

promise is a writable, single assignment container which sets the
value of the future.

Futures and Promises promote an asynchronous and non-blocking ap-
proach to programming. The scale up to use multiple cores on a machine,
but with the currently implementations they don’t scale out across nodes.

B.1 Futures

A Future is an immutable handle to a value or a failure that will become
availlable in the future time. Another possible definition is that Futures
are monads that handle exceptions and latency. A fist simple possible
definition in Scala is:

trait Future[T] {

def onComplete(callback: Try[T] => Unit)

(implicit executor: ExecutionContext): Unit

}

object Future {

def apply(body: => T)

(implicit context: ExecutionContext): Future[T]

}

This first definition put some important concepts directly in the type
definitions:

• a Future is parametrized on a type T

• a Future may fail, returning a Try.Failure

• a Future may succeed (successfully completed), returning a Try.Success[T]

Futures are really useful in defining operations that will be executed
at some point in time by some thread (execution context). Futures are
immutable from the developer point of view: once an API returns a Future,
there’s is no way to set a value insede a Future. In other words, a Future
may only be assigned once.

A more complete and precise definition for Future is the following:

112

APPENDIX B. FUTURE AND PROMISES 113

trait Awaitable[T] extends AnyRef {

abstract def ready(atMost: Duration): Unit

abstract def result(atMost: Duration): T

}

trait Future[T] extends Awaitable[T] {

def filter(p: T => Boolean): Future[T]

def flatMap[S](f: T => Future[S]): Future[U]

def map[S](f: T => S): Future[S]

def recoverWith(f: PartialFunction[Throwable, Future[T]]): Future[T]

}

object Future {

def apply[T](body : => T): Future[T]

}

In the scala library, Futures are already implemented in the scala.concurrent
package. In this package, Future[T] is a type which denotes future objects,
whereas future is a method which creates and schedules an asynchronous
computation, and then returns a future object which will be completed with
the result of that computation. An example of the usage of Future coming
from the Scala documentation is the following:

import scala.concurrent._

import ExecutionContext.Implicits.global

val session = socialNetwork.createSessionFor("user", credentials)

val f: Future[List[Friend]] = future {

session.getFriends()

}

The the previous example shows some key points:

• To obtain the list of friends of a user, a request has to be sent over
a network, which can take a long time. Wrapping the request inside
the future method doesn’t block the rest of the program execution
while waiting for a response.

• All the computation is performed asynchronously.

113

114 APPENDIX B. FUTURE AND PROMISES

• The list of friends becomes available in the future once the server
responds.

• If the request fails, the future itself will fail.

To obtain the value of a Future, the library offers two main solutions:

• the client blocks its computation and wait until the future is com-
pleted

• the client register a callback by using the onComplete method,
which was alredy depicted at the beginning of this chapter.

The library also provide the companion methods onSuccess and onFailure,
which usually are used alternatively to onComplete. All these three meth-
ods have Unit as the result type. This is intentional, since the invocations
of these methods cannot be chained.

The presence of these callbacks may lead to what is known as “asyn-
chronous spaghetti”, where the overall computation is fragmented into asyn-
chronous handlers. To prevent this possibility, futures provide combinators
which allow a more straightforward composition, such as map, flatMap,
filter, . . .

The map methods takes a future and a mapping function for the value
of the future and produces a new future that is completed with the mapped
value once the original future is successfully completed.

The flatMap method takes a function that maps the value to a new
future g, and then returns a future that is completed once g is completed.

The filter method creates a new future that contains the value of the
original future only if it satisfies some predicate. Otherwise, the new future
is failed with a NoSuchElementException.

The presence of these methods enable the Future type to also supports
for-comprehension. An example, taken from the documentation, of for-
comprehension in practice is the following:

val usdQuote = future { connection.getCurrentValue(USD) }

val chfQuote = future { connection.getCurrentValue(CHF) }

val purchase: Future[Int] = for {

usd <- usdQuote

chf <- chfQuote

114

APPENDIX B. FUTURE AND PROMISES 115

if isProfitable(usd, chf)

} yield connection.buy(amount, chf)

purchase onSuccess {

case _ => println("Purchased " + amount + " CHF")

}

that is translated to:

val purchase: Future[Int] = usdQuote flatMap {

usd =>

chfQuote

.withFilter(chf => isProfitable(usd, chf))

.map(chf => connection.buy(amount, chf))

}

For-comprehension is a really elegant and concise way to express chain
of computations, leveraging the monadic nature of Futures to describe the
“happy path” of the chain and to propagate (materialize) the exceptions.

B.2 Promises

Promises are an interesting and alternative way to create futures. A
Promise can be seen as a writable, single-assignment container, which com-
pletes a Future.

In Scala, a Promise can be represented by the following trait:

trait Promise[T] {

def future: Future[T]

def complete(result: Try[T]): Unit

def tryComplete(result: Try[T]): Boolean

}

trait Future[T] {

def onCompleted(f: Try[T] => Unit): Unit

}

115

116 APPENDIX B. FUTURE AND PROMISES

A promise p can alternatively complete or fail the future returned by
p.future. In other words, it acts as a mailbox for the future that it
wraps.

The Scala standard library already implements Promise in the scala.concurrent
package.

Promises have a single-assignment semantics, so they can be completed
only once and usually are used to implement other operator on futures.

116

Appendix C

Reactive Streams

Reactive Streams is an initiative to provide a standard for asyn-
chronous stream processing with non-blocking back pressure.
This encompasses efforts aimed at runtime environments (JVM
and JavaScript) as well as network protocols.

The project is a collaboration between engineers from Kaazing, Netflix,
Pivotal, RedHat, Twitter, Typesafe and many others and is developed and
discussed in the open.

The core idea behind the Reactive Stream standard is in the definition
of two different channels for the downstream data and the upstream
demand.

Figure C.1: Two different channels for the downstream data and the up-
stream demand

This allows overcoming one of the biggest issue of the Rx approaches:
backpressure. Backpressure is a lack of demand, and is due to the fact
that the producer of a stream of items is faster than the consumer, and that
difference of speed quickly determines a growing backlog of unconsumed
items on the consumer side.

117

118 APPENDIX C. REACTIVE STREAMS

In the literature (and in our everyday life) there’s already a protocol
that solved a similar problem: TCP. With this in mind, engineers behind
Reactive Streams proposed a solution that, in simple terms, works like this:

• A publisher doesn’t send data until a request arrives via the demand
channel, at which point it can push a certain number of elements (in
according to the request) downstream.

• When outstanding demand exists, the publisher is free to push data
to the subscriber.

• When demand is exhausted, the publisher cannot send data except as
a response to demand signalled from downstream.

Engineers called this technique dynamic push/pull. The dynamic
terms indicates that the system should adapt to the current conditions
of its components and that’s not safe to only use a just push or just pull
approach.

A just push approach is not safe when the subscriber is slow, since
it’ll quickly start to be overwhelmed by the offers and will start to:

• drop items, in the case of it use a bounded buffer to store received
messages (just like TCP)

• trigger an out of memory error

A just pull approach is too slow in the case that the subscriber is
faster than the publisher.

Two important notes about the fact that data and demand flows in
different channels and directions are the following:

• Merging streams splits the upstream demand

• Splitting streams merges the downstream demand

118

APPENDIX C. REACTIVE STREAMS 119

As the main document says, the scope of Reactive Streams is to find
a minimal set of interfaces, methods and protocols that will describe the
necessary operations and entities to achieve the goal: asynchronous streams
of data with non-blocking back pressure. This set of interfaces is a low level
specification to which each library should conform.

The API offers the following interfaces that are required to be imple-
mented by each implementation:

• Subscriber

• Subscription

• Publisher

• Processor

C.1 Subscriber

The Subscriber interface abstracts the notion of an entity that consumes
items. Its definition is as follows.

public interface Subscriber<T> {

public void onSubscribe(Subscription s);

public void onNext(T t);

public void onError(Throwable t);

public void onComplete();

}

A Subscriber has the canonical onNext(), onError(), and onComplete()

methods. When new items are produced by the publisher, a the onNext
method is invoked with the new element. If an error was raised while pro-
ducing values, the publisher would then invoke the onError method with the
exception. Finally, when the publisher completes its job, the onComplete
method is then invoked.

The onSubscribe() method is invoked when a subscriber is subscribed
to a publisher. This method is really important for the framework, since it
links the relation between a subscriber and a publisher, via a Subscription.

119

120 APPENDIX C. REACTIVE STREAMS

C.2 Subscription

A Subscription abstracts the notion of a subscriber’s communication chan-
nel back to the publisher. This channel is what enables the subscriber to
either cancel the subscription or signal demand. Its definition is as follows.

public interface Subscription {

public void request(long n);

public void cancel();

}

The request() method signals to the publisher that the subscriber can
receive more items, also specifying the quantity.

The cancel() method notifies the publisher that the subscriber is no
longer interested in receiving items.

This channel between a publisher and a subscriber is what enables to
achieve non blocking back-pressure in a Reactive Streams.

C.3 Publisher

The Publisher interface has only one method to implement, and is as
follows.

public interface Publisher<T> {

public void subscribe(Subscriber<? super T> s);

}

A subscriber is subscribed to a publisher via the subscribe() method.
This method doesn’t return a Subscription as one would expect, but Unit.
This is a precise design choice, since every method of the interfaces returns
Unit.

The publisher, after notifying the subscriber that it has been subscribed
via its onSubscribed() method, must provide items to the subscriber, that
will receive items in its onNext() method. The items received must not
exceed the total number of items that the subscriber has signalled demand
for.

When the subscriber cancel() the subscription, the publisher must
start sending items.

120

APPENDIX C. REACTIVE STREAMS 121

Finally, a publisher must notify to the subscriber through onError()

and onComplete() methods if an error is encountered or the stream is
successfully completed respectively.

C.4 Processor

A Processor represents a processing stage, which is both a Subscriber and
a Publisher and obeys the contracts of both. The interface is defined as
follows.

public interface Processor<T, R>

extends Subscriber<T>, Publisher<R> { }

A processor is an intermediate abstraction that enables to build chain of
processing stage, in which each intermediate unit is a processor that can
consume, transform and publish items. The importance of this abstraction
is in the fact that, obeying to both Subscriber and Publisher interface, it has
to retain back-pressure propagation with the original stream source.

121

122 APPENDIX C. REACTIVE STREAMS

122

Bibliography

[1] 1997, Elliott, Hudak.
Functional reactive animation

[2] 2012, Odersky, Maier, Rompf.
Deprecating the Observer Pattern

[3] 2012, Bainomugisha, Lombide Carreton, Van Cutsem, Monstinckx, De
Meuter.
A Survey on Reactive Programming

[4] 2013, Salvaneschi, Mezini.
Reactive Behavior in Object-oriented Applications: An Analysis and a
Research Roadmap

[5] 1986, Agha.
Actors: a model of concurrent computation in distributed systems

[6] 2009, Elliot.
Push-pull functional reactive programming

[7] 2010, http://msdn.microsoft.com/en- us/devlabs/.
Reactive Extensions for .NET (Rx)

[8] 2014, Meijer, http://channel9.msdn.com/Events/Lang-NEXT/Lang-
NEXT-2014/Keynote-Duality .
Duality and the End of Reactive

[9] 2014, Meijer.
The curse of the excluded middle

123

124 BIBLIOGRAPHY

[10] 2012, Meijer.
Your mouse is a database

[11] https://github.com/ingoem/scala-react.
Scala.react

[12] https://github.com/ReactiveX/RxJava.
RxJava and RxAndroid

[13] https://github.com/ReactiveCocoa/ReactiveCocoa.
ReactiveCocoa

[14] https://github.com/akka/akka.
Akka

[15] 2015, Salazar, http://nomothetis.svbtle.com/an-introduction-to-
reactivecocoa, 2015.
An Introduction to ReactiveCocoa

[16] 2015, Eberhardt, http://blog.scottlogic.com/2015/04/24/first-look-
reactive-cocoa-3.html.
A first look at ReactiveCocoa 3.0

[17] 2015, Eberhardt, http://blog.scottlogic.com/2015/04/28/reactive-
cocoa-3-continued.html.
ReactiveCocoa 3.0 - Signal producers and API clarity

[18] http://doc.akka.io/docs/akka-stream-and-http-experimental.
Akka Stream documentation

[19] https://github.com/ReactiveX/RxJava/wiki.
RxJava documentation

[20] 2015, Kuhn, Allen.
Reactive Design Patterns

[21] 2014, Chiusano, Bjarnason.
Functional Programming in Scala

[22] 2015, Ghosh.
Functional and Reactive Domain Modeling

124

BIBLIOGRAPHY 125

[23] 1999, Okasaki.
Purely Functional Data Structures

[24] 2003, Evans.
Tackling Complexity in the Heart of Software

[25] 2014, Salvaneschi, Mezini, Eugster.
Programming with Implicit Flows

125

