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Introduction

The need to reconstruct images from signals arises in several fields and

applications. Among these, one of the most relevant is the Medical imaging,

that is the sector responsible for producing some reconstructed images of the

human body for a diagnostic and therapeutic aim. One of the most cur-

rent diagnostic imaging technique is the Computerized Tomography (CT),

namely a methodology that allows to reproduce sections of patient’s body

via the emission of ionized radiation beams (X-rays) and permits a three-

dimensional reconstruction thanks to the aid of a calculator. More recently,

the new technique of Digital Tomosynthesis (DT) has got increasing interest.

DT is a methodology for reconstructing a three-dimensional object by using

only a finite number of projections over a limited range of angles. For this

reason, it is particularly suitable for the analysis of fragile parts of the body

because they are subject to a smaller quantity of radiations.

Usually in the most common DT systems the mathematical model ap-

proximates the reality by considering the object made of only one material

and the X-rays beam made of only one energy level. The contribution of this

thesis is to study a polyenergetic and multimaterial model for a breast image

reconstruction in Digital Tomosynthesis, namely a more complex mathemat-

ical model that takes into account the variety of the materials forming the

object and the polyenergetic nature of the X-rays beam. The modelling of
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an object composed of several materials permits to separate the different tis-

sues composing the object, allowing a more informative reconstruction. On

the other hand, considering a polyenergetic radiation beam permits to avoid

the appearance of artifacts linked to the monoenergetic nature of X-rays and

then to get a higher quality reconstructed image, making sometimes a post-

processing phase unnecessary.

Unfortunately the image reconstruction represents the resolution of an

inverse ill-posed problem, that needs a regularization. Moreover, that model

leads to the resolution of a high-dimensional nonlinear least-squares problem,

that is much more complex than a linear least-squares one and needs for its

resolution a relevant quantity of storage and time. For these reasons, we test

several numerical methods fit to solve this type of problem; among them, the

principal ones are the Levenberg-Marquardt method with different possible

choices for the regularization parameter and two algorithms belonging to the

L-BFGS class, i.e. those methods that implement the BFGS formulas but

need only a limited quantity of storage.

In the first chapter of this thesis the fundamental concepts of the un-

constrained regularization are presented and, after that the two different

strategies of line search and trust region have been introduced, the several

methods for the resolution of a nonlinear least-squares problem that will be

used in the experiments are analysed.

In the second chapter, after having presented briefly the Computerized

Tomography and Digital Tomosinthesys techniques, we turn to the multi-

material and polyenergitic model. For this goal we create a test problem

composed by an object with a known materials composition in order to try

to reconstruct it via the numerical methods presented.

In the third chapter we make the real experiments of the introduced nu-
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merical methods. Since the tests at the calculator take much time, firstly

we analyse the results of the various methods for a test problem of limited

dimensions. Later, once identified the methods and parameters correspond-

ing to the best solutions, we test them for a higher-dimensional problem,

comparing the reconstructed images qualities too.

In the Conclusions we make a synthesis of the results we got and identify

those methods that, in our experiments, turn out to be the most efficient

ones.





Introduzione

La necessità di ricostruire immagini a partire da segnali nasce in diversi

campi ed applicazioni. Fra questi, uno dei più rilevanti è il Medical ima-

ging, ovvero il settore che si occupa di fornire delle ricostruzioni di immagini

del corpo umano per fini diagnostici e terapeutici. Una fra le tecniche di

diagnostica per immagini più diffuse è la Tomografia Computerizzata (CT),

ovvero una metodologia che permette la riproduzione di sezioni del corpo

del paziente per mezzo dell’emissione di fasci di radiazioni ionizzate (raggi

X) e ne permette una ricorstruzione tridimensionale grazie all’ausilio di un

calcolatore. Più recentemente sta attirando sempre più interesse la tecnica

di Tomosintesi Digitale (DT). La DT è una metodologia atta a ricostruire un

oggetto tridimensionale utilizando solo un numero finito di proiezioni su un

range limitato di angolazioni. Per questi motivi, essa risulta particolarmente

indicata per l’analisi di parti delicate del corpo perchè soggette ad una quan-

tità minore di radiazioni.

Solitamente nei più diffusi sistemi DT il modello matematico approssima

la realtà considerando l’oggetto composto da solo un materiale e il fascio di

raggi X ad un solo livello di energia. Il contributo di questa tesi è quello

di studiare un modello polienergetico e multimateriale per la ricostruzione

dell’immagine di una mammella attraverso la tecnica di Tomosintesi Digita-

le, ovvero un modello matematico più complesso che tenga in considerazione

v
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la varietà dei materiali di composizione dell’oggetto e la natura polienergen-

tica del fascio di radiazione X. La modellizzazione di un oggetto composto

da diversi materiali consente di separare i diversi tessuti che compondono il

corpo, permettendo una ricostruzione più ricca di informazioni. Dall’altro

lato considerare la radiazione a più livelli di energia permette di evitare la

comparsa di artifatti legati alla natura monoenergetica dei raggi X e quindi

di ottenere un’immagine ricostruita di qualità superiore, rendendo a volte

superflua una fase di post-processing.

Sfortunatamente la ricostruzione dell’immagine costituisce la risoluzione

di un problema inverso mal posto, che necessita quindi di una regolarizzazio-

ne. Inoltre, tale modello conduce alla risoluzione di un problema di minimi

quadrati non lineari di grandi dimensioni, che risulta assai più complesso di

un problema di minimi quadrati lineari e che necessita per la sua risoluzione

una consistente quantità di memoria e di tempo. Per questi motivi sono stati

testati diversi metodi numerici adatti alla risoluzione di un simile problema;

tra questi, i principali sono il metodo di Levenberg-Marquardt con diverse

possibili scelte del parametro di regolarizzazione e due algoritmi della classe

L-BFGS, ovvero quei metodi che implementano le formule BFGS ma che ne-

cessitano solo di una quantità limitata di memoria.

Nel primo capitolo di questa tesi sono stati introdotti i concetti fondamen-

tali dell’ottimizzazione non vincolata e, dopo aver presentato le due diverse

strategie di ricerca in linea e trust region, si sono analizzati i vari metodi

per la risoluzione di un problema di minimi quadrati non lineari che saranno

utilizzati nelle sperimentazioni.

Nel secondo capitolo, dopo aver presentato brevemente la tecnica della

Tomografia Computerizzata e della Tomosintesi Digitale, si è passati al mo-

dello multimateriale e polienergetico. Per far ciò si è costruito un problema
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test costituito da un oggetto dalla composizione di materiali nota con l’o-

biettivo di tentare di ricostruirlo attraverso i metodi numerici presentati.

Nel terzo capitolo si è proceduti alla vera e propria sperimentazione dei

metodi numerici introdotti. Siccome le prove al calcolatore richiedono molto

tempo, si è dapprima analizzato i risultati dei vari metodi per un problema

test di dimensioni limitate. Dopodiché, individuati i metodi e i parametri che

restituiscono le soluzioni migliori, si è proceduto a testarli su un problema di

dimensioni maggiori, confrontando anche la qualità delle immagini ricostrui-

te.

Nelle Conclusioni faremo una sintesi dei risultati ottenuti e individueremo

i metodi che, nei nostri test, si sono rivelati i più efficienti.
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Chapter 1

Some unconstrained optimization

methods

In this chapter we are going to show the fundamentals of unconstrained

optimization and give all the instruments that we need to solve our problem

of image reconstruction in tomography. So, first we will make an overview of

a minimization problem and we will present the most important definitions

and theorems. After having presented the two main strategies into which

all minimization problems are broken down (line search and trust region

methods) and some methods (the Conjugate Gradient method and the CGLS

method), we will focus on the problem of uncostrained optimization of a

nonlinear least-squares problem and we will show some strategies to solve it.

Finally, we will show how the gradient vector can be approximated, since we

will need it in the future.

1



2 1. Some unconstrained optimization methods

1.1 Fundamentals of unconstrained

optimization

The goal of the unconstrained optimization is to minimize a certain func-

tion, usually called objective function, that depends on real variables, without

any constraints or restrictions on these variables. More formally, we intend

to find

x∗ = arg min
x∈Rn

f(x)

where f : Rn −→ R is the objective function, which we suppose at least

differentiable.

The best we could find is a global minimizer of f , namely a point where the

function reaches its least value. Formally:

Definition 1.1.1. A point x∗ is a global minimizer if f(x∗) ≤ f(x) for all

x in the domain of interest to f .

Since a general algorithm does not visit many points of f , and then we

do not have a precise picture of its shape, a global minimizer is often difficult

to find, also because we cannot know if the function takes some sharp dips

between an evaluated point and the next one. So, most algorithms intend

to find a local minimizer, namely a point where f reaches the least value

relatively to a certain neighbourhood of the point:

Definition 1.1.2. A point x∗ is a local minimizer if exists a neighbourhood

N of x∗ such that f(x∗) ≤ f(x) for all x ∈ N .

From the definition above, it might seem that in order to recognize a

minimizer we should examine all the points in the domain of interest of f

or in any neighbourhood of the point, and this would be clearly impossible.
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However, if the function is smooth, there are some more efficient and practical

criteria in order to identify local minimizers. The most important ones come

all from the central tool used to study optimization problems, the Taylor’s

theorem:

Theorem 1.1.1 (Taylor’s theorem). Suppose that f ∈ C1(Rn,R) and p ∈

Rn. Than we have that

f(x+ p) = f(x) +∇(x+ tp)Tp

for some t ∈ (0, 1). Moreover, if f ∈ C2(Rn,R), we have that

∇f(x+ p) = f(x) +

∫ 1

0

∇2f(x+ tp)p dt

and that

f(x+ p) = f(x) +∇f(x)Tp+
1

2
pT∇2f(x+ tp)p (1.1)

for some t ∈ (0, 1).

From this theorem we can get some necessary and sufficient conditions

that will be very useful to check local minima. For example, if f ∈ C2(Rn)

we can get some information by examining just the gradient ∇f(x∗) and the

Hessian ∇2f(x∗). Before just enunciating the most important ones, we give

a definition.

Definition 1.1.3. A point x∗ is called a stationary point if ∇f(x∗) = 0.

Theorem 1.1.2 (First-Order Necessary Conditions). If x∗ is a local mini-

mizer and f ∈ C1 in any open neighbourhood of x∗, then x∗ is a stationary

point.
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Theorem 1.1.3 (Second-Order Necessary Conditions). If x∗ is a local min-

imizer and f ∈ C2 in any open neighbourhood of x∗, then x∗ is a stationary

point and ∇2f(x∗) is positive semidefinite.

Theorem 1.1.4 (Second-Order Sufficient Conditions). If f ∈ C2 in any

open neighbourhood of x∗, x∗ is a stationary point and ∇2f(x∗) is positive

definite, then x∗ is a strict local minimizer of f .

Sometimes having some additional information about f can help us to

identify global minimizers. As the next theorem states, an important special

case is that of convex functions:

Definition 1.1.4. A function f : Rn −→ R is a convex function if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

for all 0 ≤ α ≤ 1 and for all x, y ∈ Rn.

Theorem 1.1.5 (Optimality Conditions for Convex Functions). If f is a

convex function, then every local minimizer is a global minimizer. If f is a

strict convex function, then exists only one global minimizer. If f is a differ-

entiable convex function, then every stationary point is a global minimizer.

1.2 Overview of algorithms

Every algorithm for unconstrained minimization requires the user to give

a starting point, which is usually called x0. If the user has some knowl-

edge about the application and the data set, he may be in a good position

to choose the starting point x0 to be a reasonable estimate of the solution.

Otherwise, if the user has no knowledge about it, then the starting point



1.2 Overview of algorithms 5

must be chosen by the algorithm, either by a systematic approach or in some

arbitrary way.

The optimization algorithms, starting from x0, generate a sequence of it-

erates {xk}∞k=0 that stops when either a solution point has been approximated

with sufficient accuracy, either no more progress can be made or when the

maximum number of iterations is reached. In order to move from one iterate

xk to the next, the algorithms use some information about f in xk (can be f

itself, or its derivative, and so on) and in some earlier iterates x0, x1, . . . , xk−1

with the goal to find a point with a lower objective function value. Every

algorithm differs from the others in the way it chooses the next iterate from

earlier iterates.

Now we present the two cathegories into which the collection of algo-

rithms for unconstrained optimization of smooth functions can be broken

down: line search algorithms and trust region algorithms.

1.2.1 Line search algorithms

In the line search strategy, the algorithm at every step xk first chooses

a direction pk and than searches along this direction from xk a new iterate

with a lower objective function value. The distance to move along pk, namely

the step length αk, can be found by approximately solving the following one-

dimensional minimization problem:

arg min
α>0

f(xk + αpk) (1.2)

If we could solve (1.2) exactly, then we would derive the maximum decrease

from the direction pk, but an exact minimization may be expensive and is

usually unnecessary. Instead, the line search algorithm generates a limited
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number of trial step lengths until it finds one that loosely approximates the

minimum of (1.2). When, at the new point, a new search direction and step

length are computed, then the process is repeated. So, more formally, a line

search method can be written in the form:

xk+1 = xk + αkpk (1.3)

where we have to choose opportunely, at every step, a direction pk and a step

length αk.

Most algorithms choose as pk a direction along which the objective function

decreases, namely a descent direction:

Definition 1.2.1. The vector pk is a descent direction for f in xk if exists

ᾱk > 0 such that f(xk + αkpk) < f(xk) for all αk ∈ (0, ᾱk].

Taylor’s theorem gives a condition for a vector pk to be a descent direction:

Proposition 1.2.1. If results that

pTk∇f(xk) < 0 (1.4)

then pk is a descent direction for f in xk.

Proof. In fact, from the (1.1), we have that

f(xk + εpk) = f(xk) + εpTk∇fk +O(ε2)

and it follows that f(xk + εpk) < f(xk) for all positive but sufficiently small

values of ε.
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Since (1.4) can be expressed as

pTk∇f(xk) = ‖pk‖ ‖∇f(xk)‖ cos θk < 0

where θk is the angle between pk and ∇f(xk), in order to have a descent

direction it is sufficient that the vector pk forms an acute angle respect to

the gradient ∇f(xk), provided that the step length is sufficiently small.

Once chosen the direction, now we would like to choose the step length

αk without high costs. Since it is known that it is not sufficient just that

f(xk + αkpk) ≤ f(xk), we should make a step length choice such that we get

a substantial reduction of f . The ideal choice would be the global minimizer

of the univariate function defined by

arg min
α>0

φ(α) = arg min
α>0

f(xk + αpk)

but, in general, it is too expensive to identify this value, because we should

evaluate the objective function f and eventually the gradient ∇f a lot of

times.

A common inexact line search condition that ensures a sufficient decrease of

the objective function f is the Armijo condition:

f(xk + αk) ≤ f(xk) + c1α∇fTk pk,

for some constant c1 ∈ (0, 1) and, in practice, usually c1 = 10−4. As we

can see in Figure 1.1, this condition states that the reduction in f should

be proportional to both the step length αk and the directional derivative

∇fTk pk. But the sufficient decrease condition cannot be sufficient alone, since

one could take too small values of α without making reasonable progress. So,
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Figure 1.1: Armijo condition.

in order to reject too small values of αk, we introduce a second requirement,

called the curvature condition:

∇f(xk + αkpk)
Tpk ≥ c2∇fTk pk,

for some constant c2 ∈ (c1, 1).

In the practice, instead of implementing both the sufficient decrease con-

dition and the curvature condition (known collectively as Wolfe conditions),

in order to avoid choosing too small values of αk we use a so-called backtrack-

ing approach. In this procedure, the idea is to choose the biggest value of αk

that satisfies the Armijo condition. More precisely, the initial step length ᾱ

is chosen to be 1 and it is multiplied by a factor ρ < 1 (for example, ρ = 1/2)

as long as that α value satisfies the Armijo condition. The backtracking ap-

proach algorithm can be written in pseudocode as in Algorithm 1.

Algorithm 1: backtracking algorithm
Choose ᾱ > 0, ρ ∈ (0, 1). Set α← ᾱ;
while f(xk + αk) ≥ f(xk) + c1α∇fTk pk do

α← ρα
end
αk = α
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1.2.2 Trust region algorithms

In the second algorithmic strategy, known as trust region, a model func-

tion mk is constructed such that its behaviour near the current point xk is

similar to that of the objective function f . Since the model mk may not be

a good approximation of f when x is far from xk, we restrict the search for

a minimizer of mk to some region around xk, that is we find the candidate

step p by approximately solving the subproblem:

arg min
p
mk(xk + p), where xk + p lies in the trust region. (1.5)

If the candidate solution does not produce a sufficient decrease in f , then

the trust region is too large and so we go on shrinking it and resolving the

problem again. Usually, the trust region is a ball defined by ‖p‖2 ≤ ∆ (where

the scalar ∆ > 0 is called the trust-region radius) but elliptical or box-shaped

trust regions may also be used.

The model in (1.5) is usually defined to be a quadratic function of the

form

mk(xk + p) = fk + pT∇fk +
1

2
pTBkp

where fk and ∇fk are respectively the function and the gradient values at

the point xk while the matrix Bk can be either the Hessian ∇2fk or some

approximation to it.

In conclusion, we note that in a sense the line search and trust-region

approaches differ in the order in which they choose the direction and distance

of moving to the next iterate. In fact, the line search strategy starts by

fixing the direction pk and then identifying an appropriate step length αk.

Instead, in trust region strategy we first choose a maximum distance, namely

the trust-region radius ∆k, and then find a direction and step that attain the
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best improvement possible. If this step proves to be unsatisfactory, we reduce

the distance measure ∆k and try again.

1.2.3 Conjugate gradient method

We present in this section the conjugate gradient method, that is useful

both in solving large linear systems of equations and solving nonlinear opti-

mization problems. In fact, the conjugate gradient method can be formulated

as an iterative method for solving a linear system of equations

Ax = b

where A is an n × n symmetric positive definite matrix or, equivalently, as

the following minimization problem

arg minφ(x) :=
1

2
xTAx− bTx. (1.6)

namely a technique for minimizing convex quadratic functions. The two

problems, for the Theorem 1.1.5, has the same solution x∗ = A−1b.

From (1.6) we have that the gradient of φ is equal to the residual of the

linear system, namely

∇φ(x) = Ax− b =: r(x)

and so, for x = xk we have

rk = Axk − b

One of the remarkable properties of the conjugate gradient method is its
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ability to generate in a very economically way a set of conjugate vectors:

Definition 1.2.2. A set of nonzero vectors p0, p1, . . . , pl is said to be conju-

gate with respect to the symmetric positive definite matrix A if

pTi Apj = 0, for all i 6= j.

and it is easy to show that any set of vectors satisfying this property is

also linearly independent.

Let us consider now a set of conjugate directions {p0, p1, . . . , pn−1} and

let us generate the sequence {xk} by setting

xk+1 = xk + αkpk, αk = − rTk pk
pTkApk

(1.7)

where αk is the one-dimensional minimizer of the quadratic function φ along

xk + αk. Thanks to the next theorem, the importance of conjugacy lies in

the fact that we can minimize (1.6) in n steps by minimizing it successively

along the individual directions in a conjugate set:

Theorem 1.2.1. For any x0 ∈ Rn the sequence (1.7) generated by the con-

jugate direction algorithm converges to the solution x∗ = A−1b in at most n

steps. Moreover, the residuals are such that

rTk pi = 0, i = 0, 1, . . . , k − 1

and xk is the minimizer of (1.6) over the set

{x|x = x0 + span {p0, p1, . . . , pk−1}} .

A set of n A− conjugate vectors always exists, and it is the set of the
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eigenvectors of A, but it is not cheap to calculate them exactly. In the

conjugate gradient method we chose the conjugate directions computing a

new vector pk by using only the previous vector pk−1. It does not need

to know all the previous elements {p0, p1, . . . , pk−2}, so the method requires

small storage and computation, and pk results automatically conjugate to

these vectors. This statement is proved by the following theorem:

Theorem 1.2.2. The iterative method given by

xk+1 = xk + αkpk

where

pk = −∇f(xk) + βk−1pk−1, p0 = −∇f(x0)

αk = −(∇f(xk))
Tpk

pTkApk

βk−1 =
(∇f(xk))

TApk−1

pTk−1Apk−1

are such that {p0, p1, . . . , pn−1} are a set of descent and conjugate and direc-

tions, so the sequence {xk} converges to the solution x∗ = A−1b in at most n

steps. Moreover, the residuals are such that

rTk rj = 0, j = 0, 1, . . . , k − 1, k = 1, 2, . . . , n− 1.

In the practice, we can write a computationally cheap different version of

the conjugate gradient method. This version has a different expression for

the coefficients αk and βk:

αk =
rTk rk
pTkApk

, βk =
rTk+1rk+1

rTk rk
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but has the same proprieties of the previous one. Since it has several com-

putation advantages, this is the version that we implemented in our tests.

The algorithm of conjugate gradient method expressed in pseudocode is Al-

gorithm 2.

Algorithm 2: CG algorithm
Given x0;
Set r0 ← Ax0 − b, p0 ← −r0, k ← 0 ;
while rk 6= 0 do

αk ←
rTk rk
pTkApk

;
xk+1 ← xk + αkpk ;
rk+1 ← rk + αkApk ;
βk+1 ←

rTk+1rk+1

rTk rk
;

pk+1 ← −rk+1 + βk+1pk ;
k ← k + 1 ;

end

1.2.4 CGLS method

The CGLS method solve a linear least-squares problem that takes the

form

arg minφ(x) :=
1

2
= ‖Qx− c‖2 =

1

2
xTQTQx− xTQT c.

that is a quadratic form problem with Q ∈ Rm×n, m ≥ n. This problem has

a solution x if and only if

QTQx = QT c (1.8)

namely if x is a solution of the normal equation system. If the coefficient

matrix QTQ is positive definite we can use the conjugate gradient method in

order to solve (1.8). Now we present in Algorithm 3 the pseudocode to solve

this kind of problem using the CG method.
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Algorithm 3: CGLS algorithm
Given x0;
Set r0 ← Qx0, z0 ← QT r0, p0 = z0, k ← 0 ;
while rk 6= 0 do

wk ← Qpk;
αk ←

zTk zk
wTk wk

;
xk+1 ← xk + αkpk ;
rk+1 ← rk − αkwk ;
zk+1 ← QT rk+1 ;
βk+1 ←

zTk+1zk+1

zTk zk
;

pk+1 ← zk+1 + βk+1pk ;
k ← k + 1 ;

end

1.3 Algorithms for nonlinear least-squares

problems

In this paragraph we are going to introduce the nonlinear least-squares

problem and highlight the advantages we face if the optimization problem is

formulated in this way. Then we will present some algorithms to solve this

kind of problem that will be implemented for our experiments.

In a typical least-squares problem the objective function f is written as

f(x) =
1

2

m∑
j=1

r2
j (x) (1.9)

where rj : Rn −→ R are differentiable functions named residuals and we

always suppose m ≥ n.

Least-squares problems arise in many applications (chemistry, physics,

finance, economy...) when we have to solve a data fitting problem, namely
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to select values for the parameters that best match the constructed model to

the observed behaviour of the system we want to study. More precisely, in

this kind of problems the function of the form (1.9) measures the discrepancy

between the constructed model values φ(x; tj) and the observed data yj, so

the residuals can be expressed as

rj(x) = φ(x; tj)− yj

and the (1.9) as

f(x) =
1

2

m∑
j=1

[φ(x; tj)− yj]2

In order to highlight why if the objective function f is expressed by (1.9) it

makes least-squares problems easier to solve than general unconstrained min-

imization problems, we first assemble together the components rj : Rn −→ R

in a single residual vector r : Rn −→ Rm as follows:

r(x) = (r1(x), r2(x), . . . , rm(x))T .

With this notation, we can express the derivatives of f(x) in terms of the

m×n Jacobian matrix J(x), composed by the first partial derivatives of the

residuals, namely

J(x) =

[
∂rj
∂xi

]
j=1,2,...,m
i=1,2,...,n

=


∇r1(x)T

∇r2(x)T

...

∇rm(x)T
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where each ∇rj(x) is the gradient of the residual rj(x), j = 1, 2, . . . ,m. In

this way, the gradient and the Hessian of f can be expressed by:

∇f(x) =
m∑
j=1

rj(x)∇rj(x) = J(x)T r(x), (1.10)

∇2f(x) =
m∑
j=1

∇rj(x)∇rj(x)T +
m∑
j=1

rj(x)∇2rj(x) =

= J(x)TJ(x) +
m∑
j=1

rj(x)∇2rj(x). (1.11)

In many applications, the first partial derivatives of the residuals and hence

the Jacobian matrix J(x) are relatively easy or inexpensive to calculate, so

we can obtain the gradient ∇f(x) using the (1.10). Moreover, using J(x) we

are also able to calculate the first term J(x)TJ(x) of the Hessian ∇2f(x) in

the (1.11) without calculating any second derivatives of the residual functions

rj, and this is a big advantage of this least-squares problem formulation.

Moreover, the term J(x)TJ(x) is often more important than the second

summation term in (1.11), because near the solution either the residuals rj are

close to affine (and then the ∇2rj(x) are relatively small) or the residuals rj

are small. Most algorithms for nonlinear least-squares exploit these structural

properties of the Hessian.

In many models φ(x; t), and then the residuals rj(x), are linear functions

of x and the problem is called a linear least-squares problem. In this case,

we can write the residual vector as r(x) = Jx − y for some matrix J and

vector y, both independent of x, so that the objective function becomes

f(x) =
1

2
‖Jx− y‖2 (1.12)
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with y = r(0). Since for hypothesis ∇2rj = 0 for all j = 1, 2, . . . ,m, for the

(1.10) and (1.11) we have

∇f(x) = J(x)T (Jx− y), ∇2f(x) = J(x)TJ(x)

It can be shown that, only for a linear least-squares problem, f(x) in (1.12)

is a convex function. So, thanks to Theorem 1.1.5, every point x∗ such that

∇f(x∗) = 0 will be a global minimizer. Then our problem now is led back

to solve a linear system of equations that is:

JTJx∗ = JTy (1.13)

known as the normal equations system for (1.12).

But, since in the future we will have to solve a nonlinear least-squares

problem, now we are going to present some useful methods to solve this

kind of problem. All the following methods can be considered as line search

modified Newton’s method, because they all follow from the definition of the

definition of the Newton direction.

1.3.1 Newton direction and modified Newton’s

methods

One of the most important search direction is the Newton direction. This

direction derives from the second-order Taylor series approximation to

f(xk + p), that is

f(xk + p) ≈ fk + pT∇fk +
1

2
pT∇2fkp =: mk(p)
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Assuming that ∇2fk is positive definite, we obtain the Newton direction

by finding the vector p that minimizes mk(p). Using the Theorem 1.1.4,

by setting the derivative of mk(p) to zero we obtain the following explicit

formula for the Newton direction:

pNk = −(∇2fk)
−1∇fk (1.14)

So, finding the Newton direction means to find the solution pNk of the linear

system

∇2fk p
N
k = −∇fk (1.15)

The Newton direction is reliable when the difference between the true func-

tion f(xk+p) and its quadratic model mk(p) is not too large and can be used

in a line search method only when ∇2fk is positive definite. In this case, for

the (1.15) we have

∇2fTk pNk = −pNk
T∇2fk p

N
k ≤ −σk‖pNk ‖2 < 0

for some σk > 0. Therefore, unless the gradient ∇fk and then pNk is zero, we

have that the Newton direction is a descent direction.

But, far from the solution, it can happens that∇2fk is not positive definite

and then the Newton direction may not even be defined, since ∇2fk may

not exist. Even when it is defined, it may not satisfy the descent property

∇2fTk pNk < 0 that makes it a good direction. In these case, we can make

some modifications in the Newton method. If, for example, there is a point

at which the Hessian is not positive defined, we could replace it by a positive

defined approximation of the Hessian just adding, for example, a diagonal

matrix or a full matrix. All this methods are called Newton’s methods with
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Hessian modification or modified Newton’s methods.

1.3.2 Gauss-Newton method

The Gauss–Newton method can be viewed as a modified Newton’s method.

In fact, instead of solving the system (1.15), keeping in mind all the obser-

vations we did about the advantages of the least-squares formulation and,

in particular, about equation (1.11), the Gauss–Newton method is obtained

making the approximation

∇2fk ≈ JTk Jk (1.16)

and then, in order to find the direction pGNk , we have to solve the new system

JTk Jk p
GN
k = −∇fk (1.17)

As we said, this approximation has several advantages. Firstly, we save

some computational time because we do not have to compute the individual

residual Hessians ∇2rj, j = 1, 2, . . . ,m that are needed in the second term

of (1.11) and nowhere else. Secondly, in many situation the first term JTk Jk

dominates the second term (at least close to the solution x∗), so it makes a

good approximation of the Newton’s method.

A new third advantage is that whenever Jk has full rank and the gradient

∇fk is nonzero, the direction pGNk is a descent direction for f , and then a

good direction for a line search. In fact from (1.10) and (1.16) we have

(pGNk )
T∇fk = (pGNk )

T
JTk rk = −(pGNk )

T
JTk Jkp

GN
k = −‖JkpGNk ‖2 ≤ 0

The final inequality is strict, unless JkpGNk = 0. In this case, it follows from

(1.16) and the full rank of Jk that JTk rk = ∇fk = 0, namely xk is a stationary
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point.

Finally, the fourth advantage of Gauss–Newton method comes from the

similarity between the equations (1.16) and the normal equations (1.13) for

the linear least-squares problem. In fact, pGNk can be seen as the solution of

the linear least-squares problem

arg min
p

1

2
‖Jkp+ rk‖2 (1.18)

and then it can be solved by applying linear least-squares algorithms to the

subproblem (1.18).

1.3.3 Levenberg-Marquardt method

The Levenberg–Marquardt method can be obtained by using the same

Hessian approximation (1.16) of the Gauss-Newton method, but replacing the

line search with a trust-region strategy. Actually, the Levenberg–Marquardt

method is sometimes considered to be the progenitor of the trust-region ap-

proach for general unconstrained optimization problems. The use of this type

of strategy avoids one of the weaknesses of Gauss–Newton method, that is

its behaviour when the Jacobian J(x) is rank-deficient, or nearly so. Then,

since the same Hessian approximation (1.16) are used in both cases, the local

convergence properties of the two methods are similar.

In the Levenberg-Marquardt method we consider a spherical trust region

and we have to solve at each iteration the subproblem

arg min
p

1

2
‖Jkp+ rk‖2, with ‖p‖ ≤ ∆k (1.19)
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where ∆k is the trust-region radius. In this way, we choose the trust regiorn

model function (1.5) as

mk(p) =
1

2
‖rk‖2 + pTJTk rk +

1

2
pTJTk Jkp

This methods can be expressed by this idea: if the solution pGNk of the

Gauss–Newton equations (1.17) lies strictly inside the trust region, namely

‖pGNk ‖ < ∆k, then this step pGNk also solves the subproblem (1.19). If not,

then there is a µk > 0 such that the solution pk = pLMk of (1.19) satisfies

‖pk‖ = ∆k and

(JTk Jk + µkI)pk = −JTk rk. (1.20)

This claim is stated by the following lemma:

Lemma 1.3.1. The vector pLMk is a solution of the trust-region subproblem

(1.19) if and only if pLMk is feasible and there is a scalar µk ≥ 0 such that

(JTk Jk + µkI)pLMk = −JTk rk (1.21)

µk(∆k − ‖pLMk ‖) = 0 (1.22)

The Levenberg-Marquardt method can be interpreted as solving the nor-

mal equations used in the Gauss-Newton method, but "shifted" by a scaled

identity matrix. In this way, we convert the problem from having an ill-

conditioned (or positive semidefinite) matrix JTk Jk into a positive definite

one, and then that the Levenberg-Marquardt method is well defined.

The size of the parameter µk usually influences both the direction and the

length step, and we come back to the Gauss-Newton method for µ = 0. The

several versions of the Levenberg-Marquardt method differ from the way µk

is chosen at every iteration. In our experiments, as we will see in the next
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chapters, we have chosen some different criteria of updating of µk values. In

general, the most efficient methods try to assign iteratively to µk a value such

that (1.21) is satisfied and they are based on some particular factorizations

of the matrix JTk Jk + µkI.

1.3.4 Two L-BFGS methods

A subclass of the modified Newton’s methods is that of the so-called

quasi-Newton methods. If the standard Newton method needs to calculate

the direction pk as in (1.29), in a quasi-Newton method we try to calculate

pk by approximating or the inverse of the Hessian matrix Hk := ∇2fk with a

positive definite matrix

Gk ≈ H−1
k

such that Gk+1 can be obtained from Gk in O(n2) steps, or by approximating

directly the Hessian matrix Hk with a matrix

Bk ≈ Hk

with the same properties and Gk = H−1
k . In this way, the idea is that of

obtaining the direction pk as a result of the application of a certain linear

operator to the gradient vector calculated in the current point:

pk = −Gk∇fk

pk = −B−1
k ∇fk.

The most popular quasi-Newton algorithm is the BFGS method and takes

its name from its discoverers Broyden, Fletcher, Goldfarb and Shanno. One

of the several versions of the BFGS methods consists on the approximation
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of Hk with the update formula given by

Bk+1 = Bk +
Bksks

T
kBk

sTkBksk
+
yky

T
k

yTk sk
(1.23)

where

sk = xk+1 − xk = αkpk

yk = ∇fk+1 −∇fk

and they are such that satisfy the curvature condition

sTk yk > 0. (1.24)

Since in many applications we have to solve such a large problem that

we should need a lot of storage and time in order to store fully dense n× n

approximations of Hessian matrices, various limited-memory methods have

been proposed. One of these is the class of Limited-memory BFGS methods

(or L-BFGS), which involve the BFGS method but need to store only a

certain number (say, m) of the latest vector pairs (si, yi), discarding the

oldest ones.

In order to reach a practical algorithm belonging to L-BFGS methods, firstly

we observe that the direct BFGS formula (1.23) can be expressed as

Bk+1 = Bk − akaTk + bkb
T
k (1.25)
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where the vectors ak and bk are defined by

ak =
Bksk√
sTkBksk

bk =
yk√
yTk sk

.

If we want to use a limited-memory approach, from (1.25) we could define

an initial matrix B0
k and than at each iteration update the matrix according

to the formula

Bk = B0
k +

k−1∑
i=k−m

[
bib

T
i − aiaTi

]
where, for example, B0

k can be taken as γ−1
k I with I the identity matrix and

γk > 0 constant. Often, in practice, γk is chosen as

γk =
sTk−1yk−1

yTk−1yk−1

. (1.26)

In this way, the vector pairs (ai, bi), i = k −m, k −m+ 1, . . . , k − 1 can be

recovered from the known stored vector pairs (si, yi), i = k − m, k − m +

1, . . . , k − 1 by the unrolling procedure written in Algorithm 4.

In our future experiments we would like to use the L-BFGS formula in

Algorithm 4: Unrolling the BFGS formula
for i = k −m, k −m+ 1, . . . , k − 1 do

bi ← yi√
yTi si

;

ai ← B0
ksi +

∑i−1
j=k−m

[
(bTj si)bj − (aTj si)aj

]
;

ai ← ai√
sTi ai

;

end
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order to solve a regularized problem that takes the form of the Levenberg-

Marquardt method, namely expressed as

(Hk + µkI)pk = −∇fk. (1.27)

Taking this in mind, we could prove that, once known (ai, bi), i = k−m, k−

m+1, . . . , k−1, Algorithm 5, by using a recursion formula, is able to find the

inverse of B+σI or, more precisely, solves systems of the form (B+σI)x = z

for any z (for the proof, see [2]).

So, putting all together, now we are able to write the L-BFGS algorithm

Algorithm 5: Recursion formula to compute r = (B + σI)−1z
r ← z

γ−1
k+1+σ

;

for j = 0, . . . , k do
if j even then

c← a j
2
;

else
c← b j−1

2
;

end
pj ← c

γ−1
k+1+σ

;

for i = 0, . . . , j − 1 do
pj ← pj + (−1)ivi(p

T
i c)pi ;

end
vj ← (1 + (−1)jpTj c)

−1 ;
r ← r + (−1)jvj(p

T
j z)pj ;

end

to solve the problem (1.27). The procedure is expressed in Algorithm 6.

Another strategy can be that of constructing from f a new function f (µ)

defined as

f (µ)(x) := f(x) +
µ

2
‖x‖2.
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Algorithm 6: L-BFGS method
Given starting point x0, m, convergence tolerance tol > 0, µk for all k ;
k ← 0 ;
while ‖∇fk 6= 0‖ do

Check the curvature condition (1.24) ;
Compute γk as (1.26) ;
Compute (a, b) using Algorithm 4 ;
Compute search direction pk using Algorithm 5 with
B = Hk, σ = µk, z = −∇fk ;
Check pk is a descent direction ;
Set xk+1 = xk + αkpk where αk is computed from the backtracking
procedure given by Algorithm 1 ;
Define sk = xk+1 − xk, yk = ∇fk+1 −∇fk and store only the m
last (si, yi) pairs ;
k ← k + 1 ;

end

Algorithm 7: Two-loop recursion to compute r = B−1
k z

q ← z ;
for i = k − 1, . . . , 0 do

αi ← sTi q

yTi si
;

q ← q − αiyi ;
end
r ← (B0

k)
−1q ;

for i = 0, . . . , k − 1 do
β ← yTi r

yTi si
;

r ← r + (αi − β)si ;
end
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Algorithm 8: L-BFGS method with f (µ)

Given starting point x0, m, convergence tolerance tol > 0, µk for all k ;
k ← 0 ;
while ‖∇fk 6= 0‖ do

Check the curvature condition (1.24) ;
Compute γk as (1.26) ;
Compute search direction pk using Algorithm 7 with
Bk = H

(µ)
k , z = −∇fk ;

Check pk is a descent direction ;
Set xk+1 = xk + αkpk where αk is computed from the backtracking
procedure given by Algorithm 1 ;
Define sk = xk+1 − xk, y(µ)

k = ∇f (µ)
k+1 −∇f

(µ)
k and store only the m

last (si, y
(µ)
i ) pairs ;

k ← k + 1 ;
end

Thanks to f (µ), it is easy to prove that, naming H(µ)
k (x) := ∇2f

(µ)
k (x), equa-

tion (1.27) can be rewritten as

H
(µ)
k pk = −∇fk.

For this goal Algorithm 7 turns out to be very useful because, by using a

two-loop recursion formula, it is able to find an approximation of
(
H

(µ)
k

)−1

or, more precisely, solves systems of the form Bkr = z for any z.

Then, via Algorithm 7, Algorithm 8 now offers another strategy in order

to solve the problem (1.27). In addition to what we have already said, we

note that this algorithm differs to the previous one because, instead of saving

(si, yi), (si, y
(µ)
i ) pairs are saved, where y(µ)

k = ∇f (µ)
k+1 −∇f

(µ)
k .



28 1. Some unconstrained optimization methods

1.4 Central-difference formula

In the final section of this chapter we introduce the way we will approx-

imate the gradient in our experiments. An approximation to the gradient

vector ∇f(x) can be obtained by evaluating the function f at (n+ 1) points

and performing some elementary arithmetic. An accurate approximation to

the derivative can be obtained by using the central-difference formula, de-

fined as
∂f

∂xi
(x) ≈ f − (x+ εei)− f(x− εei)

2ε

and it requires to evaluate f at the points x and x± εei, i = 1, 2, . . . , n for a

total of 2n + 1 points. The central difference approximation comes directly

from Taylor’s theorem 1.1.1. If the second derivatives of f exist and are

Lipschitz continuous, we have from (1.1) that for some t ∈ (0, 1)

f(x+ p) = f(x) +∇f(x)Tp+
1

2
pT∇2f(x+ tp)p

= f(x) +∇f(x)Tp+
1

2
pT∇2f(x)p+O(‖p‖3).

By setting respectively p = εei and p = −εei we get

f(x+ εei) = f(x) + ε
∂f

∂xi
+

1

2
ε2∂

2f

∂x2
i

+O(ε3) (1.28)

f(x− εei) = f(x)− ε ∂f
∂xi

+
1

2
ε2∂

2f

∂x2
i

+O(ε3) (1.29)

By subtracting (1.29) from (1.28) and dividing by 2ε we obtain

∂f

∂xi
(x) =

f(x+ εei)− f(x− εei)
2ε

+O(ε2) (1.30)

that is the approximation of the i−th component of the gradient.



Chapter 2

Tomography and mathematical

model

In this chapter our goal is to introduce some data acquisition techniques in

the field ofMedical imaging, which will be the topic of our work. After a short

introduction to the Computerized Tomography (CT), we will focus on Digital

Tomosynthesis technique. Since we will have to solve a high-dimensional ill-

posed problem, we will need to present a physical model for the formation of

the image, that will be multimaterial and polyenergetic. When the problem

will be formulated in terms of non linear least squares minimization, its ill-

position will lead us to the need to find a solution iteratively, after that some

type of regularization is applied. Finally, we will show an achievable gradient

vector approximation that appears in the numerical methods introduced in

Chapter 1.

29
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2.1 Computerized Tomography

Technological improvement that is passing through modern society rev-

olutionized medical world too: the presence of more and more sophisticated

devices together with radioactivity knowledge has gradually put in the fore-

ground the field of the medical radiology, that is the medicine branch which

studies images production and visualization for a diagnostic and therapeutic

aim.

The main radiography idea consists in going back to the features of the

organ we want to examine (unknown three-dimensional object) by watching

a plate (two-dimensional image). This is possible thanks to the employment

of X-rays that, generated from a radiogenic tube, pass through the patient;

X-rays, according to the different materials’ consistencies they hit, will meet

more or less resistance and are in part attenuated and in part absorbed. In

the other part of the tube some detectors absorb the passed through X-rays,

and data, elaborated by a computer, permit the image formation. In this

way, for example, crashing with a dense tissue like the bone tissue, the ray

will be absorbed and the radiography will appear white; on the contrary, for

less dense tissues or for the air the radiography will be dark-coloured.

Formulated in this way, the technique presents two limits: the first one

is that two similar-consistence tissues (typically the softest ones) are bad

observable; the second one is about the loss of information that we get by

describing a three-dimensional object with a two-dimensional object. These

two problems have been solved by the introduction of the Computerized To-

mography (CT), known also like X-ray Computed Tomography (X-ray CT),

since it permitted to distinguish similar absorption-capability structures from

each other and to separate overlapping structures.

This diagnostic imaging methodology used for several decades consists in



2.1 Computerized Tomography 31

the representation of a three-dimensional body through a series of sections

(tomography) along transverse planes, where the real acquired-data elabora-

tion is made happen with the help of a computer (computerized). After the

discovery of the X-rays, the advent of the Computerized Tomography can

be considered one of the most important inventions in the medical radiology

field, as its employment allowed to identify lesions previously difficult to see.

Since via dedicated software CT permits also to realize a three-dimensional

elaboration of acquired images, it runs for an optimal technique for the study

of complex anatomical structures too and it is nowadays a very used exam,

especially in presurgical diagnosis.

Compared to conventional radiography, Computerized Tomography presents

considerable advantages, first of all it allows the localization of deep struc-

tures. Moreover, CT permits a better details view, since it is able to avoid

distortions due to different planes overlapping, which are responsible of the

false positive or false negative appearance. Finally, CT has the advantage to

increase the contrast between similar local structures.

In this work we do not intend to show in detail the precise CT working

process or the several CT machines evolutions but we restrict to describe,

with the help of Figure 2.1, a typical CT machine functioning, without going

into detail.

Patient table slides into the scan tube where a X-rays emitter rotates all

around him, releasing radiations at determined angles; on the opposite side

some detectors collect the rays attenuated by the patient’s body. The table is

allowed to slide very precisely, so that for each detector’s position and angle

it is possible to record the different section of the object we want to anal-

yse. The data set recorded by detectors together with the table positions

and angles values are collected and transmitted to a computer, where are
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elaborated and transformed to images.

(a) Patient enters the scan tunnel where detectors
acquire data; a computer elaborates them and cre-
ates the image.

(b) X-rays emitter ro-
tates forming an angle of
360◦.

Figure 2.1: Geometry of a typical CT machine.

2.2 Digital Tomosynthesis

If, as we said, Computerized Tomography has been a great step forward

in the medical imaging field, instead we have to underline that it has some

limits too. The biggest one is that this technique permits to acquire only

one section at a time, so that this process has to be repeated several times,

increasing in this way the data elaboration time and the exposition of the

patient to radiations. All this makes this technique not always efficient, es-

pecially when patients are particularly sensible subjects like babies or if it

has to be applied to particularly delicate organs, such as the breast or the

chest.

In order to avoid this kind of problems, recently a new medical research

technique has been introduced, the Digital Tomosyntesis, which under-

takes to reconstruct (synthesis) a three-dimensional object from a limited

number of sections (tomograms) with the support of a computer (digital).
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This technique consists in providing some multiple projections of the object

from a limited number of angles chosen from a fixed angular diameter in or-

der to obtain a three-dimensional pseudo-representation of the object. In the

case of the chest (Figure 2.2a), this is possible thanks to the rotation of the

X-rays emitter along an arc in front of the patient; instead, in Figure 2.2b

the emitter rotates over the compressed breast. Since the emitter covers a

limited angle range (typically less than 40 degrees), Digital Tomosyntesis re-

duces the exposition of the patient to the radiations considerably. Moreover,

since this is a volumetric reconstruction technique, the false positives and

negatives emergence is limited.

As volumetric 3D object reconstruction has to manage millions of pix-

els resulting from the projections of billions of voxels which compose the

object, this reconstruction technique is a large-scale problem that involves

high computational and storage costs. Then, in order to dealing with such

a inverse large-scale problem, usually a simplification of the physical model

of acquiring data is needed. A first kind of simplification can be considering

a monoenergetic X-ray beam, in order to reduce the problem’s degrees of

freedom and the computational complexity in the calculation of the solution.

But these hypothesis have led to the appearance of artifacts in the solution,

such as the beam hardening phenomenon. This phenomenon is due to the

fact that when a radiation passes through a tissue, the beam’s mean energy

increases, since low-energy photons are in general more absorbed compared

with high-energy ones. So the detector registers an exit radiation that has

a higher mean energy than entrance one, and this causes a darkening of the

image, especially in the central part (cup artifact). The presence of that ar-

tifacts, which descend from the hypothesis on the monoenergetic X-ray beam

nature, can be corrected with post-processing operations.
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What we undertake to do in this work is to solve a problem which comes

from a Digital Tomosynthesis technique employment applied to a breast ex-

posed to a polyenergetic X-ray beam, in order to avoid some artifacts like

the beam hardening and to get quite good results without necessarily making

any post-processing to the images.

(a) Chest Tomosynthesis. (b) Brest Tomosynthesis.
Figure 2.2: Device outline for the image acquisition for the Digital Tomosyn-
thesis technique.

2.3 Inverse problem

In the imaging field, where the goal is to reconstruct an image from certain

indirect measurements and corrupted by noise, algorithms try to solve an

inverse large-scale problem that takes the form

b = K(X)s+ η (2.1)

where the vector b represents data measurements, the matrix K depends on

unknown vector X while the vector η represents the noise component in data

measurements.

The choice of the model used to describe the image formation process
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defines how the matrix K(X) is constructed and the nature of vector η, that

can represent an error due to an electronic or dispersive effect noise. The

chosen model will be more o less complex depending on the accuracy level we

want to describe the process concerned with, and that choice will influence

the implementation of the algorithm intended to solve the problem.

Once that b, s, η and how matrix K(X) is constructed from X are known,

then the goal will be to trace back to the unknown vector X, or at least to

an approximation of it. We note that X does not necessarily represent the

object itself, but it can represent (and that will be our case) a certain kind

of information that characterizes the object, such as a density or another

physical quantity in general.

What we want to do in this work is not to present and study the main

models that can be found in literature, but instead to analyse particularly

the polyenergetic and multimaterial model for the breast image

in Digital Tomosynthesis presented in [3], where the model in question

takes into account of the polyenergetic X-ray nature and the multimaterial

composition of the object.

2.4 A first mathematical model

As we announced in the previous paragraph, we are going to show the

image reconstruction model proposed in [3] and that will be discussed in this

work. In order to do so, we start to consider a simpler model presented in

[4] and than we will move from it to reach the real model that is the object

of our experiments.

The starting point is the Beer’s law, an expression which relates measured

data, namely b(θ)i , with the ability that the object has to absorbe or disperse
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the quantity of the radiations that pass through it. More precisely, Beer’s

law states that

b
(θ)
i =

∫
ε

s(ε)e
−

R
Lθ

µ(~x,ε)dl
dε+ η

(θ)
i ,

i = 1, 2, . . . , Np,

θ = 1, 2, . . . , Nθ

(2.2)

where:

. b
(θ)
i represents the quantity measured by the i-th pixel of a digital de-

tector hit by a X-rays beam with entrance angle θ;

. Np is the number of pixels of the digital rilevator hit by X-rays (it

usually runs to about one million);

. Nθ is the number of angles covered by the radiations emitter (generally

in a Tomosynthesis system we have 15 ≤ Nθ ≤ 30);

. ε represents the energy spectrum of X-rays source. A precise estimate

of the X-rays distributions can be obtained by using known spectral

models while calibration measurements can be obtained by measuring

the X-rays transmission through objects which have well known dimen-

sions, densities and materials.

. s(ε) is the energy fluency, namely the product of the X-ray energy with

the number or incident photons at that energy level;

. Lθ is the line through which X-rays beam with an inclination θ passes

through the object;

. µ(~x, ε) is the linear attenuation coefficient, that depends on the X-rays

beam energy and the object’s material at the position ~x. We highlight

that in general lower-level energies are attenuated mainly if referred
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to higher-level ones and that denser materials (such as bone tissue)

attenuate mainly respect to less dense ones.

. η
(θ)
i represents the noise component observed by the i-th pixel respect

to the angle θ; this contribution can include X-rays dispersion and elec-

tronic noise. The information about additional noise can be estimated

with pre-processing or calibration operations.

From the discretization of (2.2) we obtain the discrete model of the formation

of the image

b
(θ)
i =

Nε∑
ε=1

sε exp

(
−

Nv∑
l=1

a
(θ)
i,l µl,ε

)
+ η

(θ)
i ,

i = 1, 2, . . . , Np,

θ = 1, 2, . . . , Nθ

(2.3)

where:

. Nv is the number of voxels after the object discretization (it usually

runs to about one billion);

. Nε is the number of discrete energy levels (since Nv is very high, it

result Nε � Nv);

. a
(θ)
i,l is the length of the ray that passes through the voxel l with a

incidence angle θ, contributing to the i-th pixel.

Naming A(θ) = [a
(θ)
i,l ]i,l and M = [µl,ε]l,ε, the (2.3) can be expressed in a

matrix format as

b(θ) = exp(−A(θ)M)s+ η(θ), θ = 1, 2, . . . , Nθ

where the exponential function has to be interpreted applied to the matrix

−A(θ)M element by element. Then, considering all the possible values of the
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incidence angle θ, the discrete model can be formulated as

b = exp(−AM)s+ η (2.4)

with

b =


b(1)

b(2)

...

b(Nθ)

 , A =


A(1)

A(2)

...

A(Nθ)

 and η =


η(1)

η(2)

...

η(Nθ)

 .

where the quantities which appear in (2.4) are such that:

. b is a vector of dimensions (Np ·Nθ)×1, since it is made up of Nθ blocks

of dimensions Np × 1;

. A is a matrix of dimensions (Np · Nθ) × Nv, made up of Nθ blocks of

dimensions Np ×Nv;

. M is a matrix of dimensions Nv ×Nε;

. s is a vector of dimensions Nε × 1;

. η is a vector of dimensions (Np · Nθ) × 1, made up of Nθ blocks of

dimensions Np × 1.

Then we highlight that our inverse problem as in (2.1)

b = K(X)s+ η

turns now into the form as in (2.4)

b = exp(−AM)s+ η
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where

K(X) = exp(−AM), X = M.

The known data of the problem are the data vector b, the raytracing ma-

trix A and fluency vector s (as we will see later, we will consider the noise

component η absorbed into the data vector b). Our goal will be to find M ,

that is the matrix that represents a certain physical quantity that will allow

us to reconstruct the object. In our case the physical quantity in question

represents the linear attenuation coefficients, or rather the mass attenuation

coefficients, as we will have an opportunity to explain better in the next

paragraph.

Before passing to the real description of the model studied in this work,

we highlight that the presence of the exponential function in equation (2.4)

makes this inverse problem non linear, and this takes shape in the need of

solve a computationally harder problem. In literature there are several meth-

ods, which we do not deal with in this work, that, making some simplifications

in the physical model (like, for example, considering just monoenergetic X-

rays) permit us to lead back to the solution of a linear inverse problem, that is

more easily resolvable. But these simplifications have negative consequences,

since they usually lead to the appearance of artifacts in the solution.

2.5 A polyenergetic multimaterial model

Now we introduce the description of the polyenergetic multimaterial model

for the breast reconstructed image in Digital Tomosynthesis presented in [3].

This model is characterized by two main aspects, namely it takes account

of the radiation polyenergetic nature and the variety of materials making

up the object to reconstruct. Traditionally, in fact, it has been assumed for
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simplicity that X-rays were emitted all at the same energy level and this

simplification led to the appearance of beam hardening type artifacts in the

reconstructed image. The choice to consider the object composed of more

than one material (like, for example, glandular tissue, bone tissue and mi-

crocalcifications) stems from the fact of creating a more flexible model, that

is able to extend this image reconstruction technique to other body compo-

nents too.

The model description that we want to illustrate in this thesis is linked

to a previous work [4]. The starting point of the construction of that model

is the discretization of the Beer’s law that we introduced in the previous

paragraph (equation (2.3))

b
(θ)
i =

Nε∑
ε=1

sε exp

(
−

Nv∑
l=1

a
(θ)
i,l µl,ε

)
+ η

(θ)
i ,

i = 1, 2, . . . , Np,

θ = 1, 2, . . . , Nθ.

Taking into account the multimaterial nature of the object, each linear at-

tenuation coefficient can be expressed as a weighted average of the linear

attenuation coefficients of the single materials, namely:

µl,ε =
Nm∑
m=1

wl,mcm,ε (2.5)

where:

. Nm is the number of material making up the object;

. cm,ε is the linear attenuation coefficient of the m-th material at energy

level ε;

. wl,m is the unknown weight of the m-th material in the l-th voxel of

the object.
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At this point the unknowns are the weights wl,m, that have to take account

of constraint of adding together to 1 in each voxel as materials change:

Nm∑
m=1

wl,m = 1, l = 1, 2, . . . , Nv. (2.6)

Using (2.5), (2.3) becomes

b
(θ)
i =

Nε∑
ε=1

sε exp

(
−

Nv∑
l=1

a
(θ)
i,l

Nm∑
m=1

wl,mcm,ε

)
+ η

(θ)
i ,

i = 1, 2, . . . , Np,

θ = 1, 2, . . . , Nθ

(2.7)

Now, starting from these considerations, we move to the real model we un-

dertake to study. At this point let us consider a new physical quantity, that is

the mass attenuation coefficients, which are linked to the linear attenuation

coefficients by this expression:

µl,ε = ρlδl,ε (2.8)

where:

. δl,ε is the mass attenuation coefficient of the l-th voxel at energy level

ε;

. ρl represents the density of composition of the materials in the l-th

voxel.

In much the same way as we did in (2.5), we express each mass attenuation

coefficient as a weighted average of the mass attenuation coefficients of the

single materials, namely:

δl,ε =
Nm∑
m=1

w̃l,mdm,ε (2.9)
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where:

. dm,ε is the mass attenuation coefficient of the m-th material at energy

level ε;

. w̃l,m is the unknown weight of the m-th material in the l-th voxel of

the object.

Now the unknowns are the weights w̃l,m, which have to be such that

Nm∑
m=1

w̃l,m = 1, l = 1, 2, . . . , Nv. (2.10)

Replacing (2.8) and (2.9) in (2.3), we get:

b
(θ)
i =

Nε∑
ε=1

sε exp

(
−

Nv∑
l=1

a
(θ)
i,l ρlδl,ε

)
+ η

(θ)
i , (2.11)

=
Nε∑
ε=1

sε exp

(
−

Nv∑
l=1

a
(θ)
i,l ρl

Nm∑
m=1

w̃l,mdm,ε

)
+ η

(θ)
i , (2.12)

i = 1, 2, . . . , Np, θ = 1, 2, . . . , Nθ.

Now we prove now an expression for the densities ρl:

Proposition 2.5.1. We have

ρl =
1

Nm∑
m=1

w̃l,m
rm

, l = 1, 2, . . . , Nv (2.13)

where rm is the density of the m-th material.

Proof. Since the mass attenuation coefficient of the m-th material dm,ε veri-

fies the relation

cm,ε = rmdm,ε, (2.14)
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obtaining dm,ε from (2.14) and substituting it in (2.12) we get

b
(θ)
i =

Nε∑
ε=1

sε exp

(
−

Nv∑
l=1

a
(θ)
i,l ρl

Nm∑
m=1

w̃l,m
cm,ε
rm

)
+ η

(θ)
i ,

i = 1, 2, . . . , Np,

θ = 1, 2, . . . , Nθ.

(2.15)

By comparing (2.15) with (2.7) we have

ρlw̃l,m
1

rm
= wl,m.

Hence, adding on m and using (2.6), we obtain

ρl

Nm∑
m=1

w̃l,m
rm

=
Nm∑
m=1

wl,m = 1

and then the thesis.

So, substituting (2.13) in (2.12) we get:

b
(θ)
i =

Nε∑
ε=1

sε exp

−
Nv∑
l=1

a
(θ)
i,l

Nm∑
m=1

w̃l,mdm,ε

Nm∑
m=1

w̃l,m
rm

+ η
(θ)
i , (2.16)

i = 1, 2, . . . , Np, θ = 1, 2, . . . , Nθ.

The equation (2.16) can be expressed in matrix format as

b = exp

(
−A

(
W̃D

W̃R

))
s+ η (2.17)

where

. W̃ is the matrix of unknown weights w̃l,m and dimensions Nv ×Nm;
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. D is the matrix of dimensions Nm ×Nε and elements [D]m,ε = dm,ε;

. R is the matrix of dimensions Nm ×Nε and elements [R]m,ε =
1

rm

and the exponential and division operations are applied to matrices element

by element. Substituting to b the term b̃ = b − η, where the noise term is

absorbed, (2.17)

b̃ = exp

(
−A

(
W̃D

W̃R

))
s.

What we expect to find is a weight combination W̃ that, from all the avail-

able ones, is such that the distance (measured in some kind of norm) between

observed data and data predicted by constructed model is small. More for-

mally: if r̃ : RNv ·Nm −→ RNp·Nθ represents the residual defined by

r̃(W̃ ) = b̃− exp

(
−A

(
W̃D

W̃R

))
s, (2.18)

using as norm the Euclidean norm what we want to solve is the least squares

problem

minfW
1

2
||r̃(W̃ )||22 (2.19)

under the condition W̃1Nm = 1Nv , where with 1N we mean the vector of

length N whose elements are all 1. Mainly thanks to this condition, after

making a variable change w̃l,1 = 1−
Nm∑
m=2

w̃l,m, using the Matlab-like notation

W = W̃ (:, 2 : Nm), (2.18) becomes

r(W ) = b̃− exp

−A

[

1−
Nm−1∑
m=1

W (:,m),W

]
D[

1−
Nm−1∑
m=1

W (:,m),W

]
R


 s. (2.20)
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with r : RNv ·(Nm−1) −→ RNp·Nθ . Then the problem (2.19) comes back to find

min
W

1

2
||r(W )||22 = min

W
F(W ) (2.21)

where F(W ) = 1
2
||r(W )||22 is the objective function of the minimum problem

we want to solve.

Since r : RNv ·(Nm−1) −→ RNp·Nθ , depending on the chosen parameters the

problem can be:

1. overdetermined, if Nv · (Nm − 1) < Np · Nθ, that is there are more

equations than unknowns;

2. underdetermined, if Nv · (Nm − 1) > Np ·Nθ, that is there are more

unknowns than equations.

In operational terms, the two cases cannot be resolved in the same way

because the algorithms which are efficient for one case could be ineffective

for the other one. In our work we will always consider the overdetermined

case: in particular, if we consider for example Nv = x1 ·x2 ·x3 and Np = x1 ·x2,

in order to lead back to the first case we will choose the parameters such that

x3 · (Nm − 1) < Nθ.

2.6 Regularization of the problem

In general non linear least-squares problem in (2.21) turns out to be ill-

conditioned, since ill-conditioned turns out to be the Jacobian matrix of

residuals vector r(W ). Therefore, in order to obtain a good solution, the

method needs to be regularized.

A first type of regularization that we study in this thesis is the application
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of the Levenberg-Marquardt method that we presented in Chapter 1, namely

an iterative method of the form

W k+1 = W k + αkpk (2.22)

where the direction pk is calculated by solving the linear system

(JTk Jk + λkI)pk = −JTk rk (2.23)

and the step length αk is determined by using the Armijo’s formula with

backtracking.

This method differs from Gauss-Newton method for the addition of the

term λkI in equation (2.23), and it is exactly the presence of that addi-

tional term which makes the Levenberg-Marquardt method a regularization

method. In fact, since the matrix JTk Jk turns out to be ill-conditioned, adding

to it a diagonal matrix composed of positive elements ensures that the co-

nitioning number decreases and permits to obtain a better solution of the

linear system (2.23).

So, the problem will be how to chose the λk numbers; as we will explain

later, in our experiments we tested some available choices of λk. A first

strategy will be to choose

λk = c

constant at each step k; another one will be to choose

λ0 = c2, λk = max
{
c1,min

{
c2, ||JTk rk||

}}
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with 0 < c1 < λk < c2, that ensures to accelerate the convergence for small

residuals, or to choose

λk = ||Jk||2

where the norm can be the 2-norm or the Frobenius norm.

The real resolution of the system (2.23) has been realized by implementing

the iterative conjugate gradient method and the global convergence of the

Levenberg-Marquardt method is assured by the line search strategy given by

(2.22).

2.7 Gradient vector approximation

In this paragraph we want to present an expression for the gradient of

the objective function

F(W ) =
1

2
||r(W )||22 (2.24)

since it is indispensable in order to resolve the minimum problem we are

studying.

As we said in Chapter 1, in the new notation the gradient of (2.24) takes the

form

∇F(W ) = J(W )T r(W )

where

J(W ) =

[
∂rk
∂wi,j

]
=


∇r1(W )T

∇r2(W )T

...

∇rNp·Nθ(W )T

 ,
k = 1, 2, . . . , Np ·Nθ

i = 1, 2, . . . , Nv

j = 1, 2, . . . , Nm − 1.

(2.25)
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Since r(W ) is given by (2.20), we still have to find an expression for J(W ).

Instead of calculating exactly its expression, we decided to approximate it

with a finite difference approximation, in particular with the first order cen-

tred finite difference that we presented in Section 1.4. More precisely, this

technique can be used to approximate the full Jacobian J(W ) by applying

the (1.30) to (2.25) one column at a time and taking as ε the square root of

the machine precision.



Chapter 3

Numerical results

In this chapter we are going to present and comment the results of the exper-

iments for the breast imaging reconstruction described by the model shown

in Section 2.5 using the numerical methods introduced in Chapter 1. The

first set of methods is linked to the Levenberg-Marquardt method presented

in Section 1.3.3. As we said in (1.20), the Levenberg-Marquardt method is

an iterative method of the form

xk+1 = xk + αkpk (1.3)

where the direction pk is given by the solution of the system

(JTk Jk + µkI)pk = −JTk rk (1.20)

and µk are some nonnegative numbers. In this chapter we tested different

possible choices for the values of µk and we will present in the following sec-

tions all the relative results.

As regards the computation of the step length αk, in all our tests we com-

puted it with the backtracking method described by Algorithm 1.

49
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Since the system (1.20) can be solved directly or by using an iterative

method, from now on we use the adjective external with regard to the

Levenberg-Marquardt method, while we use the adjective internal with re-

gard to the computation of pk in the linear system (1.20).

The second set of methods instead belongs to the L-BFGS class, namely

those algorithms which implement the BFGS formulas using a limited quan-

tity of storage. We will test two methods, namely those ones described by

Algorithm 6 and Algorithm 8 presented in Section 1.3.4. Before starting

with the description of the numerical results, we illustrate all the parameters

that have been chosen to create the test problem.

3.1 Test problem

In our test problem for a simulated breast imaging reconstruction we

considered one simulated three-dimensional phantom object of size 11×11×5

made of four ellipses consisting of a tissue mixture with varying percentages

of glandular and adipose tissue, while the background is made of a mixture

of 50% adipose and 50% glandular tissue. In Figure 3.1 we can see the

central slice of the exact object with the percentage of the mass attenuation

coefficients of the two tissues. Since we tested a quite small problem to limit

the computational time, our ellipses are in this case rectangles; if we choose

a high dimensional test problem, these sections would be similar to ellipses.

We can note that the mass attenuation coefficients of the glandular material

percentages sum together with the adipose material coefficients to 1, because

for the (2.10) we have that

Nm∑
m=1

w̃l,m = 1, l = 1, 2, . . . , Nv.
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(a) Exact adipose tissue. (b) Exact glandular tissue.
Figure 3.1: Central slice of the exact three-dimensional phantom object with
the percentages of different tissues.

As we saw in Chapter 2, the distributions of the mass coefficients weigths

w̃l,m are stored in the matrix W ex of dimensions Nv ×Nm−1; so, in this case,

since we have chosen Nv = 11× 11× 5 and Nm = 2, W ex is a column vector

of dimensions 605× 1.

As regards the construction of the ray trace matrix A, it has been obtained

by using the fast algorithm for the calculus of an exact radiological path

for a three-dimensional CT system presented by Robert L. Siddon in [5].

More precisely, in this work the matrix A has been constructed by using the

Siddon’s algorithm with Nθ = 11 equispaced projection angles from −17◦ to

17◦ and Nε = 37 different levels of energy from 10 keV to 28 keV in 0.5 keV

steps.

As we told in Chapter 2, what we expect to find is a weight combination W̃

that, from all the available ones, is such that the distance between observed

and predicted is small, namely we try to solve

min
W

=
1

2

∥∥∥∥∥ b− exp

(
−A

(
W̃D

W̃R

))
s

∥∥∥∥∥
2

2
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where

b = exp

(
−A

(
W̃exD

W̃exR

))
s+ η

are observed data corrupted by the noise η. The type of noise we consider

in our experiments is a Gaussian noise, and when we talk about the noise

level nl we mean the relative noise level, that is the ratio between ‖η‖ and

‖b− η‖:

nl =
‖η‖
‖b− η‖

and, from now on, when we talk about the errors we always refer to a relative

error, that is

err =
‖W ex −W‖
‖W ex‖

.

In all the tests, when we used an iterative method described in Chapter 1

we started as initial iterate with the column vector made of all 0.5. Finally,

since x3 = 5, Nm = 2 and Nθ = 25, as we said at the end of the Section 2.5,

the relation

x3 · (Nm − 1) < Nθ

is satisfied and so we have to solve an overdetermined problem.

After that we have made some considerations about this small problem,

at a later stage we will make some tests for a bigger one, more precisely of

size 31× 31× 7.
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3.2 Numerical results for the

Levenberg-Marquardt method

3.2.1 The Levenberg-Marquardt method with constant

µk

In this first experiments set we used the Levenberg-Marquardt method

(1.20) where the coefficients µk = µ constant at every iteration k while we

solved the system iteratively by using the conjugate gradient method given

by Algorithm 2.

We have chosen to consider 30 values for µ from 10−5 to 1010 uniformly in

logarithmic scale and to use this stop condition:

while (k ≤ 100) & (errk ≤ errk−1) &
(
errk−1 − errk ≥ 10−5

)
do, (3.1)

that is, the Levenberg-Marquardt method ends when either the maximum

number of iterations in reached, either we reach the semi-convergence or the

error becomes too flat.

For the solution of the (1.20) we have chosen this stop condition:

while (j ≤ 500) & (‖rj‖ > tol · ‖r0‖) do, (3.2)

that is, the CG method ends when either the maximum number of internal

iterations is reached or the relative residual becomes smaller than the internal

tolerance tol. In the Figures 3.2 and 3.3 we can see several curves: each one

is relative to a different value for the tolerance tol from the set

tol =
[
5 · 10−1, 10−1, 5 · 10−2, 10−2, 10−3, 10−4

]
.
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(a) Plot of the relative errors as a function of the µ values.

(b) Plot of the external iterations
number as a function of the µ values.

(c) Plot of the internal CG iterations
number as a function of the µ values.

Figure 3.2: Results for the Levenberg-Marquardt method with µ constant
with noise level nl = 10−3
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(a) Plot of the relative errors as a function of the µ values.

(b) Plot of the external iterations
number as a function of the µ values.

(c) Plot of the internal CG iterations
number as a function of the µ values.

Figure 3.3: Results for the Levenberg-Marquardt method with µ constant
with noise level nl = 10−2
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We plotted three different quantities: the relative error of the external iter-

ations, the number of the external iterations and the number of the internal

CG iterations calculated to reach it. Each of these quantities is as a function

of the value of µ and, as we can see from the legend, each colour refers to a

different internal tolerance tol.

In Figure 3.2 we can see the results for a noise level nl = 10−3, in Figure 3.3

for a noise level nl = 10−2.

From these figures we note that for high values of µ the behaviour of the

method is similar for all the tolerances, even if (as we expected) the number

of internal iterations is higher for lower tolerances. Moreover, for high values

of µ the error curve starts to raise (more for nl = 10−3, slightly for nl = 10−2)

and the method generally ends for the condition on the flat error.

In the central part of the figure we have the minima of the error, while for

the smallest value of µ the curves go stabilizing to a certain constant value

depending on the tolerance.

In Table 3.1 we present for different tolerances tol of the CG stopping

condition (3.2) the value of µ that minimizes the relative error (respectively

µbest and errbest), together with the number of external and internal itera-

tions (kbest and itCGbest) relative to nl = 10−3. We note that the value of

the minimal errors are not very different from each other, while the number

of iterations varies significantly.

3.2.2 µk ≡ 0 : Gauss-Newton method

Looking at the Figure 3.2 and Figure 3.3 we can see that for small values

of µk = µ we have a constant behaviour that, is some cases, corresponds to

a small relative error value. So, starting from this idea, we tried to test the
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Table 3.1: Best values for Levenberg-Marquardt method with µ constant
with noise level nl = 10−3 for different values of tol.

tol µbest errbest kbest itCGbest

5 · 10−1 6.210169e+ 03 2.077937e− 02 70 81
10−1 1.743329e+ 02 2.069595e− 02 3 26

5 · 10−2 5.298317e+ 01 2.050922e− 02 2 27
10−2 1.743329e+ 02 2.065558e− 02 3 57
10−3 5.298317e+ 01 2.035240e− 02 1 28
10−4 5.298317e+ 01 2.032629e− 02 1 40

choice of

µk = µ = 0

at each iteration. This choice, as we observed in the Section 1.3.3, lead us

back to the Gauss-Newton method, that is the Levenberg-Marquardt method

without any regularization.

The results are in the Table 3.2, where we can see the global error (err),

together with the number of internal and external iterations (respectively k

and itCG) relative to nl = 10−3.

As we can see by comparing the Figure 3.2 and Table 3.2, the curves proba-

bly remain constant up to µ = 0. So, since in general making a good choice

for µ is a difficult problem, these results suggest that we could choose µ = 0

for certain values of tolerance.

Moreover, observing the relative errors for the several tolerances we note

that we are not forced to use a very small internal tolerance: in this case we

can obtain a good solution with a not so small tolerance, such as tol = 10−1,

and in this way we should make few internal iterations.



58 3. Numerical results

Table 3.2: Statistics for the Gauss-Newton method (µ = 0) with noise level
nl = 10−3

tol err k itCG

5 · 10−1 2.204699e− 02 5 19
10−1 2.170383e− 02 2 16

5 · 10−2 2.648451e− 02 1 5
10−2 2.169613e− 02 1 15
10−3 3.398179e− 02 1 58
10−4 3.632318e− 02 1 91

Now we solve the previous Gauss-Newton method

JTk Jkpk = −JTk rk (1.20)

by using another stop condition on the computation of the direction pk,

namely a condition suggested by the CGLS method presented in Section 1.2.4

Fixed 0 < ρ < 1, at every external iteration k the new stop condition

requires to take as pk the minimum value such that

‖Jkpk + rk‖ ≥ ρ‖rk‖.

So, using the CGLS notation, this rule corresponds to use Algorithm 3 with

the following stop condition

while (k ≤ 500) & (‖Jkpj + rk‖ > ρ‖rk‖) do (3.3)

and taking as pk not the last iteration, but the penultimate one.

First of all we tested this method for 100 values of ρ ∈ (0, 1) and with

a noise level nl = 10−2. The relative errors and the internal CG iterations

number as a function of ρ are in Figure 3.4, while for all ρ the number of

external iterations is equal to 1. As we can see, this method results more
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efficient for values of ρ near to 1, because the errors are low and a few

iterations are necessary. Although, the error values are higher than the other

methods seen before: for example, for ρ = 0.9 we have err = 5.142595e− 02.

If we make the same test for a noise level nl = 10−3 (Figure 3.9), we note

that for values of ρ near to 1 the error keeps on being higher than the previous

methods and that an accurate choice of ρ in order to get the minimum error

value is difficult to make. We can conclude that the stopping rule (3.3)

gives worse results than stopping rule (3.1). Hence, in the following tests we

will always use the criterion (3.3).

3.2.3 The Levenberg-Marquardt method with varying

µk

Now we are going to present the numerical results for a Levenberg-

Marquardt method where the coefficients µk vary at each external iteration.

The value of µk is defined at each iteration as

µk = max
{
c1, min

{
c2, ‖JTk rk‖

}}
, µ0 = c2 (3.4)

with 0 < c1 < µk < c2. This strategy, suggested in [9], generates a decreasing

sequence of µk and starts from the idea that the convergence is accelerated

when the residuals are small. The internal system has been solved by using

the conjugate gradient method with different tolerances.

In our experiments we set the constants as c1 = 10−2, c2 = 102 and

considered every time a different internal tolerance from the vector

tol =
[
5 · 10−1, 10−1, 5 · 10−2, 10−4

]
.
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(a) Plot of the relative errors as a function of the ρ values.

(b) Plot of the internal iterations number as a function of
the ρ values.

Figure 3.4: Results for the Gauss-Newton method with the stop condition
given by (3.3) and noise level nl = 10−2
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(a) Plot of the relative errors as a function of the ρ values.

(b) Plot of the internal iterations number as a function of
the ρ values.

Figure 3.5: Results for the Gauss-Newton method with the stop condition
given by (3.3) and noise level nl = 10−3
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(a) Plot of the relative errors as a function of the external iterations.

(b) Plot of the µk values as a function
of the external iterations.

(c) Plot of the internal CG iterations
versus the external iterations.

Figure 3.6: Results for the Levenberg-Marquardt method with varying µk as
in (3.4) with noise level nl = 10−3
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(a) Plot of the relative errors as a function of the external
iterations.

(b) Plot of the µk values as a function
of the external iterations.

(c) Plot of the internal CG iterations
versus the external iterations.

Figure 3.7: Results for the Levenberg-Marquardt method with varying µk as
in (3.5) with noise level nl = 10−3
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In Figure 3.6 there are several curves relative to a noise level nl = 10−3

and each of them, as we read from the legend, refers to a different internal

tolerance value. In particular, in Figure 3.6(a) we can see the error as a

function of the external iteration and the semi-convergence behaviour, in

Figure 3.6(b) the decreasing sequence of µk and in Figure 3.6(c) the total

number of the internal CG iterations.

From these figures we note that when the internal tolerances increases, the

the number of external iterations corresponding to the minimum of the error

increases, while the number of the internal iterations decreases, consistently.

We note also that by taking a not so small internal tolerance value, making a

few external iterations and a limited number of internal iteration we could get

a relative error value that is comparable with what we obtained by choosing

a constant µ or µ = 0.

Now we are going to consider a new way of choosing µk at each iteration.

So, instead of using (3.4), we set the value of µk as

µk = ‖Jk‖2 (3.5)

namely the square of the norm of the Jacobian, computed using some kind

of norm.

In Figure 3.7 we can see some graphs relative to a noise level nl = 10−3

and the choice of using the 2-norm in order to calculate (3.5). In particular, in

Figure 3.7(a) there is the relative error as a function of the external iterations

number. We note that many iterations are necessary and we do not reach the

semi-convergence behaviour, since the methods end for the condition on the

flat error. In Figure 3.7(b) the sequence of µk as a function of the external

iterations is plotted. They seem to be quite constant, so it seems unnecessary

to calculate µk with (3.5) at each iteration when we could choose a µ constant
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for all iterations as we did in the previous methods. Moreover, comparing

Figure 3.7(a) with Figure 3.2(a), we can note that the error value at the exit

in Figure 3.7(a) is quite high compared to what we could obtain by taking µ

constant in the same order as that achieved by Figure 3.7(b). So, because of

its slowness, this choice of µk seems to be inefficient.

3.2.4 Comparisons between methods

In this section we are going to compare the several methods we analysed

and highlight pros and cons.

From what we said in the previous sections, the Gauss-Newton method

with the stop condition (3.3) and the Levenberg-Marquardt method with

varying µk as in (3.5) seem to be inefficient. In fact, the former do not give a

clear criterion about the best choice of ρ and, for ρ near to 1, the error value

is still higher than other methods. Instead for the latter too many iterations

are necessary to reach the stop condition and we need to calculate at every

iteration the norm of the Jacobian. Later we found that the µk are quite

constant, so we could use a µ constant in order to save computational time

by not calculating the norm of the gradient and making less iterations.

For a noise level nl = 10−3, taking into account the relative errors and

the number of internal and external iterations, the best methods that we

analysed seem to be the Levenberg-Marquardt method with µ constant in

Table 3.3: Statistics of the Levenberg-Marquardt method for the test problem
of size 11× 11× 5.

Method err k itCG time

µ = 102 2.111874e− 02 5 16 16.0
µ = 0 2.204699e− 02 5 19 19.0

µk = max
{

10−2, min
{

102, ‖JTk rk‖
}}

2.116727e− 02 5 17 17.0
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Figure 3.8: Reconstructed images for the test problem of size 11× 11× 5.
1st row: exact images. 2nd row: reconstructed images for Levenberg-
Marquardt method with µ = 102. 3rd row: reconstructed images for Gauss-
Newton method (µ = 0). 4th row: reconstructed images for Levenberg-
Marquardt method with µk varying as (3.4).
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Figure 3.9: Reconstructed images for the Levenberg-Marquardt method and
the test problem of size 31× 31× 7.
1st row: exact images. 2nd row: reconstructed images for Levenberg-
Marquardt method with µ = 102. 3rd row: reconstructed images for Gauss-
Newton method (µ = 0). 4th row: reconstructed images for Levenberg-
Marquardt method with µk varying as (3.4).
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the order of 102, the Gauss-Newton method (µ = 0) and the Levenberg-

Marquardt method with µk varying as

µk = max
{
c1, min

{
c2, ‖JTk rk‖

}}
, µ0 = c2 (3.4)

c1 = 10−2, c2 = 102

all these with an internal CG tolerance value not necessary so small. In the

Table 3.3 we sum up the statistics of these three methods for an internal CG

tolerance tol = 5 · 10−1 and nl = 10−3: we can read the relative errors, the

internal and external iterations number for µ = 102, µ = 0 and µk as in (3.4).

As we can see from Table 3.3, all these method are comparable, since the

relative errors and the iterations number are roughly the same. Only for the

Gauss-Newton method the performance is slightly less efficient, but it has the

advantage that the user has not to make any choice of the parameters, such

as, for example, the constant value µ in the first method or the constants c1

and c2 in the third one.

Now let us have a look on the reconstructed images for these three

methods. In Figure 3.8 we can see the central slice of the reconstructed

object, where in the left column is plotted the adipose tissue percentage and

in the right column the glandular tissue one. From the reconstruction we

find again that the three method are comparable, since in the three cases the

reconstructed images have all roughly the same quality.

Table 3.4: Statistics of the Levenberg-Marquardt method for the test problem
of size 31× 31× 7.

Method err k itCG time

µ = 102 3.091459e− 02 8 36 1607
µ = 0 3.640818e− 02 4 22 828

µk = max
{

10−2, min
{

102, ‖JTk rk‖
}}

3.214635e− 02 7 31 1346
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In conclusion, we made the same tests as above for a bigger test problem,

namely we considered a three-dimensional phantom object of size 31×31×7.

From the Table 3.4 we can note that the semi-convergence is reached by the

Gauss-Newton method (µ = 0) in a lower number of internal and external

iterations, but this corresponds to a higher relative error value. On the

other hand, with µ = 102 more iterations are necessary, but we have the

least relative error value. However, if we look at the reconstructed images

in Figure 3.9, we can observe that the quality of the results are roughly the

same. We conclude that in this case, between the methods analysed, the best

choice is the Gauss-Newton method, since it needs a lower iterations number

for the same reconstructed image quality.

3.3 Numerical results for L-BFGS methods

In this section we are going to test the two Limited-memory BFGS al-

gorithms that we presented in Section 1.3.4, namely Algorithm 6 and Algo-

rithm 8. We will test some possible choices for the µk values starting from

the smaller test problem 11 × 11 × 5, then we will make some experiments

for the bigger problem 31× 31× 7 and we will compare the qualities of the

reconstructed images too.

We point out that throughout the following tests we have taken a noise level

nl = 10−3, an (external) tolerance value tol = 10−4 and m = 5.



70 3. Numerical results

3.3.1 Numerical results for Algorithm 6

We start to test Algorithm 6 by taking a varying µk as

µk = max
{
c1, min

{
c2, ‖JTk rk‖

}}
, µ0 = c2 (3.4)

c1 = 10−2, c2 = 102

with the stop condition given by

while (k ≤ 100) & (errk ≤ errk−1) do (3.6)

In Figure 3.10a we can see the relative error as a function of the iterations

number while in Figure 3.10b the gradient norm and the µk values at each

iteration are plotted. Then we have compared the choice of taking the µk

values varying as in (3.4) to the choice of taking µk constant at each iteration

µk = µ = 102 with the same stop condition (3.6). In Figure 3.11 we can see

the relative error as a function of the iterations number while in Table 3.5

there are the relative errors, iterations number and times for these two dif-

ferent choices of µk.

Table 3.5: Statistics of Algorithm 6 for the test problem of size 11× 11× 5.

err k time

µk = max
{

10−2, min
{

102, ‖JTk rk‖
}}

2.153760e− 02 18 24.7
µ = 102 2.145430e− 02 18 26.0

Comparing the data in Table 3.5 we deduce that probably it is not necessary

to take a varying µk value but we should investigate about which is a good

constant µ value. For this goal, in Figure 3.12a, 3.12b and 3.12c respectively

the relative error and the iterations number as a function of different con-

stant µ values in µ = logspace(0, 4, 9) are plotted.
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(a) Plot of the relative error versus the iterations number.

(b) Plot of the gradient norm values and the µk values
versus the iterations number.

Figure 3.10: Results for Algorithm 6 with µk varying as in (3.4)
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Figure 3.11: Plot of the relative error versus the iterations number for Algo-
rithm 6 with constant µk = µ = 102.

Since for µ = 104 we reach the maximum iterations number but, as we can

see from Figure 3.11 and 3.10b the error could have a constant behaviour and

so we could stop the algorithm earlier, now we introduce a new stop condition

that takes into account the flatness of the error:

while (k ≤ 100) & (errk ≤ errk−1) &
(
errk−1 − errk ≥ 10−5

)
do (3.7)

Now we make the same tests but with stop condition (3.7) for different con-

stant µ values in logspace(0, 5, 11). Since from Figure 3.13 we can see that for

the highest values of µ the errors and the iterations number start to increase,

we deduce that the errors do not have a flat behaviour but decrease slowly,

and too many iterations are necessary to reach a good solution.

Again from Figure 3.13 we can see that, taking into account the relative

error, the iterations number and the time values, a good choice of µ seems to

be µ = 3.162 ·102. So, for this value, we plot in Figure 3.14 the relative error

and in Table 3.6 the relative error, the iterations number and the time values.
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(a) Plot of the relative errors as a function of µ values.

(b) Plot of the iterations number as
a function of µ values.

(c) Plot of the time as a function of
µ values.

Figure 3.12: Results for Algorithm 6 for different constant µ choices in
logspace(0, 4, 9).
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(a) Plot of the relative errors as a function of µ values.

(b) Plot of the iterations number as
a function of µ values.

(c) Plot of the time as a function of
µ values.

Figure 3.13: Results for Algorithm 6 for different constant µ choices in
logspace(0, 5, 11) and stop condition (3.7).
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Figure 3.14: Plot of the relative error versus the iterations number for Algo-
rithm 6 with constant µk = µ = 3.162 · 102.

Table 3.6: Statistics of Algorithm 6 with µ = 3.162 · 102 for the test problem
of size 11× 11× 5.

err k time

µ = 3.162 · 102 2.134439e− 02 18 30.0

3.3.2 Numerical results for Algorithm 8

Now we turn to consider the second L-BFGS strategy, namely that one

described by Algorithm 8. In the same way as we did for Algorithm 6, we

start taking a varying µk as in (3.4) with the stop condition given by (3.6).

Since we note from Figure 3.15b that the gradient norm is quite constant, we

can immediately turn to consider a µk = µ constant at each iteration. More

precisely, we consider directly the new stop condition given by (3.7) and we

take different constant µ values in logspace(−3, 2, 11). We point out that

we have not considered higher values for µ because the curvature condition

(1.24) has not been satisfied.
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(a) Plot of the relative error versus the iterations number.

(b) Plot of the gradient norm values and the µk values
versus the iterations number.

Figure 3.15: Results for Algorithm 8 with µk varying as in (3.4)
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(a) Plot of the relative errors as a function of µ values.

(b) Plot of the iterations number as
a function of µ values.

(c) Plot of the time as a function of
µ values.

Figure 3.16: Results for Algorithm 8 for different constant µ choices in
logspace(−3, 2, 11) and stop condition (3.7).
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Figure 3.17: Plot of the relative error versus the iterations number for Algo-
rithm 8 with constant µk = µ = 3.162 · 10−2.

According to Figure 3.16 we can say that, taking into account the relative

error, the iterations number and the time values, µ = 3.162 · 10−2 seems to

be a good choice of µ. So, for this value, we plot in Figure 3.18 the relative

error and in Table 3.7 the relative error, the iterations number and the time

values.

Table 3.7: Statistics of Algorithm 8 with µ = 3.162 ·10−2 for the test problem
of size 11× 11× 5

err k time

µ = 3.162 · 10−2 2.160192e− 02 16 25.7

3.3.3 Comparisons between methods

Now let us make some remarks about the L-BFGS methods and com-

pare the numerical results with those of the Levenberg-Marquardt method

that we analysed in Section 3.2.4. In order to make all clearer, we unify

in a single table (Table 3.8) all the information about Levenberg-Marquardt
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and L-BFGS methods that we presented in Table 3.3, 3.6 and 3.7 about the

smaller test problem of size 11× 11× 5.

First of all we observe that, between the two L-BFGS methods, Algo-

Table 3.8: Statistics of various methods for the test problem of size 11×11×5.

L-BFGS Method, Algorithm 6
err k time

µ = 3.162 · 102 2.134439e− 02 18 30.0
L-BFGS Method, Algorithm 8

err k time

µ = 3.162 · 10−2 2.160192e− 02 16 25.7
Levenberg-Marquardt Method

err k itCG time

µ = 102 2.111874e− 02 5 16 16.0
µ = 0 2.204699e− 02 5 19 19.0

µk = max
{

10−2, min
{

102, ‖JTk rk‖
}}

2.116727e− 02 5 17 17.0

rithm 6 reaches the lowest error value, but it needs more iterations and time.

Analysing all the methods together, from Table 3.8 we note that, even if the

Levenberg-Marquardt method with µ = 102 reaches the lowest error and the

L-BFGS method via Algorithm 8 the highest one, all the methods tested

have roughly the same relative error. Moreover, since the computational

cost of the Levenberg-Marquardt and L-BFGS methods is comparable, we

observe that in general the L-BFGS methods carry out less iterations than

Levenberg-Marquardt method but more time is necessary; on the other hand,

L-BFGS algorithms have the advantage in occupying a limited quantity of

storage.

Now we move to making the same analysis for the bigger test problem,

namely of size 31 × 31 × 7. We write the relative error, the iterations num-

ber and the time value in Table 3.9 and we report in the same table also
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Table 3.9: Statistics of various methods for the test problem of size 31×31×7.

L-BFGS Method, Algorithm 6
err k time

µ = 3.162 · 102 3.104404e− 02 27 4725
L-BFGS Method, Algorithm 8

err k time

µ = 3.162 · 10−2 3.305237e− 02 100 16840
Levenberg-Marquardt Method

err k itCG time

µ = 102 3.091459e− 02 8 36 1607
µ = 0 3.640818e− 02 4 22 828

µk = max
{

10−2, min
{

102, ‖JTk rk‖
}}

3.214635e− 02 7 31 1346

the information for the Levenberg-Marquardt method relative to the same

problem written in Table 3.4.

If, as we said by watching Figure 3.16 for the test problem of size

11 × 11 × 5, µ = 3.162 · 10−2 was a good value for Algorithm 8 in order to

reach a small relative error in not so many iterations, from Table 3.9 we can

note that this value is not efficient for the test problem of size 31 × 31 × 7,

because Algorithm 8 ends reaching the maximum number of iterations. On

the other hand, the value µ = 3.162 · 102 seems to be a good value for Algo-

rithm 6 also in the bigger test problem, because it ends in 27 steps and with

a quite small relative error. From Figure 3.18 we can see the plot of the rel-

ative errors for both the algorithms: if the curve for Algorithm 6 reaches the

semi-convergence quite soon, on the contrary the error curve for Algorithm 8

decreases too slowly running out of the maximum number of iterations. For

this reason, probably it is preferable Algorithm 6 to Algorithm 8.

Comparing from Table 3.9 Algorithm 6 to the Levenberg-Marquardt per-

formance for the test problem of size 31×31×7 we can observe that the former
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(a) Plot of the relative error for Al-
gorithm 6 and µ = 3.162 · 102 as a
function of the external iterations.

(b) Plot of the relative error for Al-
gorithm 8 and µ = 3.162 · 10−2 as a
function of the external iterations.

Figure 3.18: Relative error curves for Algorithm 6 and 8 for the problem of
size 31× 31× 7

reaches a very good relative error, roughly near to error of the Levenberg-

Marquardt method for µ = 102 constant. Moreover, even if it needs about

three times as much time necessary to the Levenberg-Marquardt method,

Algorithm 6 has also the advantage to require only a limited quantity of

storage.

To conclude, we have a look on the reconstructed images in Figure 3.19.

Surprisingly, although Algorithm 8 is quite slow and ends for the maximum

number of iterations with an exit error value higher than the error reached

by Algorithm 6, it seems that it produces a good solution, whose borders

are less blurred and sharper. Nevertheless, the image reconstructed by Al-

gorithm 6 needs less time and, compared with the images reconstructed by

Levenberg-Marquardt methods in Figure 3.9, it seems to have roughly the

same quality.
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Figure 3.19: Reconstructed images for L-BFGS methods and the test problem
of size 31× 31× 7.
1st row: exact images. 2nd row: reconstructed images for Algorithm 6 with
µ = 3.162 · 102. 3rd row: reconstructed images for Algorithm 8 with µ =
3.162 · 10−2.



Conclusions

In this thesis we have analysed a polyenergetic and multimaterial model

for the breast image reconstruction in Digital Tomosynthesis, namely such

that the test object has been modelled by the combination of more than one

material (two materials in our experiments) and such that the X-rays beam

has been considered at several energy levels. The modelling of the problem

has lead to the resolution of a high-dimensional nonlinear least-squares prob-

lem that, due to its nature of inverse ill-posed problem, needs some kind of

regularization.

We tested two main classes of methods: the Levenberg-Marquardt method

(together with the Conjugate Gradient method for the computation of the

descent direction) and two methods from the limited-memory BFGS class

(L-BFGS).

For the first method we made some experiments for different values of the

regularization parameter (constant or varying at each iteration), tolerances

and stop conditions. From the numerical results we conclude that probably

the best performances correspond to constant µ value of order 102, varying

µ as in (3.4) or with no regularization at all (µ = 0) for not so small CG

tolerance values (for example tol = 5 · 10−1).

From the numerical results of the two methods of the L-BFGS class we

can observe that the best choice for the µ parameter is to take it constant;

83
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moreover, we note that for the smaller problem both strategies have a good

performance but, for the bigger one, Algorithm 6 seem to be much more

efficient than Algorithm 8.

From an overall perspective, we can conclude that between the numerical

methods we analysed the most performing ones seem to be the Levenberg-

Marquardt method with a constant value of the regularization parameter for

high CG tolerance values and the L-BFGS method given by Algorithm 6

again with µ constant. As regards the errors, the former seems to have a

lower relative error than the latter. On the other hand, even if the L-BFGS

method given by Algorithm 6 takes more time in order to reach the solution,

it has the advantage of needing only a limited quantity of storage. After all,

with regard to the qualities of the reconstructed images, both methods seem

to be comparable.
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