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Abstract

Nel presente lavoro di tesi ho sviluppato un metodo di analisi di dati di DW-MRI

(Diffusion-Weighted Magnetic Resonance Imaging) cerebrale, tramite un algoritmo di trat-

tografia, per la ricostruzione del tratto corticospinale, in un campione di 25 volontari sani.

Il diffusion tensor imaging (DTI) sfrutta la capacità del tensore di diffusione D di misu-

rare il processo di diffusione dell’acqua, per stimare quantitativamente l’anisotropia dei

tessuti. In particolare, nella sostanza bianca cerebrale la diffusione delle molecole di acqua

è direzionata preferenzialmente lungo le fibre, mentre ostacolata perpendicolarmente ad

esse. La trattografia utilizza le informazioni ottenute tramite il DW imaging per fornire

una misura della connettività strutturale fra diverse regioni del cervello. Nel lavoro si è

concentrata l’attenzione sul fascio corticospinale, che è coinvolto nella motricità volonta-

ria, trasmettendo gli impulsi dalla corteccia motoria ai motoneuroni del midollo spinale.

Il lavoro si è articolato in 3 fasi. Nella prima ho sviluppato il pre-processing di immagini

DW acquisite con un gradiente di diffusione sia 25 che a 64 direzioni in ognuno dei 25

volontari sani. Si è messo a punto un metodo originale ed innovativo, basato su ”Regions

of Interest” (ROIs), ottenute attraverso la segmentazione automatizzata della sostanza

grigia e ROIs definite manualmente su un template comune a tutti i soggetti in esame.

Per ricostruire il fascio si è usato un algoritmo di trattografia probabilistica che stima la

direzione più probabile delle fibre e, con un numero elevato di direzioni del gradiente, riesce

ad individuare, se presente, più di una direzione dominante (seconda fibra). Nella seconda

parte del lavoro, ciascun fascio è stato suddiviso in 100 segmenti (percentili). Sono stati

stimati anisotropia frazionaria (FA), diffusività media, probabilità di connettività, volume

del fascio e della seconda fibra con un’analisi quantitativa ”along-tract”, per ottenere un

confronto accurato dei rispettivi percentili dei fasci nei diversi soggetti. Nella terza parte

dello studio è stato fatto il confronto dei dati ottenuti a 25 e 64 direzioni del gradiente

ed il confronto del fascio fra entrambi i lati. Dall’analisi statistica dei dati inter-subject

e intra-subject è emersa un’elevata variabilità tra soggetti, dimostrando l’importanza di

parametrizzare il tratto.

I risultati ottenuti confermano che il metodo di analisi trattografica del fascio cortico-

spinale messo a punto è risultato affidabile e riproducibile. Inoltre, è risultato che un’ac-

quisizione con 25 direzioni di DTI, meglio tollerata dal paziente per la minore durata dello

scan, assicura risultati attendibili. La principale applicazione clinica riguarda patologie

neurodegenerative con sintomi motori sia acquisite, quali sindromi parkinsoniane sia su ba-

se genetica o la valutazione di masse endocraniche, per la definizione del grado di contiguità

del fascio. Infine, sono state poste le basi per la standardizzazione dell’analisi quantitativa

di altri fasci di interesse in ambito clinico o di studi di ricerca fisiopatogenetica.
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Introduction

Diffusion Weighted Imaging (DWI) is a magnetic resonance imaging (MRI) method

that allows an in vivo and non-invasively description of the diffusion process of molecules

in biological tissues. This is based on the evidence that, during their random diffusion-

driven displacements, molecules probe tissue structure at a miscroscopic scale. Brain

water diffusion is a three-dimensional phenomenon and it is not free, but reflects in-

teractions with many obstacles, like macromolecules, fibers or membranes: molecular

mobility in tissues may be anisotropic, as in brain white matter. Diffusion anisotropy in

white matter is due to its specific organization in bundles of axonal fibers which run in

parallel: diffusion in the direction of fibers results faster than in perpendicular direction

and the direction of the fastest diffusion indicates the overall orientation of the fibers.

DWI uses diffusion-encoding gradients, applied in different directions, to estimate the

diffusion tensor and measurements of diffusion parameters. The use of more than six

directions (required as minimum) can provides better estimation of diffusion indices as

fractional anisotropy (FA) and mean diffusivity (MD).

The process of using DWI data to estimate white matter fibers bundles is commonly

known as tractography. MRI tractography is a unique imaging technique that identifies

and measures these pathway in vivo; the study of the boundles is essential to our un-

derstanding of function of brain regions in normal and pathological brain and permits

to trace maps of brain connectivity. In order to reconstruct fiber bundles, tractography

procedure aims to find paths through the data field along which diffusion is least hin-

dered. Strategies for achieving this goal vary greatly depending on the used algorithm.

The present work adopts the probabilistic tractography algorithm, that estimates at each

voxel the most likely fiber orientations. The traced connections represent a measure of

the probability and form a connectivity map. The great advantage of probabilistic algo-

rithm is the ability to identify, if present, more than one dominant direction in each voxel

also with standard DWI acquisitions. This allows to reconstruct the tract of interest in
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2 INTRODUCTION

a detailed way.

The present thesis work deals with the analysis of DWI data and tractographic recon-

struction, obtained at 25 and 64 directions of diffusion gradient, of 25 healthy subjects.

Data were acquired at RM Functional Unit at DIBINEM (Department of Biological and

Neuromotor Sciences) in Policlinico S.Orsola. The aim of the project is to develop a

reliable along-tract procedure to reconstruct the corticospinal tract using a probabilistic

algorithm and to investigate the distribution of the most important diffusion parameters

in order to realize a comparison between data obtained with different number of diffusion

gradient directions. It is important to specify that the corticospinal tract (CST) is one of

the most important tract in the central nervous system and it is responsible for various

motor functions for voluntary movements. Its description can have an important role in

many neurodegenerative disorders.

A reproducible method to parameterize each delineated tract has been developed, by

dividing each tract into 100 equal segments (percentiles). In this way, it is possible to

obtain values of diffusion parameters in each percentile and to conduct spatial-specific

precise comparisons between different subjects. Diffusion parameters value were inves-

tigated in dependence of side of brain and the number of diffusion gradient directions.

This thesis is organized as follows. The first chapther introduces the physical basis of

diffusion and DTI, to explain how tissue anisotropy can be evaluated. The tractography

method is presented, examining the difference between probabilistic and deterministic

algorithms. The second chapter reports a brief overview of the anatomy and structure

of the corticospinal tract, the white matter boundle of interest. In the third chapter the

method of reconstruction of the tract, its parameterization and the statistical analyses are

described. Results are reported in the fourth chapter and discussed in the fifth. Finally,

our conclusions and future research developments are outlined in the sixth chapter.



Chapter 1

Diffusion Tensor Imaging and

Tractography

1.1 Diffusion

Diffusion is a spontaneous phenomenon in any fluid characterized by a temperature

greater than absolute zero (0 Kelvin). Molecules are constantly moving with a random di-

rection, that changes regularly as molecules collide with one another. This phenomenon,

known as ”Brownian motion”, was first described in 1828 by Robert Brown, a botanist

working on the meachanism of fertilization in flowering plants, who noticed the perpetual

motion of pollen grains suspended in water. Diffusion can be considered the macroscop-

ically observable effect of the microscopic Brownian motion of particles. The physical

law that explains this process is called Fick’s first law [1] and relates the diffusive flux

to any molecular concentration difference through the relation:

J = −D∇C (1.1)

where J is the net particle flux (mol /m2 s), C is the particle concentration (mol /m3 ),

and D is the diffusion coefficient (or diffusivity, m2/ s). The minus sign in (1.1) embodies

the notion that particles move from regions of high concentration to regions of low

concentration. The rate of this flux is proportional to the concentration gradient and

to the diffusion coefficient. Unlike the flux vector or the concentration gradient, the

diffusion coefficient is an intrinsic property of the medium, and its value is determined

by the size of the diffusing molecules, the temperature and microstructural features of

3



4 CHAPTER 1. DIFFUSION TENSOR IMAGING AND TRACTOGRAPHY

the environment. Diffusion is a thermally driven process and the trajectory of each water

molecule, at temperatures above zero degrees kelvin, can be described by a random walk :

the molecule stays in a particular place for a fixed time t before moving to a random,

new location in space. Considering every molecule, a random path can be drawn out in

three-dimensional space. It is possible to study the behaviour of a large number of water

molecules introducing a probabilistic framework. In 1905 Einstein considered < r2 >

(m2), which represents the squared displacement of molecules from their starting point

over a time t, averaged over all the molecules in the sample. Supposing that the number

of molecules is sufficiently large and that they are free to diffuse, Einstein proved that

< r2 > is directly proportional to observation time, t. The relationship is known as

”Einstein’s equation”:

< r2 >= 6Dt (1.2)

The distribution of squared displacements takes a Gaussian form, with the peak at zero

displacement. The probability of walk through a given distance from the origin is the

same, irrespective of direction in which it is measured. For a cube of water at body

temperature the diffusion coefficient for water is 3 ∗ 10−3mm2s−1 [2].

Figure 1.1: Free isotropic diffusion in a general environment. The panel (b) represents the

probability density function (PDF). The image is taken by Jeurissen [3].

1.1.1 Hindered and Apparent Diffusion Coefficients

If the diffusing water molecules encounter any hindrances along their random walk

(i.e. cell membranes and macromolecules), the mean squared displacement per unit time

will be lower then when observed in ”free” water. Thus, diffusion coefficient, obtained



1.1. DIFFUSION 5

with equation (1.2), will appear lower. Therefore, the diffusion coefficient that we mea-

sure in a biological sample, is usually reffered to the apparent diffusion coefficient (ADC).

This is an important property of diffusion to obtain information about the structural fea-

tures of biological tissues.

Unordered tissue microstructure gives rise to isotropic diffusion, in which ADC is the

same in every direction it is measured. This kind of diffusion can be described using a

single ADC. The Gaussian distribution has a spherical isoprobability surface.

On the other hand, well ordered hindrances may induce the diffusion to become anisotropic:

the ADC becomes dipendent on the orientation in which it was measured. In this case,

water molecules diffuse more freely parallel to the hindrances, than perpendicular to

them. The diffusion can not be described with a single diffusion coefficient. For a single

bundle (that is made up of a great number of tighly packed fibers), Gaussian distribution

has an ellipsoidal isoprobability surface.

Figure 1.2: Hindered, isotropic (A) and anisotropic diffusion (B). Images are taken from

Jeurissen [3].
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1.1.2 Water diffusion in neural tissue

At a miscroscopic level, the neural tissue of brain is composed of neurons. A neuron

is an electrically excitable cell that processes and transmits information through elec-

trical and chemical signals. A typical neuron is mainly constituted by a cell body (or

soma), dendrites (that extend in great number from the soma) and axon (see Figure

1.3). The soma and dendrites receive chemical signals from other neurons and process

the information that is transmitted toward other nerve cells by the axons. These are

surrounded several times by an insulating lipid-rich myelin sheath, that wraps around

the axon to form a sort of capsules known as internode. Internodes are separated from

each other by small amyelinated regions, called node of Ranvier. This organization of

myelin sheaths allows a saltatory way of conduction whereby electrical impulses jump

from node to node as they pass along the axon.

Figure 1.3: Schematic representation of a typical neuron.

At the macroscopic level, the brain can be characterized by four major components:

grey matter (GM), white matter (WM), cerebrospinal fluid (CSF) and blood (see Figure

1.4). GM is mainly composed of neuronal cell bodies and unmyelinated axons. In the

grey matter the glial cells and capillaries are also found. On the other hand, WM is made

up of long-range myelinated axons and very few neuronal cell bodies; it is found hidden

in the inner layer of brain’s cortex, while the grey matter is mainly located on surface

of the cerebral hemispheres (or cerebral cortex). Apart from myelin, that is responsible

of the white color of WM visible in post-mortem dissections, axons contain an axonale

membrane, neurofilaments and microtubules, all oriented along the same direction that
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is the major axis of the axon (see Figure 1.5). Moreover, axons are organized and tighly

packed together into nerve bundles. For all these reasons, water diffusion in many regions

of the white matter is highly anisotropic; in particular, diffusion is less restricted parallel

to the axon bundles than perpendicular to it. In this way, we can obtain important

information about the structure, dimension and preferential orientation of WM fiber

bundles.

Figure 1.4: Formalin fixed 10-mm-thick brain slice from a male subject [34] (on the left) and

axial MR image obtained with a spin-echo sequence (on the right): grey and white matter can

be discerned.

Figure 1.5: Schematic representation of a single axon, surrounded by myelin and axonal

membrane.
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1.2 Diffusion MRI

MRI is an imaging tecnique that detects proton signals from water molecules. Images

thus reflect water density and properties as a function of position in space and allow the

study of anatomy in vivo [4]. MRI works perturbing with electromagnetic waves the

magnetization of water hydrogen nuclei induced in a strong and homogenous magnetic

field. Water magnetization returns to the equilibrium state with a speed that is influenced

by the nature of the biological tissues. This property, called the relaxation time, is the

basis for the constrast of anatomical MRI. For detailed information about basic principles

of nuclear magnetic resonance and magnetic resonance imaging, we refer to [5] and [6].

1.2.1 Spin-Echo Sequence

A Spin-echo (SE) sequence starts with the excitation of the hydrogen nuclei with a

90◦ radiofrequency (RF) pulse. This flips the magnetization vector into horizontal x-y

plane (the normal of this plane is along the main magnetic field B0). The spins precess

around the magnetic field: this phenomenon is known as Larmor precession. The angular

frequency of this precession is given by

ω = γB0 (1.3)

where γ is the gyromagnetic ratio, a specific characteristic of the nucleus under examina-

tion. At the beginning, the spins are coherent, but they start dephasing due to various

factors (i.e. magnetic field inhomogeneities and dipolar interactions). The dephasing of

the spins determines a decrease of the signal (T2
∗ decay). As proposed by Edwin Hann,

the dephasing can be reversed through an application of a 180◦ RF pulse; in this way,

the signal is refocused. The time between the first RF pulse and the echo is called TE

and is twice the time between the two RF pulses. The generated echo is detected by a

receiver coil. In Figure 1.6 a schematic Spin-echo sequence is shown.
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Figure 1.6: Spin-echo (SE) sequence.

1.2.2 Magnetic field gradients

Hann realized that the spin-echo MR signal could be useful to describe molecular

diffusion and explained the reduction of signal in terms of the dephasing of spins caused

by translational diffusion within an inomogeneous magnetic field. Later, thanks to the

studies of Carr and Purcell in 1954 [7], it was obtained a complete mathematical and

physical description of diffusion measurements. In effect, considering that the spin’s

precession frequency is determined by the local magnetic field, if a magnetic field gradient

is applied, spins at different locations experience different magnetic fields, therefore they

precess at different Larmor frequencies. After a certain time, spins assume different

phase shift, depending on their locations. Stronger gradients induce a more acute phase

changes, permitting a higher sensitivity on diffusion.

1.2.3 Pulsed Gradient Spin-echo sequence and diffusion-weighted

MR

In 1965 Stejskal and Tanner introduced innovations that made modern diffusion

MRI measurements possible. They introduced the pulsed gradient spin-echo sequence

(PSGE), which replaces the sequence of Carr and Purcell’s constant field gradient with

short duration gradient pulses [8]. It is important to make a distinction between the

encoding time (pulse duration, δ) and the diffusion time (separation of the two pulses,
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∆). The basic idea is to define the spatial position of water molecules (spin) at t=0,

invert the spin phase with a π-pulse and decode the spin position after time τ . After the

application of a 90◦ rf pulse, a magnetic field gradient with amplitude G and duration δ

is turned on. The phase change induced is given by

φ1 = −qx1 (1.4)

where x1 is the position of the particle during the application of the first pulse and

q = γδG. A 180◦ rf pulse reverses the spins’ phase. A second magnetic field gradient,

with the same characteristics as the first one and a separation of time ∆, causes non-

moving spins to re-gain their original phase. The phase change due to this second pulse

is given by

φ2 = −qx2 (1.5)

The global phase change that the particle experiences is given by

φ1 − φ2 = −q (x1 − x2) (1.6)

It is evident that if the particles remained stationary during the time between the two

magnetic field gradients, the phase shift would vanish and the magnitude of the echo

will not change. On the other hand, if particles diffuse randomly throught the excited

volume, the spins will not re-phase completely and the overall signal, given by the sum of

the magnetic moments of all spins, is attenuated due to incoherence in the orientation of

the individual magnetic moments. It can be observed that the field gradients are applied

linearly in one dimension, providing diffusion sensitization only to spin moving in that

direction.

The development of the phase dispersion depends on the strenght and duration of gra-

dient and the time interval between application of the first and second gradients. The

b-factor describes this degree of diffusion weighting and is proportional to the square of

the gradient strenght; for PSGE sequence, the b-factor is given by

b = γ2G2δ2
(

∆− δ

3

)

(1.7)

where γ is the gyromagnetic ratio and G the amplitude of the magnetic field gradient

pulses.

The signal can be acquired through a spin-echo, calculated for each pixel in an image as

f(x, y) = M0

(

1− e−TR/T1
)

e−TE/T2 (1.8)
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whereM0 is the ”spin density” in that pixel, T1 and T2 reflect the time constants of spins

in the tissue at that location. If we applied gradients, the signal of (1.8) is attenuated

by the product of the diffusion coefficient D and the factor b

f(x, y) = M0

(

1− e−TR/T1
)

e−TE/T2e−bD (1.9)

It is convenient to introduce the MR signal attenuation quantity, E(q) that is given by

E(q) =
S(q)

S0

(1.10)

where S0=S(0) indicates the signal in the absence of any gradients and S(q) is the

diffusion-attenuated signal. As relaxation-related signal attenuation is approximately

independent from the applied diffusion gradients, dividing S(q) by S0 eliminates the

effects of relaxation and q dependence of E(q) is attributed to diffusion.

The diffusion gradients can be applied along any direction. The diffusion coefficient for

any direction is estimated by collecting two sets of data: one, S0, with the diffusion-

weighting gradient amplitude set to 0 (b=0), and the second, SD, with a non zero

diffusion-weighting gradient in the desired direction of measurement. Diffusion coefficient

can be estimated as

D =
Log [S0/SD]

b
(1.11)

When the displacement of water molecules is Gaussian and behaves according to

(1.2), the relation expressed by (1.11) returns the ADC value. In this way, it is possible

to quantify the apparent diffusion coefficient within each voxel of the imaged volume;

thus, one can obtain quantitative maps of the ADC [9].

1.3 Diffusion Tensor Imaging

When there is an ordered tissue in our volume, it is not possible to characterize

the behaviour of water molecules with a single diffusion apparent coefficient. Indeed, the

ADC depends on the direction in which it is measured. For this reason, it was introduced

the diffusion tensor D, a more complex model to describe Gaussian diffusion in which

the displacements per unit time are not the same in all directions [10].

D =

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

(1.12)
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The diagonal element of this matrix correspond to diffusivity along three ortogonal axes,

while the off-diagonal elements correspond to the correlation between displacements

along those orthogonal axes. The tensor is simmetric (Dij=Dji, with i,j=x, y, z). In

a reference frame [x’, y’, z’] that coincides with the principal direction of diffusivity, the

tensor is reduced only to its diagonal terms Dx’x’, Dy’y’, Dz’z’. The echo attenuation

becomes:

E(q) = exp (−bx′x′Dx′x′ − by′y′Dy′y′ − bz′z′Dz′z′) (1.13)

where bii are the elements of the b matrix, which now replaces the b factor. In practice,

measurements are made in the reference frame [x, y, z] of the MRI scanner gradients,

which usually does not coincide with the diffusion frame of the tissue. Therefore, one

must consider also the coupling of non diagonal terms of the diffusion tensor which reflect

correlation between molecular displacements in perpendicular direction:

E(q) = exp

(

−
∑

i=x,y,z

∑

j=x,y,z

bijDij

)

(1.14)

Diffusion tensors can be estimated from a minimal set of seven diffusion-weighted image.

The set of diffusion-weighted images should include at least one non-diffusion-weighted

images whose gradient directions are noncollinear and non-coplanar. In clinical scan-

ners, imaging protocols that acquires diffusion-weighted images along multiple directions

(more than 7) are commonly used [11]. Because it is symmetric, we only need to know

the diagonal elements and three off-diagonal elements. When all off-diagonal elements

are zero, we say that the tensor is diagonalized and its diagonal elements correspond to

its eigenvalues. They are denoted as λ1, λ2, λ3 (ordered as λ1 ≥ λ2 ≥ λ3) and correspond

to the three diffusivities along the principal axes of the diffusion tensor. The orientation

of the principal axes is given by the three eigenvectors (denoted by ǫ1, ǫ2, ǫ3), which are

mutually ortogonal by definition. The orientation of the tensor is taken to be parallel to

the principal eigenvector ǫ1, that is associated with the largest eigenvalue.

One way to visualize diffusion tensor is to use a diffusion ellipsoid. This is a represen-

tation of the diffusion distance covered in space by molecules in a given diffusion time.

The three eigenvectors represent the three axes of the ellipsoid, and the lenght of each

axis is the eingenvalue of the corresponding eigenvector; the eccentricity of the ellipsoid

provides information about the degree of anisotropy and its simmetry. When the three

eigenvalues have similar values (λ1 ≈ λ2 ≈ λ3) the shape of the ellipsoid is spherical; the

diffusion ellipsoid of a voxel that contains a single population of axonal fibers appears
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elongated along the orientation of the fiber trajectory (λ1 ≫ λ2) (see (a) in Figure 1.7);

if a voxel contains two groups of crossing neuronal fibers there may be two or more

orientations within a plane that show the maximal diffusion coefficient, so the diffusion

ellipsoid has a planar shape (see b in Figure 1.7).

Figure 1.7: The shape of diffusion tensors related to local tissue microstructures voxel, in

the case of (a) only one group of fibers, (b,c) two crossing fibers or surfaces and (d,e)multiple

crossing fibers or no fibers. The image is taken from [11]

1.3.1 Parameters derived from the diffusion tensor

Diffusion ellipsoid permits to visualize tensor data in three dimensions, but it is

convenient to have scalar measurements that can be used for easy quantification of

information on tissue microstructure and architecture for each voxel.
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Mean diffusivity, axial and radial diffusivity

Mean diffusivity (MD) characterizes the overall mean-squared displacement of molecules

(average ellipsoid size) and the overall presence of obstacles to diffusion. To obtain an

overall evaluation of the diffusion in a voxel, it is important to consider an invariant

measure (independent by the orientation of the reference frame). This measure is given

by
Tr (D)

3
=

Dxx +Dyy +Dzz

3
(1.15)

where Tr (D) is the trace of the diffusion tensor.

We usually referred to λ1 as the axial diffusivity (or parallel diffusivity); it describes

the diffusivity along the principal axis.

The radial diffusivity (RA) is instead obtained averaging the diffusivities in the two

minor axes:

RA =
λ2 + λ3

2
(1.16)

This parameter can be interpreted in terms of underlying biophysical properties since it

is linked to myelin content and has an important role in the characterization of some

neurological disorders [14].

Diffusion anisotropy indices

To describe diffusion anisotropy, invariant indices must be found to provide an ob-

jective information, independent on the choice of directions made for measurements.The

most used invariant indice is the fractional anisotropy (FA), defined as [12]:

FA =

√

3

2

√

(λ1− < λ >) 2 + (λ2− < λ >) 2 + (λ3− < λ >) 2

λ1
2 + λ2

2 + λ3
2

(1.17)

where < λ > is the mean diffusivity. FA measures the fraction of the tensor that can

be assigned to anisotropic diffusion. FA varies between 0 (isotropic diffusion) and 1 (or√
2) (infinite anisotropy).

Fiber orientation mapping

Other information can be extracted from the mapping of the orientation in space of

tissue structure by DTI images. It is believed that the directions of the fibers is colinear
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with the direction of the eigenvector associated with the largest eigenvalue. One of the

most intuitive approach is to use various primary colors to represent the orientation of

the white matter tracts [13]. One can view fiber orientation in one voxel and, following a

path of smooth transition in color from one voxel to the next, he can have an impression

of the trajectory of the major white matter pathways (Figure 1.8).

Figure 1.8: The x, y and z components of the principal eigenvector are mapped to the red,

green and blue components of a full color image (a), To highlight areas of high anisotropy, the

color map is multiplied by some anisotropy map, i.e FA (b). The resulting color map shows

the three dimensional orientation of the tissue, regardless of the orientation of the slice (c-e).

1.3.2 Number of diffusion gradient directions

As underlined previously, diffusion-encoding gradients applied in different directions

are used in DTI to estimate the diffusion tensor and measurements of parameters that
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indirectly reflect brain microstructure. The diffusion tensor has six independent ele-

ments, and therefore, at least six non-collinear DW directions must be applied (plus

one nondiffusion-weighted acquisition). On the other hand, it is important to achieve

adequate signal-to-noise ratio (SNR) for diffusion parameter estimation [18]. To im-

prove the estimation of diffusivity parameters (increasing the SNR), in particular way of

eigenvalues if we have high anisotropy, two options can be used: either to add diffusion-

weighting directions or repeat existing diffusion-weighting directions, performing several

acquisitions. Recently, various studies have shown that using more than six directions

provides better estimates (so reduced measurement error) of FA and MD, as compared to

the results of application of six directions alone [15] [16]. Moreover, results suggest that

multiple gradient directions reduce the uncertainty of the primary eigenvector direction

and limit the potential bias as a function of tract orientation. This is an important

issue for reconstruction of white matter tract starting from DTI data: a great number

of gradient diffusion directions can assure a higher resolution and a more detailed final

tract. However, the proposed numbers of DW directions vary greatly in the literature

and are arbitrary [17].

1.4 Tractography

The local white matter orientation information, provided with the diffusion tensor

imaging, can be used to reconstruct the pathways of major white matter boundles

through the brain. The technique that allows to trace maps of brain connectivity is

called tractography. To date, tractography is the only available tool for identifying and

measuring white matter pathways non-invasively and in vivo. It is able to produce lines

or trajectories capturing orientations of diffusion that are likely to represent real axonal

trajectories, assuming that orientation of the largest component of the diagonalized diffu-

sion tensor represents the orientation of dominants axonal tracts [20]. The great extent of

the specialized literature concerning tractography demonstrates the great interest raised

in the scientific community and the variety of strategies proposed to extract information

from the diffusion MR images. Indeed, nowadays one of the most challenges in neuro-

science is the determination of the wiring diagram of the human brain. Tractography is

able to approach this goal at the macro-scale, because it investigates connections between

brain areas using MRI- based techniques. This allows the possibilities to characterize

the wiring diagram also in a systematic way across multiple individuals [21]. This is the
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aim of a large-scale connectome project such as the Human Connectome Project (HCP),

an initiative aiming to realize a comprehensive map of human brain connections in 1200

healthy adults using advanced neuroimaging methods [22]. Tractography has a central

role and it is helping to estabilish the structural basis of the human connectome.

In order to reconstruct fiber bundles, tractography algorithms aim to find paths through

the data field along which diffusion is least hindered. While this fundamental objec-

tive is common throughout diffusion tractography, strategy for achieving it vary greatly

from algorithm to algorithm. The specific choice between these algorithms impacts on

the interpretation of the reconstructed white matter pathways. Two main approach to

generate the different trajectories exist: deterministic and probabilistic techniques.

1.4.1 Deterministic tractography

Deterministic (or streamline) tractography is the most intuitive and the most com-

monly used approach to represent the orientation of dominant axonal tracts. One can

reduce DTI data set into a simple vector field, capturing in each voxel the main orienta-

tion of diffusion. Whithin a vector field, a streamline is any line whose tangent is parallel

to the vector field. The methods of reconstruction consists in choosing a seed point and

let the fiber expand following the local vector information on a step-by-step process. So

as soon as the fiber reaches the boundary with a new voxel, the orientation is updated

to match the local orientation (Figure 1.9). This process continues until a termination

criterion is met, and is repeated in the opposite direction from the seed point.

The linear propagation approach is able to achieve high-resolution three-dimensional

tracking of axonal projections [24]. In this particular approach, all the voxels in the

data set that show an FA value above a certain threshold are chosen as seeds and each

line is propagated according to the respective eigenvector. Every time the line reaches a

new voxel, FA value and eigenvector are estimated: if the FA value is below a stopping

threshold (similar to the starting threshold), or if the angle at which it would turn is too

large to be biologically adequate, the streamline is truncated. Finally, the algorithm runs

a second time in the opposite direction. The right choice of the threshold is a critical

point: if FA threshold is too high the error propagation is reduced but less tracts are

obtained; on the other hand, a lower threshold could force the algorithm to start the

propagation in areas where the direction of principal diffusivity could be meaningless.

Similarly, it is not trivial to decide when the line propagation process is terminated. To
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this purpose, the FA is widely used because allows to distinguish easily between white

matter and gray matter. Another criterion is the maximum angle between two succes-

sive steps. The curvature threshold is often made very strict when analyzing tract with

minimal curvature, like the corticospinal tract. In general, it is widely assumed that the

trajectories of the main fibers tracts in the brain are relative smooth.

Figure 1.9: Streamlines are generated by connecting adjacent pixels on the basis of directional

similarity of their maximum diffusional direction. Arrows show maximum diffusion direction

at each voxel. The picture is taken from [23].

Deterministic tractography allows to isolate and visualize many different white matter

pathways with precise results, with the help of a prior anatomical knowledge of the

trajectories [25]. Two different approaches are used for in vivo dissection. A ”one-region

of interest” method is used for boundles whose boundaries are clearly delineated on the

FA image (i.e central portion of the corpus callosum because in the neighborhood there

are no other fasciculi). However, the majority part of cerebral white matter is composed

of different boundles that run closely to one other and it is difficult to choose a single

region of interest that includes only the fibers of one boundle. ”Two-region of interest”

approach tries to overcome this problem defining a second ROI that containes at least a

section of the desired tract but not contains fibers of different fasciculi that pass through

the first ROI.

Despite the success of in vivo dissection techniques in segmenting and visualizing major

white matter pathways, streamline tractography (like other tractography approaches) is
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susceptible to errors. The principal causes of errors are:

- Imaging noise that causes poor estimation of dominant diffusion directions;

- Modeling error, because the microscopic anatomy of the white matter tract can be

more complex of the representation with a model;

- Integration error introduced with the mathematical description of the method.

Figure 1.10: Example of streamlines reconstruction of the corticospinal tract (blue tract,

on the left) and corpus callosum (on the right). The images were taken respectively from

http://www.healthcare.philips.com and from Lazar [26]

In general, errors in streamline-based tractography accumulate along the streamline

and could have a notable effect on reconstructed pathways. The most important lim-

itation of deterministic tractography is due to the fact that running the streamilines

following the route of the minimum hindrance to diffusion do not mean following the

route of the axon. This means that it is hard to distinguish branching from merging or

kissin axons and, in general, do not allow to intercept more than one fiber in a voxel.

This is a strong limitation to a complete map of connectivity description.

On the other hand, deterministic tractography permits to obtain useful and impressive

3D representations of white matter tracts, whith a level of details that maches the re-

sults of white matter dissection studies (see Figure 1.10. Moreover it is a procedure that

involves a lower computation cost, with respect to other approaches.
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1.4.2 Probabilistic tractography

Deterministic tractography algorithm considers, in each voxel, one fiber orientation

estimate and provides a single pathway from each seed point. However, as previously

explained, this approach is subject to errors and uncertainty and can not detected more

than a fiber in each voxel. Probabilistic tractography aims to characterize this uncer-

tainty, generating a large collection (or distribution) of possible trajectories from each

seed point. Brain regions that contain higher densities of this trajectories indicate to

have a higher probability of connection with the seed point [45]. Treating the problem

in this way, the probabilistic tractography permits to delineate the tract through re-

gions of high uncertainty, where deterministic method would usually stop. In effect, the

uncertainty in fiber direction is high in areas in which diffusion anisotropy tends to be

low; streamline tractography shows a limit in reconstructing pathways in low anisotropy

areas.

The first step is to define a function that characterizes the uncertainty: an uncertainty

orientational density funtion (uODF) is built and it describes the probability density on

the true fiber orientation. The uncertainty is embodied in the line propagation progress.

At each step of the line propagation, instead of propagating along the principal eigen-

vector of the tensor, the orientation is drawn from a specific uODF. In general, one

can imagine an orientation density function as a sphere whose surface value changes as

a function of latitude and longitude. Moreover, it is important to underline that the

uODF is not a physical property of the system. The uODF describes the uncertainty,

due to noisy data and artifacts in MR scan, by quantifing our confidence that the true

parameter of interest lies within any particular area on the surphace of the sphere. The

difference between the various probabilistic algorithm consists in the construction of the

uODF.

Bootstrapping

The most straightforward way to obtain the uODF would be to acquire multiple

data set for the same subject, reconstruct the fiber orientations and than consider these

repeated measurements as samples from the uODF [28]. To build a good representation

of uODF, many samples are required; considering that it is not practical to acquire a

great number of independent data set, this methods in not feasible.

Bootstrap algorithm allows to obtain a large number of samples from independent data
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sets. This is a non parametric statistical methods that helps to estimate the uncertainty

of a given statistic: it randomly selects individual measurements from a set of repeated

measurements and generates new data sets. This is done since each considered data set

contains acquisition along different gradient orientations, so new data sets will build up

with each orientation taken from a different data set. The latter procedure has some

important disadvatages, in particular each of the new data sets is obtained from the

same original data sets. Thus, the bootstrapped data sets are not independent samples

and this means an understimation of uncertainty. To overcome this problem, a wild

bootstrap method is used [29]. It permits to start from a single original data set. If

one fits a diffusion model (i.e. diffusion tensor) to this data set, the predicted signal

will not fit the data precisely, due to image noise and modeling error. The difference

between the predicted and measured signal are defined as residual. The wild bootstrap

generates sample data sets by interchanging these residuals between measurements and

by multiplying them randomly by 1 or -1.

Bayesian Methods

Bayesian technique allows to calculate and represent the uncertainty associated with

inference of any parametric model. Uncertainty and belief are represented in the form of

posterior probability density functions. Bayes’ rule states that the posterior probability

of the model parametres ω given the data s and the model M, P (ω|s,M), is proportional

to the likelihood of seeing this data set given these parameters, P (s|ω,M), multiplied

by the prior belief about the model parameters, P (ω|M).

P (ω|s,M) =
P (s|ω,M)P (ω|M)

P (s|M)
(1.18)

The likelihood must consider the parametric assumtions between quantity of interest and

the data and a parametric assumption about the noise structure (i.e., respectively tensor

model and Gaussian distribution [30]). The prior distribution describes information

known about the parameters before any data are collected; in this case, it is useful to

impose physical constraint on some parameters (i.e in the fitting of the diffusion tensor

model, the eigenvalues of the diffusion tensor are constrained to be positive) [30]. After

signal and noise model have been estabilished in the likelihood and prior distributions,

it is possible to generate samples (i.e a set of orientation that would approssimate the

uODF) from posterior distribution, once Bayes’ equation is solved. One of the most
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flexible technique used to solve this equation is the Markov Chain Monte Carlo (MCMC)

estimation process; this is a sampling procedure that proposes samples preferentially in

areas of high probability.

Uncertainty propagation: BEDPOSTX algorithm

To estimate whether it is possible to connect a region A to region B through the

diffusion data using a probabilistic tractography is not a trivial purpose. The reason is

that at each voxel, differently from streamline tractography, there are an infinite number

of possible orientatios we might follow and an infinite number of possible paths, with

different probability to be the righ one. Then, we must consider all the probabilities

associated with each path that connects the two regions. The problem is overcome with

the generation of sample streamline from final distribution; after drawing many samples,

a spatial probability density function (pdf) is built on the path, leading to the first point

A. Finally this distribution is discretize into voxels or brain regions.

An example of algorithm that practises the method described above is BEDPOST

(Bayesian Estimation of Diffusion Parameters Obtained using Sampling Tecniques) [30],

also if in our study we used an extension of it, BEDPOSTX (where X stands for crossing

fibers) that works in the same way of the first but can account for more than one fibre

orientation in each voxel [31]. The algorithm is able to estabilish the most appropriate

number of fiber orientations for the data at each voxel and carry out the probabilistic

tractography. It uses a different model from the standard diffusion tensor model. The

new model is a two-compartment partial volume model. The first compartment models

diffusion in and around the axons, with diffusion only in the fiber direction. The second

models the diffusion of free water in the voxel as isotropic. In this way, the diffusivity

in all directions perpendicular to the fiber axis is constrained to be the same. To fit the

parameters of this model to signal at each voxel, a Bayesian estimation it is used. In

order to avoid to fit a complex model to the data in voxels which support a single fiber

orientation, it is introduced a Bayesian precedure known as automatic relevance deter-

mination (ARD). ARD fits the more complex model, but excludes from computation of

likelihood the parameters that are not supported by data (in the posterior distribution

they are forced to assume zero value). The method for tracing probabilistic tracts is sim-

ilar to the streamiline tractography, but instead of considering the most likely principal

diffusion direction, it draws a sample from the posterior distribution on principal diffu-
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sion directions and progresses along the same direction. The streamline is now sampled

from the connectivity distribution; this procedure for generating streamlines is repeated

a large number of times (typically 5000). When various streamlines arrive to the same

point, each of this will choose different samples from the posterior distribution on local

orientation at that specific voxel, accounting for uncertainty in local fiber orientation.

The probability of the dominant streamline through any single voxel is estimated divid-

ing the number of streamline that passed through the single voxel by the total samples

drawn. In order to recognize fibers different from the dominant one, the algorithm draws

a sample from each population that has not been forced to zero by automatic relevance

determination and chooses that sample whose orientation is closest to parallel to the

orientation of a streamline drawn previously to indicate which population was suitable

for a multiple fiber analysis.

The great advantage of the probabilistic tractography is to charaterize white matter

tracts considering more than one dominant diffusion orientations in each voxel. These

technique has revealed large regions of white matter in which a single dominant orienta-

tion does not adequately describe the local diffusion profile (i.e in the corticopinal tract)

[31].

In general, studies that use tractography to explore brain connectivity and its varia-

tions across brain area, subjects or species, extract summary statistics from the tracking

process to make quantitative comparisons. In deterministic tracking, the extracted num-

ber represents either the number of streamlines from a starting point A to an ending

point B, or the proportion of streamlines from A to B among other possible targets. It is

important to not confuse the obtained streamlines with the axonal fibers. In facts, the

size of an imaging voxel is typically a few millimetres cubed so a single voxel could con-

tain tens of thousand of axons. Furthermore, the number of streamlines is not a direct

measure of anatomical connectivity. From this point of view, probabilistic tractography

is more quantitative [32]: probabilistic tracking gives us an estimate of our confidence

across the direction of minimum hindrance to diffusion. We can say, for example, that

we are more confident that A connects to B than A connects to C. Or that A connects

to B in one individual than in another. This confidence in the route of diffusion is not a

measure that we can get from deterministic number of streamlines approach. But these

probabilities can not be considered as direct measurements of connection strenght, since
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our confidence level depends on various factors and some of these are not related to

the connectivity meaning. For example, the measures can be influenced by the distance

between regions, because of the fact that errors and uncertainty accumulate during the

tracking process. The confidence estimation could also depend on the size of voxels and

brain areas, the noise level or the algorithmic errors.

In conclusion, tractography has many limitation but if we deeply understand them, we

could take advantage of this extremely useful tool to investigate white matter connec-

tivity.

1.4.3 Application and future directions

White matter tractography has been used to demonstrate the in vivo mapping of the

white matter pathways of the brain. Initially, white matter studies replicated the major

fiber structure known from classical anatomy. The similarity of the reconstructed tracts

to the known anatomy (studied with post-mortem techniques), confirmed the poten-

tial of tractography for noninvasive mapping of distinct white matter structures. More

recently, tractography studies have generated new information regarding brain organi-

zation and development. In recent times, it is used to generate connectivity matrices of

the entire brain and to study brain structure at the network level [33]. In this approach,

the obtained trajectories are used to define the properties of the connections (or edges)

between different nodes of the brain network and node properties, that are integrated

to identify relevant network substructures and their interrelations. Moreover, measures

describing brain network properties may potentially be useful in understanding physio-

logical disease mechanism and evolution of neurological disorders including epilepsy and

neurodegenrative diseases.



Chapter 2

Corticospinal Tract

The corticospinal spinal system is one of the most important descending tracts in

the central nervous system. It serves various essential motor functions for our voluntary

movements, so its pathway is of great interest to neuroscientists and neurologists. One

of the earliest studies on corticospinal tract, is that of Turk, in 1851, which identified

the fibers and found two separate tracts: the lateral corticospinal tract and the anterior

corticospinal tract [35]. Later, it was found that both the lateral and anterior tracts

were divisions of the same pathway and it was possible to describe the boundle more

accurately. All of these early studies in human were done through the post-mortem work

on samples. Recently, a non invasive mapping of the complete tract is possible thanks

to the advent of advanced brain neuroimaging techniques, like diffusion tensor imaging.

2.1 The motor cortex

All the body’s voluntary movements are controlled, planned and executed by the

brain. One of the brain areas most involved in controlling these voluntary movements

is the motor cortex. It is located in the rear portion of the frontal lobe. The motor

cortex is divided into two main Broadmann areas 1, Area 4 and Area 6. Area 4 is also

know as ”the primary motor cortex” and form a thin band along the central sulcus, in

1In the early 20th century German neurologist Dr. Korbinian Brodmann defined 52 regions of the

cerebral cortex of humans and monkeys that appeared to have different cellular morphology and organi-

zation, today known as Brodmann Areas. Over the past century clinical findings and neurophysiological

studies have confirmed that these microstructural differences correlate well with cortical function spe-

cialization [41].

25
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particular is the fold of cortex just anterior to the central sulcus. Area 6 lies immediately

forward of Area 4. The location of motor cortex was confirmed in the 20-th century in

brain operations performed by neurosurgeons such as Dr. Wiler Penfield, in Montreal.

During neurosurgical operation on epileptic patients, Penfield stimulated with electrical

probes various area of the cortex to assess the eloquent areas of cortex that has not to

be removed. He discovered that stimulations applied to the precentral gyrus triggered

localized muscle contractions on the contralateral side of the body. In this way, he could

develop a complete map of the motor cortex, known as the motor homunculus (see Figure

2.1) [?]. The diagram looks like a grotesque little man and indicates the location and

amount of cortex devoted to each part of the body. One of the most important aspects

of this representation is that areas assigned to various parts of body on the cortex are

proportional not to their size, but rather to the complexity of the movements that they

can perform. So the areas related to hands and face are especially large compared with

those for the rest of the body: this is because of the fact that humans put great emphasis

on speech and manipulating of objects by the hands.

Figure 2.1: The motor homunculus, based on Penfield’s classic diagram.
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2.2 Anatomy of the corticospinal tract

The corticospinal tract represents the highest order of motor function in humans

and is most directly involved in control of fine, digital movements. This tract arises in

pyramidal neurons of cortex and ends in spine. Specifically, it starts in the precentral

gyrus, the ”primary motor cortex”. There is a motor homonculus in this gyrus, with

the feet represented near the superomedial part of the motor cortex and the leg, trunk,

arm, hand and head represented progressively further inferior on the lateral side of the

brain. Axons arising from neurons in the precentral gyrus exit through the white matter

and pass through the internal capsule where they are topographically arranged in the

posterior limb. Corticospinal fibers traverse the middle portion of the cerebral peduncle

of the midbrain and then the basal pons, with the fibers representing the hand in the

anteromedial portion and those representing the foot posterolateral to them [36]. They

enter the pyramids of the medulla; in the pyramids over 90% of the axons decussate and

become the lateral corticospinal tract, continuing on the contralateral side of the spinal

white matter. The other 10% enters the medial (anterior) cortiscospinal tract (Figure

2.3).

The corticospinal tract is essentially bundles of axons; the cell bodies from which they

stem reside in the cerebral cortex. These neurones are known as upper motor neurones

(UMN) as they descend from the cortex to synapse on neurones within the brainstem

or spinal cord [37]. Damage to UMN’s results in the upper motor neurone syndrome,

whereby the motor area for which the neurones are responsible exhibits paralysis or spas-

ticity.

Througout its course, asymmetry has been described in the corticospinal tract. In

particular, it has been observed that this asymmetry is a result of more corticospinal

fibers on the right side than those on the left [38]. Moreover, in literature there are dif-

ferent positions respect to the relation between asymmetry and handness. For example,

Herve et al [39] found the existance of an asymmetry that is hand dominance-dependant

in the precentral gyri, while other works, like the study of Westerhausen et al [40], showed

asymmetry of the corticospinal tract at the level of the internal capsule, but failed to

demonstrate a direct correlation to hand dominance.
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Figure 2.2: Illustration of the precentral gyrus.

Figure 2.3: Schematic illustration of the main component of the CST pathway throughout its

course from its cortical origin.
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Materials and methods

We dealt with DW-MRI data from 25 healthy controls, obtained, for each subject,

with two different number of diffusion-encoding gradient directions (NDGD). After pre-

processing of data, we studied an innovative method to obtain the corticospinal tract

using ROIs (Regions of Interest) drawn in a mean template. The novelty of the method

is also the use of masks drawn through grey matter parcellation. At a later stage, an

along-tract data analysis was performed.

3.1 Participants

Twentyfive healthy adult subjects (12 men and 13 women), with a mean age of 38.2

years and standard deviation of 16.3 years (range between 20-83 years), were recruited by

the Functional MRI Unit at the Department of Biomedical and Neuromotor Sciences of

the University of Bologna (Table 3.1). All acquisitions were performed between July 2009

and March 2012. None of the participants had any history of neurologic or psychiatric

disorders or brain injury. The protocol study on healthy volunteers was approved by the

local ethics committee, and informed consent was obtained from each subject.

29
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N Age(yrs) Sex

1 20 M

2 21 F

3 22 M

4 23 F

5 24 F

6 24 F

7 25 M

8 28 F

9 28 F

10 28 M

11 28 M

12 29 M

13 30 F

14 32 F

15 32 M

16 33 M

17 37 F

18 41 M

19 41 F

20 47 F

21 50 M

22 51 M

23 60 M

24 73 F

25 83 F

Table 3.1: Demographic data of healthy subjects recruited for the study
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3.2 Data acquisition

Brain DW-MRI scans were acquired using a MR medical scanner GE Medical Sys-

tem Signa HDx 15 at Functional MR Unit at S.Orsola Hospital in Bologna. Technical

specifications of scanner are the following:

• magnetic field strenght of 1.5 T;

• gradient strenght of 33 mT/m;

• slew rate of 276 µs;

• maximum rise time of 120 T/m s;

• head coil.

T1-weighted images were obtained with the Fast Spoiled Gradient Echo Sequence.

For each subject, DW data were collected with a single-shot echo-planar sequence, using

25 and 64 directions of diffusion gradient. Acquisitions with the two different NDGD

were collected for each subject in the same day. DTI acquisition parameters are listed

in Table 3.2

25 direction Tensor 64 direction Tensor

bvalue = 900 s/mm2 bvalue = 900 s/mm2

5 volumes with b = 0 s/mm2 7 volumes with b = 0 s/mm2

TR = 10000 ms TR=10000 ms

TE = 91.4 ms TE = 87 ms

FOV = 32 cm FOV = 32 cm

NV = 256 x 256 NV = 256 x 256

In-plane resolution: 1.25 x 1.25 mm In-plane resolution: 1.25 x 1.25 mm

Resolution along z-axis: 4 mm Resolution along z-axis: 3 mm

Acquisition time: 5 min 10 s Acquisition time: 11 min 40 s

Table 3.2: Acquisition parameters for the two different NDGD (Number of Diffusion

Gradient Direction).
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As reported in Table 3.2, the scan time for DTI with 64-NDGD is almost doubled

with respect to DTI with 25-NDGD. For this reason, the shorter scan time makes the

DTI with 25-NDGD more suitable for clinical acquisitions.

3.3 Data preprocessing

Data analysis was carried out using tools of the Brain Software Libray from the

Oxford Centre for fMRI (www.fmrib.ox.ac.uk/fsl). In particular, the FMRIB Software

Library (FSL) is a comprehensive library of analysis tools for functional, structural and

diffusion MRI brain imaging data [42][43].

In order to reduce motion and eddy current effects, data preprocessing was performed.

Almost all DTI images are susceptible to artifacts due to eddy currents. In facts,

when the diffusion gradient pulses are switched rapidly, the time-varying magnetic field

of the gradient results in current induction in the various conducting surfaces of the

scanner. These magnetic field gradients may persist after the primary gradients are

switched off and induce distorsions in diffusion weighted images. To reduce the effects

of these artifacts, we run, for each image, the Eddy Current Correction algorithm of the

FDT tool (FMRIB’s Diffusion Toolbox) of FSL for analysis of diffusion weighted images.

Eddy Current Correction corrects for these distortions, and for simple head motion, using

affine registration to a reference volume.

Subsequently, DTI images of all subjects were submitted to visual inspection. It was

used the Movie Mode of FSL, that allows to observe cycles through volumes in multi-

volume images and to rapidly notice artefacts due to motion or system malfunctions

during acquisitions. In general, images were characterized by an high quality, due to

the fact that acquisitions were performed on healthy subjects. Only seven DTI data

referring to six subjects (five with 64-NDGD and 1 at both 25- and 64-NGDG) showed a

motion artifacts. In order to improve the quality of these data, it was used an algorithm

developed at the MR functional Unit at Policlinico S. Orsola, DIBINEM Unibo, called

Uroboro.Uroboro removes slices that show a signal dropout with adjacent slices and

interpolates the remaining slices to restore the volume. Enhanchements we achieved were

often poorly visible to visual inspection since the original images were not too hardly

damaged. Anyhow, we consider that the process could be useful for data acquired on

patients due a more consistent quantity of artifacts; in this case, the enhanchement is
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clearly visible.

After correcting eddy current artifacts and applied Uroboro, we used for all subjects

DTIfit algorithm (within FDT tool) that fits a diffusion tensor model at each voxel. We

obtained diffusion maps of FA, MD, λ1, λ2, λ3 and RA. We also obtained color-coded

maps for FA values. In Figure 3.1 mentioned maps are shown for subject N=1.

At a later stage, all images were underwent Uroboro2 algorithm, implemented at MR

functional Unit. This algorithm produces a synthetic EPI image with a contrast created

by a non-linear combination of λ1, λ2, λ3 values and with a spatial resolution equal to the

DT-EPI images. Then, volumetric T1-weighted and DTI images, for each subject, were

registered to the synthetic EPI one. The first ones were registered using FLIRT, the FLS

tool for automated linear inter- and intra-modal brain image registration [44]. The tool

calculates the affine trasformation that registers the input volume labeled as source image

to the target image (or reference volume). The trasformation is saved as 4x4 affine matrix;

the default cost function used is the Correlation Ratio. DTI images were registered

to the synthetic EPI with a nonlinear transformation, using FNIRT, a tool similar to

FLIRT that works for nonlinear transformations. The matrix obtained was stored as

T1toDTI. Co-registration of 3D and DTI images is a non trivial purpose because of the

great dissimilarity between them: a direct registration often returns inadequate results.

Uroboro2 takes advantage of an intermediate step due to registration of both images to

the synthetic EPI that has the same contrast of the volumetric image and is similar to

the DTI one.

To make further data analysis shorter, images were cut out so that zero pixels of

background were removed. In particular, diffusion weighted images, all the diffusion

maps and the volumetric images were involved in the process. In this way, we reduced

computational cost of algorithms applied in following steps.

In order to prepare data for tractography, BedpostX algorithm was applied. Bed-

postX stands for Bayesian Estimation of Diffusion Parameters Obtained using Sampling

Techniques. The X stands for modelling crossing fibres, beacuse it allows to determine

the crossing fibres per voxel [31]. This algorithm builds up distributions on diffusion pa-

rameters at each voxel and create files necessary for probabilistic tractography. It runs

starting from the following data:

• Diffusion-weighted and no diffusion weighting volumes;
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Figure 3.1: Diffusion maps of subject N=1 at 25-NDGD. Top line, from left to right: λ1, λ2, λ3

maps. Bottom line, from left to right: FA, MD, RA maps.
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• 3D binary brain mask volume obtained deleting non-brain tissue from an image of

the whole head (BET algorithm);

• The list of gradient directions applied during diffusion weighted volumes and the

list of bvalues applied during each volume acquisition.

Afterwards, the algorithm creates all files for probabilistic tractography. We reports

some important outputs:

• mean th< i > samples and mean ph< i >samples that represent the mean of

distribution on theta and phi, where theta and phi together represent the principal

diffusion direction in spherical polar co-ordinates and < i > indicates the i-th fibre

detected;

• mean f< i >samples that is the mean of distribution on FA.

Finally, for each subject, images with 64 NDGD, obtained by Uroboro2, are regis-

tered to the corresponding with 25 NDGD, using an affine transformation with 6 DOF.

This was an important phase of pre-processing, since the data analysis was mainly per-

formed on images obtained with the smaller direction number of diffusion gradient and

successively brought back into the space of 64 NDGD. The matrix of this transformation

was stored as 64to25.mat and it was useful in further steps. The choise has been made

taking into consideration one of the aims of the project: understanding how reliable an

acquisition with 25 NDGD is.

3.4 Tractography of corticospinal tract

The aim of our tractography analysis was to generate measures on the CST (in each

subject, for the two different NDGD). In the first phase of our study, we obtained mea-

sures of FA, MD and of the connectivity distribution and in a later stage, we conducted

an analysis also on other parameters, see section 4.2). In order to compute these metrics,

the first step was to use a probabilistic tractography algorithm[45][46]. Therefore, we

could estimate at each voxel the probability distribution on the principal diffusion direc-

tion. The width in this distribution represents uncertainty in diffusion direction, which is

due to factors such as the potential co-existence of many fibre directions within a voxel,
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image noise and subject motion in the scanner. These local distributions were later used

to estimate the probability that a fiber pathway leaving voxels chosen as ”seed” (starting

points) will pass through any other voxel.

3.4.1 State of art

The practical delineation of the white matter tract, according to the anatomy of

corticospinal tract, is a very important step. It is necessary to identify specific landmarks

of the tract, or, in other words, anatomical reference points through which the bundle

certainly passes. It is a critic phase of the work, since it determines the successful

outcome of the results. The first step of the process is to manually draw regions of

interest (ROIs) and then propagate lines from the ROI pixels defined as masks. Two

main masks have to be drawn:

• a seed mask : set of voxels from which fiber pathways start;

• a target mask : set of voxels that represent the ending point of the tract.

Other kind of masks can be drawn, to delineate the tract (see section 3.4.2).

To date, the majority of studies on tractography of CST use a 2ROI-method with one

mask located in cortical zones [47][48][50]. In particular, Hasina et al. delineate the tract

under study with a deterministic algorithm using two manually drawn ROIs: a seed ROI

placed at the level of the cerebral peduncles and a target ROI (only one for two sides

of brain) placed at the level of the precentral gyrus. The team of Hattori et al. takes

advantage of the same idea but uses it in the opposite way: the CST is obtained with a

seed mask in the motor cortex and a target mask at the level of the cerebral peduncle.

Also the study conducted by Ciccarelli et al. refers to a seed mask composed by seven

bilater cortical zones manually outlined for each subject on T1 images (and to a target

mask in the posterior limb of the internal capsule). This has been done by using, as a

guide, regions of interest derived from Brodmann atlas via MRIcro1. In Figure 3.2 ROIs

1In the early 20th century German neurologist Dr. Korbinian Brodmann defined 52 regions of the

cerebral cortex of monkeys and also human that appeared to have different cellular morphology and

organization, today known as Brodmann Areas. Over the past century clinical findings and neurophys-

iological studies have confirmed that these microstructural differences correlate with cortical function

specialization.
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of mentioned studies are shown.

We considered the intuition of placing the seed ROI at the level of cortical zones

reliable and appropriate: a tract starting from the precentral gyrus is related to the

function of corticospinal tract that conducts impulses from the brain to the spinal cord.

In this way, the pathway of the signals is recreated. In our study, we prove the feasibility

of this intuition.

3.4.2 Tract drawing: PROBTRACKX algorithm

In order to delineate the CST, we used FDT (FMRIB’s toolbox). The probabilis-

tic algorithm implemented within FDT is PROBTRACKX (Probabilistic tracking with

crossing fibres) that allows to draw the specific white matter tract from user-specified

seed voxels. Briefly, it continuously samples from the distributions of voxel-wise princi-

pal diffusion directions, each time computing a streamline through these local samples

to generate a probabilistic streamline or a sample from the distribution on the loca-

tion of the true streamline. By taking many such samples FDT is able to build up the

histogram of the posterior distribution on the streamline location, or the connectivity

distribution[51]. The output is an image in the space of specified seed. All brain vox-

els will be characterized by a number, representing the connectivity value between that

voxel and the seed voxel (number of samples that pass through that voxel). Seed can be

specified either as a Single Voxel, a Single mask, or Multiple Masks. In the latter case,

the algorithm repeatedly samples tracts from every seed mask in a list, and retains only

those tracts that pass through at least one of the other seed masks. The output is the

sum of the connectivity distributions from each of the seed masks. PROBTRACKX also

allows to specify targets for the tractography:

• Waypoint masks : streamlines are only retained if they intersect the mask. If more

than one waypoint mask is set, PROBTRACKX will discard from the calculation

of the connectivity distribution tracts that do not pass through all these masks;

• Exclusion masks : pathways will be discarded if they enter the exclusion mask;

• Termination masks : pathways will be terminated as soon as they enter the ter-

mination mask. The difference between an exclusion and a termination mask is
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Figure 3.2: Seed masks (on the left) and target ROIs (on the right) used in different stud-

ies.(A)and (D) ROIs at the level of the cerebral peduncles; (B)-(C) Seeds at the level of the

precentral gyrus and of the motor cortex; (E) Division of the cerebral cortex in seven bilateral

cortical regions, outlined according to Brodmann atlas; (F) Region in the posterior limb of the

left internal capsule.

Images are taken from Hasina et al. (A-B)[48], Hattori et al. (C-D)[50], Ciccarelli et al.

(E-F)[47]
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that in the latter case, the tract is stopped at the target mask, but included in the

calculation of the connectivity distribution, while in the former case, the tract is

completely discarded;

• Classification targets : the algorithm will quantify connectivity values between a

seed mask and any number of user-specified target masks. This option is only

active when the seed mask is a single mask.

It is allowed to specify the number of individual pathways (or samples) that are drawn

through the probability distributions on principle fibre direction. We decided to mantain

the default number that is set on 5000 for every voxel.

PROBTRACKX returns, as output, fdt paths, a tridimensional image file containing

the output connectivity distribution to the seed mask, and waytotal, a text file containing

a single number corresponding to the total number of generated tracts that have not been

rejected by target masks criteria. The grafical User interface for FDT is shown in Figure

3.3.

3.4.3 ROIs definition and tracking the CST

The three main landmarks used to delineate the CST in our study are pons, poste-

rior limb of the internal capsule and precentral gyrus. We chose to use pons since we

wanted to investigate the bundle without considering the pyramidal decussation (under

the pons). Firstly, we decided to delineated CST only in four subjects, randomly chosen.

The aim of this initial analysis is to define the seed mask that assures the best results,

and to develop a procedure of tract construction. In order to apply PROBTRACKX

algorithm, we manually drew ROIs ,in each subject, on FA maps with 25-NDGD. We

obtained masks at the level of pons, posterior limb of the internal capsule, precentral

gyrus. Finally, we realized an exclusion mask, identical for all subject: pathways will

be discarded if they enter it. The exclusion mask guarantees, for example, that tract

delineated for the right side remains in its emisphere: the left side is excluded. To facili-

tate the detection of the landmarks we used color-coded FA maps in which red indicates

that the principle eigenvectors point left-right, green indicates anterior-posterior, and

blue indicates inferior-superior[52]. For the precentral gyrus, we used also a second, un-

conventional, modality to obtain the mask. We performed a grey matter segmentation

of 3D-T1 images, using Freesurfer; it is an open source software suitable for processing
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Figure 3.3: Grafical User Interface for FDT. The user can choose between Single Voxel, Single

Mask or Multilple Mask and then he has to specify target masks. Some options are showed

(at the bottom right). The curvature threshold indicates how sharply pathways can turn in

order to exclude pathways. This number is the cosine of the minimum angle between two steps.

Loopcheck is picked as we wanted to terminate pathways that loop back on themselves.



3.4. TRACTOGRAPHY OF CORTICOSPINAL TRACT 41

Cortical mask

Manually drawn Freesurfer

right left right left

Seed in pons mask 11652 6152 11709 7014

Seed in cortical mask 19348 24380 31295 50501

Table 3.3: Waytotal values for the specific healthy subject (N=1).

and analyzing brain data [53]. After obtaining the parcellation, masks of the precentral

gyrus were registered to synthetic EPI created with Uroboro2 (see Section 3.3) using the

stored matrix T1toDTI. Masks were then subjected to the removing of zero pixels of the

background. All the masks are shown in Figure 3.4.

The PROBTRACKX algorithm was applied combining setting options in various

ways:

• Pons ROI as seed mask and manually drawn ROIs of the internal capsule and

precentral gyrus as waypoint masks (see A in Figure 3.5);

• Manually drawn cortical mask as seed mask and ROIs located at the level of pons

and internal capsule as waypoint masks (see B in Figure 3.5);

• Pons ROI as seed mask and ROIs of internal capsule and precentral gyrus (this

latter obtained with Freesurfer) as waypoint masks (see C in Figure 3.5);

• Cortical mask obtained with Freesurfer segmentation as seed mask and ROIs lo-

cated at the level of pons and internal capsule as waypoint masks (see D in Figure

3.5).

It was always used also the exclusion mask. We conducted a visual inspection of the

obtained tracts and a comparison of the waytotal values. Results related to an healthy

control (N=1) are reported in Table 3.3 and Figure 3.5.

Comparing A with C and B with D in Figure 3.5 it is evident, also at a visual in-

spection, that using a Freesurfer mask allows to obtain a tract with a greater volume:

this result is emphasized in the entire sagittal view and focusing on the precentral gyrus

in coronal views. The Freesurfer segmentation guarantees an accurate segmentation and
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Figure 3.4: Axial views of the ROIs. Mask at the level of the pons (A), posterior limb of

internal capsule (B), manually drawn precentral gyrus (C) and obtained with Freesurfer(D)

are reported. Sagittal, coronal and axial views of the exclusion mask are shown in (E).
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A. Seed mask: pons - one waypoint: manually drawn cortical mask

B. Seed mask: the manually drawn cortical mask

C. Seed mask: pons - one waypoint: Freesurfer cortical mask

D. Seed mask: Freesurfer cortical mask.

Figure 3.5: Sagittal, coronal and axial views of tracts obtained with various setting

options of PROBTRACKX for one healthy subject (N=1).
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waytotal values confirmed considerations of visual inspections, showing an higher num-

ber of detected fibers, in areas anatomically corresponding to the corticospinal boundle,

using Freesurfer mask ( in the left side of brain the number is doubled). Furthermore, in

order to define the best starting point, we compared waypoint values obtained with seed

located at the level of the precentral gyrus with the other at the level of pons. The best

results reached using the first option are validated by visual inspection; indeed, compar-

ing C and D, it can be noted that, in the latter case, more white matter is detected at

the level of the precentral gyrus (shown in axial view of D). This is probabily due to the

fact that we used masks with different size: the smaller the seed ROI is, the lower the

number of samples drawn at the beginning will be (and the lower the resulting waytotal

will be).

Finally, we decided to delineate CST for all subjects using a Freesurfer cortical mask

as seed mask and ROIs located at the level of posterior limb of the internal capsule and of

the pons as waypoint masks. Setting the starting point in the cortical areas also reflects

the physiological direction of the white matter fibers. Moreover Freesurfer allows an

automatic subject-specific segmentation and this procedure is more reliable with respect

to a manually drawn mask. In addition, it is an original element of this work since to

our knowledge in literature there are not any other studies that use Freesurfer cortical

parcellation to reconstruct CST with a probabilistic tractography algorithm.

FA template

In the previous stage of the work we delineated tracts in only four subjects. In order

to determine a reproducible method also for the entire group of subjects, it is essential to

develop an automatic process of ROIs definition. To do this, we created an FA template,

a standardized space representative of FA maps of all subjects, on which we drew ROIs

of interest. For this purpose, we used part of the TBSS algorithm (Tract-Based Spatial

Statistics,[55]), developed to carry out voxelwise statistical analysis of the FA data.

Briefly, TBSS projects all subjects’ FA data onto a mean common space used to create

a mean FA skeleton, which represents the centres of all tracts common to the group,

in order to perform voxelwise cross-subject statistics. We were interested in creation of

mean FA image, therefore we used only the first part of this algorithm. TBSS runs a

nonlinear registration with FNIRT tool for nonlinear registration), aligning FA images
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of healthy controls with 25 NDGD to a 1x1x1 mm standard space. To do this, it is

necessary to individuate the target image for the registration, that can either be a pre-

defined target2, or can be chosen to be the most representative subject in the study.

We decided to use the latter option: every FA image is aligned to every other one,

the most representative one is identified and used as the target image. TBSS is able

to choose this image since it takes each FA image in turn and calculates the average

number of nonlinear transformations necessary to align all other images to it; the one

that has the smallest number of average warping is used as target. In our study, the

subject corresponding to N=14 coincides with the target image. This target image is

then aligned into MNI152 standard space using an affine trasformation, and every image

is transformed into 1x1x1mm atlas space combining the nonlinear trasformation to the

target FA image with the affine transform from the target to MNI152 space[56]. In this

way, we obtained the trasformation of subject’s FA image into the MNI152 space. At this

point, TBSS created the mean of all standard-space version of each subject’s FA image

acquired with 25 direction of diffusion gradient. In Figure 3.6 the mean FA template is

reported.

Figure 3.6: Mean FA template.

ROIs of the pons, posterior limb of the internal capsule and exclusion were drawn

on the mean FA template, in collaboration with neurologists working at DIBINEM (see

2The pre-defined target image recommended by FSL (known as FMRIB58 FA) is a high-resolution

average of 58 well-aligned good quality FA images from Healthy male and female subjects aged between

20-50 (www.http://fsl.fmrib.ox.ac.uk/fsl/fsl4.0/tbss/FMRIB58 FA.html).
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Figure 3.7). Using the inverse of the trasformation obtained with TBSS, we transferred

back ROIs to the original FA maps at 25 directions. As the Freesurfer cortical parcellation

had been previously registered to the space of 25 NDGD, we could delineate tract for

the two sides of brain of each subject with FDT algorithm. In order to reconstruct CST

also for images obtained with 64 NDGD, we applied the inverse transformation of linear

registration performed in the earlier stage (inverse matrix of 64to25.mat) to all ROIs and

to Freesurfer parcellation. In this way, we determined a process partially independent

from the operator and less susceptible to errors. It is important to specify, as highlighted

by Thottakara et al. [57], that nearest neighbor interpolation has been used for every

spatial trasformation, in order to mantain ROIs intact.

3.5 Data analysis

3.5.1 State of art

To date, the large majority of the tractography analysis is conducted with a simple

tract-averaged methodology. Therefore, the current approach is to average diffusion

metrics for the entire fiber tracts, with a single mean and to estimate variance for each

subject. As emphasized by Colby et al. [58], this method is not appropriate to detect

the local changes of the diffusion properties along the tract because it ignores the rich

anatomical variation. This can be understood observing the Figure 3.8, that explains

how FA varies across the white matter. It assumes very low values (below 0.2) at the

transition to the gray matter and very high values (above 0.8) in coherently dense white

matter areas. Generally, using tract-average analysis, mean FA is estimated to assume

values between 0.4 and 0.6. It is evident that potentially important information are lost.

We also have to considerate that great biological variation of the brain and complex

fiber geometries, like crossing fibers, can locally alterate the FA measures. Moreover, a

great detailed whithin-tract study can facilitate the comparison of results with similar

voxel-based studies, like those conducted with TBSS. For all these reasons, methods of

parameterization have been introducted to estimate diffusion properties within-subject

and compare with a high precision the results between different groups. Few interesting

studies focus on parameterization of the tract, subdividing it into segments and analizing

each of these parts individually [59] [60] [61]. Lin et al., for example, realizes an along-

tract analysis of pyramidal tract (PYT) of relapsing neuromyelitics optica (RNMO)
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Figure 3.7: Sagittal, coronal and axial views of ROIs drawn on FA template. From the top,

pons mask, internal capsule mask and exclusion mask are reported.
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Figure 3.8: FA variations through the white matter. Top panel shows FA values at the

transition to gray matter near the cortex while bottom panel focuses on values in coherent

areas like the corpus callosum. Image is taken from Colby et al. [58] .

patients without brain lesions. They divides the tract in a certain number of segments,

to compare diffusion metrics on each segment across subjects; however the study reported

several limitations due to the crossing fibers and poor resolution of echo planar images.

On the other hand, the study of Oh et al. suggests a statical analysis of inter- and

intra-subject variability along the tract, obtained with a deterministic algorithm and

previously divided in 100 equal segments. In our study, we used a similar procedure

implemented on CST delineated with a probabilistic tractography.
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3.5.2 Parameterization

Once corticospinal tracts were extracted, for each subject with 25 and 64 directions

of diffusion gradient, we performed measurements on FA, MD and connectivity values.

An overall aim of this work was to create a reliable standard process of tract-analysis, in

order to obtain regional information along the lenght of the tract and conduct a within

and between subjects analysis. This will be a important point for future valuations on

patients, since the process will allow along-tract comparisons.

The first step was the thresholding of the obtained tract: we included in the further

analyses only those voxels that are crossed by an estabilished percentage of the total

samples sent out from the seed mask. It is important to be sure of thresholding out the

same proportion of voxels in all subjects. For this reason, the cropped tract of the right

side was normalized by dividing values of connectivity by the total number of samples

sent out (waytotal number) from the right side seed mask; the same process was applied

to the left side. Normalization is useful for intersubject comparisons because it helps to

deal with problems that arise when tracking performs very differently across different

brains, sessions, or hemispheres [62]. We chose a threshold value of 5 ∗ 10−5 on images

acquired with 25-NDGD; this threshold canceled few voxel, since we observed that a

higher value counted out too many voxels at the risk of losing important information.

On the other hand, images obtained with 64 NDGD were thresholded with a value of

2.5∗10−4, higher with respect to the previous one because with a 64 directions the prob-

abilistic algorithm intercepted other white matter bundles.

A visual inspection of reconstructed tracts, in different subjects, showed that the CST

did not stop at the level of pons but wrongly flowed in cerebellum. This performance is

likely due to the fact that other white matter, that is not part of corticospinal tract, is

detected in cerebellum. Therefore, we decided to consider only the section of the bun-

dle we were interested in: from the precentral gyrus to the pons. For this reason, we

cut the excess, after having identified, for each subject, pons coordinates. To assure a

perfect correspondence between reconstructed tract and underlying space, also FA and

MD maps were cut with the same method. Figures 3.9 and 3.10 show original tract, the

thresholded one and the final cut referred to subject N=3.

For both sides of brain, each tract in each subject was divided into 100 segments of
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Figure 3.9: CST delineated in subject N=3, with 25 directions of diffusion gradient. From the

top: original tract, thresholded tract, cropped tract.
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Figure 3.10: CST delineated in subject N=3, with 64 directions of diffusion gradient. From

the top: original tract, thresholded tract, cropped tract.
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equal length ( percentiles) from the pons to the precentral gyrus. To do this, we created

a synthetic empty image characterized by the same dimension along x and y axis with

respect to the original fdt paths image while the dimension along z axis was equal to

100. The in-plane resolution remained unvaried, but the resolution along z is calculated

considering the different resolutions for the two NDGD: we calculated it as Ncut∗r
100

, where

Ncut is the number of slices between pons and precentral gyrus in the original image and

r is resolution along z axis (4 mm for 25-NDGD and 3 mm for 64-NDGD, see Table 3.2).

This image was used to resemple images in percentiles: we performed an affine linear

registration of cropped FA, MD and fdt paths to the synthetic image, using an identity

matrix of transformation. We referred to these new maps as FA synt, MD synt, fdt synt.

The tract on FA map at different percentiles is shown in Figure 3.11.

Figure 3.11: CST delineated with 64-NDGD is shown at different percentiles in subject N=3.

At this point, we used the result of registration of fdt paths to synthetic image, to

mask FA synt and MD synt : in this way we had information regarding FA and MD

values along the CST. We specifically divided each tract in 100 segments. Finally, we

proceeded to calculate the median value of FA, MD and connectivity for each percentile;

we chose median value instead of mean value, since we observed randomly that the dis-

tribution of FA, MD and connectivity distribution values along the segment had a non

Gaussian distribution .

In a following step, after the previous statistical analysis, we considered necessary to

perform the same analysis done for FA, MD and connectivity also for λ1, λ2, λ3, RA,

mean f1 andmean f2 indices, in order to deeply understand and validate some significant

results.
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The entire procedure was implemented in a bash script that automatically runs all

the steps of registration and parameterization for the two acquisitions at different NDGD

for each subject.

3.5.3 Statistical analysis

Intrasubject and intersubject variability were compared using the method proposed

by Oh et al. [61]. We calculated two sets of variance: intrasubject (across-location) vari-

ances and intersubject (across-subject) variances. To evaluate intrasubject variability,

we considered mean and variance (”intra-subject variance”) of each parameter of interest

for each subject:

F̄i =
100
∑

s=1

Fi(s)/100 (3.1)

var (Fi) =
100
∑

s=1

[

Fi(s)− Fi

]

2
/

100 (3.2)

where s specifies the location in the 100 bin-parameterized tract and Fi(s) indicates the

corresponding parameter for the ith subject.

To evaluate instead intersubject variability, we considered mean and variance (”inter-

subject variance”) of each parameter for each location:

F̄ (s) =
Ns
∑

s=1

Fi(s)/Ns (3.3)

var(F (s)) =
Ns
∑

s=1

[

Fi(s)− F̄ (s)
]

2
/

Ns (3.4)

where Ns is the number of subjects examined.

All statistical analyses were conducted with SPSS (Statistical Package for the Social

Sciences, version 21) and MATLAB (version 7.11).

First, to test if there were any significant differences between intrasubject and inter-

subject variances we performed the Mann-Whitney U-test fo FA, MD and connectivity.

Furthermore, we considerated also cropped non-normalized and non-thresholded values
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of connectivity distribution to understand the effect of the normalization using the way-

total number. At this point, a correction to reduce the number of false positives is

necessary. We chose to apply the Bonferroni correction, where the significance level is

divided by the product of factors considered in the analysis. Dividing p-value by four (2

sides of brain x 2 NDGD) we obtained a new significance level value of 0.0125.

We employed two-ways repeated measures analysis of variance (RMANOVA), to deter-

mine side and NDGD effect on FA, MD,connectivity, cropped non-normalized and non-

thresholded connectivity and waytotal. We previously performed the normality test,

namely Kolmogorov-Smirnov test, to figure out if metrics of interest were normally dis-

tributed or not.

Since we noticed some significative differences (see Section 4.2.2), we performed

paired t-test along the parameterized tracts for each subject, to individuate region-

specific differences, focusing the study on side and NDGD differences. For FA synt mask,

MD synt mask and fdt synt metrics we analized the following effects:

- side effect (right and left) on 25-NDGD;

- side effect (right and left) on 64-NDGD;

- NDGD effect (25- and 64-) on right side;

- NDGD effect (25- and 63-) on left side.

For each metric and each percentile of the coupled options, we performed a paired

t-tests (1200 t-test in total). The False Discovery Rate method for multiple comparison

correction was applied, less stringent than Bonferroni correction.

In order to understand some significant differences between specific percentiles, we per-

formed paired t-test also on λ1, λ2, λ3, RA and mean f1 and mean f2 values. Since

we wanted to estimate the volume of the detected second fiber (if present), we added

to the process the measurement of the volume of mean f1 and mean f2 for each per-

centile. Finally, we chose to investigate the spatial correlation between tracts with 25-

and 64-NDGD. We considered the coordinates of the Centre of Gravity (COG) for the

binarized tract . COG is an average of the coordinates (a concept that recalls the centre

of gravity for an object with distributed mass). We studied separately x and y coordi-

nates. To obtain further information about spatial distribution of the tract, we created

an image of the sum of tract volumes of all subject: to do this we binarized each tract,
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we registered tracts to mean FA template and superimposed every tract on it. The

intensity (in a range between 0 and 25, which is the number of subjects) of the global

tract obtained revealed quantitative information about spatial distribution of the tract

between subjects. Moreover, a 2D Pearson Correlation was performed for each subject

considering binarized fdt synt image with both NDGD for right side and then for left

side (we performed binarization assigning value of 1 to the voxel if the tract is present,

0 otherwise).

All t-test (with the FDR corrections) and the Pearson Correlation were implemented

in a MATLAB environment using ttest.m, fdr bh.m and corr2.m functions.
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Chapter 4

Results

4.1 CST reconstruction

We reconstructed the corticospinal tract in both sides of brain for all subjects, with

25-NDGD and 64-NDGD data. The obtained CSTs are shown in Figures 4.1, 4.2, 4.3.

We report a sample of 3 subjects (N=2, N=3, N=4 of Table in Section 3.1), randomly

chosen. Visual inspection revealed evident differences between tracts obtained with the

two NDGDs.

4.2 Statistical analysis

In the following Figures distributions of median value of FA, MD and connectivity, for

each side of brain and for each NDGD, are shown. At visual inspection, it can be noted

that FA median values vary along the tract, but they do not change in a considerable

way between different subjects; a slightly higher variability along tract can be noted

with 64-NDGD with respect to distribution with 25-NDGD (see Figures 4.4 and 4.5).

MD values are constant until the 85th percentile, and over this point values show a

great variability along the final part of the tract; the same behaviour is observed with

both NDGDs (see Figures 4.6 and 4.7). On the other hand, connectivity distribution is

characterized by a great variability along the tract and across different subjects; with

64-NDGD it is evident a lower variability in the second half of the tract (see Figures 4.8

and 4.9).
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Figure 4.1: CST in subject N=2, with 25-NDGD (a) and 64-NDGD (b).
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Figure 4.2: CST in subject N=3, with 25-NDGD (a) and 64-NDGD (b).
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Figure 4.3: CST in subject N=4, with 25-NDGD (a) and 64-NDGD (b).
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Figure 4.4: Plot of median value of FA with 25-NDGD for each percentile, in each subject

(blu lines). Red line represents average values between subjects along the tract.
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Figure 4.5: Plot of median value of FA with 64-NDGD for each percentile, in each subject

(blu lines). Red line represents average values between subjects along the tract.
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Figure 4.7: Plot of median value of MD with 64-NDGD for each percentile, in each subject

(blu lines). Red line represents average values between subjects along the tract.
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Figure 4.6: Plot of median value of MD with 25-NDGD for each percentile, in each subject

(blu lines). Red line represents average values between subjects along the tract.
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Figure 4.8: Plot of median value of connectivity with 25-NDGD for each percentile, in each

subject (blu lines). Red line represents average values between subjects along the tract.
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Figure 4.9: Plot of median value of connectivity with 64-NDGD for each percentile, in each

subject (blu lines). Red line represents average values between subjects along the tract.
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4.2.1 Intrasubject and intersubject variability

We firstly conducted analyses on FA, MD and connectivity values, considering intra-

and inter-subject variability (Equations (3.2) and (3.4) in Section3.5.3). In order to es-

tabilish whether or not intrasubject variances were different from intersubject variances,

we performed a Mann-Whitney test. In Table 4.1 side and NDGD significant main effects

on metrics are reported. The Bonferroni method was used to correct for multiple com-

parisons (2 sides x 2 NDGD = 4 multiple comparisons); the new statistical significance

level (0.0125) is considered as p
m
, where m is number of tested hypotheses considered

and p-value is fixed at 0.05.

Mann-Whitney statistics

Indices P - values Intra-subject Inter-subject

FA

25-NDGD
right < 0.001 107.12 51.97

left < 0.001 107.00 52.00

64-NDGD
right < 0.001 109.36 51.41

left < 0.001 109.12 51.47

MD

25-NDGD
right < 0.001 101.52 53.37

left < 0.001 100.24 53.69

64-NDGD
right < 0.001 102.16 53.21

left < 0.001 100.88 53.53

connectivity

25-NDGD
right 0.28 70.04 61.24

left 0.27 70.16 61.21

64-NDGD
right 0.02 77.96 59.26

left 0.02 77.36 59.41

Table 4.1: Comparison between intra-subject variability and inter-subject variability of

FA, MD and connectivity values. Mean ranks are reported. p < 0.0125, after Bonferroni

correction. Significant results are reported in bold.

Intrasubject variances, for FA and MD values, risulted significantly higher than inter-

subject ones. On the other hand, for connectivity values it was not noticed any significant
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difference. To be sure that the latter result is not linked to the normalization, we did

the same analysis on connectivity distribution before dividing by waytotal number and

results are reported in Table 4.2. Again, the variances showed no differences.

Mann-Whitney statistics

Indices P - values Intra-subject Inter-subject

Connectivity

25-NDGD
right 0.19 71.36 60.91

left 0.69 65.6 62.35

64-NDGD
right 0.58 66.56 62.11

left 0.56 66.76 62.06

Table 4.2: Comparison between intra-subject variability and inter-subject variability of

connectivity before normalization.

4.2.2 Side and number of diffusion gradient directions effects

In this part of the analysis, we considered FA, MD, connectivity distribution and

waytotal. First we performed the non-parametric normality test of Kolmogorov- Smirnov

to verify normality. FA, MD, non-normalized connectivity values and waytotal satisfied

the null hypothesis of normality; connectivity values showed a non Gaussian distribution,

but considering that few values drift from Gaussian distribution (data not shown) and

the robustness of ANOVA under 20 degree of freedom, we evaluated all parameters

performing a RMANOVA test. Results of RMANOVA test for side and NDGD, are

riported in Tables 4.3, 4.4, 4.5, 4.6 and 4.7).
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A

FA F P

Effects
Side 4.95 0.03

NDGD 19.46 < 0.001

B

Side Mean Standard deviation

NDGD

25
Right 0.43 0.04

Left 0.43 0.03

64
Right 0.42 0.04

Left 0.39 0.04

Table 4.3: A: side and NDGD significant main effects on FA values (significant results

are reported in bold). B: descriptive statistics of FA.

We analized also non-normalized connectivity values (Table 4.6), to study the effect

of normalization. We obtained significant differences for:

- FA values, considering different NDGDs and different sides of the brain;

- MD values, considering different sides;

- Non-normalized connectivity values for different NDGDs;

- Waytotal number for different NDGDs.

We observed no significant results for connectivity distribution, either for side or for

NDGD.
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A

MD F P

Effects
Side 8.15 0.009

NDGD 1.18 0.288

B

Side Mean ( mm2/ s ) Standard deviation ( mm2/ s )

NDGD

25
Right 7.68 10−3 4 10−5

Left 7.96 10−3 3 10−5

64
Right 7.67 10−3 5 10−5

Left 7.82 10−3 4 10−5

Table 4.4: A: side and NDGD significant main effects on MD values (significant results

are reported in bold). B: descriptive statistics of MD.

A

Connectivity F P

Effects
Side 0.97 0.33

NDGD 1.45 0.24

B

Side Mean Standard deviation

NDGD

25
Right 0.005 0.003

Left 0.005 0.003

64
Right 0.005 0.003

Left 0.004 0.002

Table 4.5: A: side and NDGD significant main effects on connectivity values. B: descrip-

tive statistics of connectivity distribution.
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A

Non-normalized connectivity F P

Effects
Side 0.16 0.69

NDGD 50.05 < 0.001

B

Side Mean Standard deviation

NDGD

25
Right 36.7 25.5

Left 45.3 27.2

64
Right 13.4 5.8

Left 9.6 3.1

Table 4.6: A: side and NDGD significant main effects on non-normalized connectivity

values (significant results are reported in bold). B: descriptive statistics of connectivity

distribution.

A

Waytotal F P

Effects
Side 0.60 0.44

NDGD 49.46 < 0.001

B

Side Mean Standard deviation

NDGD

25
Right 21484 21834

Left 23420 19751

64
Right 98001 71799

Left 89324 60429

Table 4.7: A: side and NDGD significant main effects on waytotal number (significant

results in bold). B: descriptive statistics of waytotal.
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4.2.3 Along-tract analysis

To determine region-specific differences between sides and NDGD, we performed

paired t-test considering coupled parameters as explained prevoiusly in 4.2. First, we ex-

amined FA, MD and connectivity values of CST. Results are shown in Figures 4.10,4.11

and 4.12. In each Figure, the first and the second panel from the top illustrate metric

of interest distributions and differences between two NDGD ( black line represents 25-,

and grey line represents 64-) at fixed side (respectively right and left). Coloured seg-

ments represent significant differences at p < 0.05 correcting using FDR: red line shows

that values with 25-NDGD are higher than those with 64- and green line indicates the

opposite. The last two panels illustrate differences between two sides (black line is the

right side and grey line is the left side) at fixed NDGD (respectively 25 and 64). Red

line shows that values in the right side are higher than in the left side and green line

indicates the opposite. In our analysis, we considered not relevant differences concerning

a number of consecutive percentiles lower than 3, since in that case we were under the

spatial resolution of the original DWI data. Below, we list significant results:

- Considering FA metric at 25-NDGD, it was observed an increase in the right side

from the 7th to 18th percentile, between the pons and the cerebral peduncle. Con-

sidering the same metric at 64-NDGD, the right side showed an increase from the

1st to the 7th percentile, at the level of the pons (Figure 4.10);

- Considering FA values for the right side, it was observed an increase at 25-NDGD

values between 42nd and 51st segment, at the level of the posterior limb of the

internal capsule. Fixing left side, FA values with 25 NDGD showed an increase

along the central tract of the CST, from the 30th to the 65th percentile (Figure

4.10);

- Considering MD metric, it was observed in both sides at 25-NDGD an increase

from 68th to 82st segment, in cortical sulci; on the other hand, no differences were

observed between the two sides of brain at 25-and 64-NDGD (Figure 4.11);

- Cosidering the connectivity distribution, at the level of premotor cortex, it was

observed that, in both sides, its values were higher at 64-NDGD; instead, no dif-

ferences were observed between right and left side at fixed NDGD. (Figure 4.12).
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To understand and explain significant results observed for FA, MD and connectivity,

we performed the same analysis on λ1, λ2, λ3 and RA indices. Results are shown in

Figures 4.13, 4.14, 4.15, 4.16.

4.2.4 Spatial distribution of the tract

As outlined in section 4.2, we evaluated the 2D Pearson correlation coefficient of

binarised tract, for both NDGD in each side of brain. As shown in Figure 4.17, we

observed a global high level of correlation between tracts obtained with different NDGD (r

between 0.5 and 0.7). Furthermore, the analysis revealed a drop of the spatial correlation

in corrispondence of posterior limb of the internal capsule (from about 30th to 50th

percentile).

In order to investigate the spatial distribution of tracts volume, we superimposed

each binarised tract to each other. We obtained, in this way, the images in Figure 4.18:

intensity of the total tract varies from 1 to 25 (total number of subjects). Color legend

indicates red for minimum value of intensity and yellow for maximum value.

Moreover, we performed a paired t-test for each percentile also for total volume and

COG values, for x and y coordinates. Results are shown in Figures 4.19, 4.20 and 4.21.

The color legend has been illustrated in Section 4.2.3.

4.2.5 Crossing fibers analysis

Quantitative measures of the first and second fibers (where present) were conducted

performing a paired t-test on mean f1 and mean f2 median values and mean f1 and

mean f2 volume values (Figures 4.22 and 4.23): in this way we estimated how many

voxels (and in which specific segment along the tract) were crossed by the second fiber

. In particular, it can be noticed that for mean f2 volume, measures obtained with 64-

NDGD are always characterized by higher values along the entire tract. Moreover, it

was observed that for both sides of brain first and second fibers values are higher with

64-NDGD along the entire tract (Figures 4.24 and 4.25).



74 CHAPTER 4. RESULTS

Figure 4.10: Paired t-test of FA. From the top, the first and the second panel illustrate FA

distributions and differences between two NDGD (respectively 25- and 64-) at fixed side (right

and left). The third and fourth panel show differences between sides of brain (right and left)

at fixed NDGD (25- and 64-).
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Figure 4.11: Paired t-test of MD values. From the top, the first and the second panel illustrate

FA distributions and differences between two NDGD (respectively 25- and 64-) at fixed side

(right and left). The third and fourth panel show differences between sides of brain (right and

left) at fixed NDGD (25- and 64-).
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Figure 4.12: Paired t-test of connectivity (fdt paths images) distribution values. From the

top, the first and the second panel illustrate FA distributions and differences between two

NDGD (respectively 25- and 64-) at fixed side (right and left). The third and fourth panel

show differences between sides of brain (right and left) at fixed NDGD (25- and 64-).
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Figure 4.13: Paired t-test of λ1 values. From the top, the first and the second panel illustrate

FA distributions and differences between two NDGD (respectively 25- and 64-) at fixed side

(right and left). The third and fourth panel show differences between sides of brain (right and

left) at fixed NDGD (25- and 64-).
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Figure 4.14: Paired t-test of λ2 values. From the top, the first and the second panel illustrate

FA distributions and differences between two NDGD (respectively 25- and 64-) at fixed side

(right and left). The third and fourth panel show differences between sides of brain (right and

left) at fixed NDGD (25- and 64-).
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Figure 4.15: Paired t-test of λ3 values. From the top, the first and the second panel illustrate

FA distributions and differences between two NDGD (respectively 25- and 64-) at fixed side

(right and left). The third and fourth panel show differences between sides of brain (right and

left) at fixed NDGD (25- and 64-).
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Figure 4.16: Paired t-test of RA values. From the top, the first and the second panel illustrate

FA distributions and differences between two NDGD (respectively 25- and 64-) at fixed side

(right and left). The third and fourth panel show differences between sides of brain (right and

left) at fixed NDGD (25- and 64-).
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Figure 4.17: Distribution along the tract of the Pearson correlation coefficient for right side

(superior panel) and left side.
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Figure 4.18: Sum of binarised tracts of all subjects at 25-NDGD (on the top) and 64-NDGD

(on the bottom).
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Figure 4.19: Paired t-test on total volume values. From the top, the first and the second

panel illustrate volume distributions and differences between two NDGD (respectively 25- and

64-) at fixed side (right and left). The third and fourth panel show differences between sides

of brain (right and left) at fixed NDGD (25- and 64-).
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Figure 4.20: Paired t-test on COGx values. The first and the second panel illustrate COGx

distributions and differences between two NDGD (respectively 25- and 64-) at fixed side (right

and left).

Figure 4.21: Paired t-test on COGy values. The first and the second panel illustrate COGy

distributions and differences between two NDGD (respectively 25- and 64-) at fixed side (right

and left).
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Figure 4.22: Paired t-test of mean f1 values. From the top, the first and the second panel

illustrate FA distributions and differences between two NDGD (respectively 25- and 64-) at

fixed side (right and left). The third and fourth panel show differences between sides of brain

(right and left) at fixed NDGD (25- and 64-).
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Figure 4.23: Paired t-test of mean f2 values. From the top, the first and the second panel

illustrate FA distributions and differences between two NDGD (respectively 25- and 64-) at

fixed side (right and left). The third and fourth panel show differences between sides of brain

(right and left) at fixed NDGD (25- and 64-).
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Figure 4.24: Paired t-test on mean f1 volumes. From the top, the first and the second panel

illustrate mean f1 volumes distributions and differences between two NDGD (respectively 25-

and 64-) at fixed side (right and left). The third and fourth panel show differences between

sides of brain (right and left) at fixed NDGD (25- and 64-).
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Figure 4.25: Paired t-test on mean f2 volume. From the top, the first and the second panel

illustrate mean f2 volume distributions and differences between two NDGD (respectively 25-

and 64-) at fixed side (right and left). The third and fourth panel show differences between

sides of brain (right and left) at fixed NDGD (25- and 64-).
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Discussion

In the present study we investigated the distributions of various MR imaging parame-

ters within the CSTs reconstructed from DWI data with probabilistic tractography, with

25 and 64 directions of diffusion gradient, obtained from healthy subjects. Tracts are

delineated applying a probabilistic tractography algorithm [31], which tracked the CST

from the primary motor cortex in the precentral gyrus to the pons. Other recent studies

have already drawn the CST using similar ROIs ([47], [48] and [50]), but the novelty

of our work is the development of a method that employed a subject-specific automatic

segmentation mask and ROIs drawn on a FA template to performed an along-tract anal-

ysis on tracts delineated using probabilistic tractography. The automatic procedure for

drawing of the ROIs assures an almost total independence from user’s subjectivity ap-

proach and it is also useful for studies with an higher number of subjects than our and

for studies on patients. Visual evaluation of the reconstructed tracts showed that the

obtained CSTs passed through the anatomical landmark points and this confirmed the

reliability of the method.

Previous studies investigated tract reconstruction variability using quantitative analyses

along the tract with different approaches for parameterization [61] [60] [59]. In order

to improve regional specificity of the spatial evaluation of the diffusion properties, we

performed a division of each obtained CST in a 100 segments, whose size was the same

in every subject. The results of the analysis on FA values, obtained for each percentile in

each subject, confirmed the strong benefit to perform an along-tract analysis, as under-

lined by the study of Colby et al. [58]: FA plot showed a consistent variability through

the entire tract and across different subjects (see Figures 4.4 and 4.5 in Section 4.2). This

89
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highlights the evidence that conducting a tract-average study could hide local changes

of the parameter. In addition, supporting the last remark, it was found that the intra-

subject variability was significatively higher than inter-subject one for both FA and MD

values.

It can be observed, from the 90th to 100th percentile, a sudden increase in the plot of FA

that is due to fitting errors on the maps, which is frequent at the edge of the brain (see

Figure 3.11 in Section 3.5.2). Also MD measurement cannot be ascribed to the brain

parenchyma beyond the 90th percentile (see Figures 4.6 and 4.7 in Section 4.2). The

presence of rising indicates percentiles in which liquor is detected, since the meninxs are

present, while the consecutive decrease is due to the evidence that, in the last three or

four percentiles we usually did not have brain data.

Connectivity distribution showed a great variability in the same way along the tract as

well as across subjects (see Figure 4.8 and 4.9 in Section 4.2): in this case, an along-

tract analysis would not probabily give any additional useful information respect to an

average tract analysis. Effectively, no significant differences between intra- and inter-

variability were found. It was interesting to note an increase of connectivity values in

correspondence to the location of the posterior limb of the internal capsule; we suppose

that maybe this can be explained considering that samples, after leaving the wide area

of the motor cortex, pass in the small area of internal capsule: they are all condensed in

few voxels and this leads the connectivity values to increase. The statistical analysis on

connectivity have been performed on the normalized and thresholded fdt paths images.

The effect of this procedure has been evaluated considering the results of RMANOVA:

while connectivity values did not seem to be affected by choice of side or NDGD, non-

normalized connectivity and waypoint values showed significant differences depending on

the two NDGDs. Thus, it is evident that dividing connectivity values by the waytotal

number is essential to conduct a good comparison between data obtained at different

NDGDs.

In order to investigate specific regional differences along the tract, we compared each

respective percentile between subjects, for different sides and at different NDGDs. In

particular, FA showed a significant increase comparing the right with the left side of

CST, in an area between the pons and the cerebral peduncle at 25-NDGD, from the

7th to 18th percentile, and at the level of the pons at 64-NDGD, from the 1st to the

7th percentile (see Figure 4.10 in Section 4.2.3). This observation may be linked to the

asymmetry of the corticospinal tract. Few studies, for example that of Nathan et al. [38],
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suggest that a greater number of corticospinal fibers crosses to the right side at the level

of decussation: thus the right side of CST is larger than the left and the measurement of

the parameter can be affected by this evidence. Observing the plot of the volume of the

second fiber at 64-NDGD (see Figure 4.25 in Section 4.2.5), it can be noted that, exactly

at the level of pons, the distribution for the two different sides of the brain showed very

different values: it can be observed a behaviour similar to a fork. These two similar

behaviours could be linked and the evidence that at 64-NDGD a second fiber is detected

in the left side could justify the FA plot. In addition, in our procedure, we observed

that the delineated tract wrongly ended into the cerebellum, and this is more evident

at 64-NDGD than 25-NDGD; for this reason we decided to cut the tract at the level of

the pons, excluding parts below it. Thus, we hypothesized that just before pons, the

algorithm started to consider fibers that belong to cortico-ponto-cerebellar tract.

MD and connectivity distributions did not show any differences between right and left

sides at each NDGD.

One of the most interesting result comes from the comparison of the FA values between

25- and 64-NDGD. For the right side, values at 25-NDGD showed an increase at the level

of the posterior limb of the internal capsule, while for the left side FA values at 25-NDGD

resulted higher along the entire central portion of the CST. In order to understand the

origin of this behaviour, we considered the volume of the first and second detected fibers.

In this way, we tested the hypothesis that FA differences could be due to the presence

of the second fiber. This is a great advantage of using a probabilistic algorithm instead

of the deterministic tractography. For example, Lin et al. [59] conducted a very similar

study: they investigated the presence of abnormal diffusion along the pyramidal tract

(PYT) of relapsing neuromyelitics optica (RNMO) patients with a lenght-normalized pa-

rameterization method in order to realized specific comparisons across the subjects. They

divided equally the normalized lenght into a certain number of segments and obtained

diffusion indices (including FA and RA) from each segment. However, they admitted

that it was not possible to trace the whole tract due to the limitations of the streamline

tractography for crossing fibers. In the present study we tried to overcome this problem.

It can be noted that for both sides along almost the tract for the first fiber, and along

the entire CST for the second fiber, the volume distributions at 64-NDGD were higher

respect to distribution at 25-NDGD. In particular, they resulted strongly different at the

level of pons and in correspondence of the 50th percentile, where the first distribution

was tripled respect to that at 25-NDGD. Differences in volume depend on the fact that
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algorithm at 64-NDGD is more able to detect more than one dominant direction of the

fibers respect to at 25-NDGD. Observing the results of paired t-test on the first fiber at

different NDGD we can note correspondence, with respect to FA, between percentiles

affected by significative differences, in particular on the left side. The distribution of

the median of the second fiber showed a larger area interested by significant differences,

along the central part of the CST, with an increase for values at 25-NDGD (see Figure

4.23 in Section 4.2.5). This can be explained considering the work of Bastin et al [64],

which found that the measured anisotropy of an inhomogeneous medium becomes pro-

gressively greater as the signal-to-noise ratio (SNR) decreases.

A comparison between different NDGDs for MD values showed significative differences

in cortical sulci area, revealing an increase for values at 25-NDGD in the same way for

both sides of brain. This can be due to the fact that in this area the algorithm was not

able to correctly discern white and grey matter. This result is in agreement with Jones

[63] who found that a robust estimation of mean diffusivity requires at least 30 sampling

orientations. The measure of eigenvalues in each percentile validated results obtained

for MD. In more detail, it was observed an increase for values at 25-NDGD in λ1 dis-

tribution, approximately from 40th to 50th percentile and from 70th to 85th percentile

in the right side while for left side we registered an increase at the same NDGD at the

level of the pons and in the most part of the central area of CST, from 35th to 50th and

from 60th to 80th percentile; λ2 distribution did not show any significative difference

between different NDGDs; for the left side of λ3 distribution it was observed an increase

for values at 64-NDGD from 30th to 50th percentile (see Figures 4.13, 4.14 and 4.15

in Section 4.2.3). We deduced that in the first interested part of the CST the opposite

tendency of λ1 and λ3 produced a balance of the differences and the MD significative

results are due only to the differences in the last part of λ1 distribution. Plot of λ1, λ2

and λ3 did not show any differences between different sides and this was in accord with

the analogous MD distribution.

The similarity of RA distribution respect to λ3 plot was evident: indeed RA depends on

both λ2 (no differences, as specified above) and λ3.

To understand deeply the different results at 25-NDGD respect to 64-NDGD and to

observe where the different tracts diverge, we investigate the spatial correlation of the

respective obtained tracts (see Figure 4.17 in Section 4.2.4). A visual evaluation of the

total volume distribution showed, for both NDGDs, a good correspondence of the tracts:

the great quantity of yellow areas (tract of 25 subjects) in the right anatomical reference



Capitolo 5 93

points was a validation of the reliability of the used procedure. Performing a 2D spa-

tial comparison between tracts obtained with different NDGDs, we observed a Pearson

correlation coefficient in a range between 0.5 and 0.7 on average, with a decrease in cor-

respondence of the 50th percentile and in the last percentiles (over the 90th percentile).

Observing the total volume distribution, that showed higher value at 64-NDGD along

the most part of CST, we noted that in correspondence of the 50th percentile plot of

values at 25- and 64-NDGD showed a great difference (the maximum at 64-NDGD is

almost four times respect to 25-NDGD). The Pearson analyses supported the hypothesis

of good reliability for algorithm with 25-NDGD for acquisitions and volume distribution

confirmed the evidence of a greater number of detected fibers at 64-NDGD. In particular,

this is evident in the lateral portion of the cortico-spinal tract that is a big pathway not

completely described with the first fiber. This is in line with the study of Behrens et al.

[31] that found that a multi-fiber probabilistic algorithm is able to describe in a better

way this area of the CST, characterized by more than a single fiber.

Further spatial analyses were performed: the COG for x and y showed that the tracts

delineated at 64-NDGD were more mesial (significative differences in COGx distribution)

and more anterior (significative differences for COGy) respect to those at 25-NDGD.
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Conclusions and future directions

In conclusion, in this study we developed a procedure to reconstruct the corticospinal

tract with a probabilistic tractography algorithm using an automatic segmentation of the

motor cortex and a common space for all subjects to draw masks onto the FA map. In

this way the reproducibility of the process is assured. We calculated diffusion parame-

ters values for the corticospinal tract from data obtained at 25 and 64 directions of the

diffusion gradient.

A central aim of this study was the validation of a parameterization procedure along

the tract, in order to obtain specific local diffusion parameters and to estabilish cor-

respondence of white matter fiber segments across different subjects. In each subject,

the drawn tract was divided in 100 equal segments (percentiles). Statistical analyses

showed that intrasubject variability of FA and MD values was significatively higher than

intersubject variability: this confirmed the importance to perform a quantitative study

in order to obtain localized information on behaviour of parameters, with respect to the

most common studies which evaluate mean diffusion parameters values of the tract. In

particular, the effects of different sides of the brain and different numbers of diffusion

gradient direction on metrics of interest were investigated in each percentile of the de-

lineated tract. One of the most relevant result is the significant difference between FA

values at 25 with respect to 64 NDGD in the central part of the CST, above the poste-

rior limb of the internal capsule. The capability of the probabilistic algorithm to detecte

multiple-dominant fibers direction permitted to understand the plot of FA. A further

analysis on spatial correlation between tracts obtained with the two NDGDs provided

awareness about the reliability of the tractography at 25-NDGD, observing a good 2D

correlation coefficient. This is an important finding as acquisitions at lower NDGD are

more feasible and comfortable in a clinical setting. However, the analysis highlighted the

great advatage of using a 64-NDGD acquisition, since it allowed to describe in a more

detailed way the CST, in particular the lateral portion of the tract, beacuse it detected
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fibers that at 25-NDGD were hidden.

We suppose that the difference of diffusion parameters values corresponding to the right

and left CST, can be explained considering the anatomical asymmetries of CST.

Developement and future applications can be suggested by the results obtained. First of

all, it could be interesting to investigate the relation between asymmetries of the CST

with handness of subjects: it is a pivotal point in modern literature and the results could

help also to deeply explain behaviour of some parameters in this study. The next step

could be an along-tract analysis of other tracts of interest, like the corpus callosum and

cingulum. In facts, it could be fascinating to employ this method on groups of patients;

in particular, our goal is the study of changes of diffusion parameters along selected white

matter tracts in subjects with neurodegenerative diseases with motor synthoms such as

parkinsonism disorders or other neurodegenerative disorders.
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