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A chi non si ferma davanti ai misteri della natura.

2



Introduction

“Why is geometry often described as cold and dry? One reason lies in its
inability to describe the shape of a cloud, a mountain, a coastline, or a tree.
Clouds are not spheres, mountains are not cones, coastlines are not circles,
and bark is not smooth, nor does lightning travel in a straight line...”
Having always found attractive the complexity of world and the number of
distinct scales of length of natural patterns that is for all practical purposes
infinite, I try to write this thesis to take up the challenge of Benoit Mandel-
broot1 whose words open my introduction.
Perhaps Mandelbrot wanted to suggest to mathemathicians to “study those
forms that Euclid leaves aside as being formless” because sometimes it’s
better to investigate “the morphology of the amorphous”.
It’s for these reasons that the idea to write about Fractal sets has born.
Fractals are something irregular and broken, by the meaning of the Latin
adjective fractus.
If we want to go over the etymology, it seems difficult to find a rigorous
mathemathical definition of fractal set.
Mandelbrot himself thought initially to call fractal a “set whose Hausdorff
dimension is slightly larger than its topologycal one”. This first attempt has
then been followed by other such as the simple “irregular set” or “set whose
Hausdorff dimension equals to a number that is not an integer”.
Although none of the cited definitions can be judged totally satisfactory,
what is important is at least to draw from them the consciousness that
Hausdorff measure and dimension are the necessary mathemathical instru-
ments for describing and analysing the geometric properties of these new
sets.
New because it’s only with the publication of Mandelbrot Les objets fractals
(1975) that the interest for such mysterious objects has started to increase.
The first chapter of the thesis is dedicated to recall some general results of
the Measure Theory and mostly to definitions and theorems about Hausdorff
measure, through which a particular class of subsets of Rn, the so-called s-
sets can be defined.

1polish mathematician, 1924-2010, father of fractal geometry and, in particular, of
Mandelbrot’s fractals.
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Afterwords, in the second chapter just these s-sets are investigated, with
their local properties of density and tangency. The treatment is divided
into two sections, one concerning the case when s is an integer and the other
examining the s non integer sets, where s indicates the Hausdorff dimen-
sion.
Just sets whose Hausdorff dimension is something different from an inte-
ger number may be called Fractals. The most classical ones show also the
peculiarity of being self-similar, which means that the fractals, generated
iteratively, for more iterations are more complex and many substructers re-
sembling the whole are visible. Self-similatity will be subject of the third
chapter. In the same chapter, we’ll specifically study three fractal sets pre-
senting as s an irrational number and also being self-similar: Cantor set,
Koch curve and Sierpinski triangle. We’ll discover that the s presented as
Hausdorff dimension coincides with another important mathemathical quan-
tity: the self-similar dimension.
Both quantities can well represent the concept of fractal dimension.
From the beginning of the thesis, we’ll realize that talking about fractal di-
mension implies doing a limit, fact which may be thought to be the reason
why this dimension has always been considered suspicious. Maybe for this
suspicion its physical role hasn’t already been exploited at all. At least until
the draft of Mandelbrot’s work of 1975, when he writes laments about this.
Actually, what I want to propose for the final chapter is just the description
of very recent studies in field of Medicine which recognize in images rep-
resenting senile plaques or skin lesions typical fractal properties and then
apply for their researches a fractal analysis.
First of all, a third quantity, the box counting, comes up by the side of
Hausdorff and similar dimensions in the definition of fractal dimension, with
the advantage of being very useful in practice. So, fractal dimension, here
considered a morphological parameter, helps to recognize different kinds of
senile plaques (diffuse and mature) formation in various animal species, not
excluding human, and supports a diagnosis where the only Dermatoscopy
doesn’t permit to distinguish a malignant melanoma from a different skill
illness.
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Introduzione

“Vi sarete forse domandati perché la geometria sia cos̀ı spesso considerata
fredda e arida. Certamente a creare questo convincimento ha contribuito la
sua inadeguatezza a descrivere le forme della natura: le nubi sferiche come
palloni e montagne coniche, a punta di matita, non fan parte del panorama
fisico; le linee costiere, tutte frastagliate, non sembrano certo disegnate col
compasso, né si propaga, il lampo, in linea retta... ”
Attratta dalla complessità del mondo che ci circonda e dal numero prati-
camente infinito di scale di lunghezza che ci si presentano davanti, scrivo
questa tesi con lo scopo di rispondere alla sfida di Benoit Mandelbrot2 le cui
parole aprono la mia introduzione.
Forse rivolta a qualcuno di noi matematici, è una sfida a “studiare quelle
forme che la geometria euclidea tralascia come informi” lanciandosi ad in-
vestigare “la morfologia dell’amorfo”.
Ecco perché una tesi sui frattali, sugli oggetti interrotti e irregolari, come
indica il nome stesso (dal latino fractus=rotto).
Al di là del significato etimologico, risulta difficile trovare una definizione
matematica rigorosa di insieme frattale.
Mandelbrot stesso pensò inizialmente di chiamare frattale un “insieme di di-
mensione di Hausdorff leggermente maggiore della sua dimensione topolog-
ica”. A questo primo tentativo, ne seguirono altri come il semplice “insieme
irregolare” o “insieme con misura di Hausdorff non intera ”.
Seppure nessuna delle definizioni citate può essere considerata totalmente
soddisfacente, è però importante trarne la consapevolezza che la misura e la
dimensione di Hausdorff sono gli strumenti matematici che permettono di
descrivere ed analizzare le proprietà geometriche di questi nuovi insiemi.
Nuovi perché è solo con la pubblicazione di Les objets fractals di Mandelbrot
(1975) che inizia a crescere l’interesse per tali oggetti misteriosi.
Il primo capitolo della tesi è dedicato, oltre a richiamare alcuni risultati
generali di Teoria della Misura, alle definizioni e teoremi sulla misura di
Hausdorff, grazie ai quali è possibile definire una precisa classe di sottoin-
siemi di Rn chiamati s-sets.

2matematico polacco 1924-2010, padre della geometria frattale e, in particolare, dei
frattali di Mandelbrot.
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Successivamente, nel secondo capitolo, vengono appunto investigati gli in-
siemi s-sets con le loro proprietà di densità e tangenza, separando la trat-
tazione per il caso s intero ed s non intero, dove s indica la dimensione di
Hausdorff.
Proprio gli insiemi di dimensione di Hausdorff non intera vengono chiamati
frattali. I più classici presentano anche la caratteristica di autosimilarità,
ovvero i frattali, generati iterativamente, procedendo in iterati successivi, di-
ventano via via più complicati e mostrano molte sottostrutture somiglianti
all’intera di partenza. L’auto-similarità sarà argomento del capitolo 3. Nello
stesso capitolo studieremo nello specifico tre frattali sia di dimensione s ir-
razionale e sia autosimilari: l’insieme di Cantor, le curva di Koch ed il
triangolo di Sierpinski.
Scopriremo che il numero s presentato come dimensione di Hausdorff di un
s-set coincide con un’altra importante quantità matematica: la dimensione
di auto-similarità.
Entrambe le quantità possono rappresentare correttamente il concetto di
dimensione frattale.
Fin dall’inizio della tesi ci accorgeremo che parlare della dimensione frattale
implica fare un passaggio al limite, e si può pensare che per questo motivo
tale dimensione sia sempre stata giudicata sospetta. Forse a causa di questo
sospetto il suo ruolo fisico non è mai stato scoperto fino in fondo, almeno
fino ai tempi di Mandelbrot che se ne lamenta nel suo libro precedentemente
citato.
In realtà, quello che voglio proporre come capitolo finale è proprio la de-
scrizione di recentissimi studi di natura medica che riconoscono nelle im-
magini raffiguranti placche senili o lesioni della pelle proprietà tipiche dei
frattali e quindi applicano per le loro diagnosi un’analisi di tipo frattale.
Innanzi tutto, una terza grandezza, il box-counting, viene ad affiancare le
dimensioni di Hausdorff e di autosimilarità nella definizione di dimensione
frattale, con il vantaggio di risultare molto utile e maneggevole nelle ap-
plicazioni pratiche. E cos̀ı, la dimensione frattale, ora considerata come
parametro morfologico, da un lato interviene nell’individuare processi di
formazione delle placche senili (diffuse e mature) di varie specie di mam-
miferi dalle quali non viene escluso l’uomo, dall’altro dà il suo contributo
dove la sola Dermatoscopia non è sufficiente a riconoscere i melanomi ma-
ligni tra varie malattie della cute.
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Chapter 1

Measure Theory

To build also the simplest building, before inserting the bricks, it’s necessary
to lay the foundations. In this chapter we furnish the ground to talk about
measure of a set, from which we have to start in the intention of studying
fractal sets. In the first section we collect definitions and classical results
by Measure Theory, wheras in the second one we explain in detail theorems
concerning Hausdorff Measure.

1.1 Recalls of general Measure Theory

Definition 1 (σ-field). Let X be a non-empty set of Rn. A non-empty col-
lection S of subsets of X is called σ−field if:

(i) Ø ∈ S;

(ii) S is closed under complementation: if E ∈ S ⇒ X − E ∈ S;

(iii) S is closed under countable union: se E1, E2, · · · ∈ S ⇒
⋃∞
j=1Ej ∈ S.

(i) and (ii) imply that X ∈ S .

Moreover it follows from its definition that a σ−field is closed under set
difference and under countable intersection.

From the last observation we can define, given C a collection of subsets
in X, the σ−field generated by C, denoted by S(C), which is the inter-
section of the all σ−fields containing C.
S(C) is the smallest σ−field containing C.

Definition 2 (measure). A measure µ is a function defined on S taking
values in the range [0,∞] such that:
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CHAPTER 1. MEASURE THEORY

(i) µ(Ø) = 0;

(ii) Given {Ej} a countable sequence of disjoint sets in S

µ(
∞⋃
j=1

Ej) =
∞∑
j=1

µ(Ej).

We can deduce from (ii) that, if E,E′ ⊆ S are E ⊆ E′ then µ(E) ≤
µ(E′).

The following definitions of lower limit (1.1) and upper limit (1.2) of a
sequence of sets Ej are necessary to enunciate the continuity of measure
theorem.

lim
j→∞

Ej =

∞⋃
k=1

∞⋂
j=k

Ej (1.1)

lim
j→∞

Ej =

∞⋂
k=1

∞⋃
j=k

Ej (1.2)

If {Ej} ∈ S, then, for the definitions of lower and upper limits and of σ−
field, also lim e lim ∈ S.
If limEj and limEj are the same, we write limEj for the common value.

Theorem 1 (continuity of measure). [4] Let µ be a measure on a σ−field
S of subsets of X. Then:

(a) If E1 ⊂ E2 ⊂ · · · is an increasing sequence of sets in S, then

µ( lim
j→∞

Ej) = lim
j→∞

µ(Ej).

(b) Se E1 ⊃ E2 ⊃ · · · is a decreasing sequence of sets in S, allora

µ( lim
j→∞

Ej) = lim
j→∞

µ(Ej).

(c) For any sequence of sets {Ej} in S,

µ( lim
j→∞

Ej) ≤ lim
j→∞

µ(Ej).

We now introduce outer measure.

Definition 3 (outer measure). An outer measure ν on a set X is a function
defined of all subsets of X taking values in [0,∞] such that:
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CHAPTER 1. MEASURE THEORY

(i) ν(Ø) = 0;

(ii) if A ⊂ A′ then ν(A) ≤ ν(A′);

(iii) for any subsets {Aj} in X,

ν(
∞⋃
j=1

Aj) ≤
∞∑
j=1

ν(Aj).

We note that ν is defined on all subsets of X, not only on these of a
σ−fiels of X and that outer measure can be interpreted as a weak definition
of measure, where property (ii) is replaced by subadditivity .

Actually, there always exists a σ−field of X on which ν behaves as a true
measure. Theorem 2 explains which sets form this σ−field.

Definition 4 (ν−measurable set). A subset E of X is told to be ν−measurable
or measurable with respect to the outer measure ν if for all set A ⊂ X

ν(A) = ν(A ∩ E) + ν(A− E).

Theorem 2. [4] Let ν be an outer measure. The collection M of ν− mea-
surable sets forms a σ−field and the restriction of ν to M is a measure.

Definition 5 (regular outer measure). An outer measure ν is called regular
if for every set A of X there exists a ν−measurable set E containing A such
that ν(A) = ν(E).

It follows from (c) of continuity measure theorem and from (ii) of the
definitione of outer measure that for a regular outer measure on an increasing
sequence of sets {Aj}

lim
j→∞

ν(Aj) = ν( lim
j→∞

Aj)

holds.

Definition 6 (metric outer measure). An outer measure ν is called metric
if

ν(E ∪ F ) = ν(E) + ν(F )

with E and F positively separated that means

d(E,F ) = inf{d(x, y) : x ∈ E, y ∈ F} > 0.
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CHAPTER 1. MEASURE THEORY

Let’s work in a metric space (X, d).We can thinkX to be the n−dimensional
Euclidean space , Rn, with d the usual distance function.

We recall that if we consider the collection of open sets of X, this generates
a σ−field called Borel σ−field which includes the borel sets that are

• open sets;

• closed sets (since they are complementary of open sets);

• countable unions of closed sets (Fσ − sets);

• countable intersections of open sets (Gδ − sets).

The following theorem about the measurability of Borel-sets with respect to
a metric outer measure holds

Theorem 3. [4] If ν is a metric outer measure on (X, d), then every Borel-
subsets of X are ν−measurable.

Its proof is based on the following lemma.

Lemma 1. Let ν be a metric outer measure on (X, d). Given an increasing
sequence {Aj}∞1 of subsets of X with

(i) A = limj→∞ ν(Aj) and such that

(ii) d(Aj , A−Aj+1) > 0 ∀j,

we have
ν(A) = lim

j→∞
ν(Aj).
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CHAPTER 1. MEASURE THEORY

1.2 Hausdorff Measure

From the remainder of the thesis we work in Euclidean n−dimensional space,
Rn.

Definition 7 (diameter of a subset). Let U a non-empty subset of Rn. The
diameter of U, that we indicate by |U |, is defined as

|U | = sup{|x− y| : x, y ∈ U}.

If E ⊂
⋃
i Ui and 0 < |Ui| ≤ δ ∀i, then {Ui} is said δ−cover of E.

Taken E a subset of Rn and s a non-negative number, for δ > 0 we define

Hs
δ (E) = inf

∞∑
i=1

|Ui|s (1.3)

where the infimum is made over all countable δ−cover {Ui} of E.

The function we have just defined is an outer measure on Rn.

Letting δ to 0 in (1.3) we obtain:

Definition 8 (Hausdorff s-dimensional outer measure of E ).

Hs(E) = lim
δ→0

Hs
δ (E) = sup{δ>0}H

s
δ (E).

The limδ→0 of the definition exists but can be equal to infty, since Hs
δ

increases when δ decreases.
Moreover Hs is an outer measure like Hs

δ .

Note 1. Hs is also a metric outer measure.

Proof. Let E and F be positively separated sets. Choosing
δ < d(E,F ) no set in the cover of E ∪ F can intersect both sets E and F,
so that

Hs
δ (E ∪ F ) = Hs

δ (E) +Hs
δ (F )

Definition 9 (s-dimensional Hausdorff measure). The s-dimensional Haus-
dorff measure is the restriction of Hs to the σ−field of Hs−measurable sets.

This restriction is due to Theorem 2 and Theorem 3 makes sure that it
includes the Borel sets.
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CHAPTER 1. MEASURE THEORY

We note that:

1. Hs(E) is a non-increasing function as s increases from 0 to ∞;

2. if s < t, Hs
δ (E) ≥ δs−tHt

δ(E) and then:

3. if Ht(E) is positive, Hs(E) is infinite.

We are now ready to give the second, together with the Hausdorff measure
definition, of the most important definitions of the current section: the
concept of Hausdorff dimension of E :

Definition 10 (Hausdorff dimension). The Hausdorff dimension of E, dimE,
is the unique value to be such that

Hs(E) =∞ if 0 ≤ s < dimE

Hs(E) = 0 se dimE < s <∞.

Definition 11 (s-set). An Hs-measurable set E ⊂ Rn for which 0 <
Hs(E) <∞ is termed an s-set.

It directly follows from these previous definitions that the Hausdorff di-
mension of an s−set equals to s.

But it is important to realize that an s−set is something much more specific
than a measurable set of Hausdorff dimension s and that s−sets aren’t the
only Hausdorff measurable sets whose dimension equals to s.

Many pages of this thesis will be occupied by the description of some geo-
metric properties of s−sets and it will be clear how the distinction between
integer s and non-integer s is linked to the possibility of defining a set E as
fractal.

Intuitively, we may affirm that although the elementary geometry teaches
us that an isolated point, not differently from a finite number of them, has
dimension 0, that a standard curve has dimension 1, that a plane is nothing
but a figure of dimension 2 and so on, figures whose dimension may be a
fraction or also an irrational number can’t be left out from studies.

In other words, in those places left unknown and seen only as transition,
without a determined structure, the “fractal regions” can find their natural
location.
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CHAPTER 1. MEASURE THEORY

Our next aim is the proof of the fact that Hs, which we have already seen
to be a metric outer Hausdorff measure, shows also the regularity property.
As a consequence the s-sets can be approximated by closed subsets.

Theorem 4. [4] Let E ⊂ Rn. There exists Gδ-set G containing E with
Hs(G) = Hs(E). In particular, Hs is a regular outer measure.

Proof. If Hs(E) = ∞, Rn is an open set such that Hs(E) = Hs(Rn) the
theorem is proved.

Suppose that Hs(E) < ∞. ∀i = 1, 2, · · · choose an open δ−cover of E

with δ =
2

i
. This cover is {Uij}j and be such that:

∞∑
j=1

|Uij |s < Hs
1/i(E) +

1

i
. (1.4)

If we put G =
⋂∞
i=1

⋃∞
j=1 Uij , thus is a Gδ−set containing E.

Since {Uij}j is a
2

i
−cover of G, (1.3) e 3.6 imply

Hs
2/i(G) ≤ Hs

1/i(E) +
1

i
.

Letting i→∞, (δ → 0) we obtain

Hs(G) = Hs(E)

so we have found an Hs−measurable set whose outer measures equals the
measure of E.
This consists in the regularity definition of an outer measure and concludes
the proof.

Theorem 5. [4] Any Hs−measurable set of finite measure contains an
Fσ−set of equal measure.

Proof. Let E be Hs−measurable with Hs(E) <∞.

Using Theorem 4 there exist open sets O1, O2, · · · containing E with

Hs(∩∞i=1Oi − E) = Hs(∩∞i=1Oi)−Hs(E) = 0. (1.5)

Any open subset of Rn is an Fδ−set so suppose Oi = ∪∞i=1Fij ∀i where
{Fij}j is an increasing sequence of closed sets.
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CHAPTER 1. MEASURE THEORY

By Theorem 1 (a) applied to measure Hs

lim
j→∞

Hs(E ∩ Fij) = Hs( lim
j→∞

E ∩ Fij) = Hs(E ∩Oi) = Hs(E).

Hence, given ε > 0, we may find ji such that Hs(E − Fiji) < 2−iε,
i = 1, 2, · · · .

If F is the closed set ∩∞i=1Fiji , then

Hs(F ) ≥ Hs(E ∩ F ) ≥ Hs(E)−
∞∑
i=1

Hs(E − Fiji) > Hs(E)− ε

Since F ⊂ ∩∞i=1Oi, then Hs(F − E) ≤ Hs(∩∞i=1Oi − E) = 0 by (1.5).

Again for Theorem 4 F − E is contained in a Gδ−set G having its same
measure that is Hs(G) = 0. So F −G is an Fσ−set contained in E with

Hs(F −G) ≥ Hs(F )−Hs(G) ≥ Hs(E)− ε.

The countable union of sets Fσ contained in E and having equal measure Hs

is finally obtained taking a countable union of Fσ−sets over ε =
1

2
,
1

3
,
1

4
, · · · .

The Lemma below states that any attempt to estimate Hausdorff mea-
sure of a set using a cover of sufficiently small sets gives an answer not much
smaller than the actual Hausdorff measure of the given set.

Lemma 2. Let E be Hs−measurable with Hs(E) < ∞. Let ε > 0. Then
there exists ρ > 0, dependent only on E and ε such that for any collection
of Borel sets {Ui}∞i=1 with 0 < |Ui| ≤ ρ we have

Hs(E ∩
⋃
i

Ui) <
∑
i

|Ui|s + ε.

Proof. From the definition of Hs as the limit of Hs
δ as δ → 0 we may choose

ρ such that

Hs(E) <
∑
|Wi|s +

1

2
ε (1.6)

for any ρ−cover {Wi} of E.

Moreover, given a collection of Borel sets {Ui} with 0 < |Ui| ≤ ρ we may
find a ρ−cover {Vi} of E −

⋃
i Ui such that

Hs(E −
⋃
i

Ui) +
1

2
ε >

∑
|Vi|s. (1.7)
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CHAPTER 1. MEASURE THEORY

But {Ui} ∪ {Vi} begins a ρ−cover of E, so that, from (1.6)

Hs(E) <
∑
|Ui|s +

∑
|Vi|s +

1

2
ε (1.8)

Hence
Hs(E ∩

⋃
i

Ui) = Hs(E)−Hs(E −
⋃
i

Ui) ≥

(using (1.7) and (1.8))

≥
∑
|Ui|s +

∑
|Vi|s +

1

2
ε−

∑
|Vi|s +

1

2
ε =

∑
|Ui|s + ε

Next Lemma concerns the Hausdorff measure of sets related by a uni-
formly Lipschitz mapping.

Lemma 3. Let ψ : E −→ F be a surjective mapping such that

|ψ(x)− ψ(y)| ≤ c|x− y| (x, y ∈ E),

for a constant c.

Then
Hs(F ) ≤ csHs(E).

Proof. We have, ∀i, |ψ(Ui ∩ E)| ≤ c|Ui|.

If {Ui} is a δ−cover of E, {ψ(Ui ∩ E)} is a cδ−cover of F

Moreover,
∑

i |ψ(Ui) ∩ E|s ≤ cs
∑

i |Ui|s so that

Hs
cδ ≤ csHs

δ (E)

and, letting δ −→ 0,
Hs(F ) ≤ csHs(E).

The Vitali covering theorem is one of the most useful tools of geometric
measure theory.
It let us select, from a sufficiently large collection of sets covering a given
set E, a subcollection of disjoint sets that covers almost all of E.
Two different classes of theorems “of type Vitali” can be distinguished.
The first may be applied to any kind of cover but is valid only for few mea-
sures, like the Lebesgue measure.
The second class is extended to much more measures but with the disad-
vantage of giving some restrictions to the considered cover.
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CHAPTER 1. MEASURE THEORY

For the Hausdorff measure there exists a Vitali theorem which can be in-
serted in the second class.
Let’s see how it is enunciated and proved.

Definition 12 (Vitali class). A collection of sets V is called Vitali class for
E if ∀x ∈ E and ∀δ > 0 there exists U ∈ V with x ∈ U and 0 < |U | ≤ δ.

Theorem 6 (Vitali covering theorem). [4] Let E be an Hs-measurable subset
of Rn and let V be a Vitali class of closed sets for E. Then we may select
from V a finite or countable disjoint sequence {Ui} such that

(a) either
∑
|Ui|s =∞ or Hs(E −

⋃
i Ui) = 0;

(b) If Hs(E) <∞, then, given ε > 0, we may also require that

Hs(E) ≤
∑
i

|Ui|s + ε.

Proof. (a) Fix ρ > 0 and suppose that |U | ≤ ρ ∀ U ∈ V.

We select the sets forming the sequence {Ui} inductively:

let U1 be any set of V ; assume that U1, · · ·Um have been chosen and take the
set U in V whose diameter is the supremum which not intersects U1, · · ·Um.
Such diameter is called dm.

If dm = 0, then E ⊂
⋃m

1 Ui so the process terminates and
Hs(E −

⋃m
1 Ui) = 0⇒ (a).

Otherwise let Um+1 be a set in V disjoint from
⋃m

1 Ui and be such that

|Um+1| ≥
1

2
dm.

Suppose that the process continues indefinitely and that
∑
|Ui|s < ∞. We

want to show that the second possibility enounced in (a) is the correct propo-
sition.

For all i let Bi be a ball with center in Ui and radius 3|Ui|. We claim that
∀ k > 1

E −
k⋃
1

Ui ⊂
∞⋃
k+1

Bi. (1.9)

In effect, whether (1.9) is proved, with δ > 0 and with k large enough to
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CHAPTER 1. MEASURE THEORY

have Bi ≤ δ for i > k, we should obtain

Hs
δ (E −

∞⋃
1

Ui) ≤ Hs
δ (E −

k⋃
1

)Ui ≤
∞∑
k+1

|Bi|s = 6s
∞∑
k+1

|Ui|s

from which Hs
δ (E −

⋃∞
1 Ui) = 0 ∀δ > 0 and soHs(E −

⋃∞
1 Ui) = 0.

We now have to show (1.9).

If x ∈ E
⋃k

1 Ui, then there exists U ∈ V with x ∈ U but disjoint from
U1, · · ·Uk

Since |Ui| → 0, then |U | > 2|Um| for some m.

By virtue of the method of selection of {Ui}, U must intersect Ui for some
k < i < m for which |U | < 2|Ui|, so U ⊂ Bi which proves (1.9).

Proof. (b) To get the second part of the Theorem, suppose that ρ already
chosen at the beginning of the proof (a) is the number corresponding to ε.

Note that E satisfies the hypothesis of Lemma 2, then if
∑
|Ui|s = ∞

(b) is trivial, otherwise

Hs(E) = Hs(E − ∪iUi) +Hs(E ∩
⋃
i

Ui) = (a) 0 +Hs(E ∩
⋃
i

Ui) <

<
∑
|Ui|s + ε

for the Lemma 2.
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CHAPTER 1. MEASURE THEORY

1.3 Are Hausdorff measure and Lebesgue measure
comparable?

As known, n−dimensional Lebesgue measure extends the concept of volume
in Rn, where with volume we intend the length if we work in R1, the area
in R2.

Let C be a coordinate block 1 in Rn of the form

C = [a1, b1)× [a2, b2)× · · · [an, bn)

with

ai < bi ∀i.

Definition 13 (Volume of C). Given a block C in Rn, its volume is defined
by

V (C) = (b1 − a1)(b2 − a2) · · · (bn − an)

Definition 14 (n−dimensional Lebesgue measure). Let E be any subset of
Rn. Its Lebesgue measure is defined as

`n(E) = inf
∑
i

V (Ci),

where the infimum is made over all covers of E by a sequence {Ci} of blocks.

Note 2. `n is a metric outer measure on Rn and, if it is restricted to the
Lebesgue-measurable sets (among wich the borel sets, in light of Theorem 3)
becomes for Theorem 2 a true measure.

It isn’t difficult to show that in R1 Lebesgue measure and Hausdorff
measure coincide.

Nevertheless, the introduction of Hausdorff measure is expected to give new
geometric contributions in measuring a set and the first is, as already men-
tioned before, that we can obtain fractional or irrational dimensions for sets.

We ask, having intuited that sometimes the only length, area or volume
aren’t enough to describe the shape and irregularity of an object, if there
exists, when n > 1, any link between the two measures we are interested to
compare.

We anticipate that the answer will be affirmative since they differ only by a
constant multiple.

1we call block a cartesian product of n intervals in Rn
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CHAPTER 1. MEASURE THEORY

In order to prove the next result it’s necessary to enunciate the following
isodiametric inequality which says that the set of maximal volume of a given
diameter is a sphere.

Theorem 7 (Isodiametric inequality). The n−dimensional volume of a con-
vex closed set of diameter d is, at most,

π

1

2
n
(
1

2
d)n/(

1

2
n)!

that is the volume of a ball of diameter d.

Theorem 8. [4] Let E ⊂ Rn, then `n(E) = cnH
n(E), with

cn = π

1

2
n
/2n(

1

2
n)!

In particular c1 = 1 and c2 =
π

4
.

Proof. Suppose Hs(E) <∞.

Given ε > 0, (b) of Vitali covering theorem says that E can be covered
by a sequence of closed sets {Ui} such that∑

|Ui|n < Hn(E) + ε.

By (7)
`n(Ui) ≤ cn|Ui|n,

so
`n(E) ≤

∑
`n(Ui) < cnH

n(E) + cnε,

obtaining
`n(E) ≤ cnHn(E) (1.10)

We look now for the opposite inequality.

Let {Ci} be a collection of blocks covering E with∑
i

V (Ci) < `n(E) + ε. (1.11)

We may suppose that these blocks are open by expanding them slightly
whilst retaining this inequality (1.11).
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CHAPTER 1. MEASURE THEORY

For all i the closed ball contained in Ci, of radius, at most, δ forms a Vitali
class for Ci.

By Theorem 6, (a), there exists a collection of disjoint balls {Bij}j in Ci of
diameter at most δ with

Hn(Ci −
∞⋃
j=1

Bij) = 0

and then with

Hn
δ (Ci −

∞⋃
j=1

Bij) = 0.

Since `n is a Borel measure 2

∞∑
j=1

`n(Bij) = `n(
∞⋃
j=1

Bij) ≤ `n(Ci)

holds.
At the end, we have:

Hn
δ (E) ≤

∞∑
i=1

Hn
δ (Ci) ≤

∞∑
i=1

∞∑
j=1

Hn
δ (Bij) +

∞∑
i=1

Hn
δ (Ci −

∞⋃
j=1

Bij) ≤

≤
∞∑
i=1

∞∑
j=1

|Bij |n =
∞∑
i=1

∞∑
j=1

c−1n `n(Bij) ≤

≤ c−1n
∞∑
i=1

`n(Ci) < c−1n `n(E) + c−1n ε per (1.11).

If we multiply first and second term of this sequence of inequalities by cn
we can write

cnH
n
δ (E) ≤ `n(E) + ε ∀ ε, δ

and, if we let δ → 0,
cnH

n(E) ≤ `n(E). (1.12)

(1.10) and (1.12) give the thesis of the Theorem.

2we call Borel measure on Rn any measure µ defined on the σ−field B of the Borel-sets
such that µ(L) <∞ ∀L limited set of Rn.

22



Chapter 2

Local properties of s-sets

In this chapter we refer to particular subsets of Rn, those we have met for
the first time in Definition 11 of the first chapter, the s-sets.
We deal with the study of their local properties in terms of densities and of
question about tangency existence.
After the first definitions and remarks which are valid for the all s−sets, we
divide the treatment into two parts for integer s and non integer s as the
risults concerning properties we are examining are totally distinct in the two
cases.
Since the charachteristic of s, that is the Hausdorff dimension, being different
from an integer is one of the salient properties of fractal sets on which this
thesis is centred, the section dedicated to the s−sets with this charachter is
faced in details.
In the section preceding it, which deals with integer s, surerly results of
some analytic-geometrical interest are reported, but mainly with function
of comparison and introduction to the section about non integer s. That’s
why in section 2.2 we’ll omit the proofs of theorems.

Whenever we don’t specify anything, the measure and dimension we refer
to will be the Hausdorff measure and dimension.

2.1 Density and Tangency

Definition 15 (upper and lower spherical or circular densities ). Given an
s-set E, in a point x ∈ Rn we define

1. the upper density: ρs(E, x) = limr→0
Hs(E ∩Br(x))

(2r)s

2. the lower density: δs(E, x) = limr→0

Hs(E ∩Br(x))

(2r)s

with Br(x) closed ball of center x, radius r and diameter |Br(x)| = 2r.
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CHAPTER 2. LOCAL PROPERTIES OF S-SETS

Definition 16 (density of E in x). If ρs(E, x) = δs(E, x) we say that the
density of E in x esists and is indicated by Ds(E, x).

Definition 17 (regular point, regular s-set). If ρs(E, x) = δs(E, x) = 1, x
is a regular point of E.
If almost all points of x ∈ E are regular, E is called regular itself.

Obviously a point x ∈ E which doesn’t satisfy the first part of the Def-
inition 17 is called irregular point. A set is irregular if the density doesn’t
exist in almost all its points.

A second definition of upper densiy, called convex density, is useful for our
next results.

Definition 18 (upper convex density). Given an s-set E, the upper convex
density in a point x of E is

ρsc(E, x) = lim
r→0
{sup

Hs(E ∩ U)

|U |s
}

where the supremum is over all convex sets U with x ∈ U and 0 < |U | ≤ r.

Note 3. Since Br(x) is convex and, if x ∈ U then U ⊂ Br(x) with r = |U |,
we have

2−sρsc(E, x) ≤ ρs(E, x) ≤ ρsc(E, x). (2.1)

First step is the proof of the fact that the just defined densities, as func-
tions of x are measurable functions.

We remind that:

• a function f : Rn −→ R is said to be measurable if {x : f(x) < c} is a
measurable set1;

• a function f : Rn −→ R is called Borel- measurable if {x : f(x) < c}
is a Borel set;

• a function f : Rn −→ R is called upper semicontinuous if {x : f(x) <
c} is an open set ∀ c.

Lemma 4. Let E be an s−set. Then these propositions are true:

(a) Hs(E ∩ Br(x)) is an upper semicontinuous function of x and then
Borel-measurable.

1this definition and the following are the same if in {x : f(x) < c} the symbol < is
replaced by ≤,≥ e > .

24



CHAPTER 2. LOCAL PROPERTIES OF S-SETS

(b) ρs(E, x) are δs(E, x) are Borel-measurable functions of x.

Proof. (a) Given r, α > 0, write F = {x : Hs(E ∩Br(x)) < α}.
For x ∈ F, if ε → 0, Br+ε(x) decreases with respect to Br(x) so that for
the continuity of Hs

Hs(E ∩Br+ε(x))→ Hs(E ∩Br(x)).

Then there exists ε such that Hs(E ∩Br+ε(x)) < α and with |y− x| ≤ ε we
have

Br(y) ⊂ Br+ε(x) and Hs(E ∩Br(y)) < α.

Hence F defined above is an open subset of Rn ∀ α and so
Hs(E ∩ Br(x)) is an upper semicontinuous function of x. The fact that it
becomes also Borel-measurable is obtained immediatly by observing that F,
being open, is also a Borel set.

Proof. (b) In ligth of the proof (a)

{x : Hs(E ∩Br(x)) < α(2r)s}

is an open set, so

Fρ = {x : Hs(E ∩Br(x)) < α(2r)s, r < ρ}

is also open because it is union of such sets.

Now write the set {x : δs(E, x) < α} as
⋂
ρ>0 Fρ.

{x : δs(E, x) < α} is then a Gδ−set which is a borel set ∀ α implying
that δs(E, x) is Borel-measurable in x.

A similar argument establishes the measurability of ρs(E, x).

The two theorems which follow concern the convex density but are useful
for their consequences on spheric densities thanks to the relation expressed
in (2.1).

Theorem 9. [4] If E is an s-set of Rn then ρsc(E, x) = 0 for almost all x
that doesn’t belong to E.

Proof. Fixed α > 0 we show that the measurable

F = {x /∈ E : ρsc(E, x) > α}

has zero measure.

By the regularity oh Hs (Theorems 4 and 5) we may find, given δ > 0,
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CHAPTER 2. LOCAL PROPERTIES OF S-SETS

a closed set E1 ⊂ E with Hs(E − E1) < δ.

Let’s write this relation that will be useful for the second part of the proof.

Hs(E ∩ U) > α|U |s (2.2)

For ρ > 0, be

V = {U : Uclosed and convex, 0 < |U | ≤ ρ, U ∩ E1 = ∅

and for which is valid the (2.2)}.

V is a Vitali class and then we may use the Vitali covering Theorem (The-
orem 6 (a)) to extract a disjoint sequence of sets {Ui} in V such that either∑
|Ui|s =∞ or Hs(F −

⋃
Ui) = 0. We want to understand which of the two

possibilities is correct.

From (2.2) we obtain:∑
|Ui|s <

1

α

∑
Hs(E ∩ Ui) =

1

α
Hs(E ∩

⋃
Ui) ≤

≤ 1

α
Hs(E − E1) <

δ

α
<∞.

Having excluded the firs choice, we deduce automatically that
Hs(F −

⋃
Ui) = 0, so

Hs
ρ(F ) ≤ Hs

ρ(F−
⋃
Ui)+Hs

ρ(F ∩
⋃
Ui) ≤ Hs(F−

⋃
Ui)+

∑
|Ui|s < 0+

δ

α
.

The inequality is true ∀ δ > 0 and ∀ρ > 0, than Hs(F ) = 0 that is F is a
set of Hausdorff measure zero, that concludes the proof.

Theorem 10. [4] If E is an s-set of Rn then ρsc(E, x) = 1 for almost all x
belonging to E.

Proof. To obtain ρsc(E, x) = 1 we first proove that ρsc(E, x) ≥ 1 and secondly
that ρsc(E, x) ≤ 1.

Taken α < 1, ρ > 0 we define

F = {x ∈ E : Hs(E ∩ U) < α|U |s for every convex set U

with x ∈ U and |U | ≤ ρ}. (2.3)

F is a Borel subset of E.
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For every ε > 0 we may find a ρ−cover of F by convex sets {Ui} such
that ∑

|Ui|s < Hs(F ) + ε. (2.4)

Assuming that every Ui contains some points of F and using (2.3), it results

Hs(F ) ≤
∑
i

Hs(F ∩ Ui) ≤
∑
i

Hs(E ∩ Ui ≤)

≤ α
∑
i

|Ui|s < α(Hs(F )) + ε).

Being α < 1 and ε any positive number, we deduce that Hs(F ) = 0.

A set F of type (2.3) can be defined for every ρ > 0 and so

ρsc(E, x) ≥ α

for almost all x ∈ E and this is valid for all α < 1.
In particular,

ρsc(E, x) ≥ 1 almost everywhere in E. (2.5)

The opposite inequality is obtained using the Vitali cover and the previous
Theorem:

given α > 1, be

F = {x ∈ E : ρsc(E, x) > α}

measurable subset of E.

Moreover, we define

F0 = {x ∈ E : ρsc(E − F, x) = 0}.

By Theorem 9 Hs(F − F0) = 0.

By the Definition of convex density, ρsc(F, x) ≥ ρsc(E, x)− ρsc(E − F, x) > α
if x ∈ F0.

Then

V = {U : U closed and convex and such that Hs(F ∩ U) > α|U |s} (2.6)

is a Vitali class for F0 and we can use, this time, the proposition (b) of
Theorem 6 which, given ε > 0, finds a disjoint sequence of sets {Ui}i in V
con Hs(F0) ≤

∑
|Ui|s + ε.
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By (2.6)

Hs(F ) = Hs(F0) <
1

α

∑
Hs(F ∩ Ui) + ε ≤ 1

α
Hs(F ) + ε.

Such inequality is valid for every ε > 0, then Hs(F ) = 0 if α > 1 from which

ρsc(E, x) ≤ 1 almost everywhere in E. (2.7)

Both the inequalities (2.5) and (2.7) give the equality we need.

By Theorem 9 using (2.1) it follows that for almost all x outside an s-set
E

0 ≤ δs(E, x) ≤ ρs(E, x) ≤ 0

and then
Ds(E, x) = 0 (2.8)

By Theorem 10 using (2.1) s it follws that for almost all x of an s-set E

2−s ≤ ρs(E, x) ≤ 1. (2.9)

Corollary 1. Given F a measurable subset of an s−set E, then ρs(F, x) =
ρs(E, x) and δs(F, x) = δs(E, x) for almost all x ∈ F.

Proof. Since F is an s−set, by (2.8) both upper and lower densities are zero
in almost all x outside F and in particular in H = E − F. As consequence

ρs(E, x) = ρs(F, x) + ρs(H,x) = ρs(F, x) + 0 = ρs(F, x).

δs(E, x) = δs(F, x) + δs(H,x) = δs(F, x) + 0 = δs(F, x).

Corollary 2. Given E =
⋃
j Ej a disjoint union of s−sets, with Hs(E) <∞

then for all k ρs(Ek, x) = ρs(E, x) and δs(Ek, x) = δs(E, x) for almost every
x ∈ Ek.

Proof. It’s an easy application of the previous Corollary with F = Ek.

Corollary 3. Given an s−set E,

(a) if E is regular, any measurable subset of E of positive measure is
regular;

(b) if E is irregular, any measurable subset of E of positive measure is
irregular.

Proof. See Definition 17 and Corollary 1.
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Corollary 4. The intersection of a regular set with a measurable set is
regular; the intersection of an irregular set with a measurable set is irregular;
the intersection of a regular set with an irregular set is a set of Hausdorff
measure zero.

Proof. The firs two statements follow immediatly from Corollary 3.
By this same Corollary, the third kind of intersection may give a set both
regular and irregular, leaving as unique possibility that such intersection is
a measure zero set.

The last Corollary of this section is the decomposition theorem which
enables us to treat the regular and irregular parts of an s-set indipendentely.

Corollary 5. If E is an s−set,

(a) the set of regular points of E is a regular s−set;

(b) the set of irregular points of E is an irregular s−set.

Proof. By Lemma 4 the sets of regular and irregular points are measurable,
then we can apply Corollary 1 and conclude.

The notions given till now in the current section were finalized to the
following study about density of s−sets.

But for the question on the tangency existence we have to define a new
type of density, the so called angular density.

Let:

• θ an unit vector;

• φ an angle;

• S(x, θ, φ) the closed one-way infinite cone with vertex x and axis in
direction θ consisting of those points y for which the segment [x, y]
makes an angle of, at most, φ with θ;

• Sr(x, θ, φ) = Br(x) ∩ S(x, θ, φ) the corresponding spherical sector of
radius r.

We define the upper and lower angular densities analogously to spherical
densities.

29



CHAPTER 2. LOCAL PROPERTIES OF S-SETS

Definition 19 (upper and lower angular densities). Given an s-set E, at a
point x ∈ Rn we define

1. the upper density: ρs(E, x, θ, φ) = limr→0
Hs(E ∩ Sr(x, θ, φ))

(2r)s

2. the lower density: δs(E, x, θ, φ) = limr→0

Hs(E ∩ Sr(x, θ, φ))

(2r)s

Definition 20 (s-set with a tangent). An s−set E ⊂ Rn is said to have a
tangent in x in direction ±θ if ρs(E, x) > 0 and for every angle φ > 0 is:

lim
r→0

r−sHs(E ∩ (Br(x)− Sr(x, θ, φ)− Sr(x,−θ, φ))) = 0. (2.10)

The line through x in direction ±θ is of course the tangent line.

Definition 21 (s-set with a weak tangent). An s−set E ⊂ Rn is said to
have a weak tangent in x in direction θ if δs(E, x) > 0 and for every angle
φ > 0 is:

lim
r→0

r−sHs(E ∩ (Br(x)− Sr(x, θ, φ)− Sr(x,−θ, φ))) = 0. (2.11)
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2.2 S-sets with integer s

About the s−sets in Rn when s is an integer number we present the struc-
ture in terms of density and tangency.

We have decided to start by examining the 1 − sets because the theory
concerning them is intimately related to the rectificable curves.

Definition 22 (curve Γ ). A curve Γ is the image of a continuous injection
ψ : [a, b]→ Rn, where [a, b] ⊂ R is a closed interval.

Definition 23 (curve length). We define the length of a curve Γ as

L(Γ ) = sup
m∑
i=1

|ψ(ti)− ψ(ti−1)|

where the supremum is made over all dissections a = t0 < t1 < · · · < tm = b
of [a, b].

Definition 24 (rectificable curve). A curve is called rectificable if

L(Γ ) <∞.

We now show a lemma which identifies the one-dimensional Hausdorff
measure of a curve with its length:

Lemma 5. If Γ is a curve, then

H1(Γ ) = L(Γ ).

As a consequence,

Corollary 6. If Γ is a rectificable curve, then

Hs(Γ ) =∞ if s < 1;

Hs(Γ ) = 0 if s > 1.

Lemma 6. Let E be a compact and connetted set and let x, y ∈ E.
If |x− y| = r, then

H1(E ∩Br(x)) ≥ r.

Moreover
H1(E) ≥ |E|.

Lemma 5 and 6 are used to prove the following important property for
the rectificable curves:

Theorem 11. [4] Any rectificable curve is a regular 1−set.
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It isn’t hard to deduce that, if we refer to the tangency defined in Defi-
nition 21,

Theorem 12. [4] A rectificable curve Γ has a tangent at almost all of its
points.

Theorems 11 and 12 solve the problem on density and existence of tan-
gency limited to the rectificable curves.

We try to extend them initially to special 1−sets, these contained in an
union of rectificable curves, that we’ll call Y−sets.

Theorem 13. [4] An Y−set is a regular 1−set and has a tangent at almost
all its points.

We have introduced the Y − sets, starting by the rectificable curves.
In an analogous way we should transfer the properties to the compact and
connetted sets E such that H1(E) < +∞.

The link is given by this remark:

Note 4. Let E be a compact and connected set with H1(E) < ∞. Then E
consists on a countable union of rectificable curves, together with a set of
H1 measure zero.

Being such E an Y − set, for E the Theorem 13 holds and this verifies
that every compact and connected set of H1 finite measure is regular and
shows tangents in almost all its points.

We lead now with subsets of the plane.

We have defined an Y−set to be a subset of an union of rectificable curves;
on the other hand, the sets whose intersection with every rectificable curve
has measure zero are named Z−sets.

An irregular set is surerly a Z−set.

Otherwise, if it intersected a rectificable curve in some point, it would be
regular at least in that part by Theorem 13. So, also its intersection with
E, which is compact and connected and has H1(E) < ∞ must necessarily
have measure zero (see Note 4).

Next aim is to affirm that a Z−set is irregular, to have a precise carachter-
ization of irregular 1−sets.
We start by giving the following estimate for the lower density.
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Theorem 14. [4] Let E be a Z−set in R2. Then δ1(E, x) ≤ 3

4
for almost

all x ∈ E.

The same estimate will hold for an irregular 1−set of R2, having before
declared that an irregular s−set is also a Z−set.

After this, what seems important to deduce from Theorem 14 is that for
a Z−set, it will never be

δ1(E, x) = ρ1(E, x) = D1(E, x) = 1

since there will be a trivial inconsistence with the estimate we have four-
nished. In other words, one Z−set is an irregular 1−set.

The observations we have made till now lead to enunciate one of the most
important theorems of the current section:

Theorem 15 (carachterization of regular and irregular 1−sets). [4]

A 1− set is regular ⇔ it’s an Y − set

together with a set of measure H1 equal to zero.

A 1− set is irregular ⇔ it’s a Z − set;

The first proposition of the Theorem let us definitively answer to the
question about the existence of tangents for the regular 1−sets, by recog-
nizing that these exist in almost all their points, thanks to Theorem 13.

Before facing the problem of tangency also for the irregular 1−sets, we
linger on the “broken” nature of irregular sets.
We remind that:

Definition 25 (totally disconnected set). A set is called totally disconnected
if chosen two distinct points in it, they can’t lay in the same connected
component.

Note 5. An irregular 1−set is totally disconnected.

Such property will be found when we deal with s−sets with 0 < s < 1
(Lemma 10) and may be interpreted as a first clue through the discovery of
the irregularity intrinsic to the sets of non integer dimension. The argument
will be studied in depth in the following section.
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Lemma 7-9 that we are about to show are the foundamental steps nec-
essary for the proof of the non-existence of any tangent in almost all points
of an irregular 1-set.

Lemma 7. Let θ be an unit vector of R2 perpendicular to a line L. Let P
be a parallelogram with sides making angles φ to directions ±θ. Let y and z
be two opposite vertices of P. Then, if d is the length of projection of P onto
L,

|y − z| ≤ d

sinφ
.

Lemma 8. Let E be an irregular 1−set of R2. Then, given θ and 0 < φ <
π

2
,

ρ1(E, x, θ, φ) + ρ1(E, x,−θ, φ) ≥ sinφ

6

for almost all x ∈ E.

Lemma 9. Let E be an irregular 1−set of R2. Then, for almost all x ∈ E,

ρ1(E, x, θ, φ) + ρ1(E, x,−θ, φ) ≥ sinφ

6
>

φ

10

for all θ and for all 0 < φ <
π

2
.

Theorem 16. [4] An irregular 1−set of the plane hasn’t any tangent (in
the meaning of Definition 20) in almost all its points.

We close the section with a Theorem that at the same time sums up the
results already shown and generalizes them for the case of an s−set in Rn
with s any integer number which does not necessarily coincide with 1.

Theorem 17. [4] Let E be an s−set in Rn with integer s. Then the following
propositions are equivalent:

a) E is regular;

b) E is countably rectificable;

b) E has a tangent at almost all of its points.

Definition 26 (countably rectificable s−set 2). An s−set M is called count-
ably rectificable if it can be written

M =
∞⋃
j=1

fj(Ej) +G,

with Hs(G) = 0 and every fj Lipschitz function fj : Ej → Rn, Ej ⊂ Rs.

2This definition can be thought as the analogous of the definition of Y−set when s was
equal to 1.
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2.3 S-sets with non integer s

At the end of the section we’ll have explained that:

• every s−set showing a non integer s is irregular;

• the density, whose meaning has been clarified in section 2.1, fails to
exist at almost all of the points of such s−set;

• the tangents, in the weak sense, are able to exist only for sets of points
of measure zero.

We first deal with the s−sets with 0 < s < 1 because obtaining the local
properties for these sets seems quite simple.

Lemma 10. An s−set E in Rn with 0 < s < 1 is totally disconnetted.

Proof. Let x and y be two distinct points laying in the same connected com-
ponent of E.

Define a mapping f : Rn → [0,∞) by f(z) = |z − x|.

Since f does not increase distances, by Lemma 3,

Hs(f(E)) ≤ Hs(E) <∞

holds.

As s < 1, f(E) is a subset of R of Lebesgue measure zero and has dense
complement.

Choosing a number r with r /∈ E and 0 < r < f(y), we can write E
as

E = {z ∈ E : |z − x| < r} ∪ {z ∈ E : |z − x| > r}

and this is an open decomposition of E with x in one connected component
and y in the other, contraddicting the initial assumption.

It follows that E satisfies the Definition 25 and than is totally discon-
nected.

Theorem 18. [4] If E is an s−set with 0 < s < 1 the density Ds(E, x) fails
to exist at almost every point of E.

35



CHAPTER 2. LOCAL PROPERTIES OF S-SETS

Proof. Suppose the conclusion is false that is E has a measurable subset
where the circular density Ds(E, x) exists.

By (2.9) such density must be at least 2−s and being 0 < s < 1 we have

2−s >
1

2
.

Choosing β small enough we may find an s−set F ⊂ E such that if x ∈ F
then Ds(E, x) exists and ∀ r ≤ β

Hs(E ∩Br(x)) >
1

2
(2r)s. (2.12)

holds.

By regularity of Hs we may further assume that F is closed.

Given y an accumulation point of F and η a number with 0 < η < 1,
we denote Ar,η the anular region Br(1+η)(y)−Br(1−η)(y).

We can then write:
(2r)−sHs(E ∩Ar,η) =

= (2r)−sHs(E ∩Br(1+η)(y))− (2r)−sHs(E ∩Br(1−η)(y))

which, by Density definition, if r → 0

→ Ds(E, y)((1 + η)s − (1− η)s). (2.13)

On the other hand, for arbitrary small values of r, we may find x ∈ F
with |x− y| = r, so

B1/2rη(x) ⊂ Ar,η

and, by (2.12) replacing r with
1

2
rη we have

1

2
(rη)s < Hs(E ∩B1/2rη(x)) ≤ Hs(E ∩Ar,η).

Considering first and last member of this inequality we can write in (2.13)

(2r)−s
1

2
(rη)s ≤ Ds(E, y)((1 + η)s − (1− η)s)

that is

2−(s+1)ηs ≤ Ds(E, y)((1+η)s− (1−η)s) = Ds(E, y)(2sη+0(η2)) for η → 0.

This fact, if s < 1 is impossible by (2.9), so we have found the contraddiction
and we can conclude that a set E satisfying the hypothesis of Theorem fails
to have density in almost all its points.
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Corollary 7. Every s− set with 0 < s < 1 is irregular.

Proof. It follows directly by the Theorem we have just proved keeping in
mind the Definition of irregular s−set enunciated at the beginning of section
2.1.

Theorem 19. [4] Let θ be a unit vector and let φ <
1

2
π. Then, if E is an

s−set with 0 < s < 1 we have

δs(E, x, θ, φ) = 0

in almost all x ∈ E.

Proof. Again in this proof we proceed by supposing to the contrary and
assume that we may find β0, α > 0 and an s−set F ⊂ E such that ∀ x ∈ F
and r ≤ β0

Hs(E ∩ Sr(x, θ, φ)) > αrs. (2.14)

The relations (2.8) and (2.9) make then sure that we can choose an y ∈ F
for which

Ds(E − F, y) = 0 and ρs(E, y) = c2−s with 0 < c <∞.

As a consequence, given ε > 0, there exists β1 ≤ β0 such that, if r ≤ β1,
then

Hs((E − F ) ∩Br(y)) < εrs (2.15)

and
Hs(E ∩Br(y)) < (c+ ε)rs. (2.16)

We choose β ≤ 1

2
β1 such that

(c− ε)βs < Hs(E ∩Bβ(y)). (2.17)

Let be x ∈ F ∩Bβ(y) that maximizes the scalar product x · θ. Then

(F ∩Bβ(y)) ∪ (F ∩ Sr(x, θ, φ)) ⊂ F ∩Bβ+r(y)

where the union is disjoint except for the point x.

If we calculate the Hausdorff measures, we see

Hs(F ∩Bβ(y)) +Hs(F ∩ Sr(x, θ, φ)) ≤ Hs(F ∩Bβ+r(y))

and
Hs(F ∩Bβ(y)) +Hs(F ∩ Sr(x, θ, φ)) ≤

≤ Hs(E ∩Bβ+r(y)) + 2Hs((E − F ) ∩Bβ+r(y)).
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If r ≤ β, it’s also β + r ≤ β1 then, using (2.14)-(2.17) we have

(c− ε)βs + αrs < (c+ ε)(β + r)s + 2ε(β + r)r.

Let’s call γ the fraction r/β to obtain, for 0 < γ < 1,

c− ε+ αγs < (c+ 3ε)(1 + γ)s.

This must hold for every ε ≥ 0, thus

c+ αγs ≤ c(1 + γ)s ≤ c+ csγ

that contraddicts the hypothesis of α being > 0.

The question of the existence of tangents to s-sets where 0 < s < 1 is
not of particular interest as such sets are so sparse as to make an idea of
approximation by line segments raither meaningless.

Although we are of course able to find fractal sets for which 0 < s < 1
(see the very famous Cantor set in the next chapter) we have at our disposal
much more examples if we extend our study to objects for which s > 1.
It may be satisfactory for now to remain inside a plane where that “patholog-
ical monster, but of a concrete interest”, to cite another time B. Mandelbrot,
constitued by the “Koch curve”, and also the “Sierpinski Triangle” live.

Next theorems are then about s-sets where 1 < s < 2.

Let’s start by asking the question of the existence of tangents at some point
x belonging to an s−set E of the plane with non-integer s.
We’ll use the answers obtained to make statements about the spherical den-
sity.

We want to prove that E does not have tangents at almost all its point
neither in a weak sense, that is referring to Definition 21.

Lemma 11. Let E an s−set in R2 with 1 < s < 2. Thus for almost every
x ∈ E

ρs(E, x, θ, φ) ≤ 4 · 10sφs−1

for all θ and for all φ ≤ π

2
.

Proof. Let’s fix β > 0 and define

F = {x ∈ E : Hs(E ∩Br(x)) < 2s+1rs ∀r ≤ β}. (2.18)
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We choose a point x in F, a vector θ and an angle φ with 0 < φ ≤ π

2
.

For i = 1, 2, · · · let

Ai = Sirφ(x, θ, φ)− S(i−1)rφ(x, θ, φ),

so that

Sr(x, θ, φ) ⊂
m⋃
1

Ai ∪ {x}

for an integer m <
2

φ
.

The diameter of each set Ai if r is <
β

20
is at most 10rφ < β. Then,

applying (2.18) to each Ai that contains points of F and summing, we have

Hs(F ∩ Sr(x, θ, φ)) ≤ 2φ−12s+1(10rφ)s

and

(2r)−sHs(F ∩ Sr(x, θ, φ)) ≤ 4 · 10sφs−1

se r <
β

20
.

In this way, leading to limit, we would obtain

ρs(F, x, θ, φ) ≤ 4 · 10sφs−1,

but

ρs(E − F ) = 0

for almost all x ∈ F (see Corollary 1). The proof of the lemma is till now
concluded only for almost all x ∈ F, but the inequality (2.9) makes sure
that almost every point of E is in F for some β > 0 and finally the lemma
is proved.

Corollary 8. Let E be an s−set in R2 with 1 < s < 2, then at almost all
points of E no weak tangent exists.

Proof.

lim
r→0

r−sHs(E ∩ (Br(x)− Sr(x, θ, φ)− Sr(x,−θ, φ))) ≥

applying both the definitions of lower spherical density and upper angular
density

≥ δs(E, x)− ρs(E, x, θ, φ)− ρs(E, x,−θ, φ) ≥

by Lemma 11
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≥ δs(E, x)− 4 · 10sφs−1 − 4 · 10sφs−1 = δs(E, x)− 8 · 10sφs−1

for all θ and φ <
π

2
and for almost every x ∈ E.

Thus at such points, for φ sufficiently small, the lim can’t be = 0 and the
Corollary is proved.

Having recorded the non-existence of tangents in almost every point of
an s−set E with 1 < s < 2, it remains now to find an answer also to the
second of the two questions which play their role in this chapter, that is the
existence of spherical density.

We proceed by analysing results concerning the angular density and then
transferring them to the circular ones.

Let’s start with the following Theorem which is the analogous to Theorem
19 showed for 0 < s < 1.

Theorem 20. [4] Let E be an s−set in R2 with 1 < s < 2. Then if φ <
π

2
the lower angular density δs(E, x, θ, φ) is zero for some θ for almost all
x ∈ E.

Proof. Fix two positive numbers α and β to define the set

F0 = {x : Hs(E ∩ Sr(x, θ, φ)) > αrs

∀ r ≤ β e ∀ θ}. (2.19)

We want to show that Hs(F0) = 0 to have the thesis.

Suppose the contrary, then by 2.9 we can find β1 ≤ β and a set F ⊂ F0 of
positive measure such that if x ∈ F and r ≤ β1 then

Hs(E ∩Br(x)) < 2s+1rs. (2.20)

Moreover we may think by the Hausdorff measure regularity F to be closed.

Let y be a point of F at which the circular density of E − F is zero.
Corollary 1 makes sure that this fact is true for almost every point in F.
Hence, given ε > 0, we may choose β2 ≤ β1 such that if r ≤ β2

Hs((E − F ) ∩Br(y)) < εrs. (2.21)

We now work inside the disc Bβ2(y). First we show that there are points in
B1/2β2(y) relatively remote from the set F.

To do this, suppose that for some γ ≤ 1

2
β2 all points of Bβ2(y) are within

distance γ from F.
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Then if x ∈ Bβ2(y), there exists a point z of F inside Bγ(x).
By (2.19)

αγs < Hs(E ∩ Sγ(z, θ, φ)) ≤ Hs(E ∩Bγ(z)) ≤ Hs(E ∩B2γ(z)). (2.22)

holds for any θ.

If γ is <
1

4
β2, so Bβ2(y) contains (β2/γ)2/16 disjoints discs with centers

in B1/2β2(y) and with radius equal to 2γ.

Consequently, by (2.22) and summing over these discs, we have:

(β2/γ)2αγs/16 < Hs(E ∩Bβ2(y)) < (2.20) < 2s+1βs2.

Looking at first and last member of the inequality, developping the calcula-
tions and considering that 1 < s < 2 we obtain

γ > cβ2

with c dependent only on s and on α.

Thus, if γ is ≤ cβ2, there will be a disc of radius γ containing Bβ2(y)
but not containing points of F.

Moreover we may find a disc Bβ3(w) ⊂ Bβ2(y) with no points of F in its
interior part but with its boundary containing a point ν of F0 with

β2 ≥ β3 ≥ cβ2. (2.23)

Let θ be the inward normal direction to Bβ3(w) at ν and let β4 be half the
length of the chords of Bβ3(w) through ν that make angles φ with θ.
Of course

β4 = β3 cos(φ). (2.24)

Since the sector Sβ4(ν, θ, φ) lies in Bβ3(w), it contains no points of F other
than ν.

Using all the equations (2.21), (2.23) e (2.24) we can write:

Hs(E ∩ Sβ4(ν, θ, φ)) = Hs((E − F ) ∩ Sβ4(ν, θ, φ)) ≤

≤ Hs((E − F ) ∩Bβ2(y)) < εβs2 < εc1β
s
4,

with c1 dependent only on φ, α and s.

We have till now seen that it’s possible to find ν ∈ F0, β4 with 0 < ν < β
and a dirction θ for which

Hs(E ∩ Sβ4(ν, θ, φ)) < εc1β
s
4.
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But just this relation is in contrast to the initial definition of F0 and we
have to affirm that Hs(F0) = 0. Since the proof continues to hold for all α
and β > 0, this ends by remembering the definition of δs(E, x, θ, φ).

Corollary 9. Let E be an s−set in R2 with 1 < s < 2. Then in almost

every point of E the lower angular density δs(E, x, θ,
π

2
) is zero for some θ.

Proof. Take a sequence of angles {φi} increasing to
π

2
.

By Theorem 20 for almost all x ∈ E we may find a sequence of direc-
tions {θi} such that δs(E, x, θi, φi) = 0 ∀ i.

Extracting a convergent subsequence {θi}, we can assume that θi → θ.

It follows that δs(E, x, θ, φ) = 0 for any φ <
π

2
.

Thus, provided x is also not one of the points excluded by result of Lemma

11, by the same Lemma we understand that δs(E, x, θ,
π

2
) = 0.

We next examine the lower angular density of regular s−sets, where s is
not integer, in R2.
We’ll see that it’s a strategy whose aim is to affirm that actually such sets
do not exist or better the only possibility for them is having measure zero.

Lemma 12. Let E be an s−set in R2 with 1 < s < 2. Let x be a regu-
lar point of E at which the upper convex density equals 1, and suppose that

δs(E, x,−θ, π
2

) = 0 for some θ. Then E has a weak tangent at x perpendic-

ular to θ.

Proof. By the hypothesis, ρsc(E, x) = 1 and x is a regular point of E, so the
circular density exists and is Ds(E, x) = 1.

Given η > 0 it’s possible to find arbitrarily small values of β such that

Hs(E ∩Br(x)) > 2srs(1− η) if r ≤ β, (2.25)

Hs(E ∩ U) < (1 + η)|U |s if x ∈ U and 0 < |U | ≤ 2β, (2.26)

Hs(E ∩ Sβ(x,−θ, π
2

)) < 2sηβs. (2.27)

With 0 < φ <
π

2
, let L be a line through x and perpendicular to θ, wheras

let M and M ′ be the half-lines from x forming an angle φ to θ.
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For a fix positive integer m we construct inductively a sequence of m + 1
semicircles Sri each of radius ri, with center in x and diameter on L, with
β = r0 > ri > · · · > rm.

For each i the semicircle Sri will have the extremes of diameter yi and
y′i on L, and will intersect M and M ′ in points respectively called zi and z′i.

Suppose now Sri has been constructed. Sri+1 is specified by taking yi+1

to be the point on the segment [x, yi] such that

d(yi+1, y
′
i) = d(yi+1, yi) + d(yi+1, z

′
i).

If we draw an arc with center yi+1 through z′i to meet L in y′i+1, by simmetry
the arc with center y′i+1 through zi meets L in yi+1.

We denote Ui the convex part of Sri cut off by these arcs. We have:

|Ui| = 2ri+1. (2.28)

We estimate the measure of the part of the set E contained between two
consecutive sectors bounded by M and M ′.

Sri(x, θ, φ)− Sri+1(x, θ, φ) ⊂ Ui − Sri+1(x, θ,
π

2
) ⊂

⊂ Ui ∪ Sβ(x,−θ, π
2

)−Bri+1(x),

so
Hs(E ∩ Sri(x, θ, φ)−Hs(E ∩ Sri+1(x, θ, φ) ≤

≤ Hs(E ∩ Ui) +Hs(E ∩ Sβ(x,−θ, π
2

))−Hs(E ∩Bri+1(x)) <

using (2.25)-(2.27) < (1 + η)|Ui|s + 2sηβs − 2srsi+1(1− η) ≤

(2.28) ≤ 2s+1ηrsi+1 + 2sηβs ≤ 2s+2ηβs.

From suc estimate, summing over all the m sectors, we have:

Hs(E ∩ Sβ(x, θ, φ) < Hs(E ∩ Srm(x, θ, φ) + 2s+2ηβsm <

(2.26) < 2s(1 + η)rsm + 2s+2ηβsm.

By virtue of the construction described above, rm/β depends only on φ and
m, and so it tends to zero as m→∞.

Hence, given ε > 0, we may find m indipendent of η such that, for arbi-
trarily small value of β and ∀ η > 0 :

Hs(E ∩ Sβ(x, θ, φ) < βs(2s+2ηm+ ε(1 + η)).
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Thus, δs(E, x, θ, φ) = 0 if φ is <
π

2
.

Since in the hypothesis of Theorem δs(E, x,−θ, π
2

) = 0, Definition 21 makes

us affirm that E has weak tangent at x in direction perpendicular to θ.

Corollary 10. Let E be an s−set in R2 with 1 < s < 2. Then E is irregular.

Proof. At almost all points of E :

1. ρsc(E, x) = 1 (Theorem 10);

2. δs(E, x, θ,
π

2
) = 0 for some θ (Corollary 9);

3. E which satisfies the first two statements has a weak tangent at almost
all its regular points (Lemma 12).

The proposition 3. is inconsistent with Corollario 8 which declared the im-
possibility for E of having tangents unless at a subset of measure zero.

Consequently, the regular points must be only a set of measure zero, that is
E is irregular in light of Definition 18.

In order to conclude the chapter we show an important Theorem which
links the results of sections 2.2 e 2.3.

Theorem 21. [4] An s−set in Rn is necessarily irregular unless s is an
integer.
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Chapter 3

The self-similarity in fractal
sets

We have seen how the concepts of fractal sets and irregularity are closely
linked together.
Our purpose is now to show that the degree of irregularity that we meet
when dealing with fractal sets is luckily in some way “the same on different
scales ”.
If we have, for example, to study the features of a coastline, which can be
thought as a clear manifestation of the existence of fractal sets in nature, we
start examining various maps with increasing scales, so that a map shows
more details than the previous one.
We probabiliy notice that all the maps, ignoring the smallest details, have
the same global aspect.
In other words, the chaotic aspect of coastlines is only apparent and hides
some order instead.
While an artist could express the idea painting a firework, a mathematician
theorize the concept we have just tried to introduce in the property of self-
similarity that is the subject of this chapter.

3.1 Self-similar sets

A set is self-similar when it’s built up of pieces geometrically similar to the
entire set but on a smaller scale.
Since many of the classical fractal sets are self-similar, we dedicate the
current section to formalize this property through rigorous definitions and
theroems and try to appreciate their consequences in calculating Hausdorff
dimensions of s-sets.
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Definition 27 (contraction). A mapping

ψ : Rn → Rn

is called a contraction if

|ψ(x)− ψ(y)| ≤ c|x− y|

∀ x, y ∈ Rn, where c is a constant < 1.

Definition 28 (ratio of contraction). We call ratio of contraction the infi-
mum value of c for which the inequality holds ∀ x, y.

Definition 29 (set E invariant for a set of contractions). A set E ⊂ Rn is
called invariant for a set of contractions

ψ1, · · ·ψm

if we it can be written

E =

m⋃
1

ψj(E).

If {ψj}m1 is a set of contractions, let ψ denote the transformation of
subsets of Rn defined by

ψ(F ) =

m⋃
1

ψj(F ),

while the iterates of ψ are indicated by{
ψ0(F ) = F

ψk+1(F ) = ψ(ψk(F )), for k ≥ 0.

Moreover, for any sequence {ψj1 · · ·ψjk}, with 1 ≤ ji ≤ m, and any set E
we’ll write

Ej1···jk = ψj1 ◦ ψjk(E)

and, given a measure µ, the notation

µj1···jk(E)

means
µ((ψj1◦ψjk

)−1(E)).

The first results we show are valid for contractions.

We’ll then define similitude as a special case of contraction and demon-
strate some important specific theorems about self-similarity.
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Theorem 22. [4] Given a set of contraction {ψj}m1 on Rn with contraction
rations rj < 1,

a) there exists a unique non-empty compact set E such that

E = ψ(E) =
m⋃
1

ψj(E), (3.1)

b) if F is any non-empty compact subset of Rn the iterates ψk(F ) con-
verge to E in the Hausdorff metric as k →∞.

Before proving this Theorem, we need to show a result of considerable
importance in geometric measure theory, due to Blaschke (1916), that is the
fact that the family of all non-empty compact subsets of Rn is a complete1

metric space with the Hausdorff metric.

Let’s start giving the notion of Hausdorff metric.

If E ⊂ Rn, the δ−parallel body of E is the closed set of points within distance
δ of E :

[E]δ = {x ∈ Rn : inf |x− y| ≤ δ}.

The Hausdorff metric δ is defined on the collection of all non-empty compact
subsets of Rn by

δ(E,F ) = inf{δ : E ⊂ [F ]δ and F ⊂ [E]δ}.

Theorem 23 (Blaschke selection theorem). [4] Let C be an infinite collec-
tion of non-empty compact sets all lying in a bounded portion B of Rn. Then
there exists a sequence {Ej} of distinct sets of Cconvergent in the Hausdorff
metric to a non-empty compact set E.

Proof. We produce a Cauchy sequence of sets from C

Let {E1,i}i be any sequence of distinct sets of C

For each k > 1 we define an infinite subsequence {Ek,i}i of {Ek−1,i}i in
the following way:

if βk is a finite collection of closed balls of diameter, at most, 1/k, cov-
ering B, each Ek−1,i intersects some specific combination of these balls.

So there must be an infinite subcollection {Ek,i}i of {Ek−1,i}i which all
intersects precisely the same balls of βk.

1A metric space M is called complete if every Cauchy sequence in M converges in M.
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If F is the union of the balls of βk in a particular combination, then

Ek,i ⊂ F ⊂ [Ek,i]1/k ∀ i

so that

δ(Ek,i, F ) ≤ 1/k,

giving

δ(Ek,i, Ek,j) ≤ 2/k ∀ i, j.

Letting Ei = Ei,i, we have

δ(Ei, Ej) ≤ 2/min{i, j}, (3.2)

so we have produced the Cauchy sequence {Ei}i.

For the convergence, we call

E =
∞⋂
j=1

∞⋃
i=j

Ei.

Being the intersection of a decreasing sequence of non-empty compact sets,
E is a non-empty compact self itself.

By (3.2)
∞⋃
i=j

Ei ⊂ [Ei]2/j ,

so

E ⊂ [Ej ]2/j ∀ j.

On the other hand, if x ∈ Ej , again by (3.2),

x ∈ [Ei]2/j if i ≥ j,

so

x ∈ [

∞⋃
i=k

Ei]2/j if k ≥ j.

Let’s choose yk ∈
⋃∞
i=k Ei with |x− yk| ≤ 2/j.

By compactness, a subsequence of {yk} converges to some y ∈ Rn with
|x− y| ≤ 2/j.

But y ∈ E, so x ∈ [E]2/j .
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We can conclude that Ej ⊂ [E]2/j and hence that

δ(E,Ej) ≤ 2/j.

Thus Ej converges to E in the Hausdorff metric.

We are now able to prove the Theorem 22.

Proof. Let C be the class of non-empty compact subsets of Rn.

By the Blaschke selection theorem, (C, δ) is a complete metric space.

If F1, F2 ∈ C, then from the definition of δ

δ(ψ(F1), ψ(F2)) = δ(

m⋃
1

ψj(F1),

m⋃
1

ψj(F2)) ≤

≤ max
j
δ(ψj(F1), ψj(F2)) ≤

≤ (max
j
rj)δ(F1, F2).

Since from the hypothesis maxj rj < 1, ψ is a contraction mapping on C.

It follows from the contraction mapping theorem for complete metric spaces
that there exists a unique E ∈ C with

ψ(E) = E ↔ (a).

Moreover,

δ(ψk(F ), E)→ 0 as k →∞ for any F ∈ C↔ (b).

Definition 30 (open set condition for contractions). We say that the open
set condition holds for the contractions {ψj}m1 if there exists a bounded open
set V such that

ψ(V ) =
m⋃
j=1

ψj(V ) ⊂ V (3.3)

where the union is disjoint.

Note 6. We can say that:

1. The sets {Vj1,···jk}, where k is arbitrary form a net, that is any pair of
sets from the collection are either disjoint or else have one included in
the other;
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2. E is included in V̄ .

Proof. 1. If we apply the transformation ψj1,···jk , where k is arbitrary, to
the sets {Vj1,···jk} we obtain

m⋃
j=1

Vj1,···jk ⊂ Vj1,···jk

with a disjoint union.

2. Since {ψk(V̄ )}k is a decreasing sequence of compact sets convergent
to E in the Hausdorff metric (see Theorem 22), it’s impossible that

E =

∞⋂
k=0

ψk(V̄ )

has points outside V̄ .

Taking images under ψj1,···jk we have Ej1,···jk ⊂ V̄j1,···jk and, of course, by
continuity of contractions, ψj(V̄ ) ⊂ ¯ψj(V ).

Definition 31 (similitude). A similitude is a contraction which transforms
every subset of Rn to a geometrically similar set.

If φ is a similitude
|φ(x)− φ(y)| = r|x− y|

∀ x, y ∈ Rn where r < 1 is the ratio or the scale factor of the similitude.

Thus a similitude is a composition of a dilatation, a rotation, a traslation
and perhaps a reflection.

Definition 32 (self-similar set). If a set E ⊂ Rn is invariant (see Definition
29) for a set of similitudes {φj}m1 and for some s we have

Hs(E) > 0 but Hs(φi(E) ∩ φj(E)) = 0 for i 6= j,

E is self-similar.

We can repeat the definitions of invariant set E and of the open condition
for a set of similitudes instead of a set of contractions, having:

Definition 33 (open set condition for similitudes). We say that the open
set condition holds for the similitudes {φj}m1 if there exists a bounded open
set V such that

φ(V ) =

m⋃
j=1

φj(V ) ⊂ V (3.4)
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where the union is disjoint.

The aim is now the prove of the fact that if the open set condition holds,
then the invariant for similitudes set E is self-similar and its Hausdorff di-
mension (see Chapter 1, Definition 10) and similarity dimension coincide.

Definition 34 (similarity dimension). The similarity dimension is the unique
positive number s for which

m∑
1

rsj = 1 (3.5)

where {rj}m1 are the ratios of the set of similitude {φj}m1 .

Both dimensions can be interpreted as the “fractal dimension” of an
s−set, so, if our treatment is consistent, it’s necessary they are equal.
The advantage is that the similarity dimension is often easier calculable than
the other one.

If, in particular, r1 = · · · = rm = r, (3.5) becomes

mrs = 1,

s = logr(
1

m
)

and

s =
logm

log
1

r

. (3.6)

We’ll test this in the following section when we’ll calculate the fractal di-
mension of Cantor set.

Lemma 13. Let {Vi} be a collection of disjoint open subsets of Rn such that
each Vi contains a ball of radius c1ρ and is contained in a ball of radius c2ρ.
Then any ball B of radius ρ intersects, at most, (1 + 2c2)

nc−n1 of the sets V̄i.

Proof. If V̄i meets B, then V̄i is contained in a ball concentric with B and
of radius (1 + 2c2)ρ.

If q of the {Vi} meet B, we sum the volumes of the corresponding inte-
rior balls, having

q(c1ρ)n ≤ (1 + 2c2)
nρn

and
q ≤ (1 + 2c2)

nc−n1
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that is the bound we wanted for q.

Theorem 24. [4] Suppose the open set condition holds for the similitudes
{φj}m1 with ratios {rj}m1 . Then the associated compact invariant set E is an
s−set, where s is determined by

m∑
1

rsj = 1;

in particular 0 < Hs(E) <∞.

Proof. First, we look for the upper bound.

Iterating (3.1) we obtain

E =
⋃

j1,···jk

Ej1,···jk

and ∑
j1···jk

|Ej1···jk | =
∑
j1···jk

|E|s(rj1 · · · rjk)s = |E|s.

As |Ej1···jk | ≤ (maxj rj)
k|E| −→ 0 as k →∞, we conclude that

Hs(E) ≤ |E|s <∞. (3.7)

For the lower bound, we use the Lemma 13.

Suppose the open set V which satisfies the equation (3.4) of the open set
condition contains a ball of radius c1 and is contained in a ball of radius c2.

Take any ρ > 0. For each infinite sequence {j1, j2, · · · } with 1 ≤ j1 < m,
curtail the sequence at the least value of k ≥ 1 for which

(min
j
rj)ρ ≤ rj1 · · · rjk ≤ ρ (3.8)

and let S denote the set of finite sequences obtained in this way.

It follows from the net property of the open sets that {Vj1···jk : j1, · · · jk ∈ S}
is a disjoint collection.

Each such Vj1···jk contains a ball of radius c1rj1···jk and hence, by (3.8),
one of radius c1(minj rj)ρ.

Similary, it’s contained in a ball of radius c2rj1···jk and so in a ball of radius

52



CHAPTER 3. THE SELF-SIMILARITY IN FRACTAL SETS

c2ρ.

By Lemma 13 any ball B of radius ρ intersects, at most

q = (1 + 2c2)
nc−n1 (min

j
rj)
−n

sets of the collection {V̄j1···jk : j1, · · · jk ∈ S}.

It can be proved that there exists a Borel measure µ with support contained
in E such that µ(Rn) = 1 and for any measurable set F

µ(F ) =

m∑
j=1

rsjµ(φ−1j (F )). (3.9)

Consequentely, µj1···jk has support contained in Ej1···jk and

µj1···jk =
∑
j

rsjµj1···jk j . (3.10)

Also µj1···jk(Rn) = 1 and support(µj1···jk) ⊂ Ej1···jk ⊂ V̄ for any {j1, · · · jk}.

Iterating (3.10) as appropriate we see that

µ =
∑

j1···jk∈S
(rj1···jk)sµj1···jk ,

so that
µ(B) ≤

∑
(rj1···jk)sµj1···jk(Rn)

where the sum is over those sequences {j1, · · · jk} in S for which V̄j1···jk
intersects B.

Thus, using (3.8),
µ(B) ≤ qρs = q2−s|B|s

for any ball with |B| < |V |.

But, given a cover {Ui} of E, we may cover E by balls {Bi} with |Bi| ≤ 2|Ui|,
so

1 = µ(E) ≤
∑

µ(Bi) ≤ q2−s
∑
|Bi|s ≤ q

∑
|Ui|s.

We may now choose {Ui} to make
∑
|Ui|s arbitrarily close to Hs(E), so

Hs(E) ≥ q−1 > 0. (3.11)

(3.7) and (3.11) are the bounds required for Hs(E).
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Corollary 11. If the open set condition holds, then Hs(φi(E) ∩ φj(E)) =
0 (i 6= j), so, in particular, E is self-similar.

Proof. Since φj are similitudes,

m∑
j=1

Hs(φj(E)) =

m∑
j=1

rsjH
s(E) = 1 ·Hs(E) = Hs(E).

By the previous Theorem, 0 < Hs(E) <∞, so only if Hs(φi(E)∩ φj(E)) =
0, (i 6= j), we can have

m∑
j=1

Hs(φj(E)) = Hs(
m⋃
1

ψj(E)) = (3.1) Hs(E).

Hs(φi(E) ∩ φj(E)) = 0, (i 6= j), Hs(E) > 0 and the invariance of E give
the self-similarity.
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3.2 Cantor dust

Let’s work on a real line: we meet an s-set, obviously with 0 < s < 1,
which has been sometimes mentioned through the thesis because it has non-
integral Hausdorff dimension and is also self-similar: the Cantor set.
Being a set of points of the line, the study of its geometry can be easy and
an advantage is that the methods may be extended to talk about sets of
higher dimension.

A possible disadvantage is on the contrary due to the very few points that
form this set, so that an intuitive idea of it is hard to imprint in mind.
This explains the choice of calling the section “Cantor dust” instead of the
simpler “Cantor set”: we’ll see by the construction we now describe that
Cantor set gradually “pulverizes”.

Let
E0 = [0, 1],

E1 = [0, 1/3] ∪ [2/3, 1],

E2 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1], ...

So Ej+1 is obtained by removing the open middle third of each interval in
Ej ; see figure 3.1.

Figure 3.1: the first six steps in the construction of Cantor set

Then Ej consists on 2j intervals, each of length 3−j .

The sequence obtained is a subset of the line for which

E0 ⊃ E1 ⊃ E2 ⊃ · · · ⊃ Ej ⊃ · · ·

and the collection of closed intervals that occur in Ej form a net, that is,
any two such intervals are either disjoint or else one is contained in the other.

Cantor’s set is the closed and dense set

E =

∞⋂
j=0

Ej .
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Although the “pulverization” is evident, we can be persuaded that some
points are left and Cantor set E isn’t empty.

If [a, b] is a closed interval in one of the Ej , thus the extremes a, b are
in all the other sets Ek, with k > j, and also in their intersection E.

We refer at the moment to the Lebesgue measure and try to calculate the
length of E.

Theorem 25. The Lebesgue measure of Cantor set is equal to zero.

Proof. Every Ej consists of 2j closed intervals whose length is 3−j .

The total length of an entire Ej is (2/3)j and the Lebesgue measure of
E is

lim
j→∞

(
2

3

)j
= 0.

This result isn’t useful to give information of the geometry of Cantor
dust, so we decide to involve the Hausdorff measure.

We’ll procede in the following way: we explicitily calculate, or better es-
timate, Hausdorff dimension and measure of E using only definitions and
theorems of Hausdorff measure illustrated in the first chapter.

We then recognize the fractal set to be self-similar and show that the simple
computation of the similary dimension gives the same result, in agreement
with the Theorem 24 of the previous section.

Theorem 26. [7] Let E be the Cantor set described above. Then:

a) Hausdorff dimension of Cantor set is

s =
log 2

log 3
= 0.6309...;

b) Hausdorff measure is Hs(E) = 1.

Proof. To estimate a) and b), we show separately the upper and the lower
bounds.

We shall start with the upper bound because it’s as usual much simpler
to find than the other one.
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This is due to the definition: a judiciously chosen covering will give an
upper estimate, but a lower estimate requires finding an infimum over arbi-
trary coverings.

Since E may be covered by the 2j intervals of length 3−j that form Ej ,
we see that

Hs
3−j (E) ≤ 2j3−sj .

In order for this upper bound to be useful, it should stay bounded as j →∞.

The smallest value of s for which this happens is given by

2 · 3−s = 1

that is

3s = 1;

log3(3)s = log3(2);

s =
log 2

log 3
.

For this choice of s we have:

Hs(E) = lim
j→∞

Hs
3−j (E) ≤ 1

and

dim E ≤ log 2

log 3
. (3.12)

To prove the opposite inequality we shall show that

Hs(E) ≥ 1/4 (3.13)

which will directly give

dim E ≥ log 2

log 3
. (3.14)

We reduce the problem to other easier to derive, showing that they are
equivalent to (3.13).

• to have (3.13) it suffices to show that∑
j

|Ij |s ≥ 1/4 (3.15)

whenever open intervals I1, I2, · · · cover E;

• we may assume that there were only I1, · · · In because E is compact
and finitely many Ij ’s cover E;
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• since E has no interior points we can, making Ij slightly larger if
necessary, assume that the end-points of each Ij are outside E, then
there is δ > 0 such that the distance from all these end-points to E is
at least δ. Choosing k so large that

δ > 3−k = |Ik,i|,

it follows that every interval Ik,j is contained in some Ij ;

• we have now to show that for any open interval I and fixed `,∑
I`,i⊂I

|I`,i|s ≤ 4|I|s. (3.16)

This gives (3.15), since

4
∑
j

|Ij |s ≥
∑
j

∑
Ik,i⊂Ij

|Ik,i|s ≥
2k∑
i=1

|Ik,i|s = 1.

Let then verify (3.16).

Suppose there are some intervals I`,i inside I and let n be the smallest
integer for which I contains some In,i. Then n ≤ `.

Let In,j1 , · · · In,jp be all the n−th generation intervals meeting I.

Then p ≤ 4, since otherwise I would contain some In−1,i.

Thus

4|I|s ≥
p∑

m=1

|In,jm |s =

p∑
m=1

∑
I`,i⊂In,jm

|I`,i|s ≥
∑
I`,i⊂I

|I`,i|s

and (3.16) is proved, from which (3.15) and (3.13)⇒ for (3.12) and (3.14)

dim E =
log 2

log 3
.

Actually it is not hard to show that (3.15) can be improved to∑
j

|Ij |s ≥ 1.

We proceed in the way illustrated above until, after a finite number of steps,
we reach a covering of E by equal intervals of length 3−j ; these must include
all the intervals of Ej so the inequality holds for this covering and also for
the original covering of Ij , which gives the precise value

Hs(E) = 1.
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Note that there is nothing special about the factor 1/3 used in the con-
struction of the Cantor set.

We could take 0 < λ < 1/2 and define

E0 = [0, 1]

E1 = [0, λ] ∪ [1− λ, 1]

...

and continue the process deleting from the middle of each interval in Ej an
interval of length (1− 2λ)λk−1. So every Ej consists of 2j intervals, each of
length λj . We call these Cantor sets E(λ).

Repeating the prove we’ll have that

dim E(λ) =
log 2

log(1/λ)
.

Note also that dim E(λ) measures the sizes of the Cantor sets in a natural
way: when λ increases, the sizes of deleted holes decrease and the set E(λ)
become larger, together with the increasing of dim E(λ).

Moreover, when λ runs from 0 to 1/2, dim E(λ) takes all the values be-
tween 0 and 1.

We look for the self-similarity in E.
E may be seen as a union of two copies of itself scaled of a factor equal to
1/3, or else as a union of 4 copies of itself scaled of a factor equal to 1/9,
and also as a union of 16 copies scaled of 1/27, see again figure 3.1.

For example, we can write

E =
1

3
E ∪

(
2

3
+

1

3
E

)
,

or

E =
1

9
E ∪

(
2

9
+

1

9
E

)
∪
(

2

3
+

1

9
E

)
+

(
8

9
+

1

9
E

)
.

After these observations, it seems clear that E satisfies the Definition 33 of
open set condition and, by Corollary 11, it’s self-similar.

The Cantor dust is in particular the unique compact set invariant under
the similitudes of the real line

φ1(x) = x/3, φ2(x) = (2 + x)/3
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and, referring to Definition 34,

m = 2, r1 = r2 =
1

3

so we can use (3.6) to calculate the similarity dimension

s =
logm

log 1/r
=

log 2

log 3
≈ 0, 6309...,

that coincides with dim E, according with Theorem 24.
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3.3 Koch coast and island

Let’s go back to the comparison with the coastlines which opened the chap-
ter and try to simplify the sequence of examined maps.

Assume the drawing of a piece of coast in scale 1/10000 to be an equi-
later triangle.

The new visible detail on a map representing one arm of the same coast
in scale 3/10000 replaces the middle third of this arm by an headland whose
shape is an equilater triangle, to give rise to 4 congruent segments.

Increasing the scale, at 9/10000, other 4 segments come up on each pre-
vious 4, the new smaller of a factor equal to 1/3, so that smaller headlands
are born.

If we go on infinitely, we meet a limit called Von Koch curve, that we have
named Von Koch coast in order to give a geographic (not only a mathe-
mathic!) concept in minds.

That’s another case in which a fractal set, subset of the plane, reflects well
a feature of the nature and, if somebody can judge the model inaceptable,
this must surerly not be because it’s too irregular, but perhaps because its
irregularity is too systematic.

More technically, we consider a segment P0, for example the interval [0, 1].

The following set P1 is obtained by dividing P0 into 3 parts and replac-
ing the central part with a point.

This point consists of 2 arms forming an angle of 60◦ and each measures
1/3 `(P0), where `(P0) stands for the length of the segment P0.

We have till now a broken line of four equal segments.

The operation described is iterated for each of these 4 segments to give
P2, another broken line of 16 segments that measure 1/9 `(P0).

The limit for k →∞ of the sequence {Pk} produced is the Koch curve.

The Figure in the next page may make clear any possible imprecision left
by words.
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Figure 3.2: the first 5 steps in the construction of Koch curve.

For fixed k, the set Pk consists of 4k segments whose length is
1

3k.

We examine some properties of this curve:

• Being a curve, von Koch coast’s surface equals to zero;

• every set Pk consists on 4k segments of length 1/3k;

• Koch curve has an infinite length. In effect, if `(P0) = `0 is the length
of the initial segment,

`(Pk) = 4k`0
1

3k

and

`(P ) = lim
k→∞

(
4

3

)k
=∞.

• P is self-similar, withm = 4 and r1 = · · · rm =
1

3
, so we easily calculate

the fractal dimension with the equation (3.6) which gives:

s =
log 4

log 3
≈ 1, 2618;

• a curious fact is that this “piece of coast” we are about to consider,
which is surerly a continuous curve, being an s−set laying in the plane
with non integer s, hasn’t tangent in any point for Corollary 8.
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What happens if we assemble three copies of the Koch curve?

Let A0 be the equilater triangle, one side of which is the unit interval.
We apply the same process defining the Koch curve, but to the three seg-
ments constituting the set A0.

This procedure produces a star with six vertices which we may imagine
as an equilater hexagon, each side of which carries an equilater triangle of
side length 1/3.

The next application adds 12 smaller equilater triangles of side length 1/9.
Continuing this procedure produces the contour of a set just consisting of
three copies of the Koch curve.

It is known as the Koch snow flake, but the idea of it being surrounded
by water and the purpuse to keep on with the geographic comparison leads
me to calling it the Koch island, see Figure 3.3.

Figure 3.3: The first 6 steps in the construction of Koch island

The Koch island has infinite length because we have seen that already one
third of the island’s coastline has infinite length.

And what about the surface that the coast of the island surrounds? This
can be naturally inscribed in a regular hexagon and so it’s a finite area.

An infinite curve which contains a finit area is one of the fascinating facts
met when studying fractal sets.
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3.4 Sierpinski triangle

We remain inside the plane and discover a new s−set with 0 < s < 1.

Take an equilater triangle T0 with side length 1.

Connecting the mid-points of the sides by straight line segments divides

T0 into four equilater triangles of side length
1

2
each.

Just as done in the construction of the Cantor set, we delete the open middle
triangle to obtain the set A1.

Continuing in this way with everyone of the 3 equilater triangles and defin-
ing Tk the compact set obtained at the k−th step, we achieves the Sierpinski
triangle

T =

∞⋂
k=1

Tk.

Figure 3.4: The first 5 steps in the construction of Sierpinski triangle.

In the set Tk there are 3k triangles of side length

(
1

2

)k
, so the calculation

of area is

A(Tk) =

√
3

4

(
3

4

)k
so the Lebesgue measure two-dimensional of T is

lim
k→∞

√
3

4

(
3

4

)k
= 0.

The open triangle T0 furnishes the set needed for the open set condition
(Definition 33) and makes the Sierpinski triangle a self-similar geometric
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figure, whose similarity or Hausdorff dimension is

s =
log 3

log 2
≈ 1.585,

where m = 3 and r1 = · · · rm = r =
1

2
.

Figure 3.5: A picture of a Tk which tends to the Sierpinski triangle.
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Chapter 4

Fractal analysis in Medicine

Fractal methods are commonly used in various areas of signal and image
analysis.
In general they can be divided in two groups: some fractal methods take
part in creations, like music or art; other ones can be used for comparison
purpose by measurement methods.
In this chapter we show how this kind of measurement is applied in medicine
illness recognition.

First of all, we need to explain what we mean with measurement fractal
methods. These are systems based on the concept of fractal dimension.
Fractal dimension is considered to be a morphological parameter, char-
acterizing the complexity of an object in addition to classical parameters
such as size, roundness, density, ... so it is useful in comparisons and has
been applied to morphological estimation in both clinical and experimental
medicine.
For a practical approach, another formula to calculate the fractal dimension,
to place side by side with similarity and Hausdorff dimensions, is called box-
counting and is introduced in the first section.

We then present two practical approaches of using fractal methods, both
in field of Medicine. The first regards the observation of senile plaques in
human and other animal species; the second intends to recognize malignant
melanoma among different skin lesions.

4.1 The box-counting dimension

A fractal set is well characterized by its Hausdorff dimension, which may
often be hard to calculate. Think about the lower estimates we had to face
to measure Cantor set (and it was only a subset of the real line!) .
When the fractal set is also self-similar, the similarity dimension has helped
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us to simplify the calculations.
But it would certainly seem desirable to be able to attach this dimension
not only to self-similar sets. The new approach, used in the works about
Medicine we’ll next show, is based on box-counting method.

Definition 35 (box-counting dimension). Let E be a non-empty bounded
subset of Rn.
Define Nδ(E) to be the minimal number of subsets of Rn, of diameter non
exceeding δ > 0, needed to cover A. The lower and upper box-counting di-
mension of A are defined respectively by

dimB(E) = lim inf
δ→0

logNδ(E)

− log δ

and

dimB(E) = lim sup
δ→0

logNδ(E)

− log δ
.

If both are equal, then

dimB(E) = lim
δ→0

logNδ(E)

− log δ
.

For the actual computation, there exist equivalent definitions of dimB(E)
where in the covering restricted class of sets are used.
In our cases (we work in R2) the covering consists of squares of side at most
δ.
So

s =
logNδ(E)

− log δ

tells how the number of boxes needed to cover the considered geometric
structure, which will be sometimes a plaque, sometimes a skin lesion, scales
with the size of the boxes.

Surerly, the Hausdorff and self-similarity dimensions of the various fractals
which we have got to know so far coincide with their box-counting dimension.

For example, if E is the Cantor set we choose

δk =
1

3

k

, then Nδk(E) = 2k,

and

dimB(E) = lim
δk→0

log 2k

log 3k
= lim

k→∞

k log 2

k log 3
=

log 2

log 3
.
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In practice, the box counting method applied to an image needs the
following steps:

• convertion of the images to grayscale;

• binarization of the image;

• accurate software calculation of box-dimension (the idea is that the
algorithm approximates s using decreasing values of δ );

• analysis of results.

The experiments we are about to describe have in common the use of this
method and diversify for the data processing and the results analysis.

4.2 A study about senile plaques in animals

In the present study,[2] the fractal dimension is applied to morphological
estimation of animal and human senile plaques.

Senile plaque is one of the most characteristic histopathological changes
of aged or Alzheimer’s disease brain in man and is also detected in the aged
brain of the mammalian species including dogs, cats, bears, monkeys and
camels.
In some of these species, the plaques can be morphologically classified into
two types, diffuse and mature, while some other show only diffuse type
plaque.

The question asked:

With the experiment proposed we want to ask if the diffuse plaque is a
precursor of the mature type in the human brain or they form separately,
like it’s thought to happen for species such as dogs or monkeys.
It’s then necessary a comparative morphological study of senile plaques and
this would also provide new concepts in the field of Alzheimer’s disease.

Description of the experiment:

Seven dogs (11-17 years old), a cynomologus monkey (26 years old), an
American black bear (more than 20 years old), a cat (20 years old) and a
two-humped camel (more than 23 years old) and a 73-year-old woman who
died from Alzheimer’s disease are involved in the experiment.

Their cerebral cortices are fixed in 10% neutral buffered formalin. Four-to
6−µm−thick paraffin sections were stained with periodic acidmethenamine
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silver (PAM).

All the cerebral tissues involved have senile plaque. Ten senile plaques are
examined in each individual brain, wheras only five plaques are examined in
the camel, because the total number of plaques is very low in this species.

The steps that are necessary for the box-counting (see the previous section)
are applied to microscopic images of senile plaques. After the computer
calculation of s when δ decreases, the values are transferred to Excell and a
scatter diagram is made (− log δ for x−axis and logNδ for y−axis).
The linear lines for the whole plots are made and the slope value is deter-
mined as fractal dimension (FD).

Data processing

The data processing follows these different directions:

1. first we refer to the cerebral cortices of dogs and correlate the FD
values of the diffuse and mature plaques at the different ages of dogs ;

2. again in the case of the seven dogs, we look for a possible relationship
between FD and size of plaques;

3. extending the observation to the other mammalian species, the study
concerns the diffuse and, if present, mature plaques in a fixed mam-
mal, but also a comparison among different species.

The comments below refer to the tables and graphics which will follow.

1. Table 1 shows FD of senile plaques in cerebral cortices from seven dogs.

The FD value for each animal species is expressed as

the mean± SD

where SD stands for standard deviation.

To compare the various values, it has ben chosen the Kruskal-Wallis
rank test1 and differences are considered to be significant at p-value
P< 0.5.

1it’s a non-parametric method for testing whether samples originate from the same
distribution. It is used for comparing two or more samples that are indipendent and that
may have different sample sizes.
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We can see by the Table 1 that the FDs of the diffuse plaques in six
dogs (11-16) years old are determined to be from 1.618 to 1.690 and
the mean is

1.656± 0.046.

In contrast, the FD of the mature plaques in a 17−year-old dog, which
was the only dog presenting mature plaques in this experiment, is

1.721± 0.048.

This implies a significant difference as compared to diffuse plaque:

P = 0.00033.

2. In the graph on the right (see page 71) the size of a plaque, in terms
of pixel, is represented in the x−axis, while in the y−axis the FDs of
plaques of the dogs are reported.

It’s a way to discover whether the FD, that we have said to be a
morphological parameter like size and other, may be put in any rela-
tionship with size.

The result is that the fractal dimension tends to increase with size
and this is true in both types of plaque: diffuse and mature.

In order to make more evident this fact, the approximate linear lines
for diffuse and mature plaques have been traced.

These apporximate lines present different slope.

y = 0.0174x+ 1.5918

is the equation of the line approximating the values of FD of diffuse
plaques, wheras

y = 0.0099 + 1.6622

is the line for the mature plaques.

From the comparison of the two lines, we see that mature plaques
tend to have higher values of FD also when they are still small, but
the FD of the diffuse plaque increases more rapidlly with size.
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3. Table 2 reports the FD values of various mammalian species.

We first notice that all the plaques of the cat and camel examined
in this study are categorized as diffuse type.

All the other species, including human, present both types of plaque.

No significant differences are detected between the two types in the
bear and monkey.

In the dog and human on the contrary the difference is significant,
with

P = 0.0005

in human and

P = 0.0003

in dog, as already seen in the previous point.

However, the FDs of the mature plaque tend always to be greater
than those of the diffuse plaques.

Leading about diffuse plaques the lower value is absumed by feline
and the difference is significant (always basing on Kruskal-Wallis rank
test) if we compare with the values for

• camel, P = 0.0469;

• monkey, P = 0.0047

• dog, P = 0.0005

• bear, P = 0.0002.

It can be interesting that P results > 0.05 in comparison between fe-
line and human diffuse plaques.

Moreover, the FD values of diffuse or mature plaques between other
combinations of species were not significantly different.
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Animal 
 

Type of plaque                       Fractal dimension 

Cat Diffuse 
 

1.468 ± 0.051 

Camel Diffuse 
 

1.666 ± 0.025 

 
Dog 

Diffuse 
 

1.656 ± 0.046 

Mature 
 

1.721 ± 0.048 

 
Bear 

Diffuse 
 

1.696 ± 0.049 

Mature 
 

1.721 ± 0.053 

 
Monkey 

Diffuse 
 

1.664 ± 0.040 

Mature 
 

1.670 ± 0.032 

 
Human 

Diffuse 
 

1.632 ± 0.041 

Mature 
 

1.669 ± 0.030 

                            Table 2:  Fractal dimension of senile plaques in various animal species and in humans 

                    

                                           

Figure  a-b: gray scale microscopic image of a canine diffuse senile plaque- corresponding binary image   
produced on a computer 

Table 1: Fractal dimension of canine senile plaques 

Dog Age  Type of plaques Fractal dimension  
        (mean± SD) 

  Diffuse Mature  

1) 11 
 

 1.618 ± 0.040 

2) 14 
 

 1.622 ± 0.039 

3) 15 
 

 1.646 ± 0.045 

4) 15 
 

 1.690 ± 0.024 

5) 16 
 

 1.676 ± 0.037 

6) 16 
 

 1.686 ± 0.036 

7) 17  
 

1.721 ± 0.048 
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Conclusions

The significant different FDs of canine diffuse and mature plaques (Table 1
and 2) mean that these kind of plaques for dogs have different complexities.
This may indicate also different origins and processes, thesis which is sup-
ported by the different slope values of the approximate lines drawn in the
graphic.

Moreover, it’s known that in dogs, diffuse plaques are detected as early
as 7− 8 years old, and more than 40% dogs have these lesions after 15 years
old.
In contrast, mature type plaques are noted only in more aged animals and
their numbers are very low.

We asked at the beginning of the current section about the human senile
plaque formation.
Since similary to canine plaques those of humans show significant difference
in the FD value between diffuse and mature type (see Table 2), we may an-
swer that also in human the two plaques might form in a different manner.

The maturation process of senile plaques, however, remains controversial
and some authors state that diffuse plaque changes its morphology to the
mature type.

Surerly it can be deduced by this study and in particular by the FDs that
the original condition for plaque formation would be different among species.

Factors determining the morphology of the senile plaque of each animal
species were supposed to be the chemical structure of β−amyloid protein,
cerebral microenvironment during plaque formation, and metabolic speed
or longevity of species.

Further analysis of senile plaque formation are required and fractal geometry
would be a powerful tool for such investigations.
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4.3 Support system in diagnosis of Melanoma

This second study presents a practical approach of using fractal methods in
skin lesion analysis [6].
In particular, fractal analysis is used to compare different skin lesions.

Skin cancer is reaching 20% increase of diagnosed cases every year.
In dermatology it is extremely difficult to perform automatic diagnostic dif-
ferentiation of malignant melanoma basing only on dermatoscopic images.
One has to bear in mind that wrong decision in the case of a malignant
melanoma carries very high probability of death of the patient.

The main difficult is to diagnose a malignant lesion in early stage, because
it does not exhibit melanoma’s charachteristics. We want to constate if the
fractal dimension may really enhance the diagnostic process for doctors and
even bring tools for automatic diagnostic.

A probabilistic approach

Dermatoscopy2 is the commonly used method for skin lesion diagnosis.
We try to briefly describe the performance of the diagnostic process.

Two indexes need to be calculeted, the sensitivity and specitivity.

The sensitivity measures the proportion of actual positives which are cor-
rectly identified as such (in our field the cases of malignant melanoma effec-
tivly diagnosed as cancer).
Its complementary computes the cases of malignant melanoma diagnosed as
other skin lesions.

The specificity measures the proportion of negative which are correctly iden-
tified as such.
Its complementary computes the cases of healthy lesions diagnosed as can-
cerous.

If we deal with events, we may call rispectivly A and its complementary
¬A the events

A = { the lesion is a malignant melanoma}

and

¬A = {the lesion is a different skin lesion}.
2This is a non-invasive method which allows inspection of skin lesions unobstructed by

skin surface reflections.
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On the other hand, we have to define B and ¬B the events

B = { the lesion is a diagnosed as malignant melanoma}

and

¬B = {the lesion is diagnosed as a different skin lesion}.

So that we indicate with P (B/A) the probability of identifing a melanoma
as cancerous if it is and with P (¬B/¬A) the probability of excluding the
cancer if effectivly the lesion isn’t malignant.

¬B/A and B/¬A are the complementar events of the two we have just
defined and they imply wrong diagnosis: excluding the cancer if the lesion
is instead a malignant melanoma and recognizing a malignant melanoma
when there isn’t.

Table 3 can give order to this explanation.

In terms of probabilities of events, these definitions hold:

Definition 36 (Sensitivity).

Sensitivity =
P (B/A)

P (B/A) + P (¬B/A)

Definition 37 (Specificity).

Specificity =
P (¬B/¬A)

P (¬B/¬A) + P (B/¬A)

Surerly the most problem is when a doctor diagnose a lesion as not ma-
lignant when it is actually malignant.
It is better to diagnose an actually healthly lesion as malignant but both
solutions don’t satisfy anyone.

Table 4 sums up the values of Sensitivity and Specificity in Diagnosis taking
into account various cases from the best to the worst.

In an optimistic scenario 10% of diagnosed melanoma lesions are diagnosed
as healthly.

For less experiences personnel sensitivity is much lower and in the worst
case this happens in about 38% of diagnosed melanoma lesions.
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    Actual 
malignant 

 Actual   
healthy 

                

          A 
 

          

       ⌐A    

 

Diagnosed as 
malignant 

           

        B 
 

              

         B/A 
           

      B/⌐A   

 

Diagnosed as 
healthy 

        

     ⌐B 
 

          

     ⌐B/A 
        

   ⌐B/ ⌐A   

 
                     Sensitivity 
 

                  Specificity 

     value   
 

complem
entary 

   value complem
entary 

 

Experts 
 
 

 

        90% 
 

        10% 
 

       59% 
 

        41% 

 

Dermato-
logists 
 

 

        81% 
 

        19% 
 

        60% 
 

        40% 

 

Trainees 
 

 

        85% 
 

 

        15% 
 

        36% 
 

        64% 

 

General  
Pratictio-
ners 

 

        62% 
 

        38% 
 

        63% 
 

        37% 

Table  4 : Sensitivity and Specificity in Diagnosis  

 

Table  3 :  Events to define Sensitivity and Specificity  

                             in a probabilistic approach  

All the mean values reported for Sensitivity and Specificity aren’t promi-
cious.
That is why doctors improve their methods, in which some mathematical
factors characterising the lesion are calculated manually.

Most known and used method is called ABCD.
In this method four features of the dermatoscopic image are recognized and
these are
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• Asymmetry;

• Border;

• Color and

• Differential structures.

The result is called Total Dermatoscopy Score (TDS) and is calculated as
follows:

TDS = 1.3 ∗A + 0.1 ∗ B + 0.5 ∗ C + 0.5 ∗D.

If TDS is greater than 4.75 then lesion should be handled as suspicious.

Lesion with TDS greater than 5.45 gives strong indication that this lesion
is cancerous.

An alternative method is proposed by Menzies.

Scoring is based on finding positive and negative features in lesion image.
Positive features mean features that indicate that lesion is cancerous.
Menzies describes eight positive features based on melanoma’s specific pat-
terns like dots, veil or broadened network.

Menzies method describes only two negative features.
First is patterns symmetry, which means if the whole structure of lesion or
color is symmetric.
Second negative feature is the color count. If lesion contains only one color
then it should be recognized as benign lesion.

The few diagnosis methods used so far and their limits make the doctors
improve their technology, so each parameter that makes the diagnosis accu-
racy greater is very helpful.
That is why we try to involve the fractal dimension.

Box-counting dimension analysis of skin lesion

We start with the observation that some typical images obtained via video
dermatoscopy clearly display fractal properties: high irregularity and exis-
tence of self similar regions and structures.

Box-counting dimension is calculated as illustrated in the first section of
the current chapter.

Calculated box dimension values are presented in Table 5.
Only 7 lesions in the total count of 82 analyzed are recognized as malignant.

78



CHAPTER 4. FRACTAL ANALYSIS IN MEDICINE

The rest of images is recognized as healthy or as a different illness than skin
cancer.
All suspicious lesions are assigned to a group following the Clark and Bres-
low stageing that are also indicated in Table 5.
Clark and Breslow stage values have been confirmed by lesion observation
or biopsy test.

Breslow values refer to the thickness of the lesion ans is measured in mm.

Clark’s levels describe depth relative to other skin structures:

I Melanoma confined to the epiderms

II Invasion into the papillary dermis

III Invasion to the junction of the papillary and reticular dermis

IV Invasion into the reticular dermis

V Invasion into the subcutaneous fat.

Analyzing the results we can see that the Breslow and box-counting di-
mension are correlated.

In particular, fractal dimension tends to decrease when thickness increases.

Moreover, the box-counting of the 7 lesions really identified as cancerous
fournishes very simil values (from 1.20 to 1.28) and one may think to de-
duce a criterion based on a simil fractal dimension range to give a diagnosis
about the skin lesions.

A further experiment compare fractal dimensions of various skin illness:

• combined,

• displastic,

• malignant,

• anginoma,

• blue,

• seborrheic and

• pigmented lesions.
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The results (see graphics and comments in the next page) will show that
our previous hypothesis is in someway confirmed but in other cases is too
weak to be effectivly used.

Tables and graphics necessary for the data processing and to obtain our
conclusions are now proposed.

 

 

                                        

                                        Some of the skin-lesion images showing  

                                                              fractal properties 

                                                   

                                           A skin lesion image divided into boxes. 

 

                                                           

                               

                                               

                                          

                           

 

Breslow Clark          Fractal    
      Dimension 

     0,25        II             1,28 

     0,25       IV             1,25 

     0,70       IV             1,24 

     0,80       IV             1,20 

     0,90       III             1,24 

     1,00       III             1,22 

     1,25       IV             1,21 

Table 5: Malignant Melanoma Fractal dimension 
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In this figure a comparison between melanoma and the 6 other detected
skin lesion illnesses listes is done in terms of fractal dimension.

Some skin illnesses exhibit charachteristic values of box-counting dimension.

For anignoma, blue and seborrheic lesions dimension values are below 1.18.

The problem with melanoma diagnosis is that pigmented, combined and
displastic lesions are covering also values of fractal dimension assigned for
melanoma.

 

                                          Fractal Dimension Comparison for different Skin Illnesses 
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Conclusions:

We were looking for a support system to improve Melanoma Diagnosis and
we wanted to find it in Fractal Analysis.

The experiment shows that box-counting dimension of images of skin lesion
can surerly be one of the charachteristic features in melanoma diagnosis.
In effect, some of the skin lesions show distinctively different fractal dimen-
sion values.

However this charachterization should not be used as a separate parame-
ter for skin lesion diagnosis.

More research needs to be done to check the efficiency of fractal methods
together with other melanoma charachtetistics like color or assymetry.
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Ringrazio Francesco perché senza il suo amore e la sua vicinanza non sarei
la persona che sono ora e non avrei avuto la gioia di poter vivere in due le
soddisfazioni di questi anni.

Altri ringraziamenti vanno agli amici del sabato sera, per i divertimenti,
le confidenze e le pazzie che si riescono ad apprezzare solo in un gruppo di
amici veri e sinceri. In particolare a Sara per essere la sorella che non ho
mai avuto, a Francesca per essere tornata dopo un periodo per lei buio con
tutta la grinta e la forza di chi vuole rimettersi in gioco, a Luigi per le ore
passate a chiacchierare e la fiducia che mi ha dato.

85



BIBLIOGRAPHY
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