Paolizzi, Michele
(2015)
Gruppi risolubili.
[Laurea], Università di Bologna, Corso di Studio in
Matematica [L-DM270]
Documenti full-text disponibili:
Abstract
I gruppi risolubili sono tra gli argomenti più studiati nella storia dell'algebra, per la loro ricchezza di proprietà e di applicazioni. Questa tesi si prefigge l'obiettivo di presentare tali gruppi, in quanto argomento che esula da quelli usualmente trattati nei corsi fondamentali, ma che diventa fondamentale in altri campi di studio come la teoria delle equazioni. Il nome di tale classe di gruppi deriva infatti dalla loro correlazione con la risolubilità per formule generali delle equazioni di n-esimo grado. Si ha infatti dalla teoria di Galois che un'equazione di grado n è risolubile per radicali se e solo se il suo gruppo di Galois è risolubile. Da questo spunto di prima e grande utilità, la teoria dei gruppi risolubili ha preso una propria strada, tanto da poter caratterizzare tali gruppi senza dover passare dalla teoria di Galois. Qui viene infatti presentata la teoria dei gruppi risolubili senza far uso di tale teoria: nel primo capitolo esporrò le definizioni fondamentali necessarie per lo studio dei gruppi risolubili, la chiusura del loro insieme rispetto a sottogruppi, quozienti, estensioni e prodotti, e la loro caratterizzazione attraverso la serie derivata, oltre all'esempio più caratteristico tra i gruppi non risolubili, che è quello del gruppo simmetrico. Nel secondo capitolo sono riportati alcuni esempi e controesempi nel caso di gruppi non finiti, tra i quali vi sono il gruppo delle isometrie del piano e i gruppi liberi. Infine nel terzo capitolo viene approfondito il caso dei gruppi risolubili finiti, con alcuni esempi, come i p-gruppi, con un’analisi della risolubilità dei gruppi finiti con ordine minore o uguale a 100.
Abstract
I gruppi risolubili sono tra gli argomenti più studiati nella storia dell'algebra, per la loro ricchezza di proprietà e di applicazioni. Questa tesi si prefigge l'obiettivo di presentare tali gruppi, in quanto argomento che esula da quelli usualmente trattati nei corsi fondamentali, ma che diventa fondamentale in altri campi di studio come la teoria delle equazioni. Il nome di tale classe di gruppi deriva infatti dalla loro correlazione con la risolubilità per formule generali delle equazioni di n-esimo grado. Si ha infatti dalla teoria di Galois che un'equazione di grado n è risolubile per radicali se e solo se il suo gruppo di Galois è risolubile. Da questo spunto di prima e grande utilità, la teoria dei gruppi risolubili ha preso una propria strada, tanto da poter caratterizzare tali gruppi senza dover passare dalla teoria di Galois. Qui viene infatti presentata la teoria dei gruppi risolubili senza far uso di tale teoria: nel primo capitolo esporrò le definizioni fondamentali necessarie per lo studio dei gruppi risolubili, la chiusura del loro insieme rispetto a sottogruppi, quozienti, estensioni e prodotti, e la loro caratterizzazione attraverso la serie derivata, oltre all'esempio più caratteristico tra i gruppi non risolubili, che è quello del gruppo simmetrico. Nel secondo capitolo sono riportati alcuni esempi e controesempi nel caso di gruppi non finiti, tra i quali vi sono il gruppo delle isometrie del piano e i gruppi liberi. Infine nel terzo capitolo viene approfondito il caso dei gruppi risolubili finiti, con alcuni esempi, come i p-gruppi, con un’analisi della risolubilità dei gruppi finiti con ordine minore o uguale a 100.
Tipologia del documento
Tesi di laurea
(Laurea)
Autore della tesi
Paolizzi, Michele
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
gruppi risolubili algebra Galois p-gruppi isometrie
Data di discussione della Tesi
27 Marzo 2015
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Paolizzi, Michele
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
gruppi risolubili algebra Galois p-gruppi isometrie
Data di discussione della Tesi
27 Marzo 2015
URI
Statistica sui download
Gestione del documento: