

ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA

CAMPUS DI CESENA

SCUOLA DI INGEGNERIA E ARCHITETTURA

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA BIOMEDICA

A 2-DIMENSIONAL COMPUTATIONAL MODEL

TO ANALYZE THE EFFECTS OF CELLULAR

HETEROGEINITY ON CARDIAC PACEMAKING

Tesi in:

Bioingegneria molecolare e cellulare LM

Relatore: Presentata da:

Prof. STEFANO SEVERI CHIARA CAMPANA

Correlatore:

Prof. ERIC SOBIE

Sessione III

Anno Accademico 2013 - 2014

ii

Alla mia famiglia

Contents

Abstract vii

Introduction xi

1 Sinoatrial node: physiology and mathematical modeling 1

1.1 The cardiac conduction system 2
1.1.1 Anatomy and functions of the SAN 4
1.1.2 The cardiac action potential 7
1.1.3 Pacemaker action potential 10
1.1.4 Heart rhythm and cardiac arrhythmias 12

1.2 Mathematical modeling of cardiac AP 13
1.2.1 Single cell model of the rabbit sinoatrial node 16
1.2.2 Maltsev model . 18
1.2.3 Severi model . 19
1.2.4 Electrical propagation and cable theory 20

1.3 Heterogeneity in the SAN 21

2 Materials and Methods 23

2.1 1-dimensional model implementation in MATLAB 24
2.2 Implementation of the models in CUDA 28

2.2.1 A look inside the CUDA Programming Model 28
2.2.2 Maltsev tissue model 32
2.2.3 Parameter randomization 37

2.3 Simulations . 42

3 Results 45

3.1 1-D model results . 46
3.1.1 Conduction velocity and gap junctions 46

v

3.1.2 Execution Time in MATLAB and CUDA 49
3.2 2-D model results . 50

3.2.1 Effect of heterogenity on Cycle Length and Action
Potential Amplitude 50

3.2.2 Control + non-excitable cells model 59

Conclusions 67

Appendix A 69

Appendix B 81

Acknowledgments 87

Bibliography 89

vi

Abstract

L’azione meccanica del cuore è possibile grazie al verificarsi di eventi elet-
trici che interessano le cellule cardiache, proprietà che classifica il tessuto
cardiaco tra i tessuti eccitabili. L’evento elettrico è il segnale che scatena
la contrazione meccanica, inducendo un temporaneo incremento di cal-
cio intracellulare, che, a sua volta, reca un messaggio di contrazione alle
proteine contrattili della cellula. Per queste ragioni il processo che com-
bina l’eccitazione elettrica alla funzione meccanica è definito accoppiamento
eccitazione-contrazione. Il sistema di conduzione atriale comprende il nodo
seno-atriale (SAN) posizionato nel lato superiore destro del cuore e in grado
di generare spontaneamente un segnale elettrico periodico ad una frequenza
di 60-100 battiti al minuto. In seguito le fibre intra-nodali conducono
l’impulso al nodo atrioventricolare, che rappresenta l’unica connessione elet-
trica tra atri e ventricoli. Il segnale elettrico si propaga attraverso il tessuto
cardiaco via gap junctions tra cardiomiociti e in ciascuno di questi induce
un processo denominato potenziale d’azione (AP). La morfologia del poten-
ziale d’azione cardiaco mostra un’elevata variabilità all’interno del cuore.
Le cellule del SAN non possiedono un vero e proprio potenziale di riposo,
bens̀i generano regolarmente potenziali d’azione spontanei. A differenza
dei potenziali d’azione non-pacemaker nel cuore, la corrente depolarizzante
proviene principalmente da ioni Ca2+ piuttosto che da correnti di Na+. Non
vi sono infatti canali veloci di Na+ e relative correnti operanti nelle cellule
nodali SA. Ciò si traduce in un più lento potenziale d’azione in termini di
rapidità con cui le cellule si depolarizzano.
I meccanismi citati possono essere descritti e studiati sfruttando i principi
della modellazione matematica, introdotta in ambito cardiaco in seguito al
lavoro di Hodgkin e Huxley, i quali hanno presentato la descrizione matem-
atica di correnti ioniche generanti AP nell’assone gigante di calamaro. Le
equazioni di Hodgkin-Huxley (HH) costituiscono ancora oggi parte della

vii

modellazione di AP cardiaci. Seguendo questo formalismo, la cellula è rap-
presentata come un circuito elettrico, in cui la membrana è descritta come
una capacità e i canali ionici voltaggio-dipendenti come conduttanze elet-
triche. Da allora, il numero di modelli formulati è cresciuto rapidamente. In
questa tesi sono presi in considerazione i due più recenti modelli di singola
cellula del nodo seno-atriale di coniglio (modello Severi (2012) e modello
Maltsev (2009)).
Nella formulazione di modelli di singola cellula si considerano solamente
le proprietà medie del tessuto studiato, invece, per fornire una descrizione
più realistica, sarebbe utile considerare la variabilità normalmente presente
all’interno del tessuto. Questo è particolarmente vero nel caso del SAN, che
ha una struttura molto complessa che mostra eterogeneità anatomica e fun-
zionale. Come sarà discusso più avanti, questa variabilità può dipendere da
molteplici cause. È possibile allora considerare modelli di cellule accoppiate
utilizzando un array o una matrice e introducendo differenze nel compor-
tamento di ogni singola cellula. In tal caso il comportamento di ciascuna
cellula è influenzato da quella vicina, in particolare ogni cellula riceverà
un contributo in corrente dalle cellule adiacenti, che dipende dalla loro dif-
ferenza di tensione e dalla resistenza di accoppiamento attraverso la legge
di Ohm. Tale ragionamento è noto come cable theory e può essere esteso
ad una propagazione multidimensionale, considerando un modello tissutale.
Obiettivo principale del mio progetto è stato l’implementazione in CUDA
(acronimo di Compute Unified Device Architecture, un’architettura hard-
ware per l’elaborazione parallela creata da NVIDIA) di un modello tissutale
del nodo seno-atriale di coniglio attraverso il quale valutare l’eterogeneità
della sua struttura e come tale variabilità influenzi il comportamento delle
cellule. In particolare ogni cellula possiede una frequenza di scarica intrin-
seca, dunque diversa da quella di ogni altra cellula del tessuto ed è quindi
interessante studiare il processo di sincronizzazione delle cellule e quale sia
la frequenza ultima di scarica qualora queste risultino sincronizzate.

• Il primo passo è stato realizzato utilizzando MATLAB per imple-
mentare un modello monodimensionale del SAN di coniglio, descrivendo
ogni cellula attraverso il modello Maltsev o Severi. Considerando un
gruppo di cellule in fila, se ciascuna cellula è regolata dalle stesse
equazioni differenziali ed ha gli stessi valori per tutti i parametri, in
ogni momento le cellule possiedono lo stesso potenziale di membrana
e quindi hanno tutte la stessa frequenza di scarica. Ciò si traduce in

viii

un comportamento identico a quello della singola cellula.

• Assegnare ad ogni cellula diverse condizioni iniziali ha in seguito per-
messo di valutare l’effetto dell’accoppiamento tra cellule sulla velocità
di conduzione.

• Il resto del lavoro è stato effettuato utilizzando CUDA e visualizzando
poi i risultati in MATLAB. Grazie ai vantaggi introdotti dallo sfrutta-
mento di unità di elaborazione grafiche (GPU) in termini di tempo di
esecuzione, è stato possibile creare un modello 2D del SAN di coniglio.

• Tale modello è stato infine utilizzato per esaminare la sincronizzazione
e l’influenza reciproca tra le cellule. Dopo aver eseguito la random-
izzazione di tutte le conduttanze massime presenti nel modello, sono
stati valutati gli effetti sulla lunghezza del ciclo e l’ampiezza dei poten-
ziali d’azione. Diversi livelli di accoppiamento resistivo tra cellule e di
variabilità intercellulare delle conduttanze sono stati testati.

Le simulazioni effettuate utilizzando il modello realizzato suggeriscono che
le cellule sincronizzano la loro frequenza di scarica. In particolare il valore
ultimo della frequenza di scarica cresce al crescere della resistenza di accop-
piamento e della variabilità intercellulare testate. L’ampiezza dei poten-
ziali d’azione presenta un comportamento simile a quello della lunghezza
del ciclo, diminuendo nel caso di aumento di resistenza di accoppiamento
e variabilità intercellulare, anche se in maniera meno marcata nell’ultimo
caso.
Il primo capitolo tratta il sistema di conduzione cardiaco, le caratteristiche
del nodo seno-atriale e il potenziale d’azione delle cellule che lo costituis-
cono per poi riportare i principi della modellazione cardiaca, con particolare
riferimento alla descrizione della propagazione elettrica intercellulare. Nel
secondo capitolo si discute l’implementazione dei modelli utilizzati in questo
lavoro di tesi e sono descritte in dettaglio le simulazioni effettuate. L’ultimo
capitolo riporta infine i risultati ottenuti dalle simulazioni, dedicando par-
ticolare attenzione agli esiti delle simulazioni 2D, obiettivo primario del
lavoro.

ix

x

Introduction

The mechanical action of the heart is made possible in response to electrical
events that involve the cardiac cells, a property that classifies the heart tis-
sue between the excitable tissues. At the cellular level, the electrical event
is the signal that triggers the mechanical contraction, inducing a transient
increase in intracellular calcium which, in turn, carries the message of con-
traction to the contractile proteins of the cell. For these reasons, the process
that combines the electrical excitation to the mechanical function is called
excitation-contraction coupling. The atrial conduction system includes the
sinoatrial node (SAN) placed in the upper right corner of the heart able to
spontaneously generate a periodic electrical signal at a frequency of 60-100
bpm; then intra-nodal pathways lead the impulse to the atrioventricular
node, which is the only electrical connection between atria and ventricles.
The electrical signal propagates in the cardiac tissue via gap junctions be-
tween cardiac myocytes and in each myocyte it initiates a process named
action potential (AP). The morphology of the cardiac action potential shows
a high variability within of the heart. SAN cells are characterized as having
no true resting potential, but instead generate regular, spontaneous action
potentials. Unlike non-pacemaker action potentials in the heart, the de-
polarizing current is carried into the cell primarily by relatively slow Ca2+

currents instead of by fast Na+ currents. There are, in fact, no fast Na+

channels and currents operating in SA nodal cells. This results in a slower
action potentials in terms of how rapidly they depolarize.

The mentioned mechanisms can be usefully treated within the mathe-
matical modeling. The first step towards mathematical modeling of car-
diac cells was made after Hodgkin and Huxley presented the mathematical
description of ion currents generating APs in the squid giant axon. The
Hodgkin-Huxley (H-H) equations were later introduced to the field of car-
diac APs, and the H-H formalism is still used as a part of nowadays cardiac

xi

AP modeling. Following this formalism, the cell is represented as an electri-
cal circuit, where the membrane is represented as a capacitance and voltage
gated ion channel are represented as electrical conductances. Since that
time, the number of different cell models has grown rapidly. In this thesis
the two most recent rabbit SAN cell models (Severi model (2012), Maltsev
model (2009)) are taken into account.
In formulating models of single cell, only the average properties of the tis-
sue under inspection can be considered, instead to have a more realistic
description it would be helpful to consider the variability normally present
within the tissue. This is especially true in the case of the SAN, that has
a very complex structure showing anatomical and functional heterogeneity.
As discussed later, this variability may depend on multiple causes. It is pos-
sible to consider models of coupled cells using an array or a matrix of cells
and introducing differences in the behavior of each single cell. In that case
the behavior of each cell is influenced by her neighboring, in particular each
cell will receive a contribution in current from its neighbors, which depends
from their voltage difference and from the coupling resistance through the
Ohm’s law. This is known as the cable theory and it can be extended to a
multidimensional propagation, considering a tissue model.

The primary goal of my project was to implement in CUDA (Compute
Unified Device Architecture, an hardware architecture for parallel processing
created by NVIDIA) a tissue model of the rabbit sinoatrial node to evaluate
the heterogeneity of its structure and how that variability influences the
behavior of the cells. In particular, each cell has an intrinsic discharge
frequency, thus different from that of every other cell of the tissue and it is
interesting to study the process of synchronization of the cells and look at
the value of the last discharge frequency if they synchronized.

• The first step has been made using MATLAB to implement a 1-
dimensional model of the rabbit sinoatrial node, describing each cell
through the Maltsev or Severi model. Considering a cable of cells, if
each cell is governed by the same differential equations and has the
same values for all the parameters, at any moment the cells will be at
the same potential and therefore have all the same rate. This results
in a behavior of the cable which is identical to the behavior of the
single cell.

• Giving each cell different initial conditions has made it possible to

xii

evaluate the effect of the inter-cellular coupling on the conduction
velocity.

• The rest of the work was carried out using CUDA and then displaying
the results in MATLAB. Thanks to the advantages of CUDA in terms
of execution time it was possible to create a 2-dimensional model of
the rabbit SAN.

• This model was finally used to evaluate the synchronization and the
mutual influence between cells. After having performed the random-
ization of all maximal conductances, we evaluated the effects on cycle
length and action potential amplitude. Different levels of resistive
coupling between cells and inter-cellular variability of conductances
were tested.

The simulations made using the tissue model show how cells synchronize
their discharge frequency, and in particular the ultimate value of discharge
frequency increases with the coupling resistance and the inter-cellular vari-
ability. The action potential amplitude has a behavior similar to that of the
cycle length, decreasing as coupling resistance and inter-cellular variability
increase, although less markedly in the last case.

The first chapter describes the cardiac conduction system, the properties
of the sinoatrial node and the action potential of his cells and then the
principles of the cardiac modeling, with particular reference to the inter-
cellular electrical propagation, are explained. The second chapter discusses
the implementation of the models used in this thesis and the performed
simulations. The last chapter finally outlines the results obtained from the
simulations with particular attention to 2D simulations, primary goal of this
work.

xiii

xiv

Chapter 1

Sinoatrial node: physiology

and mathematical modeling

In this first chapter we introduce the background knowledge which has been
necessary to carrying out the work of thesis. We start with a brief descrip-
tion of the cardiac conduction system, focusing on the sinoatrial node, its
physiological role and its anatomy. Then, talking about the cardiac elec-
trical activity, we describe the cardiac action potential, making distinction
between different cell types and focusing on the pacemaking activity and
on the relation between action potential features and heart rhythm and the
problem of cardiac arrhythmias. The second part explains the bases of the
mathematical modeling in cardiac field, giving particular attention to the
models studied for our project and to the mathematical representation of
the anisotropic electrical propagation in cardiac physiology.

1

2

CHAPTER 1. SINOATRIAL NODE: PHYSIOLOGY AND

MATHEMATICAL MODELING

1.1 The cardiac conduction system

It was two centuries ago when for the first time Galvani and Volta proved
spontaneous heart contractions to be related to electrical phenomena. These
last events which take place within the heart give rise to the normal cardiac
contraction and their alterations can cause severe cardiac rhythm disor-
ders. The nervous system can command several heart properties, like its
frequency and its force of contraction but heart functionality does not rely
on its innervation. A denervated and transplanted heart is still able to work
and adapt itself to different circumstances and this ability is due to some
cardiac tissue intrinsic properties, its automaticity, i.e. the ability to au-
tonomously initiate the heart beat and its rhythmicity, i.e. regularity of this
autonomous activity [24].
The electrical signal coordinate the mechanical activity of the heart, a four-

Figure 1.1: Scheme of the cardiac conduction system [20].

chambered organ, consisting of two pumps: the right heart, which drives
blood through the lungs and then back to the heart, forming the pulmonary
circulation, and the left heart, that is responsible for the systemic circula-
tion, driving the oxygenated blood around the body.
Cardiac tissue is a syncytium of cardiac muscle cells, each of which has a
contractile capability similar to that of the skeletal muscle. Besides being
contractile, cardiac cells are excitable, enabling action potentials to propa-
gate, and the action potential causes the cells to contract, thereby enabling

2

CHAPTER 1. SINOATRIAL NODE: PHYSIOLOGY AND

MATHEMATICAL MODELING 3

the pumping of blood. We will discuss in detail later the features of cardiac
action potential while for now we focus on the pathway of propagation of
the electrical activity of the heart, shown in Fig. 1.1. It is initiated in a
collection of cells known as the sinoatrial node (SAN) located just below
the superior vena cava on the right atrium. The cells in the SAN are au-
tonomous oscillators and the action potential generated by these cells is
propagated through the atria by the atrial cells. The conduction of action
potentials between atria and ventricles is normally prevented by a septum
composed of non excitable cells and the action potential can continue its
propagation only through a group of cells, known as the atrioventricular
node (AVN) and located at the base of the atria. After having passed quite
slowly through the AVN, the action potential propagates through the bundle
of HIS composed by a specialized collection of fibers, named Purkinje fibers
which spread via tree-like branching into the left and right bundle branches
throughout the interior of the ventricles, ending on the endocardial surface
of the ventricles. At this point the action potentials activate the ventricular
muscle and propagate through the ventricular wall outward to the epicardial
surface. The process whereby an electrical stimulus is converted into muscle
contraction in ventricular cardiomyocytes is called Excitation-contraction
(EC) coupling and its fundamental steps are shown in Fig. 1.2. L-type
Ca2+ channels open as a result of the depolarization of the T-tubule by the
action potential and they lead to an inward flow of Ca2+ ions (ICa). The
amount of Ca2+ entered the cell induces the sarcoplasmic reticulum (SR)
to release additional Ca2+ through ryanodine receptors (RyR). This pro-
cess is named Ca2+-induced Ca2+ release (CICR). The released amount of
Ca2+ diffuses through the myoplasm, binds to the myofilaments and causes
contraction. It is then eventually removed from the myoplasm by ATPases,
which pump the Ca2+ into the SR (sarcoplasmic reticulum Ca++-ATPase
(SERCA)) or out of the cell, or by the Na+-Ca2+ exchanger (NCX), which
transfers Ca2+ to the outside of the cell. Phospholamban (PLB) is a protein
and the major substrate for the cAMP-dependent protein kinase (PKA) in
cardiac muscle. In the unphosphorylated state it works as an inhibitor of
the sarcoplasmatic calcium pump SERCA, while when phosphorylated by
PKA its ability to inhibit SERCA is lost. When phospholamban is not
phosphorylated, contractility and rate of muscle relaxation are decreased
and this lead to decreasing stroke volume and heart rate, respectively. On
the contrary, in case of sympathetic stimulation, for example, activators

3

4

CHAPTER 1. SINOATRIAL NODE: PHYSIOLOGY AND

MATHEMATICAL MODELING

Figure 1.2: Scheme of the major Ca2+ fluxes underlying Excitation-
contraction coupling in ventricular cardiomyocytes. The inset shows the
time courses of the action potential (AP), the Ca2+ transient, and the con-
traction. AP happens first, followed by the Ca2+ transient and then by
contraction [20].

of PKA, such as the beta-adrenergic agonist epinephrine can be released
and this fact may enhance the rate of cardiac myocyte relaxation. In ad-
dition, since SERCA is more active, the next action potential will cause
an increased release of calcium, resulting in increased contraction (positive
inotropic effect) [20].

1.1.1 Anatomy and functions of the SAN

As mentioned before, the sinoatrial node, located in the right atrium, serves
as the primary site for initiation of the normal heartbeat (sinus rhythm).
It was discovered over a century ago by Arthur Keith and Martin Flack as
an anatomically defined tissue at the junction of the superior vena cava and
right atria and today is recognized to be a distributed and heterogeneous
complex adjacent to the crista terminalis with distinct regions defined by
unique electrophysiological and structural properties. The SAN has a cres-

4

CHAPTER 1. SINOATRIAL NODE: PHYSIOLOGY AND

MATHEMATICAL MODELING 5

cent shape, it is 15 mm in length and 5 mm in width. It can be divided
in two parts, one larger placed in the upper part of the right atrium and
named head and one thinner, named tail and placed in the inferior right
part [13]. In large animals, including the human, the node is functionally

Figure 1.3: Anatomy of the right atrium [3].

isolated with the exception of exit pathways that allow for communication
between the SAN and atrial tissue. This insulation is made possible through
the presence of a connective tissue, which is able to insulate the pacemaker’s
automaticity from the hyperpolarizing electrical activity of the atrial my-
ocardium. Another important feature of SAN found in multiple species is
the presence of a centrally located artery around which the SAN cells are
organized. These cells, weakly coupled between them, are heterogenous,
in fact they comprise both pacemaker cells and non-pacemaker cells, such
atrial myocytes, adipocytes and fibroblasts. The functional consequences
of this great heterogeneity and its importance in our study are further dis-
cussed later in this chapter, while here we focus on the morphology of SAN
cells. Pacemaker cells found in the sinus node vary by size and electrophys-
iological properties and can be divided into three different groups:

• elongated spindle shaped cells : cells which extend up to 80 µm in
length and have a slightly striated cell body with one or more nuclei;

• spindle cells : cells which have a similar shape to that of elongated
spindle cells, but are shorter in length, extending up to 40 µm and are
predominantly mono-nucleated;

5

6

CHAPTER 1. SINOATRIAL NODE: PHYSIOLOGY AND

MATHEMATICAL MODELING

• spider cells : cells which have irregularly shaped branches with blunt
ends.

There is no clear understanding of the different cell types distribution, but
experimental studies have shown that none of the three cell types have been
found exclusively in a specific SAN area. In particular in the case of the
rabbit SAN, which is our case of study, a uniform distribution of all the
three pacemaker cell types has been observed in the central area.
Fig. 1.4 shows a schematic representation of these three types of cells. Also
a representation of an atrial cell is illustrated, in fact in the crista terminalis
region, atrial cells are the predominant cell type, together with a smaller

Figure 1.4: (A) Scheme on different types of SAN cells; (B)-(C) Schematic
representation of two different models proposed to describe the transition
from typical/central SAN (white ovals) to atrial (black ovals) cells: in (C)
a gradual transition of intermediate cells (gray) from SAN center to crista
terminalis is taken into account while in (B) a mosaic model is illustrated,
the latter involves gradually decreasing ratio of SAN to atrial cell densities
from SAN center to crista terminalis [32].

6

CHAPTER 1. SINOATRIAL NODE: PHYSIOLOGY AND

MATHEMATICAL MODELING 7

percentage of spindle nodal cells. Indeed the septal area of SAN is mostly
composed of atrial cells and an almost uniform amount of the other three
types of cells is interspersed between them. In the figure we can also see
two different models proposed to describe the distribution of these different
types of cells within the SAN. We will further discuss these two models later
in this chapter [32].

1.1.2 The cardiac action potential

The electrical signal whose propagation has been briefly described before is
named action potential and its general shape and phases for a ventricular
cell are illustrated in Fig. 1.5. It is represented as the membrane potential
waveform and it can be simply defined as a momentary change in electrical
potential on the surface of a cell, especially of a nerve or muscle cell, that
occurs when it is stimulated, resulting in the transmission of an electrical
impulse. As in other cells, the cardiac action potential is a short-lasting
event in which the difference of potential between the interior and the ex-
terior of each cardiac cell rises and falls following a consistent trajectory,
created by a sequence of ion fluxes through specialized channels in the mem-
brane of cardiomyocytes that leads to cardiac contraction. While there are
some differences in the action potentials of various types of cardiac tissue,
discussed below, the following model is most commonly used for education
purposes. Looking at the figure, we can distinguish five different stages:

• phase 4: resting phase. The typical resting potential in a cardiomy-
ocyte is -90 mV, in this condition Na+ and Ca2+ channels are closed.

• phase 0: depolarization. When an action potential triggered in a
neighbouring cardiomyocyte or pacemaker cell causes the potential to
rise above -90 mV, fast Na+ channels start to open and Na+ can en-
ter the cell, further raising the membrane potential. The large Na+

current rapidly depolarizes the potential to 0 mV and slightly above 0
mV for a transient period of time called the overshoot, then fast Na+

channels close. Another type of channels playing during this phase is
L-type (long-lasting) Ca2+ channels which open when the membrane
potential is greater than -40 mV and cause a small but steady influx
of Ca2+.
After completion of depolarization, the cell begins to repolarize, or

7

8

CHAPTER 1. SINOATRIAL NODE: PHYSIOLOGY AND

MATHEMATICAL MODELING

Figure 1.5: Action potential waveform in a ventricular cell,
(TMP=transmembrane potential) [18].

return to its original resting state. The cell can not depolarize again
until this happens. Phases 1-3 are the repolarization phases and co-
incide with the time that the cell is refractory and can not respond to
a new stimulus.

• phase 1: early repolarization. At the beginning of this phase the mem-
brane potential is slightly positive, then some K+ channels open briefly
and an outward flow of K+ returns the potential to approximately 0
mV.

• phase 2: plateau phase. This is the distinguishing phase of the cardiac
AP and it is cause of its long lasting. During this stage there is an
equilibrium between inward and outward currents, in fact L-type Ca2+

channels are still open and there is a small, constant inward current
of Ca2+, and different types of K+ outward currents. The inward
and outward currents are electrically balanced, so that the membrane
potential is maintained at a plateau just below 0 mV throughout phase
2.

• phase 3: repolarization. This phase starts with the gradual inacti-
vation of Ca2+. The outflow of K+ instead is still present and now,
exceeding Ca2+ inflow, brings the membrane potential back towards

8

CHAPTER 1. SINOATRIAL NODE: PHYSIOLOGY AND

MATHEMATICAL MODELING 9

resting potential of -90 mV to prepare the cell for a new cycle of
depolarization.

The described ionic flows change the normal transmembrane ionic con-
centration gradients, that must be restored, especially by returning Na+

and Ca2+ ions to the extracellular environment, and K+ ions inside of the
cell. This is made primarily through the sarcolemmal Na+-Ca2+ exchanger,
Ca2+-ATPase and Na+-K+-ATPase [15].
The primary cardiac cell types are: nodal cells (SAN cells and AVN cells),

Figure 1.6: Action potential waveform throughout the heart [15].

Purkinje fiber cells, and atrial and myocardial cells. Each cell type has
a slightly different function, we already know that the primary function of
SAN cells is to provide a pacemaker signal for the rest of the heart, the AVN
have to transmit the electrical signal from atria to ventricles with a delay,
Purkinje fiber cells are responsible for fast conduction, for the activation of
the myocardium, and finally myocardial cells, both atrial and ventricular,
are muscle cells, so that they are both contractile and excitable. The differ-
ent functions of different cardiac cell types lead these cell to have different
action potential shapes, however all are noticeably different than the neural
action potential, in particular they have a long plateau phase which facili-
tates and controls muscular contraction and cannot be found in the neural
cells. Fig. 1.6 shows typical action potentials for several cell types.
The action potential for SAN cells is the shortest, while both Purkinje fiber

9

10

CHAPTER 1. SINOATRIAL NODE: PHYSIOLOGY AND

MATHEMATICAL MODELING

cells and myocardial cells have substantially prolonged action potentials
(300 - 400 ms compared to 3 ms for the squid axon). Even within a single
cell type, there can be substantial variation. For example, in the ventricles,
epicardial, midmyocardial, and endocardial cells have noticeable differences
in action potential duration [20].

1.1.3 Pacemaker action potential

Cells of the sinoatrial node, on which we focus, have the property of auto-
maticity thanks to their unique electrophysiological profile, that is distinct
from that in atrial or ventricular cells. These latter are characterized as
having a stable rest potential, while the SAN AP lacks a true resting po-
tential due in large part to lack of the inward rectifier K+ channel IK1. The
SAN AP reaches a maximum diastolic potential (MDP) of about -60 mV,
followed by a spontaneous depolarization that eventually reaches thresh-
old to generate another AP, therefore the SAN is able to generate regular,
spontaneous action potentials. Unlike most other cells that elicit action
potentials (e.g., nerve cells, muscle cells), the depolarizing current is carried
primarily by a relatively slow, inward Ca2+ current instead of by fast Na+

currents. In fact pacemaker cells have fewer inward rectifier K+ channels
than do other cardiomyocytes, so their membrane potential is never lower
than -60 mV. As fast Na+ channels need a transmembrane potential of -90
mV to reconfigure into an active state, they are permanently inactivated
in pacemaker cells so there is no rapid depolarization phase. Pacemaker
cells have an unstable membrane potential and their action potential is not
usually divided into the same defined phases seen before.
Fig. 1.7 shows a typical AP of a SAN cell, the different phases and the in-
volved currents are indicated. The sequence of events for pacemaker action
potential are:

• phase 4: spontaneous depolarization, which leads the membrane po-
tential to overcome the threshold level. At the end of the repolar-
ization, when the membrane potential is really negative, i.e. the
maximum diastolic potential (MDP=the lowest membrane potential
reached by the cell)) is about -60 mV, the funny current (If) is ac-
tivated. The latter is a distinguishing current of the nodal tissue, it
is carried both by Na+ and K+ ions and it is activated by repolar-
ization/iperpolarization, which starts at about -50 mV. The reversal

10

CHAPTER 1. SINOATRIAL NODE: PHYSIOLOGY AND

MATHEMATICAL MODELING 11

Figure 1.7: SAN cell Action Potential and currents involved in the different
phases [21].

potential of the involved ionic channels is -10/20 mV, due to the their
mixed permeability. The activation of this current, together with
the increased activity of the sodium-calcium exchanger is responsible
of the diastolic depolarization (DD). In particular this phase can be
divided into two stages, the first one, called early diastolic depolar-
ization primarily relies on the presence of the funny current, while
the exchanger is more active in the second part, late diastolic depo-
larization, immediately before systole. At the end of this phase the
membrane potential is closer to the threshold, so almost ready for the
upstroke;

• phase 0: depolarization of the AP (upstroke). Once the membrane
potential has reached the threshold level (about -50/-40 mV), a rapid
depolarization can start and move the membrane potential to a peak
of about +20 mV. During this phase the conductivity of calcium chan-
nels increases and we have two different types of inward currents, ICaL,
which is the largest contributor to the upstroke, and ICaT , which is
the first one to be activated (already at the end of phase 4). So the
primary current during this stage is carried by Ca2+ flowing through
L-type channels, for this reason the slope of phase 0, and so the speed
of depolarization, is lower than the one found in the other cardiomy-
ocytes;

• phase 3: repolarization. Once the membrane potential has reached
positive values, K+ channels start to open and we have two types of

11

12

CHAPTER 1. SINOATRIAL NODE: PHYSIOLOGY AND

MATHEMATICAL MODELING

currents: IKr and IKs, which, together with the inactivation of ICaL,
return the membrane potential to negative values.

1.1.4 Heart rhythm and cardiac arrhythmias

Cardiac arrhythmias are disruptions of the normal cardiac electrical cycle
and they are generally of two types. There are temporal disruptions, which
occur when cells act out of sequence, either by firing autonomously or by
refusing to respond to a stimulus from other cells, as in AVN block or a
bundle branch block. A collection of cells that fires autonomously is called
an ectopic focus. These arrhythmias cause little disruption to the ability of
the heart muscle to pump blood, and so if they do not initiate some other
kind of arrhythmia, are generally not life-threatening.
The second class of arrhythmias are those that are reentrant in nature and
can occur only because of the spatial distribution of cardiac tissue. If they
occur in the ventricles, reentrant arrhythmias are of serious concern and
life-threatening, as the ability of the heart to pump blood is greatly di-
minished. Reentrant arrhythmias on the atria are less dangerous, since the
pumping activity of the atrial muscle is not necessary to normal function
with minimal physical activity, although long-lived atrial reentrant arrhyth-
mias are known to increase the chance of strokes. A reentrant arrhythmia
is a self-sustained pattern of action potential propagation that circulates
around a closed path, reentering and reexiting tissue as it goes. A classic
example of a one-dimensional reentrant rhythm of clinical relevance is one
in which an action potential circulates continuously between the atria and
the ventricles through a loop, exiting the atria through the AV node and
reentering the atria through an accessory pathway (or vice versa). Reen-
trant patterns which are not constrained to a one-dimensional pathway are
much more problematic. The two primary reentrant arrhythmias of this
type are tachycardia and fibrillation. Both of these can occur on the atria
(atrial tachycardia and atrial fibrillation) or in the ventricles (ventricular
tachycardia and ventricular fibrillation). When they occur on the atria, for
the reasons mentioned before, they are not immediately life-threatening,
while when they occur on the ventricles, they are life-threatening. Ven-
tricular fibrillation is fatal if it is not terminated quickly. Tachycardia is
often classified as being either monomorphic or polymorphic, depending on
the assumed morphology of the activation pattern. Monomorphic tachy-

12

CHAPTER 1. SINOATRIAL NODE: PHYSIOLOGY AND

MATHEMATICAL MODELING 13

cardia is identified as having a simple periodic ECG, while polymorphic
tachycardia is usually quasi-periodic, apparently the superposition of more
than one periodic oscillation. A typical example of a polymorphic tachy-
cardia is called torsades de pointes, and appears on the ECG as a rapid
oscillation with slowly varying amplitude (Fig. 1.8). Stable monomorphic
ventricular tachycardia is rare, as most reentrant tachycardias degenerate
into fibrillation [20].

Figure 1.8: A six-lead ECG recording of torsades de pointes [20].

1.2 Mathematical modeling of cardiac AP

Most part of the work made in cardiac modeling field derives from the
experiments performed by Hodking and Huxley in the early ’50s. They
were working on the squid giant axon using for the first time a technique,
named patch-clamp, which then became crucial during the following years.
With this technique the cells and their ionic channels are given particular
voltage or current trajectory and then the resulting electrical activity is
recorded. We can use different protocols, depending on the shape or type
of trajectory used to stimulate the cell. The most common examples are:
voltage clamp, current clamp and AP clamp. The latter does not use a
fixed value of voltage or current but the cells are stimulated by a voltage
profile reconstructed on the basis of a normal action potential. In their
pioneering work, Hodking and Huxley recorded multiple electrical currents
across the membrane and they identified an electric analogy to describe
the cell membrane. From the circuit shown in Fig. 1.9 it derives that the

13

14

CHAPTER 1. SINOATRIAL NODE: PHYSIOLOGY AND

MATHEMATICAL MODELING

Figure 1.9: Electric analogy used to represent the cell membrane, the
phospholipid bilayer is described as an electric capacitance C and the ionic
channels through an electric resistance R [4].

currents playing a role in the action potential generation can be described
mathematically by the following equation:

Cm ∗ dVm

dt
= −Im (1.1)

where Cm is the electric capacitance of the cell, Vm is the voltage difference
across the cell membrane and Im is the sum of all the currents flowing
across the cell membrane. In turn each one of these currents is described
mathematically by the following equation:

Iion = x ∗ gion ∗ (Vm − Eion) (1.2)

where:

• x is the gating variable, i.e. an adimensional value in the range 0÷1,
which represents the ratio of open channels at a certain instant in
time. We could have more than one gating variable to represent a
single channel. The mathematical description of a gating variable is
discussed later;

• gion is the electrical conductivity of the ionic channel;

• Vm-Eion is called driving force, Eion is the reversal potential of the
considered ion (also known as the Nernst potential), i.e. the membrane
potential at which there is no net flow of that particular ion from one

14

CHAPTER 1. SINOATRIAL NODE: PHYSIOLOGY AND

MATHEMATICAL MODELING 15

side of the membrane to the other. Eion is determined by the Nernst
equation:

Eion =
R ∗ T
Z ∗ F ∗ log [ion]i

[ion]o
(1.3)

where:

– ion is the considered specific ion;

– R=8.314472 J K−1 mol−1, universal gas constant;

– T temperature in Kelvin;

– Z valency of the element;

– F=96485.3399 C mol−1, Faraday constant;

– [ion]i intracellular ion concentration;

– [ion]e extracellular ion concentration.

Gating variables are described by differential equations. Conductivity val-
ues reached by some channels at fixed potential values are determined by
performing clamp experiments, until the maximal conductivity is reached.
These found values are then expressed in relative terms, giving a value to
the gating variable for each one of the tested potentials. The resulting pa-
rameter is named x∞ and it is defined by a voltage dependent equation.
The ionic channels require a certain amount of time to reach the x∞ value
(steady state value), so that we can define a time constant τx, which is
still voltage dependent. The equations for both parameters come from an
interpolation of experimental data and they are the following:

x∞ =
α

α + β
(1.4)

τx =
1

α + β
(1.5)

where α and β decribe the relationship with voltage, usually in an expo-
nential form. Finally the expression for the voltage gating is the following:

dx

dt
= α ∗ (1− x)− β ∗ x (1.6)

15

16

CHAPTER 1. SINOATRIAL NODE: PHYSIOLOGY AND

MATHEMATICAL MODELING

An equal alternative way is:

dx

dt
=

x∞ − x

τx
(1.7)

During the years a great number of cardiac cell models have been formu-
lated, in this work we focus upon rabbit SAN cell models.

1.2.1 Single cell model of the rabbit sinoatrial node

The first sinoatrial node cell model was published in 1980 by Yanagihara,
Noma and Irisawa. The model uses a Hodgkin-Huxley formulation and in-
cludes five trans-membrane currents: the Na+, slow inward (Ca2+), delayed
rectifier K+, hyperpolarization-activated, and time-independent leak (back-
ground) currents. In this model, the slow inward current is responsible for
the rising phase of the action potential and the plateau, determined by both
slow inward current inactivation and activation of the dynamic K+ current
[19].
After this first one, many other models have been proposed with the aim
of including always more details. We carefully describe two of the most
recent rabbit SAN cell models: Maltsev and Severi models, because they
are the ones from which we start the implementation of our models and
also because they describe the diastolic depolarization phase through two
different hypotheses: membrane clock and calcium clock.
The properties of funny channel seem specifically apt to generate the di-
astolic depolarization phase of the action potential, which is the phase re-
sponsible for normal spontaneous activity. Because the membrane ionic
channels open and close according to the membrane potential, this process
is referred to as a membrane voltage clock. As mentioned before, If acti-
vates upon hyperpolarization, one of the unusual features which at the time
of its discovery made the current deserve the attribute funny, at a threshold
of about -40/-50 mV, and is fully activated at about -100 mV. In its range
of activation, which quite properly comprises the voltage range of diastolic
depolarization, the current is inward, its reversal occurring at about -10/-
20 mV. This is due to the mixed Na+/K+ permeability. The channels are
encoded by the hyperpolarization-activated, cyclic nucleotide-gated (HCN)
channel gene family. Of the four known HCN subunits, HCN4 is the most
highly expressed in the mammalian SAN. The major role of If has been

16

CHAPTER 1. SINOATRIAL NODE: PHYSIOLOGY AND

MATHEMATICAL MODELING 17

reinforced by the fact that mutations in the If channel are associated with
a reduced baseline heart rate, and drugs, which block If (such as ivabra-
dine) do the same. Funny channels are so a successful target of specific
heart-rate-reducing agents like ivabradine, and is known that funny current
plays a key role on the pacemaking activity of heart cells.
The second hypothesis relies on the recent finding of spontaneous Ca2+

Figure 1.10: In the left part of the figure: membrane clock (If) hypothe-
sis: Simulated AP using the Severi model. In the right part of the figure:
calcium clock hypothesis: Simulated AP using the Maltsev model [29].

release from the sarcoplasmic reticulum (SR), which has been suggested to
be the mechanism for sinus rhythm generation. When the SR is full, the
probability of spontaneous Ca2+ release increases. On the other hand, when
the SR is empty, the chances for spontaneous Ca2+ release decrease. The
rhythmic alteration of SR Ca2+ release is referred to as the Ca2+ clock.
Because the SR Ca2+ content is controlled in part by the membrane volt-
age, it is important to recognize that the activation of the Ca2+ clock and
the membrane ionic clock are interdependent. Based on evidence from iso-
lated SAN myocytes, late diastolic Cai elevation (LDCAE) relative to the
action potential upstroke is a key signature of pacemaking by the Ca2+

clock. On these bases a new modeling approach starts to be considered,
in which rate regulation is governed by intracellular Ca2+ cycling and its
coupling to the surface membrane. These new models differ from classical
pacemaker models, which attribute the rate regulation of SAN cells mainly
to the If activation state and its relation to the early DD slope. The rate
and amplitude of SR Ca2+ cycling of the most recent models is controlled

17

18

CHAPTER 1. SINOATRIAL NODE: PHYSIOLOGY AND

MATHEMATICAL MODELING

by the amount of free Ca2+ in the system, the SR Ca2+ pumping rate and
the numbers of activated Ryanodine Receptors (RyR) [14].

1.2.2 Maltsev model

Figure 1.11: Schematic diagram of the interacting Ca2+ clock and mem-
brane clock in the Maltsev model of rabbit sinoatrial node cells [29].

In contrast to earlier membrane-delimited models of the SAN cell, in
2009, Maltsev and Lakatta first developed a model of a coupled membrane-
and Ca2+-clock to address the ionic mechanism of cardiac pacemaking. Im-
portantly, they quantitatively described the contribution of spontaneous
Ca2+ release during late DD to SAN pacemaking, by triggering an inward
Na+-Ca2+ exchange current (INCX). They concluded that only a coupled
system of membrane- and Ca2+-clocks offers both the robustness and flex-
ibility that are required to maintain normal pacemaking function. The
Maltsev model predicts that the most important pacemaker current dur-
ing late DD is the inward INCX , instead of If . INCX is the leading current
during the DD, and is secondary to dynamic changes in [Ca]i and the Ca2+-
clock. Without the Ca2+-clock, the membrane-clock alone is not capable of
maintaining normal pacemaking function.
This model is a system of 29 first-order differential equations. To avoid a
lengthy transitional process, they set initial conditions for membrane clock
gating variables to ready-to-fire status.

18

CHAPTER 1. SINOATRIAL NODE: PHYSIOLOGY AND

MATHEMATICAL MODELING 19

1.2.3 Severi model

In 2012, Severi et al. developed an updated model of a rabbit SAN cell based
on the most recent experimental data, with an updated representation of
intracellular Ca2+ dynamics. If remains the major pacemaker current in the
Severi model, and it is formulated using a similar Hodgkin-Huxley scheme.
As predicted by the Severi model, If and the Na+-Ca2+ exchange current
INCX are of similar size during DD. Yet If gradually increases to promote
depolarization, while the inward INCX decays slightly over time. In addition,
the model predicts that complete blockade of If will lead to cessation of
cell automaticity. In fact an outstanding improvement with respect to the
Maltsev model, is its ability in reproducing the experimental effects of the
If reduction, in particular the AP rate decrease, experimentally observed
in response to a partial If blockade. The Severi model reproduces an AP
rate decrease of 22% in case of a 66% If blockade; on the contrary, Maltsev
model is able to reproduce only a small reduction of the AP rate (about 5%)
if If is completely blocked. If is described as composed of two relatively
independent Na+ and K+ components, IfNa and IfK , whose contributions
to the total conductance at normal Na+ and K+ concentrations, are similar.
If is also modulated by the extracellular potassium concentration Ko.
This model is a system of 34 first-order differential equations.

Figure 1.12: Schematic diagram of the Severi model [31].

19

20

CHAPTER 1. SINOATRIAL NODE: PHYSIOLOGY AND

MATHEMATICAL MODELING

1.2.4 Electrical propagation and cable theory

In this work of thesis the single cell model is only a starting point, then we
will work on systems of coupled cells, either along a line or in a matrix. For
this reason in this section we want briefly explain how to mathematically
represent an action potential propagating down a uniform cable. First of
all the cable must be divided into discrete segments so that we can analyze
the cable as coupled equivalent circuits (Fig. 1.13). In the illustration we

Figure 1.13: One dimensional cable theory [34].

can see the mathematical circuit used to represent a single segment of the
cable, which is the same we already described in the previous section. Then
this circuit is replicated and coupled to other equivalent circuits to describe
all the cable. These circuits are connected between them by a resistance Ri,
which corresponds to the intra-cellular resistance (for simplicity we assume
extra-cellular resistance Re=0), while Vj represents the voltage at the jth
element of the cable. Said that and using the Ohm’s law and the Kirchoff’s
current law, we can write the equations that describe the jth element of the
cable:

Ij−1 7→j = (V j−1 − V j)/Ri (1.8)

Ij 7→j+1 = (V j − V j+1)/Ri (1.9)

Ij−1 7→j = Ij 7→j+1 + AIjm (1.10)

where Im is a current density and A is the surface area of the jth element
and Ij−1 7→j is the current flowing from the (j-1)th element to the jth element.
Analyzing the equivalent circuit the membrane current (normalized per unit

20

CHAPTER 1. SINOATRIAL NODE: PHYSIOLOGY AND

MATHEMATICAL MODELING 21

area) can be written as follows:

Ijm = Cm

dV j

dt
+ Ijion (1.11)

Now, putting the equations together, we obtain:

(V j−1 − V j)/Ri = (V j − V j+1)/Ri + A[Cm
dV j

dt
+ Ijion] (1.12)

and, rearranging the fields:

Cm

dV j

dt
= (V j−1 − 2V j) + V j+1/ARi − Ijion (1.13)

The parameter Ri can be also related to cable geometry, in fact defined ρi
the intracellular resistivity, a the radius of the transversal section and ∆x

the length of each segment of the cable, we have: Ri=ρi∆x/πa
2.

The approach of the cable theory to describe AP propagation can be easily
extended to a multidimensional propagation. In this last case we should con-
sider that transverse propagation means encountering more gap junctions
per unit length and thus the resistance in this direction should be greater
than the longitudinal one. The resistance value in fact is determined both
by cardiac structure and gap junctions, although the cytoplasmic resistance
is relatively low compared with the resistance encountered at gap junctions
[34].

1.3 Heterogeneity in the SAN

A fundamental limit of single cell models is that they are unable to describe
the interaction between cells and the variability normally existent between
cells of they same organ. In fact each parameter present in the model is
given an average value, which cannot take into account slight differences
within the tissue. In this section we describe the great morphological and
functional heterogeneity of the rabbit sinoatrial node, pointing out the most
relevant aspects to this work of thesis.
Measurements from intact rabbit SAN have shown heterogeneity of electro-
physiological properties from the center to the border of the atrium includ-
ing gradual morphological changes in action potential, a decrease in maxi-
mum diastolic potential, an increase in peak overshoot potential (POP), an

21

22

CHAPTER 1. SINOATRIAL NODE: PHYSIOLOGY AND

MATHEMATICAL MODELING

increase in upstroke velocity (UV) and a decrease in pacemaker potential
slope. On the basis of these results, as described in the work of Oren et
al. [28], two distinct hypotheses have arisen to explain intact SAN hetero-
geneity. The first is that the SAN has two specific cell types, central cells
and peripheral cells, each with distinct electrophysiological characteristics.
The second hypothesis suggests that all observed heterogeneity in the intact
SAN results from electrotonic coupling effects, i.e. cells in the SAN near the
atria will be strongly affected and modified by the atrium. However what
Oren et al. concluded from their tissue model simulations is that atrial
electrotonic effects is plausible to account for SAN heterogeneity, sequence,
and rate of propagation. They also have studied the effect of fibroblasts,
concluding that they can act as obstacles, current sinks or shunts to con-
duction in the SAN depending on their orientation, density, and coupling.
Some of the most important hypotheses proposed to explain the observed
heterogeneity of the rabbit sinoatrial node are summarised below:

• SAN tissue has fibroblasts interspersed in islands that occupy about
50% of SAN volume and they can act as obstacles, current sinks or
shunts to conduction in the SAN depending on their orientation, den-
sity and coupling;

• Verheijck et al. [11] have observed atrial cells interspersed in the
SAN and suggested a mosaic model of SAN and atrial cells for SAN
organization;

• Gap junction density and conductance increase moving from the cen-
ter to the pheriphery of the SAN;

• SAN has two specific cell types, central cells and peripheral cells, each
with distinct electrophysiological characteristics;

• All observed heterogeneity in the intact SAN results from electrotonic
coupling effects, cells in the SAN near the atria will be strongly af-
fected and modified by the atrium.

22

Chapter 2

Materials and Methods

Starting from the single cell models for the rabbit sinoatrial node: Severi
model and Maltsev model, first a 1D model both in MATLAB and CUDA
and after a 2D model in CUDA were implemented. The 1D model, or ca-
ble model consists of an array of cells placed along a line and connected
between them and it was used to perform a comparison between the exe-
cution time in MATLAB and CUDA, running the same simulations with
both softwares. It was also handled to study and better understand the
relationship between the cells coupling and the conduction velocity within
a cable of cells. The 2D model, or tissue model consists instead of a matrix
of cells and each one, except the ones on the boundary, is connected to four
other cells. This last model has been useful in introducing in this study the
heterogeneity of the SAN through a randomization of all the conductances
existent in the Maltsev model, so that each cell had a different behavior and
it was possible to evaluate how each one influences the others.
Therefore in this chapter we expose the steps taken for the implementa-
tion of the instruments and the last section briefly describes the performed
simulations.

23

24 CHAPTER 2. MATERIALS AND METHODS

2.1 1-dimensional model implementation in

MATLAB

The Maltsev and Severi single cell models for the rabbit sinoatrial node,
described in details in the previous chapter, were the starting point of my
work. In the cable model we consider a group of cells placed along a line
and connected between them through gap junctions, therefore, to pass from
a single cell model to a cable model, each differential equation existent in
the model and describing the evolution in time of a state variable must be
replicated for each cell of the cable. In this thesis we have looked at cables
of both 25 and 50 cells. The differential equation describing the evolution
of the cell’s membrane potential was modified according to the cable theory
to include the contribution in current each cell gives to the two neighboring
cells. No-flux boundary conditions were considered.

The voltage equation that appears in the single cell model as:

dVm = −itot/Cm (2.1)

is then converted to the following:

dVm = −(itot/Cm) + Vnet/(Rgap ∗ Cm) (2.2)

In the previous equations as usual Cm represents the cell’s membrane ca-
pacitance and it is equal to 32 pF, Vm is the membrane potential, expressed
in mV and itot, expressed in pA, is the sum of all the different currents used
in the model, respectively for the Maltsev and Severi model:

itot = iCaL+iCaT+if+ist+iKr+iKs+ito+isus+iNaK+iNaCa+ibCa+ibNa (2.3)

itot = if+ibNa+ibCa+iKr+iKs+ito+iNaK+iNaCa+iNa+iCaL+iCaT+ibK+iKACh

(2.4)

24

CHAPTER 2. MATERIALS AND METHODS 25

The new terms introduced with the cable model are:

• Rgap: this parameter takes into account the coupling strength between
the cells. It has the units of measurements of an electrical resistance,
increasing its value the current contribution between the cells is de-
creased according to the Ohm’s law. Its importance in this study will
be further discussed later in this chapter and in the next one;

• Vnet: this parameter takes into account the difference in voltage be-
tween the cells, therefore it is expressed in mV and it is obtained as
follows:

Vnet = Vm([2 : end, end])− 2 ∗ Vm + Vm([1, 1 : end− 1]) (2.5)

The resulting models are composed of systems of ordinary differential
equations (ODE). MATLAB has a number of tools for numerically solving
ODE, in our case we used the built-in function ode15s, which is one of the
solvers designed for stiff problems, namely when ODE are such that the nu-
merical errors compound dramatically over time. In general in that cases it
is necessary to take considerably smaller steps in time to solve the equations,
and this can lengthen the time to solution dramatically. Often, solutions can
be computed more efficiently using one of the solvers specific for stiff prob-
lems.
I first considered the cells governed by the same differential equations

and with the same values for the parameters and the initial conditions of
the state variables. The cells, having at each moment the same voltage, do
not exert any influence on each other, in fact the contribution in current
deriving from the Ohm’s law is equal to zero, the value given to Rgap does
not have any effect and the cells behave as a single one.

Figures 2.1 and 2.2 show the results obtained in this condition using the
two models, obviously the results are the same considering a cable of either
25 or 50 cells.

25

26 CHAPTER 2. MATERIALS AND METHODS

Figure 2.1: Simulated AP using the Maltsev cable model

Figure 2.2: Simulated AP using the Severi cable model

26

CHAPTER 2. MATERIALS AND METHODS 27

Once verified the correct implementation of the models, the initial con-
ditions have subsequently been changed to evaluate the effect of different
values of Rgap over the conduction velocity within the cable. Each cell
was given different initial conditions for the state variables according to
hypotheses made referring to the estimated physiological values of conduc-
tion velocity in the rabbit SAN. Realistic values for the initial conditions
of the models state variables can be determined by using the usual relation
between time, displacement and velocity (velocity=displacement/time). In
our case the displacement is the distance between two neighboring cells
within the cable and, using the relation above, it results that, considering
average values for velocity and distance equal respectively to 10 cm/s and
100 µm, the time taken by the impulse to pass from one cell to the next
is roughly equal to 1 ms. On the basis of these considerations, the initial
conditions were in practice computed running simulations of the single cell
models. To assign the initial conditions to the first cell of the line, a 50
s simulation was performed, the final values of the state variables become
the initial conditions for this cell and they are stored in the first line of a
matrix. Starting with these values as initial conditions, another simulation
was performed, but this time the length of the simulation corresponds to
the time delay between the two cells, so it is equal to 1 ms. As before the
ending values of the state variables become the initial conditions for this
cell and the conditions from which to start for the subsequent simulation.
Repeating these same steps for the total number of the cells, all the initial
conditions are assigned.
The simulations conducted using these instruments and their results are
presented later.

27

28 CHAPTER 2. MATERIALS AND METHODS

2.2 Implementation of the models in CUDA

Although the implementation of the cable model has been an important
tool for learning the mechanism of connection between cells and the nec-
essary steps to take to pass from single cell models to models of coupled
cells, the primary purpose of my project was the implementation of a tissue
model of the SAN. In order to do that we made use of CUDA, that enables
huge improvements in computing performances thanks to the power of the
graphic processing units (GPU). GPU’s parallel structure allows a very ef-
fective manipulation of many parallel tasks rather than serial tasks. The
code written in CUDA implements both a cable and a tissue model of the
SAN, even if the 1D model has only been used to evaluate the advantages
introduced in term of execution time comparing to MATLAB. The tissue
model in CUDA has been realized considering only the Maltsev model to
describe the cells, this choice has been supported by practical time reasons,
but the same study could be made considering the Severi model, indeed it
would be interesting to compare the results obtained in the two situations.

2.2.1 A look inside the CUDA Programming Model

First of all the program is divided into several phases that are executed on
either the host (CPU) or the device (GPU) depending on the amount of
data parallelism that they exhibit. Both host and device code are enclosed
by the same source code, which is then compiled using the NVIDIA C
Compiler (NVCC). At this point the two codes are separated, the host code
is compiled with the host’s standard C compilers while the device code is
further compiled by the NVCC and executed on a GPU device.
Therefore in our case the code, named Maltsev.cu, will be compiled from
the command line by typing the following sequence:

nvcc -arch=sm 13 -o a Maltsev.cu

The executable file is then executed through the line:

a.exe

The device code uses keywords for labeling data-parallel functions, called
kernels, and their associated data structures. In particular a kernel, defined

28

CHAPTER 2. MATERIALS AND METHODS 29

as a computationally intensive function that is performed by threads in par-
allel, generates thousands of threads to exploit data parallelism.
As described in fig.2.3 the execution of a typical CUDA program starts

Figure 2.3: Scheme of execution of a CUDA program

with host (CPU serial code) execution, then, if a kernel function is invoked,
the execution is moved to the device (GPU parallel kernel). A kernel, dur-
ing an invocation, as said before, generates a large number of threads and
all these collectively form a grid. When all threads of a kernel complete
their execution, the corresponding grid terminates and the execution con-
tinues on the host until another kernel is invoked. Each kernel is involved in
the performance of an individual part of the process and inside it specifies
the code to be executed by all threads of a parallel phase. The following
example shows a kernel code used in our program:

global void initialConditions(double* vars, int num param, int
num cells, int cells per thread) {
double Vm = -57.9639 ;
... other 27 variables are defined ...
double RI = 0.31195 ;

Within each test, the variables are divided as follows Vm(cell1),

29

30 CHAPTER 2. MATERIALS AND METHODS

Vm(cell2), Vm(cell3) ... Vm(cellLast), m(cell1), m(cell2), ... m(cellLast)
... for all 29 parameters

int idx = threadIdx.x*cells per thread;
int simulations = blockIdx.x;
int limit = idx+cells per thread;
for (;idx<limit;idx++) {
vars[(simulations*num param*num cells) + idx +(0*num cells)] = Vm;
... other 27 values are assigned ...
vars[(simulations*num param*num cells) + idx +(28*num cells)] = RI;
}

}
The syntax is ANSI C with some extensions, in fact there is a CUDA spe-
cific keyword global , which starts the code and the declaration of each
kernel in general and it indicates that that particular function is a kernel
and so it can be called from a host function to generate a grid of threads.
Other extensions used in CUDA and shown in the example are the key-
words threadIdx.x and blockIdx.x, that refer, respectively, to the indices of a
thread and of a block in which threads are grouped together. These subdi-
visions and indices allow each thread to work only on the particular part of
the data structure for which it is designated. After calculating the starting
position in the input vector based on unique block and thread coordinates
the computation is then iterated through a loop, in which the indices are
given by the thread’s coordinate and each element of the vector can be
computed in a separate thread. Although in the examined code only one
dimension (x) is considered, the threads have a multi-dimensional organi-
zation. Briefly threads in a grid are organized into a two-level hierarchy,
each grid is formed by one or more thread blocks and all blocks have the
same number of threads and are identified through a two dimensional co-
ordinate given by the CUDA specific keywords blockIdx.x and blockIdx.y.
Each thread block is in turn structured as a three dimensional array of
threads (maximum 512 threads per block), whose coordinates are given by
the following indices: threadIdx.x, threadIdx.y, and threadIdx.z.
The following line describes how the kernel function of the previous example
is invoked or called in the host code:

initialConditions<<<simulations,(num cells/cells per thread)>>>

30

CHAPTER 2. MATERIALS AND METHODS 31

(dev vars,num param,num cells, cells per thread);

The two parameters: simulations and num cells/cells per thread, between
the CUDA symbols for the syntax of the call function, set, respectively,
the dimensions of grids in terms of number of blocks and the dimensions of
blocks in terms of number of threads. In this particular case the number of
threads is related to the number of SAN cells in the model. The structure
of the kernel functions implemented in the code used in this study and their
execution will be discussed in detail in the following section.

Fig. 2.3 also indicates that host and device have separate memory spaces,
therefore, in order to execute a kernel on a device, it is necessary to allocate
memory on the device and transfer the pertinent data from the host mem-
ory to the allocated device memory. Similarly, after device execution, the
result data can be transferred from device back to the host and the device
memory, no longer needed, can be freed up. The CUDA device memory
model comprises Global Memory and Constant Memory, that the host code
can write to and read from. The activities of allocating and de-allocating
device Global Memory can be performed using the Application Program-
ming Interface (API) functions provided by the CUDA runtime system,
between whom the most important are: cudaMalloc() and cudaFree(). The
first one can be called from the host code to allocate a block of memory on
the GPU for an array or any other object. In order to use this function,
two parameters must be specified: the address of a pointer to the allocated
object and the size of the object to be allocated:

cudaMalloc(&dev vars, sizeof(double)*size);

The function cudaFree() is called after the computation is terminated to
free the storage space for the allocated object from the Global Memory and
it uses as parameter in input the same pointer used before in cudaMalloc():

cudaFree(dev vars);

Thanks to one of the API functions provided by CUDA for data transfer
between memories, called cudaMemcpy(), it is then possible to transfer the
desired data from the host to the block of memory allocated on the GPU. In
order to use this function, two pointers must be declared: one points to the
source data object to be copied and the other one points to the destination

31

32 CHAPTER 2. MATERIALS AND METHODS

location for the copied object. The other two required parameters state,
respectively, the number of bytes to be copied and the types of memory
involved in the copy operation, in fact cudaMemcpy() can be utilized both
to copy data from a location of the device (or host) memory to another
one in the same memory and to transfer data from host memory to device
memory and vice versa. We report an example of this function used in
our code, in which host conductances represents a vector of conductances
obtained by simulations performed in MATLAB:

cudaMemcpy(dev conductances, host conductances, size*sizeof(double),
cudaMemcpyHostToDevice);

The fourth parameter is specified through a symbolic constant prede-
fined in the CUDA environment. In this example the host code calls the
function to copy the vector of conductances from the host memory to the
device memory, but simply reversing the order of the pointers and using
as fourth parameter the symbolic constant: cudaMemcpyDeviceToHost, the
considered data can be copied from the device memory to the host memory.
The latter modality is useful when the outputs of interest must be read from
the GPU to the CPU so they can be available to main() (host code) to be
printed or to be exported and then visualized and analyzed.
The code has been written using Visual Studio 2010 and working on Dell
Precision T5500 8 Core Workstation, whose features are: Software: Mi-
crosoft Windows 7 Professional 64 Bit; Processor: Intel Quad Core Xeon
E5504 2.00 GHz CPU Processor - Qty 2 - Total of 8 Cores; Graphics: Nvidia
Quadro FX 1800 768MB Video Memory.

2.2.2 Maltsev tissue model

After having discussed the general structure of a CUDA program we want
to describe in detail the kernel functions used in our program Maltsev.cu,
whose complete code is shown in Appendix A. As said, a kernel function
specifies the statements that are executed by each individual thread cre-
ated when the kernel is launched at run-time. In our case each thread
corresponds to a single cell in the model, so that all computations are eval-
uated in parallel for each cell. When the execution of a kernel is terminated
the results computed launching that kernel are updated for each cell and
the execution of the following kernel can start.

32

CHAPTER 2. MATERIALS AND METHODS 33

In the first kernel, that we can find in the code, initialConditions, an array
of dimension num cells*num param is assigned to the initial conditions of
the state variables. Once executed this kernel, the array, named vars, is
structured as illustrated in fig. 2.4 and contains in sequence the values of
the initial conditions of each state variable for all the cells.
After having initialized the array of the state variables, these latter must be

Figure 2.4: Structure of the array initialized with the Initial Conditions

updated for every time step and this is made possible through the execution
of the next kernels. The second kernel computeState, as the name suggests,
calculates the updated values for each of the 28 parameters, while the mem-
brane voltage will be managed by a separate kernel. Through this kernel
first the variables are indexed within the array, then all the constant values
used in the model are specified and finally the differential equations describ-
ing the state variables are integrated using the Euler Forward Method. This
latter is a first-order numerical procedure for solving ODEs with a given

initial value. The following differential equation
dy

dt
=f(t,y) is satisfied by

a group of functions, a unique initial condition y(t=0)=y0 identifies only
one of these functions, which is the Initial Value Problem (IVP) solution.
Then we assume that a unique solution exists and denote that solution by
ye(t), while y(t) refers to the numerically computed solution, which can
only be an approximation of the exact one. Denoted the time at the nth
time-step by tn and the computed solution at the nth time-step by yn, i.e.,
yn ≡y(t=tn), the constant step size h is then given by h=tn-tn−1. Given
(tn,yn), the forward Euler method computes yn+1 as:

yn+1 = yn + hf(tn, yn) (2.6)

Therefore we estimate the solution by considering the tangent in (tn,yn),
approximation of the solution in tn+1 is the value in tn+1 of the tangent to
the approximated solution curve in (tn,yn). All this is possible by proceeding
iteratively from the initial f0=f(t0,y0) which is note.

33

34 CHAPTER 2. MATERIALS AND METHODS

Figure 2.5: Scheme of forward Euler integration

At the end of this function, all the state variables are updated into a
temporary array and the next step is to copy the updated variables at this
time step in another array, which at the end of the simulation will contain
all the values for the state variables along all the time of simulation (kernel
updateState).
The subsequent kernel computes the new values for the membrane voltage.
While the value of each of the other state variables at a certain instant of
time and for a certain cell is not affected by the value assumed by the state
variables in the other cells, the value of one cell’s potential, as we know,
is affected by that of neighboring cells. For this reason it is necessary to
have a separate kernel for handling the membrane potentials. Within the
kernel compute voltage two different implementations are shown, first the
case of a cable of cells and then the case of a tissue. As usual the cells are
connected between them through gap junctions, but this time the resistance
is expressed referring to geometrical parameters of the cells, and so using a
resistivity and the dimensions of the cell. The relation between ρ and Rgap

is given by the second Ohm’s law: R=ρ*l/S, i.e. the resistance R of a homo-
geneous conductor of constant transversal section is directly proportional
to its length (l) and is inversely proportional to the area of its transversal
section (S). As it was for the resistance, also for the resistivity there is not
a fixed value in literature, in our simulations different values within a wide
range have been tested. In the cable model the equation used to update
the voltage is the same shown before while describing the implementation
in one dimension in MATLAB, the only difference is the method of inte-
gration. The following illustration and the lines below describe how the

34

CHAPTER 2. MATERIALS AND METHODS 35

voltage is updated in the case of the tissue model, where no more only two
neighboring cells must be considered when calculating one cell’s potential,
but 4 neighboring cells must be taken into account, as the cells are placed
as in a matrix and no more along a line.

Figure 2.6: Scheme of connection between cells in the tissue model

Vm[m] = (x[n])+(step)∗((rad2∗ π

(ρ ∗ Cm ∗ deltx))∗(Vnet)−
(Iion[n] + stim)

Cm

);

(2.7)

where the following parameters are utilized:

• Vm[m] is the updated membrane potential of the cell whose position
in the voltage array is denoted by the index m (m=0,1...num cell).
After having written into Vm the updated values for each cell, these
are copied into another array x, so that Vm is only a temporary vector;

• x is the state variable array, which contains the updated values of
all the state variables. At the first time step, it is filled with the
initial conditions, then the updated values of the state variables are
copied from two temporary arrays into it. In particular voltage values
occupy the first num cells positions of the array and n, like m, is an
index which denotes the number of the cell (n=0,1...num cell). For
each step, m and n denote the same cell, just in two different vectors
and x[n] represents the value assumed by Vm[m] at the previous time
step;

• Vnet is the sum of the contributions in voltage deriving from the four
neighbornig cells: Vnet=Vnet R+Vnet L+Vnet U+Vnet D;

35

36 CHAPTER 2. MATERIALS AND METHODS

• step is the time step, imposed equal to 0.005 ms after having verified
that it returns no appreciable difference in results compared to what
obtained with a 0.002 ms step;

• rad is the cell radius imposed equal to 4 µm;

• ρ is the resistivity and its value, as discussed in details later, is changed
within a range of 104;

• Cm as usual is the membrane capacitance, whose value is equal to 32
pF;

• deltx is the cell length imposed equal to 70 µm;

• Iion is the sum of all the different ionic currents;

• stim is an eventual stimulus current, not normally present in a model
of SAN cells, but it could be useful in our simulations as a tool to
impose different initial conditions to the cells, giving the stimulus
only to few of them.

As before another kernel (update voltage) is implicated in the storing of
the updated values for the voltage. These are saved in the first cell num
positions of the vector used previously to save the other updated state
variables.
Once terminated the execution of each kernel, the updated values for every
time step of the simulation are available to be exported and then visualized
and further used to measure outputs of interest, such as cycle length and
action potential amplitude. In order to be able to do that in MATLAB, cell
membrane voltage values for all time points are written into a file named
Maltsev GPU Voltage using the fopen() function in the write mode. These
data are structured such that each row of the matrix contains the values of
each cell’s voltage at the same time point. Therefore the file can be opened
in MATLAB environment through the built in function dlmread(), similarly
the function dlmwrite() is used when it is necessary to import in CUDA an
array created in MATLAB and then saved as a file.txt and opened in the
program using the fopen() function in the read mode.

36

CHAPTER 2. MATERIALS AND METHODS 37

2.2.3 Parameter randomization

First the program Maltsev.cu was tested to see if it returned the same re-
sults of the one implemented in MATLAB, therefore the case of a cable
model with the same initial conditions and same parameters for every cell
was simulated. Fig. 2.7 shows the correspondences between the results ob-
tained by the two programs in the same condition.
Another assessment was carried out before starting to use the model with

Figure 2.7: Comparison between MATLAB and CUDA simulations in the
same condition. The two curves are superimposed.

its ultimate purpose. We wanted to see how the tissue model behaves when
we have a population of different initial conditions for the cells. In MAT-
LAB a script was realized to store in a matrix, then converted to a vector,
all the initial conditions to be assigned each cell in the CUDA program.
To define the initial conditions of the state variables, a similar strategy to
that of the cable case was used, the Pythagoras’s theorem was taken into
account to establish the time delay between cells placed on the diagonal of
the matrix, in fact the distance between these cells is greater than the one
between cells along a row or a column. In the script we start by running
a 50 s single cell model simulation, the values of the state variables at the
end of the simulation become the initial conditions for the cell placed in the

37

38 CHAPTER 2. MATERIALS AND METHODS

upper left corner of the matrix of cells. Starting from these values for the
variables, two types of simulation are run, the first type lasts 1 ms and is
used to compute the initial conditions for the cells placed in the first column
and row, each time using as initial conditions the final values of the previous
cell, the second type lasts

√
2 ms and is used to compute the initial condi-

tions for the cell placed on the diagonal next to the first cell. The process
is then repeated running the same types of simulations but using as initial
conditions the final values of the cell on the diagonal and filling in this way
the second row and column and the third cell on the diagonal, from which
to start the next group of simulations.
Fig. 2.8 shows at the top the pattern of the membrane potential obtained
applying the described approach to a matrix of cells (function imagesc() in
MATLAB). In (b) the evolution of the membrane potential over time is rep-
resented and two marks are highlighted at the point where respectively first
and last cell cross a potential value between -20 and -10 mV. The difference
between these two points will correspond to a certain time interval and 10
time points are chosen within this time interval. The panels in (c) depict
in a color map (still using the imagesc() function) the values assumed by
the membrane potential of each cell at that instant of time. Warm colors
represent cells that are crossing or have passed the threshold to unleash the
action potential while cool colors indicate cells that still have very negative
potential.
Same considerations have been made in the case of random initial condi-

tions for the state variables. These were computed choosing random scale
factors for conductances from a log-normal distribution with a median value
of 1, and with σ equal to 0.1873. This last parameter specifies the standard
deviation of the distribution of log-transformed variables and so controls the
extent to which parameters vary. The choice of this value derives from its
assessment as a good approximation to reproduce the physiological variabil-
ity in a population of cardiac cells, based on previous studies on ventricular
cells behavior investigation using linear regression [14]. Simulations with a
population of cells with random values for the conductances were run (time
of simulation = 1 s) and the obtained results for the state variables were
stored in a vector of initial conditions then used in the CUDA program.
Examples of the results of the simulations carried out in these conditions
are shown in fig. 2.9.
Once verified the correct implementation, we were able to use the program

38

CHAPTER 2. MATERIALS AND METHODS 39

Figure 2.8: (a) Illustration of the initial conditions for the membrane
potential, the level of membrane potential is encoded by pixel color; (b)
Evolution of the membrane potential over time; (c) Illustration of the mem-
brane potential at 10 different time point values.

39

40 CHAPTER 2. MATERIALS AND METHODS

Figure 2.9: Examples of color maps of voltage membrane obtained running
Maltsev.cu with random initial conditions for the SAN cells in the tissue:
(a)-(b) tissue 15x15 cells at different intervals of time during the simulations;
(c) tissue 8x8 cells; (d) tissue 12x12 cells

with its main scope, that is, to evaluate the effect of heterogeneity within
the tissue. For this purpose a script in MATLAB was formulated to ran-
domly vary the values of the maximal conductances used in the model, so
that each cell has a different value for each of the conductances.
The parameters concerned and their base values are the following:

• double gsus = 0.02 nS/pF (in AP sensitive currents);

• double gto = 0.252 nS/pF (in AP sensitive currents);

• double gCaT = 0.1832 nS/pF (in iCaT);

• double gKr = 0.08113973 nS/pF (in iKr);

• double gKs = 0.0259 nS/pF (in iKs);

• double gCaL = 0.464 nS/pF (in iCaL);

• double gb Ca = 0.0006 nS/pF (in ib Ca);

40

CHAPTER 2. MATERIALS AND METHODS 41

• double g b Na = 0.00486 nS/pF (in ib Na);

• double gif = 0.15 nS/pF (in if);

• double gst = 0.003 nS/pF (in ist).

The conductances values for each cell were computed as follows:

conductances = [gsus;gto;gCaL;gCaT ;gKr;gKs;gb Ca;gb Na;gif ;gst];
n conductances = length(conductances);
σ = 0.05;%0.1;%0.1873;%0.3;%0.4; % standard deviation of variation of
parameters
for ii=1:variations
scaling = exp(σ*randn(n conductances,1)); %randn: standard normal
distribution
newparams = scaling.*conductances ;
...
end

Where:

• scaling is the array of the conductance scaling factors;

• σ is the standard variation arbitrarily chosen to represent the physio-
logical variation in a population of cells, 5 different values are studied
(σ=0.05; 0.1; 0.1873; 0.3; 0.4);

• randn(N) is a MATLAB built-in function that returns an N-by-N
matrix containing pseudo-random values drawn from the standard
normal distribution.

• newparams are the resulting computed conductances.

In this way random scale factors for conductances are chosen from a log-
normal distribution with a median value 1. As more clearly shown in
Fig. 2.10 log-normally distributed random numbers are obtained from the
normally-distributed random numbers generated using the MATLAB func-
tion randn through the transformation l=en. This was done to exclude
non-physiological conditions such as negative conductances [33].

Conductances are then stored in a vector to be loaded in the GPU and
used to perform Maltsev.cu 2D simulations.

41

42 CHAPTER 2. MATERIALS AND METHODS

Figure 2.10: The two plots are the probability density functions of the
normal (left) and log-normal (right) distributions, calculated for σ=0.25.
The equations show the transformation from normally-distributed random
numbers to log-normally distributed random numbers

2.3 Simulations

The performed simulations can be subdivided into two macro groups: 1D
simulations and 2D simulations.

• 1D simulations enclose simulations carried out in MATLAB using
both Severi and Maltsev Cable Model to evaluate how vary the re-
sistive coupling within a wide range (three values have been tested:
Rgap=133,1330,13300 MΩ) affects the conduction velocity (CV) and
so the ability of synchronization of a group of either 25 or 50 cells. CV
is computed by dividing the distance (cell’s length replicated for the
cells number) between first and last cell for the time delay between the
two. In turn the time delay is the difference between the time points
at which the two cells membrane voltages have the maximum value of
first derivative (dVmax = maximum upstroke velocity). Simulations
performed in this study last 50 s.
The Maltsev cable model was then also used to evaluate the differ-
ence in terms of execution time between CUDA and MATLAB, testing
different numbers of cells within the range 5 - 400 cells.

• 2D simulations were mainly directed to the evaluation of the behavior
of a population of coupled SAN cells with an heterogeneous distribu-
tion of maximal conductances. Simulations performed in this study
last 20 s and different values of inter-cellular variability (σ=0.05, 0.1,

42

CHAPTER 2. MATERIALS AND METHODS 43

0.1873, 0.3, 0.4) and resistive coupling (ρ=1, 10, 102, 103, 104 MΩ m)
have been tested. In particular the effects over cycle length (CL) and
action potential amplitude (APA) were evaluated.
The two outputs were computed as follows:

– CL: time between two consecutive crossings of 0 mV on the up-
stroke of the AP;

– APA: difference between the most positive voltage recorded dur-
ing the AP (OS, peak voltage) and the most negative one (MDP,
maximum diastolic potential).

Figure 2.11: Scheme of an AP and its outputs of interest

The main question to be addressed through this group of simulations
was if the cells synchronize their spontaneous beating and at what
rate. In order to do that the behavior of the isolated cells was com-
pared with the behavior of the same cells put together and connected
between them in the Maltsev Tissue Model.

The results of these simulations are discussed in the next chapter.

43

44 CHAPTER 2. MATERIALS AND METHODS

44

Chapter 3

Results

In this chapter we discuss the results of the simulations carried out with
the models implemented in this work. The results, as done previously with
the description of the simulations, have been subdivided into two groups.
Through the first section we briefly explore the effects of the resistive cou-
pling over the synchronization of a cable of cells. We also include a demon-
stration of the clear benefits observed in terms of speed of execution while
conducting simulations in CUDA rather than in MATLAB. In the second
part of the chapter, where 2D results are described, we finally answer the
main question to be addressed with this work. Results of comparisons be-
tween isolated heterogeneous cells and the same cells connected to form a
tissue are reported, so that in this way the ability and manner of synchro-
nization of said cells are evaluated.

45

46 CHAPTER 3. RESULTS

3.1 1-D model results

In this section two different analyses are considered and three models were
used to obtain the reported results. First Maltsev cable model and Severi
cable model are compared in the study of how the resistive coupling between
cells influences their ability of action potentials synchronization. Afterwards
Maltsev cable model is compared to Maltsev.cu considering the basal case
in which all cells have the same characterization.

3.1.1 Conduction velocity and gap junctions

Figure 3.1: Simulated action potentials in different resistive coupling con-
ditions using Maltsev Cable Model

The two models, Maltsev and Severi Cable Models, have been used to
perform simulations of 50 s considering both 25 and 50 cells. To be able
to carry on the simulations in MATLAB, especially in the 50 cells case,
we had to use a strategy to save and store the state variables values only
for the last part of the simulation (e.g., the last 500-1000 ms) to avoid
memory problem (out of memory error). The results obtained by testing

46

CHAPTER 3. RESULTS 47

Figure 3.2: Simulated action potentials in different resistive coupling con-
ditions using Severi Cable Model

three different values for the coupling resistance are shown in Fig. 3.1 and
Fig. 3.2, the last action potential of each simulation is plotted. The starting
value of 133 MΩ is derived from a reference value found in the literature
[28], but it is only an indicative value because also in that study a fixed
value for the coupling resistance between cells was not considered.
The values of conduction velocity achieved by our simulations, especially
when considering lower resistance’s case, are greater when compared to
the values found in the literature for conduction velocity measured in the
intact rabbit SAN [6] [16] [17] [30]. CV values reported in these studies
fall in the range 1÷30 cm/s and we are able to obtain them in our models
only when we consider a value of Rgap greater than 103 MΩ, in fact when
considering Rgap=13300 MΩ we achieve a value of 5.79 cm/s using Maltsev
Cable Model and a value of 9.64 cm/s whit Severi Cable Model. These
values are computed as mean of CV values obtained considering 25 and 50
cells, slightly different between them. When considering lower values of Rgap

in case of 25 cells, the time delay between first and last cell is too small to
be able to use it to compute the CV. We are still able to do that only in the

47

48 CHAPTER 3. RESULTS

case of 50 cells with Rgap=1330 MΩ, obtaining CV=17.5 cm/s with Maltsev
model and CV=35.44 cm/s with Severi model. As discussed in the first
chapter, the SAN has an extremely heterogeneous structure, for example, it
is rich of fibroblasts that influence and alter the conduction velocity through
the SAN. The SAN is also surrounded by the atrium, which still can act as
a current sink. Finally, a distinction should be made between values of CV
measured along fibres direction and the ones measured along the transversal
direction; indeed, as far as we know, in the models found in the literature
the scientists do not start from a fixed value of coupling resistance, but a
CV target value is set and then the coupling value is calculated as the one
necessary to reach that CV.
These considerations provide a starting point to making the model more
detailed (e.g., by introducing models of atrial cells around the SAN cell
models or fibroblasts dispersed within them) in order to be able to make
a more truthful comparison with the values found experimentally, but that
does not fall within this thesis direct goals.
We also performed a comparison between results obtained in the previous
condition with Rgap=13300 MΩ and the ones obtained after having assigned
randomly the initial conditions of the cells. This was made giving the cells
random conductances and then running a 1 s simulation, the final values
of the state variables become the initial conditions for the cable model
simulation. The APs obtained with Severi and Maltsev models at the end
of 50 s simulation are shown in Fig. 3.3.

Figure 3.3: Simulated action potential using Maltsev and Severi cable
models. Simulations are performed for 50 cells, with Rgap=13300 MΩ and
random initial conditions.

48

CHAPTER 3. RESULTS 49

3.1.2 Execution Time in MATLAB and CUDA

Figure 3.4: Execution Time in MATLAB and CUDA, 5 - 400 cells, Simu-
lation Time = 20 s

Fig.3.4 clearly shows the advantages in terms of speed of execution ob-
tained when the same simulations performed before in MATLAB are then
repeated in CUDA.
The Execution Time of a 20 s 1D simulation in MATLAB rapidly grows with
the number of simulated cells, passing from a value of 7.96 s when consider-
ing 5 cells to one of 510.46 s when considering 125 cells; beyond this value a
problem of memory, mentioned before, occurs in MATLAB, even if we try
to save only the last 500 ms of simulation. On the contrary the Execution
Time of the same simulation in CUDA varies to a lesser extent varying the
number of cells, passing from a value of 58.58 s when considering 5 cells to
one of 77.26 s when considering 400 cells.
This test was designed only to provide a proof of what apparently occurred
during simulations.

49

50 CHAPTER 3. RESULTS

3.2 2-D model results

This section presents the results obtained by simulating a heterogeneous
population of cells in the sinoatrial node. The heterogeneity is achieved
in practice through a randomization of the maximal conductances in the
currents expressions of the Maltsev model. The purpose of this analysis is
to evaluate the difference in behavior between a population of isolated cells
and the same cells connected together to form a matrix.

3.2.1 Effect of heterogenity on Cycle Length and Ac-

tion Potential Amplitude

Fig. 3.5 to Fig. 3.9 show the conductances distributions for each tested
value of σ. These results come from a simulation of the Maltsev single cell
model considering 400 different combinations of conductances, whose scaling
factors were picked, as described before, from a log-normal distribution.
Therefore we have 400 cells still not connected between them and each one
described by a unique model characterized by having a unique combination
of conductances values. Together with the conductances distributions, also
Cycle Length and Action Potential Amplitude distributions, computed for
each cell as previously explained, are displayed.
Since the standard deviation σ of log-transformed variables controls the
extent to which parameters vary, the smaller the σ value, the narrower are
the parameters distributions. In particular we can notice that, for sigma
values of 0.1873 and above, a large number of cells have CL and APA equal
to zero, reaching a percentage of 40% in the case of σ=0.4. This means
that with particular conductances combinations, cells are not excitable, so
that they do not exhibit any action potential and it is reasonable that
this happens more easily in case of great values of σ, when the values of
conductances most different from the basal ones are taken into account.

Fig. 3.10 should better point out the difference in the amplitude of pa-
rameters distributions when considering different values of σ. All cases plots
are superposed, so that we use the same scale for the parameters values and
it is easier to appreciate the difference between distributions amplitude in
the five cases.
Fig. 3.11 to Fig. 3.15 show the results obtained after having loaded in
the CUDA program the conductances vector and having run 20 s simula-

50

CHAPTER 3. RESULTS 51

Figure 3.5: Conductances, CL and APA distributions when considering
σ=0.05. The basal values of conductances, APA (75.87 mV) and CL (332.50
ms) are shown in magenta line.

Figure 3.6: Conductances, CL and APA distributions when considering
σ=0.1. The basal values of conductances, APA (75.87 mV) and CL (332.50
ms) are shown in magenta line.

51

52 CHAPTER 3. RESULTS

Figure 3.7: Conductances, CL and APA distributions when considering
σ=0.1873. The basal values of conductances, APA (75.87 mV) and CL
(332.50 ms) are shown in magenta line.

Figure 3.8: Conductances, CL and APA distributions when considering
σ=0.3. The basal values of conductances, APA (75.87 mV) and CL (332.50
ms) are shown in magenta line.

52

CHAPTER 3. RESULTS 53

Figure 3.9: Conductances, CL and APA distributions when considering
σ=0.4. The basal values of conductances, APA (75.87 mV) and CL (332.50
ms) are shown in magenta line.

tions with the Maltsev Tissue model. Each cell is still characterized by a
unique combination of conductances, but now the cells are connected be-
tween them, so that they influence each other, in particular through these
illustrations we can see the synchronization effect on CL.

Starting considering the first case, σ=0.05, we see that at the end of the
simulations the cells have synchronized their discharge frequency, this can
be clearly noticed both from the colour maps and the histograms. The
most favourable case for the cells to synchronize their behaviour is when
the inter-cellular variability, expressed in our simulations as the extent of
conductances variability, is slight and when the resistivity ρ has a small
value, therefore they have a strong coupling between them. In fact when ρ
is equal to the smallest value which has been tested (ρ=1 MΩ m) all cells
show the same cycle length, moreover this last is equal to the control value
(CLcontrol=332.5 ms), i.e. when all conductances have their basal values.
Looking at the worst case, i.e. when ρ is equal to the greatest value (ρ=104

MΩ m), we find out that cells are still synchronized, there are only two
different values of cycle length (CL=331.5 ms and CL=332 ms)) which are

53

54 CHAPTER 3. RESULTS

Figure 3.10: Conductances, CL and APA distributions are shown using
different colours for each value of σ to point out the different extent of
variation of parameters

really close to the control value, even if slightly lower. This result is in
accordance with the fact that we were evaluating a low degree of variability.

When σ=0.1 and ρ has the minimum value, the cells have a final uni-
form value of CL equal to 332 ms. As anticipated, increasing the value of
resistivity and thus resistance, the ability of the cells to synchronize toward
a unique value of CL should decrease, in fact in the case of ρ maximum CL
varies within a range of 3.5 ms (CLmin=327.5 ms, CLmax=331 ms).

54

CHAPTER 3. RESULTS 55

Figure 3.11: At the top colour maps of CL at the end of 20 s simulations
are shown. At the bottom we can see histograms for the same data.

Figure 3.12: At the top colour maps of CL at the end of 20 s simulations
are shown. At the bottom we can see histograms for the same data.

What we expect is that, increasing the inter-cellular variability, CL final
value will vary within a wider range, especially when considering cells less
strongly connected between them. Looking at the case σ=0.1873, shown in

55

56 CHAPTER 3. RESULTS

Figure 3.13: At the top colour maps of CL at the end of 20 s simulations
are shown. At the bottom we can see histograms for the same data.

Figure 3.14: At the top colour maps of CL at the end of 20 s simulations
are shown. At the bottom we can see histograms for the same data.

Fig. 3.13, we find evidence for this hypothesis in the case of ρ=104 MΩ m
when CL varies within a range of 8 ms (CLmin=320 ms, CLmax=328 ms),
while when considering ρ equal to the minimum value the cells are still able
to synchronize their rhythm. CL in fact assumes only two alternative close

56

CHAPTER 3. RESULTS 57

Figure 3.15: At the top colour maps of CL at the end of 20 s simulations
are shown. At the bottom we can see histograms for the same data.

values: 329 ms and 329.5 ms and this consideration is still true even when
referring to ρ=103 MΩ m, but this time the two values are lower (CL=325
ms and CL=325.5 ms) and this fact recalls what we have seen less markedly
also before.
The last two conditions: σ=0.3 and σ=0.4 are the most extremely ones, in
fact, as said when we were talking about isolated cells, they generate a large
percentage of non excitable cells. Moreover CL and APA for the remaining
cells vary within a very large range. Having said that, it is interesting find
out that with both values of σ, when considering values of ρ in the range
ρ=1÷103, the cells are still able to synchronize their frequency. The CL
final values considering ρ=1 MΩ m are CL=325.5 ms and CL=321÷321.5
ms respectively for σ=0.3 and σ=0.4. These two values are lower than the
ones reported for the previous σ conditions (with same rho) and make us
note that CL not only decreases with the increasing coupling resistance but
it also decreases with the increase of inter-cellular variability. At the top of
Fig. 3.14 and Fig. 3.15 we report the colour map of CL, but in the case
ρ=104 MΩ m in the upper left part of the figures, we consider only cells
with a value of CL comprised between 200 ms and 400 ms, however the
histograms still consider all the cells.

Previous considerations are summarized in the right section of Fig. 3.21

57

58 CHAPTER 3. RESULTS

where all situations of inter-cellular variability and resistivity are illustrated.
The mean values of CL are plotted both versus ρ and σ and in both condi-
tions it is evident the decreasing trend.

Figure 3.16: At the top colour maps of APA at the end of 20 s simulations
are shown. At the bottom we can see histograms for the same data.

The same analysis was carried out to study the effects on the Action
Potential Amplitude and Fig. 3.16 to Fig. 3.20 show the obtained results.
Starting again from the condition σ=0.05 we can note that, unlike what
was seen for the CL, the cells are less likely to synchronize their APA, in
fact the final APA value is almost the same for all cells (APAmin=75.80 mV,
APAmax=75.94 mV) when ρ assumes the lowest value but it varies within
a range of about 6 mV (APAmin=72.51 mV, APAmax=78.98 mV) when
considering ρ=104 MΩ m, while before all cells had the same CL value even
in the latter case. As can be seen in Fig. 3.16, both in the colour maps and
the histograms, the range within which APA varies increases progressively
with ρ. This fact reoccurs also in the other conditions of sigma, moreover,
as it was for the CL, the range in which APA varies increases with σ and
this is more appreciable when considering a great value for ρ. The trend
of APA mean values with σ and ρ is similar to the one of the CL and it is
shown in the right part of Fig. 3.21.

58

CHAPTER 3. RESULTS 59

Figure 3.17: At the top colour maps of APA at the end of 20 s simulations
are shown. At the bottom we can see histograms for the same data.

Figure 3.18: At the top colour maps of APA at the end of 20 s simulations
are shown. At the bottom we can see histograms for the same data.

3.2.2 Control + non-excitable cells model

After having analyzed the previous results, we decided to perform another
group of simulations to better understand the bases of coupled cells be-

59

60 CHAPTER 3. RESULTS

Figure 3.19: At the top colour maps of APA at the end of 20 s simulations
are shown. At the bottom we can see histograms for the same data.

Figure 3.20: At the top colour maps of APA at the end of 20 s simulations
are shown. At the bottom we can see histograms for the same data.

haviour and in particular to try to explain the decreasing trend of APA and
CL with ρ and σ.
The coupling strength between cells plays an important role in their syn-
chronization process, indeed the discrepancy in term of discharge frequency

60

CHAPTER 3. RESULTS 61

Figure 3.21: In the left part of the figure we plot the decreasing trend of
CL both versus rho (at the top) and versus sigma (at the bottom). In the
right part of the figure we do the same in the case of APA. Mean values
of CL and APA obtained by 20 s simulations of Maltsev Tissue Model are
plotted.

between SA node cells derives from their differences in the slow diastolic
depolarization phase. When this last is slower, cells will have a reduced
discharge frequency, vice versa cells with a less slower depolarization will be
the fastest ones, i.e. they will have the greatest discharge frequency. When
ρ has a small value, so that cells are more strongly connected, the very small
currents playing during this phase will be sufficient to make up for the slight
cells discrepancies during the diastolic phase and then to achieve their syn-
chronization. On the contrary, if ρ assumes a greater value, the reduced
coupling strength will prevent little current flows from synchronizing cells
rhythm and ideally the fastest cell would predominate and it would impose
its rhythm to the others. In order to maintain its fastest rhythm it should
achieve the upstroke phase of the AP before being slowed too much by the
influence of neighboring cells during the diastolic phase and, as said, this
is possible only when coupling strength between cells is weak. Otherwise,
with a stronger coupling strength the cells would be able to reach an almost
uniform rhythm, slower than the fastest one.

61

62 CHAPTER 3. RESULTS

This decreasing trend with ρ, however, is more significant when considering
situations of great values for σ and so great inter-cellular variability. As
already emphasised, in these cases we are handling borderline situations
where conductances can assume values within a wide range and so cells
behaviour is really different from the basal one. Moreover this decreasing
trend of CL is shown also with σ and APA mean values show the same
trend both with ρ and σ.
All these considerations could make us wonder if this decreasing trend is
only due to the heterogeneity within cells or the large number of cells hav-
ing no true pacemaking activity (and so resulting in a large number of
CL and APA equal to zero) could play an important role too. In order
to address this question we decided to carry out simulations using a new
model, obtained combining a control model, in which cells are described us-
ing the basal conductances in the current’s equations, and a non-excitable
cell model. We started considering the array of conductances obtained in
condition of σ=0.4, because it is in this condition that we can see the
greatest percentage of non excitable-cells and we kept all the combinations
of conductances causing non-excitable isolated cells while we replaced the
other ones with the basal conductances. In this way we came up with a vec-
tor of conductances which generates the same percentage of non-excitable
cells as before, but the remaining cells are described by the control model
and so they exhibit a basal behaviour.
The following illustrations describe the results obtained by a comparison
between simulations performed using this last model and simulations car-
ried out before in the condition σ=0.4 with Maltsev Tissue Model.
In our analyses we have always computed both CL and APA, yet that

which, for the most part concerns us is the study of the cycle length which
has a greater value as a clinical parameter rather than the amplitude of the
AP. Looking at Fig. 3.22 we can notice that in both cases, control model
+ non-excitable cells model and sigma=0.4 model, with ρ varying in the
range 1÷103, cells have synchronized their discharge frequency when the
simulation is completed. What is more interesting is that in case of ρ equal
to 104 MOhm m the percentage of non excitable cells is approximately 20%
in the case σ=0.4 model while is only 10% considering the other model.
Moreover when we look at the upper part of Fig. 3.24 we can see that for
all values of ρ the mean values of CL in the pure σ=0.4 model are always
smaller than the ones obtained with the new model. Since in the two mod-

62

CHAPTER 3. RESULTS 63

Figure 3.22: CL distributions obtained by 20 s simulations with Maltsev
Tissue Model. At the top we can see the results obtained starting from
a percentage of non-excitable cells equal to 40% and the remaining cells
described using basal conductances values, at the bottom we illustrate again
the results obtained with σ=0.4 (without excluding cells with CL=0) to
make the comparison easier.

els there is the same number of non-excitable cells and moreover they are
placed in the same positions within the matrix and they are characterized

63

64 CHAPTER 3. RESULTS

Figure 3.23: APA distributions obtained by 20 s simulations with Maltsev
Tissue Model. At the top we can see the results obtained starting from 40%
non-excitable cells and the remaining cells described using basal conduc-
tances values, at the bottom we illustrate again the results obtained with
σ=0.4 to make the comparison easier.

by the same combinations of conductances, we can emphasize that the het-
erogeneity has effect on the cycle length synchronization and on the final
discharge frequency of the SAN cells. Furthermore from these results we can
conclude that the decreasing trend of CL mean values with ρ found in our

64

CHAPTER 3. RESULTS 65

simulations, i.e. the tendency of the discharge frequency to move toward the
fastest one, is not to be attributed to the great percentage of non-excitable
cells, but the heterogeneity within the tissue plays a fundamental role.

Figure 3.24: Decreasing trend of CL and APA with ρ. Mean values of CL
and APA obtained from the two models are plotted.

65

66 CHAPTER 3. RESULTS

66

Conclusions

Cardiac diseases remain the number one cause of death in the Western
world, this is probably one of the reasons why the heart is one of the most
studied organs of the body. Computational modeling, combined with state-
of-the-art experimental techniques helps to gaining deeper insights into the
regulation of normal heart function as well as how this regulation may be
altered in pathological states. During the years many mathematical models
of myocardial cells have been proposed, each one trying to better represent
the real behaviour of the cells. Even if we can increase a lot the level of
details in these models, they will never give an understanding of the mecha-
nisms of interactions between cells and since they use a unique value for the
parameters they cannot take into account the variability normally present
within a population of cells of the same organ. Since the heart is struc-
tured as a syncytium of cells which can interact and influence each other to
an extent that could completely change the behaviour of the same isolated
cells, single cell model could predict a behaviour completely different from
the real one.
In our study we are primarily interested in the understanding of how tissue
heterogeneity can act on a specific cardiac physiological process, that is the
genesis of the cardiac rhythm within the specialized tissue of the sinoatrial
node. Since the morphological and functional heterogeneity of the SAN
cells is a well known fact, during the years several hypotheses have been
formulated to achieve a better comprehension of the SAN structure and so
to be able to realize more detailed and realistic models of the SAN. Some of
these models consider two types of SAN cells or they introduce an increase
of gap junction density and conductance from the center to the pheriphery
of the SAN. We have implemented a 2-dimensional computational model
of the sinoatrial node starting from a single cell model and we have per-
formed a randomization of the maximal values of conductances used in the

67

68 CONCLUSIONS

model. Each cell in our case has a different discharge frequency and we
can compare the behaviour of isolated cells to the one of the same cells put
together to form a tissue. The fundamental question we wanted to address
through this study was how the cells influence each other’s spontaneous
beating. In particular, we wanted to find out if the cells synchronize their
beating and if they do so, if the fastest cell predominates, becoming the
leading pacemaker and imposing its frequency to the other cells or if the
ultimate frequency is fairly equal to the average rate of the isolated cells.
What we have concluded from our simulations, testing different conditions
of inter-cellular variability and coupling resistance is that the population
synchronizes on a rate slightly higher than the one of the isolated cells with
the basal values of conductances, moreover the rate moderately increases
with resistive coupling and with inter-cellular variability, but it does not
equal the rate of the fastest cell.
Other questions could be addressed in the future by utilising our model,
we could in fact consider the variations of other parameters and not only
of the conductances, for example we could study the effect of variability in
only one parameter (e.g. in funny current conductance or in calcium clock
fluxes) on the heart rate. Moreover, to better describe the SAN heterogene-
ity we could add details in our model, for example by introducing atrial cell
or fibroblast models interspersed within the matrix of SAN cells.
In conclusion, this work provides the starting point for a more compre-
hensive and realistic approach to the computational analysis of the cardiac
pacemaking. This will likely help in addressing several open questions about
heart rate and its modulation in physiological and pathological conditions.

68

Appendix A

Code used to implement Maltsev Tissue Model:

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <curand kernel.h>
define M PI 3.14159265358979323846 /* pi */
global void initialConditions(double* vars, int num param, int num cells, int cells per thread) {

double Vm = -57.9639; double q = 0.69424;double r = 0.0055813;double fCMi = 0.059488;double fCMs = 0.054381;double
fCQ = 0.27321;double fTC = 0.029132;double fTMC = 0.43269;double fTMM = 0.50105;double Ca jsr = 0.31676;double
Ca nsr = 1.4935;double Ca sub = 0.00013811;double Cai = 0.00015002;double dL = 0.00058455;double fCa = 0.7114;dou-
ble fL = 0.86238;double dT = 0.0050439;double fT = 0.42076;double paF = 0.14476;double paS = 0.4531;double pi =
0.84941;double n = 0.02646;double y = 0.11364;double qa = 0.4238;double qi = 0.44729;double I = 7.8618e-008;double
O = 1.734e-007;double R1 = 0.68805;double RI = 0.31195;

// Within each test, the variables are divided as follows: V(cell1), V(cell2), V(cell3) ... V(cellLast), m(cell1), m(cell2),
... m(cellLast) ... for all 29 parameters

int idx = threadIdx.x*cells per thread;
int simulations = blockIdx.x;
int limit = idx+cells per thread;
for (;idx<limit;idx++) {

vars[(simulations*num param*num cells) + idx +(0*num cells)] = Vm;
vars[(simulations*num param*num cells) + idx +(1*num cells)] = q;
vars[(simulations*num param*num cells) + idx +(2*num cells)] = r;
vars[(simulations*num param*num cells) + idx +(3*num cells)] = fCMi;
vars[(simulations*num param*num cells) + idx +(4*num cells)] = fCMs;
vars[(simulations*num param*num cells) + idx +(5*num cells)] = fCQ;
vars[(simulations*num param*num cells) + idx +(6*num cells)] = fTC;
vars[(simulations*num param*num cells) + idx +(7*num cells)] = fTMC;
vars[(simulations*num param*num cells) + idx +(8*num cells)] = fTMM;
vars[(simulations*num param*num cells) + idx +(9*num cells)] = Ca jsr;
vars[(simulations*num param*num cells) + idx +(10*num cells)] = Ca nsr;
vars[(simulations*num param*num cells) + idx +(11*num cells)] = Ca sub;
vars[(simulations*num param*num cells) + idx +(12*num cells)] = Cai;
vars[(simulations*num param*num cells) + idx +(13*num cells)] = dL;
vars[(simulations*num param*num cells) + idx +(14*num cells)] = fCa;
vars[(simulations*num param*num cells) + idx +(15*num cells)] = fL;
vars[(simulations*num param*num cells) + idx +(16*num cells)] = dT;
vars[(simulations*num param*num cells) + idx +(17*num cells)] = fT;
vars[(simulations*num param*num cells) + idx +(18*num cells)] = paF;
vars[(simulations*num param*num cells) + idx +(19*num cells)] = paS;
vars[(simulations*num param*num cells) + idx +(20*num cells)] = pi ;
vars[(simulations*num param*num cells) + idx +(21*num cells)] = n;
vars[(simulations*num param*num cells) + idx +(22*num cells)] = y;
vars[(simulations*num param*num cells) + idx +(23*num cells)] = qa;
vars[(simulations*num param*num cells) + idx +(24*num cells)] = qi;
vars[(simulations*num param*num cells) + idx +(25*num cells)] = I;
vars[(simulations*num param*num cells) + idx +(26*num cells)] = O;
vars[(simulations*num param*num cells) + idx +(27*num cells)] = R1;
vars[(simulations*num param*num cells) + idx +(28*num cells)] = RI;

}
}

69

70 APPENDIX A

global void computeState(double* x, float* conductances, double* ion current, int total cells, double step, double*
randNums, int variations, double* x temp, int num changing vars, int cells per thread) {

int idx = cells per thread*threadIdx.x;
int cell num;
int limit = idx+cells per thread;
for (;idx¡limit;idx++) {

cell num = (blockIdx.x*total cells*29) + idx;

//Index Variables to make life easier: Array is categorized by blocks of size=total cells, each block contains the Vms
of one parameter across the cells

int Vm i = 0*total cells ;
int q i = 1*total cells ;
int r i = 2*total cells ;
int fCMi i = 3*total cells ;
int fCMs i = 4*total cells ;
int fCQ i = 5*total cells ;
int fTC i = 6*total cells ;
int fTMC i = 7*total cells ;
int fTMM i = 8*total cells ;
int Ca jsr i = 9*total cells ;
int Ca nsr i = 10*total cells ;
int Ca sub i = 11*total cells ;
int Cai i = 12*total cells ;
int dL i = 13*total cells ;
int fCa i = 14*total cells ;
int fL i = 15*total cells ;
int dT i = 16*total cells ;
int fT i = 17*total cells ;
int paF i = 18*total cells ;
int paS i = 19*total cells ;
int pi i = 20*total cells ;
int n i = 21*total cells ;
int y i = 22*total cells ;
int qa i = 23*total cells ;
int qi i = 24*total cells ;
int I i = 25*total cells ;
int O i = 26*total cells ;
int R1 i = 27*total cells ;
int RI i = 28*total cells ;

double E K, i to, i sus, q infinity, tau q
; double r infinity, tau r, i CaL, i CaT, E Na, i f Na, i f K, i f;
double i st, i Kr, E Ks, i Ks, i NaK ;
double RTOnF, k32, k43, di, k14, k12, k41, k34, x2, Do, k21, k23, x1, x3, x4, i NaCa;
double i b Ca, i b Na, delta fTC, delta fTMC, delta fTMM, delta fCMi;
double delta fCMs, delta fCQ, j Ca dif;
double V sub, j up, V cell, V nsr, V in, j SRCarel, V jsr, j tr, dL infinity;
double adVm, alpha dL, bdVm, beta dL, tau dL, fCa infinity, tau fCa;
double fL infinity, tau fL, dT infinity, tau dT, fT infinity, tau fT;
double pa infinity, tau paS, tau paF, pi infinity, tau pi;
double alpha n, beta n, n infinity, tau n;
double y infinity, tau y, qa infinity, alpha qa, beta qa, tau qa;
double alpha qi, beta qi, qi infinity, tau qi;
double kCaSR, koSRCa, kiSRCa, Iion;

// conductances control values /*double g sus = 0.02;
double g to = 0.252;
double g CaT = 0.1832;
double g Kr = 0.08113973;
double g Ks = 0.0259;
double g CaL = 0.464;
double g b Ca = 0.0006;
double g b Na = 0.00486;
double g if = 0.15;
double g st = 0.003; */
double g sus = conductances[cell num+0*total cells] ;
double g to = conductances[cell num+1*total cells] ;
double g CaL = conductances[cell num+2*total cells] ;
double g CaT = conductances[cell num+3*total cells] ;
double g Kr = conductances[cell num+4*total cells] ;
double g Ks =conductances[cell num+5*total cells] ;
double g b Ca = conductances[cell num+6*total cells] ;
double g b Na = conductances[cell num+7*total cells] ;

70

APPENDIX A 71

double g if = conductances[cell num+8*total cells] ;
double g st = conductances[cell num+9*total cells] ;

double Cm=32;double CM tot = 0.045;double CQ tot = 10.0;double TC tot = 0.031;double TMC tot = 0.062;double
kb CM = 0.542;double kb CQ = 0.445;double kb TC = 0.446;double kb TMC = 0.00751;double kb TMM = 0.751;dou-
ble kf CM = 227.7;double kf CQ = 0.534;double kf TC = 88.8;double kf TMC = 227.7; double kf TMM = 2.277;double
Km fCa = 0.00035;double alpha fCa = 0.021;double E CaL = 45.0;double E CaT = 45.0;double K1ni = 395.3;double
K1no = 1628.0;double K2ni = 2.289;double K2no = 561.4;double K3ni = 26.44; double K3no = 4.663;double Kci =
0.0207;double Kcni = 26.44;double Kco = 3.663;double Qci = 0.1369;double Qco = 0.0;double Qn = 0.4315;double
kNaCa = 187.5;double Km Kp = 1.4;double Km Nap = 14.0;double i NaK max = 2.88;double VIf half = -64.0;double
E st = 37.4;

double K up = 0.0006;double P up = 0.012;double tau dif Ca = 0.04;double tau tr = 40.0;double EC50 SR = 0.45;double
HSR = 2.5;double MaxSR = 15.0;double MinSR = 1.0;double kiCa = 0.5;double kim = 0.005;double koCa = 10.0;double
kom = 0.06;double ks = 250000.0;double Cao = 2.0;double F = 96485.0;double Ki = 140.0;double Ko = 5.4;double L cell
= 70.0;double L sub = 0.02;double Mgi = 2.5;double Nai = 10.0;double Nao = 140.0;double R2 = 8314.4;double R cell
= 4.0;double T = 310.15;double V in part = 0.46;double V jsr part = 0.0012;double V nsr part = 0.0116;

/*statevar i = [q ,r ,Vm ,fCMi ,fCMs ,fCQ ,fTC ,fTMC ,fTMM ,Ca jsr ,Ca nsr ,Ca sub ,Cai , dL ,fCa ,fL ,dT ,fT ,paF
,paS ,pi ,n ,y ,qa ,qi ,I ,O ,R1 ,RI];*/

E K = R2*T/F*log(Ko/Ki) ;
i to = Cm*g to*(x[cell num+Vm i]-E K)*(x[cell num+q i])*(x[cell num+r i]);
i sus = Cm*g sus*(x[cell num+Vm i]-E K)*(x[cell num+r i]);

q infinity = 1/(1+exp((x[cell num+Vm i]+49)/13));
tau q=6.06+39.102/(0.57*exp(-0.08*(x[cell num+Vm i]+44))+0.065*exp(0.1*(x[cell num+Vm i]+45.93)));

r infinity = 1/(1+exp(-(x[cell num+Vm i]-19.3)/15));
tau r = 2.75352+14.40516/(1.037*exp(0.09*(x[cell num+Vm i]+30.61))+0.369*exp(-0.12*(x[cell num+Vm i]+23.84)));

i CaL = Cm*g CaL*(x[cell num+Vm i]-E CaL)*x[cell num+dL i]* x[cell num+fL i]* x[cell num+fCa i];
i CaT = Cm*g CaT*(x[cell num+Vm i]-E CaT)* x[cell num+dT i]* x[cell num+fT i];

E Na = R2*T/F*log(Nao/Nai);
i f Na = Cm*0.3833*g if*(x[cell num+Vm i]-E Na)*pow(x[cell num+y i],2);
i f K = Cm*0.6167*g if*(x[cell num+Vm i]-E K)* pow(x[cell num+y i],2);
i f = i f Na+i f K;

i st = Cm*g st*(x[cell num+Vm i]-E st) *x[cell num+qa i] * x[cell num+qi i];

i Kr = Cm*g Kr*(x[cell num+Vm i]-E K) *(0.6* x[cell num+paF i]+0.4* x[cell num+paS i]) * x[cell num+pi i];

E Ks = R2*T/F*log((Ko+0.12*Nao)/(Ki+0.12*Nai));
i Ks = Cm*g Ks*(x[cell num+Vm i]-E Ks) *pow(x[cell num+n i],2);

i NaK = Cm*i NaK max/((1+pow((Km Kp/Ko),1.2))*(1+pow((Km Nap/Nai),1.3))*(1+exp(-(x[cell num+Vm i]
-E Na+120.0) /30.0)));

RTOnF = R2*T/F;
k32 = exp(Qn* x[cell num+Vm i]/(2*RTOnF));
k43 = Nai/(K3ni+Nai);
di=1+x[cell num+Ca sub i]/Kci*(1+exp(-Qci*x[cell num+Vm i]/RTOnF)+Nai/Kcni)+Nai/K1ni*
(1+Nai/K2ni*(1+Nai/K3ni));
k14 = Nai/K1ni*Nai/K2ni*(1+Nai/K3ni) *exp(Qn* x[cell num+Vm i]/(2*RTOnF)) /di;
k12 = x[cell num+Ca sub i] /Kci*exp(-Qci* x[cell num+Vm i]/RTOnF) /di;
k41 = exp(-Qn* x[cell num+Vm i]/(2*RTOnF));
k34 = Nao/(K3no+Nao);
x2 = k32*k43*(k14+k12)+k41*k12*(k34+k32);
Do = 1+Cao/Kco*(1+exp(Qco* x[cell num+Vm i]/RTOnF))+Nao/K1no*(1+Nao/K2no*(1+Nao/K3no));
k21 = Cao/Kco*exp(Qco* x[cell num+Vm i]/RTOnF) /Do;
k23 = Nao/K1no*Nao/K2no*(1+Nao/K3no) *exp(-Qn* x[cell num+Vm i]/(2*RTOnF))/Do;
x1 = k41*k34*(k23+k21)+k21*k32*(k43+k41);
x3 = k14*k43*(k23+k21)+k12*k23*(k43+k41);
x4 = k23*k34*(k14+k12)+k14*k21*(k34+k32);
i NaCa = Cm*kNaCa*(x2*k21-x1*k12)/(x1+x2+x3+x4);

i b Ca = Cm*g b Ca*(x[cell num+Vm i]-E CaL);
i b Na = Cm*g b Na*(x[cell num+Vm i]-E Na);

delta fTC = kf TC* x[cell num+Cai i] *(1- x[cell num+fTC i])-kb TC* x[cell num+fTC i];
delta fTMC = kf TMC* x[cell num+Cai i] *(1-(x[cell num+fTMC i] + x[cell num+fTMM i]))-kb TMC*
x[cell num+fTMC i];
delta fTMM = kf TMM*Mgi*(1-(x[cell num+fTMC i]+ x[cell num+fTMM i]))-kb TMM*x[cell num+fTMM i];
delta fCMi = kf CM* x[cell num+Cai i] *(1- x[cell num+fCMi i])-kb CM*x[cell num+fCMi i];
delta fCMs = kf CM* x[cell num+Ca sub i]*(1- x[cell num+fCMs i])-kb CM* x[cell num+fCMs i];

71

72 APPENDIX A

delta fCQ = kf CQ* x[cell num+Ca jsr i]*(1- x[cell num+fCQ i])-kb CQ* x[cell num+fCQ i];

j Ca dif = (x[cell num+Ca sub i]- x[cell num+ Cai i])/tau dif Ca;

V sub = 0.001*2*M PI *L sub*(R cell-L sub/2)*L cell;//pi=M PI
j up = P up/(1+K up/ x[cell num+ Cai i]);
V cell = 0.001*M PI *pow(R cell,2)*L cell;
V nsr = V nsr part*V cell;
V in = V in part*V cell-V sub;

j SRCarel = ks* x[cell num+O i]*(x[cell num+Ca jsr i]- x[cell num+Ca sub i]);
V jsr = V jsr part*V cell;
j tr = (x[cell num+Ca nsr i] - x[cell num+Ca jsr i])/tau tr;
dL infinity = 1/(1+exp(-(x[cell num+Vm i] +13.5)/6));

if (x[cell num+Vm i] == -35) {
adVm = -35.00001;
}
else if (x[cell num+Vm i] == 0) {
adVm = 0.00001;
}
else {
adVm = x[cell num+Vm i];
}

alpha dL = -0.02839*(adVm+35)/(exp(-(adVm+35)/2.5)-1)-0.0849*adVm/(exp(-adVm/4.8)-1);
if (x[cell num+Vm i] == 5) {
bdVm = 5.00001;
}
else {
bdVm = x[cell num+Vm i];
}
beta dL = 0.01143*(bdVm-5)/(exp((bdVm-5)/2.5)-1);
tau dL = 1/(alpha dL+beta dL);
fCa infinity = Km fCa/(Km fCa+ x[cell num+Ca sub i]);
tau fCa = fCa infinity/alpha fCa;
fL infinity = 1/(1+exp((x[cell num+Vm i]+35)/7.3));
tau fL = 44.3+257.1*exp(-pow(((x[cell num+Vm i]+32.5)/13.9),2));

dT infinity = 1.0/(1+exp(-(x[cell num+Vm i]+26.3)/6));
tau dT = 1/(1.068*exp((x[cell1 num+Vm i]+26.3)/30)+1.068*exp(-(x[cell num+Vm i]+26.3)/30));
fT infinity = 1/(1+exp((x[cell num+Vm i]+61.7)/5.6));
tau fT = 1/(0.0153*exp(-(x[cell num+Vm i]+61.7)/83.3)+0.015*exp((x[cell num+Vm i]+61.7)/15.38));

pa infinity = 1/(1+exp(-(x[cell num+Vm i]+23.2)/10.6));
tau paS = 0.84655354/(0.0042*exp(x[cell num+Vm i]/17)+0.00015*exp(-x[cell num+Vm i]/21.6));
tau paF = 0.84655354/(0.0372*exp(x[cell num+Vm i]/15.9)+0.00096*exp(-x[cell num+Vm i]/22.5));
pi infinity = 1/(1+exp((x[cell num+Vm i]+28.6)/17.1));
tau pi = 1/(0.1*exp(-x[cell num+Vm i]/54.645)+0.656*exp(x[cell num+Vm i]/106.157));

alpha n = 0.014/(1+exp(-(x[cell num+Vm i]-40)/9));
beta n = 0.001*exp(-x[cell num+Vm i]/45);
n infinity = alpha n/(alpha n+beta n);
tau n = 1/(alpha n+beta n);

y infinity = 1/(1+exp((x[cell num+Vm i]-VIf half)/13.5));
tau y = 0.7166529/(exp(-(x[cell num+Vm i]+386.9)/45.302)+exp((x[cell num+Vm i]-73.08)/19.231));

qa infinity = 1/(1+exp(-(x[cell num+Vm i]+57)/5));
alpha qa = 1/(0.15*exp(-x[cell num+Vm i]/11)+0.2*exp(-x[cell num+Vm i]/700));
beta qa = 1/(16*exp(x[cell num+Vm i]/8)+15*exp(x[cell num+Vm i]/50));
tau qa = 1/(alpha qa+beta qa);
alpha qi = 1/(3100*exp(x[cell num+Vm i]/13)+700*exp(x[cell num+Vm i]/70));
beta qi = 1/(95*exp(-x[cell num+Vm i]/10)+50*exp(-x[cell num+Vm i]/700))+0.000229/(1+exp(-x[cell num+Vm i]/5));
qi infinity = alpha qi/(alpha qi+beta qi);
tau qi = 6.65/(alpha qi+beta qi);
kCaSR = MaxSR-(MaxSR-MinSR)/(1+pow((EC50 SR/x[cell num+Ca jsr i]),HSR));
koSRCa = koCa/kCaSR;
kiSRCa = kiCa*kCaSR;

Iion=i CaL+i CaT+i f+i st+i Kr+i Ks+i to+i sus+i NaK+i NaCa+i b Ca+i b Na; ion current[cell num] = Iion;

// differential equations

if (!isinf(x[cell num+q i] + step*((q infinity-x[cell num+q i])/tau q)) && !isnan(x[cell num+q i] +
step*((q infinity-x[cell num+q i])/tau q))) {

72

APPENDIX A 73

x temp[cell num+q i] = x[cell num+q i] + step*((q infinity-x[cell num+q i])/tau q);
}
else { x temp[cell num+q i] = x[cell num+q i]; }

if (!isinf(x[cell num+r i] + step*((r infinity-x[cell num+r i])/tau r)) && !isnan(x[cell num+r i]
+ step*((r infinity-x[cell num+r i])/tau r))) {
x temp[cell num+r i] = x[cell num+r i] + step*((r infinity-x[cell num+r i])/tau r);
}
else { x temp[cell num+r i] = x[cell num+r i]; }

if (!isinf(x[cell num+fCMi i] + step*(delta fCMi)) && !isnan(x[cell num+fCMi i] + step*(delta fCMi))) {
x temp[cell num+fCMi i] = x[cell num+fCMi i] + step*(delta fCMi) ;
}
else { x temp[cell num+fCMi i] = x[cell num+fCMi i]; }

if (!isinf(x[cell num+fCMs i] + step*(delta fCMs)) && !isnan(x[cell num+fCMs i] +
step*(delta fCMs))) {
x temp[cell num+fCMs i] = x[cell num+fCMs i] + step*(delta fCMs);
}
else { x temp[cell num+fCMs i] = x[cell num+fCMs i]; }

if (!isinf(x[cell num+fCQ i] + step*(delta fCQ)) && !isnan(x[cell num+fCQ i] + step*(delta fCQ))) {
x temp[cell num+fCQ i] = x[cell num+fCQ i] + step*(delta fCQ) ;
}
else { x temp[cell num+fCQ i] = x[cell num+fCQ i]; }

if (!isinf(x[cell num+fTC i] + step*((delta fTC))) && !isnan(x[cell num+dL i] + step*((delta fTC)))) {
x temp[cell num+fTC i] = x[cell num+fTC i] + step*(delta fTC) ;
}
else { x temp[cell num+fTC i] = x[cell num+fTC i]; }

if (!isinf(x[cell num+fTMC i] + step*(delta fTMC))&& !isnan(x[cell num+fTMC i] +
step*(delta fTMC))) {
x temp[cell num+fTMC i] = x[cell num+fTMC i] + step*(delta fTMC);
}
else { x temp[cell num+fTMC i] = x[cell num+fTMC i]; }

if (!isinf(x[cell num+fTMM i] + step*(delta fTMM)) && !isnan(x[cell num+fTMM i] +
step*(delta fTMM))) {
x temp[cell num+fTMM i] = x[cell num+fTMM i] + step*(delta fTMM) ;
}
else { x temp[cell num+fTMM i] = x[cell num+fTMM i]; }

if (!isinf(x[cell num+Ca jsr i] + step*(j tr-(j SRCarel+CQ tot*delta fCQ))) &&
!isnan(x[cell num+Ca jsr i] + step*(j tr-(j SRCarel+CQ tot*delta fCQ)))){
x temp[cell num+Ca jsr i] = x[cell num+Ca jsr i] + step*(j tr-(j SRCarel+CQ tot*delta fCQ));
}
else { x temp[cell num+Ca jsr i] = x[cell num+Ca jsr i]; }

if (!isinf(x[cell num+Ca nsr i] + step*(j up-j tr*V jsr/V nsr)) && !isnan(x[cell num+Ca nsr i] + step*(j up-j tr*V jsr
/V nsr))){
x temp[cell num+Ca nsr i] = x[cell num+Ca nsr i] + step*(j up-j tr*V jsr/V nsr);
}
else { x temp[cell num+Ca nsr i] = x[cell num+Ca nsr i]; }

if (!isinf(x[cell num+Ca sub i] + step*((j SRCarel*V jsr/V sub-((i CaL+i CaT+i b Ca-
2*i NaCa)/(2*F*V sub)+j Ca dif+CM tot*delta fCMs))))
&& !isnan(x[cell num+Ca sub i] + step*(
(j SRCarel*V jsr/V sub-((i CaL+i CaT+i b Ca-2*i NaCa)
/(2*F*V sub)+j Ca dif+CM tot*delta fCMs))))){
x temp[cell num+Ca sub i] = x[cell num+Ca sub i] + step*((j SRCarel*V jsr/V sub-((i CaL+i CaT+i b Ca-2*i NaCa)/
(2*F*V sub)+j Ca dif+CM tot*delta fCMs))) ; }
else { x temp[cell num+Ca sub i] = x[cell num+Ca sub i]; }

if (!isinf(x[cell num+Cai i] + step*((j Ca dif*V sub-j up*V nsr)/V in-(CM tot*delta fCMi+TC tot*delta fTC
+TMC tot*delta fTMC))) && !isnan(x[cell num+Cai i] + step*((j Ca dif*V sub-j up*V nsr)/V in-(CM tot*delta fCMi+
TC tot*delta fTC
+TMC tot*delta fTMC)))) {
x temp[cell num+Cai i] = x[cell num+Cai i] + step*((j Ca dif*V sub-j up*V nsr)/V in-(CM tot*delta fCMi
+TC tot*delta fTC+TMC tot*delta fTMC)) ; }
else { x temp[cell num+Cai i] = x[cell num+Cai i]; }

if (!isinf(x[cell num+dL i] + step*((dL infinity-x[cell num+dL i])/tau dL)) && !isnan(

73

74 APPENDIX A

x[cell num+dL i] + step*((dL infinity-x[cell num+dL i])/tau dL))) {
x temp[cell num+dL i] = x[cell num+dL i] + step*((dL infinity-x[cell num+dL i])/tau dL) ;
}
else { x temp[cell num+dL i] = x[cell num+dL i]; }

if (!isinf(x[cell num+fCa i] + step*((fCa infinity-x[cell num+fCa i])/tau fCa)) && !isnan(x[cell num+fCa i] + step*(
(fCa infinity-x[cell num+fCa i])/tau fCa))) {
x temp[cell num+fCa i] = x[cell num+fCa i] + step*((fCa infinity-x[cell num+fCa i])/tau fCa) ; }
else { x temp[cell num+fCa i] = x[cell num+fCa i]; }
if (!isinf(x[cell num+fL i] + step*((fL infinity-x[cell num+fL i])/tau fL)) && !isnan(x[cell num+fL i] + step*(
(fL infinity-x[cell num+fL i])/tau fL))) {
x temp[cell num+fL i] = x[cell num+fL i] + step*((fL infinity-x[cell num+fL i])/tau fL) ; }
else { x temp[cell num+fL i] = x[cell num+fL i]; }

if (!isinf(x[cell num+dT i] + step*((dT infinity-x[cell num+dT i])/tau dT)) && !isnan(x[cell num+dT i] + step*(
(dT infinity-x[cell num+dT i])/tau dT))) {
x temp[cell num+dT i] = x[cell num+dT i] + step*((dT infinity-x[cell num+dT i])/tau dT) ; }
else { x temp[cell num+dT i] = x[cell num+dT i]; }

if (!isinf(x[cell num+fT i] + step*((fT infinity-x[cell num+fT i])/tau fT)) && !isnan(x[cell num+fT i] + step*(
(fT infinity-x[cell num+fT i])/tau fT))) {
x temp[cell num+fT i] = x[cell num+fT i] + step*((fT infinity-x[cell num+fT i])/tau fT) ; }
else { x temp[cell num+fT i] = x[cell num+fT i]; }

if (!isinf(x[cell num+paF i] + step*((pa infinity-x[cell num+paF i])/tau paF)) && !isnan(x[cell num+paF i] + step*(
(pa infinity-x[cell num+paF i])/tau paF))) {
x temp[cell num+paF i] = x[cell num+paF i] + step*((pa infinity-x[cell num+paF i])/tau paF) ;
}
else { x temp[cell num+paF i] = x[cell num+paF i]; }

if (!isinf(x[cell num+paS i] + step*((pa infinity-x[cell num+paS i])/tau paS)) && !isnan(x[cell num+paS i] + step*(
(pa infinity-x[cell num+paS i])/tau paS))) {
x temp[cell num+paS i] = x[cell num+paS i] + step*((pa infinity-x[cell num+paS i])/tau paS);
}
else {
x temp[cell num+paS i] = x[cell num+paS i]; }

if (!isinf(x[cell num+pi i] + step*((pi infinity-x[cell num+pi i])/tau pi)) && !isnan(x[cell num+pi i] + step*(
(pi infinity-x[cell num+pi i])/tau pi))) {
x temp[cell num+pi i] = x[cell num+pi i] + step*((pi infinity-x[cell num+pi i])/tau pi) ;
}
else { x temp[cell num+pi i] = x[cell num+pi i]; }

if (!isinf(x[cell num+n i] + step*((n infinity-x[cell num+n i])/tau n)) && !isnan(x[cell num+n i] + step*((n infinity-
x[cell num+n i])/tau n))) {
x temp[cell num+n i] = x[cell num+n i] + step*((n infinity-x[cell num+n i])/tau n) ;
}
else { x temp[cell num+n i] = x[cell num+n i]; }

if (!isinf(x[cell num+y i] + step*((y infinity-x[cell num+y i])/tau y)) && !isnan(x[cell num+y i] + step*((y infinity-
x[cell num+y i])/tau y))) {
x temp[cell num+y i] = x[cell num+y i] + step*((y infinity-x[cell num+y i])/tau y) ;
}
else { x temp[cell num+y i] = x[cell num+y i]; }

if (!isinf(x[cell num+qa i] + step*((qa infinity-x[cell num+qa i])/tau qa)) && !isnan(
x[cell num+qa i] + step*((qa infinity-x[cell num+qa i])/tau qa))) {
x temp[cell num+qa i] = x[cell num+qa i] + step*((qa infinity-x[cell num+qa i])/tau qa) ;
}
else { x temp[cell num+qa i] = x[cell num+qa i]; }

if (!isinf(x[cell num+qi i] + step*((qi infinity-x[cell num+qi i])/tau qi)) && !isnan(
x[cell num+qi i] + step*((qi infinity-x[cell num+qi i])/tau qi))) {
x temp[cell num+qi i] = x[cell num+qi i] + step*((qi infinity-x[cell num+qi i])/tau qi) ;
}
else { x temp[cell num+qi i] = x[cell num+qi i]; }

if (!isinf(x[cell num+I i] + step*(kiSRCa*x[cell num+Ca sub i]*x[cell num+O i]-kim*x[cell num+I i]-(kom*x[cell num+I i]-
koSRCa*pow(x[cell num+Ca sub i],2)*x[cell num+RI i]))) && !isnan(x[cell num+I i] + step*(kiSRCa*x[cell num+Ca sub i]
x[cell num+O i]-kim*x[cell num+I i]-(kom*x[cell num+I i]-koSRCa*pow(x[cell num+Ca sub i],2)*x[cell num+RI i])))){
x temp[cell num+I i] = x[cell num+I i] + step*(kiSRCa*x[cell num+Ca sub i]*x[cell num+O i]-kim*x[cell num+I i]-
(kom*x[cell num+I i]-koSRCa*pow(x[cell num+Ca sub i],2)*x[cell num+RI i]));
}
else { x temp[cell num+I i] = x[cell num+I i]; }

if (!isinf(x[cell num+O i] + step*(koSRCa*pow(x[cell num+Ca sub i],2)*x[cell num+R1 i]-

74

APPENDIX A 75

kom*x[cell num+O i]-(kiSRCa*x[cell num+Ca sub i]*x[cell num+O i]-kim*x[cell num+I i]))) && !isnan(x[cell num+O i]
+
step*(koSRCa*pow(x[cell num+Ca sub i],2)
x[cell num+R1 i]-kom*x[cell num+O i]-(kiSRCa
x[cell num+Ca sub i]*x[cell num+O i]-kim*x[cell num+I i])))){
x temp[cell num+O i] = x[cell num+O i] + step*(koSRCa*pow(x[cell num+Ca sub i],2)*x[cell num+R1 i]-kom*x[cell num+O i]-
(kiSRCa*x[cell num+Ca sub i]*x[cell num+O i]-kim*x[cell num+I i]));
}
else { x temp[cell num+O i] = x[cell num+O i]; }

if (!isinf(x[cell num+R1 i] + step*(
kim*x[cell num+RI i]-kiSRCa*x[cell num+Ca sub i]*x[cell num+R1 i]-(koSRCa*pow(x[cell num+Ca sub i],2)*x[cell num+R1 i]-
kom*x[cell num+O i]))) && !isnan(x[cell num+R1 i] + step*(kim*x[cell num+RI i]-kiSRCa*x[cell num+Ca sub i]*x[cell num+R1 i]-
(koSRCa*pow(x[cell num+Ca sub i],2)*x[cell num+R1 i]-kom*x[cell num+O i])))){
x temp[cell num+R1 i] = x[cell num+R1 i] + step*(
kim*x[cell num+RI i]-kiSRCa*x[cell num+Ca sub i]*x[cell num+R1 i]-(koSRCa*pow(x[cell num+Ca sub i],2)*x[cell num+R1 i]-
kom*x[cell num+O i]));
}
else { x temp[cell num+R1 i] = x[cell num+R1 i]; }

if (!isinf(x[cell num+RI i] + step*(kom*x[cell num+I i]-
koSRCa*pow(x[cell num+Ca sub i],2)*x[cell num+RI i]-(kim*x[cell num+RI i]-kiSRCa*x[cell num+Ca sub i]*x[cell num+R1 i])
))
&& !isnan(x[cell num+RI i] + step*(kom*x[cell num+I i]-
koSRCa*pow(x[cell num+Ca sub i],2)*x[cell num+RI i]-(kim*x[cell num+RI i]-kiSRCa*x[cell num+Ca sub i]*x[cell num+R1 i])
))){
x temp[cell num+RI i] = x[cell num+RI i] + step*(kom*x[cell num+I i]-koSRCa*pow(x[cell num+Ca sub i],2)*x[cell num+RI i]-
(kim*x[cell num+RI i]-kiSRCa*x[cell num+Ca sub i]*x[cell num+R1 i])); }
else { x temp[cell num+RI i] = x[cell num+RI i]; }
}
}

global void updateState(double* x, double* x temp, int num cells, int cells per thread) {
int i;
int idx = cells per thread*threadIdx.x;
int variations = blockIdx.x;

int limit = idx+cells per thread;
for (;idx<limit;idx++) {

for (i=1;i<29;i++) {
x[(variations*29*num cells) + idx +(i*num cells)] = x temp[(variations*29*num cells) + idx
+(i*num cells)];
}
}

}

global void compute voltage(double* x, double* Vm, double* Iion, double step, double* randNums, int variations,
int length, int width, int num changing vars, int time, double stimDur, double stimAmp, int tstim, double* s2time, int
cells per thread, bool s2 analysis, int s2 loc) {

int num cells = length*width;
int m;
int n;
double stim = 0.0;
double Istim1 = 0.0;
double Istim2 = 0.0;
double Vnet R, Vnet L, Vnet U, Vnet D;
double rad = 4 ;
double deltx = 70 ;
double rho;
double Cm=32;
double Rmyo;
double gj;
int tstim2;

int idx = cells per thread*threadIdx.x;
int limit = idx+cells per thread;

for (;idx<limit;idx++) {
m = (blockIdx.x * num cells) + idx;
n = (blockIdx.x * num cells*29) + idx;
if (num changing vars==0) {
gj = 1.27 ;
Rmyo = 526;

75

76 APPENDIX A

}
else {
gj = 1.27*randNums[(blockIdx.x*num changing vars)+15] ;
Rmyo = 526*randNums[(blockIdx.x*num changing vars)+16];
}

rho = 10000; // total resistivity

if (s2 analysis) {
tstim2 = s2time[blockIdx.x]/step;
}

if (time%tstim > (stimDur/step)) {Istim1 = 0.0;}
else { Istim1 = stimAmp;}

if (s2 analysis) {
if (time>=tstim2 && time<=(stimDur/step)+tstim2) {Istim2 = -150;}
else {Istim2 = 0.0;}
}

// Cable Model

if (width==1) {
if(idx==0) {
if (!isinf((x[n]) + (step)*((1e3*pow(rad,2)*M PI/(rho*Cm*deltx))*((x[n+1]-x[n])) -
(Iion[n]+Istim1) /Cm)) && !isnan((x[n]) + (step)*(
(1e3*pow(rad,2)*M PI/(rho*Cm*deltx))*((x[n+1]-x[n])) - (Iion[n]+Istim1) /Cm))) {
Vm[m] = (x[n]) + (step)*((1e3*pow(rad,2)*M PI/(rho*Cm*deltx))*((x[n+1]-x[n])) -
(Iion[n]+Istim1) /Cm) ;
//V[m] = (x[n]) + (step)*(rad/(2*rho*Cm*deltx*deltx)*(x[n+1]-2*x[n] + x[n+length-1]) -
(Iion[n]+Istim1) /Cm) ; // loop
}
else { Vm[m] = x[n];}
}
else if(idx==num cells-1){ //last if (!isinf((x[n]) + (step)*((1e3*pow(rad,2)*M PI/(rho*Cm*deltx))*(-x[n] + x[n-1])
- (Iion[n]) /Cm
)) && !isnan((x[n]) + (step)*((1e3*pow(rad,2)*M PI/(rho*Cm*deltx))*(-x[n] + x[n-1]) -
(Iion[n]) /Cm))) {
Vm[m] = (x[n]) + (step)*((1e3*pow(rad,2)*M PI/(rho*Cm*deltx))*(-x[n] + x[n-1]) - (Iion[n]) /Cm
); //V[m] = (x[n]) + (step)*(rad/(2*rho*Cm*deltx*deltx)*(x[n+1-length] - 2*x[n] + x[n-1]) - (Iion[n]) /Cm); // loop
}
else { Vm[m] = x[n]; }
}
else if(idx==1) { if (!isinf((x[n]) + (step)*((1e3*pow(rad,2)*M PI/(rho*Cm*deltx))*(x[n+1]-2*x[n]+x[n-1]) -
(Iion[n]+Istim1)/ Cm)) && !isnan((x[n]) + (step)*(
(1e3*pow(rad,2)*M PI/(rho*Cm*deltx))*(x[n+1]-2*x[n]+x[n-1]) - (Iion[n]+Istim1)/ Cm))) {
Vm[m] = (x[n]) + (step)*((1e3*pow(rad,2)*M PI/(rho*Cm*deltx))*(x[n+1]-2*x[n]+x[n-1]) -
(Iion[n]+Istim1)/ Cm);
}
else { Vm[m] = x[n]; }
}
else if(idx==2) {
if (!isinf((x[n]) + (step)*((1e3*pow(rad,2)*M PI/(rho*Cm*deltx))*(x[n+1]-2*x[n]+x[n-1]) -
(Iion[n]+Istim1)/ Cm)) && !isnan((x[n]) + (step)*(
(1e3*pow(rad,2)*M PI/(rho*Cm*deltx))*(x[n+1]-2*x[n]+x[n-1]) - (Iion[n]+Istim1)/ Cm))) {
Vm[m] = (x[n]) + (step)*((1e3*pow(rad,2)*M PI/(rho*Cm*deltx))*(x[n+1]-2*x[n]+x[n-1]) -
(Iion[n]+Istim1)/ Cm);
}
else { Vm[m] = x[n]; }
}
//stim2 else if (s2 analysis && s2 loc == idx) {
if (!isinf((x[n]) + (step)*((1e3*pow(rad,2)*M PI/(rho*Cm*deltx))*(x[n+1]-2*x[n]+x[n-1]) -
(Iion[n]+Istim2)/ Cm)) && !isnan((x[n]) + (step)*(
(1e3*pow(rad,2)*M PI/(rho*Cm*deltx))*(x[n+1]-2*x[n]+x[n-1]) - (Iion[n]+Istim2)/ Cm))) {
Vm[m] = (x[n]) + (step)*((1e3*pow(rad,2)*M PI/(rho*Cm*deltx))*(x[n+1]-2*x[n]+x[n-1]) -
(Iion[n]+Istim2)/ Cm);
}
else { Vm[m] = x[n]; }
}
else if (s2 analysis && s2 loc+1 == idx) {
if (!isinf((x[n]) + (step)*((1e3*pow(rad,2)*M PI/(rho*Cm*deltx))*(x[n+1]-2*x[n]+x[n-1]) -
(Iion[n]+Istim2)/ Cm)) && !isnan((x[n]) + (step)*(
(1e3*pow(rad,2)*M PI/(rho*Cm*deltx))*(x[n+1]-2*x[n]+x[n-1]) - (Iion[n]+Istim2)/ Cm))) {
Vm[m] = (x[n]) + (step)*((1e3*pow(rad,2)*M PI/(rho*Cm*deltx))*(x[n+1]-2*x[n]+x[n-1]) -
(Iion[n]+Istim2)/ Cm);

76

APPENDIX A 77

}
else { Vm[m] = x[n]; }
}
else if (s2 analysis && s2 loc-1 == idx) {
if (!isinf((x[n]) + (step)*((1e3*pow(rad,2)*M PI/(rho*Cm*deltx))*(x[n+1]-2*x[n]+x[n-1]) -
(Iion[n]+Istim2)/ Cm)) && !isnan((x[n]) + (step)*(
(1e3*pow(rad,2)*M PI/(rho*Cm*deltx))*(x[n+1]-2*x[n]+x[n-1]) - (Iion[n]+Istim2)/ Cm))) {
Vm[m] = (x[n]) + (step)*((1e3*pow(rad,2)*M PI/(rho*Cm*deltx))*(x[n+1]-2*x[n]+x[n-1]) -
(Iion[n]+Istim2)/ Cm);
}
else { Vm[m] = x[n]; }
}
else {
if (!isinf((x[n]) + (step)*((1e3*pow(rad,2)*M PI/(rho*Cm*deltx))*((x[n-1]-x[n]) + (x[n+1]-x[n]))
- (Iion[n]) /Cm)) && !isnan ((x[n]) + (step)*((1e3*pow(rad,2)*M PI/(rho*Cm*deltx))*((x[n-1]-x[n]) +
(x[n+1]-x[n])) - (Iion[n]) /Cm))) {
Vm[m] = (x[n]) + (step)*((1e3*pow(rad,2)*M PI/(rho*Cm*deltx))*((x[n-1]-x[n]) + (x[n+1]-x[n])) - (Iion[n]) /Cm);
}
else { Vm[m] = x[n]; }
}
}

//Tissue Model

else {
// set which cells will get a stimulus
if (idx==0 —— idx==1) { stim=Istim1; }
if (idx==2 —— idx==0+length) { stim=Istim1; }
if (idx==1+length —— idx==2+length) { stim=Istim1; }
if (idx==0+2*length —— idx==1+2*length) { stim=Istim1; }
if (idx==2+2*length) { stim=Istim1; }

if (threadIdx.x¿=0 && threadIdx.x<=length-1) { // Top Edge
Vnet U = 0.0;
}
else {
Vnet U = x[n-length] - x[n];
}

if (threadIdx.x>=((width*length)-length) && threadIdx.x<=((width*length)-1)) { // Bottom Edge
Vnet D = 0.0;
}
else {
Vnet D = x[n+length] - x[n];
}

if (threadIdx.x%length==0) { // Left Edge
Vnet L = 0.0;
//Vnet L = x[n+length-1] - x[n]; // tissue loop
}
else {
Vnet L = x[n-1] - x[n];
}

if (threadIdx.x%length==(length-1)) { // Right Edge
Vnet R = 0.0;
//Vnet R = x[n+1-length] - x[n]; // tissue loop
}
else {
Vnet R = x[n+1] - x[n];
}

if (!isinf((x[n]) + (step)*((1e3*pow(rad,2)*M PI/(rho*Cm*deltx))*(Vnet R+Vnet L+Vnet U+Vnet D) -
(Iion[n]+stim) /Cm)) && !isnan((x[n]) + (step)*(
(1e3*pow(rad,2)*M PI/(rho*Cm*deltx))*(Vnet R+Vnet L+Vnet U+Vnet D) - (Iion[n]+stim) /Cm))) {
Vm[m] = (x[n]) + (step)*((1e3*pow(rad,2)*M PI/(rho*Cm*deltx))*(Vnet R+Vnet L+Vnet U+Vnet D) -
(Iion[n]+stim) /Cm) ;
}
else { Vm[m] = x[n]; }

}

}
}

77

78 APPENDIX A

global void update voltage(double* x, double* Vm, int total cells, int cells per thread) {

int idx = cells per thread*threadIdx.x;

int limit = idx+cells per thread;
for (;idx¡limit;idx++) {
int m = (blockIdx.x * total cells) + idx;
int n = (blockIdx.x * total cells*29) + idx;
x[n] = Vm[m];
}
}
...

int main(int argc, const char* argv[]) {

int i, ii;
int time = 0;
FILE *fV = fopen(”Maltsev GPU Voltage”, ”w”);
FILE *ft = fopen(”Maltsev GPU Time”, ”w”);
FILE *output = fopen(”Maltsev GPU Sensitivity Analysis”, ”w”);
FILE *s2output = fopen(”Maltsev GPU s2 Analysis”, ”w”);
int index=0;
double* host vars;
double* dev vars;
double* dev ion currents;
double* dev x temp;
double* host Vtemp;
double* dev Vtemp;
double* V array;
double* t array;
double* dev V array;
double* dev vel;
double* vel;
double* s2 times;
double* s2 times dev;
double* percent excited;
double* dev percent excited;
cudaEvent t start,stop;
float elapsedTime;
curandState *rndState;
int size;
double begin time;
double end time;
double test interval;
//Number of Parameters in the Model
int num param = 29;
// Assume only running 1 simulation initially
int simulations = 1;

// Time Step Variables
double step = 0.005;
double tend = 20000;
int iterations = tend/step;
double skip time value = 0.5; //ms
int skip timept = skip time value/step; // skipping time points in voltage array & time array
int total timepts = iterations/skip timept;

// Number of Cells
int length = 20;
int width = 20;
int num cells = length*width;
int cells per thread =1; // for cell numbers > 500, one thread may need to work on more than one cell

//Stimulus Variables
double stimDur = 0.0;
double stimAmp = 0.0;
double stimInterval = 0.0;
int tstim = stimInterval/step;

// Sensitivity Analysis?
int num changing vars = 0;

// S2 Analysis?
bool s2 analysis = false;

float* host conductances;

78

APPENDIX A 79

float* conductances;

host conductances = (float *)malloc(sizeof(float)*num cells*10);

int j;
FILE *f3=fopen(”conductances vector01873 2.txt”,”r”);
//FILE *f3=fopen(”conductances vector.txt”,”r”);
if((f3=fopen(”conductances vector01873 2.txt”,”r”))==NULL)
//if((f3=fopen(”conductances vector.txt”,”r”))==NULL)
{ printf(”\nfailed to open\n”);
}

for(j=0;j<num cells*10;j++){
fscanf(f3,”%f \n ”,&host conductances[j]);
printf(”%f \n”, host conductances[j]);
//fprintf(prova2, ”%f \n”,host conductances[j]);
}

cudaMalloc(&conductances, sizeof(float)*num cells*10);
cudaMemcpy(conductances,host conductances,num cells*10*sizeof(float), cudaMemcpyHostToDevice);

cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start,0);
...
// vars array contains voltage&state vartiables for all cells across all simulations
host vars = (double *)malloc(sizeof(double)*size);
cudaMalloc(&dev vars, sizeof(double)*size);

// results of the computeState kernel cudaMalloc(&dev ion currents, sizeof(double)*num cells*simulations);
cudaMalloc(&dev x temp, sizeof(double)*size);

// result of the computeVoltage kernel
host Vtemp = (double*)malloc(sizeof(double)*num cells*simulations);
cudaMalloc(&dev Vtemp, sizeof(double)*num cells*simulations);

V array = (double*)malloc(sizeof(double)*(total timepts*num cells*simulations));
t array = (double*)malloc(sizeof(double)*(total timepts*simulations));

//fprintf(fV, ”V = [\n”); to be able to open Maltsev GPU Voltage in Matlab through dlmread

// Initialize vars array with initial conditions
initialConditions<<<simulations,(num cells/cells per thread)>>>(dev vars,num param,num cells,
cells per thread);

cudaMemcpy(host vars, dev vars, size*sizeof(double), cudaMemcpyDeviceToHost);
for(i=0;i<num cells*num param*simulations;i++){
printf(”%f\n”,host vars[i]);
}

while (time<iterations) {
linebreak computeState<<<simulations,(num cells/cells per thread)>>>(dev vars, conductances, dev ion currents, num cells,
step, dev randNums, simulations, dev x temp, num changing vars, cells per thread); updateState <<<simulations,
(num cells/cells per thread)>>>(dev vars, dev x temp, num cells, cells per thread);

compute voltage<<<simulations,(num cells/cells per thread)>>>(dev vars, dev Vtemp,
dev ion currents, step, dev randNums, simulations, length, width, num changing vars, time, stimDur, stimAmp,
tstim, s2 times dev, cells per thread, s2 analysis, s2 loc);
update voltage<<<simulations,(num cells/cells per thread)>>>(dev vars, dev Vtemp,
num cells, cells per thread);

//update Voltage and time arrays and write data to file
cudaMemcpy(host Vtemp, dev Vtemp, num cells*simulations*sizeof(double), cudaMemcpyDeviceToHost);
if (time%skip timept == 0) {
for (i=0;i<num cells*simulations;i++) {
V array[(i*(iterations/skip timept)) +index] = host Vtemp[i];

fprintf(fV, ”%f⁀”, host Vtemp[i]);
}
fprintf(fV, ”\n”);
fprintf(ft, ”%f \n”, time*step);
for (i=0;i<simulations;i++) {
t array[(index*simulations)+i] = time*step;
}
index++;

79

80 APPENDIX A

}
time++;
}

//fprintf(fV, ”]; \n”); to be able to open Maltsev GPU Voltage in Matlab through dlmread

/* The Model Computations are Finished – This last section of code is only writing data to file(s) and
cleaning up the memory*/

cudaEventRecord(stop,0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime,start,stop);

free(host vars);
cudaFree(dev vars);
cudaFree(dev ion currents);
cudaFree(dev x temp);
free(host Vtemp);
cudaFree(dev Vtemp);

printf(”Elapsed Time = %f s \n”,elapsedTime/1000);
printf(”\n”);
printf(”Calculating Simulation outputs...\n”);
printf(”\n”);

...

free(V array);
cudaFree(dev V array);

printf(”Program is Done\n”);

}

80

Appendix B

Examples of some particular cases obtained performing Maltsev Tissue
Model simulations in condition of σ=0.4, which lead to conductances values
really far from the nominal ones. Fig. 3.25 shows a colour map of CL values
computed for 400 cells at the end of a 20 s simulation with ρ=104 MΩ m.
Some positions in the matrix corresponding to cells with unusual CL values
are indicated by an arrow.

Figure 3.25: CL colour map obtained running Maltsev.cu simulation. The
CL values of 400 cells at the end of 20 s simulation with ρ=104 MΩ m are
plotted, as usual warm colours represent greater values of CL while cold
ones represent lower values of CL, i.e. fastest cells.

81

82 APPENDIX B

The APs of some of the cells highlighted in the previous illustration are
plotted in the following figures.

Figure 3.26: AP of cell n.5, tissue model simulation with ρ=104 MΩ m

Figure 3.27: AP of cell n.102, tissue model simulation with ρ=104 MΩ m

82

APPENDIX B 83

Figure 3.28: AP of cell n.165, tissue model simulation with ρ=104 MΩ m

Figure 3.29: AP of cell n.173, tissue model simulation with ρ=104 MΩ m

In the summary figures reported in the third chapter mean values of CL
and APA of 400 cells are plotted alternatively versus ρ and σ. To consider
the mean value or the median one does not make great difference when we

83

84 APPENDIX B

Figure 3.30: AP of cell n.193, tissue model simulation with ρ=104 MΩ m

Figure 3.31: Mean, median and post-processing values of CL versus ρ.
The condition σ=0.4 is considered. In the condition ρ=104 MΩ m, before
modifying the CL array, it contained 75 CL values equal to 0 ms and 7
CL values greater than 400 ms. The CL mean and median value (without
post-precessing) with ρ=104 MΩ m are respectively 264.32 ms and 317 ms.

84

APPENDIX B 85

deal with reasonable values of σ, instead when we stress the level on inter-
cellular variability, i.e. using σ=0.3 and σ=0.4 there is some difference
between the two values. In particular we find the greatest discrepancy
when we consider the extreme values both for ρ and σ. This can be seen
in Fig. 3.31 where three different curves are compared: CL mean values,
CL median values, and CL mean values computed after having substituted
the extreme CL values, i.e. CL=0 ms and CL>400 ms with the mean value
calculated for the remaining cells.

85

86 APPENDIX B

Figure 3.32: Comparison between mean values of CL and APA in condi-
tions of isolated cells or connected cells.

86

Acknowledgments

I would like to express my sincere gratitude to Prof. Stefano Severi and
Prof. Eric Sobie for having offered me this exciting opportunity, for having
encouraged me during my work and most of all for having transmitted to
me enthusiasm for research and for what I have been doing for my project.
Thanks to Alan for his advices and for having lightened the worries of the
last days.

Thanks to my family for being always with me even when they have to
wait until 3 pm to wish me a good day.

Finally thanks to everyone I met in these six months, in particular Marta
and Yasi, my favorite New Yorkers!

87

88 ACKNOWLEDGMENTS

88

Bibliography

[1] The cellml project. http://www.cellml.org/.

[2] Cuda programming guide. https://developer.nvidia.com/cuda-zone.

[3] Right atrium. http://successimg.com/right-atrial-anatomy/.

[4] Ionic Channels of Excitable Menbranes. Sinauer Associetes, 1992.

[5] CUDA by Example -An Introduction to General-Purpose GPU Pro-
gramming. Addison - Wesley, 2010.

[6] N. H. Lovell A. A. Abed, T. Guo and S. Dokos. Optimisation of ionic
models to fit tissue action potentials: Application to 3d atrial mod-
elling. Computational and Mathematical Methods in Medicine, 2013.

[7] T. Guo N.H. Lovell S. Dokos A.D. Bradd, A.A. Abed. Study of cardiac
pacemaker excitation using generic ionic models and realistic cell dis-
tribution. In 34th Annual International Conference of the IEEE EMBS
San Diego, California USA.

[8] NVIDIA Corporation. Cuda c/c++ basics.

[9] E.P Matyas D.C Michaels and J. Jalife. Dynamic interactions and mu-
tual synchronization of sinoatrial node pacemaker cells. a mathematical
model. Circulation Research, 1986.

[10] E.P Matyas D.C Michaels and J.Jalife. Mechanisms of sinoatrial pace-
maker synchronization: a new hypothesis. Circulation Research, 1987.

[11] A.C. van Ginneken J. Bourier M.W. Markman et al. E.E. Verheijck,
A. Wessels. Distribution of atrial and nodal cells within the rabbit
sinoatrial node: models of sinoatrial transition. Circulation, 1998.

89

90 BIBLIOGRAPHY

[12] A.C. van Ginneken J. Bourier W.M. Markman L.M. Vermeulen J.M. de
Bakker W.H. Lamers T. Opthof L.N. Bouman E.E. Verheijck, A. Wes-
sels. Distribution of atrial and nodal cells within the rabbit sinoatrial
node. Circulation, 1998.

[13] M. Fantini. Un nuovo modello di potenziale d’azione del nodo senoa-
triale. Bachelor’s thesis, Biomedical Engineering, 2009.

[14] A. Giovannini. Parametric sensitivity analysis of the most recent com-
putational models of rabbit cardiac pacemaking. Bachelor’s thesis,
Biomedical Engineering, 2012.

[15] J.R. Giudicessi and M.J. Ackerman. Potassium channel mutations and
cardiac arrhythmias diagnosis and therapy. Nature Reviews Cardiology,
2012.

[16] Y. Okada H. Masumiya, Y. Oku. Inhomogeneous distribution of ac-
tion potential characteristics in the rabbit sino-atrial node revealed by
voltage imaging. Journal of Physiological Sciences, 59:227–241, March
2009.

[17] I. Kodama H. Honjo M. Lei T. Varghese H. Zhang, A. V. Holden and
M. R. Boyett. Mathematical models of action potentials in the periph-
ery and center of the rabbit sinoatrial node. Am J Physiol Heart Circ
Physiol, 279:397–421, 2000.

[18] R.S. Kass J.M. Nerbonne. Molecular physiology of cardiac repolariza-
tion. Physiological Reviews, 2005.

[19] H. Irisawa K. Yanagihara, A. Noma. Reconstruction of sino-atrial node
pacemaker potential based on the voltage clamp experiments. Jpn J
Physiol, 1980.

[20] J. Keener and J. Sneyd. Mathematical Physiology. Springer, ii edition,
2009.

[21] R.E. Klabunde. Cardiovascular physiology concepts,2011.

[22] E.G. Lakatta and D. DiFrancesco. What keeps us ticking: a funny
current, a calcium clock, or both? Journal of Molecular and Cellular
Cardiology., 2009.

90

BIBLIOGRAPHY 91

[23] D. Difrancesco M. Baruscotti, A. Bucchi. Physiology and pharmacol-
ogy of the cardiac pacemaker (”funny”) current. Pharmacology and
Therapeutics, 2005.

[24] Robert M.Berne, Matthew N.Levy, Bruce M.Kocppen, and Bruce
A.Stanton. Fisiologia. Casa Editrice Ambrosiana, iv edition, 2010.

[25] W. Ying M.L. Hubbard and C.S. Henriquez. Effect of gap junction
distribution on impulse propagation in a monolayer of myocytes: a
model study. Europace, 2007.

[26] I. Kodamab M.R. Boyetta, H. Honjob. The sinoatrial node, a hetero-
geneous pacemaker structure. Cardiovascular Research, 2000.

[27] M.D. Munther Homoud. Introduction to cardiovascular pathophysiol-
ogy. lectures,.

[28] R. Oren and C. Clancy. Determinants of heterogeneity, excitation and
conduction in the sinoatrial node: A model study. PLoS Computational
Biology, 6, December 2010.

[29] M.M. Maleckar P. Li, T.G. Lines and A. Tveito. Mathematical models
of cardiac pacemaking function. Frontiers in Physics, 2013.

[30] N. H. Lovell S. L. Cloherty, S. Dokos. A comparison of 1-d mod-
els of cardiac pacemaker heterogeneity. IEEE TRANSACTIONS ON
BIOMEDICAL ENGINEERING, 53(2), February 2006.

[31] L.A. Charawi S. Severi, M. Fantini and D. DiFrancesco. An updated
computational model of rabbit sinoatrial action potential to investigate
the mechanisms of heart rate modulation. The Journal of Physiology,
2012.

[32] R.M. Wolf S.D. Unudurthi1 and T.J. Hund. Role of sinoatrial node ar-
chitecture in maintaining a balanced source-sink relationship and syn-
chronous cardiac pacemaking. Frontiers in Physiology, November 2014.

[33] E. A. Sobie. Parameter sensitivity analysis in electrophysiological mod-
els using multivariable regression. Biophysical Journal, 96:1264–1274,
February 2009.

91

92 BIBLIOGRAPHY

[34] E.A. Sobie. Anisotropic electrical propagation in heart.

[35] E.G. Lakatta V.A. Maltsev. Synergism of coupled subsarcolemmal
ca2+ clocks and sarcolemmal voltage clocks confers robust and flexible
pacemaker function in a novel pacemaker cell model. Am J Physiol
Heart Circ Physiol., 2009.

92

