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Sommario

La ricerca di soluzioni esatte per problemi misti interi è un tema molto

attuale all’interno della comunità scientifica. I risolutori MIP allo stato

dell’arte utilizzano una rappresentazione numerica in formato floating-point,

introducendo quindi approssimazioni. Sebbene tali risolutori di problemi

misti interi forniscano risultati affidabili per la maggior parte dei problemi, ci

sono casi in cui è necessaria una maggiore precisione. È noto, infatti, che per

alcune applicazioni i risolutori floating-point restituiscano soluzioni errate,

vale a dire soluzioni indicate come accettabili a causa delle approssimazioni,

le quali non supererebbero un controllo con aritmetica esatta e non possono

essere implementate nella pratica.

L’ambito in cui questa tesi è stata sviluppata è SCIP, un risolutore di

programmi interi misti, sviluppato presso lo Zuse Institute di Berlino. In

tale sede abbiamo considerato un nuovo approccio per risolvere problemi

misti interi in modo esatto. In particolare abbiamo sviluppato un plug-in -

un gestore di vincoli da inserire in SCIP - al fine di analizzare la precisione

delle soluzioni floating-point ottenute e calcolare soluzioni primali esatte a

partire da tali soluzioni floating-point.

Abbiamo condotto alcuni esperimenti computazionali per testare il ge-

store di vincoli per soluzioni primali esatte, attraverso l’utilizzo di due

principali configurazioni: la modalità di analisi e la modalità di applicazione.

La modalità di analisi ha permesso di raccogliere statistiche riguardanti

l’attuale affidabilità di SCIP. I risultati hanno confermato che le soluzioni

cos̀ı ottenute sono sufficientemente accurate per un larga parte delle istanze.

Tuttavia, la nostra analisi evidenzia anche la presenza di errori numerici

aventi entità variabile. Utilizzando la modalità di applicazione, il gestore di

vincoli suggerisce soluzioni esatte a partire dalla parte intera delle soluzioni

floating-point. In tale configurazione abbiamo rilevato un generale migliora-

mento della qualità delle soluzioni finali trovate, senza tuttavia sopperire ad

un significativo calo nelle prestazioni.





Abstract

The research for exact solutions of mixed integer problems is an active topic

in the scientific community. State-of-the-art MIP solvers exploit a floating-

point numerical representation, therefore introducing small approximations.

Although such MIP solvers yield reliable results for the majority of problems,

there are cases in which a higher accuracy is required. Indeed, it is known

that for some applications floating-point solvers provide falsely feasible

solutions, i.e. solutions marked as feasible because of approximations that

would not pass a check with exact arithmetic and cannot be practically

implemented.

The framework of the current dissertation is SCIP, a mixed integer

programs solver mainly developed at Zuse Institute Berlin. In the same site

we considered a new approach for exactly solving MIPs. Specifically, we

developed a constraint handler to plug into SCIP, with the aim to analyze

the accuracy of provided floating-point solutions and compute exact primal

solutions starting from floating-point ones.

We conducted a few computational experiments to test the exact primal

constraint handler through the adoption of two main settings. Analysis

mode allowed to collect statistics about current SCIP solutions’ reliability.

Our results confirm that floating-point solutions are accurate enough with

respect to many instances. However, our analysis highlighted the presence of

numerical errors of variable entity. By using the enforce mode, our constraint

handler is able to suggest exact solutions starting from the integer part of

a floating-point solution. With the latter setting, results show a general

improvement of the quality of provided final solutions, without a significant

loss of performances.
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Chapter 1

Floating-point Constraint

Integer Programming

In this chapter an overview of the topic we are going to explore is given.

In section 1.1 we start from the definition of Mathematical Program,

going through many different optimization models under different restrictions.

The final model we want to obtain is Constraint Integer Programming, a

quite general concept SCIP is based on.

In section 1.2 the main algorithms used in solving optimization problems

are presented. In particular, original branch-and-bound and cutting planes

are described. Nevertheless, it is worth to consider that state-of-the-art

solvers use more sophisticated algorithms derived from these techniques.

In section 1.3 we discuss floating-point arithmetic, by considering how

numbers are represented in a calculator, as well as advantages and disadvan-

tages of such representations and how to deal with issues that may arise in

solving optimization problems with floating-point data.

1.1 From Mathematical Programming to CIP

1.1.1 Mathematical Programming

Mathematical programming is the use of mathematical models to assist in

taking decisions. In particular it makes use of optimization models with the

aim to obtain the best solution of the problem associated with the mathe-

matical model. Mathematical programming is more restrictive compared

to other techniques (e.g., statistics, simulation, forecasting) because of its

ambition to find out the optimal solution of a problem.

9



10 1. Floating-point Constraint Integer Programming

For a given problem it is possible to build an associated mathematical

model. Since the model is an abstraction of the problem, it has some degree

of approximation compared to the real-world problem. A few optimization

algorithms is then applied to the model in order to find out the best solution

depending on certain criteria. It is therefore possible to provide a definition

of mathematical programming as follows.

Definition 1.1 (Mathematical Program). Given n decision variables

x1, x2, . . . , xn, an objective function f(x1, x2, . . . , xn), and m constraints

gi(x1, x2, . . . , xn) ≤ bi, i = 1, 2, . . . ,m, a mathematical program is to solve

z∗ = min f(x1, x2, . . . , xn)

gi(x1, x2, . . . , xn) ≤ bi i = 1, 2, . . . ,m

xj ≥ 0 j = 1, 2, . . . , n

(1.1)

The optimal solution is given by the set of values x∗1, x
∗
2, . . . , x

∗
n for decision

variables such that z∗ = f(x∗1, x
∗
2, . . . , x

∗
n).

The mathematical model has to be built considering two opposite re-

quirements. It is important to have a model as faithful as possible to the

real-world problem. In fact the solution found is optimal for the built model,

but it is not necessarily optimal for the real-world problem. The quality of

the optimal solution is then strictly correlated to the quality of the model.

On the other side, a model very close to reality is likely to be complex, and

consequently harder to be solved.

In practice, mathematical models in the general form (1.1) are usually

not solvable by state of the art algorithms within acceptable time. It is

therefore necessary to introduce some limitations to the model in order

to obtain models easier to solve, by avoiding to lose sufficient closeness to

real-world problems.

It is possible to introduce a classification of the models. First, we can

distinguish between linear programming and nonlinear programming. A

linear program is a mathematical program where both objective function

f(x) and constraints gi(x), (i = 1, 2, . . . ,m) are all linear functions. A

Nonlinear Program is a mathematical program where at least one of such

functions is nonlinear. Linear programs are clearly simpler and easier to

solve.

Another classification can be done depending on the decision variables

domain. If all the variables are continuous, i.e. they can have any value
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within a given interval, we have a continuous problem. If variables are

discrete they can only have a finite number of possible values and they define

a combinatorial problem. Mixed problems contains both continuous and

discrete variables.

In the following paragraphs we will go deeper into the definition of many

different models.

1.1.2 Linear Program

A Linear Program has linear objective function and constraints, and conti-

nuous variables.

Definition 1.2 (Linear Program). Given a matrix A ∈ Rm×n, vectors

b ∈ Rm, a vector c ∈ Rn, and a vector x ∈ Rn of variables or unknowns, the

linear program (LP) is to solve

z∗ = min cTx

Ax ≤ b

x ≥ 0

(1.2)

where m represents the number of constraints and n represents the number

of variables.

The inequalities Ax ≤ b and x ≥ 0 are the constraints which specify a

convex polytope over which the objective function is to be optimized.

Linear Programs are solvable in polynomial time, which was first shown

by Khatchiyan [22], by using the so-called ellipsoid method. However, the

mainly used method to solve linear programs is simplex algorithm, invented

by Dantzig [11]. Simplex algorithm is computationally exponential, but has

good performances in the mean case.

1.1.3 Integer (Linear) Program

When all the decision variables x are restricted to be integer values, we have

an integer linear program.

Definition 1.3 (Integer (Linear) Program). Given a matrix A ∈ Rm×n,

vectors b ∈ Rm, a vector c ∈ Rn, and a vector x ∈ Rn of variables or
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unknowns, the integer (linear) program (IP) is to solve

z∗ = min cTx

Ax ≤ b

x ≥ 0, x ∈ Z

(1.3)

Since it is a combinatorial problem, it can, in principle, be solved by

complete enumeration, which consists in considering all the possible combi-

nation of the n decisional variables. Then all the constraints are checked

for each combination and the objective function value is computed. The

combination providing the best objective value is the optimal solution.

In practice, complete enumeration is not used because the cost would

increase exponentially with the number of variables and, consequently, it

would be impossible to obtain a solution within acceptable time.

1.1.4 Mixed Integer (Linear) Program

If only a subset of the variables are integer, we have a Mixed Integer (Linear)

Program.

Definition 1.4 (Mixed Integer (Linear) Program). Given a matrix A ∈
Rm×n, vectors b ∈ Rm, a vector c ∈ Rn, a vector x ∈ Rn of variables or

unknowns, and a subset I ⊂ N = {1, . . . , n}, the mixed integer (linear)

program (MIP) is to solve

z∗ = min cTx

Ax ≤ b

x ≥ 0, xj ∈ Z ∀j ∈ I

(1.4)

The vectors in the set XMIP = {x ∈ Rn |Ax ≤ b, xj ∈ Z∀j ∈ I} are

called feasible solutions of MIP. A feasible solution x∗ ∈ XMIP is called

optimal if its objective value satisfies cTx∗ = z∗. MIP solvers usually treat

simple bound constraints lj ≤ xj ≤ uj, with lj, uj ∈ R ∪ {±∞} separately

from the remaining constraints. In particular, integer variables with bounds

0 ≤ xj ≤ 1 play a special role in the solving algorithms and are a very

important tool to model yes/no decisions.

Definition 1.5 (LP relaxation of a Mixed Integer Program). Given a mixed
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integer program its LP relaxation is defined as

ž = min cTx

Ax ≤ b

x ≥ 0

(1.5)

XLP = {x ∈ Rn |Ax ≤ b} is the set of feasible solutions of the LP

relaxation. An LP-feasible solution x̌ ∈ XLP is called LP-optimal if cT x̌ = ž.

The LP relaxation can be strengthened by cutting planes which use the

LP information and the integrality restrictions to derive valid inequalities

that cut off the solution of the current LP relaxation without removing

integral solutions. The objective value ž of the LP relaxation provides a

lower bound for the whole sub-tree, and if this bound is not smaller than the

value ž = cT x̌ of the current best primal solution x̌, the node and its sub-tree

can be discarded. The LP relaxation usually gives a much stronger bound

than the one that is provided by simple dual propagation of CP solvers. The

solution of the LP relaxation usually requires much more time, however.

The most important ingredients of an MIP solver implementation are

a fast and numerically stable LP solver, cutting plane separators, primal

heuristics and presolving algorithms. Additionally, the applied branching

rule is of major importance [1].

1.1.5 Constraint Program

A more general approach consists in constraint programs.

Definition 1.6 (Constraint Program). A constraint program consists of

solving

f ∗ = min {f(x) |x ∈ D,C(x)} (1.6)

with the set of domains D = D1 × . . .×Dn, the constraint set C =

{C1, . . . , Cm}, and an objective function f : D → R.

We denote the set of feasible solutions by XCP = {x |x ∈ D,C(x)}. A

CP where all domains are finite is called a finite domain constraint program

(CP(FD)). The key element for solving constraint programs in practice

is the efficient implementation of domain propagation algorithms, which

exploit the structure of the involved constraints. To solve a CP(FD), the

problem is recursively split into smaller subproblems (usually by splitting a

single variable’s domain), thereby creating a branching tree and implicitly
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enumerating all potential solutions. At each subproblem (i.e., node in the

tree) domain propagation is performed to exclude further values from the

variables’ domains. If every variable’s domain is reduced to a single value, a

new primal solution is found. If any of the variables’ domains becomes empty,

the subproblem is discarded and a different leaf of the current branching

tree is selected to continue the search [1].

1.1.6 Satisfiability Problems

The satisfiability problem (SAT) is defined as follows. The boolean truth

values false and true are identified with the values 0 and 1, respectively, and

boolean formulas are evaluated correspondingly.

Definition 1.7 (Satisfiability Problem). Let C = C1 ∧ · · · ∧ Cm be a

logic formula in conjunctive normal form (CNF) on boolean variables

x1, . . . , xn. Each clause Ci = li1 ∨ · · · ∨ lik1 is a disjunction of literals. A

literal l ∈ L = {x1, . . . , xn, x1, . . . , xn} is either a variable xj or the negation

of a variable xj. The task of the satisfiability problem is to either find

an assignment x∗ ∈ {0, 1}n, such that the formula C is satisfied, i.e., each

clause Ci evaluates to 1, or to conclude that C is unsatisfiable, i.e., for all

x ∈ {0, 1}n at least one Ci evaluates to 0.

1.1.7 Comparing MIPs, CPs and SAT

Most solvers for constraint programs, satisfiability problems and mixed inte-

ger programs share the idea of dividing the problem into smaller subproblems

and implicitly enumerating all potential solutions. They differ, however, in

the way of processing the subproblems.

Because MIP is a very specific case of CP, MIP solvers can apply advanced

problem specific algorithms that operate on the subproblem as a whole. In

particular, they use the simplex algorithm to solve the LP relaxations, and

cutting plane separators. In contrast, due to the unrestricted definition of

CPs, CP solvers cannot take such a global perspective, but they have to rely

on the constraint propagators, each of them exploiting the structure of a single

constraint class. An advantage of CP is, however, the possibility to model

the problem more directly, using very expressive constraints which contain a

lot of structure. Transforming those constraints into linear inequalities can

conceal their structure from a MIP solver, and therefore lessen the solver’s
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MIP linear objective function
linear constraints
real and integer variables

CP arbitrary objective function
arbitrary constraints
arbitrary (discrete) variables

CIP linear objective function
arbitrary constraints
real and integer variables
after fixing all integer variables CIP becomes an LP

Table 1.1: Comparison between MIP, CP and CIP

ability to draw valuable conclusions about the instance or to make the right

decisions during the search.

SAT is also a very specific case of CP with only one type of constraints.

SAT solvers mainly exploit the special problem structure to speed up the

domain propagation algorithm and to improve the underlying data structures.

1.1.8 Constraint Integer Program

Constraint integer programs allow to merge CP, SAT and MIP techniques,

by combining their advantages and compensating for their individual weak-

nesses.

Definition 1.8 (Constraint Integer Program). A constraint integer program

consists of solving

c∗ = {min cTx |C(x) ∈ Rn, xj ∈ Z∀j ∈ I} (1.7)

with a finite set C = {C1, . . . , Cm} of constraints Ci : Rn → {0, 1}, i =

1, . . . ,m, a subset I ⊂ N = {1, . . . , n} of the variable index set, and an

objective function vector c ∈ Rn.

A CIP has to fulfill the following condition:

∀ x̂I ∈ ZI ∃ (A′, b′) : {xC ∈ RC |C(x̂I , xc)} = {xC ∈ RC |A′xC ≤ b′} (1.8)

with C := N \ I, A′ ∈ Rk×C , and b′ ∈ Rk for some k ∈ Z≥0
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Figure 1.1: Outline of mathematical programs under different restrictions.

Restriction 1.8 ensures that the remaining subproblem, after integer

variables have been fixed, is always a linear program. This means that in

the case of finite domain integer variables, the problem can be, in principle,

completely solved by enumerating all values of the integer variables and

solving the corresponding LPs. Note that this does not forbid quadratic

or even more involved expressions. Only the remaining part after fixing

(and thus eliminating) the integer variables must be linear in the continuous

variables.

1.2 Standard solution algorithms

1.2.1 Branch and Bound

The branch-and-bound procedure is a very general and widely used method

to solve optimization problems. The key idea is to successively divide

the given problem instance into smaller subproblems until the individual

subproblems are easy to solve. The best among the subproblems’ solutions

is the global optimum.

Figure 1.2 show the fundamental steps of branch-and-bound algorithm.

The splitting of a subproblem into two or more smaller subproblems in step

7 is called branching. During the course of the algorithm, a branching tree is

created with each node representing one of the subproblems. The root of the

tree corresponds to the initial problem R, while the leaves are either “easy”

subproblems which have already been solved or subproblems in L which still
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Figure 1.2: Branch-and-bound algorithm [1].

have to be processed. The intention of the bounding in step 5 is to avoid

a complete enumeration of all potential solutions of R, which are usually

exponentially many. In order for bounding to be effective, good lower (dual)

bounds x̌ and upper (primal) bounds č must be available. Lower bounds

are calculated with the help of a relaxation Qrelax which should be easy to

solve. Upper bounds can be found during the branch-and-bound algorithm

in step 6, but they can also be generated by primal heuristics. The node

selection in step 3 and the branching scheme in step 7 determine important

decisions of a branch-and-bound algorithm that should be tailored to the

given problem class. Both of them have a major impact on how early good

primal solutions can be found in step 6 and how fast the lower bounds of

open subproblems in L increase. They influence the bounding in step 5,

which should cut off subproblems as early as possible and thereby prune

large parts of the search tree. Even more important for a branch-and-bound

algorithm to be effective is the type of relaxation that is solved in step 4.

A reasonable relaxation must fulfill two usually opposite requirements: it

should be easy to solve and it should yield strong dual bounds. In Mixed

Integer Programming the most widely used relaxation is the LP relaxation,

which proved to be very successful in practice.

1.2.2 Cutting planes

Besides splitting the current subproblem Q into two or more easier sub-

problems by branching, while solving MIPs one can also try to tighten the
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Figure 1.3: Branching on a single fractional variable [1].

Figure 1.4: A cutting plane that separates the fractional LP solution x̌ from
the convex hull QI of integer points of Q [1].

subproblem’s relaxation in order to rule out the current solution x̌ and to

obtain a different one.

The LP relaxation can be tightened by introducing additional linear

constraints aTx ≤ b that are violated by the current LP solution x̌ but

do not cut off feasible solutions from Q. Thus, the current solution x̌ is

separated from the convex hull of integer solutions QI by the cutting plane

aTx ≤ b.

1.2.3 Branch and cut

Branch and cut is one of the most successful algorithm that implements both

branch-and-bound and cutting planes. The problem is solved with branch-

and-bound, but the LP relaxations QLP of all subproblems Q (including the
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initial problem R) might be strengthened by cutting planes. In this case

one has to distinguish between globally valid cuts and cuts that are only

valid in a local part of the branch-and-bound search tree, i.e., cuts which

were deduced by taking the branching decisions into account. Globally valid

cuts can be used for all subproblems during the course of the algorithm, but

local cuts have to be removed from the LP relaxation after the search leaves

the subtree they are valid for.

1.3 Floating point arithmetic

1.3.1 Floating point representation

In this section we will focus on some issues related to the data implementation

of problems described in section 1.1 and the algorithms described in section

1.2. We will consider how data is represented in a computer and what

descends from this representation.

The main limitation is the necessity of a finite representation. This is

due to both the limited capacity of the memory and to the indefinitely large

runtime that would be necessary to perform computations with indefinitely

large numbers. Several different representations of real numbers have been

proposed, but the most widely used is the floating-point representation. This

representation is composed by three different parts: sign, significand and

exponent. A generic number can therefore be written as ± significand×
baseexponent. Since numbers implementation is binary, usually a base equals

to 2 is used.

In the application we are going to discuss in this thesis the double-

precision floating-point numeric format is the standard way to represent

numbers. This format exploits 64 bits to represent each number. In particu-

lar, one bit is used for the sign, 11 bits for the exponent and 52 bits for the

significand (see Figure 1.5).

The significand has an implicit integer bit of value 1. With the 52 bits of

the fraction significand appearing in the memory format, the total precision is

therefore 53 bits (approximately 16 decimal digits, since 53 log10 2 ≈ 15.955).

The most common reason why a real number might not be exactly

representable as a floating-point number is when a rational number, i.e. a

number having a finite representation with base 10, has an infinite binary

representation. It is the case, for instance, of the decimal number 0.6. Its
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Figure 1.5: Double-precision floating-point format [33].

binary representation is

0.6(10) = 0.1001(2). (1.9)

Thus, when base = 2, the number 0.6 lies strictly between two floating-point

numbers and is exactly representable by neither of them. [19]

Double-precision floating-point format is widespread because of its com-

putational efficiency and results obtained by floating-point computation are

accurate enough for most scientific applications. Furthermore, many high

precision floating-point algorithm has been developed in order to obtain an

arbitrary precise computation.

Nevertheless, for some applications this is not sufficient to get reliable

results. Before going deeper into this topic it is necessary to provide some

other definitions.

1.3.2 Definition of feasibility and optimality

An optimization problem can be solved either for feasibility or for optimality.

When feasibility only is required, the solver is asked to return an answer

to the question: does it exist a feasible solution for the problem? The answer

is “yes” if at least one feasible solution is found, “no” if infeasibility is proved.

The goal of the solver is to find out feasible solutions and, at the end, the

optimal solution.

Optimality is more challenging to achieve. In this case the objective

function is considered and the goal of the solver is to return the optimal

solution. Obviously, the optimal solution exists only if the problem is feasible.

The optimal solution will be chosen from the set of all the feasible solutions

of the problem.

Let’s further explore feasibility and optimality for MIPs.
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Feasibility

The constraints of a MIP define a feasibility region. A solution is said to

be feasible if it belongs to the feasibility region. Graphically, the feasibility

region can be represented by a set of points in Rn, where every point

represents a feasible solution.

For LPs the feasibility region can always be represented by a convex

polytope. In this case we have a continuous region and, therefore, infinitely

many solutions, except for special cases where no solutions or a single solution

occur.

In case we have an IP, a convex polytope is still defined by problem

constraints, but also integrality has to be taken into account. The feasible

region is represented by all integral points included in the polytope. If the

problem is bounded, the number of feasible solutions is finite.

In practice, feasibility is proven by checking whether a given solution

satisfies all the problem constraints.

Optimality

In order to declare that a certain solution is the optimal solution, it is

necessary to find some optimality conditions that will provide stopping

criteria in an algorithm for MIP. The ”naive” but nonetheless important

reply is that we need to find a lower bound z ≤ z and an upper bound z ≥ z

such that z = z = z. Practically, this means that any algorithm will find a

decreasing sequence

z1 > z2 > · · · > zs ≥ z (1.10)

of upper bounds, and an increasing sequence

z1 < z2 < · · · < zt ≤ z (1.11)

of lower bounds, and stop when

zs − zt ≤ ε (1.12)

where ε is some suitably chosen small non-negative value. Thus, it is

necessary to find ways of deriving such upper and lower bounds.

Primal bounds Every feasible solution x̂ ∈ X provides a lower bound

z = c(x̂) ≤ z. This is essentially the only way we know to obtain lower
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bounds. For some IP problems, finding feasible solutions is easy, and the

real question is how to find good solutions. For other IPs, finding feasible

solutions may be very difficult.

Dual bounds Finding upper bounds for a maximization problem (or lower

bounds for a minimization problem) raises a different challenge. The most

important approach is by relaxation, the idea being to replace a ”difficult”

max (min) IP by a simpler optimization problem whose optimal value is at

least as large (small) as z. For the relaxed problem to have this property,

there are two obvious possibilities:

• to enlarge the set of feasible solutions so that one optimizes over a

larger set;

• to replace the max (min) objective function by a function that has the

same or a larger (smaller) value everywhere.

1.3.3 Floating point arithmetic and tolerances for MIP

solvers

Most MIP solvers are based on floating-point arithmetic and work with

tolerances to check solutions for feasibility and to decide on optimality. In

their feasibility tests, solvers typically consider absolute tolerances for the

integrality constraints and relative ones for linear constraints. Some of them

normalize the activity of linear constraints individually, others scale directly

the constraint matrix.

The tolerances affect solution times and solution accuracy, normally in

opposite ways, and the solvers apply different strategies here. Typically it can

happen that for a given instance different solvers compute different optimal

objective values. If one fixes all integer variables from the reported solution

to the closest integer value and recomputes the continuous variables by

solving the resulting LP with exact arithmetic, some of these post-processed

solutions turn out to be infeasible compared to exact arithmetic and zero

tolerances.

It is worth to note that this does not mean that any of the solvers made

a mistake. It only means that the computed solution lies outside the feasible

area described by the input file, but inside the extended feasible area created

by reading in the problem and introducing tolerances. It is only solutions

that are feasible in the latter sense that solvers attempt to deliver, and those
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are the solutions the checker checks. More precisely, the operation which

rounds the reported value of the integer variables to the closest integer is

only applied to compute fully reliable primal bounds for the MIPs.

As introduced in section 1.3.1, floating-point computations can be per-

formed quickly on computers but the limited size of this representation has

its disadvantages. The error incurred by a single operation is usually small

but algorithms requiring many operations may accumulate and propagate

these small errors, leading to errors of significant magnitude.

Let’s now consider the phases of the process that precedes the actual

solution of the problem.

The MPS file format, which is used as a standard to define MIP instances,

requires the input numbers to be written in base 10 ASCII representation.

Furthermore, the definition of the MPS file format specifies that each entry

uses only 12 characters, thereby if a problem cannot be expressed exactly

in this format, even the input file will be an approximation of the intended

problem. Suppose a problem is defined in an MPS file as having the feasible

region

{x : Ax ≤ b, x ≥ 0, x ∈ Zn}. (1.13)

As this problem is read in by the solver, the entries in A, b will be

transformed to a binary representation, possibly modifying their values and

changing the feasible region to

{x : Ãx ≤ b̃, x ≥ 0, x ∈ Zn}. (1.14)

In addition, due to inexact floating-point computation, the solvers need

to introduce tolerances, hence relaxing the feasible region. Typically relative

tolerances are used. In order to do this efficiently and to improve the

numerical properties of the model, the constraint matrix is usually scaled.

As a result, solvers operate on something similar to

{x : (̃QÃ)x ≤ Q̃b̃+ 1ε, x ≥ −1ε, x ∈ (Z + [−δ, δ])n}, (1.15)

where ε and δ are tolerances for feasibility and integrality and 1 is the

vector of all ones. As we can see, even the steps of parsing and scaling the

problem can change its description. The entire solution procedure is then

applied to this transformed problem.

Furthermore, other preprocessing techniques are usually applied by the

solver in order to simplify the problem, such as removing redundant con-
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straints and variables, tightening bounds and coefficients, or aggregating

variables. All of these issues may lead to further modifications of the problem

before the branch-and-bound and cutting plane phases actually start. [24]



Chapter 2

SCIP: Solving Constraint

Integer Programs

In this chapter will be discussed the framework underlying the work treated

in the course of the current dissertation. The main framework is SCIP, a

CIP solver that has been developed for 13 years at Zuse Institute Berlin, in

cooperation with a few academic partners.

Section 2.1 provides a general introduction to SCIP. An overview of its

history, as well as its performances and features are described.

Section 2.2 focuses on practical details concerning what working with

SCIP means. In particular, I will consider my work experience with SCIP,

by giving an overview on code organization and documentation.

In section 2.3 constraint handlers are introduced. Their key role in SCIP

and their structure will be discussed there. Also, we might consider this

section as an introduction to the following chapter, which will mainly focus

the attention on xprim constraint handler.

Section 2.4 presents a brief discussion about exact LP solvers. SCIP

needs to interface with external LP solvers, however it can support many.

For our application, it is important to have an exact LP solver at disposal,

thereby we are going to explore a few solutions in this sense.

2.1 Introduction to SCIP

2.1.1 What is SCIP

SCIP is a framework for Constraint Integer Programming oriented towards

the needs of mathematical programming experts who wants to have total

25



26 2. SCIP: Solving Constraint Integer Programs

control of the solution process and access detailed information. SCIP provides

the infrastructure to implement very flexible branch-and-bound based search

algorithms. In addition, it includes a large library of default algorithms

to control the search. These main algorithms of SCIP are part of external

plugins, which are user defined callback objects that interact with the

framework through a very detailed interface.

A similar technique is used for solving both Integer Programs and Con-

straint Programs: the problem is successively divided into smaller subprob-

lems (branching) that are solved recursively. On the other hand, Integer

Programming and Constraint Programming have different strengths: Integer

Programming uses LP relaxations and cutting planes to provide strong dual

bounds, while Constraint Programming can handle arbitrary (non-linear)

constraints and uses propagation to tighten variables’ domain. SCIP can also

be used as a pure MIP solver or as a framework for branch-cut-and-price.

It is worth to point out that CIPs inherit from CPs the possibility of

a single constraint to represent a whole set of inequalities and not only a

single one. From this idea it follows that SCIP is constraint based. This

approach provides high flexibility and the capability to manage differently

each kind of constraint. This allows in many cases to consider constraints as

a unique entity, without separating the inequalities it is composed by. The

disadvantage of the constraint based approach is the limited global view of

the problem, since a constraint knows its variable but a variable does not

know the constraints it appears in.

2.1.2 History and performances

SCIP development started in 2002 and since then many developers con-

tributed to this project. The headquarter of SCIP is Zuse Institute Berlin,

an interdisciplinary research institute for applied mathematics and data-

intensive high-performance computing. Its research focuses on modeling, si-

mulation and optimization with scientific cooperation partners from academia

and industry. During the years many people have given their contribute to

SCIP and it counts more than 500 000 lines of source code. Nowadays SCIP

development is still very active and the number of contributors is growing

and growing.

SCIP is one of the fastest non-commercial solvers for mixed integer

programming (MIP) and mixed integer nonlinear programming (MINLP). It

is distributed under the ZIB Academic License, that guarantees freedom to
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Figure 2.1: SCIP performances compared to some commercial and non-
commercial solvers [37].

Figure 2.2: Locations of registered SCIP downloads [37].

share and change software for academic use. SCIP is then freely retrievable

for research purposes, moreover its code is open source. Its fame is widespread

to all over the world as it has been downloaded from all the continents (see

Figure 2.2).

SCIP can be used alone, but the SCIP Optimization Suite is available.

It is a complete source code bundle of SCIP, SoPlex, ZIMPL, GCG and UG.

SoPlex (Sequential object-oriented simPlex) is a Linear Programming

(LP) solver based on the revised simplex algorithm. It features preprocessing

techniques, exploits sparsity, and also offers primal and dual solving routines.

It can be used as both a standalone solver and embedded into other programs.

ZIMPL (Zuse Institut Mathematical Programming Language) is a little
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language to translate the mathematical model of a problem into a linear or

nonlinear mixed integer mathematical program such that it can be read by

a LP or MIP solver.

UG (Ubiquity Generator framework) is a generic framework to paral-

lelize branch-and-bound based solvers in a distributed or shared memory

computing environment.

GCG (Generic Column Generation) is a generic branch-cut-and-price

solver for mixed integer programs

2.1.3 Features

SCIP is characterized by several features. First, it is a very fast standalone

solver for LPs, MIPs and MINLPs, as well as a framework for branching,

cutting, pricing and propagation.

Every existing unit is implemented as a plugin, leading to a very flexible

interface. Users can add many different plugins:

• constraint handlers to implement arbitrary constraints,

• variable pricers to dynamically create problem variables,

• domain propagators to apply constraint dependent propagations on

the variables’ domains,

• cut separators to apply cutting planes on the LP relaxation,

• relaxators to provide relaxations and dual bounds in addition to the

LP relaxation,

• primal heuristics to search for feasible solutions,

• node selectors to guide the search,

• branching rules to split the problem into subproblems,

• presolvers to simplify the solved problem,

• file readers to parse different input file formats.

Interfaces to other applications and programming languages are provided.

In particular, SCIP is compatible with Python, Java, AMPL, GAMS and

MATLAB.



2.2 Working with SCIP 29

SCIP can be supported by many LP solvers. SoPlex is a natural choice,

since it is part of SCIP Optimization Suite. However, other LP solvers are

supported, e.g., CPLEX, Gurobi, XPress, Mosek, QSopt and CLP.

Different relaxations can be included, as well as conflict analysis can

be applied to learn from infeasible subproblems. In addition, the dynamic

memory management reduces the number of system calls with automatic

memory leakage detection in debug mode.

2.2 Working with SCIP

Implementing a SCIP plugin at ZIB has not only been a matter of code. I

experienced a well organized working method, which is necessary according

to SCIP dimension. In addition, I learned how to use many tools in order

to produce, organize and debug the code. In the current section we will

examine all of these aspects.

2.2.1 Code structure and documentation

SCIP is composed of many structured files, containing many callable methods.

Furthermore, variables are properly masked and often only accessible via

dedicated methods, as in object-oriented programming concept. Although

SCIP is written in C -language, implementing a SCIP plugin requires to

write just a few lines of pure C -language. Indeed, it is crucial to use an

already implemented method to perform any operation one desires, if it

exists. This is due to the importance to have optimized code, therefore, a

good working method is to specifically focus on writing efficient methods

and call them as much as possible. To write efficient code is demanding, but

code optimization is essential as well as algorithms optimization.

Since exploiting existing methods is required, it is extremely important to

have an easy way to find them. The code has always to be well documented,

so that everybody can quickly understand what every method achieves.

Documentation is then generated by doxygen [14], a tool that extracts

comments directly from the source and creates well structured documents.

In order to have robust code, as well as to simplify debugging phase,

some precautions are adopted. Asserts and debug messages are heavily used,

and many methods are called by using a SCIP CALL() function, which

allows to have a check on method execution success.



30 2. SCIP: Solving Constraint Integer Programs

2.2.2 File system organization

In the file system, SCIP is stored in a folder containing several files and

directories with different aims. In the current paragraph we will present a

few of them.

As already introduced, SCIP is very customizable by tuning properly

its parameters. This represents a strength, as it is possible to obtain a

countless amount of different behaviors. On the other hand, it might be a

limit, according to the complexity of setting up so many values. In order

to partially overcome this problem, it is possible to create files containing

a set of parameters with their correspondent desired values. These files

have extension .set and are included in a directory called /settings. It is

then possible to load a settings file while running SCIP, accelerating and

simplifying parameters tuning. Parameters not considered in the loaded

settings file keep their default values.

The directory /check contains many useful files and directories. In

/instances are included a lot of files representing instances used to test the

software. These files can have many formats: most used are .mps, .lp and

.cip, the last one is also the format SCIP uses to print problems. Instances

can be run either singularly or by means of a test set. In folder /testset files

with format .test and .solu can be found. Test files list a set of instances

that can be run by simply invoking the file. Instances are identified by their

relative path. Solu files include information about the best known solution

for every instance listed in the corresponding test file. Best solution can

be compared with the solution found by SCIP, automatically obtaining a

measure of the quality of such solution.

In /check is also contained /results folder. In such a folder a few files are

stored for every tested instance or set of instances. A file .err includes all

the messages printed in the standard error device, allowing to obtain a log

of debug issues arisen during the execution. Similarly, a file .out includes

all the messages printed in the standard output device. A file .res displays

execution results organized in a table. Results information is acquired by

examining the output file. This operation is performed by an AWK small

program, which performs the task of looking for information in the .out

file and to properly build a table with desired data. In order to obtain the

results displayed in chapter 4, I modified the standard evalcheck.awk file by

adding some columns which were interesting for our purposes and excluding

information that could be neglected.
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2.3 Constraint Handlers

2.3.1 Role of constraint handlers

Since CIP consists of constraints, the central objects of SCIP are the con-

straint handlers. Each constraint handler represents the semantics of a single

class of constraints and provides algorithms to handle constraints of the

corresponding type. The primary task of a constraint handler is to check

a given solution for feasibility with respect to all constraints of its type

existing in the problem instance. This feasibility suffices to turn SCIP into

an algorithm which correctly solves CIPs with constraints of the supported

type, at least if no continuous variables are involved. However, the resul-

ting procedure would be a complete enumeration of all potential solutions,

because no additional information about the problem structure would be

available. To improve the performance of the solving process constraint

handlers may provide additional algorithms and information about their

constraints to the framework, namely:

• presolving methods to simplify the problem’s representation;

• propagation methods to tighten the variables’ domains;

• a linear relaxation, which can be generated in advance or on the fly,

that strengthens the LP relaxation of the problem;

• branching decisions to split the problem into smaller subproblems,

using structural knowledge of the constraints in order to generate a

well-balanced branching tree.

2.3.2 Constraint handlers implementation

In the current section we are going to introduce which features a constraint

handler is composed of. In section 3.3 a more detailed description is provided,

focusing on the implementation of xprim constraint handler.

In general the main items of a constraint handler are:

• properties;

• additional parameters;

• data structures;

• interface methods;
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• callback methods.

Some of the listed components have to be compulsorily adjusted or imple-

mented, while many of them are optional. This aspect follows from the

policy of SCIP of providing many possibilities and parameters to developers

and users to cover the widest possible needs.

Constraint handler properties are given as compiler defines and are useful

to properly tune the constraint handler itself. Such properties are used to

identify the constraint handler and to relate it with others constraint handlers.

The most important properties are name, description and priorities.

Additional parameters related to the constraint handler can be added to

SCIP. Default values of such parameters are defined among the properties.

Parameters can be tuned in the interactive shell in order to exploit constraint

handler with a wider range of possibilities.

Two important data structures can be defined:

• struct SCIP ConsData (constraint data);

• struct SCIP ConshdlrData (constraint handler data).

Constraint data structure records information about every constraint

managed by the constraint handler. Constraint handler data structure record

all the information related to the constraint handler.

Two interface methods have to be implemented and are used to interface

the constraint handler with SCIP.

The first interface method is used to include the constraint handler into

SCIP, i.e. to make the constraint handler available to the model. In such

method the memory for constraint handler data is allocated, and data are

initialized. Also, in this case it is possible to add parameters and make them

available from the interactive shell.

The second interface method is called to create a single constraint of the

constraint handler’s class. It looks for the already existent constraint handler,

allocates and creates constraint data, and finally creates the constraint.

In conclusion, the fundamental aspect of implementation of constraint

handlers is the use of callback methods. A callback is a piece of executable

code that is passed as an argument to other code, which is expected to

execute the argument at some convenient time.

The implementation of callbacks has far been the most demanding job

to create a constraint handler.
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2.4 Exact LP solvers

One of the features SCIP provides is to support many LP solvers. The

complete list has been presented in section 2.1.3. SoPlex is part of the

SCIP Optimization Suite, and can be a natural choice when more efficient

commercial LP solvers are not available. SCIP and SoPlex guarantee good

performances together, since SoPlex is optimized to work with SCIP.

However, standard version of SoPlex as well as all the other cited LP

solvers, uses floating-point arithmetic. On the contrary, we would need to

use an exact LP solver for the purpose of our application. Fortunately, in

the last years exact LP solvers have been developed.

2.4.1 QSopt ex

QSopt ex is an exact LP solver, which provides an exact implementation of

simplex algorithm. It has been developed by Applegate, Cook, Dash and

Espinoza [3]. In the following paragraph a brief presentation of their work is

introduced.

A first approach to obtain exact LP solutions has been to implement a

solver that computed entirely in rational arithmetic. To achieve this, the

authors began with the source code for the QSopt implementation of the

simplex algorithm, then, changed every floating-point type into the rational

type provided by the GNU-MP (GMP) library [16], and also changed every

operation in the original code into use GMP operations. They tested the

code, and results highlighted some factors leading to highly unpredictable

behavior for the overall code, making this naive method impractical for most

applications.

Dhiflaoui et al. [12] pioneered an alternative approach for obtaining exact

LP solutions, by using the output of a floating-point solver as a starting

point for rational computations. They found that in many cases the rational

solutions is indeed optimal, testing a subset of NETLIB instances.

Koch [23] modified this approach to compute optimal solutions for the

full set of NETLIB instances. Koch explained that in these calculations he

employed the long double type, thus changing the representation from 64 to

128 bit floating-point arithmetic.

In order to obtain an exact solver, Applegate at al. [3] extended Koch’s

methodology with an implementation which dynamically increases the preci-

sion of the floating-point computations. The GMP library allows to perform
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floating-point calculations with arbitrary precision, moreover, to adjust this

precision at running time. Finally, they ended up with a solver capable of

achieving fast computation times on average and solving general LPs exactly

over the rational numbers.

2.4.2 Iterative refinement

Gleixner, Steffy, and Wolter [18] further developed the concept used for

QSopt ex implementation. They observed that QSopt ex is often very

effective at finding quickly exact solutions quickly, but in some cases solution

times can increase significantly.

Iterative refinement is a commonly applied technique for finding accurate

solutions to linear system of equations. The authors applied this technique

to Linear Programming.

The main idea of their algorithm is as follows. First, the LP solves

approximately, producing a primal-dual solution x∗, y∗. Then, based on

the error in x∗, y∗, a modified problem is created by shifting and scaling

the primal and dual feasible regions of the original instance; a solution to

this newly constructed problem gives a correction that is used to refine the

accuracy of x∗, y∗. This process is iterated, correcting the candidate solution

repeatedly, until it meets a required accuracy.

Recently, iterative refinement has been implemented for SoPlex together

with others improvements, therefore an exact beta version of SoPlex is now

available.



Chapter 3

Xprim Constraint Handler

In this chapter we will discuss about the constraint handler which has been

implemented and plugged into SCIP during my internship at Zuse-Institute

Berlin.

Section 3.1 presents aim and motivation of the current dissertation. In

order to highlight the relevance of an exact precision in certain situations,

dangers of floating-point arithmetic are treated. Follows the introduction

to the wireless network design problem, which contributed to inspire this

research. Furthermore, a few approaches developed in the last years are

presented. Finally, some hypotheses regarding our implementation are

justified.

In section 3.2 a detailed description of xprim constraint handler is pro-

vided. Main settings for the tool are discussed, as well as its initialization.

Algorithm’s behavior is then explored, and, at the end, used tolerances are

taken into account.

In section 3.3 many aspects concerning xprim constraint handler imple-

mentation, already introduced in section 2.3, are deeply investigated.

3.1 Aim and motivation

3.1.1 Dangers of numerical computation

In section 1.3 we have observed that using floating-point calculations leads

to imprecise results. However, numbers in SCIP are represented by using

the double precision floating-point format. Due to a number of reasons,

for many industrial MIP applications near optimal solutions are sufficient.

Moreover, when data describing a problem arises from imprecise sources,

exact feasibility is usually not necessary.
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Nonetheless, accuracy is important in many settings. Direct examples

arise in the use of MIP models to establish fundamental theoretical results

and in subroutines for the construction of provably accurate cutting planes.

Furthermore, industrial customers of MIP software request modules for exact

solutions in critical applications.

There are several documented tragic errors involving floating-point com-

putation. During the first US Gulf War patriot missiles were used to intercept

SCUD missiles and the software controlling missiles was based on floating-

point computations. Repeated use of the number 1/10 in the code, which

is not representable exactly as a base-2 floating-point number, led to mis-

calculations that accumulated to form significant errors. On February 25,

1991, as a direct result of this miscalculation, a patriot missile failed to

intercept an incoming Iraqi SCUD missile; it was off target by more than

0.6 kilometers and resulted in the death of 28 US soldiers [6]. In a later

incident, the 1996 launch of the European Ariane 5 Rocket ended in failure

when it went out of control and exploded 37 seconds into its flight path.

The explosion was due to a software error caused by improper handling of

a floating-point calculation; the software converted a 64-bit floating-point

number to a 16-bit signed integer causing an overflow and system crash. The

rocket and its cargo were worth an estimated 360 million USD [13, 27].

In the inexact setting, errors in the branch-and-bound process can be

introduced at several different places: while reading in the instance, in the

bounding step and feasibility test (because of the floating-point arithmetic

and the consequent usage of tolerances), and also because of inaccurate LP

solutions.

3.1.2 Wireless Network Design Problem

Wireless network design problem belong to the subset of problems requiring

exact precision. It is interesting to use it as example since many difficulties

and peculiarities of wireless network design problems are common to others

imprecisely solved problems.

For modeling purposes, a wireless network can be described as a set of

transmitters T that provide a telecommunication service to a set of receivers

R. Transmitters and receivers are characterized by a location and a number of

radio-electrical parameters (e.g., power emission and transmission frequency).

The Wireless Network Design Problem (WND) consists in establishing the

location and suitable values for the parameters of the transmitters with
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the goal of optimizing an objective function that points out the interest of

the decision maker: common objectives are the maximization of a revenue

function associated with wireless service coverage or the minimization of

the total power emission of the network transmitter [9]. For an exhaustive

introduction to the WND see [8, 10, 21].

Two main issues cause errors in the solutions returned by state-of-the-art

MIP solvers [8, 9]:

• coefficients may vary in a wide range leading to very ill-conditioned co-

efficient matrices that make the solution process numerically unstable;

• natural formulations make use of big-M coefficients, leading to ex-

tremely weak bounds and linear relaxations.

What actually happens is that, for many WND instances, MIP solvers

return solutions which are not feasible at all. Therefore, it is necessary to

improve solver’s precision.

3.1.3 Advances in exact MIP solving

Recently, different approaches have been developed in order to try to tackle

the lack of precision of some provided solutions.

One straightforward strategy to exactly solve MIPs would be to implement

the standard solution procedures entirely in exact arithmetic. Unfortunately,

as introduced in section 2.4, it has been observed that optimization software

relying exclusively on exact arithmetic can be prohibitively slow [3]. That

motivates the development of more sophisticated algorithms to compute

exact solutions.

Cook, Koch, Steffy, and Wolter [7] achieved a hybrid symbolic/numeric

implementation of LP-based branch-and-bound, by using numerically-safe

methods for all binding computations in the search tree. Since the authors

exclusively focused on the branch-and-bound procedure, the exact solver

they implemented is still not directly competitive with the full version of

SCIP. However, it is realistic to think that the future inclusion of additional

MIP machinery such as cutting planes, presolving, and primal heuristics

into this exact framework, could lead to a full featured exact MIP solver

that is not prohibitively slower than its inexact counterparts.

Gleixner and D’Andreagiovanni [9] proved that coefficient scaling, a

practice consisting in multiplying coefficients for a given factor to avoid

very small values, is useful to tighten the feasible region. This leads to
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better results, i.e. smaller constraint violations, but still is not sufficient to

guarantee accurate feasibility of solutions returned by floating-point solvers.

Authors also showed that advances in exact LP solving can be of help

and suggested to integrate exact arithmetic into the branch-and-bound

process. The current dissertation further develops such idea, by presenting

an implementation aimed at the computation of exact primal solutions

within the tree.

3.1.4 Integer and continuous parts of a solution

In the following paragraph a detailed tool description is provided, but there

is also an additional point we need to highlight. That is the explanation

about some choices we did while implementing the constraint handler is

then presented.

In particular we focused on a practical issue of WND that is common to

many other problems characterized by feasibility troubles. As example let’s

consider the following specific problem related to WND [21]. Given a set L of

candidate locations for transmitters and a set of receivers R, select a subset of

location where placing transmitters in order to serve the maximum number

of receivers. Binary variables can be associated to candidate locations

stating whether the location is used or not. Every transmitter can be tuned

to different power levels, represented by continuous variables. These two

families of variables, binary and continuous, are both necessary to find an

optimal solution. However it can be noticed that, in a practical viewpoint,

the implementation of the binary part of the solution, i.e. the construction

of transmitters in proper places, comes first than the continuous part, i.e.

tuning constructed transmitters. This means that we are strongly interested

in having a correct binary part of the solution.

Previous example can be extended to many other problems where the

integer part of the solution has to be implemented first, while the continuous

part can be considered in a further step. In other words, what we want to

do is to check whether, given a fixing of integer variables, a feasible solution

exists.
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3.2 Tool description

3.2.1 Analysis and enforce modes

The tool we implemented is a constraint handler plugged into SCIP, where

floating-point solutions are checked and exact primal solutions provided.

From here on we will call such tool xprim constraint handler, standing xprim

for exact primal.

Although in section 3.1.2 we focused on wireless network design problem,

xprim constraint handler is a very general tool that can be useful every

time we want to improve solution’s accuracy. It is also intended to provide

information about floating-point solver’s precision.

Many parameters are associated to xprim constraint handler, however we

can mainly distinguish two different modes: analysis mode and enforce mode.

In analysis mode the tool is passive since it simply checks the best solution

found by SCIP and store information about it. This mode is used to collect

statistics about how the actual version of SCIP works using floating-point

numbers, since it doesn’t influence at all its evolution. The main functionality

provided is to check whether SCIP best solution is or not an exactly feasible

solution. It is also possible to know whether a possible infeasibility is due to

either the integer or the continuous part of the solution. Moreover, constraint

violations are computed to singularly check every constraint. Since SCIP

computations are performed up to a certain tolerance (10−6 by default),

when feasible solutions are obtained we can expect to find out violations less

than the tolerance, but in general different from zero.

In enforce mode the tool is invoked for every feasible solution found by

SCIP and it returns feedback to SCIP influencing its behavior within the

tree. This mode’s target is to improve the quality of the solutions found by

SCIP, discarding infeasible solutions and suggesting exact feasible solutions,

when available.

The two modes share the same structure and many features. However,

they clearly differ in some aspects. Since analysis mode can be considered

a subset of enforce mode where only the last check is performed, in the

following paragraphs the latter will be mainly considered.

3.2.2 Initialization

Every candidate solution found by SCIP solver needs to be checked by all

the constraint handlers in a sequential way. Xprim constraint handler is
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set to be the last invoked constraint handler, so that the input solution has

already been confirmed to be feasible for all the other constraint handlers.

There is a couple of explanations for that. Since the exact check is very

time consuming it would be better to have the least possible number of

solutions to be checked by xprim constraint handler, i.e. every solution that

is infeasible for other reasons has to be discarded by previous and faster

constraint handlers. Moreover, one of the purposes of xprim constraint

handler is to return some statistics about the behavior of actual standard

SCIP version.

Xprim constraint handler is initialized by storing an exact copy of the

original problem. Constraints are obtained by means of a translation from

floating-point original problem data to rational data. They are stored in the

structure called SCIP ConsData, already introduced in chapter 2.3, where

constraints are characterized by sides, variables and coefficients. The struc-

ture also records some other useful information related to single constraints.

Problem variables are characterized by bounds and objective value, i.e. the

coefficient associated with the variable in the objective function. In the first

tool version these values were translated from floating-point values, but in

successive updates the possibility of reading rational values directly has been

implemented. This improvement enhances data precision, since it removes

errors due to the translation from floating-point to rationals.

The first time xprim constraint handler is invoked, an exact LP problem

is set up. Originally fixed variables are marked for optimality purposes, i.e.

they will not be further checked to save computation time. Constraints are

divided into two subsets: integer constraints, having only integer variables,

and continuous constraints, having at least one continuous variable. For

optimality reasons, continuous constraints are sorted in order to have non-

fixed continuous variables first. Coefficients and sides are updated by fixing

values of originally fixed variables. A hash-map table is set up in order to

create a mapping between original problem variables and column indexes in

the exact LP.

3.2.3 Algorithm

After the set up, xprim constraint handler behavior can be summarized as

follows:

• it is invoked every time a feasible solution is found by SCIP;



3.2 Tool description 41

• solution’s integer part is rounded to the nearest integer;

• integer constraints, i.e. constraints containing only integer variables,

are locally checked for feasibility;

• an exact LP is created and solved by an exact LP solver;

• exact solution and/or conflicts may be added to SCIP.

The first operation to perform every time the exact check is requested

is to verify the correctness of fixings. Values of integer variables obtained

by SCIP incumbent solution are rounded to the nearest integer in order to

remove possible approximation errors. In general, the value of an integer

variable that is supposed to be n, can be a value in the interval [n− ε, n+ ε],

ε < t, where t is the tolerance used by SCIP.

Integer constraints are then checked considering rounded solution. In

case all constraints result to be feasible, all integer values are assumed to

be correct. Consequently, left hand and right hand sides of continuous

constraints are updated, leaving only continuous variables as unknowns. In

the event that at least one infeasibility is observed, a conflict representing

the integer part of candidate solution is added to the original problem. The

new constraint is a set covering in case all involved variables are binary,

otherwise is a bound disjunction. This operation allows to avoid to consider

again a solution having such (infeasible) integer part as candidate.

The second step consists in solving the exact LP. QSopt ex and SoPlex

can be used as exact solvers. It is important to note that the solution

returned by the exact LP solver, if it exists, and the continuous part of

floating-point SCIP solution are independent to each other. This follows

from their different formulations, which lead, in general, to two completely

different feasible solutions. This means that finding an exact LP solution

does not imply that candidate solution is feasible. However, it is guaranteed

that an exact feasible solution having rounded fixings as integer part and

exact LP solution as continuous part exists.

Another possible approach to use in future improvements may be to solve

a different exact LP aimed at minimizing the distance from the floating-point

SCIP solution. With such formulation we could also estimate the magnitude

of the errors on each variable.

The third and last step consists in returning feedback to SCIP. Let’s

consider the case exact LP admits a feasible solution. In analysis mode it is
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simply possible to conclude that a feasible solution exists, and such solution

is represented by the union of rounded integer part of SCIP solution and

exact LP solution.

On the other hand, in enforce mode we can add the exact solution to

SCIP. This guarantees that all feasible solutions in SCIP are exactly feasible,

and consequently also the best solution will be exactly feasible. A conflict

is also created after having passed the exact solution. This avoids to check

candidate solutions which only differ in the continuous part. Indeed, in

theory, an infinite number of candidate solutions having identical integer

part can be generated, but for each of them xprim constraint handler would

return the same result. If no exact feasible solutions are found, only the

conflict is added indicating that the search for exact feasible solutions has

failed.

3.2.4 Tolerances

It is possible to perform the previously described computations with an

arbitrary degree of tolerance. This option has been introduced to provide a

wider use of this tool.

Sometimes it is hard to perfectly achieve exactness. In our application it

can be due to small errors in the conversion from floating-point to rational

numbers. Moreover, for some application it may be sufficient to achieve a

certain degree of precision.

It is possible to relax variables’ bounds and constraints’ sides. Bounds

can be relaxed while the exact LP problem is constructed, since it would

make no sense to apply tolerances to integer variables. Sides tolerances are

implemented differently according to the chosen exact LP solver. SoPlex

supports tolerances, in the sense that it is possible to set directly the degree

of tolerance inside the LP solver. Vice-versa, when one uses QSopt ex it is

necessary to apply tolerances in the constraint handler before the exact LP

is constructed. Then the solver will perform exact computations on a larger

feasible region.

3.3 Implementation details

In section 2.3.2 constraint handlers implementation has been introduced.

Starting from the sketch depicted there, we will now go deeper into the

details of the implementation of xprim constraint handler.
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3.3.1 Properties

There are many properties to tune for every constraint handler. The following

list shows the main properties that have been set up for xprim constraint

handler, neglecting the less relevant ones.

Name

CONSHDLR NAME defines the name of the constraint handler. The name

is used in the interactive shell to address the constraint handler and for this

reason it has to be unique. The name assigned to xprim constraint handler

is xprim.

Description

CONSHDLR DESC provides a description of the constraint handler. Such

description is displayed in the interactive shell of SCIP. Xprim constraint

handler is briefly described as constraint handler for exact primal solutions.

Enforce and Check Priority

CONSHDLR ENFOPRIORITY and CONSHDLR CHECKPRIORITY re-

present the priorities of the constraint handler for constraint enforcing and

checking feasibility. These two numerical values define the order constraint

handlers are called with, either during the constraint enforcement or to check

the feasibility of a given primal solution candidate. Constraint handlers

are called in order of non decreasing priority, i.e. high values for these

parameters correspond to high priorities.

The integrality constraint handler has an enforcement priority of 0. That

means, if a constraint handler has negative priorities, it has only to deal with

integral solutions. The priority should be set according to the complexity

of the algorithm and the impact of the results. Constraint handlers that

provide fast algorithms, which have usually a high impact, should have

higher priority.

Since xprim constraint handler is very time consuming and restrictive, it

has been assigned to very low priority. This is consistent with the aim of

studying how SCIP worked before the implementation of this tool. In fact,

xprim constraint handler is the last constraint handler to check feasibility,

and therefore statistics about floating-point SCIP behavior can be collected.
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Eager Frequency

CONSHDLR EAGERFREQ indicates the default frequency applied for

separation, propagation and enforcement in order to use all the constraints

instead of the useful ones only. When constraint aging is activated, some

constraints which were not useful in the past for propagation or separation

are marked to be obsolete and they are not used anymore. However, every

n’th call, with n being the EAGERFREQ of the constraint handler, also

obsolete constraints are presented to the separation and propagation methods

of the constraint handler.

Needs Constraints

CONSHDLR NEEDSCONS indicates whether the constraint handler should

be skipped, in case no constraints of its class are available. For xprim

constraint handler this property is set to TRUE. That means, the constraint

handler is only executed if there are constraints of its corresponding class

in the model. In fact, it would make no sense to invoke xprim constraint

handler if rational constraints have not been created.

3.3.2 Additional parameters

Some parameters have been added to xprim constraint handler to properly

set up it depending on what we want to obtain. Default values have been

defined among the properties but they can be changed in the interactive

shell. The list of such parameters follows.

Use Tolerances

USETOL is set to TRUE if we want to relax bounds and sides, to FALSE

otherwise. The TOLERANCE to apply is a given constant.

The default value is set to TRUE, and the TOLERANCE is 10−15, much

smaller than SCIP tolerance, which default value is 10−6. This allows to

obtain very precise solutions, but taking into account small inaccuracies.

Use Time Limit

USETIMELIMIT is set to TRUE if a time limit should be passed to the

exact LP solver, to FALSE otherwise. It is useful to kill the execution of

the LP solver when it exceeds a certain time limit.
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Add Solution

ADDSOL is set to TRUE if the exact solution has to be added to the

problem, to FALSE otherwise. Its default value is TRUE, since we usually

want to return some feedback to SCIP when we use enforce mode.

Return Feasible

RETURNFEAS is set to TRUE if, in enforce mode, we always want to

return to SCIP that the candidate solution is feasible. Its default value is

FALSE. It can be used to set up a hybrid mode between analysis mode and

enforce mode. Indeed, if RETURNFEAS is TRUE and we are in enforce

mode, all the primal solution candidates are checked without influencing

SCIP behavior, just collecting data about candidates.

Relative Difference

RELDIFF indicates how much the candidate solution should be better

compared to the incumbent solution in order to be checked. If RELDIFF is

equal to 0 it means that xprim constraint handler only checks improving

solutions. Negative values allow to consider also suboptimal solutions. It

can be interesting to check also slightly suboptimal solutions, because after

an exact check they can come out to be actually better than incumbent

solution. Positive values can be used when we do not want to waste time in

checking solutions that does not improve the objective value enough.

Use SoPlex

USESOPLEX is a boolean value indicating the exact LP solver to use. SoPlex

is used when this parameter is set to TRUE, QSopt ex is used otherwise.

3.3.3 Data structures

Constraint Data

The constraint data are the information needed to define a single constraint

of the constraint handler’s class. In xprim constraint handler, constraints

are defined by the following fields.

• Left hand side and right hand side. The peculiarity of these two fields

in xprim constraint handler is that they are rational values.
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• Array of variables. It contains a pointer to each of the variables having

nonzero coefficients.

• Array of coefficients. It contains all the nonzero coefficients related to

constraint variables.

• Number of variables. It is the number of elements in the array of

variables.

• Number of continuous non-fixed variables. This integer value records

the number of continuous variables that have not been fixed in the

original problem.

• Row index. This integer value records the index of the row correspon-

ding to the constraint in the LP solver.

• Two boolean flags used to record whether operations of sorting variables

and applying tolerances have already been executed for the constraint.

Constraint Handler Data

The constraint handler data are additional variables, that belong to the

constraint handler itself and which are not specific to a single constraint.

Although the implementation of this structure is optional, it has been

strongly used in xprim constraint handler. The most important fields of

constraint handler data are illustrated below.

• A pointer to the exact LP solver.

• A pointer to trysol heuristic. It is the heuristic exact solutions are

passed to when enforce mode is used and ADDSOL parameter is set

to TRUE.

• An hash-map table. It is used to store the mapping between original

variables and column indexes in the exact LP.

• An array containing a copy of all the original variables.

• An array of boolean values associated to variables and indicating

whether a variable is fixed or not.

• Integer values indicating the number of variables. In particular we

record the total number of variables in the original problem, the number
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of binary variables, the number of integer variables, the number of

implicit variables and the number of continuous variables.

• All the original constraints are copied, divided into two different arrays:

the first containing integer constraints, i.e. constraints containing only

integer variables; the second containing continuous constraints, i.e.

constraints having at least one continuous variable.

• Integer values indicating the number of constraints. In particular we

record the total number of constraints in the original problem, as well

as the number of integer constraints and the number of continuous

constraints.

• Pointers to last and best solutions’ integer part. Every time the

constraint handler has to check a primal solution candidate, such

solution’s integer part is compared to last and best ones. This operation

is useful to avoid multiple checking of solutions having the same integer

part. In fact, it can happen in SCIP to have candidates having the

same integer part and a different continuous part, but it makes no

sense to check them all, since if all the integer variables have the same

value, then the exact LP will return the same solution for continuous

variables every time.

• Parameters (see section 3.3.2).

• Statistics (see chapter 4).

3.3.4 Interface methods

Interface methods described in section 2.3.2 have been implemented for

xprim constraint handler.

The only peculiarity of xprim constraint handler is that two ways of

creating a new constraint are possible. In fact we have the possibility to

create an xprim constraint starting from floating-point data or from rational

data. In the first case data need to be translated from floating-point to

rationals.

3.3.5 Callback methods

The implementation of callback methods have been the most important

activity to perform.
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Fundamental callbacks

The most important callbacks are the ones dealing with the feasibility of a

given solution. There are three different methods doing that, with slightly

different meaning. They are called CONSCHECK, CONSENFOLP and

CONSENFOPS.

Since their functions are similar, in xprim constraint handler they all call

the same method, whose behavior is thoroughly illustrated in chapter 3.2.

The difference among these methods lies in the temporal moment they

are called and the kind of solution they have to check.

The CONSCHECK callback gets a primal solution candidate in the

form of a pointer to SCIP SOL, i.e. the data structure used in SCIP to

store solutions. Then such solution has to be checked for global feasibility.

The CONSCHECK method has to return a result SCIP FEASIBLE, if the

solution satisfies all the constraints of the constraint handler, and a result

SCIP INFEASIBLE, if there is at least one constraint that is violated.

The CONSENFOLP callback is called after the price-and-cut loop has

finished and an LP solution is available. That means, solution is not given

as a pointer to SCIP SOL data structure, but variables can be accessed by

other methods. Like CONSCHECK call, CONSENFOLP method should

return a result SCIP FEASIBLE if the solution satisfies all the constraints.

However, the behavior should be different if the solution violates one or more

constraints. The constraint handler may return a result SCIP INFEASIBLE

in this situation, but this is not the best what one can do because the

CONSENFOLP method has the possibility of resolving the infeasibility by:

• stating that the current subproblem is infeasible (result SCIP CUTOFF );

• adding an additional constraint that resolves the infeasibility (result

SCIP CONSADDED);

• reducing the domain of a variable (result SCIP REDUCEDDOM );

• adding a cutting plane (result SCIP SEPARATED);

• performing a branching (result SCIP BRANCHED).

The CONSENFOPS callback is similar to the CONSENFOLP, as the

main difference lies in the fact the former is invoked with pseudo solutions

instead of LP solutions. Pseudo solutions are used when the LP is not solved
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at the current subproblem, and they can be thought as the solution to the

LP relaxation with all constraints except the bounds.

Unlike the CONSENFOLP callback, the CONSENFOPS callback must

not add cutting planes. However, it can force the solving of the LP by

returning the result SCIP SOLVELP.

As can be deducted from the description of how xprim constraint handler

works (chapter 3.2) and considering what previously discussed, CONS-

ADDED is returned every time a conflict is created and therefore a new

constraint is added. Despite the impossibility of CONSCHECK callback to

return such result, it is possible to add conflicts also while checking primal

solution.

Additional callbacks There are many other callbacks that can be imple-

mented for a constraint handler. A short description of the main additional

callbacks implemented in xprim constraint handler is provided below.

The CONSFREE callback is the destructor of constraint handler to free

constraint handler data. Furthermore, in CONSFREE all the allocated

memory for fields in constraint handler data has to be freed. Also, in

xprim constraint handler, the execution of the exact solver is terminated.

CONSFREE is called when SCIP is exiting.

The CONSPRINT callback is used when the user asks SCIP to display

the problem on the screen or save the problem into a file. The output format

that is defined by CONSPRINT is called CIP format.

The CONSPARSE callback is the counter part to CONSPRINT. This

method allows the constraint handler to parse and consequently to read

problems in CIP format.

Finally, CONSGETVARS and CONSGETNVARS callbacks return the

variables and the number of variables, respectively.

3.3.6 GMP Library

The GNU Multiple Precision Arithmetic Library (GMP) [16] offers routines

for infinite-precision rational arithmetic. In contrast to the commonly used

finite-precision arithmetic systems, GMP dynamically allocates as much

memory as is necessary to exactly represent numbers and is limited only by

the available system memory.

For xprim constraint handler implementation, high-level rational arith-

metic functions have been exploited. In GMP every operation with rational
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precision is identified by the prefix mpq . Rational numbers are stored as a

couple of integer values of arbitrary length, representing the numerator and

denominator. The object allowing such representation is the data type mpq t.

All rational arithmetic functions assume operands have a canonical form, and

canonicalize their result. The canonical form means that the denominator

and the numerator have no common factors, and that the denominator is

positive.

A total of 35 methods are then available in order to initialize and assign

rationals, to convert from and to other data types, to perform arithmetic

computations, to compare rational numbers and to perform input from a

standard I/O stream and output to a standard I/O stream.
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Computational experiments

The last chapter presents the computational experiments we conducted in

order to test xprim constraint handler.

The goal of our experiments was twofold: first, in order to test the quality

of the solutions currently provided by floating-point SCIP, we analyzed

the accuracy of such solutions by means of exact checking; second, we

investigated whether the use of xprim constraint handler within the tree

can lead to a significant improvement of the solutions’ accuracy, without

lowering performances too much.

Section 4.1 briefly presents the instances we tested, subdivided into three

sets.

In section 4.2 we discuss the first experiment, performed in analysis mode.

We will focus on the setting chosen for the test, as well as on the tables and

the results we can deduce.

In section 4.3 we discuss the second experiment, performed in enforce

mode, and we try to investigate the effects of xprim constraint handler in

SCIP execution.

4.1 Instances

The first test set includes instances belonging to the MIPLIB 2010 benchmark

set [25]. Such instances are classified to be easy, i.e. they can be solved by

one hour using a commercial solver.

The second test set is the MIPLIB 2010 unstable set [26]. Since such

instances are numerically unstable, they provide a more challenging test for

our tool. In the unstable set we have easy instances, as well as hard and

open instances. Hard instances have been somehow solved, although not in

51
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an easy way. Open instances are the most challenging, since the optimal

solution is still unknown.

The third test set is composed by realistic instances derived from several

problems. Five instances are a subset of the scaled instances exploited by

D’Andreagiovanni and Gleixner in [9], and represent a WiMAX network.

Such instances constitute a valid example of WND problem, introduced in

section 3.1.2. Nine instances come from the Radio Resource Assignment

problem and the last one from OFDM mobile systems [28].

4.2 Analysis mode

In the first experiment we ran SCIP in analysis mode for the three sets of

instances introduced in section 4.1. Settings included a time limit of one

hour and a tolerance of 10−15. SoPlex has been used as exact LP solver,

since a few experiments showed better performances compared to QSopt ex,

at least when coupled with SCIP. However, no proofs of this statement are

provided, since a comparison between the two exact solvers is not part of

this dissertation: we consider this empirical result to exclusively justify our

choice.

As provided by analysis mode, standard floating-point SCIP ran freely,

and eventually the best solution was exactly checked.

4.2.1 Tables

Table 4.1 shows the results for MIPLIB benchmark set of instances, Table

4.2 shows the results for MIPLIB unstable set of instances, Table 4.3 shows

the results for the set of realistic instances.

The first column gives either the name of each instance or a contraction

of the name. The second and third columns characterize the instance with

the number of constraints and variables in the original formulation.

The fourth column, named cand, indicates the number of candidate

solutions checked by xprim constraint handler. Since we are using analysis

mode, only two values are available: 1 means that the best solution has

been checked, while 0 means that no solution were found within the time

limit.

The fifth, sixth and seventh columns provide a count of checking results.

The sum of such three columns must necessarily correspond to the number

of candidates. The column named feas displays the number of feasible
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solutions; the one named int displays the number of solutions for which an

infeasibility has been detected while checking the fixings, i.e. an integer

constraint was violated; the last column, named LP, displays the number of

solutions for which, although the fixings were correct, the exact LP solver

returned infeasible. Again, analysis mode impose a restriction to these values.

When a best solution is found and checked, one of these columns is marked

with 1. When no solutions have been found, all of these columns are valued

as 0.

The eighth, ninth and tenth columns show statistics about relative

violations in the continuous constraints. Such statistics are collected by

means of a check performed on each constraint, after integer variables have

been fixed. Let’s consider a constraint in the general form l ≤ ax ≤ r, where

a is a vector of coefficients, x is a vector of variables, l and r are the left

hand side and right hand side, respectively. The absolute violation vabs of a

constraint is obtained as

vabs = max {ax− l, r − ax}. (4.1)

If vabs ≤ 0, the inequality is respected for both sides and the constraint is

not violated. On the contrary, if vabs > 0, the constraint is violated and

such value is recorded. In order to have comparable results among all the

constraints, we transform the absolute violation vabs into a relative violation

vrel by normalizing the former. Therefore, we obtain the relative violation as

vrel =
vabs

max {ax, l, r, 1}
. (4.2)

In the following the description of the three columns containing information

about relative violations. The column named high displays the number of

constraints presenting a violation larger than the defined tolerance. The

column named tot displays the total number of constraints affected by a

violation. The column named ∆max displays the largest recorded violation.

The eleventh column, named ∆obj, represents the difference between the

objective value computed for the floating-point SCIP solution and the one

computed for the exact solution.

The twelfth and last column gives the execution time of each instance

expressed in seconds. Since the time limit is set to one hour, a time equal

to 3600s indicates that such instance stopped its execution because of time

limit reached.
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4.2.2 Results

In this section we are going to analyze data retrieved in analysis mode and

shown by tables 4.1, 4.2 and 4.3.

Before starting the discussion, a general observation is necessary for all

the tables of both analysis mode and enforce mode. Not all the instances

of respective sets are present in the tables. This is due to the fact that the

solver did not return any result for such instances. That can be explained

by considering that the exact SoPlex does not provide a time limit after

which the execution is stopped. It may be happened that for some instances

the SCIP time limit has been reached while the exact LP was executing,

and there were no ways to communicate that. Therefore, the exact solver

may have continued its execution indefinitely, with no possibilities to return

results.

The entity of such phenomenon is more evident in enforce mode, while

in analysis mode is quite rare. Although this problem should be fixed and

has to be taken into account, it does not limit our discussion. It can be

observed that the instances never returned are quite hard to solve, showing

complexities or reaching the time limit in analysis mode.

Looking at the tables, the first thing we can note is that the number

of original constraints for each instance is doubled compared to the values

we would obtain with standard SCIP. This can be explained by the fact

that every original constraint of each instance is copied with an exact

representation and stored in the constraint handler data (see section 3.3.3).

Let’s start considering table 4.1. Only 5 instances have no feasible

solutions found within the time limit. Instances ash608gpia-3col, enlight14

and ns1766074 terminate in less than one hour, but it is known they are

infeasible. Instances mspp16 and neos-1601936 are known to be feasible,

but they both exceed the time limit and no feasible solution is found.

More than a half on the instances (47 out of 87) presents neither a

violation nor a difference in the objective value, indicating that floating-

point SCIP solutions were exact. Since the instances in the MIPLIB 2010

benchmark set are generally very stable, this result could be expected.

However, there are several instances with significantly inexact solutions.

Most evident inaccuracies affect instances ns1208400 and rocII-4-11. The

former’s best solution is infeasible since an integer constraint is violated.

Vice-versa, in the latter fixings are correct, but the obtained LP is not

exactly feasible. In the other instances, we have maximum violations which
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go from 10−7 to 10−16. This result is consistent to the feasibility tolerance

imposed by SCIP, which is equal to 10−6. Maximum difference between

floating-point and exact objective values are even smaller, going from 10−11

to 10−16.

The results of the MIPLIB unstable set are shown in table 4.2. Although

we would expect more troubles compared to the benchmark set of instances,

none of unstable ones return an infeasible best solution. However, all but

one instances do not terminate their execution within the time limit, and

many of them do not return any solution. Violations and differences in the

objective values are similar to the previous.

Realistic instances are shown in table 4.3. Although all of the instances

return a feasible solution, they also exhibit more relevant violations and

differences in the objective values compared to MIPLIB instances. Violations

larger than a factor of 10−10, which were infrequent for MIPLIB instances,

are in this case quite common. Furthermore, the difference between the

objective values of floating-point and correspondent exact solutions reach a

magnitude of 10−5.

All of these factors lead to a first observation. The realistic instances

we tested are not enough hard to solve for a floating-point MIP solver like

SCIP. This conclusion is supported by an empirical fact. Indeed, it has been

observed that WND instances having a magnitude around 1022 between the

largest and the lowest coefficients were numerically difficult, in the sense

that usually the best solution returned by a floating-point MIP solver was

actually infeasible. WiMax instances, for example, are characterized by a

maximum magnitude of 1012 between largest and lowest coefficients, while

radio resource assignment instances have a peak of 1014.

Table 4.1: MIPLIB 2010 benchmark set of instances in analysis mode

Original Infeas. Violations

name conss vars cand feas int LP high tot ∆max ∆obj time

30n20b8 1152 18380 1 1 0 0 0 0 0 0 193.0

acc-tight5 6104 1339 1 1 0 0 0 0 0 0 108.0

aflow40b 2884 2728 1 1 0 0 0 0 0 0 2246.9

air04 1646 8904 1 1 0 0 0 0 0 7 · 10−11 106.5

app1-2 106934 26871 1 1 0 0 1252 5367 4 · 10−15 0 3600.0

ash608gpia. 49496 3651 0 0 0 0 0 0 0 0 36.0

bab5 9928 21600 1 1 0 0 0 0 0 0 3600.0

continued on next page
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continued from previous page

Original Infeas. Violations

name conss vars cand feas int LP high tot ∆max ∆obj time

beasleyC3 3500 2500 1 1 0 0 0 0 0 0 3600.0

biella1 2406 7328 1 1 0 0 2 2 2 · 10−14 3 · 10−14 1126.3

bienst2 1152 505 1 1 0 0 12 19 1 · 10−14 2 · 10−15 499.7

binkar10 1 2052 2298 1 1 0 0 0 4 6 · 10−16 3 · 10−15 296.0

bley xl1 351240 5831 1 1 0 0 0 0 0 0 477.6

bnatt350 9846 3150 1 1 0 0 0 0 0 0 1556.0

core2536-691 5078 15293 1 1 0 0 0 0 0 0 871.5

cov1075 1274 120 1 1 0 0 0 0 0 0 3600.0

csched010 702 1758 1 1 0 0 0 0 0 3 · 10−16 3600.0

danoint 1328 521 1 1 0 0 95 104 2 · 10−12 5 · 10−15 3600.0

dfn-gwin-UUM 316 938 1 1 0 0 0 0 0 0 194.7

eil33-2 64 4516 1 1 0 0 0 0 0 2 · 10−14 100.2

eilB101 200 2818 1 1 0 0 0 0 0 2 · 10−16 456.5

enlight13 338 338 1 1 0 0 0 0 0 0 68.1

enlight14 392 392 0 0 0 0 0 0 0 0 0.0

ex9 81924 10404 1 1 0 0 0 0 0 0 126.7

glass4 792 322 1 1 0 0 6 10 1 · 10−7 2 · 10−12 3600.0

gmu-35-40 848 1205 1 1 0 0 5 5 2 · 10−13 0 3600.0

iis-100-0-cov 7662 100 1 1 0 0 0 0 0 1 · 10−16 915.7

iis-bupa-cov 9606 345 1 1 0 0 0 0 0 0 3600.0

iis-pima-cov 14402 768 1 1 0 0 0 0 0 0 474.9

lectsched-4. 28326 7901 1 1 0 0 0 0 0 0 937.8

m100n500k4r1 200 500 1 1 0 0 0 0 0 4 · 10−13 3600.0

macrophage 6328 2260 1 1 0 0 0 0 0 0 3600.0

map18 657636 164547 1 1 0 0 0 0 0 6 · 10−15 792.0

map20 657636 164547 1 1 0 0 0 0 0 5 · 10−15 541.6

mcsched 4214 1747 1 1 0 0 0 0 0 1 · 10−16 292.1

mik-250-1. 302 251 1 1 0 0 0 0 0 0 614.1

mine-166-5 16858 830 1 1 0 0 0 0 0 0 38.1

mine-90-10 12540 900 1 1 0 0 0 0 0 0 470.5

msc98-ip 31700 21143 1 1 0 0 0 0 0 0 3600.0

mspp16 1123314 29280 0 0 0 0 0 0 0 0 3600.0

mzzv11 18998 10240 1 1 0 0 0 0 0 0 688.9

n3seq24 12088 119856 1 1 0 0 0 0 0 0 3600.0

n4-3 2472 3596 1 1 0 0 24 34 9 · 10−13 0 820.8

neos-1109824 57958 1520 1 1 0 0 0 0 0 0 389.7

neos-1337307 11374 2840 1 1 0 0 0 0 0 0 3600.0

neos-1396125 2988 1161 1 1 0 0 0 0 0 2 · 10−16 726.3

neos13 41704 1827 1 1 0 0 0 0 0 2 · 10−16 817.2

neos-1601936 6262 4446 0 0 0 0 0 0 0 0 3600.0

continued on next page
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Original Infeas. Violations

name conss vars cand feas int LP high tot ∆max ∆obj time

neos18 22804 3312 1 1 0 0 0 0 0 0 50.6

neos-476283 20030 11915 1 1 0 0 6 15 1 · 10−14 3 · 10−16 357.7

neos-686190 7328 3660 1 1 0 0 0 0 0 0 101.6

neos-849702 2082 1737 1 1 0 0 0 0 0 0 1838.9

neos-916792 3818 1474 1 1 0 0 57 208 2 · 10−13 2 · 10−15 3600.0

neos-934278 22990 23123 1 1 0 0 0 0 0 0 3600.0

net12 28042 14115 1 1 0 0 0 0 0 0 3600.0

netdiversion 239178 129180 1 1 0 0 0 0 0 0 3600.0

newdano 1152 505 1 1 0 0 2 2 3 · 10−14 4 · 10−16 3600.0

noswot 364 128 1 1 0 0 1 1 7 · 10−15 0 814.6

ns1208400 8578 2883 1 0 1 0 0 0 0 - 2119.4

ns1688347 8382 2685 1 1 0 0 0 0 0 0 465.7

ns1758913 1248332 17956 1 1 0 0 120 120 3 · 10−7 7 · 10−12 3600.0

ns1766074 364 100 0 0 0 0 0 0 0 0 1891.3

ns1830653 5864 1629 1 1 0 0 0 0 0 7 · 10−15 999.5

opm2-z7-s2 63596 2023 1 1 0 0 0 0 0 0 954.3

pg5 34 450 2600 1 1 0 0 17 31 3 · 10−12 0 2249.8

pigeon-10 1862 490 1 1 0 0 0 0 0 0 3600.0

pw-myciel4 16328 1059 1 1 0 0 0 0 0 0 3600.0

qiu 2384 840 1 1 0 0 0 1 2 · 10−16 5 · 10−14 123.9

rail507 1018 63019 1 1 0 0 0 0 0 0 365.5

ran16x16 576 512 1 1 0 0 4 5 4 · 10−14 0 482.1

reblock67 5046 670 1 1 0 0 0 0 0 0 253.3

rmatr100-p10 14520 7359 1 1 0 0 0 0 0 4 · 10−15 192.0

rmatr100-p5 17370 8784 1 1 0 0 0 0 0 9 · 10−15 332.5

rmine6 14156 1096 1 1 0 0 0 0 0 0 3600.0

rocII-4-11 43476 9234 1 0 0 1 3 6 1 · 10−6 - 3542.2

rococoC10. 2586 3117 1 1 0 0 0 0 0 0 2337.5

roll3000 4590 1166 1 1 0 0 12 14 3 · 10−13 1 · 10−16 3600.0

sat.1-25 11992 9013 1 1 0 0 16 142 1 · 10−10 5 · 10−16 2158.6

sp98ic 1650 10894 1 1 0 0 0 0 0 0 3600.0

sp98ir 3062 1680 1 1 0 0 0 0 0 2 · 10−15 92.4

tanglegram1 136684 34759 1 1 0 0 0 0 0 0 1846.5

tanglegram2 17960 4714 1 1 0 0 0 0 0 0 21.3

timtab1 342 397 1 1 0 0 0 0 0 2 · 10−16 628.9

triptim1 31412 30055 1 1 0 0 2 2 2 · 10−11 4 · 10−15 3580.1

unitcal 7 97878 25755 1 1 0 0 58 97 3 · 10−11 2 · 10−15 3159.4

vpphard 94560 51471 1 1 0 0 0 0 0 0 3600.0

zib54-UUE 3618 5150 1 1 0 0 1 4 3 · 10−14 0 3600.0
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Table 4.2: MIPLIB 2010 unstable set of instances in analysis mode

Original Infeas. Violations

name conss vars cand feas int LP high tot ∆max ∆obj time

cdma 18190 7891 0 0 0 0 0 0 0 0 3600.0
ger50 17 trans 998 22414 1 1 0 0 26 90 4 · 10−11 0 3600.0
harp2 224 2993 1 1 0 0 0 0 0 0 3600.0
momentum2 48474 3732 0 0 0 0 0 0 0 0 3600.0
nb10tb 300990 73340 0 0 0 0 0 0 0 0 3600.0
neos-1112782 4230 4140 1 1 0 0 0 4 8 · 10−16 2 · 10−16 3600.0
neos-1112787 3360 3280 1 1 0 0 0 3 6 · 10−16 0 3600.0
neos-1140050 7590 40320 0 0 0 0 0 0 0 0 3600.0
neos-1225589 1350 1300 1 1 0 0 0 0 0 2 · 10−16 3600.0
neos-520729 62356 91149 1 1 0 0 0 0 0 2 · 10−15 3600.0
neos-799711 118436 41998 1 1 0 0 964 975 3 · 10−9 3 · 10−16 1144.4
ns2017839 109020 55224 0 0 0 0 0 0 0 0 3600.0
ns2122603 49508 19300 1 1 0 0 0 99 5 · 10−16 2 · 10−15 3600.0
ofi 845174 420434 0 0 0 0 0 0 0 0 3600.0
sat.2-60 41832 35378 1 1 0 0 2 153 4 · 10−11 0 3600.0
sat.3-40-fs 71106 81681 1 1 0 0 2 253 4 · 10−11 0 3600.0
sat.3-40 89608 81681 1 1 0 0 2 253 4 · 10−11 0 3600.0
splan1 1145600 1317382 0 0 0 0 0 0 0 0 3600.0
transport. 19232 9685 1 1 0 0 2158 2192 1 · 10−7 8 · 10−13 3600.0

Table 4.3: Realistic instances in analysis mode

Original Infeas. Violations

name conss vars cand feas int LP high tot ∆max ∆obj time

w100R8T 1800 809 1 1 0 0 1 1 1 · 10−12 0 1215.2
w400R25T 32800 16041 1 1 0 0 5 13 2 · 10−13 0 3600.0
w529R40T 43378 21201 1 1 0 0 6 13 6 · 10−14 0 3600.0
w625R25T 32500 15651 1 1 0 0 1 12 3 · 10−14 0 3600.0
w900R36T 66600 32437 1 1 0 0 11 18 8 · 10−13 0 3600.0
rra01 2940 897 1 1 0 0 6 7 1 · 10−9 2 · 10−8 700.0
rra02 2940 897 1 1 0 0 2 6 5 · 10−9 3 · 10−7 3600.0
rra03 2940 897 1 1 0 0 1 4 1 · 10−13 2 · 10−14 2243.9
rra04 2940 897 1 1 0 0 2 6 8 · 10−10 1 · 10−7 3600.0
rra05 2940 897 1 1 0 0 7 10 6 · 10−9 3 · 10−5 628.8
rra07 5656 1793 1 1 0 0 0 5 7 · 10−18 2 · 10−14 3600.0
rra08 5656 1793 1 1 0 0 4 9 8 · 10−9 8 · 10−6 3600.0
rra09 5656 1793 1 1 0 0 6 13 7 · 10−9 1 · 10−6 3600.0
rra10 5656 1793 1 1 0 0 0 7 1 · 10−16 2 · 10−14 3600.0
ODTM 11088 3585 1 1 0 0 2 9 1 · 10−8 5 · 10−9 2124.4
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4.3 Enforce mode

In the second experiment we ran SCIP in enforce mode for the same three

sets of instances. Our purpose was to verify whether it is possible to improve

the results obtained by floating-point SCIP, and to evaluate performances

of xprim constraint handler. In this experiment the time limit is set to

twelve hours, since we considered a factor of 12 between the time limit in

analysis mode and in enforce mode as appropriate. No tolerances are used,

and SoPlex is exploited as exact LP solver.

4.3.1 Tables

Table 4.4 shows the results for MIPLIB benchmark set of instances, Table

4.5 shows the results for MIPLIB unstable set of instances, Table 4.6 shows

the results for the set of realistic instances.

Tables are quite similar to analysis mode ones. The first column gives the

name of the instance. The number of constraints and variables associated

to each instance can be seen in the corresponding row of the analysis mode

tables. The number of candidate solutions, displayed in the column named

cand, gives a measure of how many solutions have been checked by xprim

constraint handler within the tree. Columns feas, int and LP represent the

results of such checks, as already explained in section 4.2.1. Columns high,

tot and ∆max are the statistics about relative violations, while column ∆obj

gives the difference between the objective values of floating-point and exact

solutions; the latter four values are based only on the analysis of the best

solution found.

The tenth column, named xprim, displays the execution time spent

running xprim constraint handler, therefore providing a measure of the

performances. The last column displays the total execution time, and can be

compared to the correspondent column of the analysis mode table to have

further performances indications. Since in this case the time limit is set to

twelve hours, instances displaying 43200s have not completely been solved.

4.3.2 Results

Tables 4.4, 4.5 and 4.6 show the computational results obtained in enforce

mode. For each table we are going to analyze solutions’ accuracy first, and

subsequently also performances.



60 4. Computational experiments

A consideration has to be pointed out before the detailed discussion of

results. A comparison can be performed between analysis mode and enforce

mode results, but remembering that the SCIP execution is completely

different in the two cases. Indeed, we can not simply think that in enforce

mode every candidate solution also found in analysis mode is checked. Since

xprim constraint handler returns a feedback to SCIP, the tree exploration

the solver varies, therefore different nodes are solved and different decisions

are taken.

In table 4.4, 77 instances of the MIPLIB benchmark set are shown.

The number of candidate solutions checked by xprim constraint handler is

variable in a range from 1 to some decades. The only exception is instance

ns1208400, which almost produced a solution per second, but each of them

were marked as infeasible because of violations in the integer constraints,

as also happened in analysis mode. Also rocII-4-11 still shows the same

issues discussed in section 4.2.2, i.e. inaccuracies in the exact LP, but in this

experiment also feasible solutions are found. All the other instances always

produced exactly feasible candidate solutions, confirming that floating-point

SCIP often produces very good results. This observation is strengthened by

the fact that no tolerances are used.

It is remarkable that 61 out of 77 instances show neither a violation nor

a difference in the objective value for their best solution. Moreover, the

magnitude of such indicators is much less compared to what obtained in

analysis mode. Maximum violations in the last solutions go from 10−12 to

10−16, while maximum difference between floating-point and exact objective

values are included between 10−15 and 10−16. These results reveal that

feedback returned by xprim constraint handler to SCIP significantly improved

candidate solutions provided.

A comparison between the total execution times obtained in analysis

mode and enforce mode determines a variable behavior on different instances,

since sometimes we get better results with one mode and other times with

the other one. Apart from a random component that can slightly affect

times, differences can be due to several factors. First, as already stated, the

tree is explored differently, therefore the best solution can be reached by

following a different path. Second, on the one side xprim constraint handler

can be time consuming, on the other side may suggest very good solutions

which floating-point SCIP was not able to find.

Results on MIPLIB benchmark set show that in many cases the time

spent by xprim constraint handler is negligible. For a few instances, instead,



4.3 Enforce mode 61

is extremely relevant, resulting in a peak of about 90% of the run time for

instances map18 and map20. In addition, we should also consider never

returned instances, which may have very large execution times due to the

exact check.

Table 4.5 show results for MIPLIB unstable instances in enforce mode.

In this case the phenomenon of never returned instances is much relevant,

since for only a few instances statistics are available. Apart from that,

all the observations previously done are confirmed. Floating-point SCIP

solutions are enough accurate, since all of the candidate solutions result to

be feasible. The comparison with the execution times of analysis mode gives

the same indications, too. As example, we can consider the instance harp2,

which is solved more than 4 times faster in enforce mode, and the instance

neos-799711, which is solved about 5 times slower, in enforce mode. Another

interesting instance is npmv07, which has very high violations and very large

exact checking time (about 96%). Note that such instance does not appear

in table 4.2, that proves the theory of time consuming exact checking for

instances having no results.

Table 4.6 confirms what already discussed, too. There are no infeasible

candidate solutions, violations and differences between objective values are

generally smaller than in table 4.3, and the time spent for the exact check is

very variable.

It is worth to observe instance ODTM. Although it spent about 70% of

its run time checking candidate solutions, its total execution time is more

than 10 times lower than in the analysis mode experiment. Moreover, by

calling ODTMa the result of such instance in analysis mode, and ODTM e

the result in enforce mode, if we only consider the floating-point SCIP time,

we obtain

tSCIP (ODTM e) = ttot(ODTM e)− txprim(ODTM e) = 65.8s (4.3)

and, therefore,
tSCIP (ODTMa)

tSCIP (ODTM e)
=

2124.4s

65.8s
= 32.29. (4.4)

This result suggests that if we would be able to improve performances of

xprim constraint handler and of the exact LP solver, for some instances we

may obtain the best solution more than 30 times faster.

Table 4.4: MIPLIB 2010 benchmark set of instances in enforce mode
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Infeas. Violations Time

name cand feas int LP high tot ∆max ∆obj xprim tot

30n20b8 1 1 0 0 0 0 0 0 0.0 180.2

acc-tight5 1 1 0 0 0 0 0 0 0.0 84.1

aflow40b 10 10 0 0 0 0 0 0 0.5 1550.6

air04 4 4 0 0 0 0 0 0 0.1 96.8

app1-2 2 2 0 0 0 0 0 0 1242.2 4299.9

ash608gpia. 0 0 0 0 0 0 0 0 0.0 31.8

biella1 14 14 0 0 0 0 0 0 0.8 675.3

bienst2 7 7 0 0 14 64 5 · 10−15 0 0.3 661.3

binkar10 1 11 11 0 0 0 0 0 7 · 10−16 0.6 263.3

bley xl1 3 3 0 0 0 0 0 0 0.8 404.1

bnatt350 1 1 0 0 0 0 0 0 0.0 526.6

core2536-691 8 8 0 0 0 0 0 0 1.3 1076.6

cov1075 7 7 0 0 0 0 0 0 0.1 8329.4

csched010 20 20 0 0 0 0 0 0 0.1 11453.4

danoint 5 5 0 0 22 48 1 · 10−14 0 0.3 8544.7

dfn-gwin-UUM 19 19 0 0 0 0 0 0 0.2 167.7

eil33-2 14 14 0 0 0 0 0 0 0.2 149.7

eilB101 9 9 0 0 0 0 0 0 0.1 1058.5

enlight13 1 1 0 0 0 0 0 0 0.0 126.8

enlight14 0 0 0 0 0 0 0 0 0.0 742.4

ex9 1 1 0 0 0 0 0 0 0.2 91.8

gmu-35-40 18 18 0 0 5 5 2 · 10−13 0 0.1 43200.0

iis-100-0-cov 19 19 0 0 0 0 0 0 0.2 988.6

iis-bupa-cov 13 13 0 0 0 0 0 0 0.2 4509.1

iis-pima-cov 16 16 0 0 0 0 0 0 0.4 517.3

lectsched-4. 16 16 0 0 0 0 0 0 0.8 1501.0

m100n500k4r1 7 7 0 0 0 0 0 0 0.0 30362.5

macrophage 42 42 0 0 0 0 0 0 0.3 43200.0

map18 3 3 0 0 0 16 1 · 10−16 0 16067.7 18377.8

map20 5 5 0 0 0 16 8 · 10−17 0 16137.1 17889.0

mcsched 14 14 0 0 0 0 0 0 0.0 612.4

mik-250-1. 4 4 0 0 0 0 0 0 0.0 836.0

mine-166-5 72 72 0 0 0 0 0 0 0.7 72.8

mine-90-10 45 45 0 0 0 0 0 0 0.3 2132.0

msc98-ip 1 1 0 0 0 0 0 0 1.6 43200.0

mspp16 1 1 0 0 0 0 0 0 0.0 43200.0

mzzv11 23 23 0 0 0 0 0 0 0.9 810.0

n4-3 15 15 0 0 0 0 0 0 1.8 1482.9

continued on next page
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continued from previous page

Infeas. Violations Time

name cand feas int LP high tot ∆max ∆obj xprim tot

neos-1109824 6 6 0 0 0 0 0 0 0.2 210.6

neos-1337307 9 9 0 0 0 0 0 0 0.3 21083.6

neos-1396125 14 14 0 0 0 2 1 · 10−16 2 · 10−16 1.4 1021.3

neos13 57 57 0 0 0 0 0 0 1090.1 1916.5

neos-1601936 8 8 0 0 0 0 0 0 0.5 10356.2

neos18 7 7 0 0 0 0 0 0 0.1 101.3

neos-476283 5 5 0 0 4 228 1 · 10−14 2 · 10−15 1744.8 2147.2

neos-686190 8 8 0 0 0 0 0 0 0.1 105.4

neos-849702 1 1 0 0 0 0 0 0 0.0 187.3

neos-916792 9 9 0 0 85 263 9 · 10−15 4 · 10−16 45.6 43200.0

net12 2 2 0 0 0 0 0 0 9.2 2637.3

netdiversion 6 6 0 0 0 0 0 0 2.1 13270.9

newdano 23 23 0 0 12 27 9 · 10−15 0 0.8 12193.6

noswot 12 12 0 0 1 2 1 · 10−15 1 · 10−15 0.0 551.7

ns1208400 41978 0 41978 0 0 0 0 - 364.0 43200.0

ns1688347 4 4 0 0 0 0 0 0 0.1 516.3

ns1766074 0 0 0 0 0 0 0 0 0.0 2019.4

ns1830653 9 9 0 0 0 0 0 0 0.4 420.8

opm2-z7-s2 36 36 0 0 0 0 0 0 1.2 1629.6

pg5 34 13 13 0 0 40 51 1 · 10−14 1 · 10−16 0.5 2311.6

pigeon-10 2 2 0 0 0 0 0 0 0.0 43200.0

pw-myciel4 5 5 0 0 0 0 0 0 0.1 9955.2

qiu 16 16 0 0 0 2 1 · 10−17 4 · 10−15 0.7 126.7

rail507 6 6 0 0 0 0 0 0 4.1 4290.4

ran16x16 8 8 0 0 0 0 0 0 0.1 511.9

reblock67 51 51 0 0 0 0 0 0 0.1 455.8

rmatr100-p10 5 5 0 0 0 0 0 0 8.9 267.3

rmatr100-p5 4 4 0 0 0 0 0 0 13.9 452.5

rmine6 13 13 0 0 0 0 0 0 0.1 1941.4

rocII-4-11 31 7 0 24 0 45 8 · 10−17 3 · 10−16 320.7 5772.7

rococoC10. 17 17 0 0 0 0 0 0 0.1 7171.3

roll3000 31 31 0 0 0 0 0 0 0.4 1291.1

sp98ir 17 17 0 0 0 0 0 0 0.2 136.8

tanglegram1 6 6 0 0 0 0 0 0 0.6 4348.6

tanglegram2 7 7 0 0 0 0 0 0 0.1 14.9

timtab1 34 34 0 0 0 0 0 0 0.1 5931.8

triptim1 3 3 0 0 1 1 2 · 10−15 0 0.5 9412.7

unitcal 7 12 12 0 0 69 118 8 · 10−12 3 · 10−15 703.8 4165.4

zib54-UUE 21 21 0 0 0 0 0 0 3.2 10419.6
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Table 4.5: MIPLIB 2010 unstable set of instances in enforce mode
Infeas. Violations Time

name cand feas int LP high tot ∆max ∆obj xprim tot

ger50 17 trans 2 2 0 0 0 0 0 0 1.9 43200.0
harp2 17 17 0 0 0 0 0 0 0.2 865.4
neos-1112787 32 32 0 0 0 2 6 · 10−16 0 1.3 43200.0
neos-1140050 0 0 0 0 0 0 0 0 0.0 43200.0
neos-1225589 22 22 0 0 0 0 0 2 · 10−16 0.5 43200.0
neos-799711 7 7 0 0 1007 1027 2 · 10−9 0 1483.3 5835.4
npmv07 4 4 0 0 11188 17665 2 · 100 0 14913.5 15492.0
ns2017839 3 3 0 0 1361 2095 2 · 10−10 2 · 10−16 3300.2 3872.3
splan1 0 0 0 0 0 0 0 0 0.0 43200.0

Table 4.6: Realistic instances in enforce mode
Infeas. Violations Time

name cand feas int LP high tot ∆max ∆obj xprim tot

w100R8T 5 5 0 0 0 4 2 · 10−17 0 0.3 332.1
w400R25T 16 16 0 0 1 22 1 · 10−15 0 424.7 43200.0
w900R36T 8 8 0 0 1 28 1 · 10−15 0 499.4 43200.0
rra01 14 14 0 0 0 72 1 · 10−17 1 · 10−16 1.7 731.9
rra04 7 7 0 0 0 77 1 · 10−19 1 · 10−16 1.3 5501.7
rra05 8 8 0 0 1 41 2 · 10−8 8 · 10−5 1.4 2529.1
rra08 12 12 0 0 0 76 3 · 10−19 0 12.4 6598.4
rra09 4 4 0 0 0 83 2 · 10−19 3 · 10−16 11.8 12162.5
rra10 9 9 0 0 0 77 9 · 10−20 5 · 10−16 13.5 43200.0
ODTM 25 25 0 0 2 7 2 · 10−9 3 · 10−10 145.2 211.0
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4.4 Conclusions

In the current dissertation we analyzed the accuracy of SCIP, a floating-point

MIP solver, and we investigated a way to improve the quality of the solutions

obtained. Many advances have been recently achieved in researching new

techniques to develop an exact MIP solver. A few exact LP solvers having

acceptable performances were already developed. However, no exact MIP

solvers are still available and exploitable for a wide range of instances,

although many approaches have been proposed and only need to be refined.

The results we obtained with SCIP confirm that its behavior is satisfying

for many instances, therefore the solutions are quite reliable. Moreover,

exploitation of floating-point precision is confirmed to provide a good balance

between performances and accuracy. However, numerical errors of variable

entity are present, and it is well-known that such inaccuracies lead to falsely

feasible solutions in some cases.

In summary, the approach we adopted starts from previous knowledge

on exact MIP solving, and introduces a new perspective in tackling such

problem. Indeed, we tried to plug into SCIP a constraint handler in order

to achieve the goal of exactly solving MIPs by deeply exploiting SCIP

floating-point computation.

On the one side, xprim constraint handler provided us interesting results,

on the other side, its behavior may be improved according to several ways.

First, an exact parsing of the problem would be necessary in order to discard

possible inaccuracies due to the translation from floating-point to rational

data. Second, a slightly different approach can be implemented: we might

look for the exact LP solution of a problem that tries to minimize the

distance between exact and floating-point solutions instead of simply solving

a feasibility problem. Finally, it would be advisable to test xprim constraint

handler with more numerically difficult instances and verify whether it can

find feasible solutions that can replace falsely feasible ones.
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