Baldassarre, Alessandro
(2015)
FEM and experimental analysis of a wind turbine blade.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Ingegneria aerospaziale [LM-DM270] - Forli', Documento ad accesso riservato.
Documenti full-text disponibili:
Abstract
This paperwork compares the a numerical validation of the finite element model (FEM) with respect the experimental tests of a new generation wind turbine blade designed by TPI Composites Inc. called BSDS (Blade System Design Study). The research is focused on the analysis by finite element (FE) of the BSDS blade and its comparison with respect the experimental data from static and dynamic investigations. The goal of the research is to create a general procedure which is based on a finite element model and will be used to create an accurate digital copy for any kind of blade. The blade prototype was created in SolidWorks and the blade of Sandia National Laboratories Blade System Design Study was accurately reproduced. At a later stage the SolidWorks model was imported in Ansys Mechanical APDL where the shell geometry was created and modal, static and fatigue analysis were carried out. The outcomes of the FEM analysis were compared with the real test on the BSDS blade at Clarkson University laboratory carried out by a new procedures called Blade Test Facility that includes different methods for both the static and dynamic test of the wind turbine blade. The outcomes from the FEM analysis reproduce the real behavior of the blade subjected to static loads in a very satisfying way. A most detailed study about the material properties could improve the accuracy of the analysis.
Abstract
This paperwork compares the a numerical validation of the finite element model (FEM) with respect the experimental tests of a new generation wind turbine blade designed by TPI Composites Inc. called BSDS (Blade System Design Study). The research is focused on the analysis by finite element (FE) of the BSDS blade and its comparison with respect the experimental data from static and dynamic investigations. The goal of the research is to create a general procedure which is based on a finite element model and will be used to create an accurate digital copy for any kind of blade. The blade prototype was created in SolidWorks and the blade of Sandia National Laboratories Blade System Design Study was accurately reproduced. At a later stage the SolidWorks model was imported in Ansys Mechanical APDL where the shell geometry was created and modal, static and fatigue analysis were carried out. The outcomes of the FEM analysis were compared with the real test on the BSDS blade at Clarkson University laboratory carried out by a new procedures called Blade Test Facility that includes different methods for both the static and dynamic test of the wind turbine blade. The outcomes from the FEM analysis reproduce the real behavior of the blade subjected to static loads in a very satisfying way. A most detailed study about the material properties could improve the accuracy of the analysis.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Baldassarre, Alessandro
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
FEM, wind turbine blade, Ansys, static and modal analysis, experimental test
Data di discussione della Tesi
19 Marzo 2015
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Baldassarre, Alessandro
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
FEM, wind turbine blade, Ansys, static and modal analysis, experimental test
Data di discussione della Tesi
19 Marzo 2015
URI
Gestione del documento: