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Abstract 

 

Il collasso di diverse colonne, caratterizzate da danneggiamenti simili, quali ampie fessure 

fortemente inclinate ad entrambe le estremità dell’elemento, lo schiacciamento del calcestruzzo e 

l’instabilità dei ferri longitudinali, ha portato ad interrogarsi riguardo gli effetti dell’interazione tra 

lo sforzo normale, il taglio ed il momento flettente. 

Lo studio è iniziato con una ricerca bibliografica che ha evidenziato una sostanziale carenza nella 

trattazione dell’argomento.  

Il problema è stato approcciato attraverso una ricerca di formule della scienza delle costruzioni, allo 

scopo di mettere in relazione lo sforzo assiale, il taglio ed il momento; la ricerca si è principalmente 

concentrata sulla teoria di Mohr. 

In un primo momento è stata considerata l’interazione tra solo due componenti di sollecitazione: 

sforzo assiale e taglio. L’analisi ha condotto alla costruzione di un dominio elastico di taglio e sforzo 

assiale che, confrontato con il dominio della Modified Compression Field Theory, trovata tramite 

ricerca bibliografica, ha permesso di concludere che i risultati sono assolutamente paragonabili. 

L’analisi si è poi orientata verso l’interazione tra sforzo assiale, taglio e momento flettente. 

Imponendo due criteri di rottura, il raggiungimento della resistenza a trazione ed a compressione 

del calcestruzzo, inserendo le componenti di sollecitazione tramite le formule di Navier e Jourawsky, 

sono state definite due formule che mettono in relazione le tre azioni e che, implementate nel 

software Matlab, hanno permesso la costruzione di un dominio tridimensionale. In questo caso non 

è stato possibile confrontare i risultati, non avendo la ricerca bibliografica mostrato niente di 

paragonabile. 

Lo studio si è poi concentrato sullo sviluppo di una procedura che tenta di analizzare il 

comportamento di una sezione sottoposta a sforzo normale, taglio e momento: è stato sviluppato 

un modello a fibre della sezione nel tentativo di condurre un calcolo non lineare, corrispondente ad 

una sequenza di analisi lineari.  

La procedura è stata applicata a casi reali di crollo, confermando l’avvenimento dei collassi. 
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1. Literature Review 

 

The study begun with a literature review in order to analyse how other researchers approached the 

problem. Many articles examined, only most important have reported. They divide into analytical, 

numerical and experimental articles. 

1.1. Analytical Articles 

1.1.1. Article 1 

Authors: Frank J. Vecchio and Michael P. Collins 

Journal: ACI Structural Journal, 1986 

Title: The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear 

Focus of Research 

The article presents an analytical model capable of predicting the load-deformation response of 

reinforced concrete elements subjected to in-plane shear and normal stresses. In the model, cracked 

concrete is treated as a new material with its own stress-strain characteristics. Equilibrium, 

compatibility, and stress-strain relationships are formulated in terms of average stresses and 

average strains. Consideration is also given to local stress conditions at crack locations. The stress-

strain relationships for the cracked concrete were determined testing 30 RC panels.  

 

Figure 1.1.1.1 – Approach of the modified compression field theory  
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The membrane element considered is a portion of a reinforced concrete structure, containing an 

orthogonal grid of reinforcement with the longitudinal, x, and transverse, y, axes coincident with the 

reinforcement directions. Loads applied consist of uniform axial stresses 𝑓𝑥 and 𝑓𝑦, and uniform 

shear stress 𝜈𝑥𝑦 . The problem is to determine how the three in-plane stresses 𝑓𝑥, 𝑓𝑦 , and  𝜈𝑥𝑦 are 

related to the three in-plane strains 𝜀𝑥 , 𝜀𝑦 and 𝛾𝑥𝑦. Assuming that concrete and steel bars are perfectly 

bonded together corresponds to: 𝜀𝑠𝑥 = 𝜀𝑐𝑥 = 𝜀𝑥 and 𝜀𝑠𝑦 = 𝜀𝑐𝑦 = 𝜀𝑦. If 𝜀𝑥 , 𝜀𝑦 and 𝛾𝑥𝑦 are known, then the 

strain in any other direction can be obtained from the Mohr's circle of strain: 𝛾𝑥𝑦 =
2(𝜀1−𝜀2)

tan 𝜃
  where 𝜀𝑥 +

𝜀𝑦 = 𝜀1 + 𝜀2 and 𝑡𝑎𝑛2𝜃 =
𝜀𝑥−𝜀2

𝜀𝑦−𝜀2
=

𝜀1−𝜀𝑦

𝜀1−𝜀𝑥
=

𝜀1−𝜀𝑦

𝜀𝑦−𝜀2
=

𝜀𝑥−𝜀2

𝜀1−𝜀𝑥
. 

The forces applied to the reinforced concrete element are carried by stresses in the concrete and in 

the reinforcement. The requirement that forces sum to zero in the x-direction corresponds 

to: ∫ 𝑓𝑥𝑑𝐴𝐴
= ∫ 𝑓𝑐𝑥𝑑𝐴𝑐𝐴𝑐

+ ∫ 𝑓𝑠𝑥𝑑𝐴𝑠𝐴𝑠
, which is 𝑓𝑥 = 𝑓𝑐𝑥 + 𝜌𝑠𝑥 ∗ 𝑓𝑠𝑥. The following equilibrium conditions: 

𝑓𝑦 = 𝑓𝑐𝑦 + 𝜌𝑠𝑦 ∗ 𝑓𝑠𝑦, 𝜈𝑥𝑦 = 𝜈𝑐𝑥 + 𝜌𝑠𝑥 ∗ 𝜈𝑠𝑥, 𝜈𝑥𝑦 = 𝜈𝑐𝑦 + 𝜌𝑠𝑦 ∗ 𝜈𝑠𝑦 . Assuming 𝜈𝑐𝑥 = 𝜈𝑐𝑦 = 𝜈𝑦𝑥 , stresses in 

concrete are defined: 𝑓𝑐𝑥 = 𝑓𝑐1 − 𝜈𝑐𝑥/ tan𝜃𝑐, 𝑓𝑐𝑦 = 𝑓𝑐1 − 𝜈𝑐𝑥 ∗ tan𝜃𝑐. 

Constitutive relationships to link average stresses to average strains for reinforcement and 

concrete: 𝑓𝑠𝑥 = 𝐸𝑠 ∗ 𝜀𝑥 ≤ 𝑓𝑥𝑦, 𝑓𝑠𝑦 = 𝐸𝑠 ∗ 𝜀𝑦 ≤ 𝑓𝑥𝑦 and 𝜈𝑠𝑥 = 𝜈𝑠𝑦 = 0. Concerning the concrete, principal 

stress axes and principal strain axes assume coincident: 𝜃𝑐 = 𝜃. 

Thanks to experimental tests was found that principal compressive stress in the concrete, 𝑓𝑐2, was a 

function, not only of the principal compressive strain, 𝜀2, but also of the co-existing principal tensile 

strain, 𝜀1• The relationship suggested is: 𝑓𝑐2 = 𝑓𝑐2,𝑚𝑎𝑥 ∗ [2(
𝜀2

𝜀𝑐′
) − (

𝜀2

𝜀𝑐′
)
2

] where  
𝑓𝑐2,𝑚𝑎𝑥

𝑓′𝑐
=

1

0.8−0.34
𝜀1
𝜀𝑐′

≤ 1. 

Concerning the average principal tensile stress in the concrete, prior cracking 𝑓𝑐1 = 𝐸𝑐 ∗ 𝜀1, after 𝑓𝑐1 =

𝑓𝑐𝑟

1+√200𝜀1
. The stresses and strains formulations described deal with average values and do not give 

information about local variation. At a crack, there are no average conditions. 

As the applied external stresses 𝑓𝑥, 𝑓𝑦 , and 𝜈𝑥𝑦 are fixed, the internal stresses must be statically 

equivalent: 𝜌𝑠𝑥𝑓𝑠𝑥 sin𝜃 + 𝑓𝑐1 sin 𝜃 = 𝜌𝑠𝑥𝑓𝑠𝑥𝑐𝑟 sin𝜃 − 𝑓𝑐𝑖 sin𝜃 − 𝜈𝑐𝑖 cos𝜃; the same in y 

direction: 𝜌𝑠𝑦𝑓𝑠𝑦 cos𝜃 + 𝑓𝑐1 cos𝜃 = 𝜌𝑠𝑦𝑓𝑠𝑦𝑐𝑟 cos 𝜃 − 𝑓𝑐𝑖 cos𝜃 − 𝜈𝑐𝑖 sin𝜃. The two equilibrium equations can 

be satisfied with no shear and compression stresses on the crack, which means: 𝜌𝑠𝑦(𝑓𝑠𝑦𝑐𝑟 − 𝑓𝑠𝑦) =

𝜌𝑠𝑥(𝑓𝑠𝑥𝑐𝑟 − 𝑓𝑠𝑥) = 𝑓𝑐1. However, the stress in the reinforcement at a crack cannot exceed the yield 

strength, that is: 𝑓𝑠𝑥𝑐𝑟 ≤ 𝑓𝑠𝑥, 𝑓𝑠𝑦𝑐𝑟 ≤ 𝑓𝑠𝑦. If the calculated average stress in reinforcement is high, it may 

not be possible to satisfy the equilibrium. In this case, equilibrium will require shear stresses on the 

crack. The relationship between the shear on the crack 𝜈𝑐𝑖, the crack width w and the compressive 

stress on the crack 𝑓𝑐𝑖 has experimentally studied, Walraven formula is: 𝜈𝑐𝑖 = 0.18 𝜈𝑐𝑖,𝑚𝑎𝑥 + 1.64 𝑓𝑐𝑖 −

0.82
𝑓𝑐𝑖
2

𝜈𝑐𝑖,𝑚𝑎𝑥
, 𝜈𝑐𝑖,𝑚𝑎𝑥 =

√−𝑓𝑐′

0.31+24 𝑤 (𝑎+16)⁄
. 
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Obtained Results 

The MCFT is a powerful analytical tool, but is simple enough to be programmed with a handheld 

calculator. Not only is it capable of predicting the test results reported in this paper, but it has used 

by other researchers to successfully predict their test results. 
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1.1.2. Article 2 

Authors: Michael P. Collins, Denis Mitchell, Perry Adebar, and Frank J. Vecchio 

Journal: ACI Structural Journal, 1996 

Title: A General Shear Design Method 

Focus of Research 

The objective of this paper is to briefly present a simple, general shear design method based on 

the Modified Compression Field Theory, MCFT.  

The principal compressive stress in the concrete, 𝑓2 , relates to both principal compressive and tensile 

strain, 𝜀1 and 𝜀2: 𝑓2 = 𝑓2,𝑚𝑎𝑥 [
2𝜀2

𝜀′𝑐
− (

𝜀2

𝜀′𝑐
)
2

], where 𝑓2,𝑚𝑎𝑥 =
𝑓′𝑐

0.8+170 𝜀1
≤ 𝑓′

𝑐
. From the first equation 

derives 𝜀2 = −0.002 (1 −√1 −
𝑓2

𝑓2,𝑚𝑎𝑥
). After cracking: 𝑓1 =

𝑓𝑐𝑟

1+√500 𝜀1
, with 𝑓𝑐𝑟 = 4√𝑓′𝑐. For large values 

of 𝜀1, cracks become wide, the magnitude of 𝑓1is governed by the yielding of reinforcement at crack 

and by the ability to transmit shear stresses, 𝜈𝑐𝑖 , across the interface, which is a function of the crack 

width, 𝑤, and the aggregate size, 𝑎: 𝜈𝑐𝑖 =
0.18 √𝑓′𝑐

0.3+
24 𝑤

𝑎+16

.  Is stirrups have reached their yielding stress and 

crack begins to slip, the average tensile stress in the concrete, 𝑓1 = 𝜈𝑐𝑖  𝑡𝑎𝑛𝜃. 

 

Figure 1.1.2.1 – Approach of GSM 

For the design, 𝜀𝑥 , the highest longitudinal strain occurring within the web, can be approximated as 

the strain in the flexural tension reinforcement: 0 ≤ 𝜀𝑥 =
(
𝑀𝑢
𝑑𝑣
)+0.5 𝑁𝑢+0.5 𝑉𝑢 𝑐𝑜𝑡𝜃−𝐴𝑝𝑠 𝑓𝑝𝑜

𝐸𝑠 𝐴𝑠+𝐸𝑝 𝐴𝑝
≤ 0.002. From 

strain compatibility: 𝜀1 = 𝜀𝑥 + (𝜀𝑥 − 𝜀2) 𝑐𝑜𝑡
2𝜃; hence, as longitudinal strain, 𝜀𝑥 , increases and the 

inclination of principal compressive stress, 𝜃, reduces, the “damage indicator”, 𝜀1, increases. The 

nominal strength of a member 𝑉𝑛 = 𝑉𝑐 +𝑉𝑠 + 𝑉𝑝 = 𝑓1  𝑏𝑣 𝑑𝑣 cot 𝜃 +
𝐴𝑣 𝑓𝑦

𝑠
𝑑𝑣 cot 𝜃 + 𝑉𝑝 = 𝛽√𝑓′𝑐  𝑏𝑣 𝑑𝑣 +

𝐴𝑣 𝑓𝑦

𝑠
𝑑𝑣 cot 𝜃 + 𝑉𝑝, where tensile stress factor 𝛽 =

0.33 cot𝜃

1+√500 𝜀1
≤

0.18

0.3+
24 𝑤

𝑎+16

, 𝑤 = 𝑠 𝜀1. The value of principal 

tensile strain, 𝜀1, depends on the magnitudes of longitudinal strain, 𝜀𝑥 , the principal compressive 
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strain, 𝜀2, which can be computed through equation, defined above, imposing 𝑓2 = (
𝑉𝑛−𝑉𝑝

𝑏𝑣 𝑑𝑣
) (tan𝜃 +

cot 𝜃). 

 Using the relationship above: 𝜀1 = 𝜀𝑥 + [𝜀𝑥 + 0.002 (1 − √1−
𝜈

𝑓′𝑐
 (tan𝜃 + cot𝜃) ( 0.8 + 170𝜀1))] 𝑐𝑜𝑡

2𝜃. 

The amount of shear reinforcement must satisfy 𝑉𝑠 ≥
𝑉𝑢

𝜑
−𝑉𝑐 −𝑉𝑝, where 𝑉𝑢 ≤ 𝜑 𝑉𝑛. 

The shear influences the tensile forces in longitudinal reinforcement. At the inner edge of the 

bearing area, the tensile force has to be: 𝑇 = (
𝑉𝑢

𝜑
− 0.5 𝑉𝑠) cot𝜃. This equation gives additional tension 

due to shear, and therefore, at a section subjected to shear, 𝑉𝑢 , a moment,𝑀𝑢 ,  and an axial force, 𝑁𝑢, 

longitudinal bars on the flexural tension side of the element must satisfy: 𝐴𝑠  𝑓𝑦 +𝐴𝑝𝑠  𝑓𝑝𝑠 ≥
𝑀𝑢

𝜑 𝑑𝑣
+

0.5 
𝑁𝑢

𝜑
+ (

𝑉𝑢

𝜑
− 0.5 𝑉𝑠 −𝑉𝑝) cot𝜃. 

The general equation of the MCFT, intended to account for the complex behaviour of diagonally 

cracked concrete, are more suited for computer solution, like RESPONSE-2000, than for hand 

calculation. With tables of 𝜃 and 𝛽, the method becomes simple enough to solve by hand. For the 

design. Using formulae mentioned above, the steps are the following: 

1. At the design section, calculate the shear stress 𝜈; 

2. Calculate the longitudinal strain 𝜀𝑥; 

3. Choose the values of 𝜃 and 𝛽  

4. Determine the nominal strength; 

5. Check the capacity of longitudinal reinforcement. 

Obtained Results 

This approach has verified through experimental tests. 528 specimens were tested and as many 

shear failures resulted. Those failures were compared to the failure shear predicted by the method 

presented in this paper. The proposed General Method predicts the failure shears more accurately 

than those given by the ACI code do. A key feature of this procedure is the explicit consideration of 

the influence of shear upon longitudinal reinforcement, aspect that could avoid serious errors. 
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1.1.3. Article 3 

Authors: M.J. Nigel Priestley, Ravindra Verma, and Yan Xiao 

Journal: Journal of Engineering Mechanics, 1999 

Title: Seismic Shear Strength of Reinforced Concrete Columns 

Focus of Research 

This paper examines a number of methods to predict shear strength of columns and compares the 

results with existing database. A refinement and simplification of the method developed by Ang et 

al. (1989) and Wong et al. (1993) is proposed, which results in close agreement between predicted 

and measured shear strength over the full range of experimental database.  

The ASCE/ACI 426 approach does not consider the influence of ductility; the Ang-Wong model work 

well in low ductility, but scatter increases at moderate to high ductility levels, apparently as a 

consequence of the residual shear strength, being assumed independent of the axial load level and 

the aspect ratio. The Watanabe-Ichinose approach provides good prediction for rectangular columns 

at low axial load levels, the lack of specific consideration about axial loads leads to increased 

conservatism as the axial load level increases. In this model, for ductile shear strength, the strength 

of both arch and truss mechanisms are reduced. Experimental data indicate a reduction in the 

inclination of diagonal cracking to the column axis as the ductility increases, implying an increase 

in the truss mechanism.  

The proposed equation bases on the formulation given by Ang and Wong. The shear strength of a 

column is supposed to consist of three independent components: a concrete component, 𝑉𝑐 , whose 

magnitude depends on the level of ductility, an axial load component, 𝑉𝑝 , depending on the column 

aspect ratio, and a truss component, 𝑉𝑠 , function of transverse reinforcement: 𝑉𝑛 = 𝑉𝑐 +𝑉𝑝 + 𝑉𝑠. The 

concrete term reduces with increasing ductility: 𝑉𝑐 = 𝑘 √𝑓′𝑐  𝐴𝑐, where 𝑘 depends on the member 

displacement ductility level, on the system of unit used and  whether the column is subjected to 

uniaxial or biaxial ductility demand; the effective shear area, 𝐴𝑐 = 0.8 𝐴𝑔𝑟𝑜𝑠𝑠. 

It is considered that the column axial force enhance the shear strength by arch action and inclined 

strut. In this approach, the arch action only depends on the axial load level. The enhancement of the 

shear strength relates to the horizontal component of the diagonal compression strut, since this 

component directly resists the applied force. Thus: 𝑉𝑝 = 𝑃 tan𝛼 =
𝐷−𝑐

2𝑎
𝑃, where 𝐷 is the overall section 

depth or diameter, 𝑐 the depth of the compression zone, 𝑎 = 𝐿 for cantilever columns and 𝑎 =
𝐿

2
 for 

column in reversed bending.  

The contribution of transverse reinforcement to shear strength bases on truss mechanism using 30° 

angle between the compression diagonals, the crack pattern, and the column axis. For rectangular 

column: 𝑉𝑠 =
𝜋

2

𝐴𝑠ℎ  𝑓𝑦ℎ  𝐷′ 

𝑆
cot30°, where 𝐷′ is the distance between centres of the peripheral hoops or 

spirals. 
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Figure 1.1.3.1 – Equations compared to experimental results  

Obtained Results 

Results reported in the figure indicates a greatly improvement prediction. The influence of ductility, 

axial load and aspect ratio appear to be well represented by the proposed method. With respect to 

the methods discussed at the beginning, the model proposed in this paper provides the closest 

agreement with the data, with a mean strength ratio of 1.021 and a standard deviation of 0.124. This 

standard deviation is less than 40% of that resulting from the ASCE/ACI 426 and Watanabe-Ichinose, 

and 61% than Ang-Wong model. 

It could be argued that the proposed method is a predictive equation, whereas the alternative ones 

are design equations. Consequently, higher values of the strength ratio are desirable. This is true, 

but the final determination of the appropriateness of the design approach depends only on the 

lower limit to the data/prediction comparison. As can be observed from the figure, a strength 

reduction factor 𝜑𝑠 = 0.85, represents a reasonable lower bound to all methods. 

Also, in the comparison provided in this paper, shear strength was predicted using measured 

concrete compression strength and transverse reinforcement yield strength; in design situation, 

nominal material strength would be used, which in vast majority of cases will result in additional 

conservatism.  Preliminary comparison of the proposed shear model with results from reinforced 

concrete structural walls indicates that the method may also apply, without modification, to 

structural walls.  
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1.1.4. Article 4 

Authors: Evan C. Bentz, Frank J. Vecchio, and Michael P. Collins 

Journal: ACI Structural Journal, 2006 

Title: Simplified Modified Compression Field Theory for Calculating Shear Strength of Reinforced 

Concrete Elements 

Focus of Research 

The research reported in this paper has resulted in a significant simplification of the MCFT. It is 

shown that this simplified MCFT is capable of predicting the shear strength of a wide range of 

reinforced concrete elements with almost the same accuracy as the full theory. The expressions 

developed in the paper can form the basis of a simple, general, and accurate shear design method 

for reinforced concrete members. 

Since the used element models a section of the flexural region of a beam, it is assumed that the 

clamping stresses, 𝑓𝑧, will be negligible. For the transverse reinforcement to yield at failure, 𝜀𝑧, will 

need to be greater than approximately 0.002, while to crush the concrete, 𝜀2 will need to be 

approximately 0.002. If 𝜀𝑥  is also equal to 0.002 at failure, the maximum shear stress will be 

approximately 0.28 𝑓′𝑐, whereas for very low values of 𝜀𝑥   the shear stress at failure is predicted to 

reach approximately 0.32 𝑓′𝑐. It assumes that, if failure occurs before yielding of the transverse 

reinforcement, the failure shear stress will be 0.25 𝑓′𝑐. For failures occurring below this shear stress 

level, it assumes that at failure both  𝑓𝑧𝑠 and 𝑓𝑧𝑠𝑐𝑟  are equal to the yield stress of the transverse 

reinforcement, called 𝑓𝑦. Considering the sum of the forces in the z-direction for the free body 

diagram. For 𝑓𝑧 = 0 and 𝑓𝑠𝑧𝑐𝑟 = 𝑓𝑦, the equation can be rearranged to give 𝜈 = 𝜈𝑐 + 𝜈𝑠 = 𝜈𝑐𝑖 + 𝜌𝑧 𝑓𝑦 cot𝜃 =

𝑓1 cot 𝜃 + 𝜌𝑧 𝑓𝑦 cot 𝜃 = 𝛽√𝑓′𝑐 + 𝜌𝑧  𝑓𝑦 cot 𝜃, where 𝛽 =
0.33 cot𝜃

1+√500 𝜀1
. The crack width 𝑤 corresponds to the 

product of the crack spacing 𝑠𝜃 and the principal tensile strain 𝜀1, 𝑎𝑔represents the maximum coarse 

aggregate size in mm. To relate the longitudinal strain 𝜀𝑥 to 𝜀1: 𝜀1 = 𝜀𝑥(1 + 𝑐𝑜𝑡
2 𝜃) + 𝜀2 𝑐𝑜𝑡

2 𝜃. The 

principal compressive strain 𝜀2 depends on the principal compressive stress 𝑓2. When 𝜌𝑧 and 𝑓𝑧 are 

zero: 𝑓2 = 𝑓1 𝑐𝑜𝑡
2 𝜃. 

Because the compressive stresses for these elements will be small, it is sufficiently accurate to 

assume that 𝜀2 equals 𝑓2/𝐸𝑐, and that 𝐸𝑐 can be taken as 4950√𝑓′𝑐 in MPa units. The equation then 

becomes: 𝜀1 = 𝜀𝑥(1 + 𝑐𝑜𝑡
2 𝜃) +

𝑐𝑜𝑡4 𝜃

15000(1+√500 𝜀1
. 
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Figure 1.1.4.1 – Simplified Modified Compression Field Theory charts  

It can be seen that as the crack spacing increases, 𝑠𝑥𝑒 , the values of 𝛽 and, hence, the shear strengths, 

decrease. The observed fact is that large reinforced beams that do not contain transverse 

reinforcement fail at lower shear stresses than geometrically similar smaller beams; this 

corresponds to the size effect in shear. It is of interest that the predictions of the MCFT agree well 

with the results of the extensive experimental studies on size effect done in the years since the 

theory has first formulated. The MCFT 𝛽 values for elements without transverse reinforcement 

depend on both the longitudinal strain 𝜀𝑥 and the crack spacing parameter 𝑠𝑥𝑒 . Authors refer to these 

two effects as the “strain effect factor” and the “size effect factor.” The two factors are not 

completely independent, but in the simplified version of the MCFT, this interdependence of the two 

factors is ignored and it assumes that 𝛽 can be taken as simply the product of a strain factor and a 

size factor: 𝛽 =
0.4

1+1500 𝜀𝑥
∗

1300

1000+ 𝑠𝑥𝑒
.  The simplified MCFT uses the following expression for the angle of 

inclination 𝜃 = (29 𝑑𝑒𝑔 + 7000𝜀𝑥) (0.88 +
𝑠𝑥𝑒

2500
) ≤ 75𝑑𝑒𝑔. 

Obtained Results 

This paper summarizes the relationships of the MCFT. This theory can model the full load-

deformation response of reinforced concrete panels subjected to arbitrary biaxial and shear loading. 

Solving the equations, however, requires special-purpose computer programs and the method is, 

thus, not practical. On many occasions, a full load-deformation analysis is not needed; rather, a 

quick calculation of shear strength is required. This paper presents a simplified version of the MCFT. 

At the heart of the method is a simple equation for 𝛽 and a simple equation for 𝜃. While simple, the 

method provides excellent predictions of shear strength. The average ratio of experimental-to-

predicted shear strength of the simplified MCFT is 1.11 with a COV of 13.0%.  
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1.1.5. Article 5 

Authors: Hossein Mostafei and Toshimi Kabeyasawa 

Journal: ACI Structural Journal, 2007 

Title: Axial-Flexure-Shear Interaction Approach for Reinforced Concrete Columns 

Focus of Research 

The article presents an approach for displacement-based analysis of reinforced concrete columns 

considering principles of axial-shear-flexure interaction.  

The main objective of the study is to modify the conventional section analysis approach in case of 

shear behaviour, in order to be applicable for a displacement-based evaluation of reinforced 

concrete columns and beams subjected to shear, flexural, and axial loads. 

This approach uses the traditional section analysis, also called fiber model, to assess axial-flexural 

behaviour, while the MCFT, Modified Compression Field Theory, is employed to determine axial-shear 

behaviour of the reinforced concrete element. The mechanisms of shear and flexure are coupled 

considering axial deformations interaction and concrete strength degradation, and satisfying 

compatibility and equilibrium relationships.  

Thus, the ASFI method consists of two models, an axial-flexural one, which is a conventional fiber 

model, and an axial-shear one, which is a biaxial shear model.  

Axial deformation plays a very important role by interconnecting the two models of axial-shear and 

axial-flexure. The axial deformation due to flexure mechanism increases shear crack width as well 

as principle tensile strain in the web of the column, which results into a lower shear capacity for the 

element. Concrete strength degradation or concrete compression softening is another interaction 

term in the ASFI method. 

The proposed approach is simplified in order to model a reinforced concrete column using a single 

section analysis with a single shear model for the entire element. 

Analytical results, such as ultimate lateral loads, drifts and post-peak responses, have compared 

with the experimental data; consistent agreements were achieved. 

In the ASFI method, only axial-flexure model relates to the structural input data, such as material 

properties and geometry of a column. Later, input data for the axial-shear model are determined 

basing on the converted stresses and strains, derived from the axial-flexure model components. 

Thus, the ASFI method can be extended to three-dimensional analysis and for all types of section.  
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Figure 1.1.5.1 – Axial-flexure and shear-flexure models of the ASFI method 

Obtained Results 

To assess the efficacy of axial-shear-flexure interaction approach, the response of a reinforced 

concrete column specimen is evaluated following four different analyses.  

First, by applying only the axial-flexure model, which corresponds to the fiber model, the 

displacement-based analysis was implemented for the specimen.  

Then, only the axial-shear model of the ASFI method was used to obtain the shear response of the 

specimen considering the same displacement history. 

After that, the analysis was carried out for the column by the simplified ASFI method, based on the 

process described in the paper.  

Finally, similar to the ASFI method, the axial-shear model and the axial-flexure model were coupled 

as springs in series, without any axial deformation interaction and concrete strength degradation. 

Then the displacement-based response of the specimen was obtained by the method. Results 

obtained from the aforementioned four methods are derived and compared: the axial-shear-flexure 

interaction has a significant effect on the structural response and is an essential consideration in 

the analysis. 

To assess the applicability of the simplified ASFI method, three full-scale columns, a reinforced –

concrete column of a bridge and a beam subjected to zero axial force, were tested.  

For all specimens, reasonable correlations were attained between the analytical results and the test 

data. Hence, it might be concluded that the simplified ASFI method is a proper analytical tool for 

displacement-based evaluation of reinforced concrete columns. 
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1.1.6. Article 6 

Authors: H. Mostafaei and F. J. Vecchio 

Journal: Journal of Structural Engineering, 2008 

Title: Uniaxial Shear-Flexure Model for Reinforced Concrete Elements 

Focus of Research 

This paper presents a performance-based analysis of RC columns subjected to shear, flexure and 

axial loads; the Uniaxial Shear-Flexure Model, USFM, bases on a relatively more complex approach, 

known as the Axial-Shear-Flexure Interaction, ASFI, method that is able to predict the full load-

deformation relationships of reinforced concrete columns subjected to axial, flexure and shear 

force. The USFM can also predict comparable full load-deformation responses, but the formulation 

has simplified by eliminating the iteration process for the shear modelling. 

In the ASFI method, the flexure mechanism has modelled by applying traditional sectional analysis, 

and shear behaviour has modelled based on the modified compression field theory. However, the 

application of the MCFT requires a relatively intensive computation and iteration process. 

This study tries to simplify the shear modelling of the ASFI approach introducing the USFM, where 

axial and principal tensile strain of a RC column or beam, between two consecutive flexural sections, 

is determined based on the average axial strains and average resultant concrete compression strains 

of the two sections. This simplifies the approach significantly by eliminating the iteration process 

for the shear model.  

The steps in an analysis performed according to the USFM method, for a given curvature, φ, and axial 

strain, 𝜀𝑥𝑖 , are as follows: 

1. Apply the section analysis procedure for two adjacent sections, at least one of them in 

correspondence of the section with maximum moment and the other one at the inflection point, 

where moment is zero; then determine the average centroidal strain and concrete principal 

compression strain between the two sections; 

2. Compute average concrete principal tensile strain, 𝜀1, assuming an initial value of 0.56𝑓𝑡
′  for 𝑓𝑐1; 

3. If the transverse reinforcement has yielded, determine the average concrete principal tensile 

strain, 𝜀1; 
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Figure 1.1.6.1 – Approach of uniaxial Shear-Flexure Model for Reinforced Concrete Elements 

4. Calculate the compression-softening factor, which represents the degradation of the concrete 

strength due to shear deformation, then compute the concrete compression stress of the stress 

block, multiplied by the compression-softening factor; 

5. Obtain moment, shear force and the centroidal strain at the sections using section analysis; 

6. Check for maximum shear stress on crack; 

7. Obtain the total lateral drift ratio and the axial strain. 

Obtained Results 

To verify the applicability and accuracy of the USFM approach for reinforced concrete columns and 

beams, specimens with various performance characteristics have selected and evaluated using the 

developed method. The column specimens scaled to 13 of actual columns. Comparing experimental 

results from the first four columns to the test outcomes of the columns with different hysteretic 

loading patterns indicated no significant effects on column response due to the different lateral 

loading patterns. Therefore, for the analysis by the USFM method, which bases on a monotonic 

loading pattern, the effects of hysteretic loading pattern were neglected for these specimens. 

Considering the symmetric conditions of the specimens, the two sections required for USFM analysis 

were chosen as one at the inflection point and one at an end section. As a result, the drift ratio-

lateral load responses for the columns have estimated and compared to the test data; consistent 

correlations resulted. Furthermore, to assess the efficiency of the USFM, its outcomes have 

compared to those of the traditional ASFI method: results clearly indicate the benefit of using the 

USFM without sacrificing the accuracy of the ASFI approach. To conclude, consistently strong 

correlations were attained between analytical results and experimental outcomes. 
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1.2. Numerical Researches 

1.2.1. Article 7 

Authors: Marco Petrangeli, Paolo Emilio Pinto, and Vincenzo Ciampi 

Journal: Journal of Engineering Mechanics, 1999 

Title: Fiber Element for Cyclic Bending and Shear of RC Structure, I: Theory 

Focus of Research 

This paper presents a new finite-beam element for modelling the shear behaviour and its interaction 

with the axial force and the bending moment in RC beams and columns. This new element, based 

on the fiber section discretization, shares many features with the traditional fiber beam element to 

which it reduces, as a limit case, when the shear forces are negligible. The element basic concept is 

to model the shear mechanism at each concrete fiber of the cross sections, assuming the strain field 

of the section as given by the superposition of the classical plane section hypothesis for the 

longitudinal strain field with an assigned distribution over the cross section for the shear strain 

field. Transverse strains are instead determined by imposing the equilibrium between the concrete 

and the transverse steel reinforcement. The nonlinear solution algorithm for the element uses an 

innovative equilibrium-based iterative procedure. The resulting model, although computationally 

more demanding than the traditional fiber element, has proved to be very efficient in the analysis 

of shear sensitive RC structures under cyclic loads where the full 2D and 3D models are often too 

onerous. 

The principal ingredients of this classical fiber element that have retained in the new model are as 

follows: 

- Equilibrium-based integrals for the element solution; 

- Fixed monitoring sections located at Gauss’s points along the element; 

- Fiber discretization for force and stiffness integration over the sections; 

- Explicit algebraic constitutive relations for concrete and steel. 

The new element, while incorporating the above features, differentiates from the previous element 

by having two additional strain fields to be monitored at each cross section, namely, the shear strain 

field and the lateral field. The shear strain field comes explicitly in the element formulation the 

lateral field has condensed statically at each section by imposing the equilibrium between transverse 

steel and concrete. For a 2D beam, the section strain and stress field vectors therefore read:  𝑞(𝜉) =

(𝜀0, 𝜑, 𝛾) and 𝑝(𝜉) = (𝛮,𝛭, 𝛵). Given the section strain vector 𝑞(𝜉), the fiber longitudinal and shear 

strains have found using suitable section shape functions. 

Constant and parabolic shape functions have tested, with equally acceptable results in both cases. 

The strain of the 𝑖-th fiber found from the section kinematic variables 𝑞(𝜉) and the above-mentioned 
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hypotheses can therefore be written: 𝜀′𝑥(𝜉) = 𝜀0(𝜉) − 𝜑(𝜉)𝑌
𝑖 and 𝜀′𝑥𝑦(𝜉) =

3

2
𝛾(𝜉) [1 − (

𝑌𝑖

𝐻
2⁄
)
2

], where 𝑌𝑖 

is the distance of the 𝑖-th fiber from the section centroid. 

Since 𝜀𝑥
𝑖  and 𝜀𝑥𝑦

𝑖  are found from the equations above, the strain in the transverse direction 𝜀𝑦
𝑖  remains 

the only unknown. By imposing the equilibrium in the lateral direction, the 2D strain tensor at each 

concrete fiber 𝜀𝑖 = (𝜀𝑥 , 𝜀𝑦 , 𝜀𝑥𝑦) therefore has found. When imposing the equilibrium between concrete 

and steel in the transverse direction, we can choose any solution within two extreme options, which 

are: (1) Impose equilibrium at each fiber separately; and (2) impose equilibrium over the whole 

section. The difference between the two approaches is that, in the second, there exists only one 

transverse steel fiber, compared with the first, where the transverse steel fibers are as numerous as 

the longitudinal concrete fibers subjected to its confinement action. 

 

Figure 1.2.1.1 – Flow chart representing the approach 

Obtained Results 

Although much more complicated than the classical fiber model without shear flexibility and still 

retaining the basic limitations that are intrinsic to the beam theory, the proposed model appears to 

be capable of modelling the principal mechanisms of shear deformation and failure. It is also 

believed to represent a substantial step forward with respect to the current models based on truss, 

strut and tie analogies, which, apart from their grossly idealized mechanics, cannot account, on 

physical bases, for the interaction between axial, flexural, and shear responses. The model is capable 

of a good description of a broad range of existing test data, still keeping the input data and 

computational demand within acceptable limits. 
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1.2.2. Article 8 

Authors: Marco Petrangeli 

Journal: Journal of Engineering Mechanics, 1999 

Title: Fiber Element for Cyclic Bending and Shear of RC Structure, II: Verification 

Focus of Research 

Following the general theoretical formulation discussed in the companion paper, Petrangeli et al. 

1999, in this paper is performed a calibration and verification of the new fiber beam model with 

shear modelling using test data available from literature. A qualitative description of the section 

behaviour has also presented. 

The stress-strain law used for the micro-plane normal “weak” component bases on the work of 

Mander et al. (1988).  The skeleton curve in compression has the following expression: 𝑠𝑘
𝑤 =

𝑓𝑐𝑐  𝑥 𝑟

𝑟−1.0+𝑥𝑟
, 

where 𝑥 =
𝑒𝑘
𝑤

𝜀𝑐𝑐
, 𝑟 =

𝐸𝑐

𝐸𝑐−𝐸𝑠𝑒𝑐
, 𝐸𝑠𝑒𝑐 =

𝑓𝑐𝑐

𝜀𝑐𝑐
, 𝑓𝑐𝑐 is the peak strength, 𝜀𝑐𝑐 the corresponding deformation and 𝐸𝑐 

is the initial elastic modulus. For the unloading branch, defining (𝜀𝑢𝑛 , 𝜎𝑢𝑛) the coordinates of the 

reversal point, the unloading branch is given by the expression: 𝑠𝑘
𝑤 = 𝜎𝑢𝑛 −

𝜎𝑢𝑛 𝑥 𝑟

𝑟−1.0+𝑥𝑟
, where 𝑥 =

𝑒𝑘
𝑁−𝜀𝑢𝑛

𝜀𝑝𝑙−𝜀𝑢𝑛
, 

𝑟 =
𝐸𝑢

𝐸𝑢−𝐸𝑠𝑒𝑐
, 𝐸𝑠𝑒𝑐 =

𝜎𝑢𝑛

𝜀𝑝𝑙−𝜀𝑢𝑛
, 𝐸𝑢 is the  unloading tangent modulus at reversal, 𝜀𝑝𝑙 = 𝜀𝑢𝑛 −

(𝜀𝑢𝑛+𝜀𝑎)𝜎𝑢𝑛

𝜎𝑢𝑛+𝐸𝑐𝜀𝑎
 is the 

inelastic strain, 𝜀𝑎 is function of the maximum strain during the analysis. The reloading branch is 

linear elastic with a polynomial transition curve joining to the skeleton curve. For tensile branch of 

concrete: 𝑠𝑘
𝑤 = 𝐸𝑐  𝑒𝑘

𝑤 (1− 𝑒
[−(

𝑒𝑘
𝑤

𝑒1
⁄ )𝑃1]

), 𝑒1 and 𝑝1 are two parameters depending on the strength and 

fracture energy required. 

 

Figure 1.2.2.1 – Fiber model results compared with experimental results 

The first proposed simulation refers to the uniaxial compression test by van Mier (1986). The 

prediction of the model’s lateral response is fairly good, taking into account that in the post-peak 

regime these types of results are influenced by the structural response of the specimen and cannot 

be taken as representative of the materials’ behaviour, even on a macro-scale. The second test refers 

to the combined compression-shear stress state; the failure envelope of the model compared with 
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the test results by Goode and Helmy (1967). Application of the shear strain causes, in the nonlinear 

regime, an increase of the axial force due to the dilatancy of the material, followed by a sudden drop 

in both shear and axial components when failure occurs. Finally, the model’s biaxial failure envelope 

has compared with results by Kupfer and Gerstle (1973). In the tension-tension and compression-

tension quadrants, the model response is very accurate. In the biaxial compression zone, the model 

failure envelope deviates from the experimental one. The stress-strain law for the longitudinal steel 

fibers bases on work of Menegotto and Pinto (1977).  

The skeleton branch for the steel has divided in three parts: a linear elastic branch, a perfectly plastic 

one and a hardening branch. The hardening branch defines as: 𝜎𝑠 = 𝜎𝑠𝑢 + (𝜎𝑦 − 𝜎𝑠𝑢) |
𝜀𝑠𝑢−𝜀𝑠

𝜀𝑠𝑢−𝜀𝑠ℎ
|
𝑝

, 𝑃 =

𝐸𝑠ℎ (
𝜀𝑠𝑢−𝜀𝑠ℎ

𝜎𝑠𝑢−𝜎𝑦
), 𝜀𝑠 and 𝜎𝑠 are current stress and strain in steel. Unloading and reloading branches defines 

instead by the following expression 𝜎𝑠 = 𝜎0 + (𝜀𝑠 − 𝜀0)𝐸𝑚 [𝑄 +
1−𝑄

(1+|𝐸𝑚
𝜀𝑠−𝜀0
𝜎𝑐ℎ−𝜎0

|
𝑅
)

1
𝑅⁄
], where 𝜀0 and 𝜎0 are the 

coordinates of the last reversal from the skeleton branch, 𝐸𝑚, is the initial modulus of elasticity at 

reversal, 𝜎𝑐ℎ,  is a characteristic stress, 𝑄 is the ratio of the final tangent modulus to the initial one 

at reversal, and, 𝑅 is a curvature parameter. 

The analysis refers to columns that initially develop bending hinging, then significant shear 

deformations, and eventually fail. In these elements the interaction between axial, bending, and 

shear force is fundamental, as the bending both provides the initial cracking and activates the 

confining effect of the hoops caused by the lateral dilatancy of concrete. Examples presented are a 

single pier tested in the European Laboratory for Structural Assessment (ELSA) and those tested at 

the University of Rome “La Sapienza” (De Sortis and Nuti 1996). The numerical results found with 

the model reproduce the experimental findings. Piers showed a degraded strength and stiffness that 

had to be accounted in the numerical model, imposing two cycles at the same maximum amplitude, 

20 mm, reached by the two specimens during the previous tests. Yield penetration and bond slip 

should be included in the model as they account for a large percentage in the flexural degradation 

of the specimens. Satisfactory prediction resulted also for RC beams. 
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1.2.3. Article 9 

Authors: Pier Paolo Diotallevi, Luca Landi, Filippo Cardinetti 

Journal: The 14th World Conference on Earthquake Engineering, 2008, Beijing, China 

Title: A Fibre Beam Column Element for Modelling the Flexure-Shear Interaction in the Non-Linear 

Analysis of RC Structures 

Focus of Research 

The principal purpose of this research is to develop a fibre beam-column element able of describing 

the flexure-shear interaction and the shear response in the non-linear range.  

 

Figure 1.2.3.1 – Fiber model representation 

The algorithm organizes in the following step: 

1. Creation of initial stiffness structural matrix; 

2. Use of load increment and Newton-Rapson iteration: each NR iteration indicated by 𝑖 subscript; 

3. Calculation of nodal element displacements trough a condensation and a rotation matrix; 

4. Beginning of element state determination procedure: calculation of nodal forces. Each iteration 

of element state determination is indicated by a superscript 𝑗; 

5. Calculation of section forces in control sections; 

6. Calculation of section deformations; 

7. Calculation of fibre deformations; 

8. Beginning DSFM at fibre level. Each fibre characterized by a deformation 𝜀 = [𝜀𝑥; 𝜀𝑦 = 0; 𝛾𝑥𝑦] 

Initially it assumed 𝜀 = 𝜀𝑐. With application of Mohr circle, principal strains 𝜀1 and 𝜀2 for concrete 

are obtained. The average strains 𝜀𝑠𝑥 and 𝜀𝑠𝑦 for steel assumes equal to those of concrete along 𝑥 

and 𝑦 axis. After calculating average stresses in concrete and steel through constitutive 

relations, local deformations in reinforcements 𝜀𝑠𝑥𝑐𝑟 and 𝜀𝑠𝑦𝑐𝑟 on crack location calculated 

through an iterative procedure: (𝜀𝑠𝑥𝑐𝑟 = 𝜀𝑠𝑥 + 𝛥𝜀1𝑐𝑟 𝑐𝑜𝑠
2𝜃𝜎) and (𝜀𝑠𝑦𝑐𝑟 = 𝜀𝑠𝑦 + 𝛥𝜀1𝑐𝑟 𝑐𝑜𝑠

2(𝜃𝜎 −
𝜋

2
). At 

beginning 𝛥𝜀1𝑐𝑟 = 0, then it increases at each iteration until subsequent equilibrium equation 

satisfies:  𝜌𝑥(𝑓𝑠𝑥𝑐𝑟 − 𝑓𝑠𝑥)𝑐𝑜𝑠
2𝜃𝜎 + 𝜌𝑦(𝑓𝑠𝑦𝑐𝑟 − 𝑓𝑠𝑦)𝑐𝑜𝑠

2 (𝜃𝜎 −
𝜋

2
) = 𝑓𝑐1. 

Where stresses 𝑓𝑠𝑥𝑐𝑟 and 𝑓𝑠𝑦𝑐𝑟 are functions of 𝜀𝑠𝑥𝑐𝑟 and 𝜀𝑠𝑦𝑐𝑟 through constitutive relationship of 

steel. Then shear stress along crack surfaces are calculated: 𝜈𝑐𝑖 = 𝜌𝑥(𝑓𝑠𝑥𝑐𝑟 − 𝑓𝑠𝑥) cos 𝜃𝜎 sin 𝜃𝜎 +

𝜌𝑦(𝑓𝑠𝑦𝑐𝑟 − 𝑓𝑠𝑦) cos (𝜃𝜎 −
𝜋

2
) sin(𝜃𝜎 −

𝜋

2
), 𝜃𝜎  is the angle of principal stresses. Being 𝑠𝑥 and 𝑠𝑦 crack 

spacing in 𝑥 and 𝑦 directions it is possible to determine the crack spacing 𝑠 and the crack 
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width 𝑤: 𝑠 =
1

sin 𝜃𝜎
𝑠𝑥

+
cos𝜃𝜎
𝑠𝑥

, 𝑤 = 𝜀𝑐1 𝑠. Once calculated the shear slip, it is possible to evaluate 𝛾𝑠 and 

strain components due to shear slip 𝜀𝑠; then strain components, 𝜀𝑐 = 𝜀 − 𝜀𝑠, are obtained. 

Concerning 𝜀𝑐 , an iterative procedure begins, it stops when the difference between subsequent 

values are small enough. Reached the convergence, values of tangent modulus for the two 

principal directions are calculated form equations of constitutive laws; they are then introduced 

in diagonal matrices referred to principal directions. Rotation matrix allows passing from 

principal axes system to original one. The stiffness matrices of each fibre are assembled in 

order to obtain the modulus matrices 𝐸𝑠 and 𝐸𝑐 of all fibres. From these matrices, is possible to 

obtain the stiffness matrix of section; 

9. Calculation of section resisting forces 𝑫𝑅
𝑗
(𝑥); 

10. Calculation of unbalanced section forces 𝑫𝑢
𝑗 (𝑥) =   𝑫𝑗(𝑥) − 𝑫𝑅

𝑗
(𝑥); 

11. Determination of section residual deformations; 

12. Determination of residual nodal displacements, check of the convergence by energy criterion; 

13. Calculation of resisting nodal forces 𝑭𝑅
𝑖  and of stiffness matrix of structure; 

14. Calculation of unbalanced nodal forces 𝑭𝑢
𝑖 = 𝑷−𝑭𝑅

𝑖  then check of the convergence at structural 

level. 

Obtained Results 

The proposed model has calibrated and validated through a comparison with experimental results, 

various numerical analyses have performed in order to study the influence of non-linear flexural-

shear interaction. Analyses underlined that the model was able to reproduce flexure and shear non-

linear response and above all, the coupling between flexure and shear in the non-linear range. This 

aspect did affect significantly the response of examined squat reinforced concrete structural 

elements, especially in terms of deformation. 
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1.2.4. Article 10 

Authors: Luca Martinelli 

Journal: ACI Structural Journal, 2008 

Title: Modelling Shear-Flexure Interaction in Reinforced Concrete Elements Subjected to Cyclic 

Lateral Loading 

Focus of Research 

This paper presents a beam-column fiber element able to describe the interaction between the 

bending moment, the axial and shear forces. In RC elements, shear forces are due to many complex 

interacting mechanisms, involving a significant part of the volume of the element; in this work, 

however, these are considered in an independent way and are modelled mainly at a cross section 

level.  Each structural member is discretized in fiber elements and the stress-strain history for both 

steel and concrete is evaluated throughout the analysis by means of uniaxial constitutive laws at 

different positions within selected cross sections. 

This approach bases on the consideration that, even if shear effects actually spread throughout the 

element, the shear-flexure interaction is more pronounced in limited zones, for example, the fixed-

end region in a cantilever. Only regions where the shear-flexure coupling takes place, both for 

strength and stiffness, are modelled with the proposed fiber model. This strategy aims to reduce 

the computational effort in view of the application to seismic problems, recalling that the purpose 

of the element is rather to capture the behaviour of a relevant portion of the structural element than 

to model its complex local mechanics. The limited length of the fiber element facilitates the choice 

of the shape functions and allows the adoption of a stiffness-based approach that, in turn, 

eliminates the need for the iteration at the element level in the state determination phase, and is 

therefore convenient from the computational point.  

The shear force is computed in the cross section by superposition of several contributions. The 

most important are due to the truss and the arch mechanisms and are reproduced with mechanical 

models coupled with the behaviour in bending of the element and depending only on the mechanical 

properties of the materials and geometric parameters. The truss is oriented as in the classical truss 

analogy, and comprises the transverse reinforcement and two concrete diagonals, reproducing the 

tensile strength of the concrete. This avoids the need to identify which diagonal is in compression 

and allows for the presence of only one truss for cyclic loading also. The model for the arch effect, 

coupling the axial force with bending, can be, in principle, also adopted for an element kinematics 

different from the one chosen herein. 

The other main characteristic of this approach is the uniaxial constitutive relation for concrete, 

which involves that the principal direction of the compressive stress rotates during the analysis to 

account for the arch action, and thus it may be non-normal to the cross section. 
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In this stiffness-based element, which adopts the Timoshenko beam theory, shear and flexural 

behaviour are linked by means of kinematical assumptions. In bending, differently from standard 

fiber elements, the cross-sectional fibers have the direction of the compressive principal stress, not 

aligned with the element longitudinal axis. This accounts for the contributions to shear strength 

due to both the arch action and the inclined thrust-line developing in squat elements. 

The nonlinear behaviour of materials described by means of appropriate constitutive relations.  

 

Figure 1.2.4.1 – Model approaching 

Obtained Results 

Despite the limitations, the overall performance shows that the proposed element is able to 

represent the experimental response in selected test cases, strongly influenced by shear. A limited 

number of elements is required and the computational efficiency allows for the study of the dynamic 

behaviour of complete three-dimensional structures with very short computer times. This aspect is 

of interest in view of the diffusion that nonlinear analysis has gained in seismic design regulations. 
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1.3. Experimental Studies 

1.3.1. Article 11 

Authors: Pawan R. Gupta and Michael P. Collins 

Journal: ACI Structural Journal, 2001 

Title: Evaluation of Shear Design Procedures for RC Members under Axial Compression 

Focus of Research 

To understand better the response of reinforced concrete members subjected to combined axial 

compression, shear, and moment, 24 reinforced concrete elements were tested. The parameters that 

changed from specimen to specimen were the ratio of compression-to-shear N/V, the concrete 

strength fc, the specimen width b, and the amount of shear reinforcement z. 

During loading, equal and opposite moments have applied at each end of the specimen. In each 

experiment, the axial load, the moment, and shear force have increased proportionally up to failure. 

Obtained Results 

Failures were classified as either shear failures, expected to occur on diagonal planes sloping from 

the ends of the specimens towards the middle of the specimen, or flexural failures, expected near 

the ends of the specimens where the moment was highest. Eighteen of the specimens had classified 

as having failed in shear, while six of them in flexure.  

For these six specimens, the longitudinal reinforcement yielded and the moment at the ends of the 

specimens, ME, approximately equalled or exceeded the predicted failure moment Mo. Priestley and 

Park have reported that for members under high compression, confinement can increase flexural 

capacity by more than 30%; for one specimen the ratio ME/Mo reached 1.19. Even for the flexural 

failures, the final failure involved opening of significant diagonal cracks as is typical of shear 

failures.  

 

Figure 1.3.1.1 – Testing machine and main results 
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The shear stresses at failure for the 24 specimens had compared. Based on concrete strengths and 

amount of shear reinforcement, the specimens can be divided into six groups. Within each group, 

the shear stress at failure increases as the compression-shear loading ratio N/V is increased from 0 

to 4, then stays approximately constant or decreases from 4 to 8. 

 Three of the groups have the same amount of shear reinforcement but have different concrete 

strengths. For each loading ratio, as the concrete strength increases from 43 to 60 MPa, the shear 

stress at failure increases, from 60 to 86 MPa stays constant or decreases.  

Wider specimens, more representative of concrete walls, typically failed at a lower shear stress than 

the comparable narrower specimens. For what concerns the influence of the ratio of N/V on the 

load-deformation response and crack development for very similar specimens, when there was no 

axial compression, the response was very ductile. Flexural cracks initiated at the ends of the member 

at approximately 20% of the maximum load. Some of the flexural cracks developed into flexural-

shear cracks when the load reached 40% of the maximum. At 2/3 of the maximum, new diagonal 

cracks inclined at approximately 25 degrees to the vertical formed. As the load was further 

increased, new diagonal cracks formed and existing cracks widened. The loading stopped when the 

shear reached 490 kN because the 50 mm displacement was near the limit of the equipment; at this 

stage, the largest diagonal crack was more than 3 mm wide. The application of compression 

increased the stiffness of the members by suppressing the formation of cracks until higher levels 

of load. Thus, when the axial compression was four times the shear, flexural cracks at the ends of 

the member did not form until 35% of the failure load, while small flexural-shear cracks developed 

at approximately 60% of failure load. Even at 90% of the failure load, there were relatively few cracks. 

The specimen failed at 680 with the opening of a diagonal crack inclined at approximately 12 

degrees to the vertical. For the specimens loaded with very high ratios of compression-to-shear, no 

significant cracking appeared until just prior to failure, at which vertical splitting cracks appeared 

in the flexural compression zones near the ends of the members. Specimens failed in a very violent 

way with the formation of a new nearly vertical diagonal crack, which perhaps started from the 

existing vertical splitting cracks. 

The specimen loaded at a compression-to-shear ratio of 20, failed at only 52% of the failure shear 

of Specimen with N/V equal to 8. A large amount of shear reinforcement caused the members loaded 

at low compression-to-shear ratios to display a very ductile response, and the specimens at 

intermediate levels of compression-to-shear to show some ductility. This amount of shear 

reinforcement, however, was not sufficient to prevent the very brittle response of elements loaded 

at high levels of compression-to-shear. Increasing the amount of shear reinforcement can 

significantly increase both the strength and ductility of the specimen. Under higher levels of 

compression, however, the beneficial effects of shear reinforcement reduced considerably. 

For the 10 specimens that failed in shear and were loaded with compression-shear ratios of between 

3 and 6, the failure shear was, on average, only 68% of the detailed ACI value. The simple ACI 

expression for Vc was found to give more consistent predictions for shear strength and mode of 

failure. Experimental tests demonstrated that the AASHTO-LRFD method gave the most accurate 

estimates of the failure shear. 
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1.3.2. Article 12 

Authors: Liping Xie, Evan C. Bentz, and Michael P. Collins 

Journal: ACI Structural Journal, 2011 

Title: Influence of Axial Stress on Shear Response of Reinforced Concrete Elements 

Focus of Research 

Many structures contain members subjected to significant axial and shear forces. There is strong 

disagreement between different code provisions concerning the influence of axial stress on shear 

strength. This research clarifies the effect of both axial compression and axial tension on shear 

response. To examine this influence, six nominally identical reinforced concrete panels, 

representing web regions of girders or walls, were loaded under different combinations of shear 

stress and uniaxial compression or tension. This enabled, for the first time, to experimentally 

determine the interaction between the shear strength and longitudinal axial stress of such elements. 

In the paper, the experimentally determined influence of axial stress on shear response was 

compared with the predictions of shear strength expressions given by the ACI, the Canadian and the 

European Code, along with the shear strength and response predictions made by the MCFT.  

The tested specimens were made of reinforced concrete with strengths of approximately 40 MPa, 

with dimensions of 890 x 890 mm square and 73 mm thick, specific amount of reinforcements both 

in longitudinal and transversal direction.  The loads were applied to the specimens in a monotonic 

and proportional manner, meaning that the axial stress, fx, and shear stress, v, both simultaneously 

increased at a fixed ratio, fx/v. The specimens were loaded until they failed by concrete crushing, 

reinforcement rupturing, or sliding on an existing crack. 

 

Figure 1.3.2.1 – Testing machine and comparison of results  
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Obtained Results 

The experimental tests showed that specimens with fx /v ratios of +1.0, 0.0, and –1.0 all failed at 

approximately the same shear stress vu, indicating only a small effect of axial stress, fxu, on shear 

strength. The element with the highest tension, failed by rupture of both the transverse and 

longitudinal reinforcement. The two specimens with higher compression-to-shear ratios, failed by 

sudden crushing of the concrete.  

For the members subjected to pure shear or shear and tension, the peak shear stress occurred at a 

shear strain of approximately 1%, whereas for the compression and shear specimens, the shear 

strains at peak shear stress were smaller. In terms of post-peak response, the most gradual loss of 

resistance was for specimens with fx /v ratios of +1.0, 0.0, and -1.0.  

The longitudinal strain at peak shear stress is only compressive for the most highly compressed 

specimen. For all the others, the strain is tensile with strains increasing as the loading ratio becomes 

more tensile. Only for element with the highest tension, the longitudinal strain in the longitudinal 

reinforcement exceed the yield strain.  

The transverse strain at peak stress considerably exceeded the longitudinal strain and was in excess 

of the yield strain for all specimens, except the highly compressed one, which reached 98% of the 

yield strain. The calculated principal compressive strain 2, compression positive, was highest for 

the members resisting the highest shear stress and considerably smaller than the strain at peak 

stress for the cylinders even for the specimens that failed by diagonal crushing. 

For the two highest compression-to-shear ratios, these load-deformation predictions were 

reasonable, whereas for the other axial load levels, they were excellent.  

The results demonstrated that the application of the basic ACI shear approach could significantly 

overestimate both the beneficial effect of compression, both the disadvantageous effect of tension 

on shear strength. The ACI simple expression for the benefits of compression gave excellent 

predictions, whereas the simple expression for tension was very conservative. The CSA shear 

provisions, based on the modified compression field theory, provided the best code-based estimates 

of the shear strength. The full MCFT provided not only the best estimates of conditions at failure, 

including failure shear stresses and failure crack angles for the full range of axial stresses, but also 

provided predictions of the complete load-deformation response of the elements, although the 

prediction is not as good for higher axial compression levels.  
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1.3.3. Article 13 

Authors: Matthew T. Smith, Daniel A. Howell, Mary Ann T. Triska, and Christopher Higgins 

Journal: ACI Structural Journal, 2014 

Title: Effects of Axial Tension on Shear-Moment Capacity of Full-Scale Reinforced Concrete Girders 

Focus of Research 

Many cast-in-place reinforced concrete deck-girder bridges remain in the national inventory, and 

routine bridge evaluations have conducted to ensure operational performance.  Many of these 

bridges exhibit varying degrees of diagonal-tension cracking in the girders and bent caps. Diagonal-

tension cracks have attributed to the design practice at the time, which overestimated the concrete 

contribution to shear resistance and resulted in poorly detailed flexural reinforcement as well as 

increasing service load magnitudes and volume. Current codes for rating and evaluation of bridges 

permit analysts to neglect axial force effects due to temperature and shrinkage effects when 

calculating load ratings for bridge components with well-distributed reinforcement. The proportions 

and details of many older bridges, however, are unlikely considered well detailed; moreover, this 

definition is not clearly established. To develop new data on the influence of axial load on the shear-

moment behaviour of reinforced concrete girders, experimental tests have performed using seven 

full-scale realistically proportioned girders with straight-bar cut-offs and light shear reinforcement 

to study the role of externally applied axial tension on shear-moment capacity. Specimens were 

loaded to failure, with varying amounts of axial tension applied in combination with vertical load. 

Results showed that axial tension and the presence of flexural cut-offs reduced member stiffness 

and strength. Using these results, different analytical and design methods have compared. 

 

Figure 1.3.3.1 – Tested elements 

Obtained Results 

Based on the experimental observations and analysis results, the following conclusions presented: 

1. Presence of axial tension reduced global member stiffness and its shear-moment capacity; 
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2. Flexural reinforcement cut-offs in the flexural tension region combined with axial tension, 

reduced global member stiffness, but not significantly the shear-moment capacity of the 

specimens beyond that resulting from axial tension alone; 

3. Applied axial tension reduced the magnitude of vertical load required to initiate diagonal  

cracking and more vertically oriented diagonal expected to occur in the field of tension stresses 

combined with live and dead load ones than those produced by live and dead loads alone; 

4. Axial load applied in proportion to and simultaneously with transverse load, further reduced 

the magnitude of the transverse load required to initiate diagonal cracking; 

5. Presence of axial tension tended to reduce specimen capacity below that considering shear and 

flexure alone. This may indicate lower reserve strength for in-place bridge members that have 

shrinkage- and temperature-induced axial tensions than previously considered; 

6. R2K slightly overestimated shear capacity of specimens for axial tension forces of 890 kN, and 

underestimated capacity for the higher tension force level; 

7. AASHTO LRFD (2013) and ACI 318-11 methods underestimated shear capacity for axial tension 

forces at or below 1334 kN; 

8. Nonlinear finite element analyses captured the general behaviour from axial tension loading, 

but given the modelling assumptions considered, it underestimated shear capacity and mid-

span displacement; 

9. Present ACI 318 methods for discounting the concrete contribution to shear strength in the 

presence of axial tension stresses were quite conservative over the range of parameters 

considered; 

10. The inclination of diagonal cracks in the field may be an indicator of the presence of shrinkage- 

or temperature-induced axial stress, or both, in the members with steeper crack angles, 

indicating higher axial tension stress; 

11. For the poorly detailed flexural anchorage in the present study, there was not a significant 

change in the member strength compared with an otherwise similar specimen. 
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2. The Modified Compression Field Theory 

 

2.1. Theoretical Approach 

2.1.1. Introduction 

The theoretical approach of the Modified Compression Filed Theory focuses on the response of 

rectangular reinforced concrete elements subjected to in-plane shear and axial stresses, which 

corresponds to membrane state of stress.  

 

Figure 2.1.1.1 – Membrane element considered in the Modified Compression Field Theory  

It has assumed of uniform thickness, relatively small size, containing an orthogonal grid of steel 

reinforcement with the longitudinal and transverse axes coincident with the directions of the 

reference axes.  

Considered loads consist of uniform axial stresses, 𝑓𝑥 and 𝑓𝑦, and uniform shear stresses, 𝜈𝑥𝑦 . They 

are assumed acting on the edges of the element, which remain straight and parallel also after 

deformation. The two normal strains, 𝜀𝑥 and 𝜀𝑦, and the shear strain, 𝛾𝑥𝑦, describe the deformed 

shape of the membrane element. 

This approach aims to determine how the three in-plane stresses relate to the corresponding in-

plane strain. To solve the problem, the following additional assumptions have made: 

1. For each strain state there exists only one corresponding stress state; the loading history 

cannot influence the problem, situations not respecting this assumption will not be 

considered; 
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2. Stresses and strain appear as average values when taken over areas or distances large enough 

to include several cracks; 

3. The concrete and steel bars are perfectly bounded together at boundaries of the element; 

4. Longitudinal and transversal rebar are distributed uniformly over the element. 

Tensile stresses and strain appears as positive quantities while compressive ones as negative. 

The model bases on equilibrium, compatibility and stress-strain relationship, formulated in terms 

of average stresses and average strain. The cracked concrete is treated as a new material, having its 

own stress-strain relationship, determined by testing thirty reinforced concrete panels under a 

variety of uniform biaxial stresses, including pure shear. 

 

2.1.2. Compatibility Conditions 

Assuming that steel reinforcements are perfectly anchored to the concrete, requires that any 

deformation experienced by the concrete element must be matched by an identical deformation of 

the reinforcements: 

𝜀𝑠𝑥 = 𝜀𝑐𝑥 = 𝜀𝑥 

𝜀𝑠𝑦 = 𝜀𝑐𝑦 = 𝜀𝑦 

 

Figure 2.1.2.1 – Average strains in the concrete and corresponding Mohr’s circle  

Knowing the three strain components, 𝜀𝑥, 𝜀𝑦, and 𝛾𝑥𝑦, the strain in any other direction derives from 

the geometry of Mohr’s circle, which gives the following relationships: 

𝛾𝑥𝑦 =
2(𝜀1 − 𝜀2)

tan 𝜃
 

𝜀𝑥 + 𝜀𝑦 = 𝜀1 + 𝜀2 

𝑡𝑎𝑛2𝜃 =
𝜀𝑥 − 𝜀2
𝜀𝑦 − 𝜀2

=
𝜀1 − 𝜀𝑦
𝜀1 − 𝜀𝑥

=
𝜀1 − 𝜀𝑦
𝜀𝑦 − 𝜀2

=
𝜀𝑥 − 𝜀2
𝜀1 − 𝜀𝑥
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Where 𝜀1 and 𝜀2 are respectively principal tensile and compressive strain. 

 

2.1.3. Equilibrium Conditions 

The forces applied to the reinforced concrete element are resisted by stresses in the concrete and 

stresses in the steel reinforcement. To respect equilibrium conditions, the sum of acting forces has 

to be equal to zero both in x and y directions. 

 

Figure 2.1.3.1 – Free-body diagram of part of the element 

∫ 𝑓𝑥
𝐴

𝑑𝐴 = ∫ 𝑓𝑐𝑥
𝐴𝑐

𝑑𝐴𝑐 + ∫ 𝑓𝑠𝑥
𝐴𝑠

𝑑𝐴𝑠 

Assuming that the small reduction in the concrete cross-section area, due to the presence of steel 

reinforcements, is negligible, the equation turns into the following one. 

𝑓𝑥 = 𝑓𝑐𝑥 + 𝜌𝑠𝑥  𝑓𝑠𝑥 

Similar relationships can derive for the equilibrium of normal stresses in y direction and for shear 

stresses. 

𝑓𝑦 = 𝑓𝑐𝑦 + 𝜌𝑠𝑦 𝑓𝑠𝑦 

𝜈𝑥𝑦 = 𝜈𝑐𝑥 + 𝜌𝑠𝑥  𝜈𝑠𝑥 

𝜈𝑥𝑦 = 𝜈𝑐𝑦 + 𝜌𝑠𝑦 𝜈𝑠𝑦 
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Figure 2.1.3.2 – Average and principal stresses and corresponding Mohr’s circle  

Assuming that shear stresses in the concrete in x direction, 𝜈𝑐𝑥, and those in y direction, 𝜈𝑐𝑦, are 

equal, the stress condition in the concrete is fully defined if 𝑓𝑐𝑥, 𝑓𝑐𝑦 and 𝜈𝑐𝑥𝑦 are known. From the 

geometry of Mohr’s circle, the following useful relationship derive. 

𝑓𝑐𝑥 = 𝑓𝑐1 −
𝜈𝑐𝑥𝑦
tan 𝜃𝑐

 

𝑓𝑐𝑦 = 𝑓𝑐1 − 𝜈𝑐𝑥𝑦 ∗ tan𝜃𝑐 

𝑓𝑐2 = 𝑓𝑐1 − 𝜈𝑐𝑥𝑦  (tan 𝜃𝑐 +
1

tan𝜃𝑐
) 

 

2.1.4. Constitutive Laws 

Constitutive relationships link average stresses to average strains, both for reinforcements and for 

concrete.  

The axial stress in the steel bars is assumed to depend only on the axial strain in the reinforcement. 

It is further assumed that average shear stress resisted by the steel rebar, on the plane normal to 

reinforcement, is null. The bilinear uniaxial stress-strain relationship is adopted. 

𝑓𝑠𝑥 = 𝐸𝑠 ∗ 𝜀𝑥 ≤ 𝑓𝑦𝑥 

𝑓𝑠𝑦 = 𝐸𝑠 ∗ 𝜀𝑦 ≤ 𝑓𝑦𝑦 

𝜈𝑠𝑥 = 𝜈𝑠𝑦 = 0 

 

Figure 2.1.4.1 – Stress-strain relationships for reinforcement 
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Concerning the concrete, the principal stresses axes and principal strain one, assume coincident. 

𝜃𝑐 = 𝜃 

 

2.1.5. Average Stress-Average Strain Response of Concrete 

To obtain average stress-average strain relationship of concrete, an experimental program 

conducted on thirty reinforced concrete elements. In the test, known values of stress applied to the 

reinforced concrete, resulting specimen strains measured. 

From experimental program resulted the directions of principal strain deviates somewhat from the 

directions of principal stresses; however, it is a reasonable simplification to assume they are 

coincident.  

The principal compressive stress in the concrete, 𝑓𝑐2, resulted function of both the principal 

compressive strain, 𝜀2, both the corresponding principal tensile strain, 𝜀1. The relationship suggested 

is the following. 

𝑓𝑐2 = 𝑓𝑐2,𝑚𝑎𝑥  [2 (
𝜀2
𝜀𝑐
′
) − (

𝜀2
𝜀𝑐
′
)
2

] 

Where: 

𝑓𝑐2,𝑚𝑎𝑥
𝑓𝑐
′

=
1

0.8 − 0.34 
𝜀1
𝜀𝑐
′

≤ 1.0 

The term 𝜀𝑐
′  is negative quantity usually set equal to -0.002; thus, increasing 𝜀1, reduces 𝑓𝑐2,𝑚𝑎𝑥 𝑓𝑐

′⁄ . 

The relation between the average principal tensile stresses in the concrete and average principal 

strain is nearly linear prior cracking, then shows decreasing values of 𝑓𝑐1 for increasing values of 𝜀1. 

The relationship suggested before cracking is: 

𝑓𝑐1 = 𝐸𝑐  𝜀1 

After cracking: 

𝑓𝑐1 =
𝑓𝑐𝑟

1 + √200 𝜀1
 

 

 

2.1.6. Transmitting Loads across Cracks 

Formulations mentioned in previous paragraphs, deal with average values of stresses and strain, 

they do not give information about local variations. At crack, tensile stresses in reinforcement are 

higher than average, while midway between cracks, they are lower. On the other hand, concrete 

tensile stresses are null in correspondence of the crack and higher than the average midway between 

cracks. These local variations have to be accounted because ultimate capacity may closely depend 

on the reinforcement ability to transmit tension across cracks.  
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Since external applied stresses 𝑓𝑥, 𝑓𝑦 and 𝜈𝑥𝑦 are fixed, the two sets of stresses shown in the figure 

has to be statically equivalent.  

 

Figure 2.1.6.1 – Comparison between local stresses at crack and average calculated stresses  

Considering unit areas, the requirement that the two sets of stresses produce the same force in x 

and y directions correspond to the following conditions: 

𝜌𝑠𝑥  𝑓𝑠𝑥  sin 𝜃 + 𝑓𝑐1  sin 𝜃 = 𝜌𝑠𝑥  𝑓𝑠𝑥,𝑐𝑟  sin 𝜃 − 𝑓𝑐𝑖  sin 𝜃 − 𝜈𝑐𝑖  cos𝜃 

𝜌𝑠𝑦 𝑓𝑠𝑦  cos𝜃 + 𝑓𝑐1  cos𝜃 = 𝜌𝑠𝑦 𝑓𝑠𝑦,𝑐𝑟  cos 𝜃 − 𝑓𝑐𝑖  cos 𝜃 + 𝜈𝑐𝑖  sin 𝜃 

Simplifying: 

𝜌𝑠𝑥  (𝑓𝑠𝑥,𝑐𝑟 − 𝑓𝑠𝑥) = 𝑓𝑐1 + 𝑓𝑐𝑖 +
𝜈𝑐𝑖
tan 𝜃

 

𝜌𝑠𝑦 (𝑓𝑠𝑦,𝑐𝑟 − 𝑓𝑠𝑦) = 𝑓𝑐1 + 𝑓𝑐𝑖 − 𝜈𝑐𝑖  tan 𝜃 

These two equilibrium equations can be satisfied without shear and compressive stresses at crack, 

only if: 

𝜌𝑠𝑥  (𝑓𝑠𝑥,𝑐𝑟 − 𝑓𝑠𝑥) = 𝜌𝑠𝑦 (𝑓𝑠𝑦,𝑐𝑟 − 𝑓𝑠𝑦) = 𝑓𝑐1 

Where: 

𝑓𝑠𝑥,𝑐𝑟 ≤ 𝑓𝑦𝑥 

𝑓𝑠𝑦,𝑐𝑟 ≤ 𝑓𝑦𝑦 

Therefore, if calculated average stresses in reinforcement is higher than the yielding strength, it is 

not possible to satisfy the equation. 

In such cases, to satisfy equilibrium, shear stresses are required. The relationship between the shear 

across the crack, 𝜈𝑐𝑖, the crack width, 𝑤, and the required compressive stress on the crack, 𝑓𝑐𝑖, was 

experimentally determined through several investigation. Based on Walraven’s work, the following 

relationship derived: 

𝜈𝑐𝑖 = 0.18 𝜈𝑐𝑖,𝑚𝑎𝑥 + 1.64 𝑓𝑐𝑖 − 0.82 
𝑓𝑐𝑖

2

𝜈𝑐𝑖,𝑚𝑎𝑥
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Where: 

𝜈𝑐𝑖,𝑚𝑎𝑥 =
√−𝑓𝑐

′

0.31 + 24
𝑤

𝑎 + 16

 

𝑤 = 𝜀1 𝑠𝜃 

𝑠𝜃 =
1

sin𝜃
𝑠𝑚𝑥

+
cos𝜃
𝑠𝑚𝑦

 

The term, 𝑎, corresponds to the maximum aggregate size expressed in millimetres, 𝑠𝑚𝑥and 𝑠𝑚𝑦are 

the indicators of crack control characteristics of the reinforcement in x and y directions, stresses 

are expressed in MPa. 

 

2.2. Implementation of the MCFT 

The Modified Compression Field Theory was implemented on Excel in order to create the interaction 

domain of axial and shear force. 

 

2.2.1. Problem Definition 

First, the considered problem has to be defined in terms of geometrical and material properties. 

Information required are the following. 

Geometrical properties: 

1. The dimension of the cross section of the element as 𝑏, the base, multiplied by ℎ, the height; 

2. The reinforcement ratios in x and y direction, 𝜌𝑠𝑥 and 𝜌𝑠𝑦, corresponding to: 

𝜌𝑠𝑥 =
𝐴𝑠𝑡𝑖𝑟𝑟
𝐴𝑐𝑜𝑛𝑐

=
𝐴𝑠𝑡𝑖𝑟𝑟
𝑏 ℎ

=
𝑛°𝑡𝑟𝑎𝑛𝑠𝑣,𝑏𝑎𝑟𝑠 ∗ 𝐴𝑏𝑎𝑟

𝑏 ℎ
 

𝜌𝑠𝑥 =
𝐴𝑙𝑜𝑛𝑔
𝐴𝑐𝑜𝑛𝑐

=
𝐴𝑙𝑜𝑛𝑔
𝑏 ℎ

=
𝑛°𝑙𝑜𝑛𝑔,𝑏𝑎𝑟𝑠 ∗ 𝐴𝑏𝑎𝑟

𝑏 ℎ
 

Material properties: 

3. Characteristic and design compressive concrete strength, 𝑓𝑐𝑘 and 𝑓𝑐𝑑 ; 

4. Design tensile concrete strength, 𝑓𝑐𝑡𝑑; 

5. Characteristic and design tensile steel strength, 𝑓𝑦𝑘 and 𝑓𝑦𝑑 ; 

6. Concrete Young’s modulus, 𝐸𝑐; 

7. Steel Young’s modulus, 𝐸𝑠; 

8. Maximum dimension of the aggregate size expressed in millimetres, 𝑎. 
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Set those quantities, it is possible to evaluate the average spacing of cracks perpendicular to the x 

reinforcement, 𝑠𝑚𝑥 , and the average spacing of cracks perpendicular to the y reinforcement, 𝑠𝑚𝑦 , as 

follows: 

𝑠𝑚𝑥 = 1.5 ∗ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑥 − 𝑏𝑎𝑟 

𝑠𝑚𝑦 = 1.5 ∗ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑦 − 𝑏𝑎𝑟 

The crack spacing depends on these two terms: 

𝑠𝜃 =
1

sin𝜃
𝑠𝑚𝑥

+
cos𝜃
𝑠𝑚𝑦

 

The crack width is a function of both the crack spacing and the principal tensile strain: 

𝑤 = 𝜀1 𝑠𝜃 

It is moreover possible to compute the concrete strain at crack: 

𝜀𝑐𝑟 =
𝑓𝑐𝑡𝑑
𝐸𝑐

 

 

2.2.2. Input Data 

Input data required to solve the problem, correspond to the desired stress state on the reinforced 

concrete element, which are 𝜎𝑥, 𝜎𝑦 and 𝜏𝑥𝑦.  

For a fixed state of stress acting on the whole reinforced concrete element, the approach calculates 

strains and stresses both in the concrete and in the steel. 

 

2.2.3. Iterative Procedure 

2.2.3.1. First Iteration 

The first iterations begins defining standard, fixed values of the strain components 𝜀𝑥, 𝜀𝑦 and 𝛾𝑥𝑦. 

They should be all set equal to zero, but the iteration could not start assuming a null strain state. 

This is the reason why, as first guess values, only two of three components are set equal to zero, 𝜀𝑥 

and 𝜀𝑦; the remaining one, 𝛾𝑥𝑦, defines as a very small value, close to zero, which could be 0.00001.  

The procedure also requires the first guess value of principal tensile and compressive stresses,  𝑓1 

and 𝑓2; they are both fixed equal to 0.0001.  

Once established these quantities, is then possible to evaluate the corresponding Mohr’s circle by 

computing the following parameters: 

 



46 
 

1. The radius of the circle: 

𝑅 =

√(𝛾𝑥𝑦)
2 + (𝜀𝑦 − 𝜀𝑥)

2

2
 

2. The centre of the Mohr’s circle: 

𝐶 =
𝜀𝑦 + 𝜀𝑥
2

 

3. Principal tensile strain: 

𝜀1 = 𝐶 + 𝑅 

4. Principal compressive strain: 

𝜀2 = 𝐶 − 𝑅 

5. Angle between the compressive strut and the horizontal direction, expressed in radians: 

𝜃 =

tan−1 (
𝛾𝑥𝑦

𝜀𝑦 − 𝜀𝑥
)

2
 

6. The complementary angle: 

𝜃𝑐𝑜𝑚𝑝 = 𝜋 − 𝜃 

7. The concrete Young’s modulus resulting from the principal tensile state of stress: 

𝐸𝑐1 = 𝐸𝑐           𝑖𝑓   |𝑓2| ≤ 0.001  

𝐸𝑐1 =
𝑓1
𝜀1
          𝑖𝑓   |𝑓2| > 0.001  

8. The concrete Young’s modulus resulting from the principal compressive state of stress: 

𝐸𝑐2 = 𝐸𝑐           𝑖𝑓   |𝑓2| ≤ 0.001  

𝐸𝑐1 =
𝑓2
𝜀1
          𝑖𝑓   |𝑓2| > 0.001  

9. The shear concrete modulus: 

𝐺𝑐 =
𝐸𝑐1 𝐸𝑐2
𝐸𝑐1 + 𝐸𝑐2

 

10. The elasticity modulus of the steel in x direction: 

𝐸𝑠𝑥 = 200                                             𝑖𝑓   𝜀𝑥 = 0.000  

𝐸𝑠𝑥 =
1

𝜀𝑥
(𝑚𝑖𝑛[200 𝜀𝑥; 𝑓𝑦𝑑])          𝑖𝑓    𝜀𝑥 ≠ 0.000  

11. The elasticity modulus of the steel in y direction: 

𝐸𝑠𝑦 = 200                                            𝑖𝑓   𝜀𝑦 = 0.000 

𝐸𝑠𝑦 =
1

𝜀𝑦
(𝑚𝑖𝑛[200 𝜀𝑦; 𝑓𝑦𝑑 ])          𝑖𝑓   𝜀𝑦 ≠ 0.000  

12. The concrete matrix in principal direction: 

𝐷𝑐 = [
𝐸𝑐2 0 0
0 𝐸𝑐1 0
0 0 𝐺𝑐

] 
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13. The steel matrix: 

𝐷𝑠 = [
𝐸𝑠𝑥  𝜌𝑠𝑥 0 0
0 𝐸𝑠𝑦 𝜌𝑠𝑦 0

0 0 0

] 

14. The transformation matrix: 

𝑇 = [

cos𝜃2 sin𝜃2 (cos 𝜃 ∗ sin 𝜃)

sin𝜃2 cos𝜃2 (− cos 𝜃 ∗ sin 𝜃)

(−2 cos 𝜃 sin 𝜃) (2 cos𝜃 sin 𝜃) (cos𝜃2 − sin𝜃2)

] 

15. The load vector: 

𝑙 = [

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦
] 

16. The full stiffness matrix: 

𝐾𝑡𝑜𝑡 = (𝑇
𝑇  𝐷𝑐 𝑇) + 𝐷𝑠 

17. Since the product of the total stiffness matrix and the strain vector is equal to the load 

vector, the strain components can be determined as the product of the inverse full stiffness 

matrix and the load vector, which are known: 

[

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
] = (𝐾𝑡𝑜𝑡)

−1 ∗ 𝑙 

Knowing the new vector of strain components, the new Mohr’s circle derives. 

18. Evaluate the radius, 𝑅𝑖𝑛𝑡𝑒𝑟𝑚, and the centre, 𝐶𝑖𝑛𝑡𝑒𝑟𝑚, of the new Mohr’s circle, the principal 

tensile strain, 𝜀1
𝑖𝑛𝑡𝑒𝑟𝑚, and compressive strain, 𝜀2

𝑖𝑛𝑡𝑒𝑟𝑚, and the angle of the compressive 

strut, 𝜃𝑖𝑛𝑡𝑒𝑟𝑚, using same formulae of steps from 1 to 5. 

From the new Mohr’s circle is possible to derive state of stress of both the steel and the concrete. 

19. Estimate the state of stress in reinforcement in x direction, both in the elastic case and 

beyond the yield limit: 

𝜎𝑠𝑥 = 200 𝜀𝑥                   𝑖𝑓 𝜎𝑠𝑥 ≤ 𝑓𝑦𝑑  

𝜎𝑠𝑥 = 𝑓𝑦𝑑                         𝑖𝑓 𝜎𝑠𝑥 > 𝑓𝑦𝑑 

20. Calculate the state of stress in reinforcement in y direction, both in the elastic case and 

beyond the yield limit: 

𝜎𝑠𝑦 = 200 𝜀𝑦                   𝑖𝑓 𝜎𝑠𝑦 ≤ 𝑓𝑦𝑑 

𝜎𝑠𝑦 = 𝑓𝑦𝑑                         𝑖𝑓 𝜎𝑠𝑦 > 𝑓𝑦𝑑 

21. Evaluate the maximum principal compressive stress: 

𝑓𝑐2,𝑚𝑎𝑥 =
𝑓𝑐𝑑

0.8 − 0.34
𝜀1𝑖𝑛𝑡𝑒𝑟𝑚

𝜀𝑐
′

=
𝑓𝑐𝑑

0.8 − 0.17 𝜀1
𝑖𝑛𝑡𝑒𝑟𝑚

≤ 𝑓𝑐𝑑 
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Hence, if the maximum principal compressive stress, 𝑓𝑐2,𝑚𝑎𝑥, is higher than the compressive 

strength of the concrete, 𝑓𝑐𝑑 , the maximum principal compressive stress has to be set equal 

to 𝑓𝑐𝑑 . 

22. Compute the principal compressive stress in the concrete: 

𝑓𝑐2 = 𝑓𝑐2,𝑚𝑎𝑥  [2 (
𝜀2
𝑖𝑛𝑡𝑒𝑟𝑚

𝜀𝑐
′

)+ (
𝜀2
𝑖𝑛𝑡𝑒𝑟𝑚

𝜀𝑐
′

)

2

] 

23. Calculate the principal tensile stress in the concrete: 

𝑓𝑐1
𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 = 𝜀1

𝑖𝑛𝑡𝑒𝑟𝑚  𝐸𝑐                                                                         𝑖𝑓  𝜀1
𝑖𝑛𝑡𝑒𝑟𝑚 ≤ 𝜀𝑐𝑟  

𝑓𝑐1
𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 =

𝑓𝑐𝑟

1 +√200 𝜀1𝑖𝑛𝑡𝑒𝑟𝑚
=

𝑓𝑐𝑡𝑑

1 +√0.5 𝜀1𝑖𝑛𝑡𝑒𝑟𝑚
                  𝑖𝑓  𝜀1

𝑖𝑛𝑡𝑒𝑟𝑚 > 𝜀𝑐𝑟   

24. The value of the principal tensile stress has to be limited by means of several crack checks. 

In correspondence of the cracking of concrete, reinforcement in both x and y directions 

generate additional reserve capacities, which can be determined by means of the following 

relationship: 

𝑓𝑟𝑒𝑠𝑒𝑟𝑣𝑒
𝑥−𝑠𝑡𝑒𝑒𝑙 = 𝜌𝑠𝑥(𝑓𝑦𝑑 − 𝜎𝑠𝑥) 

𝑓𝑟𝑒𝑠𝑒𝑟𝑣𝑒
𝑦−𝑠𝑡𝑒𝑒𝑙

= 𝜌𝑠𝑦(𝑓𝑦𝑑 − 𝜎𝑠𝑦) 

The first crack check correspond to the biaxial yielding: 

𝑓𝑐ℎ𝑒𝑐𝑘
1 = 𝑓𝑟𝑒𝑠𝑒𝑟𝑣𝑒

𝑥−𝑠𝑡𝑒𝑒𝑙  sin 𝜃𝑖𝑛𝑡𝑒𝑟𝑚2 + 𝑓𝑟𝑒𝑠𝑒𝑟𝑣𝑒
𝑦−𝑠𝑡𝑒𝑒𝑙

 cos𝜃𝑖𝑛𝑡𝑒𝑟𝑚2 

In order to make the remaining check, the following quantities need to be computed: 

𝑓𝑐ℎ𝑒𝑐𝑘
2𝑎 =

|𝑓𝑟𝑒𝑠𝑒𝑟𝑣𝑒
𝑥−𝑠𝑡𝑒𝑒𝑙 − 𝑓𝑟𝑒𝑠𝑒𝑟𝑣𝑒

𝑦−𝑠𝑡𝑒𝑒𝑙|

tan 𝜃𝑖𝑛𝑡𝑒𝑟𝑚 +
1

tan𝜃𝑖𝑛𝑡𝑒𝑟𝑚

 

𝜈𝑐𝑖,𝑚𝑎𝑥 =
√𝑓𝑐𝑑

0.31+ 24
𝑤

𝑎 + 16

 

𝑓𝑐ℎ𝑒𝑐𝑘
2𝑏 = 𝑓𝑟𝑒𝑠𝑒𝑟𝑣𝑒

𝑥−𝑠𝑡𝑒𝑒𝑙 +
𝑚𝑖𝑛[𝜈𝑐𝑖,𝑚𝑎𝑥 ; 𝑓𝑐ℎ𝑒𝑐𝑘

2𝑎 ]

tan 𝜃𝑖𝑛𝑡𝑒𝑟𝑚
 

𝑓𝑐ℎ𝑒𝑐𝑘
2𝑐 = 𝑓𝑟𝑒𝑠𝑒𝑟𝑣𝑒

𝑦−𝑠𝑡𝑒𝑒𝑙
+𝑚𝑖𝑛[𝜈𝑐𝑖,𝑚𝑎𝑥 ; 𝑓𝑐ℎ𝑒𝑐𝑘

2𝑎 ] tan𝜃𝑖𝑛𝑡𝑒𝑟𝑚 

The final value of the principal tensile stress defines as the minimum between the calculated 

value, 𝑓𝑐1
𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑  , 𝑓𝑐ℎ𝑒𝑐𝑘

1  , 𝑓𝑐ℎ𝑒𝑐𝑘
2𝑏  and 𝑓𝑐ℎ𝑒𝑐𝑘

2𝑐 : 

𝑓𝑐1 = 𝑚𝑖𝑛[𝑓𝑐1
𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 ; 𝑓𝑐ℎ𝑒𝑐𝑘

1 ; 𝑓𝑐ℎ𝑒𝑐𝑘
2𝑏 ; 𝑓𝑐ℎ𝑒𝑐𝑘

2𝑐 ] 

All parameters necessary to compute the new Mohr’s circle and, consequently, the new stress in x 

and y directions and shear stress, are defined. The following equations conclude the first iteration. 

25. The new Mohr’s circle defines through its radius and its centre: 
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𝑅 =
𝑓𝑐1 − 𝑓𝑐2

2
 

𝐶 =
𝑓𝑐1 + 𝑓𝑐2

2
 

26. The new state of stress in the concrete follows: 

𝜎𝑥
1𝑠𝑡 𝑖𝑡𝑒𝑟. = 𝐶 − 𝑅 cos(2𝜃) + 𝜌𝑠𝑥𝜎𝑠𝑥 

𝜎𝑦
1𝑠𝑡 𝑖𝑡𝑒𝑟. = 𝐶 + 𝑅 cos(2𝜃) + 𝜌𝑠𝑦𝜎𝑠𝑦 

𝜏𝑥𝑦
1𝑠𝑡 𝑖𝑡𝑒𝑟. = 𝑅 sin(2𝜃) 

 

2.2.3.2. Following Iterations 

The iterations that follow the first one proceed through the same steps listed in the previous 

paragraph. What changes are initial strain components and the initial values for principal tensile 

and compressive stresses: in the first iteration were assumed the strain state approximately null 

and both the tensile and compressive principal stress equal to 0.0001. The following iterations begin 

using the state of strain and principal stresses, equal to the final values of the previous iteration. 

The procedure terminates when the state of stress computed by means of the MFCT, in terms 

of 𝜎𝑥
𝑛−𝑡ℎ 𝑖𝑡𝑒𝑟., 𝜎𝑦

𝑛−𝑡ℎ 𝑖𝑡𝑒𝑟., 𝜏𝑥𝑦
𝑛−𝑡ℎ 𝑖𝑡𝑒𝑟., converges to the desired state of stress, defined at the beginning 

of the procedure as input datum.  

 

To conclude, the Modified Compression Field Theory is an iterative procedure, which evaluates the 

strain state and the state of stress in both the steel reinforcements both in the concrete of a 

reinforced concrete cross-section, for a desired applied stress, 𝜎𝑥, 𝜎𝑦 and 𝜏𝑥𝑦. 

 

2.3. N.T Interaction Domain based on MFCT 

The Modified Compression Field Theory was used to build up the axial force-shear force interaction 

domain. 

The interaction domain was built defining, by means of a trial and error approach, those state of 

stress which produce a principal tensile stress, 𝑓1, equal to the tensile strength of concrete, 𝑓𝑐𝑡𝑑. 

Since this study mainly focuses on reinforced concrete columns, the states of stress considered  are 

characterised by one of the two normal stresses equal to zero; thus, to build the interaction domain 

of a generic column, the input datum concerning the stress in x direction, 𝜎𝑥, is always null. 

Let us consider a specific value of the desired normal stress in y direction: 



50 
 

𝜎𝑦 = 1 

To construct the N-T interaction domain, the desired tangential stress has to be changed, through a 

trial and error approach, since the resulting principal tensile stress equals the tensile strength of 

the concrete, 𝑓𝑐𝑡𝑑. 

Using the Excel spreadsheet, one of the couple (𝜎𝑦 , 𝜏𝑥𝑦), which generates the tensile strength of 

concrete as principal tensile stress is the following: 

𝜎𝑦
(𝑖) = 1  𝑀𝑃𝑎 

𝜏𝑥𝑦
(𝑖) = 0.0701  𝑀𝑃𝑎 

Once defined the state of stress corresponding to the development of cracks, is then possible to 

determine the corresponding axial force, 𝑁, and shear stress, 𝑇, which correspond to one point of 

the interaction domain, by integrating over the cross-section area the two stresses. 

Considering rectangular cross sections, the corresponding axial force is: 

𝑁(𝑖) = 𝜎𝑦
(𝑖) ∗ 𝐴𝑐𝑙𝑠 = 𝜎𝑦

(𝑖) ∗ (𝑏ℎ) 

Concerning the shear force, the Jourawsky’s relationship is used, hence: 

𝑇(𝑖) =
𝜏𝑥𝑦

(𝑖) 𝐼 𝑏

𝑆
 

Where, 𝐼 is the moment of inertia, 𝑏 corresponds to the width and 𝑆 represents the static moment of 

the cross section. 

In case of rectangular cross-section element, the equation simplifies: 

𝑇(𝑖) =
2

3
𝜏𝑥𝑦

(𝑖) 𝑏 ℎ 

The point whose coordinates are 𝑁(𝑖) and 𝑇(𝑖), belongs to the outer limit of the interaction domain 

for the considered column.  

To draw the entire domain this procedure has to be repeated for several values of 𝜎𝑦
(𝑖).Therefore, 

for 𝜎𝑦
(𝑖) varying from +𝑓𝑐𝑡𝑑 to −𝑓𝑐𝑑, at step interval equal to 1, the corresponding 𝜏𝑥𝑦

(𝑖), generating a 

principal tensile stress equal to the tensile strength of the considered concrete, were evaluated. 

For each couple (𝜎𝑦
(𝑖), 𝜏𝑥𝑦

(𝑖)), the corresponding (𝑁(𝑖), 𝑇(𝑖)), was estimated. 

Thus, the axial force-shear force domain was defined. 
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3. Mohr’s Theory to Construct the Interaction 

Domains 

 

3.1. Construction of N-T Domain 

Interaction domains have created basing on the Mohr’s theory. 

The objective was to identification of those states of stress, in terms of normal and tangential 

stresses, generating a principal tensile stress equal to the design tensile strength of the considered 

concrete. To this purpose, a relationship has defined: for different values of tangential stresses, the 

equation gives the corresponding normal one such that the principal tensile stress equals the tensile 

strength of the concrete. 

In order to determine this equation, a generic Mohr’s circle was considered. Given that this research 

focuses on columns, the considered stress states are characterised by one normal stress equal to 

zero, the one in the direction perpendicular to the axis of the column. This involves that the generic 

state of stress on the Mohr’s plane is always identified by a couple of points, whose, one of them, 

lays on the vertical axis.  

 

Figure 3.1.1 – Generic state of stress considered 
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The equation has to impose the principal tensile stress, 𝜎1, coincident with the tensile strength of 

concrete, 𝑓𝑐𝑡𝑑 ; it also has to be expressed as a function of the stress state acting on the element, 𝜎𝑥 

and 𝜏𝑥𝑦. This concept can be obtained by observing that the radius of the circle can be defined as a 

function of the acting stress state, 𝜎𝑥 and 𝜏𝑥𝑦, but also depending only on 𝜎𝑥 and 𝜎1. 

 

Figure 3.1.2 – Geometrical evidences 

The equation at the base of the construction of the interaction diagram using the Mohr’s theory was 

obtained as follows: 

{
 
 

 
 
𝑅 = √𝜏𝑥𝑦

2 + (
𝜎𝑥
2
)
2

𝑅 = 𝜎1 −
|𝜎𝑥|

2

 

Equating the two formulation of the radius: 

√𝜏𝑥𝑦
2 + (

𝜎𝑥
2
)
2

= 𝜎1 −
|𝜎𝑥|

2
 

𝜏𝑥𝑦
2 +

𝜎𝑥
2

4
= (𝜎1 −

|𝜎𝑥|

2
)

2

 

𝜏𝑥𝑦
2 +

𝜎𝑥
2

4
= 𝜎1

2 − 2 
|𝜎𝑥|

2
 𝜎1 +

𝜎𝑥
2

4
 

𝜏𝑥𝑦
2 +

𝜎𝑥
2

4
−
𝜎𝑥

2

4
+ |𝜎𝑥| 𝜎1 − 𝜎1

2 = 0 

𝜏𝑥𝑦
2 + |𝜎𝑥| 𝜎1 − 𝜎1

2 = 0 

|𝜎𝑥| 𝜎1 = 𝜏𝑥𝑦
2 + 𝜎1

2 

|𝜎𝑥| =
𝜎1

2 − 𝜏𝑥𝑦
2

𝜎1
 

|𝜎𝑥| = 𝜎1 −
𝜏𝑥𝑦

2

𝜎1
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As previously mentioned, the states of stress belonging to the limit surface of the N-T domain are 

those producing a principal tensile stress, 𝜎1, equal to the tensile strength of the concrete, 𝑓𝑐𝑡𝑑. 

Hence, in the equation, 𝑓𝑐𝑡𝑑 has to replace 𝜎1. 

The equation at the base of the construction of the N-T domain is the following: 

|𝜎𝑥| = 𝑓𝑐𝑡𝑑 −
𝜏𝑥𝑦

2

𝑓𝑐𝑡𝑑
 

It can be also: 

𝜏𝑥𝑦 = √𝑓𝑐𝑡𝑑
2 − |𝜎𝑥|𝑓𝑐𝑡𝑑 

 

Varying 𝜏𝑥𝑦, the relationship returns the corresponding value of 𝜎𝑥 such that, stress states defined 

by the couple (𝜎𝑥 , 𝜏𝑥𝑦) generate 𝜎1 equal to 𝑓𝑐𝑡𝑑. 

The set of couples (𝜎𝑥
(𝑖), 𝜏𝑥𝑦

(𝑖)) defines the interaction domain in terms of stresses, not forces. 

To obtain the N-T diagram, stresses need to be integrated on the cross section area of the element 

considered. For what concerns the axial force the integration consists in multiplying the normal 

stress by the cross section area of the column. For rectangular elements: 

𝑁(𝑖) = 𝜎𝑥
(𝑖) ∗ 𝐴𝑐𝑙𝑠 = 𝜎𝑥

(𝑖) ∗ (𝑏ℎ) 

Concerning the shear force, Jourawsky’s formulae was employed to move from stresses to forces. 

The relationship between tangential stresses and shear force given by Jourawsky is the following: 

𝜏𝑥𝑦 =
𝑇 𝑆

𝐼 𝑏
 

Where: 

- 𝑇 is the shear force related to tangential stress 𝜏𝑥𝑦 ; 

- 𝑆 corresponds to the static moment of the cross section; 

- 𝐼 represents the moment of inertia of the element; 

- 𝑏 is the base of the cross section. 

Jourawsky’s equation solved for 𝑇: 

𝑇 =
𝜏𝑥𝑦 𝐼 𝑏

𝑆
 

Considering a rectangular cross section element the formulae simplifies: 

𝑇 =
𝜏𝑥𝑦 𝑏 ℎ

3

6 (
ℎ2

4 − 𝑦
2)

 

With: 

- ℎ is the height of the cross section; 
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- 𝑦 corresponds to the y-coordinate of the fiber considered with respect to the centroid. 

Considering the fiber in correspondence of the centroid where tangential stresses reach the 

maximum value, the equation simplifies further: 

𝑇 =
2

3
 𝜏𝑥𝑦 𝑏 ℎ 

Thus, to pass from the generic tangential stress, 𝜏𝑥𝑦
(𝑖), to the shear force, 𝑇(𝑖), the formulation 

employed is the following one: 

𝑇(𝑖) =
2

3
 𝜏𝑥𝑦

(𝑖) 𝑏 ℎ 

The set of couples (𝑁(𝑖) , 𝑇(𝑖)) defines the axial force-shear force interaction domain. 

 

3.1.1. Matlab Implementation 

The procedure explained in the previous paragraph, aimed at constructing the interaction domain 

of axial and shear forces, was implemented on the software Matlab. 

 

3.1.1.1. Problem Definition 

The first step consists in the definition of the considered problem, which means geometrical 

properties and material ones. Information required are the ones that follow. 

Geometrical properties: 

- 𝑏, the base of the cross section of the structural element considered; 

- ℎ is the height of the cross section; 

- 𝑐, the clear cover of steel reinforcement; 

Properties of the material: 

- 𝑓𝑐𝑑 corresponds to the design compressive strength of the concrete; 

- 𝑓𝑐𝑡𝑑 is the design tensile strength of the concrete. 

Once established those parameters, it is possible to compute some relevant quantities depending 

on them. 

The maximum tensile and compressive axial force directly depend on the cross section area and 

design strength of the concrete: 

𝑁𝑐,𝑚𝑎𝑥 = 𝑓𝑐𝑑  𝑏 ℎ 

𝑁𝑡,𝑚𝑎𝑥 = 𝑓𝑐𝑡𝑑  𝑏 ℎ 

Those two terms define the boundaries of the interaction domain. 
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Boundaries has to be imposed also on tangential stresses: the maximum value for 𝜏𝑥𝑦 is the one 

corresponding to the highest compressive normal stress, 𝜎𝑥 = 𝑓𝑐𝑑. It derives from the equation 

mentioned in the previous paragraph: 

𝜏𝑥𝑦,𝑚𝑎𝑥 = √𝑓𝑐𝑡𝑑
2 − |𝑓𝑐𝑡𝑑|𝑓𝑐𝑡𝑑 

The minimum value of tangential stress correspond to 𝜏𝑥𝑦,𝑚𝑖𝑛 = −𝜏𝑥𝑦,𝑚𝑎𝑥. 

 

3.1.1.2. Formulae Implementation 

As previously explained, the equation that correlates normal to tangential stresses, producing 

principal tensile stress equal to the tensile strength of concrete, is the following: 

|𝜎𝑥| = 𝑓𝑐𝑡𝑑 −
𝜏𝑥𝑦

2

𝑓𝑐𝑡𝑑
 

To construct of the N-T domain, 𝜏𝑥𝑦 has to vary from 𝜏𝑥𝑦,𝑚𝑖𝑛 to 𝜏𝑥𝑦,𝑚𝑎𝑥 ; for each value of 𝜏𝑥𝑦, the code 

has to evaluate the corresponding 𝜎𝑥, by means of the equation just mentioned. 

This can be obtained through a for-cycle with 𝜏𝑥𝑦 changing from its minimum value to its maximum 

one. Since Matlab-for-cycles work only with positive and integer values, in the script, 𝜏𝑥𝑦 varies 

from 0 to 𝜏𝑥𝑦,𝑚𝑎𝑥, then the domain is reflected with respect to the x-axis. 

To translate the interaction domain in terms of stresses to the one in terms of forces, the following 

formula implemented: 

𝑁 = 𝜎𝑥  𝑏 ℎ 

𝑇 =
2

3
 𝜏𝑥𝑦 𝑏 ℎ 

Two additional points added to close the domain corresponding to (𝑁𝑐,𝑚𝑎𝑥 , 0) for the portion of 

domain resulting from positive values of 𝑇(𝑖), (𝑁𝑐,𝑚𝑎𝑥 , 0) for the portion of domain resulting from 

negative values of 𝑇(𝑖). 

At the end, the plot of the vector 𝑁, for normal forces, as a function of vector 𝑇, shear forces. 

The script also plots a point whose coordinates corresponds to the axial force and the shear force 

acting on the considered column: if the point falls inside the domain, the element is verified, 

otherwise is not. 
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Figure 3.1.1.2.1 – Generic N-T interaction domain using Matlab 

 

3.1.2. Construction of the N-T domain for a Real Column 

The construction of N-T domain applied to real cases. One of them, a column in the Policlinic of 

Modena, which showed a noticeable crack at the top of the element, inclined of 45° to the horizontal, 

typical of shear failures. 

The column was characterised by the following geometrical and material properties. 

Geometrical properties: 

- 𝑏 equal to 300 mm; 

- ℎ equal to 300 mm; 

Material properties: 

- 𝑓𝑐𝑑, from laboratory tests, 9.4 
𝑁

𝑚𝑚2; 

- 𝑓𝑐𝑡𝑑, assumed 
1

10
 the compressive strength of the concrete, therefore 0.94 

𝑁

𝑚𝑚2; 

For tangential stress, 𝜏𝑥𝑦, varying from the maximum value, 𝜏𝑚𝑖𝑛 = 0.00 
𝑁

𝑚𝑚2, to the maximum value, 

corresponding to 𝜎𝑐,𝑚𝑎𝑥 = −9.4 
𝑁

𝑚𝑚2, at step interval of 0.2, normal stresses were evaluated through 

the formula: 

|𝜎𝑥| = 𝑓𝑐𝑡𝑑 −
𝜏𝑥𝑦

2

𝑓𝑐𝑡𝑑
 

Knowing the couples (𝜎𝑥
(𝑖), 𝜏𝑥𝑦

(𝑖)), producing principal tensile stresses equal to 0.9437
𝑁

𝑚𝑚2, to move 

to shear and axial forces the formulae employed: 

𝑁(𝑖) = 𝜎𝑥
(𝑖) ∗ (𝑏ℎ) 
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𝑇(𝑖) =
2

3
 𝜏𝑥𝑦

(𝑖) 𝑏 ℎ 

Numerical results  listed in the following table. 

𝜏𝑥𝑦
(𝑖) [𝑵 𝒎𝒎𝟐⁄ ] 𝜎𝑥

(𝑖) [𝑵 𝒎𝒎𝟐⁄ ] 𝑻(𝒊) [𝑵] 𝑁(𝑖) [𝑵] 

± 0.0 

± 0.5 

± 1.0 

± 1.5 

± 2.0 

± 2.5 

± 3.0 

± 3.2 

0.940 

0.674 

-0.124 

-1.454 

-3.315 

-6.000 

-8.634 

-9.400 

± 0 

± 30000 

± 60000 

± 90000 

± 120000 

± 150000 

± 180000 

± 181683 

84600 

60660 

-11145 

-130860 

-298379 

-540000 

-777102 

-849330 

Table 2.2.1 – Axial and shear force values for the construction of the N -T domain 

Plotting those values on a diagram having axial force on the x-axis and shear force on the y-axis, the 

result is the N-T interaction domain for the considered column. 

 

Figure 3.1.2.1 – N-T interaction domain for the column of the Policlinic of Modena  

The figure above shows the interaction domain for the column of the Policlinic of Modena. The red 

asterisk corresponds to the acting forces on the considered column; as it can be observed from the 

image, it falls inside the domain. This means that, also considering the interaction between the axial 

force and shear force, the column results verified for the solicitation acting on it. 
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3.2. Construction of N-T-M Domain 

Once considered the interaction between the axial force and the shear, the further step consists in 

detecting the interaction between axial force, shear and bending moment. 

The presence of the bending moment has considered through two simplification. 

The first one models the acting bending moment as two concentrated forces, applied on the cross 

section at a distance equal to a half of the base of the element, one of them producing traction, the 

other producing compression. This correspond to a constant tensile stress on a half of the cross 

section, followed by a constant tensile stress on the remaining half cross section, having same 

magnitude equal to the acting moment divided by the distance between the application points. 

The second simplification founds on Navier’s formula for state of stresses corresponding to the 

simultaneous action of axial force and bending moment, and Jourawsky’s formulation for shear 

tangential stresses. 

 

3.2.1. Stress-Block distribution of Normal Stresses due to Bending 

The strongest simplification models the bending moment as two concentrated forces: one producing 

traction and the other one compression. They apply at a half cross-section of the element; the 

application points lays on the centroid of the two half cross-sections, which means that the distance 

of the concentrated forces results: 

𝑑 = 2 
ℎ

4
=
ℎ

2
 

The two concentrated forces, applied at a distance 𝑑, one producing traction and the other 

compression, are characterised by the same magnitude defined as follows: 

𝐹𝑇
𝑀𝑎𝑐𝑡 = 𝐹𝐶

𝑀𝑎𝑐𝑡 =
𝑀

𝑑
=
𝑀

ℎ
2

=
2 𝑀

ℎ
 

This first modelling considers the generic column subjected to a certain external axial force, a 

specific external shear, a half of the cross section subjected to an additional traction force equal 

to 𝐹𝑇
𝑀𝑎𝑐𝑡and the other half submitted to a compression force, 𝐹𝐶

𝑀𝑎𝑐𝑡. 
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Figure 3.2.1.1 – Stress-block distribution of normal stresses due to bending 

The two half cross-sections are separately considered.  

 

3.2.1.1. Half Cross-Section Subjected to Traction Force related to the Moment 

The element considered in the paragraph is the one in the figure below. 

 

Figure 3.2.1.1.1 – Half cross-section under the traction force related to the bending moment  

The half cross section is subjected to an external shear force, 𝑇, an applied axial force, 𝑁, and the 

traction force due to the bending moment, 𝐹𝑇
𝑀𝑎𝑐𝑡. 
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Considering an infinitesimal portion of the element at the centroid of the half cross section, it is 

subjected to tangential stresses, 𝜏𝑥𝑦, produced by 𝑇, normal stresses, 𝜎𝑥, related to the difference 

between 𝐹𝑇
𝑀𝑎𝑐𝑡 and 𝑁. 

 

Figure 3.2.1.1.2 – Infinitesimal element subjected to stresses due to  𝑁,  𝑇 and 𝐹𝑇
𝑀𝑎𝑐𝑡 

Thus, the infinitesimal element results subjected to following solicitations: 

- On the horizontal face of the infinitesimal element: 

- Normal stresses defined as: 

𝜎𝑦
𝑁 =

𝑁

𝐴
 

𝜎𝑦
𝑀 =

𝐹𝑇
𝑀𝑎𝑐𝑡

𝐴
 

𝜎𝑦 = −𝜎𝑦
𝑁 + 𝜎𝑦

𝑀 = −
𝑁

𝐴
+
𝐹𝑇
𝑀𝑎𝑐𝑡

𝐴
 

- Tangential stresses defined as, 𝜏𝑥𝑦. 

- On the vertical surface of the infinitesimal element: 

- Only tangential stress, 𝜏𝑥𝑦 . 

As already explained in previous paragraphs, since elements considered are columns, subjected to 

no axial force in the direction perpendicular to the axis of the column, the corresponding stress 

states are characterised by one normal stress equal to zero. This involves that the generic state of 

stress on the Mohr’s plane is always identified by a couple of points, whose, one of them, lays on 

the vertical axis. 

Therefore, the point representing the vertical surface defines through the coordinates (0,−𝜏𝑥𝑦), 

while the point standing for the horizontal edge corresponds to ((𝜎𝑦
𝑁 + 𝜎𝑦

𝑀), 𝜏𝑥𝑦). Since 𝜎𝑦
𝑁 and 𝜎𝑦

𝑀 

have opposite signs, 𝜎𝑦
𝑁 is negative and 𝜎𝑦

𝑀 positive, the presence of the bending moment, compared 

with the condition of only axial and shear force acting, produces a translation of the point standing 

for the horizontal surface towards traction normal stresses. This corresponds to a rotation of the 

Mohr’s circle towards positive normal stresses. 
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To conclude, the presence of the traction force related to the bending moment increases the 

principal tensile stress. This results in a translation of the N-T interaction domain towards the left 

portion of the diagram.  

As for the construction of the axial force-shear force interaction diagram, to define the basic 

equation, it has to impose the principal tensile stress, 𝜎1, equal to the tensile strength of 

concrete, 𝑓𝑐𝑡𝑑 ; it has to be expressed as a function of the stress state acting on the element, 𝜎𝑥 and 𝜏𝑥𝑦. 

This concept can be obtained by equating two different expression of the radius of the Mohr’s circle. 

 

Figure 3.2.1.1.3 – Geometrical evidences to get the equation of the failure criterion  

{
 
 

 
 
𝑅 = √𝜏𝑥𝑦

2 + (
𝜎𝑦
𝑀 − 𝜎𝑦

𝑁

2
)

2

𝑅 = 𝜎1 −
|𝜎𝑦

𝑀 − 𝜎𝑦
𝑁|

2

 

Equating the two formulation of the radius: 

√𝜏𝑥𝑦
2 + (

𝜎𝑦
𝑀 − 𝜎𝑦

𝑁

2
)

2

= 𝜎1 −
|𝜎𝑦

𝑀 − 𝜎𝑦
𝑁|

2
 

𝜏𝑥𝑦
2 +

(𝜎𝑦
𝑀 − 𝜎𝑦

𝑁)
2

4
= (𝜎1 −

|𝜎𝑦
𝑀 − 𝜎𝑦

𝑁|

2
)

2

 

𝜏𝑥𝑦
2 +

(𝜎𝑦
𝑀 − 𝜎𝑦

𝑁)
2

4
=
(𝜎𝑦

𝑀 − 𝜎𝑦
𝑁)

2

4
− 2 

𝜎𝑦
𝑀 − 𝜎𝑦

𝑁

2
 𝜎1 + 𝜎1

2 

𝜏𝑥𝑦
2 +

(𝜎𝑦
𝑀 − 𝜎𝑦

𝑁)
2

4
−
(𝜎𝑦

𝑀 − 𝜎𝑦
𝑁)

2

4
+ (𝜎𝑦

𝑀 − 𝜎𝑦
𝑁)𝜎1 − 𝜎1

2 = 0 

𝜏𝑥𝑦
2 + (𝜎𝑦

𝑀 − 𝜎𝑦
𝑁) 𝜎1 − 𝜎1

2 = 0 

(𝜎𝑦
𝑀 − 𝜎𝑦

𝑁) 𝜎1 = 𝜎1
2 − 𝜏𝑥𝑦

2 

(𝜎𝑦
𝑀 − 𝜎𝑦

𝑁) =
𝜎1

2 − 𝜏𝑥𝑦
2

𝜎1
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𝜎𝑦
𝑁 =

𝜏𝑥𝑦
2

𝜎1
− 𝜎1 + 𝜎𝑦

𝑀 

As previously mentioned, the states of stress belonging to the limit surface of the N-T domain are 

those producing a principal tensile stress, 𝜎1, equal to the tensile strength of the concrete, 𝑓𝑐𝑡𝑑. 

Hence, in the equation, 𝑓𝑐𝑡𝑑 has to replace 𝜎1. 

The equation at the base of the construction of the N-T domain is the following: 

𝜎𝑦
𝑁 =

𝜏𝑥𝑦
2

𝑓𝑐𝑡𝑑
− 𝑓𝑐𝑡𝑑 + 𝜎𝑦

𝑀 

It can be also: 

𝜏𝑥𝑦 = √(𝜎𝑦
𝑀 − 𝜎𝑦

𝑁)𝑓𝑐𝑡𝑑 + 𝑓𝑐𝑡𝑑
2 

 

For a given value of 𝜎𝑦
𝑀, depending on the acting bending moment, varying 𝜏𝑥𝑦, the relationship gives 

the corresponding value of 𝜎𝑦
𝑁 such that, stress states defined by the couple (𝜎𝑦

𝑁 , 𝜏𝑥𝑦) generate 𝜎1 

equal to 𝑓𝑐𝑡𝑑. 

Also in this case, the set of couples (𝜎𝑥
(𝑖), 𝜏𝑥𝑦

(𝑖)) defines the interaction domain in terms of stresses, 

not forces. 

To obtain the N-T diagram, stresses need to be integrated on the cross section area of the element 

considered. For what concerns the axial force, for rectangular elements: 

𝑁(𝑖) = 𝜎𝑥
(𝑖) 𝑏 ℎ 

Concerning the shear force, Jourawsky’s formulae was employed to move from stresses to forces. 

The relationship between tangential stresses and shear force given by Jourawsky is the following: 

𝜏𝑥𝑦 =
𝑇 𝑆

𝐼 𝑏
 

Where: 

- 𝑇 is the shear force related to tangential stress 𝜏𝑥𝑦 ; 

- 𝑆 corresponds to the static moment of the cross section; 

- 𝐼 represents the moment of inertia of the element; 

- 𝑏 is the base of the cross section. 

Jourawsky’s equation solved for 𝑇: 

𝑇 =
𝜏𝑥𝑦 𝐼 𝑏

𝑆
 

Considering a rectangular cross section element the formulae simplifies: 

𝑇 =
𝜏𝑥𝑦 𝑏 ℎ

3

6 (
ℎ2

4 − 𝑦
2)
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With: 

- ℎ is the height of the cross section; 

- 𝑦 corresponds to the y-coordinate of the fiber considered with respect to the centroid. 

Considering the fiber in correspondence of the centroid where tangential stresses reach the 

maximum value, the equation simplifies further: 

𝑇 =
2

3
 𝜏𝑥𝑦 𝑏 ℎ 

Thus, to pass from the generic tangential stress, 𝜏𝑥𝑦
(𝑖), to the shear force, 𝑇(𝑖), the formulation 

employed is the following one: 

𝑇(𝑖) =
2

3
 𝜏𝑥𝑦

(𝑖) 𝑏 ℎ 

The set of triples (𝑁(𝑖), 𝑇(𝑖),𝑀𝑓𝑖𝑥𝑒𝑑) defines the axial force-shear-bending moment interaction domain. 

Considering different values of the acting moment, the two-dimensional domain turns into a tri-

dimensional surface described by the points (𝑁(𝑖) , 𝑇(𝑖), 𝑀(𝑖)). 

 

3.2.1.2. Half Cross-Section Subjected to Compression Force related to the 

Moment 

This paragraph considers the half cross section under the additional compression force due to the 

presence of the bending moment. 

 

Figure 3.2.1.2.1 – Half cross-section under the traction force related to the bending moment  
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Therefore, the half cross section is generally subjected to external shear and axial force, 𝑇 and 𝑁, 

and a concentrated force due to the bending moment that in this case produces compression, 𝐹𝐶
𝑀𝑎𝑐𝑡. 

Once again, considering an infinitesimal portion of the element in correspondence of the centroid 

of the half cross section, it is submitted to tangential stresses, 𝜏𝑥𝑦, produced by 𝑇, normal 

stresses, 𝜎𝑥, related to the sum of 𝐹𝐶
𝑀𝑎𝑐𝑡 and 𝑁. 

 

Figure 3.2.1.2.2 – Infinitesimal element subjected to stresses due to  𝑁,  𝑇 and 𝐹𝐶
𝑀𝑎𝑐𝑡 

Hence, the infinitesimal element is stresses by the following actions: 

- On the horizontal face of the infinitesimal element: 

- Normal stresses defined as: 

𝜎𝑦
𝑁 =

𝑁

𝐴
 

𝜎𝑦
𝑀 =

𝐹𝐶
𝑀𝑎𝑐𝑡

𝐴
 

𝜎𝑦 = −𝜎𝑦
𝑁 − 𝜎𝑦

𝑀 = −
𝑁

𝐴
−
𝐹𝐶
𝑀𝑎𝑐𝑡

𝐴
 

- Tangential stresses defined as, 𝜏𝑥𝑦. 

- On the vertical surface of the infinitesimal element: 

- Only tangential stress, 𝜏𝑥𝑦 . 

As already explained in previous paragraphs, since elements considered are columns, subjected to 

no axial force in the direction perpendicular to the axis of the column, the corresponding stress 

states are characterised by one normal stress equal to zero. This involves that the generic state of 

stress on the Mohr’s plane is always identified by a couple of points, whose, one of them, lays on 

the vertical axis. 

Therefore, the point representing the vertical surface defines through the coordinates (0,−𝜏𝑥𝑦), 

while the point standing for the horizontal edge corresponds to ((𝜎𝑦
𝑁 + 𝜎𝑦

𝑀), 𝜏𝑥𝑦). In this case 𝜎𝑦
𝑁 

and 𝜎𝑦
𝑀 have the same signs, both negative producing compression: this means that the two 
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contributions sum up in the negative portion of the Mohr’s plane. As a consequence, the presence 

of the bending moment, for what concerns the half cross section under the corresponding 

compression force, compared with the condition of only axial and shear force acting, produces a 

translation of the point standing for the horizontal surface towards compression normal stresses. 

This corresponds to a rotation of the Mohr’s circle towards negative normal stresses. 

To conclude, the presence of the compression force related to the bending moment reduces the 

principal tensile stress. This results in a translation of the N-T interaction domain towards the right 

portion of the diagram.  

It produces exactly the opposite effect of the half cross section subjected to traction. 

Hence, this half element, under additional compression is less restrictive than the other portion. 

Anyway, the basic equation for the realization of N-T diagrams has obtained in following lines. 

Once again, it has to impose principal tensile stress, 𝜎1, equal to the tensile strength of concrete, 𝑓𝑐𝑡𝑑, 

expressed as a function of the stresses acting on the element, 𝜎𝑥 and 𝜏𝑥𝑦. This concept can be 

obtained by equating two different expression of the radius of the Mohr’s circle. 

 

Figure 3.2.1.2.3 – Geometrical evidences 

{
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+ 𝜎1)
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𝜏𝑥𝑦
2 +

(𝜎𝑦
𝑁 + 𝜎𝑦
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2
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=
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𝜏𝑥𝑦
2 +

(𝜎𝑦
𝑁 + 𝜎𝑦

𝑀)
2

4
−
(𝜎𝑦

𝑁 + 𝜎𝑦
𝑀)

2

4
− (𝜎𝑦

𝑁 + 𝜎𝑦
𝑀) 𝜎1 − 𝜎1

2 = 0 

𝜏𝑥𝑦
2 − (𝜎𝑦

𝑁 + 𝜎𝑦
𝑀) 𝜎1 − 𝜎1

2 = 0 

(𝜎𝑦
𝑁 + 𝜎𝑦

𝑀) 𝜎1 = 𝜏𝑥𝑦
2 + 𝜎1

2 

(𝜎𝑦
𝑁 + 𝜎𝑦

𝑀) =
𝜏𝑥𝑦

2 + 𝜎1
2

𝜎1
 

𝜎𝑦
𝑁 =

𝜏𝑥𝑦
2

𝜎1
+ 𝜎1 − 𝜎𝑦

𝑀 

Again, in the equation, 𝑓𝑐𝑡𝑑 has to replace 𝜎1: 

𝜎𝑦
𝑁 =

𝜏𝑥𝑦
2

𝑓𝑐𝑡𝑑
+ 𝑓𝑐𝑡𝑑 − 𝜎𝑦

𝑀 

It can be also: 

𝜏𝑥𝑦 = √(𝜎𝑦
𝑁 + 𝜎𝑦

𝑀)𝑓𝑐𝑡𝑑 − 𝑓𝑐𝑡𝑑
2 

 

For a given value of 𝜎𝑦
𝑀, depending on the acting bending moment, varying 𝜏𝑥𝑦, the relationship gives 

the corresponding value of 𝜎𝑦
𝑁 such that, stress states defined by the couple (𝜎𝑦

𝑁 , 𝜏𝑥𝑦) generate 𝜎1 

equal to 𝑓𝑐𝑡𝑑. 

To obtain the N-T diagram, stresses need to be integrated on the cross section area of the element 

considered. For what concerns the axial force, for rectangular elements: 

𝑁(𝑖) = 𝜎𝑥
(𝑖) 𝑏 ℎ 

Concerning the shear force, Jourawsky’s formulae was employed to move from stresses to forces. 

For rectangular cross sections: 

𝑇(𝑖) =
2

3
 𝜏𝑥𝑦

(𝑖) 𝑏 ℎ 

The set of triples (𝑁(𝑖), 𝑇(𝑖),𝑀𝑓𝑖𝑥𝑒𝑑) defines the axial force-shear-bending moment interaction domain. 

Considering different values of the acting moment, the two-dimensional domain turns into a tri-

dimensional surface described by the points (𝑁(𝑖) , 𝑇(𝑖), 𝑀(𝑖)). 

 

The more restrictive case corresponds to the half cross section submitted to the additional traction 

force due to the bending moment. Thus, in the following paragraph, the Matlab implementation 

concerns that more critical case. 
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3.2.1.3. Matlab Implementation 

The procedure explained, aimed at constructing the interaction domain of axial force, shear and 

bending moment, for a fixed, assigned value of the last one, has implemented on the software Matlab 

to facilitate computations. 

 

3.2.1.4. Problem Definition 

The first step always provide the definition of the considered problem in terms of geometrical and 

material properties.  

Geometrical properties: 

- 𝑏, the base of the cross section of the structural element considered; 

- ℎ is the height of the cross section; 

- 𝑐, the clear cover of steel reinforcement; 

Properties of the material: 

- 𝑓𝑐𝑑 corresponds to the design compressive strength of the concrete; 

- 𝑓𝑐𝑡𝑑, the design tensile strength of the concrete. 

From those parameters, derive some relevant quantities: the maximum tensile and compressive axial 

force, function of the cross section area and design strengths of the concrete: 

𝑁𝑐,𝑚𝑎𝑥 = 𝑓𝑐𝑑  𝐴𝑐𝑙𝑠 = 𝑓𝑐𝑑
𝑏 ℎ

2
 

𝑁𝑡,𝑚𝑎𝑥 = 𝑓𝑐𝑡𝑑  𝐴𝑐𝑙𝑠 = 𝑓𝑐𝑡𝑑
𝑏 ℎ

2
 

In this case the area of concrete corresponds to a half of the total cross section area of the column 

because, as previously explained, this simplification model the bending moment as a couple of 

concentrated force, each one of them applied to a half of the cross section. 

Those two terms define the boundaries of the interaction domain. 

Also tangential stresses has to be bounded: the maximum value for 𝜏𝑥𝑦 is the one corresponding to 

the highest compressive normal stress, 𝜎𝑥 = 𝑓𝑐𝑑 . It results from equations explained 

𝜏𝑥𝑦,𝑚𝑎𝑥 = √(𝑓𝑐𝑑) 𝑓𝑐𝑡𝑑 − 𝑓𝑐𝑡𝑑
2 

The minimum value of tangential stress correspond to 𝜏𝑥𝑦,𝑚𝑖𝑛 = −𝜏𝑥𝑦,𝑚𝑎𝑥. 

Normal stress due to the bending moment can be defined once established the geometry. The 

formulae used is the following: 

𝐹𝑇
𝑀𝑎𝑐𝑡 =

𝑀

𝑑
=
𝑀

ℎ
2

=
2 𝑀

ℎ
 

Obviously, it depends on the applied bending moment. A first, easiest implementation computes 

the N-T-M interaction diagram for a fixed value of the external moment: it result a two-dimensional 
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domain on the N-T plane, translated towards negative values of axial force because of the presence 

of 𝜎𝑦
𝑀. 

A more precise approach, calculating the N-T-M domain for several values of the applied bending, 

obtains through the introduction of a for-cycle on the bending moment magnitude. Hence, the 

domain is no longer two but tri-dimensional. 

 

3.2.1.5. Formulae Implementation 

As previously explained, the equation that correlates normal to tangential stresses, producing 

principal tensile stress equal to the tensile strength of concrete, is the following: 

𝜎𝑦
𝑁 =

𝜏𝑥𝑦
2

𝑓𝑐𝑡𝑑
+ 𝑓𝑐𝑡𝑑 − 𝜎𝑦

𝑀 

Normal stress related to the bending moment, 𝜎𝑦
𝑀, is already known, once defined the cross section 

geometry. It also depends on the modulus of the external moment, 𝑀, which can be a unique quantity 

or a series of values, changing from 𝑀𝑚𝑖𝑛 to 𝑀𝑚𝑎𝑥. Depending on that, the result will be respectively 

a two or tri-dimensional diagram. 

Once defined 𝜎𝑦
𝑀, to build the N-T-M domain, the code has to evaluate 𝜎𝑥 by means of a for-cycle 

with 𝜏𝑥𝑦 changing from its minimum to its maximum value. Since for-cycles in Matlab work only with 

positive and integer values, in the script 𝜏𝑥𝑦 varies from 1 to 𝜏𝑥𝑦,𝑚𝑎𝑥. The domain is then reflected 

with respect to the x-axis. 

To complete the domain some additional points have to be added. The first one corresponds to zero 

tangential stress, it derives from the equation below: 

𝜎𝜏0 = 𝜎(𝜏 = 0) = −𝑓𝑐𝑡𝑑 + 𝜎𝑦
𝑀 

Again, since for-cycles in Matlab work only with positive values, the code computes normal stresses 

for integer values of 𝜏𝑥𝑦; therefore, if the maximum compressive normal stress, 𝜎𝑐,𝑚𝑎𝑥 = 𝑓𝑐𝑑, 

correspond to a non-integer value of 𝜏𝑥𝑦, the diagram will not be complete. The ultimate point of the 

domain results from the following formulae: 

(𝜎𝑐,𝑚𝑎𝑥 , 𝜏𝑚𝑎𝑥) = (𝑓𝑐𝑑 , √(𝑓𝑐𝑑 − 𝜎𝑦
𝑀) 𝑓𝑐𝑡𝑑 − 𝑓𝑐𝑡𝑑

2) 

The result consists in two vectors, 𝜎 and 𝜏, containing values of the for-cycle and the missing ones, 

computed separately, as explained above, and added in the correct position of the vectors. 

To translate the interaction domain in terms of stresses to the one in terms of forces, assuming 

rectangular cross-sections, the following formula implemented: 

𝑁 = 𝜎𝑥  𝑏 ℎ 

𝑇 =
2

3
 𝜏𝑥𝑦 𝑏 ℎ 
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Two additional points added to close the domain corresponding to (𝑁𝑐,𝑚𝑎𝑥 , 0) for the portion of 

domain resulting from positive values of 𝑇(𝑖), (𝑁𝑐,𝑚𝑎𝑥 , 0) for the portion of domain resulting from 

negative values of 𝑇(𝑖). 

At the end, the plot of the vector 𝑁, for normal forces, as a function of vector 𝑇, shear forces. 

The script also plots a point whose coordinates corresponds to the axial force and the shear force 

acting on the considered column: if the point falls inside the domain, the element is verified, 

otherwise is not. 

 

Figure 3.2.1.5.1 – N-T-M interaction domain using Matlab 

 

 

3.2.2. Linear Distribution of Normal Stresses due to Bending 

This second approach tries to detect the relationship between axial force, shear and bending, by 

employing Navier’s formulation and the one given by Jourawsky: Navier’s formula defines normal 

stresses corresponding to the simultaneous action of bending moment and axial force, Jourawsky’s 

relationship relates to tangential stresses. 
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Figure 3.2.2.1 – Linear distribution of normal stresses due to bending 

 

3.2.2.1. Hypotheses 

This approach founds on some hypothesis: 

- Perfect bound between concrete and steel reinforcements; 

- Conservation of flat cross sections; 

- Elastic behaviour of the materials; 

- Homogenised cross section: the steel homogenised to concrete by means of the 

homogenisation coefficient, 𝑛; 

- The concrete has assumed to work under traction if tensile stresses do not overcome the 

tensile strength of the material. 

 

3.2.2.2. Navier’s Formula 

Considering bending moments acting parallel to the neutral axis, the equation defining the state of 

stress is the following: 

𝜎 =
𝑁

𝐴
±
𝑀

𝐼
𝑦 

Where: 

- 𝑁 is the axial force acting on the considered member; 

- 𝑀 corresponds to the acting bending moment; 
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- 𝐴 represents the cross-section area of the element; 

- 𝐼 is the moment of inertia of the cross-section; 

- 𝑦 stands for the distance of the considered fiber from the neutral axis. 

 

3.2.2.3. Jourawsky’s Equation 

The equation that expresses tangential stresses as a function of the acting shear force is given by 

the Jourawsky’s formula: 

𝜏 =
𝑇 𝑆

𝐼 𝑏
 

Where: 

- 𝑇 is the shear force related to tangential stress 𝜏; 

- 𝑆 corresponds to the static moment of the cross section under the considered fiber; 

- 𝐼 represents the moment of inertia of the element; 

- 𝑏 is the base of the cross section. 

 

Those two equations determine tangential stresses and normal stresses along the height of the 

cross-section as a function of, respectively, 𝑇, 𝑁 and 𝑀. Substituting those two relationship inside 

the failure criterion adopted, an equation relating axial forces, shears and bending moments that, 

acting together, produce the fracture of the element. 

The failure criteria at the base of the construction of the domain have explained in the following 

pages.  

 

3.2.2.4. Failure Criteria 

Several failure criteria have considered accounting for all possible types of collapse that a reinforced 

concrete element can experience.  The element could break because of the achievement of the 

concrete tensile strength, because of excessive compressive stresses on the concrete, greater than 

the compressive strength of the material; the collapse could be also related to the stresses in steel 

reinforcements, either compressive either tensile ones.  

 



73 
 

3.2.2.4.1. Achievement of the Tensile Strength of the Concrete 

The first failure criterion considered relates to the tensile strength of the concrete. The aim is the 

definition of an equation able to identify the triplets (𝑁, 𝑇,𝑀) that generate principal tensile stress 

in the concrete equal to the tensile strength of the concrete.  

(𝑁, 𝑇,𝑀)       Such that       𝜎1 = 𝑓𝑐𝑡𝑑 

This has obtained, once again, employing Mohr’s circles. Since elements considered are columns, 

the state of stress acting on the generic infinitesimal element always defines as two points, whose, 

one of them, leys on the vertical axis of the Mohr’s plane. 

 

Figure 3.2.2.4.1.1 – Generic state of stress considered  

The equation corresponding to the failure criterion imposes principal stress, 𝜎1, coincident with the 

tensile strength of concrete, 𝑓𝑐𝑡𝑑, expressed as a function of the stress state acting on the element, 𝜎 

and 𝜏. This has obtained by means of geometrical evidences related to the radius of the Mohr’s circle. 

It can be seen as the sum of the principal tensile stress, 𝜎1, which has to be equal to 𝑓𝑐𝑡𝑑to satisfy the 

basic condition, and a half of the actual normal stress, but it can be also expressed as hypotenuse 

of the triangle described by the state of stress on the infinitesimal element, 𝜎 and 𝜏. 

{
 
 

 
 

𝑅 = √𝜏2 + (
𝜎

2
)
2

𝑅 = 𝜎1 −
|𝜎|

2
= 𝑓𝑐𝑡𝑑 −

|𝜎|

2

 

As already explained in previous chapters, equating the two and simplifying, the failure criterion 

corresponding to the achievement of compressive strength of concrete comes out: 

√𝜏2 + (
𝜎

2
)
2

= 𝑓𝑐𝑡𝑑 −
|𝜎|

2
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𝜏2 +
𝜎2

4
= (𝑓𝑐𝑡𝑑 −

|𝜎|

2
)

2

 

𝜏2 +
𝜎2

4
= 𝑓𝑐𝑡𝑑

2 − 2 
|𝜎|

2
 𝑓𝑐𝑡𝑑 +

𝜎2

4
 

𝜏2 + |𝜎| 𝑓𝑐𝑡𝑑 − 𝑓𝑐𝑡𝑑
2 = 0 

|𝝈| = 𝒇𝒄𝒕𝒅 −
𝝉𝟐

𝒇𝒄𝒕𝒅
 

In this paragraph, criteria for the construction of 𝑁-𝑇-𝑀 domain, are defined by using Navier and 

Jourawsky’s equations. Therefore, substituting the relationship of normal stress given by Navier and 

Jourawsky’s one for tangential stresses in the failure criterion reported above, derives the equation, 

function of 𝑁, 𝑇 and 𝑀, describing the limit surface of the domain. 

Navier and Jourawsky’s formulae: 

𝜎 =
𝑁

𝐴
±
𝑀

𝐼
𝑦 

𝜏 =
𝑇 𝑆

𝐼 𝑏
 

Substituting in the criterion: 

𝑁

𝐴
±
𝑀

𝐼
𝑦 = 𝑓𝑐𝑡𝑑 −

1

𝑓𝑐𝑡𝑑
 (
𝑇 𝑆

𝐼 𝑏
)
2

 

Solving for 𝑁: 

𝑵 = 𝑨 𝒇𝒄𝒕𝒅 −
𝑨

𝒇𝒄𝒕𝒅
 (
𝑻 𝑺

𝑰 𝒃
)
𝟐

∓
𝑨 𝑴

𝑰
𝒚 

Varying 𝑇 and 𝑀, the equation gives the corresponding value of 𝑁 such that, stress states defined by 

the triplets (𝑁, 𝑇,𝑀), generate 𝜎1 equal to 𝑓𝑐𝑡𝑑, which means fracture of the concrete because of 

excessive tensile stresses. 

The sets of 𝑁, 𝑇 and 𝑀 defined through that equation, describe a portion of the tri-dimensional 𝑁-𝑇-

𝑀 domain. 

 

3.2.2.4.2. Achievement of the Compressive Strength of the Concrete 

The second failure criterion relates to the compressive strength of the concrete. In this case, the 

equation has to define the triplets (𝑁, 𝑇,𝑀) generating a principal compressive stress equal to the 

compressive strength of the concrete. The equation that corresponds to the failure criterion imposes 

principal compressive stress, 𝜎2, coincident with the compressive strength of concrete, 𝑓𝑐𝑑 , defined 

as a function of the stress state acting on the element, 𝜎 and 𝜏: 

(𝑁, 𝑇,𝑀)       Such that       𝜎2 = 𝑓𝑐𝑑 
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Again, geometrical evidences of the Mohr’s circle are at the base of the definition of the equation. 

The radius of the circle corresponds to the difference between principal compressive stress, 𝜎2, equal 

to 𝑓𝑐𝑑, and a half of the actual normal stress, but it can be also expressed as the hypotenuse of the 

triangle described by the state of stress on the infinitesimal element, 𝜎 and 𝜏. 

{
 
 

 
 

𝑅 = √𝜏2 + (
𝜎

2
)
2

𝑅 = 𝜎1 +
|𝜎|

2
= 𝑓𝑐𝑑 +

|𝜎|

2

 

Equating the two and simplifying: 

√𝜏2 + (
𝜎

2
)
2

= 𝑓𝑐𝑑 +
|𝜎|

2
 

𝜏2 +
𝜎2

4
= (𝑓𝑐𝑑 +

|𝜎|

2
)

2

 

𝜏2 +
𝜎2

4
=
𝜎2

4
+ 2 

|𝜎|

2
 𝑓𝑐𝑑 + 𝑓𝑐𝑑

2 

𝜏2 − |𝜎| 𝑓𝑐𝑑 − 𝑓𝑐𝑑
2 = 0 

|𝝈| =
𝝉𝟐

𝒇𝒄𝒕𝒅
− 𝒇𝒄𝒅 

Substituting Navier and Jourawsky’s formulations in the criterion just determined, the final 

expression of the equation derives. 

𝑁

𝐴
±
𝑀

𝐼
𝑦 =

1

𝑓𝑐𝑑
 (
𝑇 𝑆

𝐼 𝑏
)
2

− 𝑓𝑐𝑑 

Solving for 𝑁: 

𝑵𝒄 =
𝑨

𝒇𝒄𝒅
 (
𝑻 𝑺

𝑰 𝒃
)
𝟐

−𝑨 𝒇𝒄𝒅 ∓
𝑨 𝑴

𝑰
𝒚 

Varying 𝑇 and 𝑀, the equation returns the corresponding value of 𝑁 such that, stress states due to 

the triplets (𝑁, 𝑇,𝑀), generate 𝜎2 equal to 𝑓𝑐𝑑 , which means failure of the concrete because of 

excessive compressive stresses. 

The sets of 𝑁, 𝑇 and 𝑀 put into relation by means of that equation, describe a portion of the tri-

dimensional 𝑁-𝑇-𝑀 domain. 
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3.2.2.4.3. Achievement of the Tensile Strength of the Steel 

The third criterion correspond to the failure of the steel under excessive tensile stresses. For what 

concerns steel reinforcements, it has assumed that tangential stresses do not affect the state of 

stress of the bars. Thus, only normal stresses have considered acting on the steel elements. The 

failure criterion corresponding to the tensile failure of rebar detects the states of stress generating 

a principal tensile stress in the steel equal to the tensile strength of the material:  

(𝑁, 𝑀)       Such that       𝜎1,𝑠 = 𝑓𝑦𝑑 

In this case, the equation of the failure criterion only depends on the Navier’s relationship, indeed: 

𝜎1,𝑠 = 𝑛 (
𝑁

𝐴
±
𝑀

𝐼
𝑦) = 𝑓𝑦𝑑 

Solving for 𝑁: 

 𝑵𝒔𝒕 =
𝑨 𝒇𝒚𝒅

𝒏
∓
𝑨 𝑴

𝑰
𝒚 

Changing the value of 𝑀, the equation returns the corresponding value of 𝑁 such that, stress states 

due to the couples (𝑁,𝑀), produce 𝜎1,𝑠 equal to 𝑓𝑦𝑑 , corresponding to the failure of steel rebar 

because of excessive tensile stresses. 

The sets of 𝑁 and 𝑀 in that equation, boundary the tri-dimensional 𝑁-𝑇-𝑀 domain. 

 

 

3.2.2.4.4. Achievement of the Compressive Strength of the Steel 

The fourth and last criterion represents the failure of the steel because of excessive compressive 

stresses. Also in this case, it has assumed that tangential stresses do not affect the state of stress 

of the bars, only normal stresses have considered acting on them. This failure criterion detects the 

states of stress producing a principal tensile stress in the steel equal to the tensile strength of the 

material:  

(𝑁, 𝑀)       Such that       𝜎2,𝑠 = 𝑓𝑦𝑑 

In this case, the equation of the failure criterion only depends on the Navier’s relationship, indeed: 

𝜎2,𝑠 = 𝑛 (
𝑁

𝐴
∓
𝑀

𝐼
𝑦) = 𝑓𝑦𝑑 

Solving for 𝑁: 

𝑵𝒔𝒄 =
𝑨 𝒇𝒚𝒅

𝒏
±
𝑨 𝑴

𝑰
𝒚 
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Changing the value of 𝑀, the equation returns the corresponding value of 𝑁 such that, stress states 

due to the couples (𝑁,𝑀), correspond to the failure of steel rebar because of excessive compressive 

stresses. 

The sets of 𝑁 and 𝑀 in that equation, boundary the tri-dimensional 𝑁-𝑇-𝑀 domain. 

 

3.2.2.5. Discretization of the Cross Section 

3.2.2.5.1. Main Quantities Definition 

It can be observed in previous paragraphs, the fundamental equations to build up the interaction 

domain, depend on the considered 𝑦, thus, the considered fiber. Indeed: 

- Failure criterion relating to the tensile strength of the concrete: 

𝑁 =
𝐴

𝑓𝑐𝑡𝑑
 (
𝑇 𝑆

𝐼 𝑏
)
2

− 𝐴 𝑓𝑐𝑡𝑑 ∓
𝐴 𝑀

𝐼
𝑦 

- Achievement of the compressive strength of the concrete: 

𝑁𝑐 = 𝐴 𝑓𝑐𝑑 −
𝐴

𝑓𝑐𝑑
 (
𝑇 𝑆

𝐼 𝑏
)
2

∓
𝐴 𝑀

𝐼
𝑦 

- Tensile strength of the steel reinforcement: 

𝑁𝑠𝑡 =
𝐴 𝑓𝑦𝑑
𝑛

∓
𝐴 𝑀

𝐼
𝑦 

- Failure criterion corresponding to the steel failure under compression: 

𝑁𝑠𝑐 =
𝐴 𝑓𝑦𝑑
𝑛

±
𝐴 𝑀

𝐼
𝑦 

All those equations depend on 𝑦, distance of the considered fiber from the neutral axis; the failure 

criteria related to the concrete also depend on 𝑆, static moment of the cross section under the 

considered fiber, which is a function of 𝑦. 

This means that the axial-shear-flexure interaction domain depends on the considered fiber. The 

domain has determined for several values of 𝑦. 

The approach that has employed, assumes a fully reacting cross-section only when the considered 

fiber correspond to the one at the extremity of the element, which means 𝑦 equal to ℎ 2⁄ . For 

decreasing values of 𝑦, the reacting cross-section reduces with 𝑦; therefore, for a generic value of 𝑦, 

the reacting cross-section has a width equal to 𝑏, which does not change, and the height is equal 

to (
ℎ

2
+ 𝑦). 

The fiber model has obtained by dividing the height of the cross-section in a number of fiber, defined 

by the variable 2𝑁, the width of each fiber defines as follows: 
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𝑤 =
ℎ

2 𝑁
 

The domain has constructed for different reacting cross-sections, starting with an area fully 

working, then considering the height of the element reducing, iteration after iteration, consecutive 

fibers. The vector of the considered fiber defines as follows: 

𝑦 = [(
ℎ

2
−
𝑤

2
),   (

ℎ

2
− 𝑤 −

𝑤

2
),   (

ℎ

2
− 2 𝑤 −

𝑤

2
)  …   (

ℎ

2
− (𝑁 − 1) 𝑤 −

𝑤

2
)] 

For each fiber, the following quantities, which appear in the strength criteria, change: 

- The effective depth: 

𝑑 = (
ℎ

2
+ 𝑦 +

𝑤

2
) − 𝑐 

- The homogenized cross section into concrete: 

𝐴𝑜𝑚𝑜𝑔 = [𝑏 ∗ (
ℎ

2
+ 𝑦 +

𝑤

2
)] + (𝑛 ∗ 𝐴𝑠,𝑠𝑢𝑝) + (𝑛 ∗ 𝐴𝑠,𝑖𝑛𝑓) 

Where 𝑛 represents the homogenization coefficient, defined as the ratio between the young 

modulus of the steel over the one of the concrete; 

- The position of the centroid of the cross section, expressed as its distance with respect to 

the lower edge of the element: 

𝑑𝑔,𝑖𝑛𝑓 =
𝑆

𝐴𝑜𝑚𝑜𝑔
 

𝑑𝑔,𝑠𝑢𝑝 = ℎ − 𝑑𝑔,𝑖𝑛𝑓 

Where: 

- 𝑆 is the static moment of the cross section with respect to the lower edge: 

𝑆 = {𝑏 ∗ (
ℎ

2
+ 𝑦 +

𝑤

2
) ∗ [

(
ℎ
2 + 𝑦 +

𝑤
2
)

2
]} + [𝑛 𝐴𝑠,𝑠𝑢𝑝  (

ℎ

2
− 𝑐)] + (𝑛 𝐴𝑠,𝑖𝑛𝑓 𝑐) 

- The moment of inertia of the reacting cross section: 

𝐼𝑜𝑚𝑜𝑔 = (
𝑏 𝑑𝑔,𝑖𝑛𝑓

3

3
)+

{
 
 

 
 𝑏 [𝑑𝑔,𝑠𝑢𝑝 − (

ℎ
2 −

(𝑦 +
𝑤
2
))]

3

 

3

}
 
 

 
 

+ [𝑛 𝐴𝑠,𝑠𝑢𝑝  (𝑑𝑔,𝑠𝑢𝑝 − 𝑐)
2
]

+ [𝑛 𝐴𝑠,𝑖𝑛𝑓 (𝑑𝑔,𝑖𝑛𝑓 − 𝑐)
2
] 

 

- The static moment of the portion of cross section under the centroidal fiber, corresponding 

to the maximum tangential stress: 

𝑆𝑚𝑎𝑥,𝑜𝑚𝑜𝑔 = (𝑏 𝑑𝑔,𝑖𝑛𝑓
𝑑𝑔,𝑖𝑛𝑓
2

) + [𝑛 𝐴𝑠,𝑖𝑛𝑓 (𝑑𝑔,𝑖𝑛𝑓 − 𝑐)] 
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Considering the failure criteria related to the achievement of the compressive strength of the 

concrete, there would not be a progressive development of the crack, reducing the reacting cross 

section, thus reducing all the quantities defined above. The failure caused by excessive compressive 

stresses on the concrete, presents as a sudden crashing of the concrete once reached 𝑓𝑐𝑑 . This means 

that, in the equation corresponding to the compressive failure of the concrete, those terms remain 

constant, equal to their value at the first iteration, for  𝑦 = ℎ 2⁄ : 

𝑑1𝑠𝑡−𝑖𝑡 , 𝐴𝑜𝑚𝑜𝑔
1𝑠𝑡−𝑖𝑡, 𝑑𝑔,𝑠𝑢𝑝

1𝑠𝑡−𝑖𝑡, 𝑑𝑔,𝑖𝑛𝑓
1𝑠𝑡−𝑖𝑡, 𝐼𝑜𝑚𝑜𝑔

1𝑠𝑡−𝑖𝑡, 𝑆𝑜𝑚𝑜𝑔
1𝑠𝑡−𝑖𝑡. 

Two terms remain to be defined: 𝑇 and 𝑀, which are the acting shear force and bending moment. 

Since the objective is the construction of a tri-dimensional domain, 𝑇 and 𝑀 are vector, whose 

elements correspond to possible values of shear and bending acting on the member. Their elements 

varies from a minimum value to a maximum one, with step increment such that the two vectors 

have the same length. This has obtained as follows: 

�̅� = [𝑀𝑚𝑖𝑛: 𝑘:𝑀𝑚𝑎𝑥] 

�̅� = [𝑇𝑚𝑖𝑛: 𝑞: 𝑇𝑚𝑎𝑥] 

Given that: 

- 𝑀𝑚𝑖𝑛 and 𝑀𝑚𝑎𝑥 are the minimum and maximum bending moment acting on the element, 

which depend on the considered case; 

- 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 are the minimum and maximum external shear forces on the element, 

depending on the considered case; 

- 𝑘 and 𝑞 are the step increment of the bending moment and shear vectors respectively. They 

have to be determined such that the two vectors, 𝑀 and 𝑇, are characterised by the same 

length. Hence, given 𝑘, which should be imposed considering both the level of definition of 

the domain both the computational costs, the shear increment step defines as: 

𝑞 =
(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛) 𝑘

(𝑀𝑚𝑎𝑥 −𝑀𝑚𝑖𝑛)
 

 

3.2.2.5.2. Effect of the Axial Force not applied in the Centroid 

Assuming a cross section that is reducing at each iteration, it needs to be accounted for the 

decentralized axial force. Indeed, at the beginning the whole cross section works, the axial force is 

applied at the centroid of the element; then, changing 𝑦, the cross section reduces, the axial force 

still applies at the same point, the centroid of the cross section fully working, but the centroid of 

the reacting cross section moved. This consists of a decentralized axial force, corresponding to the 

development of an additional bending moment working against the applied one. 
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Figure 3.2.2.5.2.1 – Effect of the decentralized axial force 

The moment that appears in the failure criteria previously mentioned is the difference between the 

applied one and the bending moment corresponding to the decentralized axial force: 

𝑀 = �̅� −𝑁 𝑒 

Where 𝑒 represent the distance between the initial centroid that, in case of symmetric 

reinforcements, lays at ℎ 2⁄ , and the centroid of the element for a given considered fiber at 𝑦: 

𝑒 =
ℎ

2
− 𝑑𝑔,𝑠𝑢𝑝 

Therefore, the failure criteria corresponding to the failure of concrete under traction becomes: 

𝑁 =
𝐴

𝑓𝑐𝑡𝑑
 (
𝑇 𝑆

𝐼 𝑏
)
2

−𝐴 𝑓𝑐𝑡𝑑 ∓
𝐴 (�̅� − 𝑁 𝑒)

𝐼
𝑦 

Given that 𝑁 is the vector of the previous iteration; imposing a very small width of the fiber, e.g. a 

very large number of fibers in which the element is divided into, the difference between the 

vector 𝑁 at the 𝑖-th and the one at the (𝑖 + 1)-th is very small, hence the error is negligible. 

This aspect does not appear in the failure criteria related to the achievement of the compressive 

strength of the concrete because in that case the cross section does not undergo a progressive 

development of the crack, the concrete suddenly crashes once reached 𝑓𝑐𝑑 . 

 

3.2.2.5.3. Stirrups Contribution 

Up to now, no contribution of transversal reinforcement has considered.  

Stirrups have taken into account assuming that the shear resistance of the whole element can be 

expressed as the sum of two contributions: the one related to the concrete and homogenized 
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longitudinal bars, determined through Jourawsky’s theory, 𝑇𝐽 , and the one related to stirrups, 

explained by the Ritter-Mörsch’s theory, 𝑇𝑅𝑀 . 

This approach assumes that the two shear resistances are complementary. When the cross section 

is not cracked, which correspond to the first iteration, when 𝑦 is equal to ℎ 2⁄ , it is assumed that the 

external shear is carried by the homogenised cross section through tangential stresses, as predicted 

by Jourawsky’s model. When the crack affects the 2 3⁄  of the total height of the cross section, which 

means that the concrete still working corresponds only to 1 3⁄  of the total height, it is assumed that 

the remaining homogenised cross section is no longer able to carry shear force and the shear 

strength of the element is entirely provided by transvers reinforcement. For all intermediate 

conditions, between 𝑦 = ℎ 2⁄  and 𝑦 = −2ℎ 3⁄ , the variation of 𝑇𝐽  and 𝑇𝑅𝑀 is linear. 

This has implemented through the formula below: 

𝑇𝑡𝑜𝑡 = 𝜌 𝑇𝐽 + (1 − 𝜌) 𝑇𝑅𝑀 

In the script, 𝑇𝐽 corresponds to the vector �̅�, which varies from 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥. The Ritter-Mörsch’s 

shear resistance has determined by means of the formula given by the code: 

𝑇𝑅𝑀 = 𝑉𝑅𝑑,𝑠 =
𝐴𝑠𝑤
𝑠
 𝑧 𝑓𝑦𝑑 𝑐𝑜𝑡 𝜃 

Where: 

- 𝐴𝑠𝑤 is the area of transversal reinforcement, corresponding to the product of the area of the 

single bar and the number of arms: 

𝐴𝑠𝑤 = 𝑛𝑎𝑟𝑚𝑠  𝐴𝛷 

- 𝑧 = 0.9 𝑑, the effective height; 

- 𝑓𝑦𝑑 , the design strength of the steel; 

- 𝜃 is the angle between the horizontal and the concrete strut. 

Where 𝜌 is a coefficient equal to 1 if the member is not cracked, equal to 0 when the crack affects 

the 2 3⁄  of the total height.  

 

Figure 3.2.2.5.3.1 – Linear variation of the coefficient ρ 
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By means of the equation of a straight line through two points: 

𝑦 − 𝑦1
𝑦2 − 𝑦1

=
𝑥 − 𝑥1
𝑥2 − 𝑥1

 

The equation of the coefficient 𝜌 corresponds to the following one: 

𝜌 − 𝜌1
𝜌2 − 𝜌1

=
𝑦 − 𝑦1
𝑦2 − 𝑦1

 

𝜌 − 0

1 − 1
=
𝑦 − (−

2
3
 
ℎ
2
)

ℎ
2 −

(−
2
3 
ℎ
2
)
 

𝜌 − 0

1 − 1
=
𝑦 +

ℎ
3

ℎ
2
+
ℎ
3

 

𝜌 =
𝑦 +

ℎ
3

5 ℎ
6

 

𝜌 =
6 𝑦 + 2 ℎ

5 ℎ
 

When the whole cross section works, thus 𝑦 = ℎ 2⁄ : 

𝜌 =
6 
ℎ
2 + 2 ℎ

5 ℎ
=
5 ℎ

5 ℎ
= 1 

𝑇𝑡𝑜𝑡 = 1 ∗ 𝑇𝐽 + 0 ∗ 𝑇𝑅𝑀 = 𝑇𝐽  

Therefore, the shear resistance is entirely provided by the homogenised concrete, which 

corresponds to the shear resistance predicted by Jourawsky. 

On the other hand, when the crack affects 2 3⁄  of the whole cross section, thus 𝑦 = −ℎ 3⁄ : 

𝜌 =
6 (−

ℎ
3
) + 2 ℎ

5 ℎ
=

0

5 ℎ
= 0 

𝑇𝑡𝑜𝑡 = 0 ∗ 𝑇𝐽 + 1 ∗ 𝑇𝑅𝑀 = 𝑇𝑅𝑀 

Therefore, the shear resistance entirely derives from stirrups, which corresponds to the shear 

resistance of steel reinforcement defined by the Ritter-Mörsch’s theory. 

The shear that has to be inserted in the failure criteria to evaluate the corresponding 𝑁, is the 

Jourawsky’s shear, 𝑇𝑗 , because those equation base on the Jourawsky’s theory. Once computed all 

the values of 𝑁 describing, together with 𝑇 and 𝑀, the domain, the plot of the interaction domain 

uses the total shear strength, given by the sum of the concrete shear resistance and the one provided 

by stirrups, 𝑇𝑡𝑜𝑡. 
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To summarize, the failure criteria used to build the 𝑁-𝑇-𝑀 domain, are the following: 

- Failure criterion relating to the tensile strength of the concrete: 

𝑁 =
𝐴𝑜𝑚𝑜𝑔
𝑓𝑐𝑡𝑑

 (
𝜌 𝑇𝐽  𝑆𝑜𝑚𝑜𝑔
𝐼𝑜𝑚𝑜𝑔  𝑏

)

2

−𝐴𝑜𝑚𝑜𝑔  𝑓𝑐𝑡𝑑 ∓
𝐴𝑜𝑚𝑜𝑔  (�̅� − 𝑁 𝑒)

𝐼𝑜𝑚𝑜𝑔
𝑦 

- Achievement of the compressive strength of the concrete: 

𝑁𝑐 = 𝐴𝑜𝑚𝑜𝑔
1𝑠𝑡−𝑖𝑡  𝑓𝑐𝑑 −

𝐴𝑜𝑚𝑜𝑔
1𝑠𝑡−𝑖𝑡

𝑓𝑐𝑑
 (
𝑇𝐽  𝑆𝑜𝑚𝑜𝑔

1𝑠𝑡−𝑖𝑡

𝐼𝑜𝑚𝑜𝑔
1𝑠𝑡−𝑖𝑡  𝑏

)

2

∓
𝐴𝑜𝑚𝑜𝑔

1𝑠𝑡−𝑖𝑡  𝑀

𝐼𝑜𝑚𝑜𝑔
1𝑠𝑡−𝑖𝑡 𝑦 

- Tensile strength of the steel reinforcement: 

𝑁𝑠𝑡 =
𝐴𝑜𝑚𝑜𝑔  𝑓𝑦𝑑

𝑛
∓
𝐴𝑜𝑚𝑜𝑔  𝑀

𝐼𝑜𝑚𝑜𝑔
𝑦 

- Failure criterion corresponding to the steel failure under compression: 

𝑁𝑠𝑐 =
𝐴𝑜𝑚𝑜𝑔  𝑓𝑦𝑑

𝑛
±
𝐴𝑜𝑚𝑜𝑔  𝑀

𝐼𝑜𝑚𝑜𝑔
𝑦 

 

3.2.2.6. Matlab Implementation 

The procedure has implemented on Matlab to compute the 𝑁-𝑇-𝑀 interaction domain for any value 

of 𝑦, avoiding computational efforts. 

3.2.2.6.1. Input Data 

The first step in the implementation of the procedure consists of the definition of input data. 

Information required, concerning both geometrical and material properties, have listed below. 

Geometrical properties: 

- 𝑏, the base of the cross section of the reinforced concrete element considered; 

- ℎ is the height of the cross section; 

- 𝑐, the clear cover of steel reinforcement; therefore the effective depth derives: 

𝑑 = ℎ − 𝑐 

- 𝐴𝑠,𝑠𝑢𝑝 defines the steel area of reinforcement in the upper part of the cross section;  

- 𝐴𝑠,𝑖𝑛𝑓 is the steel area of reinforcement in the lower part of the cross section;  

- 𝛷𝑠𝑡 stands for the diameter of transvers reinforcement; 

- 𝑛𝑠𝑡 is the number of arms of transvers reinforcement; 

- 𝑠𝑠𝑡 represents the spacing of stirrups; thus, the cross sectional area of shear reinforcement: 

𝐴𝑠𝑤 = 𝑛𝑠𝑡  [𝜋 (
𝛷𝑠𝑡
2
)
2

] 
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Properties of the materials: 

- 𝑓𝑐𝑑 corresponds to the design compressive strength of the concrete; 

- 𝑓𝑐𝑡𝑑 characterises to the design tensile strength of the concrete, assumed equal to 0.1 𝑓𝑐𝑑; 

- 𝑓𝑦𝑑 is the design strength of steel reinforcements; 

- 𝐸𝑐 represents the Young’s modulus of the concrete, computed as function of the design 

compressive strength of concrete, as prescribed by codes: 

𝐸𝑐 = 22000 [(
𝑓𝑐𝑑
10
)
0.3

] 

- 𝐸𝑠 is the elasticity modulus of the steel; hence, the homogenisation coefficient defines as: 

𝑛 =
𝐸𝑐
𝐸𝑠

 

 

3.2.2.6.2. Discretization of the cross section 

The approach requires the subdivision of the cross section into fibers in order to consider a 

progressive reduction of the element because of the development of the crack. 

 This has obtained by defining the number of fibers in which a half cross section has to be divided 

into, deriving their width. The script needs those two information; the user decides the level of 

refinement. In this study, the subdivision has chosen in order to get the width of the fiber equal to 

1 mm: 

𝑛𝑓𝑖𝑏 = 𝑛𝑓𝑖𝑏̅̅ ̅̅ ̅ 

𝑤𝑓𝑖𝑏 =
ℎ
2⁄

𝑛𝑓𝑖𝑏
 

At each iteration, the member loses more fibers; at each iteration, the software compute all the 

quantities to build the domain, as a function of the extremity fiber, whose coordinate corresponds 

to the mid-point of the fiber itself. By means of a for-cycle, the 𝑦 vector has determined: 

𝑓𝑜𝑟   𝑖 = [1: (𝑛𝑓𝑖𝑏 − 1)] 

�̅�(1) =
ℎ

2
−
𝑤𝑓𝑖𝑏
2

 

�̅� (𝑖 + 1) =
ℎ

2
− 𝑖 ∗ 𝑤𝑓𝑖𝑏 −

𝑤𝑓𝑖𝑏
2

 

�̅� = [�̅�(1), �̅�(𝑖 + 1)] 
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3.2.2.6.3. Main Quantities Definition 

Once defined the vector 𝑦, all the terms depending on it, derive. The deriving terms have computed 

using a for-cycle too. The for-cycle evaluates those terms for all values of 𝑦: 

𝑓𝑜𝑟   𝑦 = �̅� = [�̅�(1), �̅�(𝑖 + 1)] 

𝑑 = (
ℎ

2
+ 𝑦 +

𝑤

2
) − 𝑐 

𝐴𝑜𝑚𝑜𝑔 = [𝑏 ∗ (
ℎ

2
+ 𝑦 +

𝑤

2
)] + (𝑛 ∗ 𝐴𝑠,𝑠𝑢𝑝) + (𝑛 ∗ 𝐴𝑠,𝑖𝑛𝑓) 

The position of the centroid of the cross section depends on 𝑦 too; it has expressed as its distance 

with respect to the lower edge of the element: 

𝑆 = {𝑏 ∗ (
ℎ

2
+ 𝑦 +

𝑤

2
) ∗ [

(
ℎ
2 + 𝑦 +

𝑤
2
)

2
]}+ [𝑛 𝐴𝑠,𝑠𝑢𝑝  (

ℎ

2
− 𝑐)] + (𝑛 𝐴𝑠,𝑖𝑛𝑓 𝑐) 

𝑑𝑔,𝑖𝑛𝑓 =
𝑆

𝐴𝑜𝑚𝑜𝑔
 

𝑑𝑔,𝑠𝑢𝑝 = ℎ − 𝑑𝑔,𝑖𝑛𝑓 

Once determined the position of the centroid of the reacting cross section, the evaluation of the 

moment of inertia and the static moment of the cross section under the centroidal fiber, follow: 

𝐼𝑜𝑚𝑜𝑔 = (
𝑏 𝑑𝑔,𝑖𝑛𝑓

3

3
) +

{
 
 

 
 𝑏 [𝑑𝑔,𝑠𝑢𝑝 − (

ℎ
2 −

(𝑦 +
𝑤
2
))]

3

 

3

}
 
 

 
 

+ [𝑛 𝐴𝑠,𝑠𝑢𝑝 (𝑑𝑔,𝑠𝑢𝑝 − 𝑐)
2
] + [𝑛 𝐴𝑠,𝑖𝑛𝑓 (𝑑𝑔,𝑖𝑛𝑓 − 𝑐)

2
] 

𝑆𝑚𝑎𝑥,𝑜𝑚𝑜𝑔 = (𝑏 𝑑𝑔,𝑖𝑛𝑓
𝑑𝑔,𝑖𝑛𝑓
2

) + [𝑛 𝐴𝑠,𝑖𝑛𝑓 (𝑑𝑔,𝑖𝑛𝑓 − 𝑐)] 

For what concerns the portion of the domain described by the failure criteria of the concrete under 

compression, the cross section has not assumed to reduce its height throughout the for-cycle. 

Excessive compression stresses do not generate cracks; the cross section maintains its initial height 

until ultimate stress, then the material crashes. 

The script separately calculates all the quantities listed above for the failure criterion of the concrete 

under compression: 

𝑓𝑜𝑟   𝑦 = �̅�(1) =
ℎ

2
−
𝑤

2
 

𝑑1𝑠𝑡−𝑖𝑡 = (
ℎ

2
+ 𝑦 +

𝑤

2
) − 𝑐 = (

ℎ

2
+
ℎ

2
−
𝑤

2
+
𝑤

2
) − 𝑐 = ℎ − 𝑐 

𝐴𝑜𝑚𝑜𝑔
1𝑠𝑡−𝑖𝑡 = [𝑏 ∗ (

ℎ

2
+
ℎ

2
−
𝑤

2
+
𝑤

2
)] + 𝑛 (𝐴𝑠,𝑠𝑢𝑝 + 𝐴𝑠,𝑖𝑛𝑓) = (𝑏 ℎ) + (𝑛 ∗ 𝐴𝑠,𝑠𝑢𝑝) + (𝑛 ∗ 𝐴𝑠,𝑖𝑛𝑓) 

𝑑𝑔,𝑖𝑛𝑓
1𝑠𝑡−𝑖𝑡 = 𝑑𝑔,𝑠𝑢𝑝

1𝑠𝑡−𝑖𝑡 =
ℎ

2
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𝐼𝑜𝑚𝑜𝑔
1𝑠𝑡−𝑖𝑡 =

𝑏 ℎ3

12
+ [𝑛 𝐴𝑠,𝑠𝑢𝑝  (

ℎ

2
− 𝑐)

2

] + [𝑛 𝐴𝑠,𝑖𝑛𝑓  (
ℎ

2
− 𝑐)

2

] 

𝑆𝑚𝑎𝑥,𝑜𝑚𝑜𝑔
1−𝑠𝑡 = (𝑏 ℎ

ℎ

2
) + [𝑛 𝐴𝑠,𝑖𝑛𝑓  (

ℎ

2
− 𝑐)] 

 

3.2.2.6.4. Moment Vector 

As already explained in the previous chapter, failure criteria are all function of the external bending 

moment; therefore, to construct the domain, it has to define the vector of bending moments. 

In Matlab this was obtained by imposing the limit values that the user wants to consider, then 

creating a vector containing the moments, whose value do not exceed the maximum and the 

minimum imposed, at a constant step increment. 

From a practical point of view, the script first requires the limit values, then the step increment, 

which are all user’s choices, depending on the desired refinement, than creates the vector: 

𝑀𝑚𝑖𝑛 = 𝑀𝑚𝑖𝑛
̅̅ ̅̅ ̅̅ ̅ 

𝑀𝑚𝑎𝑥 = 𝑀𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ̅ 

𝑘 = �̅� 

𝑀′ = [𝑀𝑚𝑖𝑛: 𝑘:𝑀𝑚𝑎𝑥] 

This approach also considers the effects of the axial force not applied in the centroid of the cross 

section: iteration after iteration, the cross section decreases, the centroid of the reacting concrete 

moves but the external axial force remains applied in the geometrical centroid of the un-cracked 

element. This produces a moment acting against 𝑀′. 

The script calculates, at each iteration, the distance between the geometrical centroid of the un-

cracked cross section and the centroid of the reacting concrete, then evaluates the effective acting 

moments: 

𝑓𝑜𝑟   𝑦 = �̅� = [�̅�(1), �̅�(𝑖 + 1)] 

𝑒 =
ℎ

2
− 𝑑𝑔,𝑖𝑛𝑓(𝑦) 

𝑀 = 𝑀′ − 𝑒 𝑁 

Where 𝑁 corresponds to the vector of axial forces resulting from the previous iteration. 

 

 

 

The elements of this vector are the values for which the domain is calculated. 
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3.2.2.6.5. Shear Vector 

The same procedure adopted to define the vector of acting shear forces. The script needs the limit 

values that the user wants to consider, compute the step increment such that 𝑀 and 𝑇 have the same 

length, then creates the vector: 

𝑇𝑚𝑖𝑛 = 𝑇𝑚𝑖𝑛̅̅ ̅̅ ̅̅  

𝑇𝑚𝑎𝑥 = 𝑇𝑚𝑎𝑥̅̅ ̅̅ ̅̅  

𝑞 =
(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛) 𝑘

(𝑀𝑚𝑎𝑥 −𝑀𝑚𝑖𝑛)
 

𝑇′ = [𝑇𝑚𝑖𝑛: 𝑞: 𝑇𝑚𝑎𝑥] 

As already mentioned, the shear has assumed equal to the sum of two contributions, the concrete 

and transverse reinforcement resistances, which are complementary. Through the coefficient 𝜌, this 

has implemented. This coefficient is a function of 𝑦, therefore the script computes it at each 

iteration: 

𝑓𝑜𝑟   𝑦 = �̅� = [�̅�(1), �̅�(𝑖 + 1)] 

𝜌 =
6 𝑦 + 2 ℎ

5 ℎ
 

The transverse shear strength is simply: 

𝑉𝑅𝑑,𝑠 =
𝐴𝑠𝑤
𝑠
 0.9 𝑑 𝑓𝑦𝑑  cot𝜃 

The total shear has expressed in the script as reported below: 

𝑇 = 𝜌 𝑇′ + (1 − 𝜌) 𝑉𝑅𝑑,𝑠 

Thus, the shear resistance given by the concrete, which in previous chapters has indicated as 𝑇𝐽, the 

shear strength accounted by the Jourawsky’s theory, corresponds to the vector 𝑇′. 

 

3.2.2.6.6. Construction of the Domain 

All variables involved in failure criteria have defined, the script can solve the problem.  

First, the construction of the mesh, function of the vectors 𝑇 and 𝑀: 

𝑀 = [𝑀𝑚𝑖𝑛: 𝑘:𝑀𝑚𝑎𝑥] 

𝑇 = [𝑇𝑚𝑖𝑛: 𝑞: 𝑇𝑚𝑎𝑥] 

[𝑇,𝑀] = 𝑚𝑒𝑠ℎ𝑔𝑟𝑖𝑑 (𝑇,𝑀) 

Failure criteria implementation evaluated for all values of 𝑦: 

𝑓𝑜𝑟   𝑦 = [�̅�(1), �̅�(𝑖 + 1)] 
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𝑁 =
𝐴𝑜𝑚𝑜𝑔
𝑓𝑐𝑡𝑑

 (
𝜌 𝑇𝐽  𝑆𝑜𝑚𝑜𝑔
𝐼𝑜𝑚𝑜𝑔  𝑏

)

2

− 𝐴𝑜𝑚𝑜𝑔  𝑓𝑐𝑡𝑑 ∓
𝐴𝑜𝑚𝑜𝑔  (�̅� − 𝑁 𝑒)

𝐼𝑜𝑚𝑜𝑔
𝑦 

𝑁𝑐 = 𝐴𝑜𝑚𝑜𝑔
1𝑠𝑡−𝑖𝑡  𝑓𝑐𝑑 −

𝐴𝑜𝑚𝑜𝑔
1𝑠𝑡−𝑖𝑡

𝑓𝑐𝑑
 (
𝑇𝐽  𝑆𝑜𝑚𝑜𝑔

1𝑠𝑡−𝑖𝑡

𝐼𝑜𝑚𝑜𝑔
1𝑠𝑡−𝑖𝑡  𝑏

)

2

∓
𝐴𝑜𝑚𝑜𝑔

1𝑠𝑡−𝑖𝑡  𝑀

𝐼𝑜𝑚𝑜𝑔
1𝑠𝑡−𝑖𝑡 𝑦 

𝑁𝑠𝑡 =
𝐴𝑜𝑚𝑜𝑔  𝑓𝑦𝑑

𝑛
∓
𝐴𝑜𝑚𝑜𝑔  𝑀

𝐼𝑜𝑚𝑜𝑔
𝑦 

𝑁𝑠𝑐 =
𝐴𝑜𝑚𝑜𝑔  𝑓𝑦𝑑

𝑛
±
𝐴𝑜𝑚𝑜𝑔  𝑀

𝐼𝑜𝑚𝑜𝑔
𝑦 

 

3.2.2.6.7. Domains Refinement 

For each failure criteria, the software draws a limit surface. Those limit surfaces assume value 

from 𝑇𝑚𝑖𝑛 to  𝑇𝑚𝑎𝑥  in the shear dimension, from 𝑀𝑚𝑖𝑛 to  𝑀𝑚𝑎𝑥 in the moment dimension. 

Nevertheless, this does not correspond to the 𝑁-𝑇-𝑀 diagram. The interaction domain consists in 

the intersection of those surfaces: only the points standing below all the surfaces are admissible 

state of stress. 

The final 𝑁-𝑇-𝑀 diagram is the intersection of the surfaces corresponding to different failure criteria. 

In the script, this has obtained by cutting those surfaces in correspondence of their intersections. 

First, the limit surface corresponding to the fracture of the concrete under traction has cut in 

correspondence of the intersection with the surface of the concrete compressive failure. This has 

obtained asking the software to find the element of the matrix 𝑁, which are smaller than the 

corresponding elements in the matrix 𝑁𝑐, putting them equal to 𝑁𝑎𝑛. In the script: 

𝑓𝑜𝑟    𝑖 = [1: 𝑠𝑖𝑧𝑒(𝑁)] 

𝑓𝑜𝑟    𝑗 = [1: 𝑠𝑖𝑧𝑒(𝑁)] 

𝑖𝑓   𝑁(𝑖, 𝑗) ≤ 𝑁𝑐(𝑖, 𝑗), 𝑁(𝑖, 𝑗) = 𝑁𝑎𝑁 

Once bounded the tensile limit surface, the compressive one requires the same process. In this case, 

the software has to detect the element of the new matrix 𝑁 equal to 𝑁𝑎𝑛, and then put the 

corresponding elements of the matrix 𝑁𝑐 equal to 𝑁𝑎𝑛 as well. In the script, 𝑖𝑠𝑛𝑎𝑛(𝑁) returns a matrix 

of the same dimension of 𝑁 whose elements are 0 or 1: 0 if the corresponding element in 𝑁 is 

different from 𝑁𝑎𝑛, 1 if it is 𝑁𝑎𝑛. 

𝑁𝑎𝑛 = 𝑖𝑠𝑛𝑎𝑛(𝑁) 

Then is necessary to know the rows and the columns of the elements equal to 𝑁𝑎𝑛: 

[𝑁𝑎𝑛𝑥 , 𝑁𝑎𝑛𝑦] = 𝑓𝑖𝑛𝑑(𝑁𝑎𝑛 = 1) 

𝑣𝑁𝑎𝑛 = [𝑁𝑎𝑛𝑥 , 𝑁𝑎𝑛𝑦] 
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The vector 𝑛𝑎𝑛𝑥 contains all the rows of all the elements equal to 𝑁𝑎𝑛 in 𝑁; the vector 𝑛𝑎𝑛𝑦 contains 

all the columns of all the elements equal to 𝑁𝑎𝑛 in 𝑁. Thus, the element 𝑁 (𝑛𝑎𝑛𝑥(𝑖), 𝑛𝑎𝑛𝑦(𝑖))  is 𝑁𝑎𝑛. 

The corresponding elements of 𝑁𝑐 needs to be replaced with 𝑁𝑎𝑛: 

𝑓𝑜𝑟    𝑖 = [1: 𝑠𝑖𝑧𝑒(𝑛𝑎𝑛𝑥)] 

𝑝 = 𝑣𝑁𝑎𝑛  (𝑖: 1) 

𝑝1(𝑖) = 𝑝(1) 

𝑝𝑒𝑛𝑑(𝑖) = 𝑝(𝑒𝑛𝑑) 

𝑁𝑐(𝑝1(𝑖), 𝑝𝑒𝑛𝑑(𝑖)) = 𝑁𝑎𝑛 

Only positive values of bending moment have considered in order to compare them with the 𝑁-𝑀 

interaction diagram given by codes. In the script: 

[𝑀𝑛𝑒𝑔,𝑥 ,𝑀𝑛𝑒𝑔,𝑦] = 𝑓𝑖𝑛𝑑(𝑀 ≤ 0) 

𝑣𝑀,𝑛𝑒𝑔 = [𝑀𝑛𝑒𝑔,𝑥 ,𝑀𝑛𝑒𝑔,𝑦] 

𝑓𝑜𝑟    𝑖 = [1: 𝑠𝑖𝑧𝑒(𝑀𝑛𝑒𝑔,𝑥)] 

𝑜 = 𝑣𝑀,𝑛𝑒𝑔  (𝑖: 1) 

𝑜1(𝑖) = 𝑜(1) 

𝑜𝑒𝑛𝑑(𝑖) = 𝑜(𝑒𝑛𝑑) 

𝑀(𝑜1(𝑖), 𝑜𝑒𝑛𝑑(𝑖)) = 𝑁𝑎𝑛 

𝑁(𝑜1(𝑖), 𝑜𝑒𝑛𝑑(𝑖)) = 𝑁𝑎𝑛 

𝑇(𝑜1(𝑖), 𝑜𝑒𝑛𝑑(𝑖)) = 𝑁𝑎𝑛 

 

3.2.2.6.8. Plot of the Domain 

The final step is the plot of the domains. This has performed by means of a tri-dimensional plot of 

the refined matrices 𝑁, 𝑇 and 𝑀: 

𝑠 = 𝑠𝑢𝑟𝑓(𝑁, 𝑇,𝑀) 

𝑠𝑐 = 𝑠𝑢𝑟𝑓(𝑁𝑐 , 𝑇,𝑀) 

𝑠𝑠𝑡 = 𝑠𝑢𝑟𝑓(𝑁𝑠𝑡, 𝑇, 𝑀) 

𝑠𝑠𝑐 = 𝑠𝑢𝑟𝑓(𝑁𝑠𝑐 , 𝑇,𝑀) 

The verification consists in checking that the solicitation point, defined by the triplet (𝑁𝑎𝑐𝑡, 𝑇𝑎𝑐𝑡 , 𝑀𝑎𝑐𝑡), 

values of solicitation acting on the element, falls inside the domain. If it stays out of the domain 

means that the element is not verified. 
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Figure 3.2.2.6.8.1 – Plot of the domain for the whole cross section working 

This elastic limit surface has compared with the N-M domain. Certainly, they don’t have to coincide, 

since the suggested diagram corresponds to an elastic condition while the N-M domain represents 

ultimate conditions. The comparison is just to underline the difference between the elastic limit 

surface and the ultimate one. 

The N-M domain has plotted for all values of the shear in order to get a surface, not a line. 
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Figure 3.2.2.6.8.1 – Elastic domain inside the ultimate N-M domain 
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4. Nonlinear Evaluation of the Cross Section as 

a Sequence of Linear Analyses 

 

This research continued with the development of a fiber model able to capture which type of failure 

affects the reinforced concrete member, how it evolves throughout the element, if it is possible to 

achieve an equilibrium condition under specified solicitations and, finally, according to all those 

aspects, reconstruct the interaction domain 𝑁-𝑇-𝑀. 

The two failure modes considered are the achievement of the compressive strength of the concrete 

in correspondence of the most compressed fiber or the achievement of the tensile strength of the 

concrete in the tensest one. 

This has obtained by dividing the cross section in a certain number of fiber, depending on the level 

of refinement that the user requires. According to the stress state on the element, two main 

scenarios are possible. The most compressed fiber overcomes the compressive strength of the 

material, it means that the concrete crushes and is no longer possible to understand how the failure 

develops. The other case happens when the tensest fiber reaches the tensile strength of the element: 

in this case, that fiber cracks, the reacting cross-section is no longer the initial one but reduced of 

that fiber. The stress state evaluation can be performed again on the reduced element: if stresses 

do not exceeds the tensile limit the procedure stops, otherwise, if tensile stress is still above the 

limit, another fiber cracks, the working cross section further reduces, the procedure goes on. 

To summarize, the study proceeds through some main steps:  

5. Evaluation of basic parameters necessary for following steps; 

6. Computation of normal stresses on the cross section; 

7. Tangential stresses distribution throughout the height of the cross section; 

8. According to the stress state, evaluation of the cross section condition. If the acting forces 

do not produce critical conditions, such as tensile stresses above the tensile strength of the 

concrete or compressive stresses exceeding the compressive strength of the material, the 

procedure stops; otherwise, according to the critical condition affecting the element, the 

analysis studies how the failure mode develops. 
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4.1. Basic Quantities Definition 

Even in this case, the analysis begins with the definition of geometrical and material properties, 

which are listed below: 

- 𝑏, the base of the cross section of the reinforced concrete element considered; 

- ℎ is the height of the cross section; 

- 𝑐, the clear cover of steel reinforcement; therefore the effective depth derives: 

𝑑 = ℎ − 𝑐 

- 𝐴𝑠,𝑠𝑢𝑝 defines the steel area of reinforcement in the upper part of the cross section;  

- 𝐴𝑠,𝑖𝑛𝑓 is the steel area of reinforcement in the lower part of the cross section;  

- 𝛷𝑠𝑡 stands for the diameter of transvers reinforcement; 

- 𝑛𝑠𝑡 is the number of arms of transvers reinforcement; 

- 𝑠𝑠𝑡 represents the spacing of stirrups; thus, the cross sectional area of shear reinforcement: 

𝐴𝑠𝑤 = 𝑛𝑠𝑡  [𝜋 (
𝛷𝑠𝑡
2
)
2

] 

- 𝑓𝑐𝑑 corresponds to the design compressive strength of the concrete; 

- 𝑓𝑐𝑡𝑑 characterises to the design tensile strength of the concrete, assumed equal to 0.1 𝑓𝑐𝑑; 

- 𝑓𝑦𝑑 is the design strength of steel reinforcements; 

- 𝐸𝑐 represents the Young’s modulus of the concrete, computed as function of the design 

compressive strength of concrete, as prescribed by codes: 

𝐸𝑐 = 22000 [(
𝑓𝑐𝑑
10
)
0.3

] 

- 𝐸𝑠 is the elasticity modulus of the steel; hence, the homogenisation coefficient defines as: 

𝑛 =
𝐸𝑐
𝐸𝑠

 

As already mentioned, the fiber model has obtained by dividing the height of the cross-section in a 

number of fiber, thus, to compute following quantities, is necessary to first define the mesh. This 

has obtained by dividing the height of the cross section, ℎ, in a certain number of fiber defined by 

the variable 2𝑁, the width of each fiber defines as follows: 

𝑤 =
ℎ

2 𝑁
 

Then the vector of the considered fiber: 

𝑦 = [(
ℎ

2
−
𝑤

2
),   (

ℎ

2
− 𝑤 −

𝑤

2
),   (

ℎ

2
− 2 𝑤 −

𝑤

2
)  …   (

ℎ

2
− (𝑁 − 1) 𝑤 −

𝑤

2
)] 

For each fiber, the following quantities, which appear in the strength criteria, change: 

- The effective depth: 

𝑑 = (
ℎ

2
+ 𝑦 +

𝑤

2
) − 𝑐 
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- The homogenized cross section into concrete: 

𝐴𝑜𝑚𝑜𝑔 = [𝑏 ∗ (
ℎ

2
+ 𝑦 +

𝑤

2
)] + (𝑛 ∗ 𝐴𝑠,𝑠𝑢𝑝) + (𝑛 ∗ 𝐴𝑠,𝑖𝑛𝑓) 

Where 𝑛 represents the homogenization coefficient, defined as the ratio between the young 

modulus of the steel over the one of the concrete; 

- The position of the centroid of the cross section, expressed as its distance with respect to 

the lower edge of the element: 

𝑑𝑔,𝑖𝑛𝑓 =
𝑆

𝐴𝑜𝑚𝑜𝑔
 

𝑑𝑔,𝑠𝑢𝑝 = ℎ − 𝑑𝑔,𝑖𝑛𝑓 

Where: 

- 𝑆 is the static moment of the cross section with respect to the lower edge: 

𝑆 = {𝑏 ∗ (
ℎ

2
+ 𝑦 +

𝑤

2
) ∗ [

(
ℎ
2
+ 𝑦 +

𝑤
2
)

2
]} + [𝑛 𝐴𝑠,𝑠𝑢𝑝  (

ℎ

2
− 𝑐)] + (𝑛 𝐴𝑠,𝑖𝑛𝑓 𝑐) 

- The moment of inertia of the reacting cross section: 

𝐼𝑜𝑚𝑜𝑔 = (
𝑏 𝑑𝑔,𝑖𝑛𝑓

3

3
)+

{
 
 

 
 𝑏 [𝑑𝑔,𝑠𝑢𝑝 − (

ℎ
2 −

(𝑦 +
𝑤
2
))]

3

 

3

}
 
 

 
 

+ [𝑛 𝐴𝑠,𝑠𝑢𝑝  (𝑑𝑔,𝑠𝑢𝑝 − 𝑐)
2
]

+ [𝑛 𝐴𝑠,𝑖𝑛𝑓 (𝑑𝑔,𝑖𝑛𝑓 − 𝑐)
2
] 

 

- The static moment of the portion of cross section under the centroidal fiber, corresponding 

to the maximum tangential stress: 

𝑆𝑚𝑎𝑥,𝑜𝑚𝑜𝑔 = (𝑏 𝑑𝑔,𝑖𝑛𝑓
𝑑𝑔,𝑖𝑛𝑓
2

) + [𝑛 𝐴𝑠,𝑖𝑛𝑓 (𝑑𝑔,𝑖𝑛𝑓 − 𝑐)] 

 

4.2. Hypotheses 

Also in this case, the analysis founds on some main hypothesis: 

- Perfect bound between concrete and steel reinforcements; 

- Conservation of flat cross sections; 

- Elastic behaviour of the materials; 

- Homogenised cross section: the steel homogenised to concrete by means of the 

homogenisation coefficient, 𝑛; 

- The concrete has assumed to work under traction if tensile stresses do not exceed the tensile 

strength of the material. 
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4.3. Evaluation of Normal Stresses Distribution on the Cross-Section 

To calculate the distribution of normal stresses along the cross section, the Navier’s formulation 

has used. Since this method assumes the concrete working under traction if stresses stay below the 

limit value, fibers subjected to traction under the tensile strength of the concrete have to be 

accounted.  

First, the definition of the neutral axis position by evaluating the 𝑦-coordinate, with respect to the 

geometrical centroid of the entirely working cross section, where the normal stress due to both axial 

force and bending moments, is null. The Navier’s formula, for 𝜎 equal to zero, solved for the 

coordinate 𝑦, gives the neutral axis position with respect to the centroid of the cross-section: 

0 =
𝑁𝑎𝑐𝑡
𝐴𝑜𝑚𝑜𝑔

±
𝑀𝑎𝑐𝑡 − (𝑁𝑎𝑐𝑡  𝑒)

𝐼𝑜𝑚𝑜𝑔
𝑦𝑛.𝑎. 

Where: 

- 𝑁𝑎𝑐𝑡 is the axial force acting on the considered member; 

- 𝑀𝑎𝑐𝑡 corresponds to the acting bending moment; 

- 𝐴𝑜𝑚𝑜𝑔 represents the homogenised cross-section area of the element; 

- 𝐼𝑜𝑚𝑜𝑔 is the moment of inertia of the homogenised cross-section; 

- 𝑦 stands for the distance of the considered fiber from the neutral axis. 

As it can observed from the equation, the effect of the decentralized axial force has considered: if 

tensile stresses overcomes the tensile strength of the concrete, the cross section reduces, the axial 

force still applies at the same point, the centroid of the cross section fully working, but the centroid 

of the reacting cross section moves. This consists of a decentralized axial force, considered in the 

procedure by reducing the acting bending by means of the acting axial force, 𝑁𝑎𝑐𝑡, multiplied by the 

eccentricity, 𝑒, defined as the distance between the centroid of the initial cross section, 
ℎ

2
, and the 

actual position of the centroid, 𝑑𝑔,𝑠𝑢𝑝: 

𝑒 =
ℎ

2
− 𝑑𝑔,𝑠𝑢𝑝 

Solving for 𝑦: 

𝑦𝑛.𝑎. = ±
𝑁𝑎𝑐𝑡

𝑀𝑎𝑐𝑡 − (𝑁𝑎𝑐𝑡  𝑒)

𝐴𝑜𝑚𝑜𝑔
𝐼𝑜𝑚𝑜𝑔

 

Knowing the neutral axis position, the normal stresses diagram is a linear distribution from the 

most compressed to the tensest fiber, passing through zero in correspondence of the neutral axis. 

It has evaluated by means of the Navier’s equation, where 𝑦𝑖 corresponds to the distance from the 

neutral axis: 

𝜎𝑖 =
𝑁𝑎𝑐𝑡
𝐴𝑜𝑚𝑜𝑔

±
𝑀𝑎𝑐𝑡 − (𝑁𝑎𝑐𝑡  𝑒)

𝐼𝑜𝑚𝑜𝑔
𝑦𝑖 
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4.4. Evaluation of Tangential Stresses Distribution on the Cross-

Section 

The tangential stresses diagram has computed by means of the Jourawsky’s formula: 

𝜏 =
𝑇𝑎𝑐𝑡  𝑆𝑜𝑚𝑜𝑔
𝐼𝑜𝑚𝑜𝑔  𝑏

 

Where: 

- 𝑇𝑎𝑐𝑡 is the acting shear force; 

- 𝑆𝑜𝑚𝑜𝑔 corresponds to the static moment of the homogenised cross section under the 

considered fiber; 

- 𝐼𝑜𝑚𝑜𝑔 represents the moment of inertia of the element; 

- 𝑏 is the base of the cross section. 

Jourawsky’s equation gives a parabolic distribution of stresses along the height of the element, null 

in correspondence of the lower and upper edge of the cross section, maximum for the centroidal 

fiber, if the member is no to cracked. If the crack propagates up to the steel reinforcement, the 

distribution is parabolic throughout the reacting height, null in correspondence of the upper 

compressed edge of the element and the lower un-cracked fiber, maximum in the centroid of the 

working element. Finally, if the crack develops beyond the steel rebar, the tangential stresses 

distribution is null at the upper compressed fiber, parabolic until the last un-cracked one. The 

distribution is characterised by a maximum value in correspondence of the centroid of the reacting 

cross-section, then it decreases until the last un-cracked fiber where tangential stress is different 

from zero. The distribution is then constant up to the position of steel reinforcements. This derives 

from the fact that, even if the concrete is cracked beyond the steel bars position, longitudinal steel 

reinforcement are still working, which means that the static moment goes to zero only below 

reinforcement. 

The formulae used for the static moment depend on the considered fiber. Defining the position of 

the considered fiber as 𝑖, the distance from the upper edge: 

- If 𝑖 ≤ 𝑐: 𝑆𝑜𝑚𝑜𝑔 = 𝑏 𝑖 (𝑑𝑔,𝑠𝑢𝑝 −
𝑖
2⁄ ); 

- If 𝑐 < 𝑖 ≤ (ℎ − 𝑐): 𝑆𝑜𝑚𝑜𝑔 = 𝑏 𝑖 (𝑑𝑔,𝑠𝑢𝑝 −
𝑖
2⁄ ) + 𝑛 𝐴𝑠,𝑠𝑢𝑝 (𝑑𝑔,𝑠𝑢𝑝 − 𝑐); 

- If 𝑖 ≥ (ℎ − 𝑐): 𝑆𝑜𝑚𝑜𝑔 = 𝑏 𝑖 (𝑑𝑔,𝑠𝑢𝑝 −
𝑖
2⁄ ) + 𝑛 𝐴𝑠,𝑠𝑢𝑝  (𝑑𝑔,𝑠𝑢𝑝 − 𝑐) − 𝑛 𝐴𝑠,𝑖𝑛𝑓 (𝑑𝑔,𝑖𝑛𝑓 − 𝑐); 
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Figure 4.4.1 – State of stress of the generic cross-section 

 

4.5. Analysis of the Condition of the Cross Section 

Once computed both the normal and tangential stress distributions is then possible to analyse the 

condition of the cross section and understand what kind of damages develops on the member. The 

two types of failure correspond to the crushing of the concrete because of excessive compressive 

stresses, above the compressive strength of the material, or the cracking of the concrete due to 

tensile stress above the tensile strength of the concrete. 

If the distribution of normal stresses shows that, in correspondence of the upper edge of the cross 

section, the fiber is subjected to a compressive stress that is higher than the compressive strength 

of the material, a local crushing of the fiber happens. In this case is no longer possible to proceed 

with the analysis because there are no formulae able to capture how the crushing develops along 

the member.  

If the distribution of stresses shows, in correspondence of the lower edge of the element, a tensile 

stress higher than the maximum one, the concrete fiber cracks. In this case is possible to proceed 

with the analysis indeed, according to the value of normal stress, 𝜎𝑐𝑟𝑎𝑐𝑘, and the tangential one, 𝜏𝑐𝑟𝑎𝑐𝑘 , 

acting on that fiber, the inclination of the crack derives: 
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𝜃𝑐𝑟𝑎𝑐𝑘 =
1

2
 tan−1 (

2 𝜏𝑐𝑟𝑎𝑐𝑘
𝜎𝑐𝑟𝑎𝑐𝑘

) 

Since the last fiber is cracked, that portion of the cross section is no longer working. To move on in 

the evaluation of the development of this type of failure, the following iteration consists in 

computing again the stress state, both normal both tangential, on a reduced member, corresponding 

to the initial one without the cracked fiber. Also at this second iteration, the crack inclination comes 

out as a function of the state of stress on the fiber. The reduction of the cross sections, and therefore 

the iterations, continue until the normal stress acting on the last un-cracked fiber results lower than 

the tensile strength of the material. 

At the end of the iteration, the development of the failure has obtained, consisting in the drawing 

of the crack along the element, function of the normal stress state, due to axial force, 𝑁, and bending 

moment, 𝑀, and tangential stress related to the acting shear force, 𝑇. 

By means of this procedure the interaction between the axial force, shear ad bending moment has 

considered at a fiber level, resulting in a 𝑁-𝑇-𝑀 interaction on the crack development throughout 

the cross section. 

The script returns the vector of normal stresses and the one of tangential stresses on the remaining 

reacting cross section at the equilibrium condition, which corresponds to the state of stress having 

both the upper compressed edge and the last un-cracked fiber subjected to stresses below the limits. 

It also gives a plot of the cracked element. 
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5. Suggested Procedure 

 

Once separately considered the construction of the 𝑁-𝑇-𝑀 interaction domain, based on the Mohr’s 

theory, Navier and Jourawsky’s equations, and the fiber model analysing the development of the 

type of failure, this two studies have joined. The result is a procedure able to capture how the 

interaction between axial force, shear and bending, affects a column element and which type of 

failure results on the member. 

What has to be determined first is the state of stress on the cross section element. Following the 

procedure explained in the previous chapter, it can be computed the maximum compressive stress 

acting on the fiber corresponding to the upper edge of the cross section and the maximum tensile 

stress on the lowest fiber of the element. All the possible scenarios are the four following ones: 

1. 𝜎1
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒

< 𝑓𝑐𝑡𝑚   and   𝜎2
𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒

< 𝑓𝑐𝑚: this corresponds to an admissible stress state, the 

cross section does not crush neither crack, it elastically carries the external forces; 

2. 𝜎1
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒

< 𝑓𝑐𝑡𝑚   and   𝜎2
𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒

> 𝑓𝑐𝑚: the fiber at the lowest extremity of the element is 

subjected to tensile stresses below the tensile strength of the material but the highest 

compressed fiber is solicited by stresses greater than the compressive strength of the 

concrete. This produce a local crushing of the fiber; 

3.  𝜎1
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒

> 𝑓𝑐𝑡𝑚   and   𝜎2
𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒

> 𝑓𝑐𝑚: this case is characterised by the overcoming of both 

the tensile strength in the lowest fiber and the compressive strength of the concrete in the 

highest one, which means local cracking of the lowest fiber and local crushing of the highest 

one. 

4. 𝜎1
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒

> 𝑓𝑐𝑡𝑚   and   𝜎2
𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒

< 𝑓𝑐𝑚:  this scenario corresponds to the achievement of the 

tensile strength of the concrete at the lowest fiber under traction but admissible stresses at 

the upper compressed fiber. In this case, the tensest fiber cracks. The final condition of the 

cross section has to be determined by proceeding with the iteration: the cross section 

reduces, the cracked fiber at the extremity has no longer considered, the tangential and 

normal stresses distributions change. 

The new state of stress may fall inside all the scenarios mentioned above. 

According to the type of failure experienced, it can appear a local failure or a global one: the cracking 

could affect a limited portion of the cross section or it could develop throughout the element. They 

correspond respectively to local and global cracking of the element considered. As for the cracking, 
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the crushing could be limited only to a portion of the cross section, when a fiber exceeds the 

compressive strength but, as a whole, the element withstands the forces acting on it, which means 

that the 𝑁-𝑀 domains verification is satisfied. On the other hand it could happen a global crushing, 

when the fiber at the extremity of the cross section reaches the compressive strength of the material 

and the 𝑁-𝑀 domains verification is not satisfied. 

Following this procedure is possible to understand how the element responds to external 

solicitation, what kind of damage affects the member and how this damage propagates, the type of 

condition the member experience, elastic or ultimate, or, if the elements fails, which type of failure 

derives. 

The suggested procedure is summarised by a flow chart reported below. 

 

Figure 5.1 – Flow chart,  suggested procedure 

 

5.1. Input Data 

The procedure requires the definition of some input data. This information are: 

- 𝑏, the base of the cross section of the reinforced concrete element considered; 
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- ℎ is the height of the cross section; 

- 𝑐, the clear cover of steel reinforcement; therefore the effective depth derives: 

𝑑 = ℎ − 𝑐 

- 𝐴𝑠,𝑠𝑢𝑝 defines the steel area of reinforcement in the upper part of the cross section;  

- 𝐴𝑠,𝑖𝑛𝑓 is the steel area of reinforcement in the lower part of the cross section;  

- 𝛷𝑠𝑡 stands for the diameter of transvers reinforcement; 

- 𝑛𝑠𝑡 is the number of arms of transvers reinforcement; 

- 𝑠𝑠𝑡 represents the spacing of stirrups; thus, the cross sectional area of shear reinforcement: 

𝐴𝑠𝑤 = 𝑛𝑠𝑡  [𝜋 (
𝛷𝑠𝑡
2
)
2

] 

- 𝑓𝑐𝑑 corresponds to the design compressive strength of the concrete; 

- 𝑓𝑐𝑡𝑑 characterises to the design tensile strength of the concrete, assumed equal to 0.1 𝑓𝑐𝑑; 

- 𝑓𝑦𝑑 is the design strength of steel reinforcements; 

- 𝐸𝑐 represents the Young’s modulus of the concrete, computed as function of the design 

compressive strength of concrete, as prescribed by codes: 

𝐸𝑐 = 22000 [(
𝑓𝑐𝑑
10
)
0.3

] 

- 𝐸𝑠 is the elasticity modulus of the steel; hence, the homogenisation coefficient defines as: 

𝑛 =
𝐸𝑐
𝐸𝑠

 

 

5.2. Elastic Evaluation of the Cross Section 

5.2.1. Basic Quantities Evaluation 

Since the procedure derives from the combination of the fiber model that analyses the stress state 

of the cross section and the model that construct the interaction domain, also in this case the 

subdivision of the cross section into fibers is the first step. 

Even in this case the discretization of the domain has obtained by dividing the height of the cross 

section, ℎ, in a number of fiber defined by the variable 2𝑁, the width of each fiber derives as follows: 

𝑤 =
ℎ

2 𝑁
 

Then the vector of the coordinate of the generic considered fiber: 

𝑦 = [(
ℎ

2
−
𝑤

2
),   (

ℎ

2
− 𝑤 −

𝑤

2
),   (

ℎ

2
− 2 𝑤 −

𝑤

2
)  …   (

ℎ

2
− (𝑁 − 1) 𝑤 −

𝑤

2
)] 

Depending on those two terms, some basic quantities that appear in Navier’s equation and 

Jourawsky’s formula, therefore necessary to calculate the stress state diagrams derive. 
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This corresponds to the first step of the procedure. The elastic evaluation of the cross section 

consists in the computation of those basic quantities: 

- The effective depth: 

𝑑 = (
ℎ

2
+ 𝑦 +

𝑤

2
) − 𝑐 

- The homogenized cross section into concrete: 

𝐴𝑜𝑚𝑜𝑔 = [𝑏 ∗ (
ℎ

2
+ 𝑦 +

𝑤

2
)] + (𝑛 ∗ 𝐴𝑠,𝑠𝑢𝑝) + (𝑛 ∗ 𝐴𝑠,𝑖𝑛𝑓) 

Where 𝑛 represents the homogenization coefficient, which corresponds to the ratio between 

the young modulus of the steel over the one of the concrete; 

- The position of the centroid of the cross section, expressed as its distance with respect to 

the lower edge of the element: 

𝑑𝑔,𝑖𝑛𝑓 =
𝑆

𝐴𝑜𝑚𝑜𝑔
 

𝑑𝑔,𝑠𝑢𝑝 = ℎ − 𝑑𝑔,𝑖𝑛𝑓 

Where: 

- 𝑆 is the static moment of the cross section with respect to the lower edge: 

𝑆 = {𝑏 ∗ (
ℎ

2
+ 𝑦 +

𝑤

2
) ∗ [

(
ℎ
2 + 𝑦 +

𝑤
2
)

2
]} + [𝑛 𝐴𝑠,𝑠𝑢𝑝  (

ℎ

2
− 𝑐)] + (𝑛 𝐴𝑠,𝑖𝑛𝑓 𝑐) 

- The moment of inertia of the reacting cross section: 

𝐼𝑜𝑚𝑜𝑔 = (
𝑏 𝑑𝑔,𝑖𝑛𝑓

3

3
)+

{
 
 

 
 𝑏 [𝑑𝑔,𝑠𝑢𝑝 − (

ℎ
2 −

(𝑦 +
𝑤
2
))]

3

 

3

}
 
 

 
 

+ [𝑛 𝐴𝑠,𝑠𝑢𝑝  (𝑑𝑔,𝑠𝑢𝑝 − 𝑐)
2
]

+ [𝑛 𝐴𝑠,𝑖𝑛𝑓 (𝑑𝑔,𝑖𝑛𝑓 − 𝑐)
2
] 

 

- The static moment of the portion of cross section under the centroidal fiber, corresponding 

to the maximum tangential stress: 

𝑆𝑚𝑎𝑥,𝑜𝑚𝑜𝑔 = (𝑏 𝑑𝑔,𝑖𝑛𝑓
𝑑𝑔,𝑖𝑛𝑓
2

) + [𝑛 𝐴𝑠,𝑖𝑛𝑓 (𝑑𝑔,𝑖𝑛𝑓 − 𝑐)] 

 

5.2.2. Normal Stresses Distribution 

As already mentioned in the previous chapter, to calculate the distribution of normal stresses along 

the cross section, the Navier’s formulation has used. The assumption of the concrete working under 

traction until the tensile strength of the material requires the definition of the neutral axis at first. 



104 
 

It is obtained from the Navier’s formula imposing 𝜎 equal to zero and solving for the coordinate 𝑦. 

This gives the neutral axis position with respect to the centroid of the cross-section: 

0 =
𝑁𝑎𝑐𝑡
𝐴𝑜𝑚𝑜𝑔

±
𝑀𝑎𝑐𝑡 − (𝑁𝑎𝑐𝑡  𝑒)

𝐼𝑜𝑚𝑜𝑔
𝑦𝑛.𝑎. 

Where: 

- 𝑁𝑎𝑐𝑡 is the axial force acting on the considered member; 

- 𝑀𝑎𝑐𝑡 corresponds to the acting bending moment; 

- 𝐴𝑜𝑚𝑜𝑔 represents the homogenised cross-section area of the element; 

- 𝐼𝑜𝑚𝑜𝑔 is the moment of inertia of the homogenised cross-section; 

- 𝑦 stands for the distance of the considered fiber from the neutral axis. 

As already explained, the effect of the decentralized axial force has considered by reducing the 

acting bending by means of the acting axial force, 𝑁𝑎𝑐𝑡, multiplied by the eccentricity, 𝑒, defined as 

the distance between the centroid of the initial cross section, 
ℎ

2
, and the actual position of the 

centroid, 𝑑𝑔,𝑠𝑢𝑝: 

𝑒 =
ℎ

2
− 𝑑𝑔,𝑠𝑢𝑝 

Solving for 𝑦: 

𝑦𝑛.𝑎. = ±
𝑁𝑎𝑐𝑡

𝑀𝑎𝑐𝑡 − (𝑁𝑎𝑐𝑡  𝑒)

𝐴𝑜𝑚𝑜𝑔
𝐼𝑜𝑚𝑜𝑔

 

Once computed the neutral axis position, the normal stresses diagram is a linear distribution from 

the most compressed to the tensest fiber, passing through zero in correspondence of the neutral 

axis. It has evaluated by means of the Navier’s equation, where 𝑦𝑖 corresponds to the distance from 

the neutral axis: 

𝜎𝑖 =
𝑁𝑎𝑐𝑡
𝐴𝑜𝑚𝑜𝑔

±
𝑀𝑎𝑐𝑡 − (𝑁𝑎𝑐𝑡  𝑒)

𝐼𝑜𝑚𝑜𝑔
𝑦𝑖 

 

5.2.3. Tangential Stresses Diagram 

The tangential stresses diagram has computed by means of the Jourawsky’s formula: 

𝜏 =
𝑇𝑎𝑐𝑡  𝑆𝑜𝑚𝑜𝑔
𝐼𝑜𝑚𝑜𝑔  𝑏

 

Where: 

- 𝑇𝑎𝑐𝑡 is the acting shear force; 

- 𝑆𝑜𝑚𝑜𝑔 corresponds to the static moment of the homogenised cross section under the 

considered fiber; 
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- 𝐼𝑜𝑚𝑜𝑔 represents the moment of inertia of the element; 

- 𝑏 is the base of the cross section. 

Jourawsky’s equation gives a parabolic distribution of stresses along the height of the element, null 

in correspondence of the lower and upper edge of the cross section, maximum for the centroidal 

fiber, if the member is not cracked. If the crack propagates up to the steel reinforcement, the 

distribution is parabolic throughout the reacting height, null in correspondence of the upper 

compressed edge of the element and the lower un-cracked fiber, maximum in the centroid of the 

working element. Finally, if the crack develops beyond the steel rebar, the tangential stresses 

distribution is null at the upper compressed fiber, parabolic until the last un-cracked one. The 

distribution is characterised by a maximum value in correspondence of the centroid of the reacting 

cross-section, then it decreases until the last un-cracked fiber where tangential stress is different 

from zero. The distribution is then constant up to the position of steel reinforcements. This derives 

from the fact that, even if the concrete is cracked beyond the steel bars position, longitudinal steel 

reinforcement are still working, which means that the static moment goes to zero only below 

reinforcement. 

The formulae used for the static moment depend on the considered fiber. Defining the position of 

the considered fiber as 𝑖, the distance from the upper edge: 

- If 𝑖 ≤ 𝑐: 𝑆𝑜𝑚𝑜𝑔 = 𝑏 𝑖 (𝑑𝑔,𝑠𝑢𝑝 −
𝑖
2⁄ ); 

- If 𝑐 < 𝑖 ≤ (ℎ − 𝑐): 𝑆𝑜𝑚𝑜𝑔 = 𝑏 𝑖 (𝑑𝑔,𝑠𝑢𝑝 −
𝑖
2⁄ ) + 𝑛 𝐴𝑠,𝑠𝑢𝑝 (𝑑𝑔,𝑠𝑢𝑝 − 𝑐); 

- If 𝑖 ≥ (ℎ − 𝑐): 𝑆𝑜𝑚𝑜𝑔 = 𝑏 𝑖 (𝑑𝑔,𝑠𝑢𝑝 −
𝑖
2⁄ ) + 𝑛 𝐴𝑠,𝑠𝑢𝑝  (𝑑𝑔,𝑠𝑢𝑝 − 𝑐) − 𝑛 𝐴𝑠,𝑖𝑛𝑓 (𝑑𝑔,𝑖𝑛𝑓 − 𝑐); 

 

5.3. Possible Alternative Scenarios 

The evaluation of the normal and tangential stresses diagrams corresponds to the elastic analysis 

of the cross section, which is the first step of the procedure. At this point, the flow chart divides in 

four possible scenarios, depending on the stress state, which are: 

1. 𝜎1
𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒

< 𝑓𝑐𝑡𝑚   and   𝜎2
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒

< 𝑓𝑐𝑚: this corresponds to an admissible stress state, the 

cross section does not crush neither crack, it elastically carries the external forces; 

2. 𝜎1
𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒

< 𝑓𝑐𝑡𝑚   and   𝜎2
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒

> 𝑓𝑐𝑚: the fiber at the lowest extremity of the element is 

subjected to tensile stresses below the tensile strength of the material but the highest 

compressed fiber is solicited by stresses greater than the compressive strength of the 

concrete. This produce a local crushing of the fiber; 

3.  𝜎1
𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒

> 𝑓𝑐𝑡𝑚    and   𝜎2
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒

> 𝑓𝑐𝑚: this case is characterised by the overcoming of both 

the tensile strength in the lowest fiber and the compressive strength of the concrete in the 

highest one, which means local cracking of the lowest fiber and local crushing of the highest 

one. 
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4. 𝜎1
𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒

> 𝑓𝑐𝑡𝑚    and   𝜎2
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒

< 𝑓𝑐𝑚:  this scenario corresponds to the achievement of the 

tensile strength of the concrete at the lowest fiber under traction but admissible stresses at 

the upper compressed fiber. In this case, the tensest fiber cracks. The final condition of the 

cross section has to be determined by proceeding with the iteration: the cross section 

reduces, the cracked fiber at the extremity has no longer considered, the tangential and 

normal stresses distributions change. 

The new state of stress may fall inside all the scenarios mentioned above. 

The only alternative that allows the iteration is the one corresponding to principal tensile stress 

greater than its limit and admissible principal compressive stress, 𝜎1
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒

> 𝑓𝑐𝑡𝑚 and 𝜎2
𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒

<

𝑓𝑐𝑚. In this case, according the state of stress is possible to reconstruct the development of the crack, 

since that fiber is no longer working, the procedure goes on, the cross section reduces and the elastic 

evaluation of the cross section repeats.  

One scenario, 𝜎1
𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒

< 𝑓𝑐𝑡𝑚  and 𝜎2
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒

< 𝑓𝑐𝑚, correspond to an equilibrium condition, thus the 

procedure stops. 

The remaining two scenarios, corresponding to the crushing of the compressed concrete, cannot be 

further analysed in terms of damage development. There cannot be any iteration.  

Therefore, the possible paths throughout the flow chart are six; they are deeply explained in 

following paragraphs. 
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5.3.1. First Scenario 

The first elastic evaluation of the cross section shows a stress state such that both principal tensile 

stress at the lowest fiber and principal compressive stress at the upper edge stand below respective 

limits: 

 

Figure 5.3.1.1 – Path corresponding to the first scenario in the flow chart  

(𝜎1
𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒

)
1𝑠𝑡 𝑖𝑡.

< 𝑓𝑐𝑡𝑑 

(𝜎2
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒)

1𝑠𝑡 𝑖𝑡.
< 𝑓𝑐𝑑 

This means that the cross section does not crack, it is able to carry external forces in elastic 

condition.  

Since the element does not crack, there is no need for further verifications. 
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5.3.2. Second Scenario 

 At the first elastic evaluation of the cross section, the stress state is characterised by the principal 

tensile stress at the lowest fiber smaller than its limit value and the principal compressive stress at 

the upper edge below the compressive strength of the concrete: 

 

Figure 5.3.2.1 – Path corresponding to the second scenario in the flow chart  

(𝜎1
𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒

)
1𝑠𝑡 𝑖𝑡.

< 𝑓𝑐𝑡𝑑 

(𝜎2
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒)

1𝑠𝑡 𝑖𝑡.
> 𝑓𝑐𝑑 

It corresponds to admissible tensile stresses, thus no openings of cracks, but the too high 

compressive stress produces the crushing of the concrete.  

In this case, it is not possible to investigate further the damage development because no theory 

captures it.  

What can be analysed is the type of crushing: local or global. A local damage is certainly happening, 

but it could also affect the whole element. It could be limited only to a portion of the cross section, 

when a fiber exceeds the compressive strength but, as a whole, the element withstands the forces 
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acting on it. On the other hand, it could happen a global crushing, when the element is not able to 

carry external forces. 

This information can be deduced from traditional 𝑁-𝑀 interaction domains. If the solicitation point 

falls inside the domain, it could conclude that, as a whole, the column withstands the external force, 

it does not entirely crash. If the point falls out means that the member fails under those actions, 

thus the crushing is not limited to a fiber but it involves the entire element. 

 

5.3.3. Third Scenario 

At the first elastic evaluation of the cross section, the stress state is such that both the principal 

tensile stress at the lowest fiber and the principal compressive stress at the highest edge exceed 

their respective limit values: 

 

Figure 5.3.3.1 – Path corresponding to the third scenario in the flow chart  

(𝜎1
𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒)

1𝑠𝑡 𝑖𝑡.
> 𝑓𝑐𝑡𝑑 

(𝜎2
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒

)
1𝑠𝑡 𝑖𝑡.

> 𝑓𝑐𝑑 
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At the very first analysis, both failure criteria overcame. Even in this case no further study of the 

development of the damage. It can be defined the type of crushing, basing on the traditional 𝑁-𝑀 

interaction domains: if the point falls out, the whole element crushes, hence the entire element fails; 

if the 𝑁-𝑀 domain verification is satisfied, the crushing of the concrete affects only a limited portion 

of the element and the analysis can deepen by checking the 𝑁 vertical equilibrium. It can be satisfied, 

in that case, the column is locally crushed on one side and locally cracked on the other one, but the 

element does not entirely fail. If it is not, the crushing is local but the cracking affects the whole 

element, thus it fails because of the overturning of the portion of concrete above the crack. 

 

5.3.4. Fourth Scenario 

The first elastic evaluation of the cross section shows a stress state such that the principal tensile 

stress at the lowest fiber overcomes the tensile strength of the material and principal compressive 

stress at the upper edge stand below its limit: 

 

Figure 5.3.4.1 – Path corresponding to the fourth scenario in the flow chart  

(𝜎1
𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒)

1𝑠𝑡 𝑖𝑡.
> 𝑓𝑐𝑡𝑑 

(𝜎2
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒

)
1𝑠𝑡 𝑖𝑡.

< 𝑓𝑐𝑑 
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In this case, the analysis does not stop but proceeds with the iteration. The fiber at the extremity of 

the cross section cracks, according to the stress state the computation of the crack inclination 

derives. 

Then the flow chart shows that the procedure gets back the first step, the evaluation of the column 

cross section. Since the last fiber is no longer working, the elastic evaluation of the cross section 

needs to repeat: all the basic quantities recomputed, a new normal stresses diagram and a new 

tangential stress distribution follow.  

Since the state of stress changed, the principal tensile stress at the lowest fiber and the principal 

compressive stress at the upper edge changed as well. So now, the procedure can take three different 

branches:  

- 𝜎1
𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒

< 𝑓𝑐𝑡𝑚   and   𝜎2
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒

< 𝑓𝑐𝑚 

- 𝜎1
𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒

< 𝑓𝑐𝑡𝑚   and   𝜎2
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒

> 𝑓𝑐𝑚 

- 𝜎1
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒

> 𝑓𝑐𝑡𝑚   and   𝜎2
𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒

> 𝑓𝑐𝑚 

Let us consider first the case where, after the first iteration, the state of stress shows both principal 

tensile stress at the lower extremity and principal compressive stress at the upper edge, smaller 

than their respective limit values. Thus, this case can be summarised as: 

 

Figure 5.3.4.2 – Path corresponding to the fourth scenario in the flow chart  
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1𝑠𝑡  𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛: {
(𝜎1

𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒)
1𝑠𝑡 𝑖𝑡.

> 𝑓𝑐𝑡𝑑

(𝜎2
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒

)
1𝑠𝑡 𝑖𝑡.

< 𝑓𝑐𝑑

 

2𝑛𝑑  𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛: {
(𝜎1

𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒)
2𝑛𝑑 𝑖𝑡.

< 𝑓𝑐𝑡𝑑

(𝜎2
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒

)
2𝑛𝑑 𝑖𝑡.

< 𝑓𝑐𝑑

 

Alternatively, the same case derives if: 

1𝑠𝑡  𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛: {
(𝜎1

𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒)
1𝑠𝑡 𝑖𝑡.

> 𝑓𝑐𝑡𝑑

(𝜎2
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒

)
1𝑠𝑡 𝑖𝑡.

< 𝑓𝑐𝑑

 

… 

𝑖𝑡ℎ  𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛: {
(𝜎1

𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒
)
𝑖−𝑡ℎ 𝑖𝑡.

> 𝑓𝑐𝑡𝑑

(𝜎2
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒)

𝑖−𝑡ℎ 𝑖𝑡.
< 𝑓𝑐𝑑

 

… 

𝑛𝑡ℎ  𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛: {
(𝜎1

𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒)
𝑛−𝑡ℎ 𝑖𝑡.

< 𝑓𝑐𝑡𝑑

(𝜎2
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒

)
𝑛−𝑡ℎ 𝑖𝑡.

< 𝑓𝑐𝑑

 

This means that, after the propagation of the crack, thus after one or some iterations, which reduce 

the cross section because of the cracking of one or more fibers, then the element finds an 

equilibrium condition. In that condition, both the principal tensile stress at the lowest un-cracked 

fiber and the principal compressive stress at the upper edge of the cross section, stand below their 

limit values. 

In this case, the development of the damage could be observed. The crack develops up to a certain 

fiber, and then stops when the element finds an equilibrium condition.  

In the flow chart, this alternative is represented by the path that follows “Yes” to the question 

“Cracked?”. The crack can be drawn, the last verification checks the 𝑁 vertical equilibrium. Since the 

element is cracked, it has to be verified if, in the damaged condition, the element is in equilibrium 

condition for what concerns 𝑁. If it is satisfied, it means that the locally cracked column withstands 

the external forces. On the other hand, if the 𝑁 vertical equilibrium is not satisfied, the column fails 

because of the overturning of the portion of concrete above the crack. 
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5.3.5. Fifth Scenario 

Another possible scenario is the following: 

 

Figure 5.3.5.1 – Path corresponding to the fifth scenario in the flow chart  

 

1𝑠𝑡  𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛: {
(𝜎1

𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒
)
1𝑠𝑡 𝑖𝑡.

> 𝑓𝑐𝑡𝑑

(𝜎2
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒

)
1𝑠𝑡 𝑖𝑡.

< 𝑓𝑐𝑑

 

… 

𝑖𝑡ℎ  𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛: {
(𝜎1

𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒)
𝑖−𝑡ℎ 𝑖𝑡.

> 𝑓𝑐𝑡𝑑

(𝜎2
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒)

𝑖−𝑡ℎ 𝑖𝑡.
< 𝑓𝑐𝑑

 

… 

𝑛𝑡ℎ  𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛: {
(𝜎1

𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒)
𝑛−𝑡ℎ 𝑖𝑡.

< 𝑓𝑐𝑡𝑑

(𝜎2
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒)

𝑛−𝑡ℎ 𝑖𝑡.
> 𝑓𝑐𝑑
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This case correspond to an initial development of the crack because the principal tensile stress at 

the lowest fiber exceeds the tensile strength of the concrete but, after a certain number of iterations, 

it becomes smaller than the limit and, simultaneously, the principal  compressive stress at the upper 

edge overcomes the compressive strength of the concrete. Thus, after the development of the crack 

on the tensile side, the element also crushes.  

In this case, what has to be defined first is the type of crushing: a local damage is certainly happened, 

but it could also affect the whole element. This information arises from traditional 𝑁-𝑀 interaction 

domains: if the point falls out, the whole element crushes, hence the entire element fails, there is 

no need for further investigations; if the 𝑁-𝑀 domain verification is satisfied, the crushing of the 

concrete affects only a limited portion of the element and the analysis can deepen by checking the 𝑁 

vertical equilibrium. It can be satisfied, in that case, the column is locally crushed on one side and 

locally cracked on the other one, but the element does not entirely fail. If it is not, the crushing is 

local but the cracking affects the whole element, thus it fails because of the overturning of the 

portion of concrete above the crack. 

 

5.3.6. Sixth Scenario 

The last case corresponds to the following case: 

 

Figure 5.3.6.1 – Path corresponding to the sixth scenario in the flow chart  
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1𝑠𝑡  𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛: {
(𝜎1

𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒
)
1𝑠𝑡 𝑖𝑡.

> 𝑓𝑐𝑡𝑑

(𝜎2
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒)

1𝑠𝑡 𝑖𝑡.
< 𝑓𝑐𝑑

 

… 

𝑖𝑡ℎ  𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛: {
(𝜎1

𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒)
𝑖−𝑡ℎ 𝑖𝑡.

> 𝑓𝑐𝑡𝑑

(𝜎2
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒

)
𝑖−𝑡ℎ 𝑖𝑡.

< 𝑓𝑐𝑑

 

… 

𝑛𝑡ℎ  𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛: {
(𝜎1

𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒)
𝑛−𝑡ℎ 𝑖𝑡.

> 𝑓𝑐𝑡𝑑

(𝜎2
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒

)
𝑛−𝑡ℎ 𝑖𝑡.

> 𝑓𝑐𝑑

 

Also this case correspond to an initial development of the crack because the principal tensile stress 

at the lowest fiber exceeds the tensile strength of the concrete and, after a certain number of 

iterations, also the principal  compressive stress at the upper edge overcomes the compressive 

strength of the concrete. Thus, after the development of the crack on the tensile side, the element 

also crushes.  

In this case, what has to be defined first is the type of crushing: a local damage is certainly happened, 

but it could also affect the whole element. This information arises from traditional 𝑁-𝑀 interaction 

domains: if the point falls out, the whole element crushes, hence the entire element fails, there is 

no need for further investigations; if the 𝑁-𝑀 domain verification is satisfied, the crushing of the 

concrete affects only a limited portion of the element and the analysis can deepen by checking the 𝑁 

vertical equilibrium. It can be satisfied, in that case, the column is locally crushed on one side and 

locally cracked on the other one, but the element does not entirely fail. If it is not, the crushing is 

local but the cracking affects the whole element, thus it fails because of the overturning of the 

portion of concrete above the crack. 
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6. Applicative Examples 

 

6.1. Practical Example of the Fourth Scenario 

In order to understand clearly how the procedure works, some practical example have considered. 

This first case takes into account of a real existing column, external forces acting on it are reduced 

lightly in order to test the procedure and obtain the first scenario explained in the previous 

paragraph. 

 

6.1.1. Input Data 

The information that the procedure requires has listed below: 

- 𝑏 = 500 𝑚𝑚; 

- ℎ = 500 𝑚𝑚; 

- 𝑐 = 40 𝑚𝑚; 

- 𝑑 = 260 𝑚𝑚; 

- 𝐴𝑠,𝑠𝑢𝑝 = 2 𝛷 24 = 904 𝑚𝑚
2; 

- 𝐴𝑠,𝑖𝑛𝑓 = 2 𝛷 24 = 904 𝑚𝑚
2;  

- 𝛷𝑠𝑡 = 𝛷 6 = 6 𝑚𝑚; 

- 𝑛𝑠𝑡 = 2; 

- 𝑠𝑠𝑡 = 200 𝑚𝑚: 

- 𝑓𝑐𝑑 = 60 𝑀𝑃𝑎; 

- 𝑓𝑐𝑡𝑑 = 0.1 𝑓𝑐𝑑 = 6 𝑀𝑃𝑎; 

- 𝑓𝑦𝑑 = 600 𝑀𝑃𝑎; 

- 𝐸𝑐 = 22000 [(
𝑓𝑐𝑑

10
)
0.3

] = 37659 𝑀𝑃𝑎; 

- 𝐸𝑠 = 210000 𝑀𝑃𝑎; 

- 𝑛 =
𝐸𝑐
𝐸𝑠
⁄ = 5.58; 

- 𝑁𝑎𝑐𝑡 = −400000 𝑁; 
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- 𝑇𝑎𝑐𝑡 = 400000 𝑁; 

- 𝑀𝑎𝑐𝑡 = 200000000 𝑁 𝑚𝑚; 

Once defined input data, the script subdivides a half cross section into fibers, in this case it has 

decided to obtain a width of the fiber equal to one centimetre, considered as a good balance between 

computational costs and accuracy. The vector of the fiber considered is the following one: 

𝑦 = [245,   235,   225,   215,   205,   195,   185,   175,   165,   155,   145,   135,   125,   115,…   

                           …  105,   95,   85,   75,   65,   55,   45,   35,   25,   15,   5] 

The basic quantities that are necessary to evaluate the stress state distribution depend on the 

iteration; at each iteration, they are computed. 

 

6.1.2. 1st Elastic Evaluation of the Cross Section 

The procedure has represented on the flow chart as a purple line that follows the steps the analysis 

goes through. This first iteration corresponds to the beginning of the iteration; it has drawn in the 

following picture. 

 

Figure 6.1.2.1 – 1 st iteration of the procedure represented in the flow chart 
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6.1.2.1. Basic Quantities 

The first step of the procedure consists in the elastic evaluation of the initial cross section of the 

column. This corresponds to the computation of some basic quantities, such as the effective depth, 

the homogenised cross section area, the homogenised moment of inertia and the homogenised static 

moment, and then it is possible to proceed with the normal and tangential stresses diagram. 

All those parameters depend on the cross section considered; the first iteration correspond to the 

initial configuration, e.g. the whole cross section reacting. This case identifies by the coordinate of 

the last fiber, the one at the extremity of the reacting cross section, that is: 

𝑦1𝑠𝑡 𝑖𝑡. = 𝑦(1) = 245 𝑚𝑚 

All other quantities have expressed as a function of it, thus, at each iteration, if the cross section 

cracks, and therefore it reduces, the script computes them depending on the 𝑦 coordinate: 

- The effective depth at the 1st iteration, when the entire cross section works, 𝑦 = 245 𝑚𝑚: 

𝑑1𝑠𝑡 𝑖𝑡. = (
ℎ

2
+ 𝑦1𝑠𝑡 𝑖𝑡. +

𝑤

2
)− 𝑐 = (

500

2
+ 245 +

10

2
) − 40 = 460 𝑚𝑚 

- The homogenized cross section into concrete: 

𝐴𝑜𝑚𝑜𝑔
1𝑠𝑡 𝑖𝑡. = [𝑏 ∗ (

ℎ

2
+ 𝑦1𝑠𝑡 𝑖𝑡. +

𝑤

2
)] + (𝑛 ∗ 𝐴𝑠,𝑠𝑢𝑝) + (𝑛 ∗ 𝐴𝑠,𝑖𝑛𝑓) 

                                                             = [500 ∗ (
500

2
+ 245 +

10

2
)] + (5.58 ∗ 904) + (5.58 ∗ 904) 

                                                             = 260088 𝑚𝑚2 

- 𝑆 is the static moment of the cross section with respect to the lower edge: 

𝑆1𝑠𝑡 𝑖𝑡. = {𝑏 ∗ (
ℎ

2
+ 𝑦1𝑠𝑡 𝑖𝑡. +

𝑤

2
) ∗ [

(
ℎ
2 + 𝑦

1𝑠𝑡 𝑖𝑡. +
𝑤
2
)

2
]} + [𝑛 𝐴𝑠,𝑠𝑢𝑝  (

ℎ

2
− 𝑐)] + (𝑛 𝐴𝑠,𝑖𝑛𝑓 𝑐) 

= {500 (
500

2
+ 245 +

10

2
) [
(
500
2
+ 245 +

10
2
)

2
]} + [5.58 ∗ 904 (

500

2
− 40)] + (5.58 ∗ 904 ∗ 40) 

= 63760259 𝑚𝑚3 

- The position of the centroid of the cross section, expressed as its distance with respect to 

the upper edge of the element: 

𝑑𝑔,𝑠𝑢𝑝
1𝑠𝑡 𝑖𝑡. =

𝑆1𝑠𝑡 𝑖𝑡.

𝐴𝑜𝑚𝑜𝑔
1𝑠𝑡 𝑖𝑡. = 245 

𝑑𝑔,𝑖𝑛𝑓
1𝑠𝑡 𝑖𝑡. = ℎ − 𝑑𝑔,𝑠𝑢𝑝

1𝑠𝑡 𝑖𝑡. = 255 

- The moment of inertia of the reacting cross section: 
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𝐼𝑜𝑚𝑜𝑔
1𝑠𝑡 𝑖𝑡. = (

𝑏 𝑑𝑔,𝑖𝑛𝑓
1𝑠𝑡 𝑖𝑡.3

3
) +

{
 
 

 
 𝑏 [𝑑𝑔,𝑠𝑢𝑝 − (

ℎ
2
− (𝑦1𝑠𝑡 𝑖𝑡. +

𝑤
2
))]

3

 

3

}
 
 

 
 

 

                                            + [𝑛 𝐴𝑠,𝑠𝑢𝑝 (𝑑𝑔,𝑠𝑢𝑝 − 𝑐)
2
] + [𝑛 𝐴𝑠,𝑖𝑛𝑓  (𝑑𝑔,𝑖𝑛𝑓 − 𝑐)

2
] 

= (
500 ∗ 2453

3
) +

{
 
 

 
 500 [255 − (

500
2
− (245 +

10
2
))]

3

 

3

}
 
 

 
 

+ [5.58 ∗ 904 (255 − 40)2]

+ [5.58 ∗ 904 (245 − 40)2] 

= 5659059309 𝑚𝑚4 

6.1.2.2. Normal Stresses Distribution 

The position of the neutral axis can be determined as the 𝑦 coordinate where normal stresses are 

equal to zero; hence, solving for 𝑦: 

𝑦𝑛.𝑎.
1𝑠𝑡 𝑖𝑡. =

𝑁𝑎𝑐𝑡

𝑀𝑎𝑐𝑡 − (𝑁𝑎𝑐𝑡  (
ℎ
2 − 𝑑𝑔,𝑠𝑢𝑝

1𝑠𝑡 𝑖𝑡.))

𝐴𝑜𝑚𝑜𝑔
1𝑠𝑡 𝑖𝑡.

𝐼𝑜𝑚𝑜𝑔
1𝑠𝑡 𝑖𝑡. =

−400000

200000000 − (−400000 (
500
2 − 255))

260088

5659059309
 

                    = −43 𝑚𝑚 

Once computed the neutral axis position, the normal stresses diagram is a linear distribution from 

the most compressed to the tensest fiber, passing through zero in correspondence of the neutral 

axis. It has evaluated by means of the Navier’s equation, where 𝑦𝑖 corresponds to the distance from 

the neutral axis: 

𝜎𝑖 =
𝑁𝑎𝑐𝑡

𝐴𝑜𝑚𝑜𝑔
1𝑠𝑡 𝑖𝑡. ±

𝑀𝑎𝑐𝑡 − (𝑁𝑎𝑐𝑡  𝑒)

𝐼𝑜𝑚𝑜𝑔
1𝑠𝑡 𝑖𝑡. 𝑦𝑖 

Using Navier’s equation, the vector containing the value of normal stress for each fiber is computed. 

This vector also contains the stress acting on the most compressed fiber, the one at the upper 

extremity, 𝑦𝑚𝑎𝑥 𝑐𝑜𝑚𝑝.1𝑠𝑡 𝑖𝑡. = 250 𝑚𝑚, solicited by a compressive stress equal to: 

𝜎max 𝑐𝑜𝑚𝑝.  1𝑠𝑡 𝑖𝑡. =
−400000

260088
−

200000000 − (400000 (
500
2 − 245))

5659059309
250 = −10.459 𝑀𝑃𝑎 

It also contains the stress on the tensest fiber, the one at the lower extremity, corresponding to 

𝑦𝑚𝑎𝑥 𝑡𝑒𝑛𝑠.  1𝑠𝑡 𝑖𝑡 = −245 𝑚𝑚: 

𝜎max 𝑡𝑒𝑛𝑠.  1𝑠𝑡 𝑖𝑡 =
−400000

260088
−

200000000 − (−400000 (
500
2 − 255))

5659059309
(−245) = 7.426 𝑀𝑃𝑎 
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These two values are the maximum compressive and tensile stresses acting on the cross section, to 

evaluate the principal tensile stress at the lowest fiber and the principal compressive stress at the 

upper edge, the values of the corresponding tangential stresses are required. 

 

6.1.2.3. Tangential Stress Distribution 

As previously explained, tangential stresses derive from the Jourawsky’s formula: 

𝜏 =
𝑇𝑎𝑐𝑡  𝑆𝑜𝑚𝑜𝑔

1𝑠𝑡 𝑖𝑡.

𝐼𝑜𝑚𝑜𝑔
1𝑠𝑡 𝑖𝑡. 𝑏

 

Where the homogenised static moment varies throughout the height of the cross section. 

The script computes the tangential stresses for all the fiber of the cross section. Since the procedure 

works on the base of the fiber at the lowest extremity of the working cross section and the one at 

the highest extremity of the reacting cross section, the two values that the script requires to proceed 

are the one in correspondence of the upper compressed edge and the one for 𝑦1𝑠𝑡 𝑖𝑡. = 145 𝑚𝑚. At 

the compressed fiber, tangential stress is always null, at the tensest fiber, depends if it stays below 

reinforcement or not. In this case, 𝑦 falls below reinforcement, therefore tangential stresses are 

equal to zero for the tensest fiber too: 

𝜏max 𝑐𝑜𝑚𝑝.  1𝑠𝑡 𝑖𝑡. = 0 𝑀𝑃𝑎 

𝜏max 𝑡𝑒𝑛𝑠.  1𝑠𝑡 𝑖𝑡. = 0 𝑀𝑃𝑎 

 

Figure 6.1.2.3.1 – Tangential and normal stresses distributions  
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6.1.2.4. Principal Stresses 

The failure criteria depend on the principal stresses at the extremities of the working cross section; 

they can be evaluated as a function of the normal and tangential stresses listed in the two previous 

paragraphs. 

For the compressed fiber, the equation that returns the value of the principal compressive stress as 

a function of the normal and tangential stresses is the following: 

𝜎1
max𝑐𝑜𝑚𝑝. 1𝑠𝑡 𝑖𝑡. =

𝜎max𝑐𝑜𝑚𝑝.  1𝑠𝑡 𝑖𝑡. −√𝜎max 𝑐𝑜𝑚𝑝.  1𝑠𝑡 𝑖𝑡.
2
+ 4 𝜏max 𝑐𝑜𝑚𝑝.  1𝑠𝑡 𝑖𝑡. 

2
= −10.459 𝑀𝑃𝑎 

On the other hand, for the tensile fiber: 

𝜎1
max𝑡𝑒𝑛𝑠. =

𝜎max𝑡𝑒𝑛𝑠.  1𝑠𝑡 𝑖𝑡. + √𝜎max𝑡𝑒𝑛𝑠.  1𝑠𝑡 𝑖𝑡.
2
+ 4 𝜏max 𝑡𝑒𝑛𝑠.  1𝑠𝑡 𝑖𝑡. 

2
= 7.426 𝑀𝑃𝑎 

Since tangential stresses are both null, principal stresses coincide with the maximum normal ones. 

Depending on those two terms, the procedure follows a specific path. Depending on those two 

terms, four possible alternative paths. In this case, at the first iteration the situation is: 

𝜎1
max𝑐𝑜𝑚𝑝.  1𝑠𝑡 𝑖𝑡. = |−𝟏𝟎. 𝟒𝟓𝟗| 𝑴𝑷𝒂 < 𝒇𝒄𝒅 = |−60| 𝑀𝑃𝑎 

𝜎1
max𝑡𝑒𝑛𝑠.  1𝑠𝑡 𝑖𝑡. = 𝟕.𝟒𝟔𝟐𝑴𝑷𝒂 > 𝒇𝒄𝒕𝒅 = 6 𝑀𝑃𝑎 

It means that, at the end of the first iteration, principal tensile stress exceeds the tensile strength 

of the concrete in the lowest fiber but the principal compressive stress at the upper edge stays below 

the limit, and therefore the scenario is: 

(𝜎1
𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒)

1𝑠𝑡 𝑖𝑡.
> 𝑓𝑐𝑡𝑑 

(𝜎2
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒

)
1𝑠𝑡 𝑖𝑡.

< 𝑓𝑐𝑑 

This means that the last fiber subjected to traction cracks. The script proceeds returning at the first 

step, revaluating the cross section now reduced of that one fiber and computing again the state of 

stress.  
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6.1.3. 2nd Elastic Evaluation of the Cross Section 

 

Figure 6.1.3.1 – 2n d iteration of the procedure represented in the flow chart  

At the end of the first elastic evaluation of the cross section, the principal tensile stress exceeds the 

tensile strength of the concrete in the lowest fiber but the principal compressive stress at the upper 

edge stays below the limit. This means that the fiber at the extremity of the cross section subjected 

to traction, cracks. Consequently, the procedure returns at the first step, which involves the 

revaluation of the changed cross section, the initial one without the last cracked fiber.  

Hence, at this second iteration, what changes is the coordinate of the last working fiber, the one at 

the extremity of the reacting cross section that is in this case is 

𝑦2𝑛𝑑 𝑖𝑡. = 𝑦(2) = 235 𝑚𝑚 

Now the procedure repeats exactly as for the first iteration, the only parameter that changed is 𝑦. 

All basic quantities computed at the first step, depending on 𝑦, have to be computed again, since 

the coordinate changed, but the equation are the same mentioned for the first iteration: 

𝑑2𝑛𝑑 𝑖𝑡. = 450 𝑚𝑚 

𝐴𝑜𝑚𝑜𝑔
2𝑛𝑑 𝑖𝑡. = 255082 𝑚𝑚2 
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𝑆2𝑛𝑑 𝑖𝑡. = 61285259 𝑚𝑚3 

𝑑𝑔,𝑠𝑢𝑝
2𝑛𝑑 𝑖𝑡. =

𝑆

𝐴𝑜𝑚𝑜𝑔
= 240 𝑚𝑚 

𝑑𝑔,𝑖𝑛𝑓
2𝑛𝑑 𝑖𝑡. = ℎ − 𝑑𝑔,𝑖𝑛𝑓 = 260 𝑚𝑚 

𝐼𝑜𝑚𝑜𝑔
2𝑛𝑑 𝑖𝑡. = 5677641020 𝑚𝑚4 

The position of the neutral axis is straightforward: 

𝑦𝑎.𝑛.
2𝑛𝑑 𝑖𝑡. = −44 𝑚𝑚 

Once computed the neutral axis position, Navier’s equation gives the normal stresses distribution. 

The sigma value that the procedure is interested in, is the one related to the upper edge under 

compression, corresponding to 𝑦max𝑐𝑜𝑚𝑝. = 250 𝑚𝑚: 

𝜎max𝑐𝑜𝑚𝑝.  2𝑛𝑑 𝑖𝑡. = −10.546 𝑀𝑃𝑎 

Even the one acting on the tensest fiber, the one at the lower extremity, corresponding to 𝑦𝑚𝑎𝑥 𝑡𝑒𝑛𝑠. =

−235 𝑚𝑚: 

𝜎max𝑡𝑒𝑛𝑠.  
2𝑛𝑑 𝑖𝑡.

= 7.063 𝑀𝑃𝑎 

Tangential stresses are still equal to zero because the considered fiber is below steel rebar: 

𝜏max 𝑐𝑜𝑚𝑝.  2𝑛𝑑 𝑖𝑡. = 0 𝑀𝑃𝑎 

𝜏max 𝑡𝑒𝑛𝑠.  2𝑛𝑑 𝑖𝑡. = 0 𝑀𝑃𝑎 

 

Figure 6.1.3.2 - Tangential and normal stresses distributions  
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Also in this case, considering that tangential stresses are null, principal stresses are equal to normal 

ones: 

𝜎1
max𝑐𝑜𝑚𝑝.  2𝑛𝑑 𝑖𝑡. = −10.546 𝑀𝑃𝑎 

For the tensile fiber: 

𝜎1
max𝑡𝑒𝑛𝑠.  2𝑛𝑑 𝑖𝑡. = 7.063 𝑀𝑃𝑎 

At the end of the second iteration, the procedure falls again in the fourth scenario: 

𝜎1
max𝑐𝑜𝑚𝑝. 2𝑛𝑑 𝑖𝑡. = |−𝟏𝟎. 𝟓𝟒𝟔| 𝑴𝑷𝒂 < 𝒇𝒄𝒅 = |−60| 𝑀𝑃𝑎 

𝜎1
max𝑡𝑒𝑛𝑠.  2𝑛𝑑 𝑖𝑡. = 𝟕.𝟎𝟔𝟑 𝑴𝑷𝒂 > 𝒇𝒄𝒕𝒅 = 6 𝑀𝑃𝑎 

At the end of the second iteration, once again, principal tensile stress exceeds the tensile strength 

of the concrete in the lowest fiber but the principal compressive stress at the upper edge stays below 

the limit, and therefore the scenario is: 

(𝜎1
𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒

)
2𝑛𝑑 𝑖𝑡.

> 𝑓𝑐𝑡𝑑 

(𝜎2
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒)

2𝑛𝑑 𝑖𝑡.
< 𝑓𝑐𝑑 

The last fiber subjected to traction cracks. The script proceeds returning at the first step, revaluating 

the cross section now reduced of that one fiber and computing again the state of stress.  
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6.1.4. 3rd Elastic Evaluation of the Cross Section 

 

Figure 6.1.4.1 – 3 r d iteration of the procedure represented in the flow chart  

At the third iteration, the coordinate of the last working fiber, the one at the extremity of the reacting 

cross section, changes again: 

𝑦3𝑟𝑑 𝑖𝑡. = 𝑦(3) = 225 𝑚𝑚 

All basic quantities computed at previous steps, depending on 𝑦, have to be calculated again using 

same equations. They are necessary to evaluate the stress distribution, which at this iteration are 

characterised by the following maximum values: 

𝜎max 𝑐𝑜𝑚𝑝.  3𝑟𝑑 𝑖𝑡. = −10.615 𝑀𝑃𝑎 

𝜎max 𝑡𝑒𝑛𝑠.  
3𝑟𝑑 𝑖𝑡.

= 6.756 𝑀𝑃𝑎 

The corresponding tangential stresses are still null: 

𝜏max 𝑐𝑜𝑚𝑝.  3𝑟𝑑 𝑖𝑡. = 0 𝑀𝑃𝑎 

𝜏max 𝑡𝑒𝑛𝑠.  3𝑟𝑑 𝑖𝑡. = 0 𝑀𝑃𝑎 
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Figure 6.1.4.2 - Tangential and normal stresses distributions  

Using same equations of the first iteration, the principal compressive stress at the most compressed 

fiber is: 

𝜎1
max𝑐𝑜𝑚𝑝.  3𝑟𝑑 𝑖𝑡. = −10.615 𝑀𝑃𝑎 

For the tensile fiber: 

𝜎1
max𝑡𝑒𝑛𝑠.  3𝑟𝑑 𝑖𝑡. = 6.756 𝑀𝑃𝑎 

At the end of the third iteration, the procedure falls again in the fourth scenario: principal tensile 

stress exceeds the tensile strength of the concrete in the lowest fiber but the principal compressive 

stress at the upper edge stays below the limit, and therefore the scenario is: 

𝜎1
max 𝑐𝑜𝑚𝑝.  3𝑟𝑑 𝑖𝑡. = |−𝟏𝟎. 𝟔𝟏𝟓| 𝑴𝑷𝒂 < 𝒇𝒄𝒅 = |−60| 𝑀𝑃𝑎 

𝜎1
max𝑡𝑒𝑛𝑠. 3𝑟𝑑 𝑖𝑡. = 𝟔.𝟕𝟓𝟔 𝑴𝑷𝒂 > 𝒇𝒄𝒕𝒅 = 6 𝑀𝑃𝑎 

Thus: 

(𝜎1
𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒

)
3𝑟𝑑 𝑖𝑡.

> 𝑓𝑐𝑡𝑑 

(𝜎2
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒)

3𝑟𝑑 𝑖𝑡.
< 𝑓𝑐𝑑 

The script revaluates again the cross section reduced. 
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6.1.5. 4th Elastic Evaluation of the Cross Section 

 

Figure 6.1.5.1 – 4 th iteration of the procedure represented in the flow chart  

At the fourth iteration: 

𝑦4𝑡ℎ 𝑖𝑡. = 𝑦(4) = 215 𝑚𝑚 

𝜎max 𝑐𝑜𝑚𝑝.  4𝑡ℎ 𝑖𝑡. = −10.664 𝑀𝑃𝑎 

𝜎max 𝑡𝑒𝑛𝑠.  
4𝑡ℎ 𝑖𝑡.

= 6.365 𝑀𝑃𝑎 

𝜏max 𝑐𝑜𝑚𝑝.  4𝑡ℎ 𝑖𝑡. = 0 𝑀𝑃𝑎 

𝜏max 𝑡𝑒𝑛𝑠.  4𝑡ℎ 𝑖𝑡. = 0 𝑀𝑃𝑎 

𝜎1
max𝑐𝑜𝑚𝑝.  4𝑡ℎ 𝑖𝑡. = −10.664 𝑀𝑃𝑎 

𝜎1
max𝑡𝑒𝑛𝑠.  4𝑡ℎ 𝑖𝑡. = 6.365 𝑀𝑃𝑎 



128 
 

 

Figure 6.1.5.2 - Tangential and normal stresses distributions 

At the end of the fourth iteration, the procedure falls again in the fourth scenario: 

𝜎1
max𝑐𝑜𝑚𝑝.  4𝑡ℎ 𝑖𝑡. = |−𝟏𝟎. 𝟔𝟔𝟒| 𝑴𝑷𝒂 < 𝒇𝒄𝒅 = |−60| 𝑀𝑃𝑎 

𝜎1
max𝑡𝑒𝑛𝑠.  4𝑡ℎ 𝑖𝑡. = 𝟔. 𝟑𝟓𝟔 𝑴𝑷𝒂 > 𝒇𝒄𝒕𝒅 = 6 𝑀𝑃𝑎 
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6.1.6. 5th Elastic Evaluation of the Cross Section 

 

Figure 6.1.6.1 – 5 th iteration of the procedure represented in the flow chart  

𝑦5𝑡ℎ 𝑖𝑡. = 𝑦(5) = 205 𝑚𝑚 

𝜎max 𝑐𝑜𝑚𝑝.  5𝑡ℎ 𝑖𝑡. = −10.695 𝑀𝑃𝑎 

𝜎max 𝑡𝑒𝑛𝑠.  
5𝑡ℎ 𝑖𝑡.

= 5.964 𝑀𝑃𝑎 

𝜏max 𝑐𝑜𝑚𝑝.  5ℎ𝑡 𝑖𝑡. = 0 𝑀𝑃𝑎 

𝜏max 𝑡𝑒𝑛𝑠.  5𝑡ℎ 𝑖𝑡. = 0.069 𝑀𝑃𝑎 

𝜎1
max𝑐𝑜𝑚𝑝.  5𝑡ℎ 𝑖𝑡. = −10.702 𝑀𝑃𝑎 

𝜎1
max𝑡𝑒𝑛𝑠.  5𝑡ℎ 𝑖𝑡. = 5.976 𝑀𝑃𝑎 
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Figure 6.1.6.2 - Tangential and normal stresses distributions  

At the end of the fifth iteration, the procedure falls again in the first scenario: 

𝜎1
max𝑐𝑜𝑚𝑝. 5𝑡ℎ 𝑖𝑡. = |−𝟏𝟎. 𝟔𝟗𝟓| 𝑴𝑷𝒂 < 𝒇𝒄𝒅 = |−60| 𝑀𝑃𝑎 

𝜎1
max𝑡𝑒𝑛𝑠.  5𝑡ℎ 𝑖𝑡. = 𝟓. 𝟗𝟔𝟒 𝑴𝑷𝒂 < 𝒇𝒄𝒕𝒅 = 6 𝑀𝑃𝑎 

Both the principal compressive stress on the most compressed fiber and the principal tensile stress 

on the tensest fiber are lower than their limit. The last un-cracked fiber does not crack. The cross 

section is now in equilibrium conditions. The interaction domain is the final one. 

At the end of the fifth iteration, the analysis ends up in the first scenario. Now the procedure can 

take two alternative ways: the un-cracked case, which could happen only if the first scenario happens 

at the first iteration, or the cracked condition. Since this is the fifth iteration, the path has to follow 

the cracked condition. 
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Figure 6.1.6.3 – Path on the flow chart 

Since the column has cracked, it has to be verified the vertical equilibrium of the element: the 

verification consists in checking that the friction force acting on the crack, assumed to maintain the 

same average inclination throughout the cross section, is capable of carrying the external axial load. 

In this case, it was satisfied. In this case, the script plots “The vertical equilibrium is satisfied”. 

The procedure ends with an equilibrium achieved in ultimate conditions. 
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Figure 6.1.6.4 – Complete path on the flow chart  

The script also plots how the crack developed through the column. 

 

Figure 6.1.6.5 – Cracked Cross section 
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As it can observed in the figure above, the length of the crack is very small, in fact, the element finds 

an equilibrium condition at the fifth iteration, which means that four fibers crack before obtaining 

the final condition; since the width of each fiber is one centimetre, and the crack develops only for 

four centimetres. Besides, considering that all the fibers cracked stay below steel reinforcements, 

tangential stresses in the fibers at extremities are null, and therefore the inclination of the crack is 

horizontal. 

 

6.2. Practical Example of the Fifth Scenario 

In this paragraph a practical example that evolves in the fifth scenario. Even in this case a real 

column has considered, its geometrical and material properties have inserted, only external forces 

have lightly reduced in order to test the procedure and obtain the fifth scenario explained. 

 

6.2.1. Input Data 

The procedure requires input data that follow: 

- 𝑏 = 300 𝑚𝑚; 

- ℎ = 300 𝑚𝑚; 

- 𝑐 = 30 𝑚𝑚; 

- 𝑑 = 270 𝑚𝑚; 

- 𝐴𝑠,𝑠𝑢𝑝 = 2 𝛷 10 = 157 𝑚𝑚
2; 

- 𝐴𝑠,𝑖𝑛𝑓 = 2 𝛷 10 = 157 𝑚𝑚
2;  

- 𝛷𝑠𝑡 = 𝛷 6 = 6 𝑚𝑚; 

- 𝑛𝑠𝑡 = 2; 

- 𝑠𝑠𝑡 = 100 𝑚𝑚: 

- 𝑓𝑐𝑑 = 9.4 𝑀𝑃𝑎; 

- 𝑓𝑐𝑡𝑑 = 0.1 𝑓𝑐𝑑 = 0.94 𝑀𝑃𝑎; 

- 𝑓𝑦𝑑 = 447.8 𝑀𝑃𝑎; 

- 𝐸𝑐 = 22000 [(
𝑓𝑐𝑑

10
)
0.3

] = 28821 𝑀𝑃𝑎; 

- 𝐸𝑠 = 210000 𝑀𝑃𝑎; 

- 𝑛 =
𝐸𝑐
𝐸𝑠
⁄ = 7.29; 

- 𝑁𝑎𝑐𝑡 = −330000 𝑁; 

- 𝑇𝑎𝑐𝑡 = 500000 𝑁; 

- 𝑀𝑎𝑐𝑡 = 24000000 𝑁 𝑚𝑚. 
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The script divides a half cross section in fifteen fibers in order to get the width of each fiber equal 

to one centimetre, as in the previous example. 

The vector of the fiber considered is the following one: 

𝑦 = [145,   135,   125,   115,   105,   95,   85,   75,   65,   55,   45,   35,   25,   15,   5]   

The basic quantities that are necessary to evaluate the stress state distribution depend on the 

iteration; at each iteration, they are computed. These quantities are the effective depth, the 

homogenised cross section, the position of the centroid of the homogenised area, the homogenised 

moment of inertia and the homogenised static moment, as in the example reported in the previous 

paragraph. Since formulae do not change, the computation has not reported in this case because it 

has already explained in the previous example. Only relevant terms are mentioned, those that are 

necessary to understand why the procedure follows a specific path. 

 

6.2.2. 1st Elastic Evaluation of the Cross Section 

The procedure begins with the first elastic evaluation of the initial cross section, as shown in the 

flow chart. 

 

Figure 6.2.2.1 – 1 st iteration of the procedure represented in the flow chart  
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The coordinate of the last un-cracked fiber, the one at the extremity of the reacting cross section, 

is: 

𝑦1𝑠𝑡 𝑖𝑡. = 𝑦(1) = 145 𝑚𝑚 

The basic terms necessary to compute the stresses diagrams are the following ones: 

𝑑1𝑠𝑡 𝑖𝑡. = 270 𝑚𝑚 

𝐴𝑜𝑚𝑜𝑔
1𝑠𝑡 𝑖𝑡. = 92289 𝑚𝑚2 

𝑆1𝑠𝑡 𝑖𝑡. = 13671659 𝑚𝑚3 

𝑑𝑔,𝑠𝑢𝑝
1𝑠𝑡 𝑖𝑡. =

𝑆

𝐴𝑜𝑚𝑜𝑔
= 148 𝑚𝑚 

𝑑𝑔,𝑖𝑛𝑓
1𝑠𝑡 𝑖𝑡. = ℎ − 𝑑𝑔,𝑖𝑛𝑓 = 152 𝑚𝑚 

𝐼𝑜𝑚𝑜𝑔
1𝑠𝑡 𝑖𝑡. = 708277858 𝑚𝑚4 

The position of the neutral axis, imposing stress equal to zero in the Navier’s equation and solving 

for the 𝑦 coordintae: 

𝑦𝑎.𝑛.
1𝑠𝑡 𝑖𝑡. = −103 𝑚𝑚 

Once computed the neutral axis position, Navier’s equation gives the normal stresses distribution. 

The sigma value that the procedure requires is the one related to the upper edge under compression, 

corresponding to 𝑦max𝑐𝑜𝑚𝑝. = 150 𝑚𝑚: 

𝜎max 𝑐𝑜𝑚𝑝.  1𝑠𝑡 𝑖𝑡. = −8.789 𝑀𝑃𝑎 

Even the one acting on the tensest fiber, the one at the lower extremity, corresponding to 𝑦𝑚𝑎𝑥 𝑡𝑒𝑛𝑠. =

−145 𝑚𝑚: 

𝜎max 𝑡𝑒𝑛𝑠.  
1𝑠𝑡 𝑖𝑡.

= 1.491 𝑀𝑃𝑎 

Tangential stresses are equal to zero because the considered fiber is below steel rebar, where the 

static moment gets to zero: 

𝜏max 𝑐𝑜𝑚𝑝.  1𝑠𝑡 𝑖𝑡. = 0 𝑀𝑃𝑎 

𝜏max 𝑡𝑒𝑛𝑠.  1𝑠𝑡 𝑖𝑡. = 0 𝑀𝑃𝑎 
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Figure 6.2.2.2 - Tangential and normal stresses distributions  

Also in this case, considering that tangential stresses are null, principal stresses are equal to normal 

ones: 

𝜎1
max𝑐𝑜𝑚𝑝.  1𝑠𝑡 𝑖𝑡. = −8.789 𝑀𝑃𝑎 

For the tensile fiber: 

𝜎1
max𝑡𝑒𝑛𝑠.  1𝑠𝑡 𝑖𝑡. = 1.491 𝑀𝑃𝑎 

At the end of the first iteration, the procedure falls again in the fourth scenario: 

𝜎1
max𝑐𝑜𝑚𝑝.  1𝑠𝑡 𝑖𝑡. = |−𝟖. 𝟕𝟗𝟖| 𝑴𝑷𝒂 < 𝒇𝒄𝒅 = |−9.4| 𝑀𝑃𝑎 

𝜎1
max𝑡𝑒𝑛𝑠. 1𝑠𝑡 𝑖𝑡. = 𝟏.𝟒𝟗𝟏 𝑴𝑷𝒂 > 𝒇𝒄𝒕𝒅 = 0.94 𝑀𝑃𝑎 

At the end of the first iteration, principal tensile stress exceeds the tensile strength of the concrete 

in the lowest fiber but the principal compressive stress at the upper edge stays below the limit, and 

therefore the scenario is: 

(𝜎1
𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒

)
1𝑠𝑡 𝑖𝑡.

> 𝑓𝑐𝑡𝑑 

(𝜎2
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒)

1𝑠𝑡 𝑖𝑡.
< 𝑓𝑐𝑑 

The last fiber subjected to traction cracks. The script returns at the beginning of the procedure, 

revaluates the cross section now reduced of that one fiber and computes again the state of stress.  



137 
 

6.2.3. 2nd Elastic Evaluation of the Cross Section 

 

Figure 6.2.3.1 – 2n d iteration of the procedure represented in the flow chart  

At the end of the first elastic evaluation of the cross section, the principal tensile stress exceeds the 

tensile strength of the concrete in the lowest fiber but the principal compressive stress at the upper 

edge stays below the limit. This means that the fiber at the extremity of the cross section subjected 

to traction, cracks. Consequently, the procedure returns at the first step, which involves the 

revaluation of the changed cross section, the initial one without the last cracked fiber.  

Hence, at this second iteration, what changes is the coordinate of the last working fiber, the one at 

the extremity of the reacting cross section that is in this case is 

𝑦2𝑛𝑑 𝑖𝑡. = 𝑦(2) = 135 𝑚𝑚 

Now the procedure repeats exactly as for the first iteration, the only parameter that changed is 𝑦. 

All basic quantities computed at the first step, depending on 𝑦, have to be computed again, since 

the coordinate changed, but the equation are the same mentioned for the first iteration: 

𝑑2𝑛𝑑 𝑖𝑡. = 260 𝑚𝑚 

𝐴𝑜𝑚𝑜𝑔
2𝑛𝑑 𝑖𝑡. = 89289 𝑚𝑚2 
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𝑆2𝑛𝑑 𝑖𝑡. = 12786659 𝑚𝑚3 

𝑑𝑔,𝑠𝑢𝑝
2𝑛𝑑 𝑖𝑡. = 143 𝑚𝑚 

𝑑𝑔,𝑖𝑛𝑓
2𝑛𝑑 𝑖𝑡. = 157 𝑚𝑚 

𝐼𝑜𝑚𝑜𝑔
2𝑛𝑑 𝑖𝑡. = 712218912 𝑚𝑚4 

The position of the neutral axis: 

𝑦𝑎.𝑛.
2𝑛𝑑 𝑖𝑡. = −100 𝑚𝑚 

Then, Navier’s equation gives the normal stresses distribution. The sigma value that the procedure 

is interested in, is the one related to the upper edge under compression, corresponding to 𝑦max 𝑐𝑜𝑚𝑝. =

150 𝑚𝑚: 

𝜎max 𝑐𝑜𝑚𝑝.  2𝑛𝑑 𝑖𝑡. = −9.223 𝑀𝑃𝑎 

Even the one acting on the tensest fiber, the one at the lower extremity, corresponding to 𝑦𝑚𝑎𝑥 𝑡𝑒𝑛𝑠. =

135 𝑚𝑚: 

𝜎max𝑡𝑒𝑛𝑠.  
2𝑛𝑑 𝑖𝑡.

= 1.117 𝑀𝑃𝑎 

Tangential stresses are still equal to zero: 

𝜏max 𝑐𝑜𝑚𝑝.  2𝑛𝑑 𝑖𝑡. = 0 𝑀𝑃𝑎 

𝜏max 𝑡𝑒𝑛𝑠.  2𝑛𝑑 𝑖𝑡. = 0 𝑀𝑃𝑎 

 

Figure 6.2.3.2 - Tangential and normal stresses distributions  



139 
 

Also in this case, considering that tangential stresses are null, principal stresses are equal to normal 

ones: 

𝜎1
max𝑐𝑜𝑚𝑝.  2𝑛𝑑 𝑖𝑡. = −9.223 𝑀𝑃𝑎 

For the tensile fiber: 

𝜎1
max𝑡𝑒𝑛𝑠.  2𝑛𝑑 𝑖𝑡. = 1.117 𝑀𝑃𝑎 

At the end of the second iteration, the procedure falls again in the fourth scenario: 

𝜎1
max𝑐𝑜𝑚𝑝.  2𝑛𝑑 𝑖𝑡. = |−𝟗. 𝟐𝟐𝟑| 𝑴𝑷𝒂 < 𝒇𝒄𝒅 = |−9.4| 𝑀𝑃𝑎 

𝜎1
max𝑡𝑒𝑛𝑠.  2𝑛𝑑 𝑖𝑡. = 𝟏. 𝟏𝟏𝟕 𝑴𝑷𝒂 > 𝒇𝒄𝒕𝒅 = 0.94 𝑀𝑃𝑎 

At the end of the second iteration, once again, principal tensile stress exceeds the tensile strength 

of the concrete in the lowest fiber but the principal compressive stress at the upper edge stays below 

the limit, and therefore the scenario is: 

(𝜎1
𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒

)
2𝑛𝑑 𝑖𝑡.

> 𝑓𝑐𝑡𝑑 

(𝜎2
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒)

2𝑛𝑑 𝑖𝑡.
< 𝑓𝑐𝑑 

The last un-cracked fiber subjected to traction cracks. The script proceeds returning at the first 

step, revaluating the cross section now reduced of that one fiber and computing again the state of 

stress.  
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6.2.4. 3rd Elastic Evaluation of the Cross Section 

 

Figure 6.2.4.1 – 3 r d iteration of the procedure represented in the flow chart  

At the third iteration, the coordinate of the last working fiber, the one at the extremity of the reacting 

cross section, changes again: 

𝑦3𝑟𝑑 𝑖𝑡. = 𝑦(3) = 125 𝑚𝑚 

All basic quantities computed at previous steps, depending on 𝑦, have to be calculated again using 

same equations. They are necessary to evaluate the stress distribution, which at this iteration are 

characterised by the following maximum values: 

𝜎max 𝑐𝑜𝑚𝑝.  3𝑟𝑑 𝑖𝑡. = −9.625 𝑀𝑃𝑎 

𝜎max 𝑡𝑒𝑛𝑠.  
3𝑟𝑑 𝑖𝑡.

= 0.731 𝑀𝑃𝑎 

The corresponding tangential stresses are still null: 

𝜏max 𝑐𝑜𝑚𝑝.  3𝑟𝑑 𝑖𝑡. = 0 𝑀𝑃𝑎 

𝜏max 𝑡𝑒𝑛𝑠.  3𝑟𝑑 𝑖𝑡. = 0 𝑀𝑃𝑎 
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Figure 6.2.4.2 - Tangential and normal stresses distributions  

Using same equations of the first iteration, the principal compressive stress at the most compressed 

fiber is: 

𝜎1
max𝑐𝑜𝑚𝑝.  3𝑟𝑑 𝑖𝑡. = −9.625 𝑀𝑃𝑎 

For the tensile fiber: 

𝜎1
max𝑡𝑒𝑛𝑠.  3𝑟𝑑 𝑖𝑡. = 0.731 𝑀𝑃𝑎 

At the end of the third iteration, the procedure falls again in the second scenario: principal tensile 

stress is lower than the tensile strength of the concrete in the lowest fiber but the principal 

compressive stress at the upper edge exceeds the limit, and therefore the scenario is: 

𝜎1
max𝑐𝑜𝑚𝑝.  3𝑟𝑑 𝑖𝑡. = |−𝟗. 𝟔𝟐𝟓| 𝑴𝑷𝒂 > 𝒇𝒄𝒅 = |−9.4| 𝑀𝑃𝑎 

𝜎1
max𝑡𝑒𝑛𝑠.  3𝑟𝑑 𝑖𝑡. = 𝟎.𝟕𝟑𝟏 𝑴𝑷𝒂 < 𝒇𝒄𝒕𝒅 = 0.94 𝑀𝑃𝑎 

Thus: 

(𝜎1
𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒

)
3𝑟𝑑 𝑖𝑡.

< 𝑓𝑐𝑡𝑑 

(𝜎2
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒)

3𝑟𝑑 𝑖𝑡.
> 𝑓𝑐𝑑 

At the end of the third iteration, the principal tensile stress on the tensest fiber is lower than the 

tensile strength of the concrete while the principal compressive stress on the most compressed fiber 

exceeds its limit. This means that the crack stops developing but the most compressed fiber crushes. 



142 
 

The development of the crushing of the concrete is not possible to define, what can be established 

is if the cross section is subjected to a local or a global crushing. Considering that the most 

compressed fiber has already crushed, a local damage is certain; it has to be analysed if the crushing 

affects the whole cross section or not. It can be determined through an N-M domain verification. If 

the point representing the external forces falls inside the domain, it can be expected that the column 

is able to withstand solicitations, therefore, even if a portion of the concrete crushed, the whole 

element is capable of carrying external loads; this corresponds to a local crushing. If the point is out 

of the domain, it means that the member fails under such actions, thus it fails because of a global 

crushing. 

Once the procedure coincides with the second scenario, the script has to control if the crushing is 

global, which means verifying the cross section by means of the N-M interaction domain. 

 

Figure 6.2.4.3 – Path on the flow chart: global crushing verification 

At the end of the global crushing verification, the plot of the N-M domain and the point representing 

the external forces on the column. In this case, the point falls inside the interaction diagram; the 

script returns “ The verification of the N-M domain is satisfied, no global crushing of the element”. 
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Figure 5.2.4.4 – N-M interaction domain 

Since the global crushing is not happening, the path on the flow charts follows the “No” alternative, 

which proceeds with another analysis: the cracking of the concrete. If the concrete is not cracked, 

which could happen only if the second scenario appears at the very first iteration, there is no need 

for further checking. On the other hand, if the crushing of most compressed fiber, e.g. the second 

scenario, happens after some iterations, for sure a portion of the cross section has cracked. In this 

example, since the crushing arrives at the third iteration, two fibers on the tense side has cracked. 

This means that the path advances through the cracked condition. 
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Figure 6.2.4.5 – Path on the flow chart: cracked condition 

The analysis goes on with the verification of the crack that is the verification of the N vertical 

equilibrium. It consists in checking that the friction force acting on the crack, assumed to maintain 

the same average inclination throughout the cross section, is capable of carrying the external axial 

load. In this case, it was satisfied; the script plots “The vertical equilibrium is satisfied”. 

The procedure ends with the plot of the crack on the column. 
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Figure 6.2.4.6 – Cracked Cross section 

Even in this case, the length of the crack is very small, in fact, the element finds an equilibrium 

condition at the third iteration, which means that only two fibers crack before obtaining the final 

condition; thus, the crack develops only for two centimetres. Besides, all the fibers cracked stay 

below steel reinforcements, therefore the inclination of the crack is horizontal. 

 

6.3. Practical Example of the Sixth Scenario 

In this paragraph a practical example that evolves in the sixth scenario. A real column has 

considered, its geometrical and material properties have inserted, only external forces have lightly 

reduced in order to test the procedure and obtain the sixth scenario explained. 

 

6.3.1. Input Data 

Required information is: 

- 𝑏 = 600 𝑚𝑚; 

- ℎ = 800 𝑚𝑚; 

- 𝑐 = 40 𝑚𝑚; 
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- 𝑑 = 760 𝑚𝑚; 

- 𝐴𝑠,𝑠𝑢𝑝 = 2 𝛷 22 = 760 𝑚𝑚
2; 

- 𝐴𝑠,𝑖𝑛𝑓 = 2 𝛷 22 = 760 𝑚𝑚
2;  

- 𝛷𝑠𝑡 = 𝛷 6 = 8 𝑚𝑚; 

- 𝑛𝑠𝑡 = 2; 

- 𝑠𝑠𝑡 = 100 𝑚𝑚: 

- 𝑓𝑐𝑑 = 45 𝑀𝑃𝑎; 

- 𝑓𝑐𝑡𝑑 = 0.1 𝑓𝑐𝑑 = 4.5 𝑀𝑃𝑎; 

- 𝑓𝑦𝑑 = 580 𝑀𝑃𝑎; 

- 𝐸𝑐 = 22000 [(
𝑓𝑐𝑑

10
)
0.3

] = 34545 𝑀𝑃𝑎; 

- 𝐸𝑠 = 210000 𝑀𝑃𝑎; 

- 𝑛 =
𝐸𝑐
𝐸𝑠
⁄ = 6.08; 

- 𝑁𝑎𝑐𝑡 = −7000000 𝑁; 

- 𝑇𝑎𝑐𝑡 = 800000 𝑁; 

- 𝑀𝑎𝑐𝑡 = 1800000000 𝑁 𝑚𝑚. 

 

The script divides a half cross section in twenty fibers in order to get the width of each fiber equal 

to two centimetres. 

The vector of the fiber considered is the following one: 

𝑦 = [390,   370,   350,   330,   310,   290,   270,   250,   230,   210,   190,   170,   150,   130,…   

                                          …  110,   90,   70,   50,   30,   10] 

The basic quantities that are necessary to evaluate the stress state distribution depend on the 

iteration; at each iteration, they are computed. These quantities are the effective depth, the 

homogenised cross section, the position of the centroid of the homogenised area, the homogenised 

moment of inertia and the homogenised static moment, as in the example reported in the previous 

paragraph. Since formulae do not change, the computation has not reported in this case because it 

has already explained in the first example. Only relevant terms are mentioned, those that are 

necessary to understand why the procedure follows a specific path. 

 

6.3.2. 1st Elastic Evaluation of the Cross Section 

The procedure begins with the first elastic evaluation of the initial cross section, as shown in the 

flow chart. 
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Figure 6.3.2.1 – 1 st iteration of the procedure represented in the flow chart  

The coordinate of the last un-cracked fiber, the one at the extremity of the working cross section, 

is: 

𝑦1𝑠𝑡 𝑖𝑡. = 𝑦(1) = 390 𝑚𝑚 

The basic terms necessary to compute the stresses diagrams are the following ones: 

𝑑1𝑠𝑡 𝑖𝑡. = 760 𝑚𝑚 

𝐴𝑜𝑚𝑜𝑔
1𝑠𝑡 𝑖𝑡. = 489240 𝑚𝑚2 

𝑆1𝑠𝑡 𝑖𝑡. = 193848019 𝑚𝑚3 

𝑑𝑔,𝑠𝑢𝑝
1𝑠𝑡 𝑖𝑡. = 396 𝑚𝑚 

𝑑𝑔,𝑖𝑛𝑓
1𝑠𝑡 𝑖𝑡. = 404 𝑚𝑚 

𝐼𝑜𝑚𝑜𝑔
1𝑠𝑡 𝑖𝑡. = 26804496912 𝑚𝑚4 

The position of the neutral axis, imposing stress equal to zero in the Navier’s equation and solving 

for the 𝑦 coordintae: 

𝑦𝑎.𝑛.
1𝑠𝑡 𝑖𝑡. = −210 𝑚𝑚 
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The sigma value required by the procedure is the one related to the upper edge under compression, 

corresponding to 𝑦max𝑐𝑜𝑚𝑝. = 400 𝑚𝑚: 

𝜎max 𝑐𝑜𝑚𝑝.  1𝑠𝑡 𝑖𝑡. = −41.564 𝑀𝑃𝑎 

Even the one acting on the tensest fiber, the one at the lower extremity, corresponding to 𝑦𝑚𝑎𝑥 𝑡𝑒𝑛𝑠. =

−390 𝑚𝑚: 

𝜎max 𝑡𝑒𝑛𝑠.  
1𝑠𝑡 𝑖𝑡.

= 12.604 𝑀𝑃𝑎 

Tangential stresses are equal to zero because the considered fiber is below steel rebar, where the 

static moment gets to zero: 

𝜏max 𝑐𝑜𝑚𝑝.  1𝑠𝑡 𝑖𝑡. = 0 𝑀𝑃𝑎 

𝜏max 𝑡𝑒𝑛𝑠.  1𝑠𝑡 𝑖𝑡. = 0 𝑀𝑃𝑎 

 

Figure 6.3.2.2 - Tangential and normal stresses distributions  

Also in this case, considering that tangential stresses are null, principal stresses are equal to normal 

ones: 

𝜎1
max𝑐𝑜𝑚𝑝.  1𝑠𝑡 𝑖𝑡. = −41.564 𝑀𝑃𝑎 

For the tensile fiber: 

𝜎1
max𝑡𝑒𝑛𝑠.  1𝑠𝑡 𝑖𝑡. = 12.604 𝑀𝑃𝑎 
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At the end of the first iteration, the procedure falls in the fourth scenario: principal tensile stress 

exceeds the tensile strength of the concrete in the lowest fiber but the principal compressive stress 

at the upper edge stays below the limit: 

𝜎1
max𝑐𝑜𝑚𝑝.  1𝑠𝑡 𝑖𝑡. = |−𝟒𝟏. 𝟓𝟔𝟒| 𝑴𝑷𝒂 < 𝒇𝒄𝒅 = |−45| 𝑀𝑃𝑎 

𝜎1
max𝑡𝑒𝑛𝑠. 1𝑠𝑡 𝑖𝑡. = 𝟏𝟐.𝟔𝟎𝟒 𝑴𝑷𝒂 > 𝒇𝒄𝒕𝒅 = 4.5 𝑀𝑃𝑎 

That is: 

(𝜎1
𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒)

1𝑠𝑡 𝑖𝑡.
> 𝑓𝑐𝑡𝑑 

(𝜎2
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒)

1𝑠𝑡 𝑖𝑡.
< 𝑓𝑐𝑑 

The last fiber subjected to traction cracks. The script returns at the beginning of the procedure, 

revaluates the cross section now reduced of that one fiber and computes again the state of stress.  

 

6.3.3. 2nd Elastic Evaluation of the Cross Section 

 

Figure 6.3.3.1 – 2n d iteration of the procedure represented in the flow chart  
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At the end of the first iteration, the fiber at the extremity of the cross section subjected to traction, 

cracks. Hence, at this second iteration, the coordinate of the last working fiber, the one at the 

extremity of the reacting cross section is: 

𝑦2𝑛𝑑 𝑖𝑡. = 𝑦(2) = 370 𝑚𝑚 

Basic quantities that have to be computed again, since the coordinate changed, are: 

𝑑2𝑛𝑑 𝑖𝑡. = 260 𝑚𝑚 

𝐴𝑜𝑚𝑜𝑔
2𝑛𝑑 𝑖𝑡. = 477240 𝑚𝑚2 

𝑆2𝑛𝑑 𝑖𝑡. = 184368019 𝑚𝑚3 

𝑑𝑔,𝑠𝑢𝑝
2𝑛𝑑 𝑖𝑡. = 386 𝑚𝑚 

𝑑𝑔,𝑖𝑛𝑓
2𝑛𝑑 𝑖𝑡. = 414 𝑚𝑚 

𝐼𝑜𝑚𝑜𝑔
2𝑛𝑑 𝑖𝑡. = 26889056367 𝑚𝑚4 

The position of the neutral axis: 

𝑦𝑎.𝑛.
2𝑛𝑑 𝑖𝑡. = −208 𝑚𝑚 

The sigma value that the procedure is interested in, is the one related to the upper edge under 

compression, corresponding to 𝑦max𝑐𝑜𝑚𝑝. = 400 𝑚𝑚: 

𝜎max𝑐𝑜𝑚𝑝.  2𝑛𝑑 𝑖𝑡. = −42.869 𝑀𝑃𝑎 

Even the one acting on the tensest fiber, the one at the lower extremity, corresponding to 𝑦𝑚𝑎𝑥 𝑡𝑒𝑛𝑠. =

−370 𝑚𝑚: 

𝜎max 𝑡𝑒𝑛𝑠.  
2𝑛𝑑 𝑖𝑡.

= 11.495 𝑀𝑃𝑎 

Tangential stresses are still equal to zero: 

𝜏max 𝑐𝑜𝑚𝑝.  2𝑛𝑑 𝑖𝑡. = 0 𝑀𝑃𝑎 

𝜏max 𝑡𝑒𝑛𝑠.  2𝑛𝑑 𝑖𝑡. = 0 𝑀𝑃𝑎 
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Figure 6.3.3.2 - Tangential and normal stresses distributions  

Also in this case, considering that tangential stresses are null, principal stresses are equal to normal 

ones: 

𝜎1
max𝑐𝑜𝑚𝑝.  2𝑛𝑑 𝑖𝑡. = −41.381 𝑀𝑃𝑎 

For the tensile fiber: 

𝜎1
max𝑡𝑒𝑛𝑠.  2𝑛𝑑 𝑖𝑡. = 10.060 𝑀𝑃𝑎 

At the end of the second iteration, the procedure falls again in the fourth scenario: 

𝜎1
max𝑐𝑜𝑚𝑝.  2𝑛𝑑 𝑖𝑡. = |−𝟒𝟏. 𝟑𝟖𝟏| 𝑴𝑷𝒂 < 𝒇𝒄𝒅 = |−45| 𝑀𝑃𝑎 

𝜎1
max𝑡𝑒𝑛𝑠.  2𝑛𝑑 𝑖𝑡. = 𝟏𝟎.𝟎𝟔𝟎 𝑴𝑷𝒂 > 𝒇𝒄𝒕𝒅 = 4.5 𝑀𝑃𝑎 

At the end of the second iteration, once again, the fourth scenario: 

(𝜎1
𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒

)
2𝑛𝑑 𝑖𝑡.

> 𝑓𝑐𝑡𝑑 

(𝜎2
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒

)
2𝑛𝑑 𝑖𝑡.

< 𝑓𝑐𝑑 

The last un-cracked fiber subjected to traction cracks. The script proceeds returning at the first 

step, revaluating the cross section now reduced of that one fiber and computing again the state of 

stress.  
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6.3.4. 3rd Elastic Evaluation of the Cross Section 

 

Figure 6.3.4.1 – 3 r d iteration of the procedure represented in the flow chart  

At the third iteration, the coordinate of the last working fiber, the one at the extremity of the reacting 

cross section, changes again: 

𝑦3𝑟𝑑 𝑖𝑡. = 𝑦(3) = 350 𝑚𝑚 

All basic quantities computed at previous steps, depending on 𝑦, have to be calculated again using 

same equations. They are necessary to evaluate the stress distribution, which at this iteration are 

characterised by the following maximum values: 

𝜎max 𝑐𝑜𝑚𝑝.  3𝑟𝑑 𝑖𝑡. = −44.083 𝑀𝑃𝑎 

𝜎max 𝑡𝑒𝑛𝑠.  
3𝑟𝑑 𝑖𝑡.

= 10.328 𝑀𝑃𝑎 

The considered fiber lays below reinforcements and therefore corresponding tangential stresses are 

different from zero: 

𝜏max 𝑐𝑜𝑚𝑝.  3𝑟𝑑 𝑖𝑡. = 0 𝑀𝑃𝑎 

𝜏max 𝑡𝑒𝑛𝑠.  3𝑟𝑑 𝑖𝑡. = 0.108 𝑀𝑃𝑎 
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Figure 6.3.4.2 - Tangential and normal stresses distributions  

The principal compressive stress at the most compressed fiber is determined through the following 

equation: 

𝜎1
max 𝑐𝑜𝑚𝑝.  3𝑟𝑑 𝑖𝑡. =

𝜎max 𝑐𝑜𝑚𝑝.  3𝑟𝑑 𝑖𝑡. −√𝜎max 𝑐𝑜𝑚𝑝.  3𝑟𝑑 𝑖𝑡
2
+ 4 𝜏max 𝑐𝑜𝑚𝑝.  3𝑟𝑑 𝑖𝑡. 

2
= −44.085 𝑀𝑃𝑎 

For the tensile fiber: 

𝜎1
max𝑡𝑒𝑛𝑠.  3𝑟𝑑 𝑖𝑡. =

𝜎max 𝑐𝑜𝑚𝑝.  3𝑟𝑑 𝑖𝑡. +√𝜎max 𝑐𝑜𝑚𝑝. 3𝑟𝑑 𝑖𝑡.
2
+ 4 𝜏max 𝑐𝑜𝑚𝑝.  3𝑟𝑑 𝑖𝑡. 

2
= 10.338 𝑀𝑃𝑎 

At the end of the third iteration, the procedure falls again in the fourth scenario: 

𝜎1
max 𝑐𝑜𝑚𝑝.  3𝑟𝑑 𝑖𝑡. = |−𝟒𝟒. 𝟎𝟖𝟓| 𝑴𝑷𝒂 < 𝒇𝒄𝒅 = |−45| 𝑀𝑃𝑎 

𝜎1
max𝑡𝑒𝑛𝑠.  3𝑟𝑑 𝑖𝑡 = 𝟏𝟎.𝟑𝟑𝟖 𝑴𝑷𝒂 > 𝒇𝒄𝒕𝒅 = 4.5 𝑀𝑃𝑎 

The last tensest fiber cracks, the procedure returns at the beginning and recalculates the new cross 

section. 
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6.3.5. 4th Elastic Evaluation of the Cross Section 

 

Figure 6.3.5.1 – 4 th iteration of the procedure represented in the flow chart  

At the sixth iteration, the coordinate of the last working fiber is: 

𝑦4𝑡ℎ 𝑖𝑡. = 𝑦(3) = 290 𝑚𝑚 

The stress distribution is now characterised by the following maximum values: 

𝜎max 𝑐𝑜𝑚𝑝.  4𝑡ℎ 𝑖𝑡. = −45.208 𝑀𝑃𝑎 

𝜎max 𝑡𝑒𝑛𝑠.  
4𝑡ℎ 𝑖𝑡.

= 9.121 𝑀𝑃𝑎 

The considered fiber lays below reinforcements and therefore corresponding tangential stresses are 

different from zero: 

𝜏max 𝑐𝑜𝑚𝑝.  4𝑡ℎ 𝑖𝑡. = 0 𝑀𝑃𝑎 

𝜏max 𝑡𝑒𝑛𝑠.  4𝑡ℎ 𝑖𝑡. = 0.106 𝑀𝑃𝑎 
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Figure 6.3.5.2 - Tangential and normal stresses distributions  

The principal compressive stresses: 

𝜎1
max𝑐𝑜𝑚𝑝.  4𝑡ℎ 𝑖𝑡. = −45.203 𝑀𝑃𝑎 

For the tensile fiber: 

𝜎1
max𝑡𝑒𝑛𝑠.  4𝑡ℎ 𝑖𝑡. = 9.133 𝑀𝑃𝑎 

At the end of the third iteration, the procedure falls in the sixth scenario: 

𝜎1
max𝑐𝑜𝑚𝑝.  4𝑡ℎ 𝑖𝑡. = |−𝟒𝟓. 𝟐𝟎𝟑| 𝑴𝑷𝒂 > 𝒇𝒄𝒅 = |−45| 𝑀𝑃𝑎 

𝜎1
max 𝑡𝑒𝑛𝑠.  4𝑡ℎ 𝑖𝑡. = 𝟗.𝟏𝟑𝟑 𝑴𝑷𝒂 > 𝒇𝒄𝒕𝒅 = 4.5 𝑀𝑃𝑎 

 

At the end of the sixth iteration, both principal tensile stress on the tensest fiber and principal 

compressive stress on the most compressed fiber exceed their limits. This means that the crack 

continues developing and the most compressed fiber crushes. Both a local cracking and a local 

crushing happened. It has to verify if they affect the whole cross section.  

The procedure starts analysing the crushing of the concrete: the type of crushing, local or global, 

can be determined through an N-M domain verification. If the point representing the external forces 

falls inside the domain, the column is able to withstand solicitations, therefore, even if a portion of 

the concrete crushes, the whole element is capable of carrying external loads; this corresponds to a 
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local crushing. If the point is out of the domain, it means that the member fails under such actions, 

thus it fails because of a global crushing. 

Once the procedure coincides with the second scenario, the script has to control if the crushing is 

global, which means verifying the cross section by means of the N-M interaction domain. 

 

Figure 6.3.5.3 – Path on the flow chart: global crushing verification 

At the end of the global crushing verification, the plot of the N-M domain and the point representing 

the external forces on the column. In this case, the point is outside the interaction diagram; the 

script returns “The verification of the N-M domain is not satisfied, global crushing of the element”. 
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Figure 6.3.5.4 – N-M interaction domain 

The whole element crushes; the path on the flow chart follow the “Yes” alternative. Since the column 

has already failed because of the crushing, the verification of the crack is worthless. 

The procedure ends with the failure of the column. The script returns “The crack develops 

throughout the cross section and global crushing of the column”. 
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Figure 6.3.5.5 – Path on the flow chart: end of the procedure  

 

6.4. Application of the Procedure to Real Cases 

The procedure has also applied to three real cases, thus, in addition to geometrical properties and 

material ones, also external forces correspond to the values acting on the element when it collapsed. 

6.4.1. Case 1 

The information required by the procedure, corresponding to geometrical ad material properties of 

a real column, are: 

-  𝑏 = 300 𝑚𝑚; 

- ℎ = 300 𝑚𝑚; 

- 𝑐 = 30 𝑚𝑚; 

- 𝑑 = 270 𝑚𝑚; 

- 𝐴𝑠,𝑠𝑢𝑝 = 2 𝛷 10 = 157 𝑚𝑚
2; 

- 𝐴𝑠,𝑖𝑛𝑓 = 2 𝛷 10 = 157 𝑚𝑚
2;  

- 𝛷𝑠𝑡 = 𝛷 6 = 6 𝑚𝑚; 
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- 𝑛𝑠𝑡 = 2; 

- 𝑠𝑠𝑡 = 100 𝑚𝑚: 

- 𝑓𝑐𝑑 = 9.4 𝑀𝑃𝑎; 

- 𝑓𝑐𝑡𝑑 = 0.1 𝑓𝑐𝑑 = 0.94 𝑀𝑃𝑎; 

- 𝑓𝑦𝑑 = 447.8 𝑀𝑃𝑎; 

- 𝐸𝑐 = 22000 [(
𝑓𝑐𝑑

10
)
0.3

] = 28821 𝑀𝑃𝑎; 

- 𝐸𝑠 = 210000 𝑀𝑃𝑎; 

- 𝑛 =
𝐸𝑐
𝐸𝑠
⁄ = 7.29; 

- 𝑁𝑎𝑐𝑡 = −300000 𝑁; 

- 𝑇𝑎𝑐𝑡 = 30000 𝑁; 

- 𝑀𝑎𝑐𝑡 = 60000000 𝑁 𝑚𝑚. 

A half cross section has subdivided in fifteen fibers in order to get the width of each fiber equal to 

one centimetre. 

The vector of the fiber considered is the following one: 

𝑦 = [145,   135,   125,   115,   105,   95,   85,   75,   65,   55,   45,   35,   25,   15,   5]   

The fundamental quantities necessary to determine both tangential and normal stresses 

distributions are, as in previous examples, the effective depth, the homogenised cross section, the 

position of the centroid of the homogenised area, the homogenised moment of inertia and the 

homogenised static moment. Formulae have already explained in the first example of the procedure, 

hence, they will not repeat in this case. Only the values that those terms assume have reported. 
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6.4.1.1. 1st Elastic Evaluation of the Cross Section 

The procedure starts with the first elastic evaluation of the initial cross section, as shown in the 

flow diagram. 

 

Figure 6.4.1.1.1 – 1 st iteration of the procedure represented in the flow chart  

The coordinate of the last un-cracked fiber, the one at the extremity of the working cross section, 

is: 

𝑦1𝑠𝑡 𝑖𝑡. = 𝑦(1) = 145 𝑚𝑚 

The basic terms necessary to compute the stresses diagrams are the following ones: 

𝑑1𝑠𝑡 𝑖𝑡. = 270 𝑚𝑚 

𝐴𝑜𝑚𝑜𝑔
1𝑠𝑡 𝑖𝑡. = 92289 𝑚𝑚2 

𝑆1𝑠𝑡 𝑖𝑡. = 13671659 𝑚𝑚3 

𝑑𝑔,𝑠𝑢𝑝
1𝑠𝑡 𝑖𝑡. = 148 𝑚𝑚 

𝑑𝑔,𝑖𝑛𝑓
1𝑠𝑡 𝑖𝑡. = 152 𝑚𝑚 

𝐼𝑜𝑚𝑜𝑔
1𝑠𝑡 𝑖𝑡. = 708277858 𝑚𝑚4 
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The position of the neutral axis, imposing stress equal to zero in the Navier’s equation and solving 

for the 𝑦 coordintae: 

𝑦𝑎.𝑛.
1𝑠𝑡 𝑖𝑡. = −38 𝑚𝑚 

The sigma value required by the procedure is the one related to the upper edge under compression, 

corresponding to 𝑦max𝑐𝑜𝑚𝑝. = 150 𝑚𝑚: 

𝜎max 𝑐𝑜𝑚𝑝.  1𝑠𝑡 𝑖𝑡. = −16.076 𝑀𝑃𝑎 

Even the one acting on the tensest fiber, the one at the lower extremity, corresponding to 𝑦𝑚𝑎𝑥 𝑡𝑒𝑛𝑠. =

−145 𝑚𝑚: 

𝜎max 𝑡𝑒𝑛𝑠.  
1𝑠𝑡 𝑖𝑡.

= 9.492 𝑀𝑃𝑎 

Tangential stresses are equal to zero because the considered fiber is below steel rebar, where the 

static moment gets to zero: 

𝜏max 𝑐𝑜𝑚𝑝.  1𝑠𝑡 𝑖𝑡. = 0 𝑀𝑃𝑎 

𝜏max 𝑡𝑒𝑛𝑠.  1𝑠𝑡 𝑖𝑡. = 0 𝑀𝑃𝑎 

 

Figure 6.4.1.1.2 - Tangential and normal stresses distributions  

Also in this case, considering that tangential stresses are null, principal stresses are equal to normal 

ones: 

𝜎1
max𝑐𝑜𝑚𝑝.  1𝑠𝑡 𝑖𝑡. = −16.076 𝑀𝑃𝑎 
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For the tensile fiber: 

𝜎1
max𝑡𝑒𝑛𝑠.  1𝑠𝑡 𝑖𝑡. = 9.492 𝑀𝑃𝑎 

At the end of the first iteration, the procedure follows the third scenario: both principal tensile 

stress in the lowest fiber both principal compressive stress at the upper edge are greater than the 

tensile and the compressive strength of the concrete, respectively: 

𝜎1
max𝑐𝑜𝑚𝑝.  1𝑠𝑡 𝑖𝑡. = |−𝟏𝟔. 𝟎𝟕𝟔| 𝑴𝑷𝒂 > 𝒇𝒄𝒅 = |−9.4| 𝑀𝑃𝑎 

𝜎1
max𝑡𝑒𝑛𝑠. 1𝑠𝑡 𝑖𝑡. = 𝟗.𝟒𝟗𝟐 𝑴𝑷𝒂 > 𝒇𝒄𝒕𝒅 = 0.94 𝑀𝑃𝑎 

The scenario is: 

(𝜎1
𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒

)
1𝑠𝑡 𝑖𝑡.

> 𝑓𝑐𝑡𝑑 

(𝜎2
𝑢𝑝𝑝𝑒𝑟 𝑒𝑑𝑔𝑒)

1𝑠𝑡 𝑖𝑡.
> 𝑓𝑐𝑑 

This means that the crack continues developing and the most compressed fiber crushes. Both a local 

cracking and a local crushing certainly happened. The analysis proceeds considering first the 

crushing of the concrete: the type of crushing, local or global, can be determined through an N-M 

domain verification. If the solicitation point lays inside the domain, the column is able to withstand 

external actions and therefore the crushing is local. If the point is out of the domain, it means that 

the member fails under such actions, thus it fails because of a global crushing. 

 

Figure 6.4.1.1.3 – Path on the flow chart: global crushing verification 
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The script goes on with the N-M domain verification. 

 

Figure 6.4.1.1.4 – N-M interaction domain 

As shown in the figure, the point is outside the interaction diagram; the script returns “The 

verification of the N-M domain is not satisfied, global crushing of the element”. The whole element 

crushes; the path on the flow chart follow the “Yes” alternative. Since the column has already failed 

because of the crushing, the verification of the crack is worthless. 

The procedure ends with the failure of the column. The script returns “The crack develops 

throughout the cross section and global crushing of the column”. 
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Figure 6.4.1.1.6 – Path on the flow chart: end of the procedure 

 

6.4.2. Case 2 

The information that the procedure requires has listed below: 

- 𝑏 = 500 𝑚𝑚; 

- ℎ = 500 𝑚𝑚; 

- 𝑐 = 40 𝑚𝑚; 

- 𝑑 = 260 𝑚𝑚; 

- 𝐴𝑠,𝑠𝑢𝑝 = 2 𝛷 24 = 904 𝑚𝑚
2; 

- 𝐴𝑠,𝑖𝑛𝑓 = 2 𝛷 24 = 904 𝑚𝑚
2;  

- 𝛷𝑠𝑡 = 𝛷 6 = 6 𝑚𝑚; 

- 𝑛𝑠𝑡 = 2; 

- 𝑠𝑠𝑡 = 200 𝑚𝑚: 

- 𝑓𝑐𝑑 = 60 𝑀𝑃𝑎; 

- 𝑓𝑐𝑡𝑑 = 0.1 𝑓𝑐𝑑 = 6 𝑀𝑃𝑎; 

- 𝑓𝑦𝑑 = 600 𝑀𝑃𝑎; 
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- 𝐸𝑐 = 22000 [(
𝑓𝑐𝑑

10
)
0.3

] = 37659 𝑀𝑃𝑎; 

- 𝐸𝑠 = 210000 𝑀𝑃𝑎; 

- 𝑛 =
𝐸𝑐
𝐸𝑠
⁄ = 5.58; 

- 𝑁𝑎𝑐𝑡 = −660000 𝑁; 

- 𝑇𝑎𝑐𝑡 = 180000 𝑁; 

- 𝑀𝑎𝑐𝑡 = 290000000 𝑁 𝑚𝑚; 

A half cross section has subdivided into twenty-five fibers, in order to get the width of each fiber 

equal to one centimetre. The vector of the fiber considered is the following one: 

𝑦 = [245,   235,   225,   215,   205,   195,   185,   175,   165,   155,   145,   135,   125,   115,…   

                           …  105,   95,   85,   75,   65,   55,   45,   35,   25,   15,   5] 

 

6.4.2.1. 1st Elastic Evaluation of the Cross Section 

The procedure starts with the first elastic evaluation of the initial cross section. 

 

Figure 6.4.2.1.1 – 1 st iteration of the procedure represented in the flow chart  
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The coordinate of the last un-cracked fiber, the one at the extremity of the working cross section, 

is: 

𝑦1𝑠𝑡 𝑖𝑡. = 𝑦(1) = 245 𝑚𝑚 

The basic terms necessary to compute the stresses diagrams are the following ones: 

𝑑1𝑠𝑡 𝑖𝑡. = 470 𝑚𝑚 

𝐴𝑜𝑚𝑜𝑔
1𝑠𝑡 𝑖𝑡. = 260082 𝑚𝑚2 

𝑆1𝑠𝑡 𝑖𝑡. = 63760259 𝑚𝑚3 

𝑑𝑔,𝑠𝑢𝑝
1𝑠𝑡 𝑖𝑡. = 245 𝑚𝑚 

𝑑𝑔,𝑖𝑛𝑓
1𝑠𝑡 𝑖𝑡. = 255 𝑚𝑚 

𝐼𝑜𝑚𝑜𝑔
1𝑠𝑡 𝑖𝑡. = 5702412206 𝑚𝑚4 

The position of the neutral axis, imposing stress equal to zero in the Navier’s equation and solving 

for the 𝑦 coordintae: 

𝑦𝑎.𝑛.
1𝑠𝑡 𝑖𝑡. = −49 𝑚𝑚 

The sigma value required by the procedure is the one related to the upper edge under compression, 

corresponding to 𝑦max𝑐𝑜𝑚𝑝. = 250 𝑚𝑚: 

𝜎max 𝑐𝑜𝑚𝑝.  1𝑠𝑡 𝑖𝑡. = −15.392 𝑀𝑃𝑎 

Even the one acting on the tensest fiber, the one at the lower extremity, corresponding to 𝑦𝑚𝑎𝑥 𝑡𝑒𝑛𝑠. =

−245 𝑚𝑚: 

𝜎max 𝑡𝑒𝑛𝑠.  
1𝑠𝑡 𝑖𝑡.

= 10.919 𝑀𝑃𝑎 

Tangential stresses are equal to zero because the considered fiber is below steel rebar, where the 

static moment gets to zero: 

𝜏max 𝑐𝑜𝑚𝑝.  1𝑠𝑡 𝑖𝑡. = 0 𝑀𝑃𝑎 

𝜏max 𝑡𝑒𝑛𝑠.  1𝑠𝑡 𝑖𝑡. = 0 𝑀𝑃𝑎 
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Figure 6.4.2.1.2 - Tangential and normal stresses distributions  

Also in this case, considering that tangential stresses are null, principal stresses are equal to normal 

ones: 

𝜎1
max𝑐𝑜𝑚𝑝.  1𝑠𝑡 𝑖𝑡. = −15.392  𝑀𝑃𝑎 

For the tensile fiber: 

𝜎1
max𝑡𝑒𝑛𝑠.  1𝑠𝑡 𝑖𝑡. = 10.919 𝑀𝑃𝑎 

At the end of the first iteration, the procedure follows the fourth scenario: 

𝜎1
max𝑐𝑜𝑚𝑝.  1𝑠𝑡 𝑖𝑡. = |−𝟏𝟓. 𝟑𝟗𝟐| 𝑴𝑷𝒂 < 𝒇𝒄𝒅 = |−60| 𝑀𝑃𝑎 

𝜎1
max𝑡𝑒𝑛𝑠. 1𝑠𝑡 𝑖𝑡. = 𝟏𝟎.𝟗𝟏𝟗 𝑴𝑷𝒂 > 𝒇𝒄𝒕𝒅 = 6 𝑀𝑃𝑎 

The procedure returns at the beginning of the analysis, recalculates the cross section and the state 

of stress. A second iteration follow this first one. 
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6.4.2.2. 2nd Elastic Evaluation of the Cross Section 

 

Figure 6.4.2.2.1 – 2n d iteration of the procedure represented in the flow chart  

 

The fiber at the extremity of the initial cross section cracked hence the element has reduced. The 

coordinate of the last un-cracked fiber, is: 

𝑦2𝑛𝑑 𝑖𝑡. = 𝑦(2) = 235 𝑚𝑚 

Fundamental terms necessary to compute the stresses diagrams are the following ones: 

𝑑2𝑛𝑑 𝑖𝑡. = 460 𝑚𝑚 

𝐴𝑜𝑚𝑜𝑔
2𝑛𝑑 𝑖𝑡. = 255082 𝑚𝑚2 

𝑆2𝑛𝑑 𝑖𝑡. = 61285259 𝑚𝑚3 

𝑑𝑔,𝑠𝑢𝑝
2𝑛𝑑 𝑖𝑡. = 240 𝑚𝑚 

𝑑𝑔,𝑖𝑛𝑓
2𝑛𝑑 𝑖𝑡. = 260 𝑚𝑚 

𝐼𝑜𝑚𝑜𝑔
2𝑛𝑑 𝑖𝑡. = 5720993917 𝑚𝑚4 
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The position of the neutral axis, imposing stress equal to zero in the Navier’s equation and solving 

for the 𝑦 coordintae: 

𝑦𝑎.𝑛.
2𝑛𝑑 𝑖𝑡. = −50 𝑚𝑚 

The sigma value required by the procedure is the one related to the upper edge under compression, 

corresponding to 𝑦max𝑐𝑜𝑚𝑝. = 250 𝑚𝑚: 

𝜎max𝑐𝑜𝑚𝑝.  2𝑛𝑑 𝑖𝑡. = −15.541 𝑀𝑃𝑎 

Even the one acting on the tensest fiber, the one at the lower extremity, corresponding to 𝑦𝑚𝑎𝑥 𝑡𝑒𝑛𝑠. =

−235 𝑚𝑚: 

𝜎max 𝑡𝑒𝑛𝑠.  
2𝑛𝑑 𝑖𝑡.

= 10.411 𝑀𝑃𝑎 

Tangential stresses are equal to zero because the considered fiber is below steel rebar, where the 

static moment gets to zero: 

𝜏max 𝑐𝑜𝑚𝑝.  2𝑛𝑑 𝑖𝑡. = 0 𝑀𝑃𝑎 

𝜏max 𝑡𝑒𝑛𝑠.  2𝑛𝑑 𝑖𝑡. = 0 𝑀𝑃𝑎 

 

Figure 6.4.2.2.2 - Tangential and normal stresses distributions  

Also in this case, considering that tangential stresses are null, principal stresses are equal to normal 

ones: 

𝜎1
max𝑐𝑜𝑚𝑝.  2𝑛𝑑 𝑖𝑡. = −15.541 𝑀𝑃𝑎 
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For the tensile fiber: 

𝜎1
max𝑡𝑒𝑛𝑠.  2𝑛𝑑 𝑖𝑡. = 10.411 𝑀𝑃𝑎 

At the end of the second iteration, the procedure falls into the fourth scenario: 

𝜎1
max𝑐𝑜𝑚𝑝.  2𝑛𝑑 𝑖𝑡. = |−𝟏𝟓. 𝟓𝟒𝟏| 𝑴𝑷𝒂 < 𝒇𝒄𝒅 = |−60| 𝑀𝑃𝑎 

𝜎1
max𝑡𝑒𝑛𝑠. 2𝑛𝑑 𝑖𝑡. = 𝟏𝟎.𝟒𝟏𝟏 𝑴𝑷𝒂 > 𝒇𝒄𝒕𝒅 = 6 𝑀𝑃𝑎 

Also at the end of the second iteration the procedure returns in the fourth scenario, the last fiber 

cracks and the analysis goes back to the beginning of the procedure and revaluates the stresses 

acting on the cross section. 

 

6.4.2.3. 3rd Elastic Evaluation of the Cross Section 

 

Figure 6.4.2.3.1 – 3 r d iteration of the procedure represented in the flow chart  

 

At the third iteration, the coordinate of the last un-cracked fiber, is: 

𝑦3𝑟𝑑 𝑖𝑡. = 𝑦(3) = 225 𝑚𝑚 
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The basic terms necessary to compute the stresses diagrams have to recalculate, since the 𝑦 

coordinate has changed. 

The position of the neutral axis from Navier’s equation: 

𝑦𝑎.𝑛.
3𝑟𝑑 𝑖𝑡. = −51 𝑚𝑚 

The sigma value required by the procedure is the one related to the upper edge under compression, 

corresponding to 𝑦max𝑐𝑜𝑚𝑝. = 250 𝑚𝑚: 

𝜎max 𝑐𝑜𝑚𝑝.  3𝑟𝑑 𝑖𝑡. = −15.663 𝑀𝑃𝑎 

Even the one acting on the tensest fiber, the one at the lower extremity, corresponding to 𝑦𝑚𝑎𝑥 𝑡𝑒𝑛𝑠. =

−225 𝑚𝑚: 

𝜎max 𝑡𝑒𝑛𝑠.  
3𝑟𝑑 𝑖𝑡.

= 9.881 𝑀𝑃𝑎 

Tangential stresses are equal to zero because the considered fiber is below steel rebar, where the 

static moment gets to zero: 

𝜏max 𝑐𝑜𝑚𝑝.  3𝑟𝑑 𝑖𝑡. = 0 𝑀𝑃𝑎 

𝜏max 𝑡𝑒𝑛𝑠.  3𝑟𝑑 𝑖𝑡. = 0.108 𝑀𝑃𝑎 

 

Figure 6.4.2.3.2 - Tangential and normal stresses distributions  

Principal compressive stress, depending on both normal and tangential stresses: 

𝜎1
max𝑐𝑜𝑚𝑝.  3𝑟𝑑 𝑖𝑡. = −15.663 𝑀𝑃𝑎 
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For the tensile fiber: 

𝜎1
max𝑡𝑒𝑛𝑠.  3𝑟𝑑 𝑖𝑡. = 9.881 𝑀𝑃𝑎 

At the end of the second iteration, the procedure returns the fourth scenario: 

𝜎1
max 𝑐𝑜𝑚𝑝.  3𝑟𝑑 𝑖𝑡. = |−𝟏𝟓. 𝟔𝟔𝟑| 𝑴𝑷𝒂 < 𝒇𝒄𝒅 = |−60| 𝑀𝑃𝑎 

𝜎1
max𝑡𝑒𝑛𝑠. 3𝑟𝑑 𝑖𝑡. = 𝟗.𝟖𝟖𝟏 𝑴𝑷𝒂 > 𝒇𝒄𝒕𝒅 = 6 𝑀𝑃𝑎 

Also at the end of the second iteration the procedure returns in the fourth scenario, the procedure 

repeats 

 

6.4.2.4. 4th Elastic Evaluation of the Cross Section 

 

Figure 6.4.2.4.1 – 4 th iteration of the procedure represented in the flow chart  

For the fourth iteration, the coordinate of the last un-cracked fiber, is: 

𝑦4𝑡ℎ  𝑖𝑡. = 𝑦(4) = 215 𝑚𝑚 

The position of the neutral axis from Navier’s equation: 

𝑦𝑎.𝑛.
4𝑡ℎ  𝑖𝑡. = −52 𝑚𝑚 
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The sigma value required by the procedure is the one related to the upper edge under compression, 

corresponding to 𝑦max𝑐𝑜𝑚𝑝. = 250 𝑚𝑚: 

𝜎max 𝑐𝑜𝑚𝑝.  4𝑡ℎ 𝑖𝑡. = −15.759 𝑀𝑃𝑎 

And the one at the lower extremity, corresponding to 𝑦𝑚𝑎𝑥 𝑡𝑒𝑛𝑠. = −215 𝑚𝑚: 

𝜎max𝑡𝑒𝑛𝑠.  
4𝑡ℎ  𝑖𝑡.

= 9.330 𝑀𝑃𝑎 

Tangential stresses: 

𝜏max 𝑐𝑜𝑚𝑝.  4𝑡ℎ 𝑖𝑡. = 0 𝑀𝑃𝑎 

𝜏max 𝑡𝑒𝑛𝑠.  4𝑡ℎ 𝑖𝑡. = 0.0335 𝑀𝑃𝑎 

 

Figure 6.4.2.4.2 - Tangential and normal stresses distributions  

Principal stresses are function of both normal and tangential stresses: 

𝜎1
max𝑐𝑜𝑚𝑝.  4𝑡ℎ 𝑖𝑡. = −15.761 𝑀𝑃𝑎 

For the tensile fiber: 

𝜎1
max𝑡𝑒𝑛𝑠.  4𝑡ℎ 𝑖𝑡. = 9.33 𝑀𝑃𝑎 

At the end of the fourth iteration, the procedure follows the fourth scenario: 

𝜎1
max𝑐𝑜𝑚𝑝.  4𝑡ℎ 𝑖𝑡. = |−𝟏𝟓. 𝟕𝟔𝟏| 𝑴𝑷𝒂 > 𝒇𝒄𝒅 = |−60| 𝑀𝑃𝑎 

𝜎1
max𝑡𝑒𝑛𝑠. 4𝑡ℎ 𝑖𝑡. = 𝟗.𝟑𝟑 𝑴𝑷𝒂 > 𝒇𝒄𝒕𝒅 = 6 𝑀𝑃𝑎 
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6.4.2.5. 5th Elastic Evaluation of the Cross Section 

For the fifth iteration, the coordinate of the last un-cracked fiber, is: 

𝑦5𝑡ℎ 𝑖𝑡. = 𝑦(5) = 205 𝑚𝑚 

The position of the neutral axis from Navier’s equation: 

𝑦𝑎.𝑛.
5𝑡ℎ 𝑖𝑡. = −53 𝑚𝑚 

The sigma value required by the procedure is the one related to the upper edge under compression, 

corresponding to 𝑦max𝑐𝑜𝑚𝑝. = 250 𝑚𝑚: 

𝜎max 𝑐𝑜𝑚𝑝.  5𝑡ℎ 𝑖𝑡. = −15.828 𝑀𝑃𝑎 

And the one at the lower extremity, corresponding to 𝑦𝑚𝑎𝑥 𝑡𝑒𝑛𝑠. = −205 𝑚𝑚: 

𝜎max 𝑡𝑒𝑛𝑠.  
5𝑡ℎ 𝑖𝑡.

= 8.765 𝑀𝑃𝑎 

Tangential stresses are now equal to:: 

𝜏max 𝑐𝑜𝑚𝑝.  5𝑡ℎ 𝑖𝑡. = 0 𝑀𝑃𝑎 

𝜏max 𝑡𝑒𝑛𝑠.  5𝑡ℎ 𝑖𝑡. = 0.0339 𝑀𝑃𝑎 

 

Figure 6.4.2.5.1 - Tangential and normal stresses distributions  

Principal stresses are function of both normal and tangential stresses: 

𝜎1
max𝑐𝑜𝑚𝑝.  5𝑡ℎ 𝑖𝑡. = −15.830 𝑀𝑃𝑎 
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For the tensile fiber: 

𝜎1
max𝑡𝑒𝑛𝑠.  5𝑡ℎ 𝑖𝑡. = 8.769 𝑀𝑃𝑎 

At the end of the fifth iteration, the procedure corresponds to the fourth scenario: 

𝜎1
max𝑐𝑜𝑚𝑝.  5𝑡ℎ 𝑖𝑡. = |−𝟏𝟓. 𝟖𝟑𝟎| 𝑴𝑷𝒂 > 𝒇𝒄𝒅 = |−60| 𝑀𝑃𝑎 

𝜎1
max 𝑡𝑒𝑛𝑠. 5𝑡ℎ 𝑖𝑡. = 𝟖. 𝟕𝟔𝟗 𝑴𝑷𝒂 > 𝒇𝒄𝒕𝒅 = 6 𝑀𝑃𝑎 

 

6.4.2.6. 6th Elastic Evaluation of the Cross Section 

For the sixth iteration: 𝑦6𝑡ℎ 𝑖𝑡. = 𝑦(6) = 195 𝑚𝑚 

The position of the neutral axis from Navier’s equation: 

𝑦𝑎.𝑛.
6𝑡ℎ 𝑖𝑡. = −54 𝑚𝑚 

The sigma value required by the procedure is the one related to the upper edge under compression, 

corresponding to 𝑦max𝑐𝑜𝑚𝑝. = 250 𝑚𝑚: 

𝜎max 𝑐𝑜𝑚𝑝.  6𝑡ℎ 𝑖𝑡. = −15.872 𝑀𝑃𝑎 

And the one at the lower extremity, corresponding to 𝑦𝑚𝑎𝑥 𝑡𝑒𝑛𝑠. = −195 𝑚𝑚: 

𝜎max 𝑡𝑒𝑛𝑠.  
6𝑡ℎ 𝑖𝑡.

= 8.19 𝑀𝑃𝑎 

Tangential stresses correspond to: 

𝜏max 𝑐𝑜𝑚𝑝.  6𝑡ℎ 𝑖𝑡. = 0 𝑀𝑃𝑎 

𝜏max 𝑡𝑒𝑛𝑠.  6𝑡ℎ 𝑖𝑡. = 0.0343 𝑀𝑃𝑎 
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Figure 6.4.2.6.1 - Tangential and normal stresses distributions 

Principal stresses are function of both normal and tangential stresses: 

𝜎1
max𝑐𝑜𝑚𝑝.  6𝑡ℎ 𝑖𝑡. = −15.874 𝑀𝑃𝑎 

For the tensile fiber: 

𝜎1
max𝑡𝑒𝑛𝑠.  6𝑡ℎ 𝑖𝑡. = 8.194 𝑀𝑃𝑎 

At the end of the sixth iteration, the analysis proceeds with the fourth scenario, again: 

𝜎1
max𝑐𝑜𝑚𝑝.  6𝑡ℎ 𝑖𝑡. = |−𝟏𝟓. 𝟖𝟕𝟒| 𝑴𝑷𝒂 > 𝒇𝒄𝒅 = |−60| 𝑀𝑃𝑎 

𝜎1
max 𝑡𝑒𝑛𝑠. 6𝑡ℎ 𝑖𝑡. = 𝟖. 𝟏𝟗𝟒 𝑴𝑷𝒂 > 𝒇𝒄𝒕𝒅 = 6 𝑀𝑃𝑎 

 

6.4.2.7. 7th Elastic Evaluation of the Cross Section 

For the seventh iteration, the coordinate of the last un-cracked fiber, is: 

𝑦7𝑡ℎ 𝑖𝑡. = 𝑦(7) = 185 𝑚𝑚 

The position of the neutral axis from Navier’s equation: 

𝑦𝑎.𝑛.
7𝑡ℎ 𝑖𝑡. = −55 𝑚𝑚 
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The sigma value required by the procedure is the one related to the upper edge under compression, 

corresponding to 𝑦max𝑐𝑜𝑚𝑝. = 250 𝑚𝑚: 

𝜎max 𝑐𝑜𝑚𝑝.  7𝑡ℎ 𝑖𝑡. = −15.892 𝑀𝑃𝑎 

And the one at the lower extremity, corresponding to 𝑦𝑚𝑎𝑥 𝑡𝑒𝑛𝑠. = −185 𝑚𝑚: 

𝜎max 𝑡𝑒𝑛𝑠.  
7𝑡ℎ 𝑖𝑡.

= 7.609 𝑀𝑃𝑎 

Tangential stresses are now different from zero because the considered fiber is no longer below 

reinforcements: 

𝜏max 𝑐𝑜𝑚𝑝.  7𝑡ℎ 𝑖𝑡. = 0 𝑀𝑃𝑎 

𝜏max 𝑡𝑒𝑛𝑠.  7𝑡ℎ 𝑖𝑡. = 0.0345 𝑀𝑃𝑎 

 

Figure 6.4.2.7.1 - Tangential and normal stresses distributions  

Principal stresses are function of both normal and tangential stresses: 

𝜎1
max𝑐𝑜𝑚𝑝.  7𝑡ℎ 𝑖𝑡. = −15.894 𝑀𝑃𝑎 

For the tensile fiber: 

𝜎1
max𝑡𝑒𝑛𝑠.  7𝑡ℎ 𝑖𝑡. = 7.614 𝑀𝑃𝑎 

At the end of the seventh iteration, the path follows the fourth scenario: 

𝜎1
max𝑐𝑜𝑚𝑝.  7𝑡ℎ 𝑖𝑡. = |−𝟏𝟓. 𝟖𝟗𝟒| 𝑴𝑷𝒂 > 𝒇𝒄𝒅 = |−60| 𝑀𝑃𝑎 
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𝜎1
max 𝑡𝑒𝑛𝑠. 7𝑡ℎ 𝑖𝑡. = 𝟕. 𝟔𝟏𝟒 𝑴𝑷𝒂 > 𝒇𝒄𝒕𝒅 = 6 𝑀𝑃𝑎 

 

6.4.2.8. 8th Elastic Evaluation of the Cross Section 

For the eighth iteration, the coordinate of the last un-cracked fiber, is: 

𝑦8𝑡ℎ 𝑖𝑡. = 𝑦(8) = 175 𝑚𝑚 

The position of the neutral axis from Navier’s equation: 

𝑦𝑎.𝑛.
8𝑡ℎ 𝑖𝑡. = −57 𝑚𝑚 

The sigma value required by the procedure is the one related to the upper edge under compression, 

corresponding to 𝑦max𝑐𝑜𝑚𝑝. = 250 𝑚𝑚: 

𝜎max 𝑐𝑜𝑚𝑝.  8𝑡ℎ 𝑖𝑡. = −15.889 𝑀𝑃𝑎 

And the one at the lower extremity, corresponding to 𝑦𝑚𝑎𝑥 𝑡𝑒𝑛𝑠. = −175 𝑚𝑚: 

𝜎max 𝑡𝑒𝑛𝑠.  
8𝑡ℎ 𝑖𝑡.

= 6.923 𝑀𝑃𝑎 

Tangential stresses are now different from zero because the considered fiber is no longer below 

reinforcements: 

𝜏max 𝑐𝑜𝑚𝑝.  8𝑡ℎ 𝑖𝑡. = 0 𝑀𝑃𝑎 

𝜏max 𝑡𝑒𝑛𝑠.  8𝑡ℎ 𝑖𝑡. = 0.0347 𝑀𝑃𝑎 

 

Figure 6.4.2.8.1 - Tangential and normal stresses distributions  
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Principal stresses are function of both normal and tangential stresses: 

𝜎1
max𝑐𝑜𝑚𝑝.  8𝑡ℎ 𝑖𝑡. = −15.891 𝑀𝑃𝑎 

For the tensile fiber: 

𝜎1
max𝑡𝑒𝑛𝑠.  8𝑡ℎ 𝑖𝑡. = 6.928 𝑀𝑃𝑎 

At the end of the eighth iteration, the procedure follows the fourth scenario: 

𝜎1
max𝑐𝑜𝑚𝑝.  8𝑡ℎ 𝑖𝑡. = |−𝟏𝟓. 𝟖𝟗𝟏| 𝑴𝑷𝒂 > 𝒇𝒄𝒅 = |−60| 𝑀𝑃𝑎 

𝜎1
max 𝑡𝑒𝑛𝑠. 8𝑡ℎ 𝑖𝑡. = 𝟔. 𝟗𝟐𝟖 𝑴𝑷𝒂 > 𝒇𝒄𝒕𝒅 = 6 𝑀𝑃𝑎 

 

6.4.2.9. 9th Elastic Evaluation of the Cross Section 

For the ninth iteration, the coordinate of the last un-cracked fiber, is: 

𝑦9𝑡ℎ 𝑖𝑡. = 𝑦(9) = 165 𝑚𝑚 

The position of the neutral axis from Navier’s equation: 

𝑦𝑎.𝑛.
9𝑡ℎ 𝑖𝑡. = −58 𝑚𝑚 

The sigma value required by the procedure is the one related to the upper edge under compression, 

corresponding to 𝑦max𝑐𝑜𝑚𝑝. = 250 𝑚𝑚: 

𝜎max 𝑐𝑜𝑚𝑝.  9𝑡ℎ 𝑖𝑡. = −15.866 𝑀𝑃𝑎 

And the one at the lower extremity, corresponding to 𝑦𝑚𝑎𝑥 𝑡𝑒𝑛𝑠. = −165 𝑚𝑚: 

𝜎max 𝑡𝑒𝑛𝑠.  
9𝑡ℎ 𝑖𝑡.

= 6.344 𝑀𝑃𝑎 

Tangential stresse:: 

𝜏max 𝑐𝑜𝑚𝑝.  9𝑡ℎ 𝑖𝑡. = 0 𝑀𝑃𝑎 

𝜏max 𝑡𝑒𝑛𝑠.  9𝑡ℎ 𝑖𝑡. = 0.0348 𝑀𝑃𝑎 
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Figure 6.4.2.9.1 - Tangential and normal stresses distributions  

Principal stresses are function of both normal and tangential stresses: 

𝜎1
max𝑐𝑜𝑚𝑝.  9𝑡ℎ 𝑖𝑡. = −15.891 𝑀𝑃𝑎 

For the tensile fiber: 

𝜎1
max𝑡𝑒𝑛𝑠.  9𝑡ℎ 𝑖𝑡. = 6.350 𝑀𝑃𝑎 

At the end of the ninth iteration, the procedure follows the again fourth scenario: 

𝜎1
max 𝑐𝑜𝑚𝑝.  9𝑡ℎ 𝑖𝑡. = |−𝟏𝟓. 𝟖𝟔𝟖| 𝑴𝑷𝒂 > 𝒇𝒄𝒅 = |−60| 𝑀𝑃𝑎 

𝜎1
max𝑡𝑒𝑛𝑠. 9𝑡ℎ 𝑖𝑡. = 𝟔.𝟑𝟓𝟎 𝑴𝑷𝒂 > 𝒇𝒄𝒕𝒅 = 6 𝑀𝑃𝑎 

 

5.4.2.10 10th Elastic Evaluation of the Cross Section 

For the tenth iteration, the coordinate of the last un-cracked fiber, is: 

𝑦10𝑡ℎ 𝑖𝑡. = 𝑦(10) = 155 𝑚𝑚 

The position of the neutral axis from Navier’s equation: 

𝑦𝑎.𝑛.
10𝑡ℎ 𝑖𝑡. = −60 𝑚𝑚 
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The sigma value required by the procedure is the one related to the upper edge under compression, 

corresponding to 𝑦max𝑐𝑜𝑚𝑝. = 250 𝑚𝑚: 

𝜎max 𝑐𝑜𝑚𝑝.  10𝑡ℎ 𝑖𝑡. = −15.824 𝑀𝑃𝑎 

And the one at the lower extremity, corresponding to 𝑦𝑚𝑎𝑥 𝑡𝑒𝑛𝑠. = −155 𝑚𝑚: 

𝜎max 𝑡𝑒𝑛𝑠.  
10𝑡ℎ 𝑖𝑡.

= 5.671 𝑀𝑃𝑎 

Tangential stresses are equal to:: 

𝜏max 𝑐𝑜𝑚𝑝.  10𝑡ℎ 𝑖𝑡. = 0 𝑀𝑃𝑎 

𝜏max 𝑡𝑒𝑛𝑠.  10𝑡ℎ 𝑖𝑡. = 0.0348 𝑀𝑃𝑎 

 

Figure 6.4.2.10.1 - Tangential and normal stresses distributions  

Principal stresses are function of both normal and tangential stresses: 

𝜎1
max𝑐𝑜𝑚𝑝.  10𝑡ℎ 𝑖𝑡. = −15.826 𝑀𝑃𝑎 

For the tensile fiber: 

𝜎1
max𝑡𝑒𝑛𝑠.  10𝑡ℎ 𝑖𝑡. = 5.678 𝑀𝑃𝑎 

At the end of the tenth iteration, the procedure follows the second scenario: 

𝜎1
max𝑐𝑜𝑚𝑝.  10𝑡ℎ 𝑖𝑡. = |−𝟏𝟓. 𝟖𝟐𝟔| 𝑴𝑷𝒂 > 𝒇𝒄𝒅 = |−60| 𝑀𝑃𝑎 

𝜎1
max𝑡𝑒𝑛𝑠. 10𝑡ℎ 𝑖𝑡. = 𝟓.𝟔𝟕𝟖 𝑴𝑷𝒂 < 𝒇𝒄𝒕𝒅 = 6 𝑀𝑃𝑎 
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Both the principal compressive stress on the most compressed fiber and the principal tensile stress 

on the tensest fiber are lower than their limits. The last un-cracked fiber does not crack. The cross 

section is now in equilibrium conditions.  

At the end of the tenth iteration, the analysis ends up in the first scenario and follows the cracked 

condition. In this case, it was satisfied and  the script plots “The vertical equilibrium is satisfied”. 

The procedure ends with an equilibrium achieved in ultimate conditions. 

The script also plots how the crack developed through the column. 

 

Figure 5.4.2.10.2 – Cracked Cross section 

 

6.4.3. Case 3 

Information necessary to use the procedure listed below: 

- 𝑏 = 600 𝑚𝑚; 

- ℎ = 800 𝑚𝑚; 

- 𝑐 = 40 𝑚𝑚; 

- 𝑑 = 760 𝑚𝑚; 

- 𝐴𝑠,𝑠𝑢𝑝 = 2 𝛷 22 = 760 𝑚𝑚
2; 

- 𝐴𝑠,𝑖𝑛𝑓 = 2 𝛷 22 = 760 𝑚𝑚
2;  

- 𝛷𝑠𝑡 = 𝛷 6 = 8 𝑚𝑚; 

- 𝑛𝑠𝑡 = 2; 

- 𝑠𝑠𝑡 = 100 𝑚𝑚: 
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- 𝑓𝑐𝑑 = 45 𝑀𝑃𝑎; 

- 𝑓𝑐𝑡𝑑 = 0.1 𝑓𝑐𝑑 = 4.5 𝑀𝑃𝑎; 

- 𝑓𝑦𝑑 = 580 𝑀𝑃𝑎; 

- 𝐸𝑐 = 22000 [(
𝑓𝑐𝑑

10
)
0.3

] = 34545 𝑀𝑃𝑎; 

- 𝐸𝑠 = 210000 𝑀𝑃𝑎; 

- 𝑛 =
𝐸𝑐
𝐸𝑠
⁄ = 6.08; 

- 𝑁𝑎𝑐𝑡 = −1500000 𝑁; 

- 𝑇𝑎𝑐𝑡 = 800000 𝑁; 

- 𝑀𝑎𝑐𝑡 = 3500000000 𝑁 𝑚𝑚. 

 

The script divides a half cross section in twenty fibers in order to get the width of each fiber equal 

to two centimetres. 

The vector of the fiber considered is the following one: 

𝑦 = [390,   370,   350,   330,   310,   290,   270,   250,   230,   210,   190,   170,   150,   130,…   

                                          …  110,   90,   70,   50,   30,   10] 
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6.4.3.1. 1st Elastic Evaluation of the Cross Section 

The procedure starts with the first elastic evaluation of the initial cross section. 

 

Figure 6.4.3.1.1 – 1 st iteration of the procedure represented in the flow chart  

The coordinate of the last un-cracked fiber, the one at the extremity of the working cross section, 

is: 

𝑦1𝑠𝑡 𝑖𝑡. = 𝑦(1) = 390 𝑚𝑚 

The basic terms necessary to compute the stresses diagrams are the following ones: 

𝑑1𝑠𝑡 𝑖𝑡. = 760 𝑚𝑚 

𝐴𝑜𝑚𝑜𝑔
1𝑠𝑡 𝑖𝑡. = 489240 𝑚𝑚2 

𝑆1𝑠𝑡 𝑖𝑡. = 193848019 𝑚𝑚3 

𝑑𝑔,𝑠𝑢𝑝
1𝑠𝑡 𝑖𝑡. = 396 𝑚𝑚 

𝑑𝑔,𝑖𝑛𝑓
1𝑠𝑡 𝑖𝑡. = 404 𝑚𝑚 

𝐼𝑜𝑚𝑜𝑔
1𝑠𝑡 𝑖𝑡. = 26804496912 𝑚𝑚4 
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The position of the neutral axis, imposing stress equal to zero in the Navier’s equation and solving 

for the 𝑦 coordintae: 

𝑦𝑎.𝑛.
1𝑠𝑡 𝑖𝑡. = −210 𝑚𝑚 

The sigma value required by the procedure is the one related to the upper edge under compression, 

corresponding to 𝑦max𝑐𝑜𝑚𝑝. = 400 𝑚𝑚: 

𝜎max 𝑐𝑜𝑚𝑝.  1𝑠𝑡 𝑖𝑡. = −41.564 𝑀𝑃𝑎 

Even the one acting on the tensest fiber, the one at the lower extremity, corresponding to 𝑦𝑚𝑎𝑥 𝑡𝑒𝑛𝑠. =

−390 𝑚𝑚: 

𝜎max 𝑡𝑒𝑛𝑠.  
1𝑠𝑡 𝑖𝑡.

= 12.604 𝑀𝑃𝑎 

Tangential stresses are equal to zero because the considered fiber is below steel rebar, where the 

static moment gets to zero: 

𝜏max 𝑐𝑜𝑚𝑝.  1𝑠𝑡 𝑖𝑡. = 0 𝑀𝑃𝑎 

𝜏max 𝑡𝑒𝑛𝑠.  1𝑠𝑡 𝑖𝑡. = 0 𝑀𝑃𝑎 

 

Figure 6.4.3.1.2 - Tangential and normal stresses distributions  

Also in this case, considering that tangential stresses are null, principal stresses are equal to normal 

ones: 

𝜎1
max𝑐𝑜𝑚𝑝.  1𝑠𝑡 𝑖𝑡. = −41.564 𝑀𝑃𝑎 
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For the tensile fiber: 

𝜎1
max𝑡𝑒𝑛𝑠.  1𝑠𝑡 𝑖𝑡. = 12.604 𝑀𝑃𝑎 

At the end of the first iteration, the scenario corresponds to the fourth:: 

𝜎1
max𝑐𝑜𝑚𝑝.  1𝑠𝑡 𝑖𝑡. = |−𝟒𝟏. 𝟓𝟔𝟒| 𝑴𝑷𝒂 < 𝒇𝒄𝒅 = |−45| 𝑀𝑃𝑎 

𝜎1
max𝑡𝑒𝑛𝑠. 1𝑠𝑡 𝑖𝑡. = 𝟏𝟐.𝟔𝟎𝟒 𝑴𝑷𝒂 > 𝒇𝒄𝒕𝒅 = 4.5 𝑀𝑃𝑎 

The procedure returns at the beginning of the analysis, recalculates the cross section and the state 

of stress. A second iteration follow this first one. 

 

6.4.3.2. 2nd Elastic Evaluation of the Cross Section 

 

Figure 6.4.3.2.1 – 2n d iteration of the procedure represented in the flow chart 

The fiber at the extremity of the initial cross section cracked hence the element has reduced. The 

coordinate of the last un-cracked fiber, is: 

𝑦2𝑛𝑑 𝑖𝑡. = 𝑦(1) = 370 𝑚𝑚 

Fundamental terms necessary to compute the stresses diagrams are the following ones: 
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𝑑2𝑛𝑑 𝑖𝑡. = 740 𝑚𝑚 

𝐴𝑜𝑚𝑜𝑔
2𝑛𝑑 𝑖𝑡. = 477240 𝑚𝑚2 

𝑆1𝑠𝑡 𝑖𝑡. = 184368019 𝑚𝑚3 

𝑑𝑔,𝑠𝑢𝑝
2𝑛𝑑 𝑖𝑡. = 386 𝑚𝑚 

𝑑𝑔,𝑖𝑛𝑓
2𝑛𝑑 𝑖𝑡. = 414 𝑚𝑚 

𝐼𝑜𝑚𝑜𝑔
2𝑛𝑑 𝑖𝑡. = 26889056367 𝑚𝑚4 

The position of the neutral axis, imposing stress equal to zero in the Navier’s equation and solving 

for the 𝑦 coordintae: 

𝑦𝑎.𝑛.
2𝑛𝑑 𝑖𝑡. = −208 𝑚𝑚 

The sigma value required by the procedure is the one related to the upper edge under compression, 

corresponding to 𝑦max𝑐𝑜𝑚𝑝. = 400 𝑚𝑚: 

𝜎max𝑐𝑜𝑚𝑝.  2𝑛𝑑 𝑖𝑡. = −42.869 𝑀𝑃𝑎 

Even the one acting on the tensest fiber, the one at the lower extremity, corresponding to 𝑦𝑚𝑎𝑥 𝑡𝑒𝑛𝑠. =

−370 𝑚𝑚: 

𝜎max 𝑡𝑒𝑛𝑠.  
2𝑛𝑑 𝑖𝑡.

= 11.495 𝑀𝑃𝑎 

Tangential stresses are still equal to zero because the considered fiber is below steel rebar, where 

the static moment gets to zero: 

𝜏max 𝑐𝑜𝑚𝑝.  2𝑛𝑑 𝑖𝑡. = 0 𝑀𝑃𝑎 

𝜏max 𝑡𝑒𝑛𝑠.  2𝑛𝑑 𝑖𝑡. = 0 𝑀𝑃𝑎 
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Figure 6.4.3.2.2 - Tangential and normal stresses distributions 

Also in this case, considering that tangential stresses are null, principal stresses are equal to normal 

ones: 

𝜎1
max𝑐𝑜𝑚𝑝.  2𝑛𝑑 𝑖𝑡. = −42.869 𝑀𝑃𝑎 

For the tensile fiber: 

𝜎1
max𝑡𝑒𝑛𝑠.  2𝑛𝑑 𝑖𝑡. = 11.495 𝑀𝑃𝑎 

At the end of the second iteration, the procedure follows the fourth scenario: 

𝜎1
max𝑐𝑜𝑚𝑝.  2𝑛𝑑 𝑖𝑡. = |−𝟒𝟐. 𝟖𝟔𝟗| 𝑴𝑷𝒂 < 𝒇𝒄𝒅 = |−45| 𝑀𝑃𝑎 

𝜎1
max𝑡𝑒𝑛𝑠. 2𝑛𝑑 𝑖𝑡. = 𝟏𝟏. 𝟒𝟗𝟓 𝑴𝑷𝒂 > 𝒇𝒄𝒕𝒅 = 4.5 𝑀𝑃𝑎 

Also at the end of the second iteration the procedure returns in the fourth scenario, the last fiber 

cracks and the analysis goes back to the beginning of the procedure and revaluates the stresses 

acting on the cross section. 

 



189 
 

6.4.3.3. 3rd Elastic Evaluation of the Cross Section 

 

Figure 6.4.3.3.1 – 3 r d iteration of the procedure represented in the flow chart  

 

At the third iteration: 

𝑦3𝑟𝑑 𝑖𝑡. = 𝑦(1) = 350 𝑚𝑚 

The basic terms necessary to compute the stresses diagrams have to recalculate, since the 𝑦 

coordinate has changed. 

The position of the neutral axis from Navier’s equation: 

𝑦𝑎.𝑛.
3𝑟𝑑 𝑖𝑡. = −207 𝑚𝑚 

The sigma value required by the procedure is the one related to the upper edge under compression, 

corresponding to 𝑦max𝑐𝑜𝑚𝑝. = 400 𝑚𝑚: 

𝜎max 𝑐𝑜𝑚𝑝.  3𝑟𝑑 𝑖𝑡. = −42.869 𝑀𝑃𝑎 

Even the one acting on the tensest fiber, the one at the lower extremity, corresponding to 𝑦𝑚𝑎𝑥 𝑡𝑒𝑛𝑠. =

−350 𝑚𝑚: 
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𝜎max 𝑡𝑒𝑛𝑠.  
3𝑟𝑑 𝑖𝑡.

= 11.495 𝑀𝑃𝑎 

Tangential stresses are different from zero because the considered fiber stays above steel rebar, and 

therefore: 

𝜏max 𝑐𝑜𝑚𝑝.  3𝑟𝑑 𝑖𝑡. = 0 𝑀𝑃𝑎 

𝜏max 𝑡𝑒𝑛𝑠.  3𝑟𝑑 𝑖𝑡. = 0.108 𝑀𝑃𝑎 

 

Figure 6.4.3.3.2 - Tangential and normal stresses distributions  

Principal compressive stress, depending on both normal and tangential stresses: 

𝜎1
max𝑐𝑜𝑚𝑝.  3𝑟𝑑 𝑖𝑡. = −44.085 𝑀𝑃𝑎 

For the tensile fiber: 

𝜎1
max 𝑡𝑒𝑛𝑠.  3𝑟𝑑 𝑖𝑡. = 10.338 𝑀𝑃𝑎 

At the end of the second iteration, the procedure follows the fourth scenario: 

𝜎1
max 𝑐𝑜𝑚𝑝.  3𝑟𝑑 𝑖𝑡. = |−𝟒𝟒. 𝟎𝟖𝟓| 𝑴𝑷𝒂 < 𝒇𝒄𝒅 = |−45| 𝑀𝑃𝑎 

𝜎1
max𝑡𝑒𝑛𝑠. 3𝑟𝑑 𝑖𝑡. = 𝟏𝟎.𝟑𝟑𝟖 𝑴𝑷𝒂 > 𝒇𝒄𝒕𝒅 = 4.5 𝑀𝑃𝑎 

Also at the end of the third iteration the procedure returns in the fourth scenario and the analysis 

repeats. 
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6.4.3.4. 4th Elastic Evaluation of the Cross Section 

 

Figure 6.4.3.4.1 – 4 th iteration of the procedure represented in the flow chart  

For the fourth iteration: 

𝑦4𝑡ℎ 𝑖𝑡. = 𝑦(4) = 330 𝑚𝑚 

The position of the neutral axis from Navier’s equation: 

𝑦𝑎.𝑛.
4𝑡ℎ 𝑖𝑡. = −208 𝑚𝑚 

The sigma value required by the procedure is the one related to the upper edge under compression, 

corresponding to 𝑦max𝑐𝑜𝑚𝑝. = 400 𝑚𝑚: 

𝜎max 𝑐𝑜𝑚𝑝.  4𝑡ℎ 𝑖𝑡. = −45.201 𝑀𝑃𝑎 

And the one at the lower extremity, corresponding to 𝑦𝑚𝑎𝑥 𝑡𝑒𝑛𝑠. = −330 𝑚𝑚: 

𝜎max 𝑡𝑒𝑛𝑠.  
4𝑡ℎ 𝑖𝑡.

= 9.121 𝑀𝑃𝑎 

Tangential stresses are equal to: 

𝜏max 𝑐𝑜𝑚𝑝.  3𝑟𝑑 𝑖𝑡. = 0 𝑀𝑃𝑎 

𝜏max 𝑡𝑒𝑛𝑠.  3𝑟𝑑 𝑖𝑡. = 0.106 𝑀𝑃𝑎 
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Figure 6.4.3.4.2 - Tangential and normal stresses distributions  

Principal stresses are function of both normal and tangential stresses: 

𝜎1
max𝑐𝑜𝑚𝑝.  4𝑡ℎ 𝑖𝑡. = −45.203 𝑀𝑃𝑎 

For the tensile fiber: 

𝜎1
max𝑡𝑒𝑛𝑠.  4𝑡ℎ 𝑖𝑡. = 9.133 𝑀𝑃𝑎 

At the end of the fourth iteration, the procedure follows the second scenario: 

𝜎1
max𝑐𝑜𝑚𝑝.  4𝑡ℎ 𝑖𝑡. = |−𝟒𝟓. 𝟐𝟎𝟑| 𝑴𝑷𝒂 > 𝒇𝒄𝒅 = |−45| 𝑀𝑃𝑎 

𝜎1
max𝑡𝑒𝑛𝑠. 4𝑡ℎ 𝑖𝑡. = 𝟗. 𝟏𝟑𝟑 𝑴𝑷𝒂 > 𝒇𝒄𝒕𝒅 = 4.5 𝑀𝑃𝑎 

The crack continues developing and the most compressed fiber crushes. Both a local cracking and 

a local crushing certainly happened. The analysis proceeds considering first the crushing of the 

concrete: the type of crushing, local or global, can be determined through an N-M domain 

verification. If the solicitation point lays inside the domain, the column is able to withstand external 

actions and therefore the crushing is local. If the point is out of the domain, it means that the 

member fails under such actions, thus it fails because of a global crushing. 
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Figure 6.4.3.4.3 – Procedure on the flow diagram: global crushing verification 

The script goes on with the N-M domain verification. 

 

Figure 6.4.3.4.4 – N-M interaction domain 
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As shown in the figure, the point is outside the interaction diagram; the script returns “The 

verification of the N-M domain is not satisfied, global crushing of the element”. The whole element 

crushes; the path on the flow chart follow the “Yes” alternative. Since the column has already failed 

because of the crushing, the verification of the crack is worthless. 

The procedure ends with the failure of the column. The script returns “The crack develops 

throughout the cross section and global crushing of the column”. 

 

Figure 6.4.3.4.5 – Procedure on the flow diagram: end of the procedure  
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7. Design of the Laboratory Test 

 

Theoretical considerations are not enough to validate the procedure suggested. This approach 

requires a practical, experimental analysis in order to verify the reliability of the aforementioned 

method. 

In this chapter, the design of a laboratory test, necessary to understand if the procedure captures 

the actual behaviour of columns under specific external forces.  

The reason why this study has undertaken relates to the collapse of three real columns: they all 

showed same types of damages, which could attribute to the interaction of axial force, shear and 

bending moment.   

This laboratory test could be used to both validate the procedure and, at the same time, deeply 

investigate the failures of those elements. Therefore, the experimental tests should be realised on 

three elements, characterised by same features of the real collapsed members.  

For what concerns geometrical properties, the three elements are 

- 300 × 300 𝑚𝑚2; 

- 500 × 500 𝑚𝑚2; 

- 600 × 800 𝑚𝑚2. 

The cover of steel reinforcement could be the same for all the elements, equal to 40 𝑚𝑚. 

Longitudinal reinforcements, placed at the four corners of the cross section, are respectively: 

- 4 𝛷 10; 

- 4 𝛷 24; 

- 4 𝛷 22. 

Transversal reinforcements define as follows: 

- 𝛷 6/100; 

- 𝛷 6/200; 

- 𝛷 8/100. 
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Concerning material properties, assuming that the tensile strength of the concrete is always one 

tenth of the compressive one, the strength of the steel and the compressive strength of the concrete 

are: 

- 𝑓𝑦𝑑 = 450 𝑀𝑃𝑎, 𝑓𝑐𝑑 = 10 𝑀𝑃𝑎; 

- 𝑓𝑦𝑑 = 600 𝑀𝑃𝑎, 𝑓𝑐𝑑 = 60 𝑀𝑃𝑎; 

- 𝑓𝑦𝑑 = 580 𝑀𝑃𝑎, 𝑓𝑐𝑑 = 45 𝑀𝑃𝑎. 

Once specified the geometrical and material properties, it has to define the loading technique. The 

article about the experimental study conducted at the University of Toronto, “Evaluation of Shear 

Design Procedures for RC Members under Axial Compression”, Pawan R. Gupta and Michael P. Collins, 

ACI Structural Journal, 2001, was used as a guideline to decide what kind of loading procedure 

employ. 

As for the experimental test in Toronto, where the specimens had almost the same dimensions of 

the three column considered in this research, the elements should be loaded using four sets of six 

jacks spread throughout the top and the bottom faces of the members; high-strength bolts employed 

to apply the load.  

In this case, the procedure accounts for columns fixed at the bottom extremity and partially 

restrained at the other edge, subjected to a bending moment acting at the top of the columns always 

in the same direction; therefore, in the laboratory test, the bending moment applies only at the top 

extremity, maintaining the same direction throughout the loading.  

In each experiment, the axial force, the shear and the bending moment increased proportionally up 

to failure. 

Both tangential and normal deformations should be measured by means of linear variable 

displacement transducer, to define the deformation of the element during the test. 

This design of the laboratory test tries to achieve the best compromise between costs and a 

satisfying evaluation of the procedure. Having no limits on the costs of the laboratory test, the 

analysis could extended. The specimens could be more than three, in that case all the characteristics, 

geometrical and material properties, of the columns could vary; this could enable the study of the 

effects of such features on the type of damages. The effects of the dimensions of the cross section, 

the amount of longitudinal and transversal reinforcement, the strength of both the concrete both 

the steel.  

Several loading methods could have tested: a proportional increase of the axial force, the shear and 

the bending up to failure, but also an instantaneous application of the final, failure loads 

experienced by each column. This could be useful to understand if the failure conditions, e.g. the 

external forces that generated the collapse of the elements, appeared on the member after a 

gradually increase or they sudden acted on the column. Understanding how failure conditions 

established on the columns could be used to improve the suggested procedure. 
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8. Conclusions 

 

The analysis of the interaction between the axial force, the shear and the bending moment in 

reinforced concrete elements, underlined several important aspects. 

The literature review clearly showed that the problem has still not considered in a precise, detailed 

and complete way. Many researches tried to approach analytically the topic but many hypotheses 

and approximations were required. 

Experimental articles, describing experimental programs, demonstrated that a large compression 

on reinforced concrete elements, results in no significant cracking until just before failure, then, 

suddenly, strongly inclined cracks both at the top and at the bottom of the element, appear. This 

probably corresponds to the conditions of the real columns collapsed, reason why this research 

begun. 

First, the interaction between only two components of solicitations, the axial force and the shear, 

has considered. The analysis led to the construction of an elastic domain of the two components, 

then compared with the one coming from the Modified Compression Field Theory. The domains 

almost coincide, especially for traction states of stress, but also for compression axial forces, the 

difference is negligible. 

The study proceeded considering the interaction between all three solicitations. The result was a 

tridimensional elastic domain whose surface corresponds to the combination of axial force, shear 

and bending producing the crushing or the cracking of the concrete. Unfortunately, no 

tridimensional domains found in literature to compare results. Further analyses should develop to 

verify the truthfulness of the domain and to construct the one corresponding to ultimate conditions 

of the element. 

The analysis continued focusing on the development of a procedure aimed at analyzing the behavior 

of the cross section subjected to axial force, shear and bending. This has approached considering 

the actual distribution of stresses along the cross section, not the column as a whole. According to 

principal stresses on the most solicited fibers, the iterative process goes on or stops. It consists in 

a non-linear analysis as a sequence of linear ones. According to stresses distributions, the procedure 

makes different verifications and returns the final condition of the element, which could be an 

elastic or ultimate equilibrium condition, or failure due to global crushing or cracking. 
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The process as applied to several real cases of columns collapsed in order to verify the reliability of 

the procedure. In all cases, the analysis ends with the failure of the element because both the global 

crushing and the development of the crack throughout the cross section. According to what can be 

established from the pictures of those collapsed columns, they experienced both these types of 

failures. Therefore, for what concerns those elements, the procedure accurately predict their 

behaviors. 

A laboratory test should perform in order to verify carefully the reliability of the procedure. It could 

be also useful to examine in depth the ways of collapse of real columns mentioned.  
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