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Introduction

Recently, a lot of devices are supposed to share a common medium,
and in this case, different scenarios can be considered, such for example
wireless networks, satellite communications, machine to machine commu-
nications, system for positioning and so on. Then, protocols that consist to
guarantees optimal performance for solve the problem on the Medium Ac-
cess Control (MAC), without the presence of a central node are required.

Random Access (RA) schemes have been widely studied in the last
years, and recently new schemes have been developed. RA schemes rep-
resent the best solution to access a common medium which is shared by
a large number of users, especially when the users send information spo-
radically in time (i.e. signalling information). These protocols have low
complexity, and due to also their capacity to achieve low transmissions de-
lays, are very appealing. For these reasons, RA schemes are widely used
in a satellite communications.

Recent schemes have been developed, called Contention Resolution
Diversity Slotted ALOHA (CRDSA), Irregular Repetition Slotted ALOHA
(IRSA) and Coded Slotted ALOHA (CSA). These protocols relies on the
transmissions of multiple replicas of each data packet and on the Interfer-
ence Cancellation (IC) technique at the receiver. In particular, the specific
techniques used is called Successive Interference Cancellation (SIC).

The main goal of this thesis is to analyze the asymptotic performance
of the IC process for IRSA, referred to channels under fading. This can be
done, applied the bipartite graph concept at the IC process [21].

The analysis of the IC process in literature has been explained only un-
der collision channel hypothesis. Take into account fading effects is very
important, because it is very likely in a real environment that the trans-
mitted signals reach the receiver with different power levels, also due to
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fading conditions.
With this first analysis, is possible to find the best polynomial distri-

bution for IRSA (or else the probability to transmits a certain number of
replica), fixed the fading conditions. This guarantees to obtain the best
throughput achievable by the system.

After the asymptotic analysis, we have compared the obtained results
with a finite number of slot for frame. This is the practical case, where
the performance degradation with respect to the asymptotic results are
shown.

The thesis is organized as follows. In Chapter 1 a brief review of the
RA protocols is described. In Chapter 2 we have described the system.
Precisely, the chosen fading model and the Block fading channel assump-
tion have been explained. Moreover, the users capacity to correctly de-
code more collided packets in the same slot, also called capture effect has
been illustrated. This capacity will depend by the considered decoding
threshold. In Chapter 3 a brief description on how the threshold can be
chose has been considered. In this analysis we have considered only two
possible practical case of interest, the first with absence of coding, and
the second assuming ideal coding (Shannon limit). In Chapter 4 we have
introduced the concept of Matrix of probability for representing the capac-
ity of the receiver to correctly decode the packets. We have introduced a
mathematical analysis considering the different probabilities as geomet-
rical space regions. The obtained results have been compared with the
numerical simulations and the difference in probability terms considering
the also presence of SIC. An extension to this model has been found for
the probability to correctly decode none of the packets into a certain slot.
This one, is needed for the IC analysis of IRSA under fading.

In Chapter 5 we have introduced the IRSA protocol. For first, a recall of
the asymptotic analysis of the IC process done with bipartite graphs under
collision channel has been done. After that, the asymptotic derivation for
the fading channel has been obtained. In particular, the novel scheme that
has been introduced, can be applied to a general fading model. Depending
on the fading, the description of the probability to correctly decode none of
the packets into a certain slot is the only thing that will change. Our model,
has also the characteristics to described the probability just mentioned by
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a closed formula. So, the relation among this probability and the fading
characteristics can be easy analyzed.

Moreover, a theoretical bound has been shown, and some good distri-
butions fixed the fading conditions have been achieved, using a genetic
algorithm [27].

In Chapter 6 an introduction to our simulator and the results for IRSA
with finite MAC frames, under fading channel, have been shown. Several
simulation conditions have been considered, such as for example different
frame lengths, different number of SIC iterations, different fading param-
eters and so on.

At the end the conclusion chapter is presented, where a summary of
the achieved results and some ideas about possible future work have been
suggested.
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Chapter 1

Review of Random Access
protocols

RA protocols can be used in packet broadcasting systems where multi-
ple transmitters have to share a common medium. This kind of protocols
are used to solve problems as low access delay and also where low com-
plexity of the transmitters and flexibility of the networks are required.

In literature is commonly assumed the so called collision channel hy-
pothesis, in order to derive insightful and simple analytical results. In this
case, each packet is correctly received if and only if it does not overlap
with others packets sent by the users sharing the network.

The simplest possible solution for such schemes is to let the users trans-
mit packets each time they are ready for transmission, regardless the chan-
nel occupation. When a collision it occurs, the users wait a random time
and after which it tries a retransmissions of the packet. This could be a
good solution when the number of users is quite low and their duty cycle
is also limited. When the number of the users increases, the number of
packets lost due to collisions increases too. The delays associated at the
successful decoding the packet when a collision occurs will be depending
by how many times the packet needs to be retransmitted and how long
the users must be wait until the retransmission.

The first RA wireless networks, called ALOHA System [1], was im-
plemented at the University of Hawaii where the goal of the project was
to interconnect several terminals of the university sites with the wireless
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connections.
In the ALOHA System, the throughput can be defined as the mean

number of the packets that are correctly received during a certain time
τ that represents the time duration of the packet. We define the traffic
G as the number of mean packets that the users want sending into the
channel into the same time τ . If the traffic is generated from an infinite
population of users and it follows a Poisson process, is possible to define
the throughput as [1]:

S = Ge−2G, [pk/τ ]

In the hypothesis that all the transmitted packets have the same dura-
tion, for avoiding a collisions at the receiver is needed that no user sends
a packet τ second before and after the start of a given packet.

In order to derive the traffic at which the peak throughput is achieved,
we use the condition of

d

dG
S = 0 (1.1)

d

dG
Ge−2G = 0 −→ e−2G +G(−2)e−2G = 0 −→ e−2G = 2Ge−2G −→ G =

1

2

So the peak throughput is located at G = 0.5 and the peak’s value is
0.18 as we can compute and plotting it in Figure 1.1. This protocol has a
low throughput and the max efficiency of 18%, then is very low. In fact
for avoiding collisions it is necessary that no one transmits in the interval
of 2τ . A possible solution that overcomes this issues came with the intro-
duction of Slotted ALOHA. Here, there is a central clock that establishes a
sequence of temporal ”slots” where the packets can be transmitted. Upon
the generation of a packet from higher layers, the packet transmission will
start only at the beginning of the next slot, slightly increasing the transmis-
sion delay w.r.t ALOHA. Each slot has a duration equal to the duration of
a packet, and, if there are collisions, the collision is total among the trans-
mitted packets.

This technique increases the transmitter complexity due to the pres-
ence of common clock but on the other hand it has also an advantage in
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throughput performance. In fact now, for avoiding the collisions it is nec-
essary that no users transmit in the interval of τ instead of 2τ , this consists
in an increase of the throughput.
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Figure 1.1: Throughput ALOHA and Slotted ALOHA protocols.

Also in this case we can demonstrate what is the traffic value that cor-
responds to the peak of throughput. From equation (1.1) and taking into
account the probability to have no collisions in τ seconds (e−G) we can say:

d

dG
Ge−G = 0 −→ e−G +G(−1)e−G = 0 −→ e−G = Ge−G −→ G = 1

So the peak of throughput is 0.36 [pk/slot], double with respect to
ALOHA.

A generalization of the SA in which the users send more copies of
the same packet in a different frequency channel (frequency diversity)
or in a different time slot (time diversity) is also called Diversity Slotted
ALOHA (DSA), [3]. When a packet is ready to be sent, k copies of the
same packet are transmitted. More precisely, after the first copy, the user
waits a random reschedule time for transmitting the second copy and so
on, until all the copies are transmitted. The user waits a certain time be-
fore it transmits the packet because it is possible to consider each copy
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independent by the successive. If the transmitter does not receive the ac-
knowledge from any of those replicas (at least one), it will wait another
time the random time and will restart with the transmission procedure.
The description just mentioned is referred at the case with Probabilistic
Packet Transmission, or else where each of the k copies are sending with
probability one. It is also possible to consider the case in which each of the
k transmission can happen with a certain probability, but it is possible to
show that the deterministic policy is always better than the probabilistic
policy [3].

If the traffic follows a Poisson process, it is possible to see in [3] that the
performance of DSA are sightly better than the SA case, for low offered
traffic. The improvement of the performance is minor, at the expense of an
higher traffic load injected into the network.

After these, have been developed different protocols which the main
goal was to improve the throughput performance and the packets trans-
missions delay over a wide range of traffic offered. This it means to find
some protocols which have the relation between S and the offered traffic
linear over an higher interval of G respect the SA and DSA protocols.

The most important of them is called CRDSA [4]. This one is a simple
but effective improvement of the Slotted ALOHA System, more precisely
is possible to consider it as an improve of the DSA scheme with the adop-
tion of IC techniques [5]-[8], for resolve the collisions. The presence of
the IC technique is the real innovation, fundamental for trying to resolve
the collision into the MAC frame. Each user transmits two replicas of the
same packet (also called burst) in a randomly chosen slots, into the same
MAC frame, where this one is composed by Nslot slots. Each replica has a
pointer, which indicates all the slot occupied by the bursts. Whenever one
packet is successfully decoded at the receiver, the pointer is extracted and
the potential interference contribution caused by the replica on the corre-
sponding slot is removed, such as in the slot where the packet is decoded.
The IC technique (precisely the SIC) proceeds until either all bursts have
been successfully decoded or until a maximum number of iterations has
been reached. This technique is fundamental for improving the perfor-
mance of the protocol but at the same time introduces a temporal delay
proportional to the maximum number of iterations done by the receiver.
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The CRDSA protocol achieves a throughput peak close to 0.55 [pk/slot],
obtaining a remarkable gain respect to the throughput of Slotted ALOHA.

Frame, T seconds,  Nslot

User 1

User 2

User 3

User m

:

:

Figure 1.2: Example of a possible CRDSA MAC frame. T is the time of
the MAC frame defined as NslotTs where Ts is the time corresponding to
each time slot and where Nslot represents the number of slots composing
the MAC frame.

RA protocols described until now are widely used in satellite networks
both to share a common medium, both when the transmission of short
packets is required. Some applications are for example the Digital Video
Broadcasting Return Channel via Satellite (DVB-RCS) [9] and IP over Satel-
lite (IPoS) standard [10].

When instead, is required the transmission of longer packets or the
users want to offering a medium to high level of traffic into the satellite
networks will use for example the Demand Assignment Multiple Access
protocol (DAMA), [11], [12] and [13].

DAMA protocol consists to achieve a throughput gain than the RA pro-
tocols, especially when a medium to high traffic is offered. Each user has
a dedicate resources in which it can transmits. The resources are allocated
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by a central node and the simplest method to reserve the use of the chan-
nel is by request of the users. However this protocol suffers of long delays,
especially when the round-trip time is high like in the satellite networks.
Then during the creation of the establishing connection are still preferred
the RA protocols.



Chapter 2

Collision and Block Fading
Channel Models

The collision channel hypothesis is assumed in all the RA papers (such
as CRDSA, IRSA and so on) because it consists to abstract the physical
layer and permits to analyze the MAC layer independently, so is more
easy to analyze it.

The collision channel model assumes that the packets involved in a
collision are completely lost. There are many practical cases where this as-
sumption can be pessimistic because also in presence of collisions is possi-
ble to correctly decode one or more packets. In fact, especially in a mobile
communication scenarios, it is very likely that one of the signals domi-
nates the others so the packets reach the receiver with different powers
and the so-called capture effect can arise. In generally, that happens because
the packets are subjected to different antenna gains, to different character-
istics of the transmitter terminals, to different locations with respects to
the receiver, to different fading conditions and so on. Fading accounts for
random fluctuations of power due to the characteristic of propagations’s
environment as, for example, the presence of multipath (the received sig-
nal is constituted by different paths of the transmitted signal, where each
of this paths is associated to a certain delay and to a certain attenuation,
due to the reflections) and as, for example, at the relative motion among
the transmitter and receiver, which causes time variations of the channel.
Thanks to the fading effects, the idea that packets involved in collisions
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can be successfully decoded is born and this capacity of the decoder is
called capture effect. Clearly this capacity will depend on the channel con-
ditions, higher the difference of power is among the received packets and
more probable the strongest packet can be correctly decoded.

The multiple paths can cause time dispersions and frequency selectiv-
ity. These paths are present both in a mobile telecommunications envi-
ronment in which the fluctuations of power are described with statistical
properties and also in a fixed telecommunications system where in this
case the fluctuations of power can be described in deterministic mode, be-
cause the users do not move.

The presence of multiple paths is measured in the frequency domain
by the coherence bandwidth of the channel (Bc), which represents the
frequency separation at which two frequencies components of the signal
undergo independent attenuation. The reciprocal of Bc is the multipath
spread which is the delay associated to the last received path of the trans-
mitted signal. For avoid the distortion phenomenon we have to obey to
B < Bc, i.e. the bandwidth of the transmitted signal must be less than Bc,
or else the time duration of the transmitted symbol greater than the delay
associated at the last path, otherwise we have a frequency selective fading.

So, the multipath phenomenon will depend on the time duration of the
transmitted signal in the environment in which it will propagate.

With one example I will show how is possible to describe what is the
behavior of multiple paths. Precisely the example that I will describe is
referred to determinist fading, situation of practical interest. The example
considers a fixed number of propagation paths (two paths) where their
characteristic can be defined individually. This case represents the situ-
ations in which the transmitter and the receiver are fixed and only two
paths of propagation are considered. This could be as an example, the
simplest version of a terrestrial radio channel.

The received signal can be written as:

y(t) = x(t) + υx(t− τ)

where υ and τ indicates respectively the amplitude of the second path
(will be an attenuation) and the delay associated (in other words we have
assumed that the first path has no attenuation).
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If we assume the channel linear and time-invariant, its transfer func-
tion will be:

H(f) = 1 + υe−2πfτ

in which the terms υ, e−2πfτ describe the multipath component (asso-
ciated at the second path), so it has magnitude described as:

| H(f) | =
√

(1 + υ cos(2πfτ))2 + υ2 sin2 2πfτ

=
√

1 + υ2 + 2υ cos(2πfτ)

By the expression just wrote is possible to see that depending on the
product (fτ ), the transfer function introduces a gain or an attenuation, so
it depends on the delays.

If the transmitter and the receiver are in relative motion, the parame-
ters υ and τ become time-variant and the transfer function of the channel
will depend also on time. One parameter that it takes into account the
relative motion among the transmitter and the receiver is called Doppler
effect. This effect is a frequency shift of the received signal proportional to
the relative speed and to the carrier frequency. The doppler effect, in con-
junction with multipath propagation, can cause frequency dispersion and
time selective fading. These phenomena make the power associated at the
received signal is aleatory, precisely the random variables that describe the
received power will be an amplitude and phase factor. In a digital trans-
mission, the fading effect hits the received signal introducing a variation of
its in terms of amplitude and phase respect the transmitted signal. When
is possible to consider the fading effect constant during the time in which
the signal goes from the transmitter to the receiver, it has not time-variant
characteristics, then it is so called Slowly Fading, otherwise is called Fast
fading.

In our case we will focus only on the slowly fading channel case, be-
cause this one can be well represents the Satellite communications sce-
nario. Moreover we have assumed that the parameters of fading can be
considered constant not only for the received symbol but for an entire
packet. This is the Block-Fading channel assumption in which we say that
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the R.V. of the envelope and phase associated to the received symbols, are
constant for all symbols belongings to the same packet.

In the case of Block-Fading channel the received signal is described as:

rri = α eφsti + zi (2.1)

where (i = 0, 1, . . . , l − 1) and l is the number of symbols inside the
packet.

The transmitted signal st arrives at the receiver attenuated by α, and
with a phase shift φ.

There are several fading model that reflect the behavior of many re-
alistic channels. In our case we have decided to consider the fading as
a Rayleigh distributed for which the random variable associated at this
distribution is:

X =
√
X2

1 +X2
2 , E[X] = σ1

√
π

2

where X1 and X2 are normally distributed according with variance σ2
1 .

Its possible to demonstrate that the Rayleigh variable is the square root of
random variable χ2 with two degrees of freedom [14]. Moreover the χ2

with two degrees of freedom is also an exponential random variable. We
can conclude that the Rayleigh variable is the square root of the exponen-
tial random variables. Therefore the power is exponentially distributed,
as:

fx(x) =

 1
Pm
e−

x
Pm for x > 0

0 otherwise
(2.2)

Where Pm is mean value of the distribution. So the parameter α in the
equation (2.1) will be described as a Rayleigh distributed.

By equation (2.2), is possible to see that the power follows a negative
exponential, where the delay to zero will depend on the mean of the dis-
tribution. The phase variations are due to propagation delays of the trans-
mitted signal. It is reasonable to think that this R.V. is U(-π,π). For having
a complete model, we have to take into account the thermal noise of the
channel (z), which is a R.V.∼N (0, σ2

n) where σ2
n is the noise variance.
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When the receiver is able to ’capture’ more than one packet in the same
time slot, we are talking about Multi Packet Reception Capability, due for
example to at the different powers with which the packets are received.

Considering the fading aspects we are able to introduce a more realistic
physical layer.

How can is possible to decide if the packet is correctly received (and
then correctly decoded) or not? It depends on the level of interfering and
noise power that the considered signal suffers. It is possible to establish a
maximum value of interfering power for which we are able to decode the
packet. This can be done, exploiting the definition of the Signal to Interfer-
ence Noise Ratio (SINR). The SINRi represents the power associated at
the received packet i respect the interferes (also the noise). When we have
a total of n transmitted packets into a certain slot, is:

γi =
Pi

N +
∑n

k=1
k 6=i

Pk
=

Γi
1 +

∑n
k=1
k 6=i

Γk
(2.3)

where Pi represents the power with which the i-th packet is received,N
is the noise power and where Γi = Pi/N is the Signal to Noise Ratio (SNR).

The reference signal shall be stronger than the interference signal. How
much stronger depends on the threshold considered. The threshold, rep-
resents the minimum value of SINR necessary to correctly decode a re-
ceived packet. In general the threshold depends on the set of modulation
and coding scheme that has been selected for the link, by the packet error
rate target and by the packet length. In the next chapter we will briefly
discussed how is possible to chose the threshold value.
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Chapter 3

Threshold Based Decoding

The threshold value b represents the minimum SINR for which we
consider the packet correctly decoded. We will focus on determining the
threshold in two cases of practical interest:

1. Absence of the coding;

2. Assuming ideal coding (Shannon Bound);

3.1 Absence of coding

Every telecommunication system has a maximum percent of lost packet
that can be accepted, depending on the application. We can define this
quantity as a Packet Error Rate (PER) target , so the system must be realize
at least for guarantee this value of PER.

Each packet consists of a certain number bits Nb. We can define the
BER as the probability that a received bit is not correct and we can denote
it with pb. There is a simple relation for a system that does not use coding
between the PER and BER, this it depends on the packet length. We will
see later that know the BER and the modulation scheme used, it permits
to find the minimum SINR for decoding a packet, i.e. b the threshold.

Defined Ps as the probability of correctly receiving a packet, in the ab-
sence of coding, Ps coincides with the probability of receiving all bits cor-
rectly, so
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Ps = (1− pb)Nb

So the PER will be:

PER = 1− Ps = 1− (1− pb)Nb

We can seen from the Figure 3.1 that the points simulated for high BER
follow perfect the theoretical curve, while for low BER does not happen.
The reason is because we do not have enough simulation rounds for each
point for generating a good statistics. In order to increase the precision,
we would need to simulate more points.
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Figure 3.1: Comparison between the theoretical PER and the simulated
PER for different packet lengths Nb. The number of simulation is fixed
equal to 3000 for each BER value.

By the system at which we referred, in the case of absence of coding, is
possible to find the corresponding BER by the requested PER and packet
length value.

For obtaining the value of the threshold we need for guaranteeing the
target PER, we must understand how the choice of the modulation impact
the target PER, and therefore BER. In Figures 3.2, 3.3 and 3.4 different
Symbol error rate curves are drawn, where the Symbol error rate represents
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the probability of not correctly received a symbol, versus the Es/N0. The
Symbol error rate is a function of Es/N0 and of the modulation scheme
selected. For drawing these curves of Symbol error rate, I have used as a
reference the theoretical formulas in [14].

A generic transmitted symbol is constituted by log2M bits where M
is the modulation index, so we can write the Symbol Error Rate as the
log2(M)pb, in the hypothesis that we used the Grey code.

We can observe that, fixed Symbol Error Rate, the value of minimum
Es/N0 changes with the modulation scheme that is used.

In Figure 3.4 I have drawn the Symbol error rate versus the Es/N0 for a
Gaussian Minimum Shift King (GMSK) modulation. This modulation uses
two symbols, so the Symbol error rate and the Es/N0 can be represents at
the same time by the BER and Eb/N0 respectively, where Eb/N0 represents
the bit signal to noise ratio. Moreover, this curve is obtained with the
hypothesis of absence of Fading . In this case the BER is [18]:

pb =
1

2
erfc

√
α
Eb
N0

(3.1)

where α represents a constant value of attenuation and where the erfc
is represented by the well-known function

erfc(x) =
2√
π

∫ x

0

e−t
2

dt

Equation (3.1) is obtained as the BER of antipodal scheme, with a sup-
plementary attenuation, because choosing the time bandwidth product of
the premodulation gaussian filter BbT = 0.25, the performance degrades
of the GMSK than the antipodal scheme can be approximate by the α fac-
tor.

It is clear now how the threshold can be founded in absence of coding.
In fact from the PER request and the packet length we are able to achieve
the corresponding BER. The value just found with the modulation scheme
used permits to find the corresponding Symbol error rate, and by this one,
for the fixed modulation schemed, the minimum Es/N0 that satisfied the
specific request is founded. For example, if we fixed (1 − PS) = 10−3,
Nb = 100 and the modulation schemes as 16-QAM, we satisfy the specific
for Es/N0 ≥ 19.76 so b = 19.76 in this case.
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Figure 3.2: M-PSK vs Es/N0.
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Figure 3.3: M-QAM vs Es/N0.
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Figure 3.4: GMSK vs Eb/N0 with BbT = 0.25, where BbT represents the
time bandwidth product.



22 Threshold Based Decoding

3.2 Ideal codify of Shannon

Shannon defines the Capacity of the channel as a maximum value of
the Rate (bit/s/Hz or bit for channel use, transmitted into the channel)
with which is possible to obtained vanishing probability of error of the
transmitted signal at the decoder. For a gaussian channel is possible to
define the capacity C as:

C = log2(1 + Eb/N0) [bit/s/Hz] (3.2)

Where C is normalized to the bandwidth B and where Eb/N0 is the bit
signal to noise ratio.
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Figure 3.5: Shannon limit vs Eb/N0

Shannon only tells us that this is possible, not how we can achieve
this limit. For example with a certain code or methods, but only that is
possible to achieve a very low error probability if we use R ≤ C, where R
is the Rate.

As we can see from the equation (3.2), the capacity is a function of the
Eb/N0, precisely it easily showed that the capacity is directly proportional
to the log of Eb/N0.

We can write the capacity given of equation (3.2) also as:
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C = B log2

(
1 +

EbRs

N0B

)
[bit/s] (3.3)

WhereRs represents the transmission Rate into the channel in bit/second.
With this definition of capacity is possible to show [15] that for a gaussian
channel with an unlimited bandwidth we have an inferior limit to the sig-
nal to noise ratio request for every kind of telecommunication systems that
want to transmit with low probability of error. This limit is:

Eb/N0 ≥ −1.59 [dB]

If we assume that the channel is instead limited in bandwidth we de-
fine the spectral efficiency ξ, that is depending from the type of code and
modulation scheme that we used as:

ξ =
Rs

B
[bit/s/Hz]

which determinates a lower bound of the signal to noise ratio. We can
demonstrate [15], that over an Additive White Gaussian Noise (AWGN)
channel with spectral efficiency, every system requires a minimum signal
to noise ratio for guaranteeing low error probability:

Eb/N0 ≥
2ξ − 1

ξ

This describes in the plane Eb/N0, ξ one permitted region and one re-
gion that is not permitted.

In the systems where the fundamental resource is the bandwidth, we
are looking to have high spectral efficiency, where the high efficiency is
achievable with high signal to noise ratio (at the expanse of the battery life
of who transmits). Instead, in the systems where the fundamental resource
is Eb/N0, we are looking to have very low signal to noise ratio, so at the
expanse of the spectral efficiency.

If we use a set of modulation and scheme of coding, we can define the
total Rate as:

Rs = Rc · log2(M)

where Rc is the coding Rate, whereas Rm is the Rate of the modulation.
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If this Rate (Rs) is less or equal to the capacity, we can have a reliable
transmission. Otherwise, we cannot guarantee reliable communication.

If the encoder associates one output bit to one input bit, Rc will be 1

and the capacity will be depending only from the log2 M , where M is the
modulation index.

Under this hypothesis, we have evaluated the performance of the dif-
ferent modulation schemes versus the Shannon limit, where Es/N0 repre-
sents as usual the symbol signal to noise ratio.
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Figure 3.6: M-QAM vs Shannon limit. The chosen packet error rate is 10−2

and Nb = 184.

We selected both the target PER andthe packet length based on the Au-
tomatic Identification System (AIS), [16]. The target PER is 10−2, and the
number of bits chosen for packets is 184, where the information occupies
168 bits and there are 16 bits of Cyclic Redundancy Check (CRC), used for
checking if the packet has been corrupted.

In the AIS packet there are a total of 256 bits, but the remaining ones ex-
cept for the 184 are associated to the training sequence, to the start flag and
to the end flag. These sections of the packet are used for synchronization
purpose at the receiver and for indicating the start of the data.

Since these packet sections are fixed, we can assume that, achieved the
frame sync, errors may occur only in the data or CRC fields of the packets.
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Figure 3.7: M-PSK vs Shannon limit. The chosen packet error rate is 10−2

and Nb = 184.

We can make the following observations looking at Figure 3.8, that:

• For low Es/N0 is more convenient the use of the modulation with
low data rate. Otherwise, if we chose a modulation with very high
data-rate, we cannot obtain a low probability of error. Instead, when
we have high value of signal to noise ratio, is more convenient to
increase the modulation order, for having a higher spectral efficiency,
so we can exploit the good conditions of the channel.

• If we compare the 2-PSK with the GMSK modulation, we can see
that the use of the GMSK is worst in terms of Es/N0 (a bit) but it is
possible with this modulation to keep control of the envelope of the
transmitted signal, making the spectrum of the output power more
compact.

• If we do not use coding, although we are in absence of fading, we
are far from the Shannon limit.

If we use the Shannon limit for determine the minimum value ofEs/N0

that we have need for having a correct reception of the information, we
find:
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Figure 3.8: All the modulation vs Shannon limit. The chosen packet error
rate is 10−2 and Nb = 184.

C =Rs = log2(1 + Es/N0) −→ 2Rs = (1 + Es/N0)

=⇒ b = (2Rs − 1)

Then, the value just found b represents the minimum signal to interfer-
ence noise ration which allows a correctly decoded of the packet. In this
case our threshold model is a step function because we have assumed that
each packet is correctly received if the correspond SINR is greater equal
than b.

In reality, the Shannon limit is not achievable also with the applica-
tion of existent code (for guarantee low probability of error) so the request
value of Es/N0 will be greater with respect to the one that we have found.
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Chapter 4

Matrix of Probability in case of
Multi-Packet Reception

The scope of this chapter will be to describe the probability matrix
Mp, characterized by a specific fading model; precisely the fading will
be Rayleigh distributed. The Mp matrix has been introduced for first in
[17], and it represents the capacity of the receiver to receive more than one
packet in the same time slot. Each coefficient of this matrix will be repre-
sent the probability to correctly decoded a packet when a certain number
of packet are collided into the slot. This matrix concepts can be applied in
all cases where the multi packet reception capability is considered, for ex-
ample in RA protocols in both slotted and unslotted system, considering
both the presence of SIC and not.

Is possible to define its as:

Mp =


R1,0 R1,1 0 . . .

R2,0 R2,1 R2,2 0 . . .

R3,0 R3,1 R3,2 R3,3 0 . . .
...

...
...

... . . .


where the generic coefficientRn,k represents the probability to corrected

decoding k packets when n have been sent. If we consider two packets that
are collided, then we consider the second row of the matrix Mp. In this
case, we can evaluate the different terms of probability that we achieve
with and without the contribute of IC. Specifically, we will make the as-
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sumption of threshold decoding. If SIC is employed, the receiver tries to
decode for first the packet with the highest SINR and if the decoding is
successfully, its contribution is removed. The procedure can be repeated
many times (iterative mode) and its depends on the power contribution of
the packets collided, from the threshold and from the noise.

If we consider two packets collided, the coefficients of the Mp Matrix
can be described as:

R2,0 = Prob

{
P1

N + P2

< b and
P2

N + P1

< b

}
(4.1)

This expression represents the probability that none of the packets can
be decoded, where P1 and P2 are the received power of the two packets
whereas b represents the threshold and N is the noise power. The for-
mula (4.1) is valid both with SIC and without it. Instead, if the system does
not have the capacity of removing the interference, we can determine R2,1,
R2,2 as:

R2,1 = Prob

{(
P1

N + P2

≥ b and
P2

N + P1

< b

)
or

(
P2

N + P1

≥ b and
P1

N + P2

< b

)}

R2,2 = Prob

{
P1

N + P2

≥ b and
P2

N + P1

≥ b

}
(4.2)

On the other hand, when the system can erase the contribution of the
interference we can determine the same coefficient as:

R2,1 = Prob

{(
P1

N + P2

≥ b and
P2

N
< b

)
or

(
P2

N + P1

≥ b and
P1

N
< b

)}
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R2,2 = Prob

{(
P1

N + P2

≥ b and
P2

N
≥ b

)
or

(
P2

N + P1

≥ b and
P1

N
≥ b

)}
The other terms of the second matrix’s row, are different as we can see

from the formulas above written. As a result I expected an increase of the
probability to correctly decoded both the packets due to the SIC.

Drawing the curves of SINR as a function of the powers we can identify
different regions, where each of these represents a certain coefficient of the
matrix Mp. We focus for first at the n = 2 case, considering a threshold
b ≥ 1.

4.1 Matrix elements’s Mp for n = 2 and b ≥ 1
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Figure 4.1: Plot of the probability’s regions for n = 2 and b = 3.

Its possible to evaluate the row of the Mp matrix with the following
methods:

The area corresponding to R2,0 is delimited by two curves, that are
function of P1 and P2. We have assumed that P1 and P2 have the same
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Figure 4.2: Plot of the probability’s regions for n = 2 and b = 3, with P1

and P2 in logaritmic domain.

distributions and the same mean value Pm (equation (2.2)), so that is pos-
sible to divide the area into two symmetric regions, with the bisector of
P1 and P2. If we integrated the area between the bisector and the curve
Nb+P2b and multiplied this by two, we are able to know the value of R2,0.

R2,0 = 2

∫ ∞
0

∫ Nb+P2b

P2

1

P 2
m

e−
(P1+P2)
Pm dP1 dP2

= 2

∫ ∞
0

1

P 2
m

Pm

[
−e−

(P1+P2)
Pm

]Nb+P2b

P2

dP2

= 2

∫ ∞
0

1

Pm

(
−e−

(Nb+P2b+P2)
Pm + e−

(2P2)
Pm

)
dP2

= 2
1

Pm

∫ ∞
0

−e−
(Nb+P2b+P2)

Pm dP2 + 2
1

Pm

∫ ∞
0

e−
2P2
Pm dP2

=
2

(b+ 1)

[
e
−(Nb+P2(b+1))

Pm

]∞
0
−
[
e−

2P2
Pm

]∞
0

= 1− 2e−
Nb
Pm

(b+ 1)

where 1
P 2
m
e−

(P1+P2)
Pm represents the pdf conditioned at the value of P1 and
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P2. With a similar argument, it is also possible to determine the value of
R2,1 e R2,2.

R2,1 = 2

∫ Nb

0

∫ ∞
Nb+P2b

1

P 2
m

e−
(P1+P2)
Pm dP1 dP2

= 2

∫ Nb

0

1

Pm

[
−e−

(P1+P2)
Pm

]∞
Nb+P2b

dP2

= 2

∫ Nb

0

1

Pm
e−

(Nb+P2b+P2)
Pm dP2

= 2
e−

Nb
Pm

(b+ 1)

[
−e−

P2(b+1)
Pm

]Nb
0

= 2
e−

Nb
Pm

(b+ 1)

(
1− e−

Nb(b+1)
Pm

)

R2,2 = 2

∫ ∞
Nb

∫ ∞
Nb+P2b

1

P 2
m

e−
(P1+P2)
Pm dP1 dP2

= 2

∫ ∞
Nb

1

Pm

[
−e−

(P1+P2)
Pm

]∞
Nb+P2b

dP2

= 2

∫ ∞
Nb

1

Pm
e−

(Nb+P2b+P2)
Pm dP2

=
2

(b+ 1)

[
−e−

(Nb+P2(b+1))
Pm

]∞
Nb

=
2

(b+ 1)
e−

(Nb+Nb(b+1))
Pm

=
2

(b+ 1)
e−

Nb(b+2)
Pm

The next step is compares the coefficient terms derived analytically
versus the integral of the probability density function of these regions ob-
tained numerically.

I have written a MATLAB script that can be used to simulate the colli-
sion among two packets. A Monte Carlo simulation with 106 rounds, b = 3
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and Pm = 10 has been chosen. We can see this in Table 4.1, where the al-
most perfect match between the results confirm the analytical derivation.

R2,0 R2,1 R2,2

analytic 0.629 0.258 0.111
simulation 0.630 0.259 0.110

Table 4.1: Probability values ofMp matrix calculated by analytical way and
simulation results, for n = 2 and b ≥ 1.

4.2 Matrix elements’s Mp for n = 2 and b < 1

The case of b < 1 determines that the curves (function of P1 and P2,
Nb + P2b,Nb + P1b) intersect each other in a certain point which depends
from the value of b. In this way we have a certain region that is in com-
mon between the curves. This region represents the values of P1 and P2

where we can correctly decode the packets in absence of SIC. The Fig-
ure 4.3 shows this case.
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Figure 4.3: Graph with the regions with negative threshold.
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• As we can see from the figure above, the region in which is not pos-
sible to correctly decode, tightens to the origin of the axis, becoming
smaller. The more the value of b is decreasing, more this area will be
tighten to the origin;

• The regions where is possible to correctly decode one packet will
become infinitesimal;

• From the intersecting point of the curves, we have an area in which
is possible to correctly decode both the packets without SIC;

• The presence of the SIC allows to correctly decode both packets in
the other regions.

Also in this case, we have compared the analytical value with the inte-
gral of the probability density function of these regions. It can be observed
that in the region which is possible to correctly decode only one packet,
they do not intersect. So the analytical formulas used in the case b ≥ 1 are
still valid except for the R2,2 term. In this case the analytical evaluation of
this term it can be represented by the formula:

R2,2 =

∫ ∞
Nb

∫ ∞
Nb+P2b

1

P 2
m

e−
(P1+P2)
Pm dP1 dP2 + At

+

∫ ∞
x′

∫ Nb+P2b

Nb

1

P 2
m

e−
(P1+P2)
Pm dP1 dP2

where x′ represents the intersection point of the curves in the x axis
whereasAt represents the area of the triangle that is outside the calculation
of the integrals. So:

R2,2 =

A1︷ ︸︸ ︷∫ ∞
Nb

1

Pm
e−

(Nb+P2b+P2)
Pm dP2 + At

+

∫ ∞
x′

1

Pm

(
−e−

(Nb+P2b+P2)
Pm + e−

(Nb+P2)
Pm

)
︸ ︷︷ ︸

A2

dP2
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The sum of the first terms of the integral can be expressed like this:

A1 =

∫ ∞
Nb

1

Pm
e−

(Nb+P2b+P2)
Pm dP2 + At =

1

Pm
e−

Nb
Pm

∫ ∞
Nb

(
e
−P2(b+1)

Pm

)
dP2 + At

A1 =
e−

Nb
Pm

(b+ 1)

[
−e

−P2(b+1)
Pm

]∞
Nb

+ At

A1 =
e−

Nb
Pm

(b+ 1)

(
e
−Nb(b+1)

Pm

)
+ At

the other term instead:

A2 =

∫ ∞
x′

1

Pm

(
−e−

(Nb+P2b+P2)
Pm + e−

(Nb+P2)
Pm

)
dP2

A2 =

∫ ∞
x′

1

Pm

(
−e−

(Nb+P2b+P2)
Pm

)
dP2 +

∫ ∞
x′

1

Pm

(
e−

(Nb+P2)
Pm

)
dP2

A2 =
1

(b+ 1)

[
e−

(Nb+P2b+P2)
Pm

]∞
x′
−
[
e−

(Nb+P2)
Pm

]∞
x′

so finally:

R2,2 = A1 + A2 = e−
Nb
Pm

−e−(x′(b+1))
Pm

(b+ 1)
+ e−

x′
Pm


In this case we have determined the term of R2,0 as a difference from

the others terms because in this case is not easy to extract it in an analyt-
ical way. We can compare again the analytical value with the simulation
probability derived from the Monte Carlo simulation about the collided
packets. This result is shown in Table 4.2.

R2,0 R2,1 R2,2

analytical 0.025 0.137 0.838
simulation 0.024 0.137 0.839

Table 4.2: Probability values ofMp matrix calculated by analytical way and
simulation way, for n = 2 and b < 1.
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For the simulation we have chosen Nsim = 106, b = 0.8 and Pm = 10.

4.3 Matrix elements’s Mp for n = 3 and b ≥ 1

After the case with two collisions, we move to the third row of the
matrixMp. We consider for the moment the presence of SIC with b ≥ 1. We
supposed that the collided packets have the same distribution of power,
following the Rayleigh distribution for the envelope of the signal and we
suppose also that we are able to order at the receiver the packets with a
decreasing level of power. We generally indicate their decreasing SINR as
γ1 ≥ γ2 ≥ γ3. In this situations is possible to determine R3,2 and R3,3 as:

R3,2 = Prob

{(
SNIR1 ≥ b and

P2

(N + P3)
≥ b and P3 < Nb

)}
= Prob {(P1 ≥ Nb+ P2b+ P3b and P2 ≥ Nb+ P3b and P3 < Nb)}

= 6

∫ Nb

0

∫ ∞
Nb+P3b

∫ ∞
Nb+P2b+P3b

1

P 3
m

e−
(P1+P2+P3)

Pm dP1 dP2 dP3

= 6

∫ Nb

0

∫ ∞
Nb+P3b

1

P 2
m

[
−e−

(P1+P2+P3)
Pm

]∞
Nb+P2b+P3b

dP2 dP3

= 6

∫ Nb

0

∫ ∞
Nb+P3b

1

P 2
m

e−
(Nb+P2b+P3b+P2+P3)

Pm dP2 dP3

= 6

∫ Nb

0

∫ ∞
Nb+P3b

1

P 2
m

e−
(Nb+P2(b+1)+P3(b+1))

Pm dP2 dP3

= 6

∫ Nb

0

1

Pm(b+ 1)

[
−e−

(Nb+P2(b+1)+P3(b+1))
Pm

]∞
Nb+P3b

dP3

= 6

∫ Nb

0

1

Pm(b+ 1)

(
e−

(Nb+(Nb+P3b)(b+1))+P3(b+1)
Pm

)
dP3

= 6
e−

(2Nb+Nb2)
Pm

(b+ 1)

∫ Nb

0

1

Pm
e−

(P3(b+1)2)
Pm dP3
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= 6
e−

(2Nb+Nb2)
Pm

(b+ 1)3

[
−e−

(P3(b+1)2)
Pm

]Nb
0

= 6
e−

(2Nb+Nb2)
Pm

(b+ 1)3

(
1− e−

(Nb(b+1)2)
Pm

)
(4.3)

R3,3 = Prob

{(
SNIR1 ≥ b and

P2

(N + P3)
≥ b and P3 ≥ Nb

)}
= Prob {(P1 ≥ Nb+ P2b+ P3b and P2 ≥ Nb+ P3b and P3 ≥ Nb)}

= 6

∫ ∞
Nb

∫ ∞
Nb+P3b

∫ ∞
Nb+P2b+P3b

1

P 3
m

e−
(P1+P2+P3)

Pm dP1 dP2 dP3

= 6

∫ ∞
Nb

∫ ∞
Nb+P3b

1

P 2
m

[
−e−

(P1+P2+P3)
Pm

]∞
Nb+P2b+P3b

dP2 dP3

= 6

∫ ∞
Nb

∫ ∞
Nb+P3b

1

P 2
m

e−
(Nb+P2b+P3b+P2+P3)

Pm dP2 dP3

= 6

∫ ∞
Nb

∫ ∞
Nb+P3b

1

P 2
m

e−
(Nb+P2(b+1)+P3(b+1))

Pm dP2 dP3

= 6

∫ ∞
Nb

1

Pm(b+ 1)

[
−e−

(Nb+P2(b+1)+P3(b+1))
Pm

]∞
Nb+P3b

dP3

= 6

∫ ∞
Nb

1

Pm(b+ 1)

(
e−

(Nb+(Nb+P3b)(b+1))+P3(b+1)
Pm

)
dP3

= 6
e−

(2Nb+Nb2)
Pm

(b+ 1)

∫ ∞
Nb

1

Pm
e−

(P3(b+1)2)
Pm dP3

= 6
e−

(2Nb+Nb2)
Pm

(b+ 1)3

[
−e−

(P3(b+1)2)
Pm

]∞
Nb

= 6
e−

(2Nb+Nb2)
Pm

(b+ 1)3

(
e−

(Nb(b+1)2)
Pm

)
= 6

e−
(3Nb+3Nb2+Nb3)

Pm

(b+ 1)3
(4.4)

Like the previous bidimensional case, in equation (4.3) and equation (4.4),
I have put in front of the integrals a multiplying factor for taking into ac-
count all the regions in which is possible to correctly decode two packets,
this factor is 6.

How is possible to see, the evaluation of the coefficient’s Matrix is be-
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coming difficult, because increase order of collision, means to increase the
spatial dimension that we have to take into account.

4.4 First column of Matrix’s probability

For our scope it is sufficient to find the value of the first column of this
Matrix, independently if b is greater or not than one.

We assume that each packet is received with a certain power level P0

which follows a Rayleigh distribution with mean value Pm. Calling Pi the
received interfering power (of the i-th interfering user), if we assume that
the received powers are i.i.d. by equation (2.2), we can say that:

Pr

{
P0

N +
∑n

i=1 Pi
< b

}
= Pr

{
P0 < bN + b

n∑
i=1

Pi

}
.

Recalling equation (2.2) we know that

P0, Pi ∼


1

Pm
e−

x
Pm x > 0

0 x ≤ 0

Then

Pr

{
P0 < bN + b

n∑
i=1

Pi

}
=

=

∫ ∞
0

· · ·
∫ ∞

0

Pr
{
P0 < bN + b

∑
pi|Pi = pi, i = 1, ..., n

}
·

·Pr {Pi = pi, i = 1, ..., n}
n∏
i=1

dpi.

We know that

F (x) =

∫ x

0

1

Pm
e−

ξ
Pm dξ = 1− e−

ξ
Pm .

So,
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Pr

{
P0 < bN + b

n∑
i=1

Pi

}
=

=

∫ ∞
0

· · ·
∫ ∞

0

(
1− e−

bN+b
∑
pi

Pm

) n∏
i=1

1

Pm
e−

pi
Pm dpi =

= 1− e−
bN
Pm

[
n∏
i=1

1

Pm

∫ ∞
0

e−
b+1
Pm

pidpi

]
=

= 1− e−
bN
Pm

[
b+ 1

Pm

]−n
P−nm =

= 1− e−
bN
Pm [b+ 1]−n (4.5)

The equation (4.5), represents then the probability of no decoding a
packet when n are collided. The results depends on n, on the threshold b,
on the noise power N , and on the mean of the fading distribution.

For notation simplification we indicate γ∗ = b and Γ̄ = Pm
N

, so the equa-
tion (4.5) can be also write as:

Pr

{
P0 < bN + b

n∑
i=1

Pi

}
= 1− e−

γ∗
Γ̄ [γ∗ + 1]−n (4.6)



Chapter 5

IRSA

IRSA is a generalization of the CRDSA protocol introduced in Chapter
1. In fact, while CRDSA protocol sends two replicas for each packet, IRSA
choses a random number of replicas, from a given probability distribution.

At the receiver the SIC techniques has been employed. It has been
shown in [21] and [22] that this kind of techniques can be well modeled by
means of a bipartite graph, that is typically used in information theory.

The probability distribution selected will influence the performance of
the protocol. The aim will be to find the best distribution for each average
number of possible transmitted replicas.

As a first step we introduce the graph representation of the IC pro-
cess under the collision channel hypothesis, after that we will extend it for
Rayleigh fading.

5.1 Graph Representation of the IC Process

In IRSA, each user selected the repetition rate based on a certain proba-
bility distribution {Λd}. The generic Λl represents the probability to trans-
mits l replicas into the MAC frame.

The representation of the MAC frame is depicted in Figure 5.1, where
each slot can be represented with a sum node, each user can be represented
with a burst node (circle) and where each user replica is represented by an
edge departing from the burst node to a sum node. Both sum nodes and
burst nodes have a certain degree that is the number of edges emanat-
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ing from this node. We focus on these nodes for explaining how the IC
evolves; this approach is also called Node Perspective Distribution.

B1 B2 B3 B4

S1 S2 S3 S4

sum nodes

Degree 2-BN

Degree 2-SN

S5

Degree d

q

q

q
p

Degree d

…
q

p

p
p

…

Figure 5.1: Representation of the MAC frame by bipartite graph on the left
and the Node Perspective Distribution on the right. In this example, both slot
node and transmitter node are represented with degree d (right hand side
picture).

With the Node Perspective Distribution the burst node and the sum
node distribution are described respectively by

Λ(x) =
∑
l

Λlx
l, Ψ(x) =

∑
l

Ψlx
l

where the generic elements Ψl represent the probability that a sum
node has l edges and therefore degree l.

It is clear that the burst node distribution Λ(x) is under full control of
the system designer, while this is not the case for Ψ(x) of the sum nodes.
We can also define the average burst rate as Λ′(1) =

∑
l Λll and the average

number of packets for slot as Ψ′(1) =
∑

l Ψll.
The degree distribution can be defined also from the Edges Perspective

where we define λl the probability that an edge is connected to a burst
node with degree l and ρl the probability that the edge is connected at a
sum node with degree l. The definitions of these parameters are given by:
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λl =
Λll

Λ′(1)
, ρl =

Ψll

Ψ′(1)

and the corresponding polynomial distribution are represented by

λ(x) =
∑
l

λlx
l−1, ρ(x) =

∑
l

ρlx
l−1

We consider the node perspective of Figure 5.1 where the transmitter
and the sum node have degree d.

From the point of view of the burst node the probability q that an edge
is unknown, corresponding at the probability that the others replicas has
not been corretly decoded in the previous iteration, so

qi = pd−1
i−1

From the point of view of one sum node in similar mode let us call p
the probability that an edge is unknown, given that each of the other d− 1

edges has been revealed with probability (1-q) in the previous step. Here
the edge is revealed whenever all the other edges have been revealed, so

pi = 1− (1− qi)d−1

By averaging these two expressions over the edge distributions, one
can derive the evolution of the average erasure probabilities as

q̄i =
∑
l

λlp̄
(l−1)
i−1 (5.1)

p̄i =
∞∑
c=1

ρc(1− (1− q̄i)(c−1)) (5.2)

The offered traffic is generated following a Poisson distribution so ρc
can be written as:

ρc =
ḠΛ′(1)c−1

(c− 1)!
e−ḠΛ′(1) (5.3)

where Ḡ is the mean offered traffic.
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5.1.1 IC convergence analysis for collision channel

By iterating equations (5.1), (5.2) it is possible to analyze the conver-
gence of the IC process. Given q0, p0 can be evaluated using equation (5.2).
As the new p0 becomes available, q1 can be also computed using equation
(5.1). We can then proceed the iterations until a convergence is found.

We can resume the iterative equation for the collision channel case in
briefly as: 

q0 = q̄0 = 1

p̄i =
∞∑
c=1

ρc(1− (1− q̄i)(c−1)) i = 0, ...,∞

q̄i+1 =
∑
l

λlp̄i
(l−1)

The accuracy of the equations (5.1) and (5.2), during the iterations, is
subject to the absence of loops in the graphs. This assumption implies very
large frames sizes (Nslot → ∞), so we show in the next the results refer to
the asymptotic settings. Its important to underline that this analysis will
be also valid for short or moderate-length frames. We will show this by
numerical results.

Once Λ(x) is fix, it will exist a certain value of offered traffic called
G∗ under which it is possible to recover the bursts with probability close
to one. If the offered traffic is greater than G∗ the procedure will fail to
recover bursts with a certain probability far from 0.

The probability to recovere the bursts close to one will be obtained if
and only if iteration after iteration q̄i+1 < q̄i, so that is possible to define
the threshold value as the maximum value of G such that:

q̄i > λ(1− ρ(1− q̄i)), ∀ q̄ ∈ (0, 1]. (5.4)

This condition is also represented by the fact that q,p → 0 during the
iterations.

Under the assumption that the number of possible transmitting users
into the MAC framem→∞, is possible to demonstrate that equation (5.4)
can be also written as:
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q̄ > λ(1− e−q̄GΛ′(1)), ∀ q̄ ∈ (0, 1]. (5.5)

where the index i has been omitted for simplicity.
In the asymptotic case (Nslot →∞) the performance for different distri-

bution referred in terms of MAC burst loss probability, PL (i.e., the prob-
ability that the transmission attempt does not succeed) vs the normalized
offered traffic can be obtained. The relation between the throughput S and
PL is given by S(G) = G(1 − PL(G)). The burst loss probability has been
obtained by iterating (for each value of G) the equation (5.1) and (5.2) in
the case of collision channel. The equations are iterated a certain number
of times Imax = 1000 and after that PL = Λ(p̄). This is because the proba-
bility p of having an edge unknown is given by the probability that all the
edges connected at the burst node are not revealed after the Imax iterations,
so averaging on the burst node distribution we obtain PL =

∑
l Λlp̄

l.
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Figure 5.2: Asymptotic performance in terms of MAC packet (burst) loss
probability, PL vs. the offered traffic G, for SA, CRDSA and for IRSA with
irregular distribution Λ1(x) = 0.5x2 + 0.28x3 + 0.22x8.

In Figure 5.2 we have shown the burst loss probability for SA, CRDSA
and IRSA with distribution Λ1(x) = 0.5x2 + 0.28x3 + 0.22x8. As we can see
from the figure it exists for each distribution a certain value of offered traf-
fic G∗ that represents a threshold under which the burst will be recovered
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with a probability close to one.
We have resumed in Table 5.1 some different values of G∗ obtained for

different distributions. The distributions are derived exploiting a genetic
algorithm that will be described in section 5.3.5.

Distribution, Λ(x) G∗

0.5102x2 + 0.4898x4 0.868
0.5631x2 + 0.0436x3 + 0.3933x5 0.898
0.5465x2 + 0.1623x3 + 0.2912x6 0.915
0.5x2+ 0.28x3 + 0.22x8 0.938
0.4977x2+ 0.2207x3 + 0.0381x4 + 0.0756x5 +
0.0398x6 + 0.0009x7 + 0.0088x8 + 0.0069x9 +
0.0030x11 + 0.0429x14 + 0.008115 + 0.0576x16 0.965

Table 5.1: Thresholds computed for different distributions.

It is clear that in the collision channel the maximum G∗ that can be
obtaining is G∗ = 1.

5.2 Generating the Distributions

We are interested in finding for each value of Λ′(1) the maximum value
of G∗ and compare it with a theoretical bound.

For generating the distributions, we have used the truncated soliton
distribution (truncated at N terms) [23], [24]. This distributions represents
the optimal distribution of the replicas under the assumption ofNslot → ∞.
The polynomial representation is expressed as

ΛN(x) =

∑N+1
l=2

xl

l(l−1)
− ax2

2

Q

whereQ is a parameter used for normalizing the probability mass func-
tion to one, a is one of the parameters distribution such that a ∈ (0, 1) and
N represents the maximum number of replicas that can be transmitted for
each packet (the term with which the soliton distribution is truncated).

From ΛN(x) we can obtain the Λl of the representation as

Λl =
Λ′l
Q
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where Λ′l is defined as
Λ′l =

1

l(l − 1)
l > 2

Λ′2 =
1

2(2− 1)
− a

2
=

1

2(1− a)
l = 2

so the parameter Q used for the normalization will be

Q =
N+1∑
l=2

1

l(l − 1)
− a

2

It is possible to show that if a → 0 and N → ∞, the efficiency of
the system η, is very close to one, where the efficiency is defined as the
number of packets correctly received over the number of slots.

Using the above expression of the polynomial representation ΛN(x) is
possible to derive the corresponding Λ′(1) (referred at the N truncated
terms) as

Λ′(1) =
H(N)− a∑N+1
l=2

1
l(l−1)

− a

where H(N) represents the Harmonic number, defined as

H(N) =
N∑
l=1

1

l

5.2.1 Theoretical bound for the collision channel

For different values of Λ′(1) obtained with the soliton distribution, we
are able to achieved different values of G∗. These different values can be
compared with the theoretical bound [25]. The main idea for explaining
how the bound can be evaluated is to draw the functions q and p during
the SIC iterations (drawing each in function of the other). We can then
show that an open tunnel must be present between the curves as a neces-
sary condition for have a successful decoding of the packets. The condi-
tion which guarantees this is given by Ab + As < 1 where Ab and As are
respectively the areas of the function q = fb(p) and p = fs(q). The areas
can be easily calculated, recalling the equations (5.1) and (5.5), as
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p = fs(q)⇒ As =

∫ 1

0

(1− e−qḠΛ′(1)) dq

= 1−

[
−e
−qḠΛ′(1)

ḠΛ′(1)

]1

0

= 1− 1

ḠΛ′(1)

(
1− e−ḠΛ′(1)

)
and

q = fb(p)⇒ Ab =
∑
l

λl

∫ 1

0

pl−1 dp =
∑
l

λl

[p
l

]1

0
⇒

so,

Ab =
1

Λ′(1)
. (5.6)

In this way combining both areas,

1

Λ′(1)
+ 1− 1

Λ′(1)Ḡ
+
e−ḠΛ′(1)

Λ′(1)Ḡ
< 1

1

Λ′(1)
<

1

Λ′(1)Ḡ

(
1− e−ḠΛ′(1)

)
, so

G∗ < 1− e−G∗Λ′(1) (5.7)

where for each value of Λ′(1) is possible to find the corresponding G∗.
The bound vs soliton distributions with different Λ′(1) is depicted in Fig-
ure 5.3.

Naturally from the point of view of the simulation N will be a finite
value (truncated).
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Figure 5.3: Plot of the theoretical bound vs different distribution devel-
oped by the truncated soliton distribution. In the simulation we have se-
lected a = 10−4, N = 256 and Imax = 1000.
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5.3 IC Process for Rayleigh fading channel

Until this moment we have considered that a packet is correctly de-
coded if and only if is alone in a certain time slot (due for example to the
IC process or due to the fact that only one packet is transmitted in this slot),
otherwise is not possible to decode it. Now, considering fading this is not
anymore true, because if one packet is alone into the slot the probability of
successful decoding will depend on its SNR.

Fading introduces also a big advantage, that is the capture effect (see
Chapter 2).

While the burst node (so the probability q) is described in the same way
as in the collision channel, the analysis for the sum nodes changes in order
to take into account the fading effect.

Calling

γn =
P0

N +
∑

n Pi

the Signal to Interference Noise Ratio referred to a certain packet cho-
sen randomly when n interfering are considered, is possible to define the
value of p at the i-th iteration as

pi =
l−1∑
n=0

Pr {γn < b|n}Pr{n} (5.8)

where l is the maximum number of edges that can be connected to a
certain sum node.

Recalling equation (4.6) it is possible to show that the equation (5.8) can
also be written as

pi =
l−1∑
n=0

(
1− e−

γ∗
Γ̄ [γ∗ + 1]−n

)
Pr{n}

When Rayleigh fading is considered the probability of having n resid-
ual interferers starting from the l − 1 available can be written as

Pr{n} =

(
l − 1

n

)
qni (1− qi)l−1−n
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By averaging over the Poisson distribution of the edges, we obtain

p̄i =
∞∑
l=1

ρl

l−1∑
n=0

(
1− e−

γ∗
Γ̄ [γ∗ + 1]−n

)(l − 1

n

)
q̄i
n(1− q̄i)l−1−n (5.9)

The analysis of the IC process in presence of fading can be done iter-
ating equations (5.1) and (5.9), where the equation (5.9) takes into account
the fading effects.

5.3.1 Closed formula for p when Rayleigh fading is taken
into account

We will now show how to express equation (5.9) in a compact and ele-
gant closed formula.

After a simple variable substitution l, equation (5.9) can be written as

p̄ =
∞∑
l=0

ρl

l∑
n=0

(
1− e−

γ∗
Γ̄ [γ∗ + 1]−n

)( l
n

)
q̄n(1− q̄)l−n (5.10)

=
∞∑
l=0

ρl

l∑
n=0

(
l

n

)
q̄n(1− q̄)l−n︸ ︷︷ ︸

A

− e−
γ∗
Γ̄

∞∑
l=0

ρl

l∑
n=0

(
l

n

)
q̄n(1− q̄)l−n(γ∗ + 1)−n︸ ︷︷ ︸
B

The index i has been omitted for simplicity and ρl is still poisson dis-
tributed after the variable substitution.

The term A, using the binomial theorem

(a+ b)n =
∞∑
k=0

(
n

k

)
an−kbk

can be simplified in

∞∑
l=0

ρl(1 + q̄ − q̄)l = 1 ∀ q̄ ∈ (0, 1)

Now lets consider the term B. We can use another time the binomial
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theorem so it is possible to simplify B as

p̄ = e−
γ∗
Γ̄

∞∑
l=0

ρl

l∑
n=0

(
l

n

)(
q̄

γ∗ + 1

)n
(1− q̄)l−n︸ ︷︷ ︸

( q̄
γ∗+1

+1−q̄)
l

p̄ = e−
γ∗
Γ̄

∞∑
l=0

ρl

[
−q̄
(

γ∗

γ∗ + 1

)
+ 1

]l
︸ ︷︷ ︸

C

where the term C represents the Poisson Probability Generating Func-
tions. Recalling equation (5.3), after the variable substitution ρl will be

ρl =
kl

l!
e−k

where k = ḠΛ′(1) for simplicity.
Recalling moreover the Probability Generating Functions for a Poisson

distribution, that is

∞∑
l=0

ρlz
l = ek(z−1)

then the term C can be simply in

C = e
−kq̄

(
γ∗
γ∗+1

)

so, finally the new expression of p̄ is
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p̄ = 1− e−
(
kq̄ γ∗

γ∗+1
+ γ∗

Γ̄

)
(5.11)

The importance of having a closed formula relies in its general appli-
cability, and its easy relation between p̄ and k, Γ̄ and γ∗.

5.3.2 IC convergence analysis for Rayleigh fading Channel

The iterative equation, used in the fading channel hypothesis are:
q0 = q̄0 = 1

p̄i = 1− e−
(
kq̄i

γ∗
γ∗+1

+ γ∗
Γ̄

)
i = 0, ...,∞

q̄i+1 =
∑
l

λlp̄i
(l−1)

Under fading channels we are not able to achieve vanishing error prob-
ability for G ≤ G∗ (so that q̄, p̄→ 0), due to the presence of fading.

There is a non zero probability that a received packet cannot be cor-
rectly decoded also when it is alone in a slot.

We called now q̄ the Extrinsic Packet Loss Probability (EPLP) and we
define G∗ as the maximum value of G such that

q̄ > λ(fs(q̄)), ∀ q̄ ∈ (δ, 1].

where δ represents the target EPLP and is greater than zero, whereas
fs(q̄) represents the closed formula previously found,

fs(q̄) = 1− e−
(
kq̄ γ∗

γ∗+1
+ γ∗

Γ̄

)

In Figure 5.4 is shown the performance of CRDSA and IRSA with two
different polynomial distributions taken by Table 5.1. It is possible to see
that the performance of the protocol will depend on the polynomial distri-
bution such as the collision channel but also on Γ̄ and on γ∗ that represent
respectively the SNR of the distribution and the decoding threshold.

We can distinguish two different regions:

• The first is for low offered traffic. The fading here is dominant to the
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capture effect, due to the non zero probability of correctly decoding
no one packet also if only one packet is alone into a certain time slot.

Increasing Γ̄, is more clear how the fading introduces a wide interval
of traffic G, where is possible to find low MAC burst error proba-
bility. This probability will depend on Γ̄, γ∗ and on the polynomial
distribution.

• When the traffic increases instead, PL increases rapidly (how much
depends by Γ̄). More precisely in this region the capture effect will
be dominant. In fact increasing the traffic, now more packets can be
capture, each of them introduce a certain level of interference. If the
interference level will be high, less will be the probability to decode
the packet into a certain slot.

It is also interesting to see that after a certain limit the performance of
IRSA becomes worse than CRDSA. In fact, while CRDSA sends two
replicas for each packet, IRSA with distribution Λ1(x) sends in mean
3.6 replicas for each packet and IRSA with distribution Λ2(x) sends
instead on average 4.24 replicas for each packet. For high values of
G, the mean number of interfering packets will be higher for IRSA,
so in this case the SIC will able decoded less packets than in CRDSA.

In order to show better the two different regions discussed, I have ob-
tained different curves of PL for different Γ̄ for the two IRSA distributions,
Figure 5.5. As we can see, the floor effect (for low-medium load) is more
present when Γ̄ is high.
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Figure 5.4: Asymptotic performance for CRDSA and IRSA with two irreg-
ular distribution, Λ1(x) = 0.5x2 + 0.28x3 + 0.22x8 and Λ2(x) = 0.4977x2 +
0.2207x3 + 0.0381x4 + 0.0756x5 + 0.0398x6 + 0.0009x7 + 0.0088x8 +
0.0069x9 +0.0030x11 + 0.0429x14 + 0.008115 + 0.0576x16, both obtained for
Imax = 1000.
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Figure 5.5: Asymptotic performance for IRSA with two irregular distribu-
tion, Λ1(x) = 0.5x2 + 0.28x3 + 0.22x8 and Λ2(x) = 0.4977x2 + 0.2207x3 +
0.0381x4 + 0.0756x5 + 0.0398x6 + 0.0009x7 + 0.0088x8 + 0.0069x9 +0.0030x11

+ 0.0429x14 + 0.008115 + 0.0576x16. Both the simulation are obtained for
γ∗ = 3 and Imax = 1000.
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5.3.3 Evaluation of the Upper Bound of PL

Is possible to find for each distribution, the minimum value of PL, we
can call it PLmin . This minimum value is obtained for G = 0. For traffic
values very close to this value G, the probability to correctly decode no
one packet depends only by the fading characteristics, then is possible to
define

PL(d) = (1− e−
γ∗
Γ̄ )d

where PL(d) represents the probability to decode no one packets when
d replicas are sent and zero interfering users are present.

Recalling the Jensen’s inequality which it says that

f(E[X]) ≤ E[f(X)]

and applied it at our case,

P
E[d]
L ≤ E[PL(d)]⇒ P

Λ′(1)
L ≤

∑
l

ΛlP
l
L

where
∑

l ΛlP
l
L can represent an upper bound to PLmin .

Example 1: In the CRDSA case of Figure 5.4 with Γ̄ = 10 and γ∗ = 3 is
clear as Λ′(1) = 2 so, in this case PΛ′(1)

L =
∑

l ΛlP
l
L, so PLmin = 6.72 · 10−2.

Example 2: In the IRSA case of Figure 5.4 with Γ̄ = 10 and γ∗ = 3

with distribution Λ1 is possible to evaluate with the upper bound the PLmin
value, then PL =

∑
l ΛlP

l
L, so PLmin = 3.85 · 10−2.

More the Γ̄ will be high and more the PL(d) is low.
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5.3.4 Simulation for different distribution vs theoretical bound
for fading channel

Starting from the observation done for the collision channel, is possible
to enlarge here the definition on the upper bound previously discussed.
An open tunnel must exist between fs(q) and fb(p), but this time q and p

will not go to zero; moreover the G∗ will depend on the probability target
δ. For the consideration just done, the condition which guarantees that the
packets are correctly decoded (until a certain probability of error that is
depends by δ) is given now byAs+Ab < 1+δfs(δ) where δfs(δ) represents
the area which will be subtracted from the integral of the functions. While
Ab is still equation (5.6), As is described now by

As =

∫ 1

0

1− e−
(
kq̄ γ∗

γ∗+1
+ γ∗

Γ̄

)
dq

=

∫ 1

0

1 dq − e−
γ∗
Γ̄

∫ 1

0

e−
kγ∗q
1+γ∗ dq

= 1 + e−
γ∗
Γ̄

[
e−

kγ∗q
1+γ∗

kγ∗

1+γ∗

]1

0

= 1 + e−
γ∗
Γ̄

[
1 + γ∗

kγ∗

(
e−

kγ∗
1+γ∗ − 1

)]
= 1−

(
1 + γ∗

γ∗k

)(
1− e−

kγ∗
1+γ∗

)
e−

γ∗
Γ̄

so our bound can be described as,

1−
(

1 + γ∗

γ∗k

)(
1− e−

kγ∗
1+γ∗

)
e−

γ∗
Γ̄ +

1

Λ′(1)
< 1 + δfs(δ)

− e
γ∗
Γ̄

(
δfs(δ)−

1

Λ′(1)

)
<
γ∗ + 1

kγ∗

(
1− e−

kγ∗
γ∗+1

)
(5.12)

Equation (5.12), cannot be expressed in closed form, unfortunately. Us-
ing the Matlab tools we have evaluated numerically the values of G (fixed
Λ′(1)) that satisfy equation (5.12), this is represented in Figure 5.6.

The different polynomial distributions are realized from the truncated
soliton distributions with fixed parameters a, N and target δ.
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In Figure 5.6 is shown this case, where is possible to see that the simu-
lation points are under the bound.
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Figure 5.6: Plot of the theoretical bound when the fading is taken into ac-
count vs different distribution developed by the truncated soliton distribu-
tion. For the simulations we have chosen a = 10−4, N = 256, Imax = 1000,
δ = 10−2, Γ̄ = 30 dB and γ∗ = 4.7 dB.

5.3.5 Example of good degree distribution

It has been possible to find some good degree distributions taking into
account the characteristics of the fading channel using the Genetic Algo-
rithms [27].

The main idea for explaining how this kind of algorithms work, can
be described as follows. All start from a random population composed
by a certain number of polynomial distribution where each distribution
has the same maximum degree. Each distribution joins with a random
distribution partner and their result consist into a generation of two new
polynomial distributions. Each one has new Λl derived by the mean of the
Λl of their parents with a certain probability called cross over probability
Pc, or it assumes the same value Λl at one of the parents, with probability
1−Pc. When the new Λl is generated by the mean of the corresponding Λl
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parents, is also possible to introduce a certain degree of aleatority, which
one can be controlled by the amplification factor. Each of the new poly-
nomial distribution has a certain threshold G∗ that is compared with the
threshold of the departed distribution. If the new one is higher than the
started threshold, the distribution just created is used for the successive
generations, otherwise the new one will be discarded.

We show in the next some different polynomial distributions obtained
for the same maximum degree of the distributions listed in Table 5.1, with
different fading conditions. The results are shown in Table 5.2, 5.3 and
Table 5.4.

The first observation can be done is that, increase the mean number
of replicas for each transmitted packet, it consist to obtain an increase G∗

value. Increase the mean rate of the distribution corresponds at increase
the maximum degree of the distribution. It is also possible to see that, the
increase of the performance depend on the fading conditions. In Table 5.2
it is remarkable theG∗ gain achieved increasing the maximum polynomial
degree (and so the mean repetition of transmitted replicas). In particular,
the results are referred at Γ̄ = 10 and γ∗ = 3.

Distribution, Λ(x) G∗ Λ′(1)

0.0103x2 + 0.9897x3 0.342 2.99
0.5005x3 + 0.4995x4 0.749 3.49
0.2774x2 + 0.0159x3 + 0.1431x4 + 0.5610x5 + 0.0026x6 0.908 3.99
0.3819x2 + 0.0027x3 + 0.0289x4 +
0.2860x5 + 0.0909x6 + 0.0497x7 + 0.1598x8 0.938 4.48
0.28322 + 0.3859x4 + 0.1708x5 + 0.0304x7 +
0.0096x11 + 0.0079x12 + 0.0188x15 + 0.0933x16 0.968 5.15

Table 5.2: Thresholds computed for different distributions, fixed Γ̄ = 10,
γ∗ = 3, Imax = 1000 and δ = 10−1.

If we observe Table 5.3 and Table 5.4 instead, we can see that these table
have almost the same results. The reasons of this, could be that, Γ̄ = 100

represents a good value of SNR yet.
Moreover we can also observe by these table that, increasing the maxi-

mum polynomial degree, make only a sightly increase of G∗.
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Distribution, Λ(x) G∗ Λ′(1)

0.5229x2 + 0.4771x4 1.12 2.95
0.5779x2 +0.4221x5 1.175 3.26
0.5701x2 + 0.0573x3 + 0.0035x5 + 0.3692x6 1.193 3.54
0.4499x2 + 0.3264x3 + 0.0048x6 + 0.0135x7 + 0.2055x8 1.215 3.64
0.4733x2 + 0.1211x3 + 0.2279x4 + 0.0549x5 + 0.0013x6 +
0.0019x7 + 0.0054x8 + 0.0033x10+ 0.0369x14 + 0.0741x16 1.254 4.28

Table 5.3: Thresholds computed for different distributions, fixed Γ̄ = 100,
γ∗ = 3, Imax = 1000 and δ = 10−1.

Distribution, Λ(x) G∗ Λ′(1)

0.5353x2 + 0.4647x4 1.154 2.92
0.6153x2 + 0.3847x5 1.20 3.15
0.6013x2 + 0.0494x3 + 0.0089x4 + 0.0074x5 + 0.3330x6 1.225 3.42
0.5042x2+ 0.2713x3 + 0.0022x4 + 0.0081x6 +0.2142x8 1.249 3.59
0.4905x2 + 0.2187x3 + 0.0912x4 + 0.0163x5 +
0.0342x6 + 0.0229x7 +0.0278x8 + 0.0144x9 +
0.0026x11 + 0.0034x13 + 0.0415x15 + 0.0367x16 1.283 4.08

Table 5.4: Thresholds computed for different distributions, fixed Γ̄ = 1000,
γ∗ = 3, Imax = 1000 and δ = 10−1.
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Chapter 6

Numerical results

Our simulator has been develop with MATLAB. Users transmission are
organized into MAC frames each one composed by Nslots. The medium is
shared by a finite population of m users. Each user is active with prob-
ability p, equal for all users; i.e. it decides whether to send a packet in
the current MAC frame with probability p. The offered traffic load G, the
number of slots in a frame Nslot, the probability p and the user number m
are related by the following expression, p = G·Nslot

m
.

The throughput of each protocol S, has been analyzed, where for through-
put I mean the number of packets correctly received over the number of
transmitted packets. Moreover it has been simulated and computed as the
mean over a certain number of simulations Nsim, for each value of traffic
load G.

In our simulations, , fading aspects are also taken into account.
We recall that we have assumed a Rayleigh fading which results in a

exponential distribution of the received power. We have assumed that the
received power associated to each packet is a random variable, i.i.d., that
follow equation (2.2).

For each simulation we will propose later, there will be a description of
the simulation parameters that have been used.

The definition of the simulation parameters is summarized in Table 6.1:
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Simulation parameters Significate

m Total number of users
Nslot Number of slot into the MAC frame
Nsim Number of simulation for each channel load value
Imax Number of maximum iterations of SIC

Γ̄ mean SNR of the Rayleigh distribution
γ∗ decoding threshold

Table 6.1: Simulations parameters in our simulator.

6.1 SA with Rayleigh fading channel

Here the performance of SA with Rayleigh fading channel has been
considered. The two Figures, precisely Figure 6.1 and 6.2 shown a dual
behavior, in fact in the first picture we have fixed the decoding threshold
γ∗ and the results are showed for different values of SNR Γ̄, while in the
second figure we have done the opposite.

As we can see in Figure 6.1, the curves are different from the well-know
curve of SA under the collision channel hypothesis. In particular we can
observe that both throughput peak and corresponding channel load differ
from the values of 0.36 and of G = 1. These values, naturally will depend
on the SNR value of the distribution and on the threshold.

For very low values of traffic, the throughput is linear with G so it is
possible to obtain low packet loss rates and low transmissions delay. With
respect to SA, here we have a slightly better performance if the level of
SNR exceeds the threshold level. The throughput peak instead, can be
significantly higher in the fading channel hypothesis and this normally
appear for G quite high. Different peak values have been obtained, as we
can see from the Figure 6.1.

Briefly, we can say that when the channel conditions are good (the
mean level of power distribution) or else when the SNR is much higher
than threshold level, we can achieve higher value of throughput.

Otherwise, when instead the SNR is close to the threshold, we could
obtained worse performance than the SA, because is more probable that
the SINR corresponding at certain packet, is less than the threshold.

For high value of offered traffic the level of interference increases caus-
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Figure 6.1: Throughput of SA, taking into account the effect of Rayleigh
fading. We fixed the Γ̄ = 10 dB and γ∗ = 0, 3, 4.77, 7, 9 in dB. Each value
of G has been simulated for Nsim = 2000.

ing more collisions that reduce the average SINR and therefore the proba-
bilty of exceeding the threshold is reduced.

These behaviors are depicted in Figure 6.1 and 6.2.
We have neglected the phase associated at the received power for packet

(recalling equation (2.3)), then the total interfering power has been ob-
tained as the sum of the single interfering power.
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Figure 6.2: Throughput of SA under Rayleigh fading. We fixed
γ∗ = 4.77 dB and Γ̄ = 13, 11.77, 10, 9, 7 in dB. Each value of G has been
simulated for Nsim = 2000.
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6.2 CRDSA

CRDSA protocol has been introduced in Chapter 1 and now we want
to show its performance. The simulations have been done for first referred
at the collision channel case, after that the fading case is considered. The
simulation scenario has been introduced at the start of this Chapter.

6.2.1 CRDSA for Collision Channel

As a first step we have evaluated CRDSA under the collision channel
hypothesis. In Figure 6.3 we have shown the results. In comparison with
SA, it is easy to show how this protocol has a better performance (for low-
medium load) also in absence of fading.
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Figure 6.3: CRDSA protocol under the collision channel hypothesis. We
have chosen Nslot = 50, Nsim = 1800, m = 1000 users and Imax = 20.

We can observe that the throughput performance are definitely bet-
ter than the SA protocol until G = 1. Specifically, the value of the peak
throughput exceeds 0.5 [pk/slots]. Compared to the peak throughput of
SA, i.e. 0.36, this is a ' 45% improvement.

From Figure 6.3 it is clear how the protocol has a good behavior for
low offered traffic, this is due to the transmission of two replicas for each
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packet and thanks to the presence of SIC at the receiver. In this region, we
are able to obtain better packet transmission delays and loss probabilities
with respect to SA.

After the SA peak, CRDSA results in a deterioration of its performance,
and the SA has here better throughput values. The reason of this, can be re-
conducted at the number of transmitted packets. In fact, the CRDSA aries
on the transmission of two replicas for each packet, so when the traffic
load increases, too many packets are send into the channel due to CRDSA.
Then, if more than one packets are into a certain slot, the SIC can not cor-
rectly decoded the packet and can not erase its power interference.

From Figure 6.4 is possible to see a differences in throughput terms
when Nslot changes, specially for the range of traffic load near the peak
value. When we consider low value of G the number of slots do not in-
fluence the performance. This happen because the transmissions are very
few. When instead we consider a traffic load around the peak value, have
a high number of slots consist in an improvement of the throughput. In-
creasing Nslot, consist also in an increase the p value, then when the num-
ber of slots is sufficiently big (i.e. Nslot ≥ 500) the throughput does not
change anymore.
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Figure 6.4: CRDSA protocol under the collision channel hypothesis with
Nslot = 50, 200, 500. We have chosen Nsim = 1800, m = 1000 users and
Imax = 20.
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6.2.2 CRDSA under Rayleigh fading Channel

More interesting is understand what happens to the performance when
the Rayleigh fading is taken into account. In Figure 6.5 and Figure 6.6 we
have represented this case.
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Figure 6.5: Throughput of CRDSA. We have fixed Nslot = 100,
Nsim = 1500, Γ̄ = 10 dB and γ∗ = 4.77, 6, 7, 7.8, 9 dB.

For low value of G the throughput is linear with the offered traffic, this
would say intuitively that the packet loss rate (and also the transmission
delays) is low.

The value of the maximum throughput achievable will depend on the
parameter of the channel, precisely by the level of fading (SNR value) and
by threshold γ∗ selected.

The higher the SNR the higher will be the maximum throughput, for a
fixed γ∗.

As we could expect, when the threshold value increases (fixed Γ̄), the
maximum throughput decreases. This happened because increasing γ∗

would mean that we will have less packets able to have their SINR greater
than the threshold.

We can see the same behavior of Figure 6.5 in Figure 6.6 where this one
is obtained for varying the SNR instead of γ∗.

In Figure 6.7 we have shown the throughput for different sizes of MAC
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Figure 6.6: Throughput of CRDSA. We have fixed Nslot = 100,
Nsim = 1500, γ∗ = 7 dB and Γ̄ = 13, 11.77, 10, 9, 7 dB.

frames, and we can observe that only minor changes in the curves are
given.

Another interesting comparison is the one between CRDSA and SA
under Raylegih fading.

In Figure 6.8 is depicted this case, where, we have been showing that
sending the same packet twice slightly improves the probability of trans-
mission success (i.e no collision) for small MAC loads. As we can see the
CRDSA protocol is better in terms of throughput if we are under a certain
value of G′, that in the figure is located close to G = 1.4 [packets/slot],
otherwise its performance are worse than the SA.

When the traffic load exceeds G′, it is evident that the interference has
became too high for allowing the correct decoding of the packets. More-
over the performance of SA taking into account the Fading result in an
improvement of its performance with respect to the SA case.

It is also possible to analyze through the IC techniques which is the
SINR probability distribution before and after the possible cancellation of
interference. Loosely speaking, we will observe the distribution of SINR
when the MAC frame is received and after the procedure of SIC where the
curves associated at these two different probability distribution are called
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Figure 6.7: Throughput of CRDSA for different slot length. In our cases
Nslot = 50, 100, 200. We have assumed Nsim = 1500, Γ̄ = 10 dB and
γ∗ = 4.77 dB.

respectively a and b.
What can be observed in Figure 6.9 and Figure 6.10 is the fact that after

the SIC procedures (curve b) we have an higher probability to find high
SINR than the curve a. This happened because, the SIC can erases some
(even all) packets collided mainly when we consider medium traffic con-
ditions. If we focus in a certain slot, the level of interference decreases and
is more probable to find packets with their SINR greater than their SINR
associated at curve a.
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Figure 6.8: Throughput of CRDSA vs Slotted ALOHA with capture phe-
nomenon. We have fixed Nslot = 100, Γ = 10 dB and γ∗ = 4.77 dB.
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Figure 6.9: Probability density function of the SINR at the starting of the
MAC frame and after the SIC iterations. The curves are obtained for
G = 0.5 [pk/slot] and Γ̄ = 10 dB and γ∗ = 4.77 dB.
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MAC frame and after the SIC iterations. The curves are obtained for
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6.3 IRSA

The performance of IRSA are now considered. Such as for the CRDSA,
here we evaluated the throughput performance vs the offered traffic G for
a finite number of usersm and for a finite number of slotsNslot, in different
cases.

6.3.1 IRSA for Collision Channel

The first simulation in Figure 6.11 has the aim to show the throughput
of IRSA, compared to the one of CRDSA and SA, assuming a fixed number
of slot Nslot = 50 and for different values of iteration Imax. The results of
the simulation shows that with Imax = 100, IRSA has a throughput close
to S ' 0.6 while CRDSA does not exceed the value of S ' 0.5. Then, IRSA
consists in a gain of' 20% respect CRDSA and in a gain of' 60% than SA.
IRSA achieves better throughput performance, due to the mean repetition
rate for each transmitted packet, that is greater than SA and CRDSA. In
particular the distribution at which we referred is Λ1(x) which has mean
value of the repetition fixed to 3.6.

Considering the results achieved for Imax = 10 that represents the case
of low complexity implementations [4], IRSA does not seem have particu-
lar degradation with respect to the previous case. We can see by the figure
that the throughput vs the traffic offered is going linear up to S ' 0.5, so
all the traffic up to this G turns into throughput, obtaining vanishing er-
ror probability. It is to markable the fact that here we have chosen a small
number of slot for MAC frame, this choice impacts the throughput’s peak,
as you can see in Figure 6.12 where the performance of IRSA for different
number of Nslot are shown.

Continuing to observe Figure 6.11, for value of G close to one we can
observe two phenomenons; the first is the fact that for G over G∗ the simu-
lated point falls outside the Theoretical curve of IRSA. This happened be-
cause with a finite MAC frame, is possible to correctly decode the packet,
also after theG∗ value. The asymptotic case assumes instead, that after the
G∗ value, the probability to correctly decode the packet is zero. Then, in
this region and for a finite number Nslot, we can find a throughput better
than the theoretical curve.
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The second aspect regards the fact that there are no advantage to use
IRSA instead of SA and CRDSA. This happened because the number of
the replicas (into the physical load) are too much compared with the burst
of SA scheme for example, so this results in a high packet loss rate. Where
the IRSA becomes worst than the others protocol is depends (as previously
discussed) by the polynomial distribution used for the replicas.
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Figure 6.11: Throughput of IRSA with polynomial distribution
Λ1(x) = 0.5x2 +0.28x3 +0.22x8 compared with the CRDSA and SA perfor-
mance, for different value of Imax. We have chosen m = 1000, Nslot = 50,
Imax = 100, 10 and Nsim = 1500.

In Figure 6.12 we depicted the performance of the IRSA protocol for
different numbers of Nslot, where we have fixed the number of iteration to
Imax = 20. We can see that increasing the number of slots, the performance
increases significantly than the previous case with Nslot = 50. It is clearly
that when the number of the slots increases significantly we are going to
the asymptotic performance, so we are able to turns all the offered traffic
into throughput until G = 0.938 that represents the G∗ for the considered
distribution.

In this figure is also depicted the throughput of CRDSA withNslot = 500.
As we can see, if we increase the number of slots, also the CRDSA perfor-
mance increases. Moreover, this case is almost coincident with its asymp-
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totic limit. Nevertheless, CRDSA with Nslot = 500 has worse throughput
performance than IRSA, also for IRSA with Nslot = 50.
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Figure 6.12: Throughput of IRSA with polynomial distribution
Λ1(x) = 0.5x2 + 0.28x3 + 0.22x8 vs the offered traffic, for different value
of Nslot. We have chosen m = 1000, Imax = 20, Nsim = 2000 and
Nslot = 500, 200, 50.
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6.3.2 IRSA for Rayleigh fading channel

Now also for IRSA we want to take into account the effects of the fad-
ing.

As a first result we show the throughput for different values of Γ̄. If
Γ̄ is high, we are able to exceed the value of 1 [pk/slot], that represents
the maximum throughput value achievable under the collision channel
hypothesis. The results are shown in Figure 6.13.
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Figure 6.13: Throughput of IRSA with polynomial distribution
Λ1(x) = 0.5x2 + 0.28x3 + 0.22x8 vs the offered traffic, for different value
of Γ̄. We have chosen m = 1000, Nslot = 100, Imax = 20, Nsim = 1500.
Moreover we have fixed γ∗ = 4.77 dB and Γ̄ = 30, 20, 10, 9, 7 dB.

How is possible to see the performance of the protocol will be depend
on the mean level of the power’s distribution and by the level of fixed
threshold for the system. For Γ̄ very close to γ∗, this condition represents
the situation in which the capture of the received packet will be difficult,
also for low-medium offered traffic. In this case the capture effect does not
provide any kind of help and the throughput can be also worst than the
collision channel case.

By the Figure 6.14 is possible to see that fixed these channel condition
the chose number of the SIC iteration, does not impact on the performance
of the protocol (for Imax greater equal to 10); this is important because at
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Figure 6.14: Throughput of IRSA with polynomial distribution
Λ1(x) = 0.5x2 + 0.28x3 + 0.22x8 vs the offered traffic, for different value
of Imax. In particular we have fixed Nslot = 100, Nsim = 1500, m = 1000,
Γ̄ = 10 dB, γ∗ = 4.77 dB and Imax = 1000, 100, 10.

the increasing of Imax increase the delay associated at the software elabora-
tion done at the receiver. The delay associated at the software elaboration
done at the receiver is not analyze in this thesis, we can say only an ap-
proximate considerations.

In Figure 6.15, we have shown what happen at the performance for dif-
ferent number of slot such as in the collision channel. The increase num-
ber of slots consist in an increasing of the throughput. The peak is not so
high because the fading condition are not too much well, otherwise we can
imagine the same behavior of the throughput but shifted to the up when
Γ̄ is higher than the chosen value.

In Figure 6.16, 6.17 and 6.18 is shown the throughput performance for
the distribution found in Table 5.2, Table 5.3 and Table 5.4, respectively.
The distributions index i used in figures, represents the distribution in the
i-th row of the Table at which we referred.

Figure 6.16 shows that, increase the mean number of transmitted repli-
cas Λ′(1), consist to achieve better throughput performance. Precisely, for
the different distributions with Λ′(1) up to 4.48, we have not any kind of



80 Numerical results

gain in throughput terms, respect the collision channel case. In fact, for
these distributions, the maximum peak values not exceed value 0.6. Con-
sidering instead, the distribution with highest Λ′(1) of Table 5.2, the peak is
almost 0.7, resulting in a gain respect the collision channel case. However,
the performance here, are subjected to a degradation than the asymptotic
results. This because a limited number of slots is considered (Nslot = 50).

The behavior of the distributions change when we consider value of
traffic quite high. In fact here, the distributions with high Λ′(1) suffer of
high level of interference, then more collided packet will be lost.

In Figure 6.17 and Figure 6.18 a high number of slots is considered
(Nslot = 500). The results show that the peaks of the different distribu-
tions are very closed, confirming the asymptotic results achieved in section
5.3.5. It is remarkable the fact that we are able to achieved a throughput
greater than one packet for slot, resulting in a gain respect the collision
channel case. After the peak, the distributions with high mean number of
replicas suffer an a high performance degradation than the distributions
with less mean rate of repetition.
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Figure 6.15: Throughput of IRSA with polynomial distribution
Λ1(x) = 0.5x2 + 0.28x3 + 0.22x8 vs the offered traffic, for different value of
Nslot. In particular we have fixed Imax = 20, Nsim = 1500, m = 1000, Γ̄ = 10
dB, γ∗ = 4.77 dB and Nslot = 500, 200, 50.
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Figure 6.16: Throughput of IRSA referred at the distribution in Table 5.2.
We have chosen m = 1000, Nsim = 1500 and Nslot = 50.
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Figure 6.17: Throughput of IRSA with polynomial distribution referred at
the distribution of Table 5.3. We have chosen m = 1000, Nsim = 1500 and
Nslot = 500.
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Figure 6.18: Throughput of IRSA with polynomial distribution referred at
the distribution of Table 5.4. We have chosen m = 1000, Nsim = 1500 and
Nslot = 500.



Conclusions

The main goal of this thesis has been to analyze the asymptotic per-
formance of the IC process under the fading channel hypothesis, for IRSA
protocol. Precisely we have considered the fading as a Rayleigh distributed.
Actually, this kind of analysis is absent in literature.

From the asymptotic results obtained, different good polynomial dis-
tributions under different fading conditions have been investigated and
found. Moreover, starting from these, the performance of IRSA for finite
MAC frames have been evaluated, which are very interest in a practical
case.

From our distributions studied, it is possible to say that, increase the
mean number of replicas for each transmitted packet, its consist always to
increase the performance (for our mean value).

The results show that the good distributions found, have a good be-
havior also for a finite MAC frames.

The results have also shown that in particular fading conditions, a
throughput greater than one packet for slot has been achieved, resulting
in an improvement respect the collision channel case.

It has been possible to show that, if the fading is not to much far from
the threshold level decoding, better performance can be achieved increas-
ing the mean number of replicas for each transmitted packet. Otherwise,
when the fading level is quite high than the threshold, increase the mean
number of replicas consist only in a sightly increase of performance. Nev-
ertheless, when the traffic offered is high the distribution with high repeti-
tion rate suffer of high level of interference. Then, the distribution must be
chosen take into account also for which values of traffic the system should
work.

From these studies done, the next step could be evaluate the perfor-
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mance of IRSA protocol in a real environment, showing the difference
among the practical case and the simulation results.

Another interesting aspect could be the study of the performance un-
der another fading model, i.e. Rice distributed. Sure, one of the most
interesting things found with this work is the possibility to describe the
IC process with quite easy equations. This is due to the closed formula of
the probability to correctly decode no one packet into a certain slot, found
for the Rayleigh distribution. Another model, could not have, this kind of
characteristics.
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RA Random Access

DSA Diversity Slotted ALOHA

DAMA Demand Assignment Multiple Access protocol

CRDSA Contention Resolution Diversity Slotted ALOHA

IRSA Irregular Repetition Slotted ALOHA

CSA Coded Slotted ALOHA
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GMSK Gaussian Minimum Shift King
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