ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA

SCUOLA DI INGEGNERIA E ARCHITETTURA
DISI

INGEGNERIA INFORMATICA

TESI DI LAUREA

in
Intelligenza Artificiale

Virtual Sensing Technology applied to a swarm of autonomous

robots

Tesi di Laurea di: Relatrice:
MATTIA SALVARO Chiar.ma Prof.ssa MICHELA MILANO

Correlatore:
Prof. MAURO BIRATTARI

Anno Accademico 2013/14

Sessione 111

Ai miei genitori.

Acknowledgements

I would like to express my gratitude to my supervisors Andreagiovanni Reina
and Gianpiero Francesca, for their patient and essential guidance throughout
my internship at the IRIDIA lab, and afterwards during the writing of this the-
sis. Thanks to Dr. Carlo Pinciroli for his important contribution in some key
passages of my project. Thanks to Professor Mauro Birattari for wisely coordi-
nating my project activities and granting me access to the resources I needed.
Thanks to Professor Michela Milano for introducing me such an interesting dis-
cipline and such an advanced laboratory like the IRIDIA lab. Thanks to all the
people at the IRIDIA lab for such an intense scientific experience.

I would like to thank also my family: my parents and grandparents that never
stop supporting me, morally and economically, during this long and sometimes
difficult University period. Thanks to all the old friends and new friends that
made this long period so fun, and thanks to the long list of flatmates that made
cohabitation a wonderful experience. Finally, a special thanks to the patient
person that supported me during my months abroad and took care of me in
the writing phase, Manuela Dibenedetto. I would like to share the joy of this
achievement with you all.

Thank you,

Mattia.

ii

Abstract

This thesis proposes a novel technology in the field of swarm robotics
that allows a swarm of robots to sense a virtual environment through
virtual sensors. Virtual sensing is a desirable and helpful technology in
swarm robotics research activity, because it allows the researchers to ef-
ficiently and quickly perform experiments otherwise more expensive and
time consuming, or even impossible. In particular, we envision two useful
applications for virtual sensing technology. On the one hand, it is possible
to prototype and foresee the effects of a new sensor on a robot swarm,
before producing it. On the other hand, thanks to this technology it is
possible to study the behaviour of robots operating in environments that
are not easily reproducible inside a lab for safety reasons or just because
physically infeasible.

The use of virtual sensing technology for sensor prototyping aims to
foresee the behaviour of the swarm enhanced with new or more powerful
sensors, without producing the hardware. Sensor prototyping can be used
to tune a new sensor or perform performance comparison tests between
alternative types of sensors. This kind of prototyping experiments can be
performed through the presented tool, that allows to rapidly develop and
test software virtual sensors of different typologies and quality, emulat-
ing the behaviour of several hardware real sensors. By investigating on
which sensors is better to invest, a researcher can minimize the sensors’
production cost while achieving a given swarm performance.

Through augmented reality, it is possible to test the performance of
the swarm in a desired virtual environment that cannot be set into the
lab for physical, logistic or economical reasons. The virtual environment
is sensed by the robots through properly designed virtual sensors. Virtual
sensing technology allows a researcher to quickly carry out real robots
experiment in challenging scenarios without all the required hardware
and environment.

Virtual sensor experiments are hybrid experiments between purely
simulated and purely real experiments. Indeed, virtual sensors experi-
ments join the real world dynamics of the real robots to the simulated dy-
namics of the virtual sensors. The benefits of virtual sensing experiments
compared to purely real experiments are presented above. The benefit
of virtual sensor experiments compared to purely simulated experiment
consists in the fact that the former are one step closer to reality than
the latter. Hence, hybrid experiments are closer to reality than purely
simulated ones.

The proposed system is composed of a tracking system, a simulator
and a swarm of robots. The multi-camera tracking system acquires the
position of the robots in the arena. This information is then processed
inside a simulator, and the output is delivered to the real robots as virtual
sensor values. In Chapter 2, I describe the functioning of the tracking
system. In Chapter 3, I present the components of the simulator that
realize the virtual sensing environment. In Chapter 4, I illustrate the
implementation of three virtual sensors. In Chapter 5, I illustrate the
effectiveness of the proposed technology by presenting a simple experiment
involving a swarm of 15 robots.

This work led to the writing of an international conference article that
has been lately submitted [18]. Moreover, working on the presented tech-
nology, I had the chance to collaborate to a set of scientific experiments
that resulted in an international conference paper [6] and an international
journal article currently under review [5]. Furthermore, I contributed to

il

the implementation and setup of the tracking system and co-authored the
relative technical report which documents its functioning [22].

iv

Sommario

Questo lavoro presenta un’innovativa tecnologia nel campo della robot-
ica degli sciami, o swarm robotics. Il sistema progettato permette ad uno
sciame di robot di percepire un ambiente di realta simulata grazie a dei
sensori virtuali. La tecnologia dei sensori virtuali offre un’opportunita
allettante nell’attivita di ricerca in swarm robotics, perché permette ai
ricercatori di effettuare in modo veloce ed efficiente esperimenti che altri-
menti sarebbero piu costosi in termini di tempo e denaro, o addirittura
irrealizzabili. Questa tecnologia si dimostra utile in particolare per due
applicazioni: da un lato rende possibile prototipare e prevedere gli effetti
che avrebbe sul comportamento dello sciame ’aggiunta di un nuovo sen-
sore prima di produrlo; dall’altro permette di studiare il comportamento
dello sciame in ambienti che non siano facilmente riproducibili all’interno
di un laboratorio, per motivi di sicurezza o anche solo perché fisicamente
impossibili.

L’uso dei sensori virtuali per la prototipazione mira a simulare il com-
portamento dello sciame migliorato con I’aggiunta di sensori nuovi o piu af-
fidabili, prima ancora di produrne I’hardware. Prototipare un sensore per-
mette di mettere a punto un nuovo sensore o di confrontare le prestazioni
di tipi di sensori alternativi. Questo tipo di studi possono essere condotti
con lo strumento presentato in questo lavoro, che permette di sviluppare
via software e testare rapidamente sensori virtuali di diverse tipologie e liv-
elli di qualita, simulando il comportamento di sensori reali di varia natura.
In alternativa, lo strumento puo essere utilizzato per indagare su quale o
quali sensori reali sia meglio investire in modo tale da ottenere un dato
livello di prestazione dello sciame, minimizzando il costo di produzione.

Con il sistema di realta aumentata, ¢ possibile testare le prestazioni di
uno sciame che opera in un ambiente che non puo essere ricostruito in un
laboratorio per motivi di natura fisica, logistica o economica. L’ambiante
virtuale & percepito dai robot reali attraverso sensori virtuali progettati
ad-hoc. Questa tecnologia puo essere sfruttata per effettuare velocemente
esperimenti con robot reali in scenari innovativi, senza dover predisporre
I’ambiente né avere I’hardware necessario a bordo dei robot.

Gli esperimenti con i sensori virtuali caratterizzano un ibrido tra gli
esperimenti puramente simulati e quelli puramente reali. Infatti, gli esper-
imenti con sensori virtuali uniscono le dinamiche reali dei robot a quelle
simulate dei sensori virtuali. I benefici degli esperimenti ibridi rispetto a
quelli puramente reali sono stati descritti sopra. Il vantaggio degli esperi-
menti ibridi rispetto a quelli puramente simulati invece consiste nel fatto
che i primi sono si avvicinano di piu alla realta rispetto agli ultimi. Di
conseguenza anche i loro risultati saranno pit congruenti a quelli reali.

1l sistema progettato & composto da un sistema di tracking, un simula-
tore ed uno sciame di robot. Il sistema di tracking multi camera acquisisce
la posizione dei robot nell’arena, ed invia i dati ad un simulatore che li
processa. L’output che ne risulta sono i valori dei sensori virtuali, che
vengono inviati ai robot reali attraverso una rete Wi-Fi. Nel Capitolo 2
descrivo il funzionamento del sistema di tracking, nel Capitolo 3 presento
le componenti del simulatore che realizzano ’ambiente per i sensori vir-
tuali, nel Capitolo 4 mostro 'implementazione di tre sensori virtuali, nel
Capitolo 5 illustro efficacia della tecnologia proposta con un semplice
esperimento con 15 robot reali.

Questo lavoro ha portato alla stesura di un articolo per una conferenza
internazionale che e stato presentato di recente. Lavorando su questo pro-
getto, ho anche avuto la possibilita di collaborare ad una serie di esperi-

menti scientifici che sono risultati in un articolo per una conferenza inter-
nazionale [6] e un articolo per una rivista scientifica internazionale, al mo-
mento in fase di revisione [5]. Inoltre, ho contribuito all’implementazione
e messa a punto del sistema di tracking e sono coautore della relativa
relazione tecnica che ne documenta il funzionamento [22].

vi

Contents

1 Introduction 3
1.1 Swarm robotics Lo 3
1.2 Motivations L)
1.3 Overview e e 6
1.4 Virtual Sensing: state of theart. 8
1.5 Original contribution oL 9
1.6 Thesis structure. 10

2 Arena Tracking System 11
2.1 Halcon API Layer 13
2.2 Arena Tracking System API Layer 18

2.2.1 Detection and optimisation 19
2.2.2 Configuration o 22
2.3 Arena Tracking System Application Layer 27
2.3.1 Arena Tracking System Viewer 27
2.3.2 Arena Tracking System Server 28

3 Arena Tracking System Virtual Sensing Plugin 30
3.1 ARGoS overview 30
3.2 Virtual sensing with ARGoS 37
3.3 Arena Tracking System Virtual Sensing Plugin Simulator Module 40

3.3.1 Arena Tracking System Client 41
3.3.2 Arena Tracking System Physics Engine 45
3.3.3 ARGoS Virtual Sensor Server 47
3.3.4 Virtual Sensors Simulator Module 49
3.4 Arena Tracking System Virtual Sensing Plugin E-Puck Module . 51
3.4.1 Virtual Sensor Client 52
3.4.2 Arena Tracking System Real E-Puck 54
3.4.3 Virtual Sensors Real Robot Module 56

4 Virtual Sensors implementation 59
4.1 Control Interface 59
4.2 Simulator e 61

4.2.1 Ground Virtual Sensor Simulator Module 61
4.2.2 Light Virtual Sensor Simulator Module 64
4.2.3 Pollutant Virtual Sensor Simulator Module 67
4.3 Real Robot 71
4.3.1 Virtual Sensor Real Robot Modules implementation . . . 71

5 Validation through real robots experiment

6 Conclusions and future work
6.1 Futurework

Chapter 1

Introduction

In this thesis, I present a tool to help researchers conducting experiments in
the field of swarm robotics. The tool enhances the experimental experience
enabling two useful functions: augmented reality for the robots, and robots’
sensor prototyping. The project had been entirely developed at the IRIDIA [§]
lab, Université Libre de Bruxelles, Belgium, under the supervision of profes-
sor Mauro Birattari and Ph.D students Andreagiovanni Reina and Gianpiero
Francesca. To better understand the field in which my work settles and its
possible applications, I first introduce swarm robotics. Then, I will explain the
motivations and goal of the work, followed by an overview of the entire system.
Then I summarise the state of the art relevant to the object of my study, that
is virtual sensing technology for swarm robotics. At the end of the chapter I
illustrate what is my original contribution to this work, and finally I explain
how the thesis is structured.

1.1 Swarm robotics

Swarm robotics [4] is a branch of Artificial Intelligence that focuses on the
design of self organised groups of autonomous robots that cooperate to achieve
a common goal. Swarm robotics assumes absence of any form of centralised
control or communication infrastructure. Cooperation and coordination are
obtained exclusively through numerous local interactions among the robots.
The task of the robot swarm designer is to create individual robot behaviours
that allow the swarm to satisfy the global requirements, while exploiting only
local interactions among the robots. Robots local interactions can be between
robots, or between robots and the environment.

According to the definitions above, the advantageous characteristics of swarm
robotics are: fault tolerance, scalability and flexibility. Fault tolerance results
from the decentralised behaviour and the high redundancy of the swarm. The
failure of one or more single units should not affect the collective behaviour
if there is no centralised control, no predefined roles inside the swarm and a
sufficient degree of redundancy. Scalability is obtained thanks to local interac-
tions. Global performance is proportional to the number of robots cooperating
in the swarm, and no reprogramming of the robots is needed after the swarm
size is changed. Flexibility is accomplished by the distributed and self organ-

ised essence of the swarm, that allows the swarm to cope with time-variant
environment for instance through dynamic task allocation among the robots.

The potential applications envisioned for swarm robotics are numerous and
diverse. In fact, swarm robotics is well suited for tackling tasks such as search
and rescue, demining, construction in hostile environment like space or under-
water, post-disaster recover. Search and rescue and demining are dangerous
tasks for human beings. Employing a fault tolerant swarm of robots for this
task is desirable to avoid human losses, because robots losses are tolerated by
the system. Thanks to scalability the task execution time can be accelerated
by pouring more robots in the swarm. Besides being human threatening, hos-
tile environments usually lacks of any kind of communication infrastructure.
Swarm robotics perfectly fits this lack of global communication, because the
swarm robotic system relies only on local communication for coordination and
cooperation between robots. These low requirements make swarm robotics a
viable solution for space or underwater construction. Another human hostile
kind of environment is a post-disaster environment: earthquakes, floods, nu-
clear power plant accidents, wars. Swarm robotics can be employed for sites re-
covering in these kinds of situations. Assuming for instance a post-earthquake
scenario. The tasks to be performed for earthquake recovery are numerous:
search and rescue, demolition of unstable buildings, securing of damaged build-
ings, pipelines, electrics and hydro systems. Thanks to its flexibility, the swarm
is able to allocate the tasks to the robots dynamically, adapting the number of
robots assigned to one task to the needs of the time variant environment.

According to Brambilla et al. [3], a swarm robotics system can be modelled
both at microscopic and macroscopic level. Microscopic models consider the
single robots individually, analysing the unit interactions with each other or
with the environment. Different levels of abstraction make the model more or
less realistic but also more or less complex for design purposes. Macroscopic
models take into account the whole swarm as a unique entity. Such models
provide a high level perspective of the system and allow a designer to focus on
the properties that the swarm requires to achieve.

In reality, requirements are expressed at swarm level, while design must be
actualised at microscopic level. Today, a general engineering methodology for
swarm robotics design is still missing, and control software for swarm robotic
systems is produced in two ways: manual and automatic. In manual design,
the gap between the two levels is filled by the individual ability and expe-
rience of the designer, making of swarm design a kind of art rather than a
strict discipline. The designer follows a trial and error approach, developing
the single robot behaviour, testing and improving it until the desired collective
behaviour is obtained. The most used software architecture is the probabilistic
finite state machine, but another common approach is based on virtual physics,
where robots and environment interact through virtual forces. While proba-
bilistic finite state machine is more suited for tasks like aggregation [20], chain
formation [15] or task allocation [11, 10], virtual physics is a better approach
for spatial organising tasks, for example pattern formation [21] and collective
motion [19].

The main automatic design method is called evolutionary robotics [24]. With
this technique, single robots are controlled by a neural network whose param-
eters are obtained through artificial evolution. The main drawback of the au-
tomatic design method, is that defining an effective setting is usually a difficult

problem. A novel approach to automatic design, called AutoMoDE, has been
proposed lately by Francesca et al. [5].

In the next section I will list the open issues in swarm robotics and the
motivations that sustain my work

1.2 Motivations

The application areas mentioned above are only potential. In fact, the complex-
ity of the swarm design and the envisioned applications themselves, prevented
swarm robotics to take off in the real world. At date, swarm robotics research
is still confined inside research laboratories. Researchers make extensive use
of simulation tools to test and evaluate their algorithms, because real robot
experiments, even in a highly controlled environment, are still quite an issue.
Compared to simulation, real robots experiments are very expensive in terms
of time and work, though often necessary. Validation of the control software
through real robot experiments is demanded by a typical incongruity between
simulated and real robot experiments results. Simulators are unable to model
all the aspects of reality, and depending on the level of abstraction, reality is
more or less simplified. This simplification, or abstraction of reality, leads to a
mismatch between reality and simulation, called reality gap. The presence of
the reality gap makes real robots validation necessary in most of the cases, how-
ever the execution of real robots experiments is not so trivial and slows down
the whole control software production process.

Given the current conditions in swarm robotics research, my work aims to
help researchers carrying out their experimental indoor activity and to ease the
usage of real robots thanks to an augmented reality environment. I implemented
a system that enables virtual sensing on a swarm of robots. Such a system affects
the experimental experience in two ways. First, the architecture provides an
augmented reality system to allow the creation of a hybrid environment where
real robots can sense the simulated environment by means of virtual sensors.
Second, the system can be used as a tool to prototype sensors that are currently
unavailable on board the robots.

The researcher can exploit augmented reality to create an environment that
is not physically replicable inside labs. The inability to replicate the environ-
ment can be due to safety reasons, for example dangerous radiations or spreading
wildfire, or for practical and economical reasons. For example, the researcher
can insert in the environment any source of wave radiation, including light, and
implement the corresponding virtual sensor on the robots. As an example, I con-
sider the experiment exposed in [7], where infrared transmitters define different
areas in which the space is divided. Let’s assume that the robots are equipped
with infrared receivers, but the transmitters are not immediately available or
must be bought. Virtualising the transmitters and implementing the infrared
virtual sensor for the robots allow the researcher to start the experiments right
away. Considering the same experiment, the wall of the maze in which the
robots operate can be virtualised as well. Walls, objects and obstacles virtual-
isation gives the researcher high flexibility and simplifies in terms of time and
material the set up of the experimental environment.

The system can also be seen under another point of view. In a situation in
which the researcher has the chance to upgrade the robots with new pieces of

hardware, virtual sensors can help in prototyping the real sensors before their
production. Virtual sensing technology can be exploited for tuning and testing
on real robots a particular sensor. Virtual sensors can be easily tuned and
tried many times, until satisfactory swarm performances are achieved. Once
the sensor features are validated, the hardware sensor can be bought or built
once and for all. Prototyping a sensor is particularly useful in swarm robotics
because the real sensor must be replicated in several units for all the swarm.
Building or buying dozens of sensors can be very expensive, having them tested
before is a great advantage. Another application of the virtual sensing system
is the virtual enhancement of a sensor that is available on the robots, but for
some reasons it is not particularly performing. In this case, the researcher can
have an estimate of the performance of the swarm, if robots were equipped with
more effective sensors.

The proposed tool represents an innovation in the experimental experience in
swarm robotics. After the preliminary set up of the arena, in which the needed
infrastructure and hardware must be installed one-off, the tool can be used and
extended without further modifications neither in the system infrastructure nor
on the robots. The system is extensible to any new virtual sensor and any
robotic platform, and both the core and the extensions are all software based.
The extensions can be easily implemented by the researcher to add more virtual
sensors. In Chapter 4, I guide the reader through the implementation process
of a new virtual sensor. In the remainder of the introduction, I give an overview
of the system, then I summarise what is the state of the art in virtual sensing
technology for swarm robotics and I highlight the innovation brought by the
work presented in this thesis.

1.3 Overview

The virtual sensing architecture consists of three components: a tracking sys-
tem, a robotic swarm simulator and a swarm of robots. Figure 1.1 shows the
architecture, its deployment and data flow at high level of abstraction. We can
imagine the system as an information elaboration chain, running from the pro-
ducer to the consumer. The information source is the tracking system, while the
final user is the swarm of robots. In between there is an elaboration and com-
munication system that transforms the set of robot positions and orientations
produced by the tracking system to a set of virtual sensor readings consumed
by the robots.

The cameras of the tracking system acquire the images of the arena where
the robotic experiment takes place. The images are then processed by a vision
software that outputs positions and orientations of all the robots detected in the
environment. The set of robot positions and orientations is called arena state.
The arena state is the result of the first data elaboration and represents the
output produced by the tracking system. The arena state is then transmitted to
a robotic swarm simulator that is able to compute the virtual sensor readings for
the robots. When the computation is done, the readings are sent to the robots
equipped with the corresponding virtual sensors. The result is that the real
robots navigating in the arena are immersed in a perceivable virtual environment
handled by the simulator. This kind of interaction between simulation and
reality is called virtual sensing technology.

ARENA TRACKING SYSTEM COMPUTER HOST

Y

WIRELESS
ROUTER

e
==

Figure 1.1: Data flow of the system.

ROBOT SWARM

The tracking system I used is called Arena Tracking System or ATS [22] and
it was built at IRIDIA. The ATS is composed by a set of 16 cameras connected
to a dedicated server machine that performs the image processing. The ATS
represents the source of the information in the chain elaboration process and
even though I used a custom tracking system, any other tracking system can be
easily employed, as far it outputs the position and orientation of the robots.

The second element of the elaboration process is the robotic swarm simula-
tor. A robotic swarm simulator is an application that allows the researcher to
simulate swarm robotics experiments. There is a number of reason why sim-
ulated experiments are used instead or before real robots experiments. The
advantages of simulating an experiment mainly affect two factors: time and
resources saving. Simulating an experiment can drastically reduce the time du-
ration, and gives the possibility of run experiments in batch without human
supervision. Also, simulating does not require resources other than a standard
computer. No resources needed means no hardware costs, no hardware fail-
ures, and no environment setting. Both robots and environment are set by the
researcher in the simulator. One drawback of simulation though is that abstrac-
tion is just a simplification of reality, and often simulated results are better than
real experiment results.

The role of the simulator in this system is to replicate the real arena state in
the simulated environment. Knowing the position and orientation of the robots
allows the simulator to calculate the values of the virtual sensors onboard the
robots. The robotic swarm simulator I employed was built at IRIDIA and it is
called ARGoS [17]. One of ARGoS useful features is modularity. In ARGoS,
every component is a modular plugin that can be loaded upon need. I exploited

ARGoS modularity to integrate the virtual sensing system as a plugin module in
the simulator. The plugin operates as extension to the simulator core, accessing
the core functionalities of the simulator. The virtual sensing plugin includes
several basic components: a special physics engine for the simulator, the com-
munication infrastructure needed for connection with both tracking system and
robots, and the generic software architecture for virtual sensors. The researcher
can extend the system by implementing specific plugins for each virtual sensor
needed, extending the generic virtual sensor structure provided by the vitual
sensing plugin.

The robotic swarm employed is composed of E-Puck [13] robots. The E-Puck
is a desktop mobile robot developed at Ecole Polytechnique Fédérale de Lau-
sanne (EPFL) for educational purposes. The robot set available at IRIDIA lab
is a particular extension of the basic E-Puck platform. Among other features,
the extension endows the robots of Wi-Fi communication needed to enable the
virtual sensing technology.

The result of the interaction between these three macro components of the
system is a virtual environment that is perceivable by the real robots, a sort
of augmented reality for a swarm of robots. In the next section, I will focus
on the current state of the art in virtual sensing applied to swarm robotics,
explaining why the work proposed in this thesis brings a novel contribution to
this technology.

1.4 Virtual Sensing: state of the art

In literature, the interaction between real robots and virtual environment is
discussed in two ways. Some authors proposed or envisioned a virtual sensing
technology, others achieved real-robots/virtual-environment interaction through
virtual actuation technology. If we think at virtual sensors like data flowing from
a simulator to real robots, we can see virtual actuators implemented as informa-
tion moving from the real robots to the virtual environment simulator. My work
does not include a virtual actuation technology, however virtual actuators are
a straightforward extension to it. In this thesis, a virtual actuation extension is
discussed in Section 6.1.

Millard et al. [12] discuss the importance of a virtual sensor technology, how-
ever they envision it only as future work. Instead, O’Dowd et al. [16] and Bjerk-
nes et al. [2] implemented a specific virtual sensor to perform robot localisation.
Both works ground their architecture on a tracking or positioning system to
import the real robots’ global position in a simulator. O’Dowd et al. [16] used
a tracking system and Wi-Fi communication to supply the robots with their
global position. Thus, virtual sensor technology has been implemented in one
specific virtual GPS sensor. Bjerknes et al. [2] developed a 2D and 3D position-
ing system based on ultrasonic beacons. Thanks to triangulation, the robots
are able to calculate their position autonomously. The authors achieved decen-
tralised virtual sensing using an embedded simulator. Although their solution
is scalable and does not need Wi-Fi communication, running an embedded sim-
ulator on the robots is generally too demanding for hardware architectures used
in swarm robotics. Furthermore, the positioning system requires ultrasonic sen-
sors placed ad-hoc on the robots, whereas no need of specific hardware is one of
the features of my work. Unlike the works cited above, my work aims to build

a general platform on which any kind of virtual sensor can be implemented,
without any other specific hardware installation.

Among those who proposed virtual actuation technology, virtual pheromone
is the most studied virtual actuator. In swarm robotics, having virtual pheromone
is a great achievement. Pheromone is a means of communication among social
insects, and stigmergy, the mechanism of indirect communication between social
insects, is a very hot topic in swarm robotics. Therefore, to have the possibility
to test stigmergic algorithms based on pheromone in a real robot experiment is a
huge advantage. Sugawara et al. [23] and Garnier et al. [7] simulated pheromone
trails deployment using coloured light projections on the floor. Their implemen-
tation of pheromone requires special hardware on the robots and a smart envi-
ronment in which the control of the light is limited by the usage of a projector.
Khaliq et al. [9] studied stigmergic behaviour in swarm robotics abstracting the
properties of pheromone and implementing them with a grid of radio frequency
identification (RFID) tags. The RFID tags are hexagonal cells embedded in the
floor. They have an unique identifier and a readable and writable memory. The
robots are equipped with RFID transceiver and they are able to identify the tag
below them and read or write the value stored in memory. With this system,
Khaliq et al. succeeded in virtualising pheromone for stigmergy studies, i.e. to
virtualise a particular actuator. The system they propose is scalable because
the information is externalised and spatialised on the RFID tags. The robots
only elaborate local information and there is no need of central control and
computation. However, all the works cited above require a smart environment
and special hardware on the robots.

The extension to my work discussed in Section 6.1 will provide virtual actu-
ation technology totally software implemented. Through this extension it will
be possible to carry out the foraging task based on virtual pheromone with real
robots, as simply as running a simulation.

1.5 Original contribution

The system described in Section 1.3 is extended and articulated. It is composed
of three subsystems in an organic interconnection that exploits three different
networks and several hardware resources. The three subsystems, ATS, ARGoS
and the E-Puck swarm, were originally available at IRIDIA, however no com-
munication protocol was there because they were not supposed to interact with
each other at the time. In addition, the ATS needed to be tuned and inte-
grated with some missing features. In the first part of my work, I fine tuned
the tracking system and developed two utility applications. The fine tuning of
the tracking system consists in the calibration of the 16 cameras, the creation
of a performing tag pattern to achieve better robot detection, and the optimi-
sation of the image processing algorithm. The applications I developed are a
tool for real time view of the tracking session called Viewer, and a networking
component playing as a server to provide arena state data to the simulator,
called Arena Tracking System Server. This tool has been used for a set of sci-
entific experiments allowing me to collaborate for an international conference
paper [6] and an international journal article under review [5]. Furthermore, I
contributed to the implementation and setup if the ATS and I co-authored the
technical report [22].

The second part of my work focused on the integration of ARGoS and the
ATS, and the creation of the virtual sensor architecture. I designed and im-
plemented a special physics engine to be plugged in ARGoS, equipped with
the necessary networking components to handle the connections with the Arena
Tracking System Server and the entire set of robots. Contextually, I designed
and implemented a generic virtual sensor architecture that consumes the data
generated by the upstream system, and works as a frame structure for virtual
sensor implementation.

Finally, I illustrate the functioning of the system through the implementa-
tion of three virtual sensors: the ground virtual sensor, the light virtual sensor
and the pollutant virtual sensor. I tested their effectiveness in a simple experi-
ment described in Chapter 5. This work led to the writing of an international
conference article that has been lately submitted [18].

1.6 Thesis structure

The thesis is structured as follows: Chapter 2 describes the architecture and the
features of the ATS, Chapter 3 focuses on the design of the virtual sensing plugin
for ARGoS, Chapter 4 offers the guidelines for virtual sensor implementation,
Chapter 5 defines and execute a real robot experiment to test virtual sensor
effectiveness, and finally Chapter 6 resumes the conclusions and suggests the
possible future works.

10

Chapter 2

Arena Tracking System

123,5 247 247 247 123,5
y
o0}
[o0]
® ® ® ®
(e}
~
—
o o o ®
© <
N 2
o o o ®
(o)
~
—
® ® o ®
(o)
[e0]
A
988

Figure 2.1: Camera placement in the arena (distances in cm).

The Arena Tracking System is composed by a set of 16 Prosilica GC1600 C
cameras, manufactured by Allied Vision Technology. The cameras are installed
inside the IRIDIA Robotics Arena, in which they are disposed on a framework
suspended 243 cm above the floor in a 4 by 4 matrix formation (see Figure 2.1).
The total scope of the 16 cameras is nearly 70m?, which makes the ATS coverage
area more than enough for any swarm robotics experiment run in IRIDIA. The
cameras resolution is 1620 x 1220 pixel and the maximum frame rate is 15 frames
per second. However the output rate of the tracking system is lower due to the
time demanding elaboration process performed on each set of images acquired.

The image processing is made on a dedicated server machine that hosts 16
Intel®Xeon®CPU E5-2670 at 2.60GHz. Each core features the Intel®@ Hyper-
Threading Technology, which enables it to run two threads per core. The Oper-
ating System is GNU/Linux Ubuntu 12.04.1 LTS for 64 bits architectures. The
cameras are connected to the server through a dedicated switch installed in the

11

arena. The switch links the cameras with 1 Gb Ethernet connection and the
server with a 10 Gb Ethernet connection.

r

(ARENA TRACKING SYSTEM APPLICATION LAYER)

= -

(ARENA TRACKING SYSTEM API LAYER

EE o)

(HALCON API LAYER

__« N

Figure 2.2: Arena Tracking System Software Architecture.

M———

Server ¥
ArenaState
RobotState | ______~
SimulatorServer
ATSServerMain

Halcon APT Qt Halcon
Layer
A 7
| |
(= A _
. L
| | :
ATS APT ! !
Layer‘ Core ! Tracking ! :
<=
N N N
o | |
o | |
[:_ T |
| : |
~ATS | GUI | | !
Application : ArenaStateMainWindow |
Layer | CameraArrayDisplay |
| CameraDisplay :
: ArenaViewer |
|
|
|

Figure 2.3: Arena Tracking System package diagram.

The Arena Tracking System software architecture is built as a three layer
structure presented in Figure 2.2. The bottom layer consists on the QT Frame-
work and the Halcon machine vision library [14]. For further details on QT
Framework and Halcon library see Section 2.1. On top of those libraries lies an
application specific library layer, called Arena Tracking System API. This cus-
tom library offers to the user the possibility to configure the tracking process,
as shown in Section 2.2. The top layer is the ATS Application layer. It provides
two tools to support researchers’ experiments: a viewer for ATS standalone us-

12

age, and a server for ARGoS integration. The applications receive as input two
parameters: a resources XML file and a configuration XML file. The resource
file indexes all the resources available for a tracking session such as cameras,
image grabbers and image trackers. The configuration file is a subset list of
the available resources that the researcher wants to employ in the experiment.
The configuration file allows the researcher to nimbly change the tracking sys-
tem’s configuration parameters without affecting the hardware or the compiled
code. The applications and the XML files are described in detail in Section 2.3.
Figure 2.3 shows the software packages and their dependencies.

In the rest of this chapter I examine the Arena Tracking System from a
software engineering perspective, adding technical information for profitable
usage.

2.1 Halcon API Layer

The tracking system basic API layer is composed of QT and Halcon libraries.
QT is a cross platform application library particularly useful for GUI develop-
ment thanks to the signal/slot mechanism. Halcon is a library produced by
MVTec Software GmbH used for scientific and industrial computer vision ap-
plications. Halcon library provides a broad suite of image processing operators,
and comes with interactive IDE called HDevelop and drivers to interface a large
set of cameras. HDevelop comes very handy for camera calibration and configu-
ration, and allows fast program prototyping through an interactive environment.

Halcon::HFrameGrabber

+SetFramegrabberParam(param: string, value: string)
+GrablmageStart(maxDelay: double)
+GrablmageAsync(maxDelay: double): Himage

Halcon::HImage

+GetDomain(): HRegion
+ReduceDomain(domain: HRegion): HImage
+ChangeDomain(domain: HRegion): Himage

Halcon::HShapeModel

+ReadShapeModel(modelName: string)
+FindScaledShapeModel(image: Himage,
angleStart: double, angleExtent: double,
scaleMin: double, scaleMax: double,
minScore: double, numMatches: long,
maxOverlap: double, subPixel: HString,
numLevels: long, greediness: double,
row: HTuple, column: HTuple,
angle: HTuple, scale: HTuple,
score: HTuple): HTuple

Figure 2.4: Halcon classes used in ATS.
The Halcon library for C++ consists of a set of classes for object oriented

programming and a list of operators accessible as static Halcon class meth-
ods. The most important Halcon classes for the Arena Tracking System are

13

Halcon operators

+affine_trans_region(region: Hobject, regionAffineTrans: Hobject,

homMat2D: HTuple, interpolate: HTuple): Herror
+gen_rectangle2(rectangle: Hobject, row: HTuple,

column: HTuple, phi: HTuple,

lengthl: HTuple, length2: Htuple): Herror
+image_points_to_world_plane(cameraPAram: HTuple,

worldPose: HTuple, rows: HTuple,

cols: HTuple, scale: HTuple,

x: HTuple, y: HTuple): Herror
+intensity(regions: Hobject, image: Hobject,

mean: double, deviation: double): Herror
+read_cam_par(camParFile: HTuple,

cameraParam: HTuple): Herror
+read_pose(poseFile: HTuple, pose: HTuple): Herror
+set_origin_pose(poseln: HTuple, dx: HTuple,

dy: HTuple, dz: HTuple,

poseNewOrigin: HTuple): Herror
+set_system(systemParameter: HTuple,

value: HTuple): Herror
+vector_angle_to_rigid(rowl: HTuple, columnl: HTuple,

anglel: HTuple, row2: HTuple,

column2: HTuple, angle2: HTuple,

homMat2D: HTuple): Herror

Figure 2.5: Halcon image processing operators used in ATS.

HFrameGrabber, HImage and HShapeModel (see Figure 2.4). HFrameGrabber
models an instance of the image acquisition device. The HFrameGrabber class
gives the possibility to set specific parameters of the frame grabber and to ac-
quire images either in a synchronous or asynchronous way. In the synchronous
mode, the grabber and the image process run sequentially, in such a way that
the next grabbing is performed only when the previous processing is done. The
time required for processing is therefore included in the frame rate. The asyn-
chronous mode instead allows image processing while the next image is already
being grabbed. Due to the high time consuming image process, Arena Tracking
System uses asynchronous grabbing to enhance the frame rate.

HImage represents the instance of an image object. HImage object and its
methods are used for the particular purpose to reduce the image domain to be
processed. Reducing the image domain means to speed up the tag detection,
and therefore to raise the efficiency of the tracking system (see Section 2.2.1).

HShapeModel models the instance of a shape model for matching. The
shape model is created using HDevelop and saved as a configuration file. The
class allows the HShapeModel object to load the shape model file (operator
ReadShapeModel()), and to find the shape model within an image (operator
FindScaledModel()), given some parameters such as: rotation range, scale range,
the maximum percentage of occlusion of the target, the maximum number of
matches to be found, the maximum degree of overlapping between two targets
to consider them the same instance, sub pixel accuracy mode, the number of
pyramid levels of the shape model used during the search, and a parameter called
greediness that is a trade-off between efficiency and accuracy. The operator
FindScaledModel() outputs the number of targets detected, and the position
and orientation of each of them within the image.

Halcon also provides a broad range of operators that are not related to any
particular class, but available in C++ as static methods of the generic class

14

Halcon (see Figure 2.5). I am going to give a brief explanation of the most used
operators, mainly used to decode the inner region of the E-Puck tags such as:
vector_angle_to_rigid(), gen_rectangle2(), affine_trans_region(), and intensity().
The operator vector_angle_to_rigid() computes and returns, in terms of rotation
matrix and translation vector, a rigid affine transformation between two given
points and corresponding orientations. The operator affine_trans_region() ap-
plies an affine transformation to the given region and returns the transformed
region. The operator intensity() calculates the mean and deviation of grey val-
ues within the input region. The operator gen_rectangle2() simply creates an
oriented rectangle.

The rest of the operators are used for camera setting or camera view re-
lated operation. They are: read_cam_par(), read_pose(), set_origin_pose(), and
image_points_to_world_plane(). The operators read_cam_par() and read_pose()
read from file the internal camera parameters and the camera pose respectively.
The operator set_origin_pose() translates the origin of the 3D pose by a given
vector. It is used to correct the real world coordinates of the robots, that are
originally imprecise due to a perspective error. In fact, while the height of the
cameras in the camera pose is the distance between the camera and the floor,
the markers created for detection are placed on top robots. To compensate this
error it is necessary to translate the camera pose on the z-axis for the height
of the robots. The operator image_points_to_world_plane() transform a position
in the image to a position in a real world coordinate system. This is used to
have the position of the robots inside the arena. One last generic operator is
set_system() and allows to change many Halcon parameters.

Qt::QFile
+QFile(fileName: QString): boolean
+exists(): boolean
+open(mode: OpenMode): boolean

Figure 2.6: QFile class diagram.

Although the ATS API Layer does not need any graphical library, it exploits
the QT library for parsing the XML configuration file. The QT classes used for
XML file parsing are QFile, QIODevice, QDomDocument, QDomElement and
QString. QFile acquires a file given the file name (See Figure 2.6). QT allows
to call some utility methods on a QFile object such as exists(), and open().
QIODevice class provides a public flag type called OpenMode that lists all the
possible modes for file opening. QDomDocument class extends QDomNode
with the ability to set the content of the file to the QDomDocument object
(see Figure 2.7). QDomElement inherits as well from QDomNode class and
represents a tag of the XML file. QString is simply a QT wrapper for the string
type.

The QT library is used for graphical purpose in the application layer. In
particular, the GUI package exploits a set of QT classes to build the user in-

15

Qt::QDomNode

+firstChildElement(tagName: QString): QDomElement
+hasChildNodes(): boolean

+isNull(): boolean

+nextSiblingElement(): QDomElement

A

Qt::QDomDocument Qt::QDomElement

+setContent(dev: QIODevice,
erroeMsg: QString,
errorLine: int,
erroeColumn: int): boolean

Figure 2.7: QDom classes diagram.

terface of the viewer. The basic component of the QT GUI framework is the
widget, and all the GUI components inherit from the class QWidget. The ap-
plication main window itself extends QWidget class. The arena viewer main
window inherits form QMainWindow to access all the QT window framework
features such as menus, toolbars, labels and text areas. Figure 2.8 shows the
QT classes used for the arena viewer and their most useful methods.

16

Qt::QObject
+connect(sender: QObject,
signal: const char*,
method: const char*,
type: Qt::ConnectionType): bool

Qt::QTimer _Qt jet Qt::QAction
+setInterval(msec: int) +setWindowTitle(title: QString) +setEnabled(enabled: boolean)
+start() +addAction(action: QAction) +setCheckable(checkable: boolean
+stop() +setLayout(layout: QLayout) +setChecked(checked: boolean)

+size(): QSize
+isVisible(): boolean
+activateWindow()
+show()
? AN
Qt::QFrame
JoN Qt::QMenu
Qt::QStackedWidget +addSeparator(): QAction
+addWidget(widget: QWidget): int
+setCurrentWidget(widget: QWidget) Qt::QMenuBar
+addMenu(menu: QMenu): QAction
Qt::QToolBar
Qt::QLabel
+clear()
+setText(text: QString)
+setWordWrap(wrap: boolean) Qt::QLineEdit
+setFixedSize(width: int, height: int) +clear()
+setSFaIedCoptents(sca]e: boolean) +setReadOnly(readOnly: boolean)
+setPixmap(pixmap: QPixmap) +setText(text: QString) :

Figure 2.8: QT GUI elements class diagram. The principal classes QWidget
and QMainWindow are highlighted.

17

2.2 Arena Tracking System API Layer

| Enint i 1
1
1
«Interface» «Interface»
Core::|Base Core::ISerializable

+ClassName(): string

+Serialize(): char(]
+Deserialize(serializedData: charl])
+Size(): int

-timestep: int
-camerasState: CameraState([]
-arenaElements: ArenaElement([]

-id: string
-timestep: int
-arenaElements: ArenaElement(]

+AddCameraState(cameraState: CameraState)

+RemoveCameraState(camerState: CameraState)

+SetCameraState(cameraState: CamerState)
+GetCameraState(id: string): CamerState
+GetArenaElements(): ArenaElement(]
+GetCamerasState(): CameraStatef[]
+CameralDs(): string[]

+Timestep(): int

-image: Image

+D(): string

+Timestep: int

+Image(): Image
+GetArenaElements(): ArenaElement(]

Core::ArenaElementID

-id: string 1

+ToString(): string

Core::lr ate

Core::lmage

#arenaElementID: ArenaElementID

-imagePosition: 2DPoint
-imageAngle: Angle

#irr e: ImageState
#worldState: WorldState

+GetAngle(): Angle

+ID(): ArenaElementID
+GetimageState(): ImageState

+SetAngle(angle: Angle)
+GetPosition(): 2DPoint
+SetPosition(position: 2DPoint)

+SetimageState(imageState: ImageState)
+GetWorldState(): WorldState
+SetWorldState(worldState: WorldState)

i

I

I

| T
1 Core::WorldState !
I

|

I

i
-imagePosition: 2DPoint

T
i
|
" |
-imageAngle: Angle Core::EPuckArenaElement |
i
i
|
|

Core::FootBotArenaElement

+GetAngle(): Angle 1
+SetAngle(angle: Angle)
+GetPosition(): 2DPoint
+SetPosition(position: 2DPoint)

Figure 2.9: Core package class diagram. The principal classes are highlighted.

As stated above, the Arena Tracking System API layer provides a set of
functionalities tailored for tracking purpose. The layer is divided into two pack-
ages called Core and Tracking (see Figure 2.3). The package Core contains all
the basic data structures and provides all the needed interfaces to access them.
The data types include the detected elements, the state of a single camera scope,
the state of the entire arena space, the representation of the acquired images,
plus a resource manager class that parses an XML configuration file and creates
the specific image grabber, tracker, and camera (see Figure 2.9 and 2.10). The
main class in the Core package is ArenaState, that represents the state of the
experiment at a given timestep, i.e. the position and orientation, in the im-
age and in the real world, of every detected robot in the arena. The detected
robot is modelled by the class ArenaFlement, and it is represented by its own
robot ID, its position and orientation in the image and in the real world. The
list of ArenaElements is given by ArenaState with the method GetArenaEle-
ments(). Alternatively, ATS offers the possibility to get the detected robots
under a specific camera, by requesting access to the camera with the method
GetCameraState().

The package Tracking includes the single camera tracker, the entire arena
tracker, and the interfaces apt to access several image grabbers, trackers and
camera views, generated at runtime through a specific factory (see Figure 2.11).

18

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, > «Interface» «Interface»
Core::IBase Core::ISerializable <—

+ClassName(): string +Serialize(): char[]

+Deserialize(serializedData: charl[])
+Size(): int

T T

| |

I I

«Interface»
Core::limageDeserializationStrategy -imageRepresentation: limageRepresentation
+Deserialize(serializedData: charl]): imageRepresentation -imagesSerialization: limageSerializationStrategy
-imageDeserialization: lImageDeserializationStrateg

+NumChannels(): int
[+GetimageRepresentation(): liImageRepresentation

I
Tracking::HImageDeserializationStrategy ?
1j.*
«Interface» «Interface» Core::CameraState
Core::llmageSerializationStrateg Core::llmageRepresentation
+Serialize(D i D ion): char(] +Width(): int
+Height(): int

+NumChannels(): int
} +Save(filename: string)
| +Clone(): llmageRepresentation

Tracking::HImageSerializationStrategy T

I
Tracking::HImageRepresentation

«Singleton»
Core::llmageSerializationManager
-imageSerializationStrategy: llmageSerializationStrategy
-imageDeserializationStrategy: llmageDeseializationStrateg;

+SetlmageSerializationStrategy(serializationStrategy: limageSerializationStrategy)
+GetlmageSerializationStrategy(): llmageSerializationStrategy
+SetimageDeserializationStrategy(deserializationStrategy: llmageDeserializationStrategy)
+GetlmageDeserializationStrategy(): IimageDeserializationStrategy

Figure 2.10: Core package class diagram. The principal classes are highlighted.

The class ArenaStateTracker is able to create a new updated instance of Are-
naState with the method GetArenaState(). ArenaStateTracker is a manager for
one or more CamerStateTracker, to which the GetArenaState() signal is prop-
agated with GetCameraState(). Each CameraStateTracker is associated to an
image source and the operators to detect the robots in the image. The Cam-
eraStateTracker is composed by an ImageGrabber that encapsulates the logic
to configure an image source and acquire an image, an ImageTracker that is
responsible for detecting the robots in the acquired image, and a CameraView
whose job is to convert the image position of the detected robots into the coor-
dinates of a world reference system, given the internal and external parameters
of the specific camera.

2.2.1 Detection and optimisation

As previously mentioned, the instance of ArenaStateTracker applies detection
and decoding operators on the input image at every timestep. In order to spot
and identify the robots navigating in the arena, the Arena Tracking System uses
a type of marker that allows easy detection and decoding even when the image
is relatively small. The markers encode the direction of navigation and the ID
of the robot at once. Figure 2.12 shows an example of E-Puck marker. The
external black arrow indicates the navigation direction, whereas the internal
square matrix encodes the robot ID in binary notation, where black squares
encode 707 and white squares encode ”1”. The rising power order of the bits
goes from left to right, from top to bottom. Each time the detection step
is performed, every frame acquired by the ArenaStateTracker is scanned for
occurrences of the marker. Each time a marker is detected, the inner matrix is
decoded and converted to an ID.

19

#cameralD: string -cameraStateTrackers: CameraStateTracker[]

#imageGgrabber: lImageGrabber -timestep: int

#imageTracker: limageTracker -isActive: boolean

#cameraView: ICameraView 1.5 -isDone: boolean

#timeStep: int " +AddCameraStateTracker(cameraStatetracker: CameraStateTracker): bool
#arenaElements: IArenaElement[] +GetArenaState(): ArenaState

+Init(): boolean +Init()

+Step() +Timestep(): int

+GetCameraState(): CCameraState
-RecoverMissingTags()

)

«Interface»

1 | Tracking: rabber
-elapsedTime: int
+Grab(): Cimage
+IsDone(): boolean
+Elapsed(): int
#Grablmpl(): Image

i
i
Pl
[
oo
i
. Tracking::HalconFileGrabber | _ «Singleton»
1 L— Tracking::ImageGrabberFactory
} +CreatelmageGrabber(configurationNode: QDomElement): limageGrabber
i

L Tracking::HalconCameraGrabber SR

«Interface»
Tracking::llmageTracker
-elapsedTime: int
+Track(): ArenaElement[]
I +isDone(): boolean
+Elapsed(): int
—>{ #Trackimpl()image

i
i

T

[

L

i

| — «Singleton»

| L - (Tracking::HalconFootBotTracker | | Tracking::ImageTrackerFacto

} +CreatelmageTracker(configurationNode: QDomElement): limageTracker
|

i

i

e Tracking::HalconEPuckTracker r *******

«Interface»
Tracking::ICameraView
S| ConvertCoordinatesimageToRealWold(
arenaElement: ArenaElement) «Singleton»
Tracking::CameraViewFactory
+CreateCameraView(configurationNode: QDomElement): CameraView

— ~ ~|_Tracking::HalconCeilingCameraView

Figure 2.11: Tracking package class diagram. The principal classes are high-
lighted.

Markers detection is a very time consuming operation due to the high reso-
lution of the cameras mounted in the arena (i.e., 1620 x 1220 pixels). Although
the dedicated machine on which the Arena Tracking System is installed consists
of 16 cores, and considered that Halcon operators can be parallelised on those
cores, the marker detection on a single image takes on average over 100 ms. In
multi camera experiments, the total average tracking time for one frame is the
detection time multiplied by the number of cameras used. In a word, average
tracking time breaks the requirement of good time resolution settled by the
necessity to have real time virtual sensor data and seamless ARGoS integra-
tion. It had been empirically proven that 100 ms is a good timestep period for
ARGoS. To achieve effectiveness in the integration with ARGoS, the average
tracking time per timestep must be around 100 ms. Which is true only for
the single camera scenario. Therefore, optimisation in the image processing is
needed. Scaling the images is not a viable option because the tiny squares of the
markers are represented by only four pixels in the full definition image. A more
appropriate solution is to implement an optimisation heuristic that processes
the whole image, or set of images, only at a certain periodic timestep, called

20

Figure 2.12: On the left: example of E-Puck marker. On the right: markers
applied on E-Pucks during an experiment.

Figure 2.13: On the left: the image domain processed in a keyframe. On the
right: the image domain processed in a optimised frame.

keyframe. In the timesteps between two keyframes, the detection is performed
only in the neighbourhood of a previously detected marker (see Figure 2.13).
The size of the neighbourhood and the keyframe period are parameters that the
researcher is able to set in the XML experiment configuration file.

This technique is consistent under the hypothesis that the robots move at
a given maximum speed and therefore the maximum distance covered in 100
ms is easily computable. The periodic keyframe helps recovering the robots
that may be lost by the ATS during the experiment. In fact, experimental data
demonstrate that the reliability of the ATS on markers detection is constrained
to keyframe period and neighbourhood size. Table 2.1 shows the number of
detected robots for different configuration of the parameters keyframe period
and neighbourhood size.

ATS marker detection reliability

Keyframe period (timesteps) | Neighbourhood size (cm) | Mean Median
1 - 19.25725 | 20
5 30 19.05596 | 19
5 11 19.06481 | 19
5 10 19.02939 | 19
9 11 19.01369 | 19

Table 2.1: ATS marker detection reliability in an experiment with a set of 20
robots.

21

The experiments are carried out with a set of 20 robots. Table 2.1 and Fig-
ure 2.15 show that the system is more reliable for lower keyframe period and
higher neighbourhood size. Figure 2.14 demonstrate that lowering the keyframe
period and raising the neighbourhood size negatively affects efficiency. The
researcher is responsible of settling the trade-off between time efficiency and
detection reliability acting on the two parameters in the XML experiment con-
figuration file.

2.2.2 Configuration

Two other important classes of the ATS API layer are ResouceManager and
ExperimentManager (see Figure 2.16 and 2.17). ResourceManager is respon-
sible for declaring the set of resources that a researcher wishes to employ for
image acquisition and marker detection, while ExperimentManger is delegated
for configuring the tracking session. Instances of these classes are meant to load
an XML configuration file and to create the instances of the appropriate re-
sources. In particular, the ResouceManager loads and instantiate the contents
of the resources XML configuration file, the ExperimentManager creates the ob-
jects described in the experiment XML configuration file. The resources XML
file contains the definition and the parameters of cameras, detectors and image
transformations available for the session. Each of these elements are mapped to
a unique ID, that can be used in the configuration file to refer the resource.

The XML tree of the resource configuration file contains a root node, called
arena_tracking_system, and three children nodes: grabbers, trackers, and cam-
eras. The grabbers node contains the definition of every possible image source
available in the experiment. It can be either a camera or directory of images.
For each grabber of type camera, in the cameras section must be added a node
called camera that contains the path to the camera calibration files. Also, for
each grabber of type camera a set of parameters is defined. The camera param-
eters in the resource configuration files are particularly useful for the researcher
to change the brightness of the acquired images. In fact, quite often the bright-
ness of the environment is constrained to some experiment requirement. For
example, when the experiment requires a special light source or the coloured
LEDs of the robots, the light of the environment must be dimmed to avoid in-
terference. A semi dark environment prevents the tracking system to detect and
decode correctly all the markers. Acting on the camera parameters allows the
acquisition of clearer images and therefore a more efficient markers detection
and decoding. The parameters involved with the brightness of the image are
exposure_time_abs and gain_raw. Raising the gain leads to brighter but more
noisy images. In turn, exposure time increases proportionally to the risk to have
blurred markers due to the movement of the robots. In the trackers section all
the available trackers are listed in nodes called tracker. A parameter that the
researcher might find useful here is robot_height. This parameter allows the re-
searcher to reuse the same set of markers on robots of different heigh, provided
that in the same experiment the set of robots is homogeneous.

The ExperimentManager is instead used to read the experiment XML config-
uration file that describes the configuration of the ArenaStateTracker in terms of
its components. To configure an instance of ArenaStateTracker, the researcher
only needs to specify in the XML file how many CameraStateTracker are part of
the ArenaStateTracker and, for each of them, specify the resources they should

22

use calling them by their unique ID.

An example of XML tree for an experiment configuration file includes a root
node called arena_tracking, and two children nodes: arena_state_tracker and
experiment_record. The arena_state_tracker node includes three attributes and
a collection of nodes called camera_state_tracker, one for each grabber employed
in the experiment. The camera_state_tracker must include the specification of
the grabber, a corresponding camera view if the grabber is of type camera,
and the tracker. Back to the arena_state_tracker node, the attribute server_port
defines the port to which the ATS Server is bound, in case the researcher wants
to use the ATS this way (see section 2.3.2). The attributes opt_key_frame_period
and opt_square_size are optimisation parameters (see section 2.2.1). The former
defines the period in timesteps of the key frame occurrence, the latter is the
dimension in centimetres of the side of the square that forms the neighbourhood
around the formerly detected markers, on which the image domain is cropped.

23

Marker detection efficiency

o
o
3
o]
o o]
I o o
. o o o
(o]
3 o
S - o : 0 8
S - .
e
@ B
E o |
® «©
E
o g '
© :
o |
-t
| o]
__I —?
i% [—| :
8 — . [1 L -]
g g &
T T T T T
01_xx 05_30 05_11 05_10 09_11

algorithm (period_neighbourhood)

Figure 2.14: ATS marker detection efficiency in ms. The x-axis values encode
the keyframe period an the neighbourhood size divided by an underscore. The y-
axis shows the time of each timestep in ms. The red line at 100 ms is a required
upper bound for efficiency performances. The blue line at 25 ms is an ideal
upper bound that allows a four camera experiment to meet the requirement of
100 ms per timestep. The red points represent the average computation time
for each combination of keyframe period and neighbourhood size.

24

number of markers detected (robot units)

20

15

10

Marker detection reliability

L. I JL I, T,
o ' [o [
o E o o o
= o o o o o
0 e} o -] [
]] [
] o]
o o o
-1 o o o
o
o o
o]
o o o]
- o o
I I T I I
01_xx 05_30 05_11 05_10 09_11

algorithm (period_neighbourhood)

Figure 2.15: ATS marker detection reliability on a set of 20 robots

25

«Interface»
Core::IBase

ClassName(): string

Qt «Singleton»
Core::CoreResourceManager
-configurationDocument: QDomDocument
QDomDocument -configurationRootElement: QDomElement
-imageGrabbers: llmageGrabber(]
QDomElement -imageTrackers: llmageTrackers[]
-cameraViews: |ICameraView[]
-ConfigureGrabbers()
-ConfigureDetectors()
-ConfigureCameraViews()
+LoadFile(fileName: string): boolean
+lIsValid(): boolean
+GetGrabber(id: string): llImageGrabber

+GetTracker(id: string): lmageTracker
+GetCameraView(id: string): ICameraView

«Interface»
Tracking::llmageGrabber

«Interface»
Tracking::llmageTracker

«Interface»
Tracking::ICameraView

Figure 2.16: ResourceManager class diagram.

«Interface» Core::ArenaState
Core::|Base

Q
«Singleton»
Tracking::ExperimentManager
QDomDocument -configurationDocument: QDomDocument

- +LoadFile(fileName: string): boolean
+CreateArenaStateTracker(resourceManager CoreResourceManager): ArenaStateTracker
+CreateExperimentRecord(): ExperimentRecord

QDomElement

! 1
Tracking::ExperimentRecord
-imageDirectory: QDir
-recordDocument: QFile
-recordlmages: boolean
-overwriteDirectory: boolean
-changeRootDirectoryOnStart: boolean
-runNumber: int
+Configure(recordElement: QDomElement): boolean
+0Open(): boolean
+Close(): boolean
+RecordArenaState(arenaState: ArenaState): bool
+EnableRecordimages(enable: boolean)
+EnableOverwriteDirectory(enable: boolean)
Tracking::ArenaStateTracker +EnableChangeDirectoryOnStart(enable: boolean)
+ClearData(arenaStateTracker: ArenaStateTracker)
+RemoveDirectory(dirName: string): boolean
+GetRunNumber(): int

Figure 2.17: ExperimentManager class diagram.

26

2.3 Arena Tracking System Application Layer

As stated earlier, there are two ways to use the ATS. One is to simply monitor
and record the real time evolution of the experiment on all the cameras involved,
manually controlling the beginning and the end of the video. For this purpose,
an application called Viewer has been created. The Viewer usage do not involve
any simulator of virtual sensing technology, it is only a tool to help carrying out
traditional robotic experiments. The second provided usage hits the focus of the
thesis and enables virtual sensing. This usage allows the researcher to monitor
and control the execution of the experiment through the robotic swarm simula-
tor ARGoS, opening a wide range of potential application already mentioned.
For this purpose, the ATS Server has been implemented to communicate with
a client built ad-hoc within ARGoS (see section 3.3.1).
In this section, the two applications will be presented in detail.

2.3.1 Arena Tracking System Viewer

o Tracking System Interface

File

Iooo OICONTROL PART

REC: ON INFORMATIVE PART Run: [1 Timestep: [74

Figure 2.18: Screenshot of the Viewer’s GUL

The Arena Tracking System Viewer (ATS-V) is an application that allows
a researcher to visualise and record the progress of the experiment through the
images of the active cameras. The ATS-V needs a resource file and a config-
uration file as argument to set up the desired view. The tool supports any
possible subset of cameras among those specified in the resources file, and lets
the researcher start and stop the visualisation of the images. The ATS-V also

27

allows to store the frames and record the whole experiment for further elabo-
ration. For example, the researcher may like making a video of the experiment
or tracking the robots offline, using a file grabber instead of a camera grabber.
The recording of the images must be enabled in the experiment configuration
file in order to be effective in the ATS-V application.

The viewer’s GUI is composed of three main parts: the visual panel, the
control panel, and the informative panel (see Figure 2.18). The visual panel is a
window in which all the cameras stream is displayed according to their position
in the camera grid in the arena. To better recognise the camera in the grid,
each view reports its camera ID and tracker ID. The control panel disposes the
buttons that the researcher can use to start and stop the tracking session. The
recording button is shown only for completeness, but its status is bound to the
corresponding attribute record_image in the experiment XML configuration file.
The refresh of the visual panel heavily affects the tracking performance. The
refresh toggle button allows the researcher to enable or disable the image refresh
in order to gain in terms of performance.

The informative panel provides information about the status of the experi-
ment, such as enabled or disabled image recording, current experiment run num-
ber and current timestep. The function associated to the run button can be set
in the experiment configuration file with the attribute change_root_directory_on_start.
If the attribute is set to true, each run is a session between two consecutive start
and stop. Otherwise, the run will be only one, but with the possibility to sus-
pend and resume the tracking, and therefore the recording if enabled.

2.3.2 Arena Tracking System Server

The Arena Tracking System Server (ATS-S) application is the interface between
the ATS and ARGoS. The application must be launched with the path to a
resources configuration file and an experiment configuration file as arguments.
ATS-S binds a TCP socket on the two network interfaces of the ATS machine
to the port specified in the attribute server_port in the experiment XML con-
figuration file. The client within ARGoS must know the address and port on
which the ATS-S is waiting to open a TCP connection (see Figure 2.19). After
binding, the server enters its main loop. The loop consists of two simple steps:
waiting for a connection and enter an inner loop that repeatedly executes com-
mands sent by the client. The inner loop ends when the client disconnects, then
the control returns to the main loop that start again waiting for a new connec-
tion. The commands that the ATS-S is able to detect and execute are three:
start_experiment, stop_experiment and one_shot. The first two commands begin
and conclude respectively a tracking session, while the one_shot command per-
forms tracking only on one frame and returns the arena state only once, without
incrementing the timestep counter. The command one_shot is particularly use-
ful at the beginning of the experiment to initialise the arena state data structure
before actually starting the experiment.

28

SERVER START

Y

SOCKET
BIND

WAITING FOR
CONNECTION | -

CLIENT
CONNECTED

WAITING FOR «

COMMAND
COMMAND INNER MAIN
RECEIVED LOoP LoopP

EXECUTE

COMMAND

STOP EXPERIMENT
COMMAND

CLIENT
DISCONNECTION

Figure 2.19: Workflow of the ATS-S application.

29

Chapter 3

Arena Tracking System
Virtual Sensing Plugin

This chapter discusses the Arena Tracking System Virtual Sensing Plugin, or
ATS-VSP, the tool that implements all the features needed to provide virtual
sensing technology to a swarm of E-Pucks. Among other components, the ATS-
VSP contains the Arena Tracking System Physics Engine, or ATS-PE, the core
of the virtual sensor design, and also the link between simulation and reality.

The ATS-VSP works within ARGoS as a physics engine plugin. To better
understand what a physics engine really is in ARGoS, I am going to give the
reader a quick overview of the robotic swarm simulator, why I used it, and what
are the advantages of integrating the Arena Tracking System in it. The other
components included in the ATS-VSP are the networking components for com-
munication with ATS-C and E-Puck swarm, and the virtual sensor bare bones
architecture. These components will be described thoroughly in Section 3.3 and
Sensor 3.4, covering the simulator and real robot module respectively.

3.1 ARGOS overview

ARGoS [17] is a modular, multi-threaded, multi-engine simulator for multi-
robot systems developed at the IRIDIA lab. ARGoS achieves both efficiency
and flexibility through parallel design and modularity.

In ARGoS, all the main architectural components are designed as selectable
modules, or plugins. The advantage of modularity is that each selected mod-
ule is loaded at runtime, allocating the resources for the interested aspects of
simulation and neglecting unneeded computation. Modularity also eases flexi-
bility. In fact, the plugin structure allows the researcher to modify, diversify and
create modules. In ARGoS, all kind of resources are plugins, including robot
control software, sensors, actuators, physics engines, visualisations and robots.
Several implementations of the same plugin are possible, and usually they differ
for accuracy and computational cost. Thanks to this kind of tunable accuracy,
the researcher is able to choose the precision of any aspect of the simulation,
improving efficiency and flexibility at once.

To clarify the modular architecture of ARGoS, let’s exemplify the simulated
3D space. In ARGoS, the simulated 3D space is a collection of data structures,

30

Entity

-id: String

-enabled: boolean

-parent: ComposableEntity
+Init(node: ConfiguraitonNode)
+Reset()

+Destroy()

+Update()

+GetID(): String "
+IsEnabled(): boolean EPuckEntity
+SetEnabled(enabled: boolean)
+GetParent(): ComposableEntity

+SetParent(parent: ComposableEntity) FootBotEntity

PositionalEntity ComposableEntity
-position: Vector3D -components: Entity[]
-orientation: Quaternion +UpdateComponents()
+GetPosition(): Vector3D +AddComponent(component: Entity)
+GetOrientation(): Quaternion +RemoveComponent(id: String)
+SetPosition(position: Vector3D) +GetComponent(id: String): Entity
+SetOrientation(orientation: Quaternion) +GetComponents(): Entity[]

+MoveTo(position: Vector3D,
oriantation: Quaternion)

I

EmbodiedEntity CylinderEntity
#physicsModels: PhysicsModel[] -embodiedEntity: EmbodiedEntity
#boundingBox: BoundingBox -ledEquippedEntity: LEDEquippedEntity
#movable: boolean -radius: Real
#CalculateBoundingBox() -height: Real
+IsMovable(): boolean -mass: Real
+SetMovable(movable: boolean)
+GetBoundingBox(): BoundingBox ?
+GetPhysicsModel(index: int): PhysicsModel
+AddPhysicsModel(enginelD: String, LEDEquippedEntity

physicsModel: PhysicsModel) #leds: LEDEntity[]
+RemovePhysicsModel(enginelD: String) #positionalEntity: PositionalEntity
+IsCollidingWithSomething()

'

BoxEntity
-embodiedEntity: EmbodiedEntity [
-ledEquippedEntity: LEDEquippedEntity
-size: Vector3D
-mass: Real

Figure 3.1: Example of ARGoS’s entity hierarchy.

called entities, that contains the complete state of the simulation, i.e., the state
of each object involved. An object can be a robot, an obstacle or any other item.
To represent different kinds of objects, ARGoS offers several types of entities,
where each of them stores a particular aspect of the simulation. Entities can
be combined to each other, creating composable entities able to model more
complex objects. Entities can be also created brand new extending the basic
entity class. The state of a simple object can be stored in a simple entity like
positional entity, that contains only the position and orientation of the object.
For a wheeled robot, the sole positional entity is not enough. In fact, its state
must be completed by an entity that stores the speed of the wheels, called in
ARGoS wheeled entity, and a controllable entity that keeps a reference to the
user defined control software and to the robot’s sensor and actuators.

Entity types are organised in hierarchy. For example, Figure 3.1 shows
that the embodied entity is an extension of the positional entity that adds a 3D
bounding box for the referred object. Robots’ entities are themselves extensions
of composable entities since their state incorporates many aspects. Figure 3.2

31

ComposableEntity ControllableEntity ‘

EmbodiedEntity ‘

GroundSensorEquippedEntity ‘

EPuckEntity
-controllableEntitiy: ControllableEntity
-embodiedEntity: EmbodiedEntity
-groundSensorEquippedEntity: GroundSensorEquippedEntity
-ledEquippedEntity: LEDEquippedEntity
-lightSensorEquippedEntity: LightSensorEquippedEntity
-proximitySensorEquippedEntity: ProximitySensorEquippedEntity
-rabEquippedEntity: RABEquippedEntity
-wheeledEntity: WheeledEntity
+GetControllableEntity(): ControllableEntity
+GetEmbodiedEntity(): EmbodiedEntity
+GetGroundSensorEquippedEntity(): GroundSensorEquippedEntity
+GetLEDEquippedEntity(): LEDEquippedEntity
+GetLightSensorEquippedEntity(): LightSensorEquippedEntity
+GetProximitySensorEquippedEntity(): ProximitySensorEquippedEntity
+GetRABEquippedEntity(): RABEquippedEntity
+GetWheeledEntity(): WheeledEntity

LEDEquippedEntity ‘

LightSensorEquippedEntity ‘

ProximitySensorEquippedEntity‘

RABEquippedEntity ‘

I R R I I

WheeledEntity ‘

Figure 3.2: E-Puck entity class diagram.

depicts the types of the entities that compose the E-Puck entity. Such a design
is essential to provide flexibility and at the same time promote code reusability
and avoid redundancy.

Sensors and actuators are plugins that access the state of the simulated
3D space. Sensors access the space in read-only mode, while actuators are
allowed to modify it. More precisely, every sensor and actuator is designed
to only access the space entities involved in the specific measurement. The
advantages of bounding sensors and actuators to specific entities affect both
flexibility and efficiency. Flexibility is enhanced because tailoring sensors and
actuators plugins to specific components instead of the whole robot often leads
to a generic robot independent plugin design, that can be reused with different
types of robots. Another benefit to flexibility is that robots can be built easily
and quickly incorporating existing components, guaranteeing that all the sensors
and actuators targeted for those components will work without modifications. In
the matter of efficiency, the robot components associated to sensors or actuators
that are not employed in a simulation do not need to be updated, preventing
unnecessary waste of computational resources.

Physics engines are the components in charge of calculating the positions of
the robots according to a set of consistent physical laws. In ARGoS, physics
engines are plugins allowed to update the embodied entities status. ARGoS
provides four kinds of physics engines: a 3D-dynamics engine based on Open
Dynamics Engine (ODE), a 3D particle engine, a 2D-dynamics engine based
on the open source physics engine library Chipmunk [1], and a 2D-kinematics
engine. The researcher can choose the appropriate engine according to the kind
of simulation he/she is carrying out. In addiction, ARGoS allows to split the
3D space assigning to each subspace a different physics engine. This feature
permits a very fine grain of control of the 3D space. Furthermore, using several
physics engines boosts the simulator performances because, thanks to ARGoS

32

multi-threading, the computation of different engines is parallelised.

Robot controllers are plugins that contain the control software of the robots.
One of the most powerful features of ARGoS is the possibility to test a partic-
ular controller on real robots after the simulation without changing the control
software code. This feature is very important because the researcher is able to
compare the performances of the same controller in simulation and reality and
can identify more precisely the source of possible discordances. ARGoS robot
control software is written in C++, however, robots used for swarm robotics
usually embed a low-end processor. Thus, before migrating the code from the
simulator to the robots it is necessary to recompile the control software for the
particular architecture. Apart from the recompilation, the control software does
not need any refactoring. To guarantee the portability of the code, the controller
designer relies on control interfaces to access the sensors and actuators. The
control interfaces must be installed on the simulator side and on all the robot
architectures, and must be implemented by all the sensors and actuators of the
simulator module and the real robot modules.

Visualisations are plugins that read the state of the simulated 3D space and
create the visual representation of it. At the moment three kinds of visual-
isations are available in ARGoS. Just like any other plugin component, the
researcher can select the most appropriate visualisation according to the goal of
the simulation. For high quality graphics ARGoS provides a rendering engine
based on ray-tracing. For an interactive GUI the researcher can choose a plugin
based on OpenGL. If the goal of the simulation is interaction with data analysis
programs rather than visualisation, a text-based visualisation plugin is available
to avoid useless graphical computation.

It is very hard to cover all the possible use cases for a general purpose sim-
ulator like ARGoS, without making the tool unmanageable under the usability
and maintainability point of view. ARGoS design choice to grant flexibility,
without burden the tool’s complexity, is to provide user-defined function hooks
in strategic points of the simulation loop. The user is able to write the so called
loop functions, adding custom functionalities to be executed before or after the
control step. A loop function can access and modify the whole simulation. In
fact, the user is allowed to store data for later analysis, calculate statistics, and
even create a new dynamic in the simulation by adding or remove objects in the
3D space.

Deep modularity and flexibility makes ARGoS suitable for execution on real
robots, upon appropriate compilation. The components intended for the robots
must be implemented accordingly and specifically compiled for the particular
purpose. ARGoS code structure can be seen under two perspectives: deploy-
ment and source code. The deployment point of view groups the components
according to their target, that can be simulator, robots, or both. This clas-
sification consists of three main areas: control interfaces, simulation modules
and real robot modules. Figure 3.3 shows the structures and the contents of
the different areas. In the control interface area is located the software needed
both on simulator and on the robots, typically control interfaces for sensors and
actuators. In the simulation area goes the whole set of components used by
the simulator and by the simulated robots: simulated sensors and actuators,
space entities, physics engines, and visualisations. The real robot area contains
the code specifically implemented for the real robots. Typically the real robot
area reflects the structure of the simulated robots part in the simulator area.

33

Figure 3.3: ARGoS deployment areas.

The components in this area are sensors and actuators and any other specific
component that can execute on the real robots.

The source code perspective reflects the source code tree organisation. This
perspective groups the components according to their logical function rather
than the target. Figure 3.4 gives a representation of the source code tree, dif-
ferentiating the distinct target areas with colours.

From the two classifications emerges that the robots section is divided into
more subsections including generic, e-puck, and foot-bot. The generic section
contains sensors and actuators tied to space entities that are so generic to be
employed on any type of robot. To implement any robot specific sensor or
actuator it is necessary to create the respective robot directory in the source code
tree and implement the components for the desired target: common interface,
simulator, or real robot. ARGOS currently provides the simulation and real
robot modules for E-Puck robots and the simulation module for Footbot robots.
To execute the code on real robots, the dedicate modules must be compiled for
the specific robot architecture. In this case the built output comprehend the
green and yellow areas of Figure 3.3, while when compiling for simulation target
the resulting built output corresponds to the blue and yellow areas.

The ARGoS settings must be configured in an XML configuration file. The
configuration file specifies the set up of the whole experiment, it contains infor-
mation about the arena, the robots, the physics engines and the loop functions.
The same XML configuration file is used for launching both the ARGoS simu-
lator and the real robots main, therefore it must be uploaded on all the robots
together with the control software.

The general structure of the file is given by a root node called argos-configuration
and six child nodes: framework, controllers, arena, physics engine, visualisation,
and loop functions. The framework node specifies some internal parameters
used by ARGoS core, such as the number of threads used for multi threading,

34

—=

ARGoS
PLUGIN

=

COMMON
INTERFACE

ENTITIES

—=
=
—=
=
—=
=
—=

SENSORS

ACTUATORS

S

FOOT-BOT

Figure 3.4: ARGoS source code tree. Target areas are grouped by colours: blue
for simulation, green for real robots, and yellow for both.

PHYSICS

the base random seed for the random number generator, the duration of the
experiment, and the length of the control step. The controller node contains
a list of user defined control software associated to a unique identifier. The
arena node contains the entities to be placed in the arena at the beginning of
the experiment. These entities include arena walls and robots. The robots are
configurable with initial position and controller type. The physics engine node
configure which physics engine to use. In this section the researcher can also de-
clare more physics engines and their connections. The visualisation node selects
which visualisation set up to use. Finally, the loop function node configures the
user defined functions, that can execute before or after the control step for any
application specific purpose.

The XML configuration file simplifies and speeds up the process of environ-
mental set up. The configuration file can be quickly modified and it does not
need recompilation to be effective. Efficiency also benefits from this configu-
ration method, because ARGoS is able to load only the plugins defined in the
configuration file, avoiding to load and execute useless components.

Given the general structure of ARGoS, let us now focus on the dynamics of
an ARGoS execution session. When the simulator starts, it takes a few steps
to load all the needed classes and create their instances in a precise order. The
initialisation procedure parses the XML configuration file and instantiates the
required entities. Each node initialisation triggers its components’ initialisation

35

ARGoS START

Vs

Y

SIMULATOR INIT

FRAMEWORK
INIT

LOOP

CONTROLLERS FUNCTIONS
INIT INIT

PHYSICS
ENGINE

RESICS
ENGINES

PE2 PSINIT) by 1 SpACE
INIT
FUNCTIONS

VISUALIZATION'
INIT

~N

|

>

UPDATE SPACE
INCREASE

SPACE UPDATE

—>

LOOP
FUNCTIONS
INIT

E .

MEDIUM
INIT
FUNCTIONS

SENSORS
UPDATE
FUNCTION

‘ROL
SOFTWARE
STEP
FUNCTION

AC]T
UPDATE

SIMULATION
CLOCK
LOOP
FUNCTIONS

PRE STEP

ENGINE
UPDATE
FUNCTIONS

FUNCTIONS

USER DEFINED FUNCTIONS

Figure 3.5: ARGoS main thread workflow. The black arrows represent the flow
of the thread, the red boxes represent user definable functions. The red arrows
are hooks for user defined functions executions.

in a chain. Figure 3.5 depicts the flow of the main ARGoS thread, explaining
where, during the execution, the customisable user defined functions are hooked
in.

The first node ARGoS initialisation explores is the framework node, then
controllers, loop functions, physics engines, media, and finally space. The space
entity must be created at last, however there are some entities that need to
access the space to complete their initialisation. This is the case of physics
engines an media. To this purpose, physics engines and media entities have
the possibility to implement a second initialisation procedure which is able to
access the space, called post space init. The visualisation is initialised at last,
and after that ARGoS enters the execution loop.

The execution is demanded to the particular visualisation plugin in use.
The visualisation plugin performs the execution loop for the duration of the
experiment. Each loop of execution must include a callback to the simulator’s
UpdateSpace method. ARGoS accomplishes the space update through a well
defined procedure, in which a chain of actions are triggered one by one on
the components in a precise order. As first operation, the simulation clock

36

is increased. Then, any possible loop function that executes before the space
update is called. After that, the space update takes place, followed by a call to
all the loop functions to be executed after the control step.

The space update is a complex operation divided in turn in three main
phases: controllable entities update, physics engines update and media entities
update. Each update operation triggers the update of the entities belonging to
the respective area. Controllable entities, the entities subjected to a control soft-
ware, perform update in three steps: sense, control step, and act. Once again,
the sensing procedure triggers the update function of each sensor employed, in-
cluding virtual sensors. When all the sensors are updated, the control step is
processed. The control step is the body of the user defined control software, it
codes the behaviour of the controllable entities according to the updated sensor
values and the behavioural logic implemented. After that, it is time for the ac-
tuators to operate, and that is what the third stage of the controllable entities
update does.

Now the state of all the controllable entities is updated. Here starts the
update of the physics engines and possible entities transfer between two physics
engines. The physics engine update can be managed according to the type of
engine needed. For example, the implemented 2D dynamics engine based on
Chipmunk libraries first updates the state of the physics model from the entity
state, then calculates the physical feasibility of the new physics model states
altogether, and finally updates the space accordingly.

The same mechanism applies when ARGoS shuts down. In this case the
components are deallocated in this order: loop functions, visualisation, space,
media, and physics engines. The user defined function to decide how to deallo-
cate a customised entity is the destroy function.

Given this quick and partial overview of some aspects of ARGoS, 1 am
going to focus on virtual sensing, its motivations and benefits for the swarm
robotics field, and how to realise such a technology using ARGoS as robot
swarm simulator.

3.2 Virtual sensing with ARGoS

Virtual sensing technology in swarm robotics is the capability of real robots to
perceive the features of a virtual environment. Among other things, such a tech-
nology aims to help researchers setting the environment for robot experiments.
Currently, in many swarm robotics research labs, the experiment setting is a
secondary although time consuming process, because often the arena space is
handmade by the researcher. When the experiment involves a simple arena, the
researcher can use the raw material available in the lab. However, even in this
case the setting is not so trivial if some items must be placed in precise positions,
or if objects must be attached together in a characteristic shape. The difficulty
increases when very specific objects must be built or bought. In this case the
cost and time spent for building the arena can be unaffordable, preventing to
run real robots experiments in that wanted scenario.

A tool that provides virtual sensing comes in handy to speed up the arena
setting. With virtual sensing, the researcher can simulate all or part of the
environment, and make it real for the robots in a sort of augmented reality.
Furthermore, the simulated environment can be physically or realistically infea-

37

sible. For example, it is possible to place a light source 10 m above the arena
in a room where the ceiling is 3 m tall. In addiction, the virtual light source
does not need any support nor installation to stand 10 m above the ground, un-
like any other physical object. An even more appealing possibility is to create
an environment and make it change in time by adding, removing or modifying
objects. For example, if in an experimental set up the arena forms a labyrinth,
it is possible to open and close paths during the robot exploration to test the
adaptability of the swarm to a changing scenario. Another example of what can
be done with augmented reality, is to test robots aggregation on coloured spots
that change position or phototaxis with a light source that moves around the
arena. Virtual sensing makes this kinds of experiments feasible without need of
mechanical infrastructures.

Another unfortunate but common case in swarm robotics labs concerns the
lack of reliability of the robots and their sensors. Usually the labs dispose of a
redundant set of robots for swarm experiments. However, due to the minimal-
istic architecture of the robots employed in swarm robotics, hardware failures
are quite common and sensors reliability is sometimes questionable. Detecting
sensor failures may be challenging, especially if the sensor keeps working ex-
hibiting a random behaviour. In case a large part of the swarm carries faulty
sensors, the experiment results can be heavily adulterated. Dealing with hard-
ware sensors is laborious even with fully efficient sensors, because they must be
periodically calibrated. Calibration is an operation that transforms the values
perceived by the hardware sensor into meaningful numbers for the control soft-
ware. For example, different ground sensors can generate different values for
the same ground colour. Calibration tunes the scale of the different sensors in
order to give the same value when perceiving the same ground colour. Sensors
calibration is an operation that the researcher must perform on each robot, and
it might be quite time expensive if the swarm is oversized. Virtualising sensors
is a solution that allows researcher to quickly set up and start the experiment,
avoiding the annoying and time wasting sensors calibration phase and possible
sensor faults before or during the execution of the experiment.

Virtual sensing technology is not only suitable for replacing faulty sensors.
In fact, a very interesting application of this tool is to create sensors that are not
mounted at all on the available swarm. This application of the virtual sensing
technology is useful for prototyping new sensors that might be installed on the
robots in the future. Sensor prototyping can be applied to unavailable sensors
or existing sensors that the researcher wants to enhance to achieve a certain
level of reliability. A typical scenario for sensor prototyping is when the swarm
needs to be upgraded with new or more performing sensors. Before buying or
building the new hardware, implementing the virtual version of the sensor in
object helps the researcher to tune the sensor’s parameters and identify the
best trade off between cost and performance for the targeted level of efficiency.
The researcher is able to test the same sensor at several degrees of quality,
simply changing the virtual sensor’s parameter. It is a fast and cheap way to
identify the less expensive sensor that permits a predetermined level of swarm’s
performance.

Sensor prototyping is particularly useful in swarm robotics because of the
high number of robots to be upgraded. The costs and time to install the new
hardware on the whole swarm can be critical, and it is very important that the
new sensor works as expected to avoid waste of time and money.

38

o1 TRACKING SYSTEM
PHYSICS ENGINE

LIGHT

ENSOR/ \SENSOR QREIN VIRTUAL
TRACKING [gpnsOR

SYSTEM
P SERVER

Figure 3.6: Arena Tracking System Virtual Sensing Plugin components divided
in target areas: blue for the simulator module, green for the real robot module,
and yellow for the control interface shared by both modules.

Virtual sensing technology basically creates a virtual environment and allows
real robots to perceive it. The virtual environment is built within a simulator,
in this case ARGoS. The choice of ARGoS is justified by its extreme flexibility.
The plugins structure of ARGoS makes extremely easy to add new components
with the only requirement to implement some specific interfaces.

Our realisation of virtual sensor technology employs a physics engine plu-
gin, the Arena Tracking System Virtual Sensing Plugin, ot ATS-VSP (see Fig-
ure 3.6). The ATS-VSP is a container for several components, including the
Arena Tracking System Physics Engine, or ATS-PE, that provides the real robot
positions in the arena to the ARGoS core. The robot positions come from the
ATS-S, which ARGoS accesses thanks to a corresponding Arena Tracking Sys-
tem Client (ATS-C). The simulator then executes the control step and calculates
all the sensor values, including virtual sensors. Virtual sensor simulator mod-
ules are particular types of sensors implemented ad-hoc to store their values in
a data structure called Virtual Sensor Data Structure or VS-DS. At the end
of the sensors update process, when the VS-DS has been filled, the ATS-PE
takes responsibility to dispatch the virtual sensors data to the corresponding
real robot through Wi-Fi connection. When the real robots receive the virtual
sensor data, the virtual sensor real robot modules installed on the robots pick
their corresponding data and set it as sensor reading value. The robot control
software accesses the virtual sensor’s value through the specific virtual sensor
control interface implemented by the virtual sensor that provides a method to
get the sensor’s reading. The virtual sensor control interface mechanism behaves
the same way as a regular sensor control interface, achieving transparency form
the controllers’ point of view.

The communication infrastructure between the ATS and ARGoS, and be-

39

tween ARGoS and the robots is partially embedded in the AT'S-PE and partially
in the real robot module of the ATS-VSP. In the next two sections I describe the
architecture of the ATS-VSP and its contents, the physics engine, the virtual
sensors, and the components that form the communication infrastructure from
the simulator and real robots perspective.

3.3 Arena Tracking System Virtual Sensing Plu-
gin Simulator Module

«Interface»
ArenaTrackingSystemModel

|

«Interface»
Core::PhysicsModel

#engine: PhysicsEngine
#embodiedEntity: EmbodiedEntity
#boundingBox: BoundingBox

«Interface»
Core::PhysicsEngine

+UpdateEntityStatus()
+UpdateFromEntityStatus()

+CheckintersectionWithRay(onRay: int, ray: Ray3D): EmbodiedEntity

+Init(node: ConfigurationNode)
+Reset()

+Destroy()

+Update()

+PostSpacelnit()
+AddEntity(entity: Entity)
+RemoveEntity(entity: Entity)

ArenaTrackingSystemPhysicsEngine

+GetEngine(): PhysicsEngine
+GetEmbodiedEntity(): EmbodiedEntity
+GetBoundingBox(): BoundingBox

-simulator: Simulator
-space: Space
-phyisicsModels: ArenTrackingSystemModel[]

«Singleton»
irte Server

-port: int
-virtualSensorData: VirtualSensorData
-hashRobotSocketID: HashRobotSocketID

+Launch()
+SendArgosSignal(signal: int)
+SendAllVirtualSensorData()

+MoveT : Vector3D, or ion: Q! : boolean -atsClient: ArenaTrackingSystemClient
+CalculateBoundingBox() -asds: ArenaStateDataStructure
+IsCollidingWithSomething(): boolean -virtualSensorServer: VirtualSensorServer
-tableRobotID: TableRobotID
+AddPhysicsModel(id: String, model: ArenaTrackingSystemModel
+RemovePhysicsModel(id: String)
_a | TThreadsStart()
+TerminateExperiment() 1
-InitArenaState()
ArenaTrackingSystemClient ?
-atspe: ArenaTrackingSystemPhysicsEngine «Singleton»
-asds: ArenaStateDataStructure ArenaTrackingSystemDataStructure
-atssAddress: String -readableArenState: ArenaState
-atssPort: int -writeableArenaState: ArenaState
+Run() -timestep: int
+TriggerTrackingSystem() [<>—— -tagList: int[]

+Disconnect()

-InitClient()

-SynchronieClient()

-InitExperiment()

-ExecuteExperiment()

-EndExperiment()

-SendCommand(command: String)
-ReadArenaState(arenaState: String): RobotState[]

-UpdateArenaStateDataStructure(arenaState: RobotState[])

-Run()

-SessionOpened()
-AcceptClientConnection(): int
-SendVirtualSensorTable()

+SetlnitialArenaState(arenaState: RobotState[])
+UpdateArenaState(arenaState: RobotState[])
+ResetTimestepCounter()
+GetRobotState(tagID: int): RobotState
-InitArenaState()

-WriteEntry(robotState: RobotState)
-RemoveEntry(tagiD: int)
-RecoveringHeuristic()

-SwapDoubleBuffer()

«Singleton»
VirtualSensorData

-virtualSensorDataStructure: RobotVirtualSensorData[]
-virtt DataTable: Virtt DataSize[]

+GetReadableData(robotID: int): char[]
+GetWriteableData(robotID: int): char(]
+AppendVirtualSensorData(robotID: int, virtualSensorData: char{])
+SwapBuffers(robotID: int)

Figure 3.7: ATS-VSP Simulation Module class diagram.

The virtual sensing tool created for ARGoS is enclosed in a plugin called
Arena Tracking System Virtual Sensing Plugin, referred from now on as ATS-
VSP. The plugin includes the physics engine, already known as ATS-PE, the
generic virtual sensor interface, and the components necessary to establish
the communication between the three macro entities: Arena Tracking System,
ARGoS and the robot swarm (see Figure 3.7). In addiction, two types of vir-
tual sensors have been implemented and included in the ATS-VSP: the ground
virtual sensor and the light virtual sensor. Chapter 4 exemplifies the creation of
new virtual sensors and can be used as a guide for building new virtual sensor

plugins.

This section describes the simulator module of the ATS-VSP, that is the
part compiled and execute on ARGoS side (the blue and yellow areas in Fig-
ure 3.6). The next section discusses the real robots module, i.e. the result of
the compilation for a specific robot architecture (the yellow and green areas in

Figure 3.6).

40

CLIENT THREAD START

SOCKET

CONNECT

CLIENT
CONNECTED

WAITING FOR
SYNCHRONIZATION

ROBOT
TAG LIST
ACQURED

SEND
INITIALIZATION [«
COMMANDS

ARENA STATE
INITIALIZED v
WAIT FOR

EXPERIMENT

START

EXPERIMENT
START

Y
SEND START
COMMAND

4

RECEIVE

ARENA STATE EXPERIMENT

EXECUTING

L.

EXPERIMENT
END

\
SEND END
COMMAND
NEW

QuIT EXPERIMENT
ARGOS

CLOSE

CONNECTION

CLIENT THREAD STOP

Figure 3.8: ATS-C workflow.

3.3.1 Arena Tracking System Client

The Arena Tracking System Client, namely ATS-C, is the component that es-
tablishes the connection with the ATS, through the Arena Tracking System
Server. The operations of the ATS-C are executed on a thread forked from the
main ARGoS thread during the initialisation of the ATS-PE. The creation of a
new thread is essential to handle the communication and the data exchange in
real time with ATS-S, while ARGoS is executing its own procedures. The life
cycle of the ATS-C thread is exemplified in Figure 3.8.

As soon as the ATS-C starts, it connects via TCP socket to the network host
and port specified in an attribute of the framework node in the XML configu-
ration file. The researcher must therefore know the IP address of the machine
hosting the ATS-S, and which port the server bound. At the moment of the ex-
ecution of the ATS-C, the ATS-S must be already running and ready to accept
a client connection. Right after connection there is a phase of synchronisation
between the ATS-C thread and the ARGoS main thread. This synchronisation
is due to the necessity of initialise part of a shared data structure, called Arena

41

«Data Type» «Data Type»

ArenaStateDataStructure RealWorldCoordinates
-timestep: int -timestep: int
-readableArenaState: ArenaState -position: Vector3D
-writeableArenaState: ArenaState -orientation: Quaternion
-usedTagList: int[] +GetTimestep(): int
+SetlnitialArenaState(arenaState: RobotState[]) +GetPosition(): Vector3D
+UpdateArenaState(arenaState: RobotState[]) +GetOriantaiton(): Quaternion
+ResetTimestepCounter()

+GetRobotState(tagID: int): RobotState
-InitArenaState()
-WriteEntry(robotState: RobotState)
-RemoveEntry(taglD: int)
-RecoverHeuristic()

«Data Type»
RobotState
«Data Type» -tagID: int
ArenaState L~ | -state: RealWorldCoordinates
-arenaState: RobotState[] +GelD(): int
+GetRobotStateByID(taglID: int): RobotState +GetState(): RealWorldCoordinates

Figure 3.9: Arena State Data Structure diagram.

State Data Structure, or AS-DS. The AS-DS is used to store and share the
real time updated arena state between the ATS-C and the ATS-PE, and among
other data it contains a list of the robot tags employed in the experiment (see
Figure 3.9). To improve reliability against ATS possible detection or decoding
errors, the ATS-C executes a heuristic algorithm to fix ATS failures that uses
the tag list. This list is inserted in the AS-DS by the ATS-PE, inquiring the list
of entities available in the space that are defined in the arena node of the XML
file. This operation cannot be done before the space is initialised, therefore the
tag list is available for the ATS-PE only in the PostSpacelnit phase. In other
words, the experiment cannot be initialised before the ATS-PE obtains the tag
list.

Achieved the synchronisation with the ATS-PE thread, the ATS-C switches
to an experiment initialisation state in which it sends commands to the server
to get the starting state of the arena. The scenario is as follows: the ATS-
S is running, the ATS-C is connected and the robots are placed still on the
arena. ARGoS is ready to give the representation of this static picture. The
ATS-C sends the command one_shot (see section 2.3.2) to receive the arena
state only once without incrementing the timestep counter. Once the initial
arena state is obtained and displayed in the ARGoS GUI, the ATS-C enters a
waiting state. When the researcher decides to start the experiment giving the
play command on the ARGoS GUI, it automatically causes the ATS-C to exit
the waiting state and trigger the ATS-S experiment execution state with the
command experiment_start.

From this moment to the end of the experiment, the ATS-C enters a loop in
which repeatedly waits for the new arena state, deserilises the received data and
updates the AS-DS. The experiment terminates in two possible ways: the time
set as experiment duration expires, or the researcher interrupts the experiment
with the button stop on the ARGoS GUI. In both cases, ATS-C exits the loop
and sends the experiment_stop command to the ATS-S, which in turn ends the
tracking session. Now the ATS-C enters a new state waiting the researcher’s
input. If the researcher sets another run with the button reset in the ARGoS
GUI, the ATS-C returns in the experiment initialisation state. In case the
researcher quits ARGoS, the ATS-C disconnect from the ATS-S and terminates.

42

AS-DS
Arena State Data Structure

g)

(o)
2 J

Figure 3.10: Arena State Data Structure.

ROBOT STATE

The AD-DS is the shared data structure designed as a singleton that stores
the arena state. The arena state is defined as a list of pairs, where the first ele-
ment is an integer representing the tag ID of the detected robot, and the second
element is the corresponding robot state data structure (see Figure 3.10). The
robot state data structure is composed by real world position and orientation
of the robot, and its referring timestep.

As already mentioned, the AS-DS is shared between two processes: ATS-
C in write mode and ATS-PE in read only mode. The main issue with the
shared data structure is that the ATS-PE reads it every 100 ms, while the ATS-
C writes on it as soon the ATS-S sends a new arena state. For the reasons
explained in section 2.2.1, the ATS-S arena state cycle time is neither constant
nor predictable. To grant data consistency, the threads must access the shared
data structure in a mutually exclusive way. The AS-DS provides a mutex system
do avoid race conditions. However, the soft real time constraints of the ATS-PE
require a mechanism to minimise possible blocks for accessing the shared AS-
DS. In other words, it is undesirable that the ATS-PE reads the AD-DS while
the ATS-C is already writing on it. To prevent ATS-PE blocking, the writing
time of the ATS-C on the AS-DS is minimised thanks to a double buffer data
structure design. The AS-DS actually stores two versions of the arena state,
a readable stable version that is accessible only by the ATS-PE, and another
that can be accessed only by the ATS-C in write mode. The two concurrent
entities can access the buffers only through pointers, one for the readable buffer,
and another for the writeable buffer. When the writeable buffer is ready, i.e.
the ATS-C finished to write the updates, the pointers to the two buffers are
swapped. The pointer to the readable buffer, hold by the ATS-PE, refers now
the newly updated buffer, and the pointer to the writeable buffer points to the
buffer that is now outdated and can be rewritten. The swapping operation
must be executed in exclusion with the ATS-PE reading in any case, but the
execution time of switching is not comparable with the execution time of the
AS-DS update operation. Figure 3.11 shows five possible scenarios in which
the two threads try to access the AS-DS. Scenarios A and B: the ATS-PE is
the only thread accessing the AS-DS and it retrieves the updated version of it.
In scenario C, the ATS-PE access the AS-DS in the yellow zone, that is when
ATS-C is writing but not locking the resource. ATS-PE can lock and read the
data from the ready buffer, which contains the previous version of the arena
state. ATS-C will be able to lock the AS-DS for pointer swap only after the

43

ATS-S ATS-C AS-DS ATS-PE

i |
send arena state (1) ! :

update arena state (1)

D G _read arena state (1)

-

send arena state (2)

update arenastate (). 1 -~~~ "~~~ ———~— >

-

send arena state (3)

update arena state (3)_

‘,read arena state (2)
s N
< _____________

|
|

I:;j,read arena state (3)

____________ >

< —mm == _read arena state (2) B
____________ >

send arena state (3 |
G) update arena state (4)._ |

_read arena state (4)

T CTTTTTRL > E
|
|

-

Figure 3.11: Sequence diagram focused on the shared resource AS-DS. Red box
indicates that the resource is locked by the ATS-C thread, green box indicates
that the resources is locked by the ATS-PE thread, and yellow box indicates
that ATS-C is updating the double buffer without locking the resource.

ATS-PE has released it. In this case, ATS-PE reads twice the same arena state
from AS-DS (scenarios B and C). In scenario D, ATS-PE is the only thread
accessing the AS-DS and it reads for the first time the updated arena state
version. Scenario E shows the unlikely event in which the ATS-PE needs to
access the AS-DS when it has already been locked by the other thread ATS-C.
This is a scenario that blocks the execution of the ATS-PE, although only for
the time needed to swap the pointers to the double buffer. As soon the ATS-C
has released the resource, the ATS-PE can lock and read it.

Without the double buffer mechanism, the ATS-C must lock the AS-DS also
in the yellow zone. In scenario C, for example, this would lead to a significant
delay in the arena state update in ARGoS, creating an unacceptable gap between
the real dynamics of the experiment and the simulation. Eventually, even in the
unlikely scenario E, the time ATS-PE wastes in the block is negligible.

44

3.3.2 Arena Tracking System Physics Engine

The Arena Tracking System Physics Engine, or ATS-PE, is the entry point for
the virtual sensing tool in ARGoS. As explained in Section 3.1 and depicted
in Figure 3.5, ARGoS provides hooks for execution of user defined functions at
several stages. The ATS-VSP is a physics engine plugin. In other words, it
extends the ARGoS core class PhysicsEngine and implements a physics model
class, that must be extended by each physics entity managed by the physics
engine. By implementing the required interfaces, the ATS-VSP acquires the
physics engine plugin status. This means that if the ARGoS XML configuration
file defines a physics engine of type Arena Tracking System Physics Engine, an
instance of the ATS-PE is created and the user defined functions are executed
all in good time.

The first execution of the instance of the ATS-PE happens when ARGoS calls
all the physics engines init operation. In the initialisation phase, the ATS-PE
parses the framework node of the XML configuration file and gathers necessary
information to instantiate the networking support components: ATS-C, already
discussed in Section 3.3.1, and the Virtual Sensor Server, or VS-S, described
in Section 3.3.3. The XML file must include the address and port of the host
where the ATS is running, and the port on which the VS-S must execute on
the ARGoS host. This information must be written in the XML file by the
researcher, in form of attributes of the framework node. The attribute names
are: ats_host, ats_port, and wvss_port. At the end of initialisation, the ATS-PE
creates the instance of the ATS-C and spawns a new thread on which executes a
method of ATS-C that plays the role of client’s main. Since now on, the ATS-C
executes on its own thread, leaving the ARGoS main work flow unaffected.

Robot ID Table
s N

Figure 3.12: The ID table data structure.

While the ATS-C is running on a separate thread, the ARGoS main flow
continues, and the ATS-PE executes again during the ARGoS physics engines
post space init phase. The ATS-PE exploits the PostSpacelnit function to bind
the tag ID of the robots to a pair composed of the robot ID, i.e. the last part
of the robot’s IP address, and the argos ID, i.e. the name used by ARGoS to
identify a physics entity. The table containing the triple made of ARGoS ID,
tag ID and corresponding robot ID is necessary to univocally identify a single
robot under every point of view (see Figure 3.12). In the execution process the
ATS-S provides to the ATS-C a list of tag IDs. The ATS-PE must be able to
identify the physics entity associated to the robot with a particular the tag ID.
Finally, the VS-S must send the virtual sensor data to the network IP address

45

corresponding to the robot with that particular tag ID on top. This triple
association is essential and must be cured by the researcher. The cornerstone of
the triple association resides in the robot ID attribute of the configuration file.
In order to guarantee the consistency of the execution, the researcher is forced
to write the robot ID attribute in this precise form: argosID_tagID_robotID.
The ARGoS ID can be an arbitrary string, while the tag ID must represent the
decimal value of the tag, and the robot ID is once again the last part of the
robot IP address. When the triple table is completed, ATS-PE performs the
update of the arena state and the space to produce the correct visualisation
of the initial arena state. To complete the post space initialisation phase, the
VS-S is launched and another thread is spawned to host it. The VS-S is the
component that manages the communication between the simulator and the
robots. Since its creation, the VS-S waits indefinitely for robot connections.
When a connection is detected on the listening port, VS-S accept it, sends some
initialisation data to the robot and stores the socket descriptor to recover the
communication channel when needed (see Section 3.4.1).

Before starting the experiment, all the robots must be connected to the VS-
S. To obtain this result, before commanding the beginning of the experiment the
researcher must execute the ATS Real E-Puck main on all the robots involved
in the experiment. The ATS Real E-Puck main is a version of the Real E-Puck
main modified to establish a connection with the ARGoS host. The connection
to the VS-S is performed by a client, called Virtual Sensor Client, or VS-C,
running on each robot, once again on a dedicated thread (see Section 3.4).

The next ATS-PE function triggered by ARGoS flow is the update function.
The update function is executed periodically until the end of the experiment.
The command that starts the experiment is given by the researcher clicking the
play button on ARGoS GUI. This event triggers a set of operations throughout
the system. As stated above, the ATS-C exits its waiting state and ask the
ATS-S to start acquiring and processing images. On the other side, the VS-S
sends to all the VS-C connected the instruction to start the robot execution,
kept on hold by the ATS Real E-Puck main. The result is that at play signal,
all the components of the system automatically enter the execution state. The
robots start to move according to their control software, the tracking system
begins to produce arena states for ARGoS, and all the components in ARGoS
execute the periodic update function.

«Data Type»
VirtualSensorDataStructure
-virtuaSensorTable: VirtualSensorTableEntry[]
-virtualSensorData: RobotVirtualSensorData[]
+GetRobotVirtualSensorData(robotID: int): RobotVirtualSensorData
+AppendVirtualSensorData(virtualSensorData: RobotVirtualSensorData, size: int)
+GetVirtualSensorSizeByID(ID: int): int

? ?

«Data Type» «Data Type»

VirtualSensorTableEntry RobotVirtualSensorData
-sensoriD: int -robotID: int
-sensorDataSize: int -virtualSensorData: ByteBuffer
+GetID(): int +GetID(): int
+GetSize(): int +GetData(): ByteBuffer
+SetID(ID: int) +SetData(data: ByteBuffer, size: int)
+SetSize(size: int)

Figure 3.13: Virtual Sensor Data Structure diagram.

46

The body of the ATS-PE Update function is quite simple, in fact it basi-
cally consists of cycling the physics models belonging to the engine, call the
UpdateEntityStatus function and update the virtual sensor data for the specific
robot. The updating of the physics entity status implies the update of all the
sensors belonging to the entity, including virtual sensors. When a virtual sensor
is updated, it writes the reading in the Virtual Sensor Data Structure, called
from now on VS-DS. The VS-DS is a singleton designed list of buffer containing
the virtual sensor data for each robot, indexed by the robot ID. When all the
virtual sensors update their value on the VS-DS the ATS-PE asks the VS-S
to send each Robot Virtual Sensor Data entry to the corresponding robot (see
Figure 3.13).

The experiment execution terminates either when the beforehand set time
expires, or when the researcher clicks on the stop button on the ARGoS GUIL.
When this happens, the ATS-C sends the stop experiment command to the
ATS-S to quit the tracking session and the VS-S sends a termination code to
the robots. The researcher now can reset the experiment with the reset button
on the ARGoS GUI or quit the application. In both cases ARGoS triggers the
respective function in a chain on all its components. In the first case the function
is called Reset, in the latter is called Destroy. The simulator reset function aims
to restore the state of the experiment after the post space initialisation phase. As
a consequence the reset function of the ATS-PE re initialises the AS-DS and sets
all the additional data to be ready for a new experiment. The destroy method
instead deallocates all the previously allocated data structures and disconnects
the ATS-C form the ATS-C.

The update function of the ATS-PE is the cornerstone of the virtual sensing
technology, the procedure that ties together the ARGoS’s upstream and the
downstream. Its simplicity derives directly from the extremely flexible architec-
ture of ARGoS, that defines a solid execution framework in which it is possible
to add custom components and functions.

3.3.3 ARGoOS Virtual Sensor Server

VS-S START

Y

SOCKET
BIND

l

WAITING FOR <
CONNECTION

CLIENT
CONNECTED

SEND VIRTUAL
SENSOR TABLE

Figure 3.14: Virtual Sensor Server fork flow.

The Virtual Sensor Server, or VS-S, is the component that handle the com-

47

munication between ARGoS and the robots. The VS-S runs on a dedicated
thread spawned by the ATS-PE in the post space initialisation phase. Its simple
work flow (see Figure 3.14) has the sole purpose of receiving robot connections,
store the socket descriptor in a data structure called Robot-Socket Hash Table,
and sending back a preliminary piece of data called Virtual Sensor Table, or
VST. The Robot-Socket Hash Table, or RS-HT, is a hash table data structure
shared between VS-S and ATS-PE that contains the socket descriptor of a robot
connection channel indexed with the robot ID (see Figure 3.15). The access to
the hash table is made thread safe by using a mutex. The VST is a hash table

«Data Type»
RobotSocketHashTable
-robotSocketHashTable: RobotSocketEntry[]
+GetSocketDescriptorByRobotID(ID: int): int

?

«Data Type»

RobotSocketEntry
-robotID: int
-socketDescriptor: int
+GetID(): int
+GetDescriptor(): int
+SetID(ID: int)
+SetDecriptor(descriptor: int)

Figure 3.15: Robot-Socket Hash Table diagram.

part of the bigger VS-DS (see Figure 3.13). The VST contains a sensor ID and
the size of its reading in bytes. The sensor 1D is statically defined in another
data structure called Virtual Sensor Register, while the reading data size com-
putation is demanded to the specific virtual sensor in its initialisation. The
VST is filled by the virtual sensors during the space initialisation. The hash
table is sent to the robots right after the connection establishing. The VST is
used by the VS-C to create a robot specific virtual sensor data structure. The
Virtual Sensor Register, or VSR, is another hash table data structure where one
element is the virtual sensor name as it must be written in the configuration
XML file, and the other is the sensor ID, a statically assigned integer value (see
Figure 3.16). The VSR utility is to automatically provide the same sensor 1D
to the corresponding virtual sensors both in simulation and real robot modules,
hard coding the sensor ID only in one component. To do this the VSR needs
to be part of the common interface and being compiled for both the simulator
module and the real robot module.

The VS-S class implements two methods that are called by the ATS-PE on
the main ARGoS thread. The purpose of the both of them is to communi-
cate some information to the robots. One method is called SendArgosSignal
and it is used to send the start, stop and reset commands to the robots when
the researcher clicks on the ARGoS GUI buttons. The other method is called
SendAllVirtualSensorData and it is the one that truly embodies the virtual
sensing. This method sends the Robot Virtual Sensor Data, or R-VSD, to the
respective robots. The VS-DS contains the most updated virtual sensor data di-
vided for robot. Each entry of the VS-DS contains the robot ID and the R-VSD,
a byte buffer that in turn contains the data of all the virtual sensors. During
the ATS-PE update function, the virtual sensors append their updated reading
in byte array format to the R-VSD byte buffer, using the first byte to specify

48

«Data Type»
VirtualSensorRegister
-virtualSensorRegiter: SensorRegiterEntry[]

+GetSensorIDByName(name: String): int

‘f

«Data Type»
SensorRegisterEntry
-sensorName: String
-sensorlD: int
+GetName(): String
+GetlID(): int

Figure 3.16: Virtual Sensor Register diagram.

their virtual sensor ID. At the end of the ATS-PE update function, the VS-S is
asked to deliver the R-VSD byte buffer to the corresponding robot, retrieving
the socket descriptor from the RS-HT.

Notice that the VS-S is simultaneously running the server loop on a separate
thread, thus the RS-HT may be modified dynamically if some robot connect
or disconnect from the VS-S. This feature increases the system flexibility and
makes it suitable for experiments in which the robots are added or removed
dynamically to change the swarm size at runtime.

3.3.4 Virtual Sensors Simulator Module

«Interface»
GenericVirtualSensor

#robotID: int

#entityID: String

#virtualSensorDataSize: int
#virtualSensorDataStructure: VirtualSensorDataStructure
#UpdatingCondition(): bool

#ComputeSensorDataSize()
#GetRobotIDFromEntityID(entityID: String): int

«Interface»
ClSensor
+Init()
+Reset()
+Destroy()

!

«Interface»
SimulatedSensor
+SetRobot()
+Update()

«Interface»
ClSpecificVirtualSensor
-sensoriD: int
-reading: Object
+GetReading(): Object

SpecificVirtualSensor

Figure 3.17: Virtual sensor class diagram.

The virtual sensors implemented for the simulation module are the com-
ponents in charge of calculating the sensor reading exploiting the simulator
information. The reading value is then serialised and appended in form of byte

49

array to the VS-DS, being the first byte the ID of the virtual sensor taken from
the VSR. The reading value serialisation allows the virtual sensor designer to
envision a sensor data structure of arbitrary complexity. The deserialisation
of this data is performed by the real robot module counterpart of the virtual
sensor, thus it only needs to reverse the serialisation made earlier.

Once again, the ARGoS protocol allows the sensors to execute user defined
functions. Every virtual sensor must implement three interfaces to be considered
a virtual sensor by ARGoS (see Figure 3.17). One interface to be implemented
is the specific sensor’s control interface, that the virtual sensor designer must
provide as well. This interface gives the sensor status to the component. The
specific virtual sensor control interface extends the more generic sensor control
interface and it is implemented by both the simulator module and the real
robot module. The specific virtual sensor control interface provides an abstract
method to access the sensor’s readings that must be implemented in the virtual
sensor class. The control interface is exploited for the sake of portability of the
control software. In fact, by using the sensor control interfaces it is possible
to reuse the control software code from the simulator to the robot without
refactoring, because the accessor method to the sensor’s reading is defined by
the control interface, but implemented by the proper underlying module.

The second interface to implement is the simulated sensor interface. Im-
plementing this interface means that the sensor is intended to work for the
simulator module, in opposition with the real robot module. The simulated
sensor interface defines two abstract methods to implement: SetRobot and Up-
date. The method SetRobot is used to bind the sensor’s entities to the robot’s
physics entities. If the desired virtual sensor already exists as simulated sen-
sor, it is possible to extend this particular simulated sensor class instead of the
generic simulated sensor, and reuse the method implemented in the parent class.

The Update method is where the new sensor reading is computed, serialised
and appended to the VS-DS. The virtual sensor designer implements the sensor
reading procedure exploiting the entities that the virtual sensor is entitled to use
and which have been associated to the robot’s entities in the SetRobot method.

The third interface to implement is the generic interface for the virtual sen-
sors called GenericVirtualSensor. This interface gives the status of virtual to
the new sensors. Every virtual sensor owes by default a reference to the single
instance of the VS-DS, and a method to calculate the robot ID and tag ID
of the robot they belong to. In addiction, the virtual sensor interface forces
each virtual sensor to implement two methods, ComputeSensorDataSize and
UpdatingCondition. The first method must be called in the virtual sensor ini-
tialisation method in order to correctly set the sensor entry in the VST. The
computation of the reading data structure size is left to the virtual sensor de-
signer. The method UpdatingCondition defines the condition needed for the
new sensor reading to be appended to the VS-DS and then sent to the robot
over Wi-Fi network. The purpose of this condition is to unburden the data load
of the VS-DS to be sent. For each robot, the amount of data regarding the
virtual sensing sent every timestep depends on the number of virtual sensors
defined and the size of their data. In the worst case, the R-VSD intended for
a robot can cross the maximum transmission unit limit (MTU) for the wireless
network. This unfortunate case forces the underlying protocol to send the data
in two separate chunks, introducing a unwanted delay in the system. Because
the operation is repeated for each robot, the system delay at each timestep can

50

be unbearably significant for the system’s soft real time constraints. In this
case, but also in general, it is desirable to deliver only the meaningful data to
prevent network congestion. With the method UpdatingCondition the virtual
sensor designer is able to subordinate the deliver of the virtual sensor data to
the condition specified in the method. The condition can concern the reading
value, or the update rate of the virtualised sensor, according to the behaviour
implemented in the robot’s control software. For example, the virtual sensor
designer can choose that a specific sensor data is meaningless if closer than a
given threshold percentage to the last reading sent. In this way the system
saves bandwidth, and the the real robot keeps reading the last received data,
which is close enough to the real data for the controller’s purpose. Another use
for the updating condition is to decrease the update rate of certain sensors. If
the simulated environment conditions of the experiment do not demand a fine
sampling of the given sensor’s measure, the updating condition can be verified
only once in a number of timesteps. For example, if the virtual environment
includes only a fixed static lamp as light source, the light virtual sensor can
update every 1 s rather than 100 ms, i.e. once every 10 timesteps.

When the component implements the three interfaces it becomes a virtual
sensor for simulator module. To complete the utility it is necessary to implement
its counterpart for real robots, since in ARGoS every virtual sensor consists of
a simulator module and a real robot module. The next section describes the
components belonging to the real robot module. In particular, the focus is on
the E-Puck robot implementation, because the tool is targeted on that specific
robot architecture.

3.4 Arena Tracking System Virtual Sensing Plu-
gin E-Puck Module

In this section, I describe the structure of the ATS-VSP intended for real robots,
in particular for E-Pucks. Recalling Figure 3.6, this section focuses on the green
areas, while the blue areas have been presented in the previous section. As stated
above, the yellow areas include the common software between the two modules,
and it has also been commented in Section 3.3.

The ATS-VSP real robot module includes both generic elements and E-Puck
specific elements. The generic elements are usually sensors and actuators that
avoid any robot specific feature. This kind of components should be compatible
with any robot architecture, sparing to enter into platform specific details. On
the contrary, the architecture specific elements are usually sensors and actua-
tors that feature specific characteristics of the hardware mounted on the robot.
These kind of components cannot be used on robot architectures other than the
ones they are built for.

The E-Puck specific components of the ATS-VSP real robot module are
reduced to the bone. In fact, the idea is to let virtual sensing technology open
to any robot architecture, implementing only the least possible robot specific
elements. Therefore, the virtual sensing technology’s bare bones reside in the
generic package. There is situated the Virtual Sensor Client, the generic virtual
sensor real robot module interface, and the virtual sensor real robot modules.
For the specific robot architecture, the virtual sensor designer is required to

51

realise a proper main program and the robot specific classes to handle all the
real sensors and actuators of the robot.

A full-featured E-Puck plugin for ARGoS has been developer at IRIDIA, and
the ATS-VSP extensively draws from it. In the ATS-VSP plugin, the software
for handling the real E-Puck in the ATS environment is reduced to a single
component that extends the real E-Puck class of the E-Puck plugin with the
necessary ATS features. The ATS version of the real E-Puck entity is called
Arena Tracking System Real E-Puck, or ATS-RE. Thanks to inheritance, the
ATS-RE can use all the real sensor and actuator handlers implemented in the
E-Puck plugin, remaining the only E-Puck specific component in the ATS-VSP.

In the remainder of this section, I am going to discuss the networking com-
ponent hosted on the robot architecture, namely the Virtual Sensor Client, the
virtual sensors’ real robot module, and the component that binds the networking
to the virtual sensing, i.e. the Arena Tracking System Real E-Puck.

3.4.1 Virtual Sensor Client

VIRTUAL SENSOR CLIENT
THREAD START

!

SOCKET
CONNECT

CLIENT
CONNECTED

RECEIVE VIRTUAL
SENSOR TABLE

VIRUTAL
SENSOR
TABLE

RECEIVED

WAIT FOR

ARGOS . SEE—

START SIGNAL

ARGoS RUN

STARTED ¢

RECEIVE
VIRTUAL
SENSOR DATA

ARGo0S RUN |
STOPPED

® YES

NO

VIRTUAL SENSOR CLIENT
THREAD STOP

Figure 3.18: Virtual Sensor Client work flow.

The Virtual Sensor Client, or VS-C, is the networking component that must
be installed on each robot of the swarm to complete the virtual sensing data

52

flow. Each robot must create a single instance of the VS-C, and make it run
on a dedicated thread to handle the communication with the VS-S while the
robot’s main thread executes the robot step procedures.

The singleton pattern seems to fit perfectly the use case of the VS-C. De-
signing the VS-C as a singleton, guarantees the component to be instantiated
at most once. More precisely, the first element calling for the instantiation of
the VS-C causes the execution of the constructor method, while all the fur-
ther calls will return a reference to the existing instance. Such a mechanism
allows an undetermined number of virtual sensors to have a reference of the
same VS-C instance independently to each other, and without a central entity
that creates the single VS-C instance and distributes its references. Moreover,
the VS-C constructor method is guaranteed to execute at most once, and it can
be exploited to spawn the thread dedicated to the VS-C life cycle. As soon as
the single VS-C instance is created, the new thread is launched from within the
constructor and the VS-C life cycle exposed in Figure 3.18 is associated to it as
its start routine.

The VS-C connects to the VS-S using the address and port given as at-
tributes in the XML configuration file. The XML file is parsed in the initialisa-
tion method of the Arena Tracking System Real E-Puck, and the VS-S address
is searched in the attributes wss_host and wvss_port of the experiment node. The
VS-S address is then set in the VS-C through the method SetServerAddressAnd-
Port. In the VS-C initialisation method, the client waits for the server address
to be filled by the ATS Real E-Puck and then connects via TCP protocol to
the VS-S. When the VS-S receives the connection request, it immediately sends
the VST. The VS-C is ready to receive and deserialise the hash table, creating
a local version of the VST. The local Robot Virtual Sensor Table, or R-VST,
is used by the VS-C to split the byte buffer of the virtual sensor data coming
from the VS-S according to the virtual sensors data size stored in the R-VST.

| VSD TYPE

R-VSDS
Robot Virtual Sensor Data Structure

-

S J

Figure 3.19: Robot Virtual Sensor Data Structure.

After that, the VS-C enters the outer loop of its execution, waiting for the
start command from the VS-S. When the researcher presses the play button
on the ARGoS GUI, the start command is sent to all the robots and their VS-
C triggers the execution of the control software running on the robot’s main

53

thread. At the same time, the VS-S enters the inner loop where it repeatedly
waits for virtual sensor data until the the experiment run is over. The virtual
sensor data is deserialised by the VS-C and the Robot Virtual Sensor Data
Structure is created. The Robot Virtual Sensor Data Structure, or R-VSDS,
contains the same information of the server side R-VSD, but in a suitable format
to be accessed by single virtual sensors rather than the whole robot. While the
R-VSD is a byte buffer containing serialised couple of sensor id and sensor data,
in the R-VSDS the couples are chunked from the byte buffer and reordered to
create a more convenient entry list indexed with the sensor ID (see Figure 3.19).
The serialised sensor data is the same portion of byte array situated after the
sensor ID in the R-VSD. In fact, the serialised sensor data is sensor specific and
its dimension is stored in the R-VST together with the corresponding sensor ID.
Moreover, the R-VSDS is a data structure shared by two threads: the thread
that hosts the VS-C and the robot’s main thread. In fact, in the virtual sensors
update phase of the robot step, all the virtual sensors are asked to read the R-
VSDS and set the sensor value in their reading structure. The exclusive access
to the R-VSDS is protected once again by a double buffer mechanism. Similarly
to the AS-DS, the critic data is duplicated: the writeable version is accessed
only by the VS-C, while the readable one is obtained in read only mode by the
virtual sensors. Each time the VS-C completes the update of the R-VSDS, it
swaps the double buffer using a mutex to deny virtual sensor readings for this
short amount of time. When the run expires, the VS-C receives the stop signal
and returns to the initial state of the loop waiting, for the new run to start.

During the loop, the VS-C is constantly listening for socket exceptions. In
case the researcher quits ARGoS GUI after the last run, the VS-S shuts down
as well. The VS-S shut down raises an exception to the sockets connected to it.
The exception is handled on the VS-C as an abort signal, and when caught, the
VS-C must exit the execution loop and terminate.

3.4.2 Arena Tracking System Real E-Puck

Similarly to the ARGoS simulator, the robots’ main program is responsible for
executing in order all the procedures required to accomplish a robot step. The
entity assigned to implement all the procedures is the Arena Tracking System
Real E-Puck, or ATS-RE. The ATS-RE is the implementation for the ATS-VSP
of the real robot entity. The ATS-RE must handle all the real sensors and
actuators of the real E-Puck it is modelling. In this case, the ATS-RE is only a
specialisation of the real E-Puck component in the ARGoS E-Puck plugin, since
the robot architecture is still unchanged, but the new real robot entity must
handle also the virtual sensors. Figure 3.20 shows the add-on features of the
ATS version of the real E-Puck.

To the list of 12C sensors and of serial sensor, the ATS-RE adds the list of
virtual sensors. The difference between 12C sensors and serial sensors lies in
the fact that the E-Pucks used for the ATS-VSP are extensions of the basic
E-Puck architecture. As stated in Chapeter 1.3, the extensions include a set of
ground sensors, the range and bearing sensor/actuator, and the Linux board.
The two extra sensors are directly interfaced with the Linux board through an
12C bus, in order to bypass the PIC micro controller. All the other sensors
instead are interfaced to the PIC micro controller by default, and their data
must be gathered from there to the Linux board at each robot step.

54

«Singleton»

RealEPuck
-xmlConfiguration: Document
-controllerlD: String
-controller: ClController
-serialSensors: RealEPuckSerialSensor[]
-i2cSensors: RealEPuckl2CSensor([]
-i2cActuators: RealEPuckl2CActuator(]
-actuatorState: BaseActuatorState
-sensorState: BaseSensorState
+Init(confFileName: String, controllerID: String)
+SendActuatorData()
+ReceiveSensorData()
+UpdateValues()
+InsertActuator(actuatorType: String): ClActuator
+InsertSensor(sensorType: String): ClSensor
#CreateActuator(name: String): Object
#CreateSensor(name: String): Object

T

«Singleton»
ArenaTrackingSystemRealEPuck
-virtualSensorClient: VirtualSensorClient
-virtualSensors: VirtualSensorRealRobot[]
+Start()
+Stop()
-UpdateVirtualSensors()

Figure 3.20: Arena Tracking System Real E-Puck class diagram.

Figure 3.21 exemplifies the robot states for an execution step. After the
initialisation phase, the robot waits still for the start signal. The busy waiting
is performed by a cyclic access to a VS-C flag declaring the active or inactive
status of the ARGoS run. The start signal is delivered by the VS-S to the
VS-C when the researcher presses the play button on the ARGoS GUI. In the
meantime, the VS-C is blocked on the the start signal waiting. When it receives
that signal, the VS-C sets the flag on which the ATS-RE is constantly checking
for the condition. Since the flag is shared between two processes, the access
must be guaranteed mutually exclusive. Thanks to this mechanism, the action
of the researcher on the ARGoS GUI triggers all the components in a chain all
the way to the real robots, enabling their execution.

When the start signal arrives to the ATS-RE, the thread switches to the
next state, the receive sensor data state. In this state, the robot accesses the
real sensors connected to the I12C bus to store their values in the real sensors’
reading data structure. In the next state, the update values state, the same
action is taken for the sensors directly connected to the PIC micro controller.
Finally, the virtual sensors updating state takes place. Every instantiated vir-
tual sensor executes its Update Values method, reading the sensor value from
the R-VSDS, deserialising and storing it in the proper reading data structure
(see Section 3.4.3).

When 12C sensors, serial sensors and virtual sensors are updated, the ATS-
RE performs the control step, where the user defined control logic is executed
and the decisions on the actuators are taken. After the control computation,
the actuator data emerged in the control step are sent to the actuators through

%)

ATS REAL ROBOT
START

Y

INITIALIZE

!

WAIT FOR ARGoS
START SIGNAL

v

RECEIVE SENSOR <
DATA

v

UPDATE VALUES

v

UPDATE VIRTUAL ROBOT
SENSOR STEP

v

CONTROL
STEP

v

SEND ACTUATOR
DATA

ATS REAL ROBOT
STOP

Figure 3.21: Robot main work flow.

the I12C bus in case of the range and bearing actuator, or through the PIC micro
controller for all the other actuators.

3.4.3 Virtual Sensors Real Robot Module

The virtual sensor real robot modules are the final users of the data flow started
with the image processing in the ATS. These components are the counterparts
of the virtual sensor simulator modules, and must be implemented as well by
the virtual sensor designer, because in ARGoS each virtual sensor is composed
by a couple of simulator and real robot modules.

Like the simulator module, a virtual sensor real module must implement
some interfaces: the specific virtual sensor control interface, and the generic
virtual sensor real robot module interface. The specific virtual sensor interface

56

«Interface»
ClSensor
+Init()
+Reset()
+Destroy()
T «Interface»
«Interface» GenericVirtualSensorRealRobot
ClSpecificVirtualSensor #virtualSensorServerAddress: String
-sensorlD: int #virtualSensorServerPort: int
-reading: Object #virtualSensorClient: VirtualSensorClient
+GetReading(): Object +UpdateValues()
A A

SpecificVirtualSensorRealRobot

Figure 3.22: Virtual Sensor Real Robot Module class diagram.

is the same interface implemented by the simulator module and described in
Section 3.3.4. As explained above, this interface gives the component the right
to be a sensor.

The generic virtual sensor real robot module is a single interface that unifies
the semantic of both generic virtual sensor simulator module and simulated
sensor interfaces for the simulator module. A component that implements the
generic virtual sensor real robot interface gains the status of virtual component
targeted for real robots. The virtual status is given by the reference to the VS-C
inherited by default from all the components implementing the interface. The
real robot module status is given by the abstract method UpdateValues, which
is meant to be implemented following the semantic of the alike method of all
serial sensors. In particular, the Update Values method must update the reading
data structure that is accessed by the control software through the GetReading
method of the specific control interface. The general approach is to access the
R-VSDS with the sensor ID and retrieve the corresponding readable data buffer.
The method then must deserialise the single sensor data buffer and store the
values in the reading data structure inherited from the specific virtual sensor
control interface. The deserialisation must be implemented according to the
serialisation algorithm of the virtual sensor simulator module.

The architecture developed allows the virtual sensor designer to create any
kind of virtual sensor needed. Great flexibility is a major feature in ARGoS,
and the virtual sensing extension is designed keeping flexibility as a cornerstone.
In the ATS-VSP, flexibility is achieved thanks to the freedom left to the virtual
sensor designer on the main design choices. The methods Update for the VS-SM
and Update Values for the VS-RRM are the key points for the design of the vir-
tual sensor and they are completely implemented by the virtual sensor designer.
The specific virtual sensor control interface and the Virtual Sensor Register also
contribute to the system flexibility, allowing for the new components to be part
of the system like all the other sensors.

Reusability is another feature promoted by the ARGoS plugins architecture,

o7

and the ATS-VSP follows the same guidelines. In the ATS-VSP, the whole
E-Puck plugin is reused with the sole exception of the real robot entity, the ATS-
RE, that is actually an extension of the Real E-Puck of the E-Puck plugin. The
virtual sensor designer can exploit ARGoS reusability creating generic virtual
sensors and reusing them to build robot specific virtual sensors. In the case the
virtual sensor designer decides to virtualise a sensor that is already simulated
in ARGoS, he/she can reuse the whole simulation module of the existing sensor
focusing on the implementation of the only real robot module.

Given the explanation of the ATS-VSP features and purpose, the reader
should now be aware of the generic architecture of the plugin, and where the
virtual sensor designer is asked to operate for virtual sensors implementation.
The next chapter is a guide for the virtual sensor designer meant to describe
the creation of different kinds of virtual sensors step by step.

58

Chapter 4

Virtual Sensors
implementation

This chapter is a guide for virtual sensors implementation. I am going to de-
scribe step by step the implementation of two virtual sensors: a ground virtual
sensor and a light virtual sensor. These examples stand as straightforward
guidelines to build any kind of virtual sensor.

The chapter is structured as follows: in Section 4.1 I demonstrate how to
create a control interface for virtual sensors, in Section 4.2 1 show how to im-
plement the simulator module of a virtual sensors, while the real robot module
is described in Section 4.3.

4.1 Control Interface

The control interface of a sensor is a component that provides an abstract
method for accessing the sensor value, called GetReading, hiding the method
implementation to the caller. The control interface defines the data structure
of the sensor reading, but demands the implementation logic to the classes that
support the interface. The classes that implement a sensor interface are the
sensor’s simulator module and the sensor’s real robot module. This mechanism
achieves control software portability from simulation to real robots. In fact, in
the control software every sensor is referred through its control interface, and
the execution of the method is demanded to the proper module instantiated by
the system.

Virtual sensors are an extended version of regular sensors. That means,
all the features of a regular sensor must be provided in the virtual sensor too.
Creating the virtual sensor control interface is the first step for virtual sensors
implementation. The virtual sensor control interface must extend the generic
sensor control interface and define the abstract method GetReading. In case the
virtual sensor reading is an abstract data type, the virtual sensor control inter-
face must define also its data structure. Figure 4.1 shows the control interfaces
of three virtual sensors: light virtual sensor, pollutant virtual sensor, and RGB
ground virtual sensor. The RGB ground virtual sensor data is not a standard
data type, but a Color data type. The Color data structure must be defined or
imported in the control interface.

59

«Interface» Channels
ClSensor -red: uint8
+Init() -green: uint8
+Reset() -blue: uint8
+Destroy() -alpha: uint8
Color

-channels: Channels
+Set(red: uint8, green: uint8,

blue: uint8, alpha: uint8)
«Interface» +GetRed(): uint8
CIRGB_GroundVirtualSensor «@———— +GetGreen(): uint8
— -reading: Color +GetBlue(): uint8
+GetReading(): Color +GetAlpha(): uint8

«Interface»

ClLightVirtualSensor LightSensorReading
-reading: LightSensorReading[] @— -value: real
+GetReading(): LightSensorReading[] -angle: real

«Interface»
ClPollutantVirtualSensor

L -reading: real
+GetReading(): real

Figure 4.1: Virtual Sensor Control Interface class diagram.

The creation of a control interface is not enough for the component to be
perceived as a sensor by the system. The other needed operation is creating
the virtual sensor control interface entry in the VSR. In the VSR, the virtual
sensor designer must add an entry formed by a pair: a string for the virtual
sensor unique name, and an integer for the virtual sensor unique ID (see Fig-
ure 4.2). When the control interface has been implemented and the VSR has
been updated, the virtual sensor control interface is set, and the virtual sensor
designer can move on to the next step: the virtual sensor simulator module
implementation.

60

VSR
Virtual Sensor Register

Figure 4.2: Virtual Sensor Register. Each entry includes the virtual sensor name
and the virtual sensor ID.

4.2 Simulator

The simulator module of a virtual sensor is the part of the virtual sensor ex-
ecuted by ARGoS. This module extends the generic virtual sensor interface,
the simulated sensor interface, and the control interface implemented in the
previous section. The task of this component is to compute the virtual sensor
reading in the Update method. The power of this component is the possibility
to access all the information regarding the current step of the simulation. Once
the virtual reading is calculated, the virtual sensor simulator module must seri-
alize the data structure and include the buffer in the VS-DS. The remainder of
this section shows how to implement the virtual sensor simulator module for the
RGB ground virtual sensor, the light virtual sensor and the pollutant virtual
sensor.

4.2.1 Ground Virtual Sensor Simulator Module

The ground sensor is a sensor able to determine the colour of the floor under-
neath the robot. The colour of the floor can be used in the experiments to
model the location of a resource or to define an area that is different from the
rest of the arena. For instance, an experiment on robot aggregation can use floor
colour to distinguish the area where the robots must aggregate. In a foraging
experiment instead, several areas of different colours can be used to represent
the nest and the food locations. However, the ground sensor installed on the
E-Puck is able to recognize only grey scale colours, preventing the researcher
to use colours to differentiate the areas. In reality, the E-Puck ground sensor
values must be strongly quantisated to avoid erroneous readings. The result is
that the ground sensor is able to determine only three colours: white, black,
and only one shade of grey.

Virtualizing the ground sensor allows the researcher to design a virtual floor
for the arena. The benefits are two. First, the floor is much easier to create
and modify in the form of a jpg image, rather than a physical panel the size of
the arena. Second, the ground virtual sensor is error-free, i.e., it does not need
quantisation and all 255 values of the grey scale are correctly distinguished.

Another enhancement brought by the virtualisation of the ground sensor,
is that the ground virtual sensor can perform RGB detection. In this section,
I am going to show the realizations of the RGB ground virtual sensor, for the
simulator module.

61

«Interface»
GenericVirtualSensor

#robotID: int

#entitylD: String

#virtualSensorDataSize: int
#virtualSensorDataStructure: VirtualSensorDataStructure
#UpdatingCondition(): bool

#ComputeSensorDataSize()
#GetRobotIDFromEntityID(entityID: String): int

T
I
«Interface» I
Cl Sensor }
+Init() |
+Reset() }
+Destroy() |
I
I
I
[r |
I
«Interface» I «Interface»
Cl RGBGroundVirtualSensor } SimulatedSensor
-sensoriD: int | +SetRobot()
-reading: Color I +Update()

+GetReading(): Color }
I
I
I
I

1
RGBGroundVirtualSensor
#embodiedEntity: EmbodiedEntity
#floorEntity: FloorEntity

Figure 4.3: Class diagram of the RGB ground virtual sensor for simulator.

The RGB ground virtual sensor simulator modules inherits the attributes
and methods of the implemented interface, and must provide an implementation
logic for the abstract methods of the interfaces. The component inherits four
attributes from the generic virtual sensor interface: and two attributes from
the control interface. The attributes inherited from the control interface are
the sensor reading, an attribute of Colour type, and the sensor ID, the unique
identifier as defined in the VSR. The attributes inherited from the generic virtual
sensor interface are the robot ID, the entity ID, a reference to the VS-DS and
an integer that stores the size in bytes of the virtual sensor reading data. The
robot ID is an integer that represents the robot to the VS-S, while entity ID is a
string that represents the robot in ARGoS. The virtual sensor data size must be
computed according to the data type of the reading. The computation of this
value must be implemented in a procedure called ComputeSensorDataSize and
executed in the init method. The RGB ground virtual sensor reading data type
is composed by four variables of typr uint8, as shown in Figure 4.1. Therefore,
the ComputeSensorDataSize method simply returns the value 32. The other
method of the generic virtual sensor interface that must be implemented by the
RGB ground virtual sensor is the method UpdatingCondition. This method
returns a boolean value that represents the condition under which the reading
can be appended in the VS-DS. In the RGB ground virtual sensor, the reading
value is appended to the VS-DS and sent to the robot only if it is different from
the last reading sent. To do this, a variable of type Color is required to store
the last sent reading. The method returns the inverted result of the comparison
between the current reading and the last sent reading value.

RGBGroundVirtualSensor: :UpdatingCondition()

62

lastSentReading!=reading;

The abstract methods left to be implemented are: Init, Reset, Destroy,
SetRobot and Update. The Init method in the RGB ground virtual sensor is
used to set the sensor data size value, insert the RGB ground virtual sensor entry
in the VST, and initialise the reading value The sensor data size is calculated
by the ComputeSensorDataSize method, and the initialisation of the reading
structure is performed by the Update function. The Init method is therefore
implemented as follows:

RGBGroundVirtualSensor: :Init (ConfigurationNode& tree)

CI_RGBGroundVirtualSensor (tree);
ComputeSensorDataSize() ;
sensorID =
VirtualSensorRegister: :GetVirtualSensorId("GroundVirtualSensor") ;
(!'virtualSensorDataStructure.ExistsSensorInVST(sensorID)) {
virtualSensorDataStructure
.AddVirtualSensorEntry(sensorID, virtualSensorDataSize);
}
Update();

The Reset and Destroy method are left empty, because there is no need to
reset the value of the reading or to free allocated memory.

The SetRobot method is used to bind the two attribute entities embod-
tedEntity, and floorEntity with the corresponding robot entity components. In
addiction, this method sets the entity ID and the robot ID exploiting the entity
object given as parameter. The SetRobot method is implemented as follows:

RGBGroundVirtualSensor: : SetRobot (ComposableEntity& entity)

entityID = entity.GetId();

robotID = GetRobotIDFromEntityID(entityID);

embodiedEntity = &(entity.GetComponent<EmbodiedEntity>("body"));
Space& space = Simulator::GetInstance().GetSpace();

floorEntity = &space.GetFloorEntity();

The Update method is used to set the new reading value. In the RGB
ground virtual sensor the reading value is provided by the floor entity. The
Update method is implemented as follows:

RGBGroundVirtualSensor: :Update ()
Vector3D entityPosition = embodiedEntity->GetPosition();
reading = floorEntity->GetColorAtPoint(entityPosition.GetX(),
entityPosition.GetY());

(UpdatingCondition()) {
lastSentReading = reading;

63

bufferLength = virtualSensorDataSize + 1;
byteDataBuffer [bufferLength];
byteDataBuffer[0] = sensorID;
byteDataBuffer[1] = reading.GetAlpha();
byteDataBuffer[2] = reading.GetRed();
byteDataBuffer[3] = reading.GetGreen();
byteDataBuffer[4] = reading.GetBlue();
virtualSensorDataStructure.AppendVirtualSensorData(byteDataBuffer,
bufferLength, robotID);

The implementation of the Update method is the last step to produce the
simulator module of a virtual sensor. In the next subsection the procedure will
be repeated to build a light virtual sensor simulator module.

4.2.2 Light Virtual Sensor Simulator Module

«Interface»
GenericVirtualSensor

#robotID: int

#entityID: String

#virtualSensorDataSize: int
#virtualSensorDataStructure: VirtualSensorDataStructure
#UpdatingCondition(): bool

#ComputeSensorDataSize()
#GetRobotIDFromEntitylD(entityID: String): int

«Interface»
ClSensor
+Init()
+Reset()
+Destroy()

i

«Interface» «Interface»
ClLightVirtualSensor SimulatedSensor
-sensoriD: int +SetRobot()
-reading: LightSensorReading +Update()
+GetReading(): LightSensorReading

T
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
1
r

LightVirtualSenso

#embodiedEntity: EmbodiedEntity
#lightEquippedEntity: LightEquippedEntity

Figure 4.4: Class diagram of the light virtual sensor for simulator.

The virtualisation of the light sensor allows the researcher to carry out ex-
periments using light sources that may not be physically used in the lab for
several reasons. The researcher can use any desired number of light sources
without worrying about electric powering, positioning in the space, undesired
occlusions due to arena furniture external to the experiment or people walking
in the arena, undesired light reflection on the walls or the floor of the arena, or
simply the unavailability of a proper dimmer for the light sources.

The E-Puck light sensor is actually a set of eight light sensors disposed in a
ring on the border of the E-Puck robots. The angle of each sensor in the ring

64

is defined in the light sensor equipped entity, and can be retrieved through a
specific accessor. The generic light sensor reading is an array of real values that
stores the normalized value of the light intensity perceived by that sensor. The
simple light intensity is not a complete information for the control software,
therefore the light virtual sensor reading is integrated with the angle position of
each sensor. The angle is constant and must be set in the Init method. The Init
method must call the ComputeSensorDataSize method and insert the virtual
sensor entry in the VST as well.

LightVirtualSensor::Init(ConfigurationNode& tree)

CI_LightVirtualSensor: :Init(tree);
ComputeSensorDataSize() ;
sensorID =
VirtualSensorRegister::GetVirtualSensorId("LightVirtualSensor")
('virtualSensorDataStructure.ExistsSensorInVST (sensorID)) {
virtualSensorDataStructure
.AddVirtualSensorEntry(sensorID, virtualSensorDataSize) ;
}
reading.resize(lightEquippedEntity->GetNumSensors());
(i=0; i<reading.size(); i++) {
Vector3D direction = lightEquippedEntity->GetSensor(i).Direction;
reading[i] .Angle = direction.GetXAngle() .GetValue();
}
Update () ;

The light virtual sensor reading is a set of LightSensorReading data struc-
ture. The LightSensorReading data structure contains two real values: the light
intensity value and the sensor angle in the ring. The light virtual sensor data
size is therefore the size of the two real values times the number of sensors.

LightVirtualSensor: :ComputeSensorDataSize ()

{
lightSensorReadingSize = 2x sizeof(Real);
virtualSensorDataSize = lightSensorReadingSize *
lightEquippedEntity->GetNumSensors() ;
}

The SetRobot method must bind the entities used by the virtual sensor to
those instantiated as part of the robot entity.

LightVirtualSensor: :SetRobot (ComposableEntity& entity)

{
entityID = entity.GetId();
robotID = GetRobotIDFromEntityID(entityID);
embodiedEntity = &(entity.GetComponent<EmbodiedEntity>("body"));
lightEquippedEntity =
&(entity.GetComponent<LightEquippedEntity>("light_sensors"));
}

As for the RGB ground virtual sensor, the methods Reset and Destroy are
not implemented. The method UpdatingCondition instead returns true, since it

65

is very rare that the light intensity does not change for any of the eight sensors.
The politics used in this case is to send the update light virtual sensor data at
every timestep.

The Update method of the light virtual sensor is a bit more complicated
than the Update method of the RGB ground virtual sensor. In fact, the method
must repeat a complex procedure for any of the light sensors on the ring. The
procedure consists in iterating all the simulated light sources, check for possible
occlusions, and if none is detected then calculate the light intensity for the given
light source on the given light sensor.

The code of the Update method is shown in the snippet below.

LightVirtualSensor: :Update()

/* Erase readings */
(i = 0; i < reading.size(); ++i) reading[i].value = 0.0f;
/* Ray used for scanning the environment for obstacles */
Ray3D scanningRay;
Vector3D rayStart;
Vector3D sensorToLight;
/* Buffers to contain data about the intersection */
EmbodiedEntityIntersectionItem intersection;
/* Get the map of light entities */
Space& space = Simulator::GetInstance().GetSpace();
Space: :MapPerTypePerId::iterator itLights =
space.GetEntityMapPerTypePerId() .find("light");
(itLights != space.GetEntityMapPerTypePerId().end()) {
Space: :MapPerType& mapLights = itLights->second;
/* Go through the sensors */
(i = 0; i < reading.size(); ++i) {
/* Set ray start */
rayStart = lightEquippedEntity->GetSensor(i).Position;
rayStart.Rotate(embodiedEntity->GetOrientation());
rayStart += embodiedEntity->GetPosition();
/* Go through all the light entities */
(Space: :MapPerType: :iterator it = mapLights.begin();
it != mapLights.end(); ++it)

/* Get a reference to the light */
LightEntity& light = *any_cast<LightEntity*>(it->second);
/* Consider the light only if it has non zero intensity */
(light.GetIntensity() > 0.0f) {
/* Set ray end to light position */
scanningRay.Set (rayStart, light.GetPosition());
/* Check occlusions */
(1GetClosestEmbodiedEntityIntersectedByRay(intersection,
scanningRay))

/* No occlusion, the light is visibile */

/* Calculate reading */

scanningRay.ToVector (sensorToLight) ;

reading[i] .value +=
CalculateReading(sensorToLight.Length(),
light.GetIntensity());

66

}
}
/* Send readings to the robot */
bufferLength = virtualSensorDataSize + 1;
byteDataBuffer [bufferLength] ;
indexBuffer = 0;
byteDataBuffer [unIndexBuffer] = sensorID;
indexBuffer = indexBuffer + 1;
std: :vector<Real>::const_iterator itRealVector;
/* For each reading add it in byte form to the byte data buffer */
(itRealVector = reading.begin(); itRealVector !=
reading.end(); itRealVector++)

memcpy (byteDataBuffer + indexBuffer,
&((*itRealVector) .value) ,sizeof (Real));
indexBuffer = indexBuffer + sizeof (Real);
memcpy (byteDataBuffer + indexBuffer,
&((xitRealVector) .angle) ,sizeof (Real));
indexBuffer = indexBuffer + sizeof(Real);
}
/* Append the Virtual Sensor byte data buffer in the Virtual
Sensor Data Struct */
virtualSensorDataStructure.AppendVirtualSensorData(byteDataBuffer,
bufferLength, robotID);

The procedure CalculateReading used in the Update method is defined as
follows.

LightVirtualSensor::CalculateReading(Real distance, Real intensity)

(intensity * intensity) / (distance * distance);

4.2.3 Pollutant Virtual Sensor Simulator Module

The pollutant virtual sensor is a virtual sensor that is able to perceive the envi-
ronmental pollution in the robot location. The implementation of the pollutant
virtual sensor assumes that the pollution is radiated from a pollutant entity in
a certain direction, and it spreads in the environment within a diffusion cone.
The pollutant entity, the radiation angle, the width of the pollutant cone, and
the maximum distance from the pollutant entity are parameters defined at the
beginning of the experiment by the researcher in the ARGoS XML configuration
file. These parameters are parsed in the Init method.

PollutantVirtualSensor: :Init(ConfigurationNode& tree)

CI_PollutantVirtualSensor::Init(tree);
ComputeSensorDataSize();

67

«Interface»
GenericVirtualSensor

#robotID: int

#entitylD: String

#virtualSensorDataSize: int
#virtualSensorDataStructure: VirtualSensorDataStructure
#UpdatingCondition(): bool

#ComputeSensorDataSize()
#GetRobotIDFromEntityID(entityID: String): int

N
«Interface» PollutantParams
ClSensor -directionAngle: Degrees
+Init() -wideAngle: Degrees
+Reset() -maxDistance: real
+Destroy() -entityID: string

«Interface»
SimulatedSensor

«Interface»
PollutantVirtualSensor

-sensorlD: int +SetRobot()
-reading: real +Update()
+GetReading(): real

A A

i

T T
| |
. , .
PollutantVirtualSensor
#embodiedEntity: EmbodiedEntity
#pollutantEntity: EmbodiedEntity
#pollutantParams: PollutantParams
#ldentifyPollutantEntity()
#ComputePollutedCone()
#IsInPollutedCone(): bool

Figure 4.5: Class diagram of the pollutant virtual sensor for simulator.

sensorID =
VirtualSensorRegister: :GetVirtualSensorId("PollutantVirtualSensor");

/* Parse XML file x/

GetNodeAttributeOrDefault(tree, "direction_angle",
pollutantParams.directionAngle, Degrees(0));

GetNodeAttributeOrDefault(tree, "wide_angle",
pollutantParams.wideAngle, Degrees(90));

GetNodeAttributeOrDefault (tree, "max_distance",
pollutantParams.maxDistance, 1.0);

GetNodeAttributeOrDefault(tree, "pollutant_entity",
pollutantParams.entityID, "epuck_22_1");
(!virtualSensorDataStructure.IsSensorAlreadyInTable(sensorID)) {
virtualSensorDataStructure.AddVirtualSensorEntry(sensorID,

virtualSensorDataSize);
}
Update();

Since the pollutant virtual sensor reading is a real value, the method Com-
puteSensorDataSize returns the size of real type.

PollutantVirtualSensor: :ComputeSensorDataSize ()

sizeof (Real);

68

The SetRobot method must bind not only the sensor’s entities to the robot
ones, but also the pollutant entity to its robot entity. The method Identify-
PollutantEntity is the procedure demanded to cycle the entities in the ARGoS
space and find the one defined by the ID stored in pollutantParams.entitylD.
When the pollutant entity is retrieved, the pollutant cone can be calculated by
the procedure ComputePollutedCone.

PollutantVirtualSensor: :SetRobot (ComposableEntity& entity)

{
entityID = entity.GetId();
robotID = GetRobotIDFromEntityID(entityID);
embodiedEntity = &(entity.GetComponent<EmbodiedEntity>("body"));
IdentifyPollutantEntity();
ComputePollutedCone() ;
}
PollutantVirtualSensor: :IdentifyPollutantEntity ()
{
{
/* Get the map of all epucks from the space */
Space& space = Simulator::GetInstance().GetSpace();
Space: :MapPerType& epuckMap = space.GetEntitiesByType("epuck");
/* Go through them */

(Space: :MapPerType: :iterator it = epuckMap.begin(); it !=

epuckMap.end(); ++it) {

EPuckEntity* epuckEntity = any_cast<EPuckEntity*>(it->second);
(epuckEntity->GetId() == pollutantParams.entityID){
pollutantEntity = &(epuckEntity->GetEmbodiedEntity());

}

}
}
(CARGoSException e){}
}

The procedure ComputePollutedCone calculates the determinant of the tri-
angle matrix of the pollutant cone.

PollutantVirtualSensor: :ComputePollutedCone (){
(pollutantEntity != NULL){
/* Compute the triangle of influence */
Vector3D sourcePos3 = pollutantEntity->GetPosition();
vertexl.Set (sourcePos3.GetX (), sourcePos3.GetY());
vertex2.FromPolarCoordinates(pollutantParams.maxDistance,
ToRadians(-pollutantParams.wideAngle/2)) ;
vertex2.Rotate(ToRadians(pollutantParams.directionAngle)) ;
vertex2 += vertexl;
vertex3.FromPolarCoordinates(pollutantParams.maxDistance,
ToRadians (+pollutantParams.wideAngle/2));
vertex3.Rotate(ToRadians (pollutantParams.directionAngle));
vertex3 += vertexl;

69

/* Compute the determinant of Triangle Matrix (y2 - y3)(x1l - x3) +
(x3 - x2)(y1 - y3) */
triangleMatrixDet = (vertex2.GetY() -
vertex3.GetY())*x(vertexl.GetX() - vertex3.GetX()) +
(vertex3.GetX() - vertex2.GetX())*(vertexl.GetY() -
vertex3.GetY());

When the pollutant cone is computed, it is possible to calculate whether or
not the robot is located within the cone.

PollutantVirtualSensor::IsInPollutedCone ()

/* Get robot position */
Vector3D& robotPos3D = embodiedEntity->GetPosition();
Vector2D robotPos(robotPos3D.GetX () ,robotPos3D.GetY());
Real x = robotPos.GetX();
Real y = robotPos.GetY();
/* rl = (y2 - y3)(x - x3) + (x3 - x2)(y - y3) all divided by MatDet */
robotPos.SetX(((vertex2.GetY() - vertex3.GetY())*(x -
vertex3.GetX()) + (vertex3.GetX() - vertex2.GetX())*(y -
vertex3.GetY()))/triangleMatrixDet);
/¥ r2 = (y3 - y1)(x - x3) + (x1 - x3)(y - y3) all divided by MatDet */
robotPos.SetY(((vertex3.GetY() - vertexl.GetY())*(x -
vertex3.GetX()) + (vertexl.GetX() - vertex3.GetX())x*(y -
vertex3.GetY()))/triangleMatrixDet);
/* if robot inside polluted triangle set Value to 1 --- that is 0 <=
rl <= 1 and 0 <= r2 <= 1 and rl + r2 <= 1%/
(robotPos.GetX() >= 0 && robotPos.GetX() <= 1 && robotPos.GetY()
>= 0 && robotPos.GetY() <= 1 && (robotPos.GetX()+robotPos.GetY())
<= 1)

Finally, the Update method puts together all the procedures to update the
reading value and appends the serialized virtual sensor data.

PollutantVirtualSensor: :Update()

/* Default virtual sensor Value is ZERO */
reading = O;
(pollutedEntity != NULL){
ComputePollutedCone() ;
(IsInPollutedCone) {
reading = 1.0f;
}

bufferLength = virtualSensorDataSize + 1;
byteDataBuffer [bufferLength];
byteDataBuffer[0] = sensorID;

70

memcpy (byteDataBuffer + 1, &reading, sizeof(Real));
virtualSensorDataStructure.AppendVirtualSensorData(byteDataBuffer,
bufferLength, robotID);

At this point, the pollutant virtual sensor simulator module is completed.
The next session shows how to implement the E-Puck module of the RGB
ground virtual sensor, the light virtual sensor and the pollutant virtual sensor.

4.3 Real Robot

In the ATS-RE file, the virtual sensor designer must modify the InsertSensor
method, adding the possibility for the ATS-RE to recognise the new virtual
sensor when parsing the XML configuration file. The following is a code snippet
from the ATS-RE InsertSensor method.

CI_Sensor* ATSRealEPuck: :InsertSensor(sensor_name) {
(sensor_name == "virtual_rgb_ground_sensor") {
RealRGBGroundVirtualSensor* virtualRGBGroundSensor =

CreateSensor<RealRGBGroundVirtualSensor>(sensor_name) ;
virtualSensors.push_back(virtualRGBGroundSensor) ;
virtualRGBGroundSensor;

(sensor_name == "virtual_light_sensor") {
ReallightVirtualSensor* virtuallLightSensor =
CreateSensor<RealLightVirtualSensor>(sensor_name);
virtualSensors.push_back(virtualLightSensor);
virtuallLightSensor;

(sensor_name == "virtual_pollutant_sensor") {
RealPollutantVirtualSensor* virtualPollutantSensor =
CreateSensor<RealPollutantVirtualSensor>(sensor_name);
virtualSensors.push_back(virtualPollutantSensor) ;
virtualPollutantSensor;

RealEPuck: : InsertSensor (sensor_name) ;

Figure 4.6 shows the class diagram of the three implemented virtual sensor
real robot modules. Every virtual sensor real robot module must implement
four abstract methods: Init, Reset, Destroy and UpdateValues. The remainder
of this section shows how to implement the virtual sensor E-Puck module for the
RGB ground virtual sensor, the light virtual sensor and the pollutant virtual
sensor.

4.3.1 Virtual Sensor Real Robot Modules implementation

The E-Puck module of the virtual sensors is the component that retrieves the
sensor’s value from the R-VSDS and sets the reading value. In the Init method,
every virtual sensor E-Puck module must parse the XML configuration file and

71

«Interface» «Interface»
Cl_Sensor GenericVirtualSensorRealRobot
7 +Init() #virtualSensorServerAddress: String -
+Reset() #virtualSensorServerPort: int
+Destroy() #virtualSensorClient: VirtualSensorClient
+UpdateValues()

«Interface»
Cl_RGBGroundVirtualSensor
-sensorlD: int ----1
-reading: Color
+GetReading(): Color

RealRGBGroundVirtualSensorRealRobot

«Interface»
Cl_LightVirtualSensor
-sensorlD: int ----1
-reading: LightSensorReading[] |
+GetReading(): LightSensorReading ;
I

ReallLightVirtualSensorRealRobot

«Interface»
Cl_PollutantVirtualSensor
-sensorlD: int ----1

-reading: real
+GetReading(): real

L

RealPollutantVirtualSensorRealRobot

Figure 4.6: Class diagram of the virtual sensor real robot modules.

notify the VS-S host and port to the VS-C. This operation is performed by
every virtual sensor, however only the first time the operation is effective. The
code of the Init method of the RGB ground virtual sensor is as follows. The Init
method of the other virtual sensors only differs for the string parameter passed
to the GetVirtualSensorld method.

RealRGBGroundVirtualSensor: :Init (ConfigurationNode& node)

sensorID(VirtualSensorRegister: :GetVirtualSensorId("GroundVirtualSensor"));

/* Parse XML configuration file and get Virtual Sensor Server Host
and Port */

GetNodeAttributeOrDefault<std:: >(node, "vss_host",
virtualSensorServerAddress, virtualSensorServerAddress);

GetNodeAttributeOrDefault<uint32_t>(node, "vss_port",
virtualSensorServerPort, virtualSensorServerPort);

/* Set the user defined VSS Host and Port in the Virtual Sensor
Client */

virtualSensorClient.SetServerAddresAndPort (virtualSensorServerAddress,
virtualSensorServerPort) ;

72

The methods Reset and Destroy are implemented empty in the all the im-
plemented virtual sensor E-Puck module, while the method UpdateValues de-
serialises the reading in the R-VSDS and store its value in the reading data
structure. The code of the UpdateValues method for the RGB ground virtual
sensor is shown below.

RealRGBGroundVirtualSensor: :UpdateValues()

bufferLength = sizeof (reading);

byteDataBuffer [bufferLength] ;
virtualSensorClient.GetReadyData(byteDataBuffer, sensorID);
uint8 red = byteDataBuffer[0];
uint8 green = byteDataBuffer[1];
uint8 blue = byteDataBuffer[2];
uint8 alpha = byteDataBuffer[3];
reading.Set(red, green, blue, alpha);

The UpdateValues method of the light virtual sensor differs only for the dese-
rialisation procedure of the reading data structure, as well as the UpdateValues
method of the pollutant virtual sensor.

RealLightVirtualSensor: :UpdateValues ()

bufferLength = sizeof (reading);

bufferIndex = 0;

byteDataBuffer [bufferLength] ;
virtualSensorClient.GetReadyData(byteDataBuffer, sensorID);

(i=0; i<reading.size(); i++) {
memcpy (&reading[i] .value, byteDataBuffer + bufferIndex,
sizeof (Real));
bufferIndex++;
memcpy (&reading[i] .angle, byteDataBuffer + bufferIndex,
sizeof (Real));
bufferIndex++;

RealPollutantVirtualSensor: :UpdateValues()

bufferLength = sizeof (reading);
byteDataBuffer [bufferLength];
virtualSensorClient.GetReadyData(byteDataBuffer, sensorID);
memcpy (&reading, byteDataBuffer, sizeof(Real));
}

73

Chapter 5

Validation through real
robots experiment

To validate the virtual sensing technology presented, an experiment with real
robots and virtual sensors has been performed at the IRIDIA lab. The ex-
periment has been designed for the purpose of providing a simple and easily
understandable example of one application of the virtual sensing technology.
The experiment involves 15 E-Pucks equipped with a pollutant virtual sensor,
and a pollutant entity. The pollutant entity is detectable by the ATS through
an E-Puck tag placed on its top. The tag ID used for the pollutant entity must
be defined as a parameter of the pollutant virtual sensor in the XML configu-
ration file. The pollutant entity employed is a static object. However, nothing
prevent to use a movable object instead, for instance an E-Puck robot. The
task of the swarm consists in moving randomly in the arena, and when a robot
perceives the pollutant, it stops and lights up the red LEDs with a probability
Py =0.3. To test the swarm reaction to the environment changes, the pollutant
parameters are modified at runtime, after a given number of timesteps. The
expectation is that the robots start to move again, looking for the new location
of the pollutant cone.

The real world scenario that this experiment is simulating can be described as
pollution spill detection and recovery. The spill is released in the environment by,
for instance, an industrial plant simulated by the pollutant entity. A moveable
pollutant entity can model a leaking oil tanker, or a vehicle emitting exhaust
gas. The pollutant cone simulates the direction and intensity of the wind, in
case of air pollution. The same principle can be applied to water pollution
or ground pollution. The time variance of the pollutant parameters allows to
simulate the changing of the wind. The robots are assumed to feature a system
of air (or water, or ground) purification, which activation is simulated by the
lighting of the robots red LEDs.

Starting from the pollutant entity position, the pollutant virtual sensor of
each robot computes the pollutant cone, using the pollutant parameters defined
by the researcher in the XML configuration file. If the robot is located inside the
pollutant cone, then it stops and switches on the pollution purification system,
i.e. the red LEDs (see Figure 5.1). During the experiment, the swarm exhibits
the expected behaviour. In fact, robot aggregation is achieved in the pollutant

74

Figure 5.1: Screenshot of the experiment execution at initial environmental
conditions. On the left: the simulates environment in ARGoS. On the right: a
view over the arena from the camera used for tracking, with the overlay of the
pollutant cone. The positions of the robots in ARGoS match the real robot ones
in the arena. The pollutant entity is the object in the center of the arena that
originates the pollutant cone. In the simulated environment, the pollutant cone
is highlighted in red, while in the real environment the robots that perceive the
pollutant thought the virtual sensor light up their red LEDs.

cone. When the pollutant cone moves due to the environment variation, the ag-
gregated robots start to move again, achieving aggregation in the new pollutant
cone location (see Figure 5.2).

One possible future enhancement to this experiment is to endow the robots
with a pollutant virtual actuator (see Section 6.1). Through a pollutant vir-
tual actuator, the robots would be able do clean the pollution in their spot
modifying the virtual environment. Such an extension would allow us to study
the behaviour of the swarm dealing with a dynamic environment, and test the
swarm performance in carrying out a cooperative task.

(0]

Figure 5.2: Screenshot of the experiment execution after environmental condi-
tions variation. The robots in the real environment light up their red LEDs
when they enter the new pollutant cone.

76

Chapter 6

Conclusions and future
work

In this thesis, I presented a technology that enables virtual sensing for a swarm
of E-Pucks. The system can be used for sensor prototyping and augmented
reality. Sensor prototyping allows a researcher to tune a sensor by testing the
swarm performance with a virtualised version of the sensor. Prototyping a
sensor through virtualisation is particularly useful in swarm robotics, where
the cost of hardware production and installation increases with the size of the
swarm. Augmented reality for a swarm of robots allows a researcher to introduce
in the environment virtual elements the are perceived by the robots. Through
augmented reality the experimental environment is quick and easy to setup and
modify, and it can include time variant scenarios or even physically unfeasible
scenarios. The virtual sensors are easy to design and implement. I illustrate
the implementation of three virtual sensors: the RGB ground virtual sensor,
the light virtual sensor and the pollutant virtual sensor. Experiments involving
virtual sensors are hybrid experiments between purely simulated and purely real
experiments. Hybrid experiments are easier to setup and carry out than purely
real experiments, and at the same time they are more accurate than the purely
simulated ones. The functioning of the system has been showcased through a
hybrid experiment involving 15 robots using the pollutant virtual sensor.

The design and implementation of this technology brought to an interna-
tional conference paper recently submitted [18], and to the contribution on
other works: an international journal article [5], an international conference pa-
per [6], and a technical report [22]. To date, the system is still used to conduct
scientific experiments at the IRIDIA lab.

6.1 Future work

An interesting future development consists in the extension of the system design
with virtual actuation technology. Virtual actuators are software modules able
to modify the augmented reality. A possible way to achieve virtual actuation
is to close the communication loop between the robots and the simulator. Fol-
lowing the example of the technology used for virtual sensing, where the virtual
sensor readings are delivered by the simulator to the robots, the virtual action

7

consists in a message delivered by the robots to the simulator. The message en-
codes the actions that the robots want to perform on the virtual environment.
The simulator collects all the virtual actions and modifies the environment ac-
cordingly. The modification introduced in the environment by the simulator are
immediately perceived by all the robots.

The possible employments of the virtual actuation technology are actuators
prototyping and full exploitation of a dynamic virtual environment that changes
according to the robots virtual actions. An envisioned application that joins the
features of virtual sensing and virtual actuating technologies is the creation of a
virtual pheromone for a robotic swarm. Such a component employ both sensing
and actuation features, and it is impossible to install on E-Pucks or other low
cost robotic platforms. However, its realisation would enable to study stigmergic
processes of self organization with real robots experiments. The combination
of virtual sensing and actuation technology offers a clean, flexible and software
based solution to enable real robots experiments in swarm robotics areas where
simulation was the only possible research tool.

78

Bibliography

1]
2]

[10]

Chipmunk website. URL http://chipmunk-physics.net/.

Jan Dyre Bjerknes, Wenguo Liu, Alan Ft Winfield, Chris Melhuish, and
Coldharbour Lane. Low cost ultrasonic positioning system for mobile
robots. Proceeding of Towards Autonomous Robotic Systems, pages 107—
114, 2007.

Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo.
Swarm robotics: A review from the swarm engineering perspective. Swarm
Intelligence, 7(1):1-41, 2013.

M. Dorigo, M. Birattari, and M. Brambilla. Swarm robotics. Scholarpedia,
9(1):1463, 2014.

G Francesca, M Brambilla, A Brutschy, L. Garattoni, R Miletitch, G Pode-
vijn, A Reina, T Soleymani, M Salvaro, C Pinciroli, et al. Automode-
chocolate: A method for the automatic design of robot swarms that out-
performs humans. Under review, 2015.

Gianpiero Francesca, Manuele Brambilla, Arne Brutschy, Lorenzo Garat-
toni, Roman Miletitch, Gaetan Podevijn, Andreagiovanni Reina, Touraj
Soleymani, Mattia Salvaro, Carlo Pinciroli, Vito Trianni, and Mauro Bi-
rattari. An experiment in automatic design of robot swarms: Automode-
vanilla, evostick, and human experts. In M. Dorigo et al., editor, Swarm
Intelligence (ANTS 2014), volume 8667 of LNCS, pages 25—-37. Springer,
Berlin, Germany, 2014.

S. Garnier, F. Tache, M. Combe, A. Grimal, and G. Theraulaz. Alice in
pheromone land: An experimental setup for the study of ant-like robots.
Swarm Intelligence Symposium, 2007. SIS 2007. IEEE., pages 37-44, 2007.

IRIDIA. Iridia website, 2014. URL http://code.ulb.ac.be/iridia.
home. php.

Ali Abdul Khaliq, Maurizio Di Rocco, and Alessandro Saffiotti. Stigmer-
gic algorithms for multiple minimalistic robots on an RFID floor. Swarm
Intelligence, 8(3):199-225, 2014.

Thomas H. Labella, Marco Dorigo, and Jean-Louis Deneubourg. Division of
labor in a group of robots inspired by ants’ foraging behavior. ACM Trans.
Auton. Adapt. Syst., 1(1):4-25, September 2006. ISSN 1556-4665. doi:
10.1145/1152934.1152936. URL http://doi.acm.org/10.1145/1152934.
1152936.

79

http://chipmunk-physics.net/
http://code.ulb.ac.be/iridia.home.php
http://code.ulb.ac.be/iridia.home.php
http://doi.acm.org/10.1145/1152934.1152936
http://doi.acm.org/10.1145/1152934.1152936

[11]

[12]

[13]

[18]

[19]

Wenguo Liu, Alan F. T. Winfield, Jin Sa, Jie Chen, Lihua Dou, Wenguo
Liu, Alan F. T. Winfield, Jin Sa, Jie Chen, and Lihua Dou. Towards energy
optimization: Emergent task allocation in a swarm of foraging robots.

Alan G. Millard, James A. Hilder, Jon Timmis, and Alan F.T. Winfield. A
low-cost real-time tracking infrastructure for ground-based robot swarms.
In M. Dorigo et al., editor, Proceedings of 9th International Conference
on Swarm Intelligence (ANTS), volume 8667 of LNCS, pages 278-279.
Springer International Publishing, 2014.

Francesco Mondada, Michael Bonani, Xavier Raemy, James Pugh, Christo-
pher Cianci, Adam Klaptocz, Stphane Magnenat, Jean christophe Zufferey,
Dario Floreano, and Alcherio Martinoli. The e-puck, a robot designed for
education in engineering. In Proceedings of the 9th Conference on Au-
tonomous Robot Systems and Competitions, pages 59-65, 2009.

MVTech Software GmbH. Halcon library website. URL http://www.
mvtec.com/halcon/. Last checked on November 2013.

Shervin Nouyan, Alexandre Campo, and Marco Dorigo. Path formation in
a robot swarm — self-organized strategies to find your way home, 2008.

Paul J. O'Dowd, Alan F. T. Winfield, and Matthew Studley. The dis-
tributed co-evolution of an embodied simulator and controller for swarm
robot behaviours. In TROS, pages 4995-5000. IEEE, 2011.

Carlo Pinciroli, Vito Trianni, Rehan O’Grady, Giovanni Pini, Arne
Brutschy, Manuele Brambilla, Nithin Mathews, Eliseo Ferrante, Gianni
Di Caro, Frederick Ducatelle, Mauro Birattari, Luca Maria Gambardella,
and Marco Dorigo. ARGoS: a modular, parallel, multi-engine simulator for
multi-robot systems. Swarm Intelligence, 6(4):271-295, 2012.

Andreagiovanni Reina, Mattia Salvaro, Gianpiero Francesca, Lorenzo
Garattoni, Carlo Pinciroli, Marco Dorigo, and Mauro Birattari. Augmented
reality for robots: virtual sensing technology applied to a swarm of e-pucks.
Under review, 2015.

Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral
model. SIGGRAPH Comput. Graph., 21(4):25-34, August 1987. ISSN
0097-8930. doi: 10.1145/37402.37406. URL http://doi.acm.org/10.
1145/37402.37406.

Onur Soysal and Erol Sahin. Probabilistic aggregation strategies in swarm
robotic systems. In IEEE Swarm Intelligence Symposium, pages 325-332,
2005.

William M. Spears, Diana F. Spears, Jerry C. Hamann, and Rodney Heil.
Distributed, physics-based control of swarms of vehicles. Autonomous
Robots, 17:137-162, 2004.

Alessandro Stranieri, Ali Emre Turgut, Gianpiero Francesca, Andreagio-
vanni Reina, Marco Dorigo, and Mauro Birattari. Iridia’s arena tracking
system. Technical Report TR/IRIDIA/2013-013, IRIDIA, Université Libre
de Bruxelles, Brussels, Belgium, November 2013.

80

http://www.mvtec.com/halcon/
http://www.mvtec.com/halcon/
http://doi.acm.org/10.1145/37402.37406
http://doi.acm.org/10.1145/37402.37406

[23] Ken Sugawara, Toshiya Kazama, and Toshinori Watanabe. Foraging Be-
havior of Interacting Robots with Virtual Pheromone. In Proceedings of
2004 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pages 3074-3079, Los Alamitos, CA, 2004. IEEE Press.

[24] V. Trianni. Ewvolutionary Swarm Robotics. Evolving Self-Organising Be-
haviours in Groups of Autonomous Robots, volume 108 of Studies in Com-
putational Intelligence. Springer Verlag, Berlin, Germany, 2008.

81

	Introduction
	Swarm robotics
	Motivations
	Overview
	Virtual Sensing: state of the art
	Original contribution
	Thesis structure

	Arena Tracking System
	Halcon API Layer
	Arena Tracking System API Layer
	Detection and optimisation
	Configuration

	Arena Tracking System Application Layer
	Arena Tracking System Viewer
	Arena Tracking System Server

	Arena Tracking System Virtual Sensing Plugin
	ARGoS overview
	Virtual sensing with ARGoS
	Arena Tracking System Virtual Sensing Plugin Simulator Module
	Arena Tracking System Client
	Arena Tracking System Physics Engine
	ARGoS Virtual Sensor Server
	Virtual Sensors Simulator Module

	Arena Tracking System Virtual Sensing Plugin E-Puck Module
	Virtual Sensor Client
	Arena Tracking System Real E-Puck
	Virtual Sensors Real Robot Module

	Virtual Sensors implementation
	Control Interface
	Simulator
	Ground Virtual Sensor Simulator Module
	Light Virtual Sensor Simulator Module
	Pollutant Virtual Sensor Simulator Module

	Real Robot
	Virtual Sensor Real Robot Modules implementation

	Validation through real robots experiment
	Conclusions and future work
	Future work

