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Your work is going to �ll a large part of your life,

and the only way to be truly satis�ed

is to do what you believe is great work.

And the only way to do great work

is to love what you do.

If you haven't found it yet, keep looking.

Don't settle.

As with all matters of the heart, you'll know when you �nd it.

Steve Jobs

�Vedi aro amio osa ti srivo e ti dio

e ome sono ontento

di essere qui in questo momento,

vedi aro amio osa si deve inventare

per poteri ridere sopra,

per ontinuare a sperare.�
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Abstrat

Sub-grid sale (SGS) models are required in order to model the in�uene of the unresolved small

sales on the resolved sales in large-eddy simulations (LES), the �ow at the smallest sales of

turbulene.

In the following work two SGS models are presented and deeply analyzed in terms of auray

through several LESs with di�erent spatial resolutions, i.e. grid spaings.

The �rst part of this thesis fouses on the basi theory of turbulene, the governing equations of

�uid dynamis and their adaptation to LES. Furthermore, two important SGS models are presented:

one is the Dynami eddy-visosity model (DEVM), developed by [Germano et al., 1991℄, while the

other is the Expliit Algebrai SGS model (EASSM), by [Marstorp et al., 2009℄.

In addition, some details about the implementation of the EASSM in a Pseudo-Spetral Navier-

Stokes ode [Chevalier et al., 2007℄ are presented.

The performane of the two aforementioned models will be investigated in the following hapters,

by means of LES of a hannel �ow, with frition Reynolds numbers Reτ = 590 up to Reτ = 5200,

with relatively oarse resolutions. Data from eah simulation will be ompared to baseline DNS

data.

Results have shown that, in ontrast to the DEVM, the EASSM has promising potentials for �ow

preditions at high frition Reynolds numbers: the higher the frition Reynolds number is the better

the EASSM will behave and the worse the performanes of the DEVM will be.

The better performane of the EASSM is ontributed to the ability to apture �ow anisotropy at

the small sales through a orret formulation for the SGS stresses.

Moreover, a onsiderable redution in the required omputational resoures an be ahieved using

the EASSM ompared to DEVM. Therefore, the EASSM ombines auray and omputational

e�ieny, implying that it has a lear potential for industrial CFD usage.
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Abstrat

Versione Italiana

Nelle Simulazioni a grandi vortii (Large-eddy simulations, LES ), dei modelli per la sala di

sottogriglia (Sub-grid sale, SGS ) sono neessari per riprodurre l'in�uenza delle piú piole sale

della turbolenza, quindi non risolte, su quelle he invee vengono risolte direttamente.

Nel seguente lavoro sono presentati due modelli SGS, la ui auratezza verrá poi analizzata at-

traverso varie LES a diverse risoluzioni spaziali, e quindi diversi intervalli di di�erenziazione.

La prima parte della tesi si onentra sulla teoria della turbolenza, partendo dalle equazioni osti-

tutive della �uidodinamia, �no alla loro versione per LES.

Due importanti modelli SGS sono stati presentati: il primo é il modello Dynami eddy-visosity

model (DEVM), di [Germano et al., 1991℄, il seondo é il modello SGS Espliito Algebrio, Expliit

Algebrai SGS model (EASSM), di [Marstorp et al., 2009℄.

Saranno inoltre forniti dettagli aggiuntivi sull'implementazione del modello EASSM su un odie di

Fluidodinamia Computazionale (Computational Fluid Dynamis, CFD), Pseudo-Spettrale Navier-

Stokes sviluppato nel Linné Flow Centre del Dipartimento di Ingegneria Meania del KTH di

Stoolma, da [Chevalier et al., 2007℄.

I seguenti apitoli verteranno sull'analisi della stima di un �usso in un anale, hannel �ow, fatta

dai modelli desritti in preedenza, per un basso numero di Reynolds basato sull'attrito, Reτ = 590,

�no a Reτ = 5200. I dati ottenuti da iasuna simulazione verranno onfrontati on dati di Simu-

lazioni Numerihe Dirette (Diret Numerial Simulations, DNS ).

Dai risultati ottenuti si puó onludere he, di�erentemente dal modello DEVM, l'EASSM ha

promettenti potenzialitá nella stima del �usso ad alti numeri di Reynolds Reτ : piú alto é tale

numero, piú il modello EASSM dará risultati aurati, mentre le performanes del DEVM peggior-

eranno.

Le migliori performane del modello Espliito Algebrio possono senz'altro essere attribuite alla sua

abilitá di alolare in maniera orretta l'anisotropia alle piole sale tramite una formulazione or-

retta degli stress di sottogriglia, SGS.

In onlusione, data la ridotta quantitá di risorse omputazionali rihiesta per e�ettuare simulazioni

rispetto al DEVM, tale modello ombina auratezza e e�ienza omputazionale, tanto he puo'

essere preso in onsiderazione per un utilizzo nella CFD industriale.
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TESI - VERSIONE ITALIANA

Prova ad immaginare un pennahio di fumo fuoriusente da una pipa di un uomo pensante,

seduto su di una sedia a dondolo. Anhe in questo piolo aspetto della vita quotidiana la turbu-

lenza gioa un ruolo fondamentale.

Il noto �sio Rihard Feynman de�nii la turbulenza ome il piú importante problema della �sia

lassia he anora non é stato risolto.

Nel orso degli anni diversi sienziati hanno provato di omprendere il vero omportamento di tale

fenomeno, la ui omplessitá giae nelle equazioni he lo desrivono. Per un �uido Newtoniano,

la turbolenza é de�nita dalle equazioni di Navier-Stokes, un sistema di equazioni non-lineari alle

derivate parziali, la ui soluzione analitia anora non é stata ottenuta.

Tuttavia, degli approi alternativi per ottenere delle soluzioni sono stati sviluppati �nora: un

metodo onsiste nell'e�ettuare degli esperimenti: tramite gallerie del vento siamo in grado di ripro-

durre �ussi in svariate ondizioni, dalle situazioni lassihe di strato limite (moto su di una parete)

e �usso in un anale, �no a asi piú ompliati, ome il �usso attorno ad un orpo tozzo (ome una

automobile) e un orpo aerodinamio, ome un aeroplano.

Gli esperimenti hanno ome �ne prinipale l'analisi delle qualitá del �usso (ome pressione e velo-

itá) attraverso delle sonde e delle tenihe di visualizzazione, ome la Partile Image Veloimetry

(PIV).

Un esempio molto reente di analisi sperimentale di turbolenza lungo un ondotto a sezione irolare
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(il osiddetto pipe) ad alti numeri di Reynolds é senza dubbio il progetto CICLoPE, sviluppato da

[Talamelli et al., 2009℄ nell'Universitá di Bologna.

D'altro anto, un approio diverso é quello di sfruttare l'analisi numeria e passare alla implemen-

tazione del sistema N-S su odii di Fluidodinamia Computazionale.

Tuttavia, la soluzione numeria e ompleta fornita dalle Simulazioni Numerihe Dirette (DNS),

in grado di desrivere la turbolenza a qualsiasi sala, non é sempre possibile a ausa delle grandi

risorse omputazionali rihieste, in partiolare ad elevati numeri di Reynolds. Per questo motivo,

l'obiettivo prinipale del progetto CICLoPE é quello di omprendere a pieno il fenomeno della tur-

bolenza qualora non sia possibile ottenere dati tramite DNS.

Comunque, la tenia DNS non é la sola in grado di riprodurre numeriamente un preiso �usso.

Una seonda possibilitá si hiama la simulazione a grandi vortii (Large-eddy simulation - LES);

questa tenia é in grado di raggiungere, on opportuni modelli per le piole sale della turbolenza,

una soddisfaente auratezza omputazionale on una ragionevole quantitá di risorse omputazion-

ali.

A tale avviso, la tesi verterá sull'impiego e il test di due modelli innovativi per le piole sale

della turbolenza; in partiolare verrá messa a onfronto l'auratezza di iasun modello on l'altro,

rispetto anhe i risultati forniti da DNS. Le simulazioni sono state ompiute a tre diversi numeri

di Reynolds; in partiolare l'ultimo aso, di maggiore importanza, é relativo al massimo numero di

Reynolds raggiunto �nora da DNS.

La prima parte della tesi omprenderá la desrizione della turbolenza, sia da un punto di vista �sio

he matematio. Saranno onsiderate le equazioni di N-S per un �uido Newtoniano, on �usso in-

omprimibile e turbolento, in un anale.

Nel seondo apitolo la tenia LES sará espressa nei dettagli, mentre nel terzo verranno presentati

due modelli di sala sotto-griglia (sub-grid sale - SGS). Il quarto apitolo spiegherá dei dettagli te-

nii sull'implementazione delle simulazioni, dei due modelli, e della parallelizazione MPI utilizzata.

Nel quinto apitolo enni di metodi statistii per l'analisi della turbolenza saranno a�rontati. I

risultati verranno presentati nel sesto apitolo, e in�ne saranno fornite delle onlusioni nel settimo

apitolo.
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INTRODUCTION

Imagine a smoking plume oming out from a pipe of a thinking man, this is a typial everyday

life senario where turbulene plays a main role. The physiist Rihard Feynman de�ned it as the

most important unsolved problem of lassial physis.

Sientists along the years have tried to understand the real behaviour of this phenomenon, whih

gains its omplexity beause of the equations that desribes it. For a Newtonian �uid, turbulene

is traed by Navier-Stokes equations, a system of non-linear di�erential equations whose analytial

solution has not been provided yet.

Anyway, alternative approahes has been developed aross the years up to now: the most intuitive

and old way to understand �uid motion is to make experiments: through the employment of wind

tunnels we an reprodue the �ow in several onditions, from the basial hannel �ow and boundary

layer to the more omplex ones, like the �ow aross a blu� body (like a ar) or an airplane. This

tehnique involves the analysis of the �ow properties (like pressure and veloity) through probes

and advaned visualization tehniques suh as Partile Image Veloimetry (PIV).

A reent example whose aim is to desribe high Reynolds number turbulene aross a pipe is nev-

ertheless the CICLoPE experiment, a big projet developed by

[Talamelli et al., 2009℄ in University of Bologna.

The seond approah is thus to use numerial analysis in order to implement odes able to numeri-

ally solve Navier-Stokes system. However, the numerial and omplete solution of the �ow at any
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sale is not always ahievable beause of the limited omputational resoures. For that reason, the

main CICLoPE projet's aim is to understand turbulene phenomena further the Reynolds number

limit ditated by Diret Numerial Simulations.

However, DNS is not the only tehnique able to reprodue numerially a given �ow. A possible

seond hoie is alled Large-eddy simulation; this tehnique is able to reah a satisfying omputa-

tional auray with a reasonable amount of omputational resoures.

In this thesis Navier-Stokes equations for a Newtonian �uid and an inompressible �ow in a turbu-

lent hannel �ow senario will be desribed in the �rst hapter, together with a physial desription

of turbulene. In the seond hapter the Large-eddy simulation (LES) tehnique will be explained

in detail, while in the third one two LES sub-grid sale models are shown. In hapter four some

tehnial details of the implementation of the LES, of the models, with a partiular fous on MPI

parallelization are pointed out. Some theory about turbulene statistis will be faed in the �fth

hapter. Results will be displayed in hapter six; onlusions are given in hapter seven.
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CHAPTER

1

TURBULENCE

�Everybody is a genius. But if you judge a �sh by its ability to limb a tree,

it will live its whole life believing that it is stupid. (A.Einstein)�

1.1 Introdution to Turbulene

The phenomenon of turbulene is found in several appliations, for example, ombustion tumbling

in Internal Combustion Engines (ICEs), the wake of a Formula 1 ar, the jet spread by the nozzle

of a supersoni airraft engine.

In automotive engineering, for example, the study of aerodynamis around a ar involves the har-

aterization of a turbulent wall-bounded �ow, alled a Boundary Layer. It was intensively studied

by L.Prandtl in 1904; here turbulene is the main responsible for frition and wake drag.

In a solid roket motor nozzle, there's a generation of a plume, where turbulent motions of many

sales an be observed; from eddies and bulges omparable in size to the width of the plume to the

smallest sales the amera an resolve. Turbulene is of an unsteady, irregular, seemingly random
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1.1 Introdution to Turbulene 1. Turbulene

and haoti nature, sine the motion of every eddy is unpreditable.

Figure 1.1 � Large-eddy simulation of jet from a retangular nozzle. The retangular nozzle is

shown in gray with an isosurfae of temperature (gold) ut along the enter plane of the nozzle

showing temperature ontours (red/yellow). The aousti �eld is visualized by (blue/yan)

ontours of the pressure �eld taken along the same plane, from P.Moin.

While laminar �ow is a smooth and steady �ow motion, where any indued perturbations are

damped out due to the relatively strong visous fores, in turbulent �ows other fores may be ating

that ounterat the ation of visosity. If suh fores are large enough, the equilibrium of the �ow

is upset and the �uid annot adapt suddenly to visosity. The fores that upset this equilibrium

an inlude buoyany, inertia, or even rotation. In a hannel, visous and inertial fores ating on

the �uid are proportional to

Fv ∝ νL (1.1)

Fi ∝ V L2
(1.2)

where ν is the �uid visosity, and L and V are the harateristi veloity and length sales. If

the visous fores on the �uid are large ompared with others, any disturbanes introdued in the

�ow will tend to be damped out. On the other hand, if the inertial fores beome large, the �uid

will tend to break up into eddies. For greater inertial fores, the eddies will break up into even

smaller eddies. This will ontinue until we reah a small enough length sale (eddy size) on whih

the visous fores dominate.
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1. Turbulene 1.1 Introdution to Turbulene

The largest of these eddies will be onstrained by the physial size onstraints on the �ow (like

hannel diameter); the smaller eddies will be onstrained by the visous fores whih at strongest

at the smallest length sales. Therefore, one of the di�ulties assoiated with the predition of

turbulent �ow is that the range of length sales an be very large.

The desription of turbulene involves di�erent onepts like turbulene energy prodution, transfer

and dissipation. Rihardson's famous poem gives a good idea about turbulene:

Big whorls have little whorls

That feed on their veloity

And little whorls have lesser whorls

And so on to visosity (in the moleular sense)

This is the desription of the energy asade onept. It states that turbulent �ows an be on-

sidered as an agglomerate of eddies of di�erent sizes. Large energy ontaining eddies are unstable

and break down and transfer energy to smaller eddies. The proess goes on till the smallest one,

the Kolmogorov sale, where energy is dissipated into heat by visous e�ets.

This is the great onlusion that Kolmogorov made in 1941, and his �rst hypothesis is ompletely

based on that: at su�iently high Reynolds number, the statistis of the small sales are universal

and are determined solely by visosity, ν, and the energy dissipation rate, ε.

Using dimensional analysis, it is possible to derive the Kolmogorov length sale η, timesale tη

and veloity sale vη:

η =

(
ν3

ε

)1/4

, tη =

(
ν

ε

)1/2

, vη = (νε)1/4 (1.3)

Then, in aordane to Rihardson's poem, Kolmogorov made a seond hypothesis, based on

the fat that at su�iently high Reynolds number the statistis of the sales whih are su�iently

larger than η and muh smaller than the largest energeti sales are solely desribed by ε. This

hypothesis refers to the inertial range of sales. The kineti energy spetrum of these sales an be

desribed by

E(k) = Ckε
2/3k−5/3

(1.4)
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1.1 Introdution to Turbulene 1. Turbulene

Figure 1.2 � Turbulene energy vs wavenumber spetrum, from J. M. MDonough.

where k is the wave number and Ck ≈ 1.5 [Sreenivasan, 1995℄ is the Kolmogorov onstant.

From the last diagram, it's lear that turbulene has di�erent behaviours aording to the wavenum-

ber. Basing on these onepts, we an distinguish four di�erent regions:

1. the large sale, determined by the problem domain geometry;

2. the integral sale (Λ), whih is an O(1) fration (often taken to be ∼ 0.2) of the large sale;

3. the Taylor mirosale whih is an intermediate sale, found in the Kolmogorov's inertial

subrange (η ≪ 2π
κ ≪ Λ)

4. the Kolmogorov (or dissipation) sale (η) whih is the smallest of turbulene sales, the inner

sale

1.1.1 3D Nature of Turbulene

Turbulene is rotational and a three-dimensional phenomenon. It is haraterized by large

�utuations in vortiity, whih are responsible for vortex strething and length sale redution. These

harateristis are identially zero in two dimensions and these are the reasons why turbulene is

hard to desribe both analytially and numerially.

These three-dimensional dynamial mehanisms are highly omplex and nonlinear, however the �ow

an be assumed as bi-dimensional for large sale 2D strutures. These strutures play a dominant

role in the transport of salar material. Nevertheless, three-dimensional motions are not negligible

8



1. Turbulene 1.1 Introdution to Turbulene

in the smaller sale, where they are fundamental for mixing, most of all at moleular sales (e.g. in

ombustion problems).

1.1.2 Order & Randomness

Despite turbulene is haoti, it onsists of ompletely random motions that an aggregate in

oherent strutures. Typial examples are turbulent boundary layers and homogeneous turbulent

shear �ows, whih exhibit horseshoe, or hairpin vorties (see �gure 1.3) that appear to be inherent

harateristis. Free shear �ows like the mixing layer reveal oherent vortex strutures very learly,

again even for very high turbulene intensities.

The onepts of order and randomness have also led to some new analyti approahes and new

interpretations in the study of turbulene. The names of these disiplines are known as Chaos,

Bifuration Theory, and Dynamial Systems [MDonough, 2007℄. These theories have been faed

for the study of turbulene, in partiular in the area of hydrodynami stability and transition from

laminar �ow to turbulent one. Come to attention of mathematiians, physiists and engineers, these

phenomena is of a remarkable non-linearity, whih makes turbulene unpreditable and omplex to

desribe.

As a nonlinear problem, it an be seen that the solutions to these problems with the same nonlinear

equations with only slight di�erenes in initial onditions, will rapidly diverge. Therefore, a suitable

de�nition of turbulene must neessarily involve a omplex dynamial system with many degrees

of freedom.

Figure 1.3 � Hairpin vorties on a turbulent boundary layer, from a DNS by P. Shlatter.
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1.1 Introdution to Turbulene 1. Turbulene

1.1.3 The Reynolds number

Turbulene an be seen also a play between inertial fores and visous. Therefore the ratio

between them is ruial in order to haraterize a �ow. The Reynolds number plays that role, and

in turbulent �ows holds

Re
def

=
UL

ν
≫ 1. (1.5)

For many �ows of pratial importane (e.g. a �ow on airplane wings) the Reynolds number

an be on the order of Re ∼ 106. This means that the visous fores, that are moleular fores, at

in smaller sales than in the large ones. However, in any turbulent �ow the moleular visosity is

always important at some sale. As the �ow Reynolds number inreases, the region where visous

e�ets are remarkable, dereases in thikness and the veloity of the �ow hanges very rapidly from

zero at the surfae to the free-stream veloity at the outer edges of the boundary layer. Again, we

see the tendeny of the nonlinear inertial terms to generate disontinuities at high wavenumbers.

One more, the Reynolds number an be interpreted also in terms of length and time sale ratios.

Let's onsider a dut of width L, with a �ow veloity U . The time a �uid partile, with transverse

veloity u′ takes to ross the dut is alled the inertial time, Ti ∼ L/u′. At the same way, visous

fores have a time sale, Tv ∼ L2/ν.

In a turbulent �ow, the inertial time-sale will be mih less than the di�usive time-sale,

Tv
Tin

=
u′L

ν
> 1. (1.6)

1.1.4 Navier-Stokes equations

Turbulene behaviour is ompletely desribed by the governing equations of �uid mehanis,

i.e. the ontinuity and Navier-Stokes (N-S) equations. In ase of inompressible �ows, they are

expressed in the following way on non-dimensional form:

∂ui
∂xi

= 0;
∂ui
∂t

+
∂uiuj
∂xj

= − ∂p

∂xi
+

1

Re

∂2ui
∂xj∂xj

(1.7)

where Re is the harateristi Reynolds number of the �ow, ui, i = 1, 2, 3 are the veloity om-

ponents, p is the pressure. Note that Einstein's summation onvention is used here, where i = 1, 2, 3.

Together with the main �ow �eld, sometimes we need also to understand phenomenas that in-

volves the haraterisation of a passive salar.

10



1. Turbulene 1.1 Introdution to Turbulene

By de�nition, the word passive refers to the ondition that the resulting density di�erenes are so

small that the e�et from the salar on the �ow is negligible. So a passive salar an be heat or

temperature in a �ow or a onentration of a substane.

Therefore is also possible to use Navier-Stokes equations 1.7 to desribe the development of a pas-

sive salar, θ:

∂θ

∂t
+
∂uiθ

∂xj
=

1

RePr

∂2θ

∂xj∂xj
(1.8)

where Pr is the Prandtl number, de�ned as the ratio of momentum di�usivity to thermal

di�usivity:

Pr
def

=
µcp
k
.
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1.2 Numerial approahes to N-S solution 1. Turbulene

1.2 Numerial approahes to N-S solution

There are several numerial approahes to solve the system 1.7. The most intuitive one is alled

Diret Numerial Simulation, DNS, whereby the governing euquations are solved without making

any assumption, resolving all the sales from the smallest to the largest one. Therefore it provides

all the information of a turbulent �ow, without any approximations. Sine the omputational ost

of DNS sales with the Reynolds number is ∼ Re37/14 [Choi and Moin, 2012℄, this is not a�ordable

for pratial engineering analyses at high Reynolds number.

So a more pratial approah has been developed, based on the Reynolds' deomposition [Reynolds, 1894℄:

ui = ui + u′i, θ = θ + θ′ (1.9)

where the overline represents the ensemble averaged quantity, and u′i and θ
′
are the veloity and

salar omponents �utuations, respetively.

Using the Reynolds deomposition in equations 1.7 and 1.8, and taking an ensemble average of all

terms, the Reynolds-averaged N-S (RANS) equations are derived:

∂ui
∂t

+
∂uiuj
∂xj

= − ∂p

∂xi
+

1

Re

∂2ui
∂xj∂xj

−
∂u′iu

′

j

∂xj
,

∂ui
∂xi

= 0 (1.10)

∂θ

∂t
+
∂uiθ

∂xj
=

1

RePr

∂2θ

∂xj∂xj
−
∂u′jθ

′

∂xj
(1.11)

Note that here turbulene is solely desribed by the Reynolds stress tensor u′iu
′

j and salar

�ux vetor u′jθ. These terms have to be properly modelled in order to lose the problem. Eah

model involves approximations whih limits its auray. Therefore, this approah provides only

an approximate simulation of the mean �ow.

The �rst simple model was developed by Boussinesq in 1877. It is based on an eddy visosity

formulation

u′iu
′

j −
2

3
Kδij = −2νTSij , Sij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(1.12)

where K = u′iu
′

i/2 is the mean turbulent kineti energy, Sij is the mean strain-rate tensor, the

symmetri part of the mean veloity gradient tensor, νT is the eddy visosity we use to model as the

produt of a ertain sale with length Λ of the eddies and veloity V . Using dimensional analysis

the eddy visosity an be roughly estimated as

12



1. Turbulene 1.2 Numerial approahes to N-S solution

νT ∼ ΛV. (1.13)

Eddy visosity is then modeled aordingly to some harateristis of the �ow.

For instane, algebrai models (or zero equation models) relate length Λ and veloity V to the

mean veloity �eld and the �ow geometry harateristis like veloity gradient, distane to the wall,

thikness of the shear layer et. These kind of models work quite well for the spei� ase that they

are designed for, e.g. attahed boundary layers and di�erent types of thin shear layers. However,

they don't give satisfatory results for general ases.

Better results an be ahieved using one-equation models, they typially solve an additional

transport equation for the turbulent kineti energy, K, or the eddy visosity, νT . One-equation

models give good results for attahed boundary layers and other thin shear layer �ows, but for

omplex �ows. A good example is the Spalart-Allmaras [Spalart and Allmaras, 1992℄ model (SA),

that solves for the eddy visosity. This is very suitable for aeronautial appliations and atually

is the standard model for external aerodynamis CFD analyses at Boeing.

Two-equations models solve two transport equations for two quantities that an be used for

determining the length and veloity sale needed to ompute the eddy visosity. The most ommon

are K− ε and K−ω models, where transport equations for the turbulent kineti energy, K and for

the dissipation rate, ε or the turbulene frequeny ω are solved. Nowadays the implementation of

these models in ommerial CFD odes (e.g., ANSYS Fluent) presents additional orretions that

might be dependent on non-loal quantities suh as the wall distane. One important and most

reent example is the Menter SST K − ω model [Menter, 1994℄, whih is suitable for separated

�ows; it is the standard turbulene model used at Airbus.

Despite eddy visosity two-equations models are still dominating in industrial CFD, there's a big de-

mand for more aurate predition of omplex �ow situations, inluding onset of separation, highly

urved �ows, rapidly rotating �ows et. In these situations, eddy visosity Boussinesq' hypothesis

(1.12) does not desribe the real physis well. An e�et of deorrelation aused by rotation ours

at high rotation rates, and generally the alteration of prodution to dissipation ratio is a diret

onsequene of that.

This phenomena, for instane, is an important aspet whih eddy visosity models does not take

into aount, beause the model is insensitive to system rotation.

A better alternative to these models are the Reynolds Stress Models. They solve transport

equations for eah Reynolds stress omponents derived from the modelled N-S equations, in order

to model the Reynolds stress tensor. This approah is more physially oherent, but it's ompu-

13



1.2 Numerial approahes to N-S solution 1. Turbulene

tationally more expensive and ompliated than the others. However, those di�erential Reynolds

stress models an be simpli�ed using the weak equilibrium assumption by Rodi [Rodi, 1992℄. Details

about this will be shown in 2. The algebrai relation is impliit in Reynolds stresses, but there are

some expliit solutions ([Pope, 1975℄; [Gatski and Speziale, 1993℄; [Wallin and Johansson, 2000℄).

These models are alled Expliit Algebrai Reynolds Stress Models (EARSM).

In partiular, in the EA model [Wallin and Johansson, 2000℄ the �ow anisotropy (aij) is desribed

as an expliit expression in terms of the (normalized) mean strain and rotation tensors with addi-

tional salar parameters. This leads to a omparable omputational e�orts, as ompared to eddy

visosity two-equation models.

There's also an interesting analogy for the salar θ modeling. Taylor developed an analogue way to

formulate the eddy di�usivity model (EDM) for the mean turbulent salar �ux u′iθ
′
[Taylor, 1915℄

u′iθ
′ = −DT

∂θ

∂xi
, DT =

νT
PrT

(1.14)

where DT is the eddy di�usivity oe�ient and PrT the turbulent Prandtl number.

In an analogous way to K − ε model, Nagano & Kim [Kim, 1988℄ developed the Kθ − εθ model.

The time sale τθ = Kθ/εθ, is used to ompute DT ∼ Kτθ.

Still, model 1.14 is not ompletely orret. Aording to Bathelor, eddy di�usivity assumes an

alignment between the u′iθ
′
vetor and the mean salar gradient, so it has to be onsidered itself a

tensor. The following expression will hold then:

u′iθ
′ = −Dij

∂θ

∂xj
(1.15)

Where the eddy di�usivity tensor an be rewritten as [Daly and Harlow, 1970℄

Dij = −Cθτθu′iu
′

j

∂θ

∂xj
(1.16)

and Cθ is a model oe�ient.

In the same way, salar an be modelled with an Expliit Algebrai model, in this ase alled the

Expliit Algebrai Salar Flux Models (EASFM).

A trade-o� between auray and omputational e�ort is Large-eddy simulations (LES) of turbulent

�ows. In LES there's a separation of sales, in the sense that only large-sale eddies are resolved,

while the remaining small sales (whih are alled sub-grid sales, SGS) are modelled, one the

resolved sales have been omputed. The separation of sales is generally done using a grid. To-

gether with �ltering, LES fouses its turbulene predition auray on a time-dependent solution

14



1. Turbulene 1.2 Numerial approahes to N-S solution

of the Navier-Stokes equations. This is therefore a physially-oherent approah sine turbulene

is unstationary.

Despite more omputationally expensive than RANS, LES gives a better desription of turbulene,

and unlike DNS, is able to provide a good resolution of the �ow in an aeptable amount of om-

putational time. Reently, that time has been estimated by Choi & Moin [Choi and Moin, 2012℄,

to sale as ∼ Re26/14.

A fair and simpli�ed distintion between DNS and LES an be notied having a look to the vortial

strutures, for both of the ases, in �gure 1.4. At a �rst glane, we an see that in LES vortial

strutures are underestimated and fewer, ompared to the DNS, whih is able, instead, to give a

omplete and detailed desription of them.

The �rst LES model was developed by Smagorinsky [Smagorinsky, 1963℄ for meteorologial appli-

ations using an eddy visosity assumption in the SGS model. This model has been improved later

on by Germano [Germano et al., 1991℄ introduing the dynami proedure, whih gives a orret

asymptoti near-wall behaviour of the eddy visosity, and improved transitional �ows preditions.

However, eddy-visosity models are not anisotropi, that is, they are not able to apture �ow

anisotropy well, a feature of the �ow, whih is not negletable near the walls.

For that reason several non-linear models (whih are of ourse anisotropi), have been developed

reently, and some of them will be desribed in detail in hapter 3. In partiular, the aim of this

thesis is to test the auray in �ow predition of the Expliit Algebrai SGS model (EASSM),

developed by Marstorp [Marstorp et al., 2009℄.
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1.2 Numerial approahes to N-S solution 1. Turbulene

a)
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Figure 1.4 � Vortial strutures in turbulent hannel �ow at Reτ = 590, visualized by

isosurfaes of λ2, olored by the veloity magnitude, from a) DNS by P.Shlatter b) LES

simulation with the Expliit Algebrai model .
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1. Turbulene 1.3 A partiular ase: Turbulent Channel Flow

1.3 A partiular ase: Turbulent Channel Flow

Mathematial models for �uid dynamis have been already de�ned. In order to solve the models,

a mathematial problem needs to be de�ned in a proper time and spae domains.

Aording to the spae domain, in a di�erent geometry, physial quantities and the �ow will behave

in a di�erent way. For this reason we need to set a partiular ase, so that the �ow an be univoally

lassi�ed.

In this thesis we are onsidering the ase of Channel Flow, with the following properties:

� turbulent, in the sense that the Reynolds number is su�iently high suh that the regime

an be assumed as turbulent;

� fully developed, so that veloity statistis are onstant along x-axis. In other words, the

�ow is statistially stationary and statistially one-dimensional [Pope, 2000℄, with veloity

statistis only variable along the y-axis. In other words:

〈u〉 = U = U(y), 〈v〉 = V = 0, u′v′ = u′v′(y) (1.17)

Channel �ow belongs to the wall-bounded shear �ows lass: �ow motion is ontained between

two solid surfaes. Therefore, no-slip onditions are imposed on the walls, where the �uid veloity

is assumed to be zero. The following piture shows the qualitative behaviour of the veloity.

Figure 1.5 � Channel Flow mean veloity pro�le, with u′
�utuations ontour plot in the

bakground, from Lee & Moser DNSs at Reτ = 1000 [Lee and Moser, 2014℄
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1.3 A partiular ase: Turbulent Channel Flow 1. Turbulene

Furthermore, a statistially symmetri �ow geometry w.r.t. the mid-plane y = δ is on�rmed by

experiments; therefore the statistis of (u, v, w) at y are the same as those of (u,−v, w) at 2δ − y.

Reynolds number is always used to haraterize the �ow, in this ase we will refer to two

partiular Reynolds numbers,

Reτ
def

=
uτδ

ν
(1.18)

Reb
def

=
uδ

ν
(1.19)

where 1.18 is based on the frition veloity uτ , de�ned as follows:

uτ
def

=
√
τW /ρ (1.20)

τW is the mean wall shear stress and δ is the hannel half-width.

The bulk veloity u in 1.19, is de�ned as

u =
1

2δ

2δ∫

0

〈u〉dy (1.21)

For a turbulent hannel �ow, the following result holds:

Reτ ≈ 0.166Re0.88b (1.22)

Note that the spei�ed formula 1.22 will be used for the derivation of Reb, whih will be on-

sidered as an input quantity in the omputations.

As previously stated, hannel �ow is a wall-bounded shear �ow. In a boundary layer or a wall-

bounded shear �ow the harateristi length for streamwise development is muh larger than the

ross-stream extent of the region with signi�ant veloity variation.

So its behaviour an be observed studying a two-dimensional steady �ow senario with the thin

shear layer approximation [Johansson and Wallin, 2012℄. This approximation states that the har-

ateristi streamwise development length, L is muh larger than δ, the shear layer thikness. As we

will on�rm later, in hannel �ow there will be a layer, whose thikness is small ompared to the

harateristi length, whereby visous e�ets frition depends on.

Thanks to this approximation, the Navier-Stokes equations an be simpli�ed to the thin shear layer

equation:
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1. Turbulene 1.3 A partiular ase: Turbulent Channel Flow

U
∂U

∂x
+ V

∂U

∂y
= −1

ρ

dP0

dx
+

∂

∂y

(
ν
∂U

∂y
− u′v′

)

︸ ︷︷ ︸
total shear stress

(1.23)

where P0 if the pressure at the wall. Note that all the veloities in 1.23 are mean values, and

the only omponent responsible for turbulene is the last one on the right-hand-side, whih is alled

the Reynolds stress. Together with the visous stress, the Reynolds stress generates the total shear

stress.

In partiular, using the hannel �ow assumptions given in 1.17, the thin-shear layer equation be-

omes

0 = −1

ρ

dP0

dx
+

d

dy

(
ν
dU

dy
− u′v′

)
(1.24)

Integrated in the wall-normal diretion it reads

0 = −1

ρ

dP0

dx
y + ν

dU

dy
− ν

dU

dy

∣∣∣∣∣
y=0︸ ︷︷ ︸

u2
τ

−u′v′ + 0 (1.25)

At the enterline (y = δ) the total shear stress is zero, therefore we have the following ondition:

1

ρ

dP0

dx
= −u

2
τ

h
(1.26)

meaning that the pressure gradient is related to the frition veloity and the width of the hannel.

Plugging this relation in 1.25, we an see that the total shear stress develops linearly aross the

hannel:

ν
dU

dy
− u′v′ = u2τ

(
1− y

δ

)
(1.27)

whih in wall units beomes

dU+

dy+
− u′v′

+
=

(
1− y+

δ+

)
(1.28)

where the quantities y+ and δ+ are saled by the inner (visous) lengthsale

y+
def

=
y

l∗
=
yuτ
ν

Considerations. Depending on the region onsidered, equation 1.28 assumes di�erent forms.

In the outer layer, where visous e�ets are negligible, the left-hand-side of 1.28 beomes
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1.3 A partiular ase: Turbulent Channel Flow 1. Turbulene

− u′v′
+
= 1− y+

δ+
(1.29)

On the other hand, lose to the wall, y/δ << 1, visous e�ets will be not negligible anymore,

therefore the following relation holds

dU+

dy+
− u′v′

+ ≈ 1 (1.30)

that is ompatible with the law of the wall, sine there's not in�uene of the Reynolds number.

It's a onstant stress region:

U+ def

=
U

uτ
= Φ1(y

+) (1.31)

u′v′
+
= Φ2(y

+) (1.32)

Moreover, for large Reynolds numbers, we an also assume that there is an overlap region for

wall distanes y,

ℓ∗ << y << δ

where δ is boundary layer thikness and ℓ∗ the visous lengthsale. This is a partiular region

where outer and inner layer desriptions hold simultaneously.

Derivating the following 1.31 w.r.t. y+ we'll have an expression whih is independent of lengthsale.

Therefore holds

y+
dΦ1(y

+)

dy+
≡ const (1.33)

so that, one integrated, it gives a logarithmi law :

Φ(y+) =
1

κ
lny+ +B (1.34)

where κ = 0.38 is the Kármán onstant and B=4.1, aording to observations. In the following

�gure 6.22 a mean veloity diagram is shown, together with the law of the wall and the log law, at

Reτ = 5200.
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vs y+, at Reτ = 5200, from [Lee and Moser, 2014℄, �.� : law of the
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As we an see from the previous piture, the �rst veloity region alled visous sublayer, follows

the law of the wall, and it extends out to approximately y+ = 5. Despite the absolute magnitude

of the turbulent �utuations are small in this region, the relative (wall-parallel) intensities are

large. As we inrease y+, we will have a bu�er region, where the maximum turbulene prodution

is at y+ = 12 and the maximum turbulene intensity at y+ = 15. Log-layer starts between

50 < y+ < 200, and it extends to y/δ ≈ 0.15, where δ is the hannel half-width. Beyond the log

layer, there's �nally the outer region.

The maximum turbulene prodution and Reynolds stress.

The turbulene prodution in the near-wall region of wall-bounded �ows an be formulated as

P+ = −u
′v′

u2τ

dU+

dy+
≃
(
1− dU+

dy+

)
dU+

dy+
(1.35)

The latter approximation is valid if visous e�ets are small. From this we an derive that the

maximum prodution is found where

dU+

dy+
=

1

2
(1.36)

whih leads to

P+
max =

1

4
(1.37)

Therefore the turbulent prodution is maximum whereas both visous and Reynolds stresses are

exatly the same, that is in the near-wall region; it generally happens when y+ ≈ 12. Moreover, it's
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1.3 A partiular ase: Turbulent Channel Flow 1. Turbulene

also possible to estimate where the maximum Reynolds shear stress ours. Deriving equation 1.28

w.r.t. y+, and denoting the Reynolds shear stress as τ , normalized by inner units, the following

relation holds:

d2U+

dy+2
+
dτ+

dy+
= − 1

δ+
(1.38)

if we also assume that the Reynolds stress is maximum in the log-region, taking the derivative

1.34 w.r.t y+ we have

d2U+

dy+2 = − 1

κy+2 (1.39)

meaning that the maximum of the Reynolds stress is at

y+max =

√
h+

κ
=

√
Reτ
κ

(1.40)

Then, in terms of outer sale we an say that the position where the Reynolds stress reahes its

maximum is proportional to Re
−1/2
τ :

ymax

h
= κ−1/2Re−1/2

τ ∝ Re−1/2
τ (1.41)

This also an be proved using DNS results at di�erent frition Reynolds numbers. An example

of Reynolds stress pro�les is shown in �gure 1.7.
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Figure 1.7 � −u′v′ normalized by uτ vs y/δ, from [Lee and Moser, 2014℄, · · · : Reτ = 550,

· · · : Reτ = 1000, · · · : Reτ = 5200
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The maximum Reynolds shear stress an be derived as well, using the relation 1.38 and 1.40,

together with the log-law:

τ+max = 1− y+max

h+
− 1

κy+max
= 1− 2√

κh+
= 1− 2√

κReτ
. (1.42)

We already have talked about turbulene and its prodution in a qualitative sense, but, in order

to desribe it properly and to understand the phenomenon in a omplete and detailed sense, a fous

on the three omponents of the veloity, they are u′, v′ and w′
, is neessary. As we'll see in the

next hapters, the omputations of these omponents play an important role in the validation of a

LES model.

In partiular, it's possible to derive the Reynolds stress tensor making the square of the root-mean-

square value of these three omponents:

u′iu
′

j =




u′u′ u′v′ u′w′

u′v′ v′v′ v′w′

u′w′ v′w′ w′w′


 . (1.43)

In the following piture all the omponents of the Reynolds stress are shown. Important to un-

derline is the relation between the maximum turbulene prodution, and the peaks in the Reynolds

stress pro�les.
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Anisotropy of the �ow. A fundamental aspet, whih is strongly relevant for the omplete

understanding of the aforementioned work, is the onept of anisotropy in turbulene.

From a physial point of view, anisotropy is a property of the �ow whih is not aligned with the

veloity diretion and the veloity gradient.

For a fully-developed hannel �ow the quantities u′w′
and v′w′ = 0 are zero. The Reynolds stress

tensor beomes:

τij = −ρ




τ11 u′v′ 0

u′v′ τ22 0

0 0 τ33


 . (1.44)

in ase of isotropi turbulene, the diagonal terms are equal, i.e. τ11 = τ22 = τ33 and all the

deviatori terms are zero. Therefore, for a spei� LES model, the ability to apture the anisotropy

of the �ow onsists in reproduing di�erent diagonal terms, i.e. u′u′ 6= v′v′ 6= w′w′
.
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CHAPTER

2

LARGE EDDY SIMULATION

�Anxiety is the hand maiden of reativity. (T.S. Eliot)�

Reynolds-averaged Navier Stokes (RANS) equations-based simulations are able to solve only

the mean veloity �eld of the �ow. RANS simulations rely heavily on modelling sine all turbulent

motions are modelled and therefore they are not always aurate.

In Diret Numerial Simulations (DNS), the unsteady Navier-Stokes equations are solved without

using models. Therefore, DNS is very aurate. However, the omputational power demand for

DNS is too large for industrial appliations. Therefore, a new method whih ombines a reasonable

�ow predition auray with a limited amount of omputational ost has been strongly required

in reent years.

Large-eddy simulation (LES) represents an alternative that �ts those requirements. This partiular

method employs a separation of sales [Rasam, 2014℄: a �ltering operation deomposes the veloity

�eld (generally together with a salar one) into a resolved part, represented by the omputational

grid, and an unresolved part, whih is modelled through physially realisti models. In other words,

LES ould be onsidered a 2-step method:
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2.1 The �ltering operation 2. Large Eddy Simulation

1. the solution of the large sales of turbulene on a relatively oarse grid ;

2. the modelling of the smaller unresolved sales, the so-alled subgrid-sales (SGS), based on

the resolved veloity �eld.

2.1 The �ltering operation

Step 1. Let's onsider now a general time and spae-dependent funtion φ(x, t). The �ltering

operation onsists of a onvolution of a kernelG∆ on that funtion (Leonard, 1975), over the domain

D of the grid:

φ̃(x, t) =

∫

D

φ(x, t)G∆(x− ξ)dξ (2.1)

There are several options for the �lter: the ommonly used ones are spetral uto�, box and

Gaussian �lters. In spetral odes, spetral �lters are the most suitable ones for �ltering, sine they

at on a spetral spae (where the ode works on) and are more preise. Figure below shows the

di�erene between the di�erent kinds of �ltering methods.

Figure 2.1 � �.� : Sharp-spetral �lter, �- : Gaussian �lter, � � : Box �lter, r = ξ, from

[Pope, 2000℄

Remark. If φ(x, t) = φ(x) the operator G∆ is homogeneous. Moreover, the �ltered veloity
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2. Large Eddy Simulation 2.2 Governing equations of LES and the losure problem

�eld ũ(x, t) is not a deterministi variable, implying that

˜̃u(x, t) 6= ũ(x, t), ũ′(x, t) 6= 0.

2.2 Governing equations of LES and the losure problem

The �ltering operation leads to the �ltered Navier-Stokes equations:

∂ũi
∂xi

= 0;
∂ũi
∂t

+
∂ũiũj
∂xj

= − ∂p̃

∂xi
+

1

Re

∂2ũi
∂xj∂xj

−
∂τSGS

ij

∂xj
(2.2)

here τij is the SGS stress tensor. Leonard [Leonard, 1974℄ proposed a possible deomposition

of non-linear terms (i.e. the SGS stress tensor), in the following way:

τSGS
ij = ũiuj − ũiũj = Lij + Cij +Rij (2.3)

where

Lij = ˜̃uiũj − ũiũj, (2.4)

Cij = ˜̃uiu′j − ˜̃uju′i (2.5)

Rij = ũ′iu
′

j , (2.6)

and u′i = ui − ũi.

In the Leonard deomposition Rij is the Reynolds subgrid tensor and represents the interation

between subgrid-sales; Cij is the ross-stress tensor and aounts for large vs small sale intera-

tions; �nally Lij , the Leonard tensor, gives the interations between the large sales.

τSGS
ij is the unknown additive part in the �ltered Navier-Stokes equation, and therefore needs to

be modelled.

2.3 An example of a losure: the Eddy Visosity Model (EVM)

Step 2. There are several ways to model the subgrid sale stress tensor. As previously written,

the �rst and simple model was developed by Smagorinsky [Smagorinsky, 1963℄, for meteorologial

appliations. It originates from the RANS model, taking into aount Boussinesq's hypothesis. The

EVM onsists of a linear formulation of the deviatori part of τSGS
ij ,
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2.4 Subgrid-sale dissipation 2. Large Eddy Simulation

τSGS
ij =

τkk
3
δij

︸ ︷︷ ︸
isotropic

−2 νSGS︸ ︷︷ ︸
EV M

contribution

S̃ij (2.7)

where

νSGS = (Cs∆̃)2|S̃| (2.8)

S̃ij and |S̃| are the resolved strain-rate tensor and its magnitude, respetively. ∆̃ is the �lter

sale, νSGS is the SGS eddy visosity, and Cs is the model oe�ient, the Smagorinsky oe�ient.

Note that νSGS is a onstant rather than dependent of diretion. Aording to the reent paper

of Spalart [Spalart, 2015℄, in a simple shear �ow with two of the axes aligned with the veloity

diretion and the gradient diretion, suh that the strain tensor Sij have zero and equal diagonal

terms, this model predits onstant and equal diagonal terms of the Reynolds stress tensor, i.e.

τ11 = τ22 = τ33.

Therefore EVM an be onsidered an isotropi model, sine νSGS doesn't take into aount any

e�et of anisotropy.

As we'll disuss further, this model an be improved using a dynami proedure, where the Cs

oe�ient is omputed during the simulation.

2.4 Subgrid-sale dissipation

An important aspet of LES is the impat of SGS on the resolved sales. In other words, LES

preditions are strongly dependent on the ontribution of τSGS
ij tensor on the resolved kineti energy

K = ũiũj/2. Consider the kineti energy equation

∂K

∂t
+

∂

∂xj
(ũjK)

︸ ︷︷ ︸
advection

= − ν
∂ũi
∂xj

∂ũi
∂xj︸ ︷︷ ︸

viscous
dissipation

− ∂

∂xi

(
ũip̃+ ν

∂K

∂xi
− ũiτij

)

︸ ︷︷ ︸
diffusion

+ τSGS
ij S̃ij︸ ︷︷ ︸
−SGS

dissipation

(2.9)

Sine LES by de�nition, are arried out for large sales, and the grid sale is muh larger than

Kolmogorov one, the visous dissipation term is so small so that it is negligible ompared to the

others. From a physial point of view, di�usion term transfers energy in spae, but not in a volume-

averaged sense [Rasam, 2014℄. For that reason, an additional term is therefore required in order to

reprodue the orret energy transfer from the large to the smaller sales. SGS dissipation overs

that role
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2. Large Eddy Simulation 2.4 Subgrid-sale dissipation

Π = −τSGS
ij S̃ij (2.10)

The mean SGS dissipation behaves as a sink term, while the instantaneous one gives negative

(baksatter) and positive (forward satter) ontributions in the transfer.

The following piture shows the SGS dissipation (red line), together with the dissipation of the

resolved sales (blue line); their total ontribution is shown by the red line.
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Figure 2.2 � Dissipation of the resolved sales, ε, together with the SGS dissipation, Π, and

their sum � at inreasing resolutions, from LES at Reτ = 590 shown in hapter 6.

The previous onsideration leads to the fat that an investigation on SGS dissipation behaviour

is very important in an auray assessment of LES.

Based on this priniple, several investigations have been arried out by Chow &Moin [Chow and Moin, 2003℄,

Ghosal [Ghosal, 1996℄ and Kravhenko & Moin [Kravhenko et al., 1996℄.

Geurts & Fröhlih [Geurts and Fröhlih, 2002℄ introdued the SGS ativity parameter, de�ned as

follows

s =
<εSGS>

<εSGS>+<εµ>
(2.11)

where <εµ> = 2µS̃ijS̃ij is the visous dissipation.

With inreasing resolution, SGS dissipation dereases while visous one inreases, therefore s be-

omes smaller. A remarkable aspet is that, the oarser is the resolution , the bigger is s . This

an be proved having a look at 2.11: if we use a oarse grid, the resolution will be smaller suh

that visous dissipation will be negligible, and s will reah its maximum unity value. This ours

when the uto� �lter of the LES is well in the inertial subrange and the visous dissipation is rather
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2.4 Subgrid-sale dissipation 2. Large Eddy Simulation

small.

Starting from the previous de�nition, Geurts & Fröhlih [Geurts and Fröhlih, 2002℄ de�ned an

error norm as

δE =

∣∣∣∣∣
ELES − ẼDNS

ẼDNS

∣∣∣∣∣ (2.12)

where ELES is the mean resolved kineti energy integrated over the �ow domain, while ẼDNS

is the same quantity, omputed from �ltered DNS data instead, with the same �lter width as in

the LES.

The auray assessment onsists of omputing the relation between δE and s: in the piture

below [Rasam et al., 2011℄ it is shown that the relative error δE drops almost exponentially with

dereasing s (i.e. high resolution); results refer to a LES with the expliit algebrai SGS stress

model (EASSM) [Marstorp et al., 2009℄ at Reτ = 934, for six di�erent resolutions. This result

shows that with inreasing resolution the SGS ontribution beomes smaller and the auray of

the LES higher. In other words, the resolution of the LES must be su�iently high to obtain an

aeptable solution.

Figure 2.3 � Normalized error δE of the resolved kineti energy, integrated over the hannel

width [Rasam et al., 2011℄ w.r.t. the �ltered DNS value vs s. Arrow points to inreasing

resolution ases.
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CHAPTER

3

SUBGRID-SCALE STRESS MODELS

FOR LES

�Logi will get you from A to B.

Imagination will take you everywhere. (A.Einstein)�

In this hapter two di�erent LES models are going to be analyzed; the �rst one is an improvement

of the lassi Smagorinsky model, the Dynami EVM.

The seond one is a partiular non-linear model using an expliit algebrai formulation for the SGS

stress tensor.

In the following setion a deomposition of the SGS stress tensor is given.

3.1 Tensorial polynomial formulation of the SGS stress tensor

A useful approah that leads to several non-linear models is based on a deomposition of the

SGS stress tensor, through a polynomial expansion.
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3.1 Tensorial polynomial formulation of the SGS stress tensor3. Subgrid-sale stress models for LES

Similar to RANS approah for Reynolds stress losures, SGS stress tensor an be expressed in terms

of strain and rotation rate tensors.

Lund & Novikov [Lund and Novikov, 1993℄ expressed the deviatori part of the SGS stress tensor

τSGS,d
ij as a general tensorial funtion of the �ltered strain-rate S̃ij and rotation-rate Ω̃ij tensors,

the Kroneker delta δij and the �lter size ∆̃ as

τSGS,d
ij = τSGS

ij − 1

3
τkkδij = f(S̃ij , Ω̃ij , δij , ∆̃) (3.1)

where

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
, Ω̃ij =

1

2

(
∂ũi
∂xj

− ∂ũj
∂xi

)
. (3.2)

As Pope [Pope, 1975℄ showed the Reynolds stresses in RANS, τij an be formulated as a tensor

polynomial with ten elements of di�erents powers of S̃ij and Ω̃ij and their ombination.

Coe�ients are funtions of S̃ij and Ω̃ij invariants or both, and they are derived using the Cayley-

Hamilton theorem:

τ
d =

10∑

k=1

βkT
(k), (3.3)

so that the ten polynomial tensors are:

T
(1) = S̃

T
(2) = S̃

2 − 1
3IISI

T
(3) = Ω̃

2 − 1
3IIΩI,

T
(4) = S̃Ω̃− Ω̃S̃

T
(5) = S̃

2
Ω̃− Ω̃S̃

2

T
(6) = S̃Ω̃

2 + Ω̃
2
S̃− 2

3IV I

T
(7) = S̃

2
Ω̃

2 + Ω̃
2
S̃
2 − 2

3V I

T
(8) = S̃Ω̃S̃

2 − S̃
2
Ω̃S̃

T
(9) = Ω̃S̃Ω̃

2 − Ω̃
2
S̃Ω̃

T
(10) = Ω̃S̃

2
Ω̃

2 − Ω̃
2
S̃
2
Ω̃

and βk are salar oe�ients that are funtions of �ve tensorial invariants

IIS = tr(S̃2), IIΩ = tr(Ω̃2),

IIIS = tr(S̃3), IV = tr(S̃Ω̃2),
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3. Subgrid-sale stress models for LES 3.2 The dynami proedure for EVM (DEVM)

V = tr(S̃2
Ω̃

2).

Thus, equation 3.3 is the most generla formulation for τd in terms of S̃ij and Ω̃ij .

3.2 The dynami proedure for EVM (DEVM)

Regarding to the model oe�ient Cs for the eddy-visosity model, it has been demonstrated

that a dynami omputation of Cs (that is, during the simulation), an signi�antly improve the

�ow predition auray.

The omputation of Cs is done by taking into aount the resolved sales, aording to a sale

invariane assumption.

The ruial point of this dynami proedure is the so-alled Germano identity. Let's now denote a

test �lter, ∆̂ = 2∆̃, ∆̃ = 3
√
Ω, where Ω is the volume of a omputational ell. The Germano identity

is de�ned as follows:

Lij = Tij − τ̂ij , (3.4)

where Tij is the SGS stress tensor �ltered at the test �lter level, and Lij = ̂̃uiũj − ̂̃uî̃uj Then

Lij is applied in this way:

Lij −
1

3
Lkkδij = −2CsMij (3.5)

where

Mij = ∆̂2|̂̃S|̂̃Sij − ∆̃2̂|S̃|S̃ij . (3.6)

The system of equations 3.5 is over-determined. In order to have a unique value of Cs Germano

ontrated it in:

Cs = −1

2

〈LijS̃ij〉
〈S̃ijMij〉

(3.7)

Moreover, to make Cs variations smoother, a spatial averaging 〈.〉 has been applied.

Together with a better performane of the EVM, the Germano identity gives a orret asymptoti

near-wall behaviour for νSGS .

It has also been shown that is possible to apply Germano identity for the dynami omputation of

PrSGS in the EDM [Moin et al., 1991℄, improving performanes in the salar predition.
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3.3 Expliit Algebrai SGS stress model 3. Subgrid-sale stress models for LES

3.3 Expliit Algebrai SGS stress model

Anisotropi e�ets of turbulene are important in several onditions: examples are near-wall

�ow behaviour and boundary layes separation ases with urvature, swirl, rotation.

As it was disussed before, the Dynami Smagorinsky model is an isotropi model, in the sense that

the SGS visosity νSGS is diretion-independent.

Therefore, in order to apture �ow anisotropy, DEVM is not suitable.

In the same spirit as Reynolds stress-based models are neessary for RANS, non-linear SGS models

are needed for LES.

A reent example of those is the nonlinear dynami SGS stress model by Wang & Bergstrom

[Wang and Bergstrom, 2005℄, whih onsists of three base tensors and three dynami oe�ients.

One of the terms in the model is similar to the DEVMmodel. Wang & Bergstrom [Wang and Bergstrom, 2005℄

showed that the dynami non-linear model predits a more realisti tensorial alignment of the SGS

stress than eddy-visosity models and an provide for baksatter without lipping or averaging of

the dynami model parameters.

The model here disussed is alled Expliit Algebrai SGS stress model (EASSM), was devel-

oped by Marstorp [Marstorp et al., 2009℄ and is similar to the EARSM by Wallin & Johansson

[Wallin and Johansson, 2000℄, whih is based on a modelled transport equation of the Reynolds

stresses and on the assumption that the advetion and di�usion of the Reynolds stress anisotropy

are negligible.

Analogous to the Reynolds stress anisotropy tensor we de�ne the SGS stress anisotropy tensor as

aij =
τij

KSGS
− 2

3
δij (3.8)

For simpliity, we'll onsider τSGS
ij = τij . Moreover, KSGS = (ũiui − ũiũi)/2 is the SGS kineti

energy.

In a non-rotating frame the transport equation for aij reads

KSGS
Daij
Dt︸ ︷︷ ︸

advection

−
(
∂D

τij
ijk

∂xk
− τij
KSGS

∂DKSGS

k

∂xk

)

︸ ︷︷ ︸
diffusion

= − τij
KSGS

(P − ε) + Pij − εij +Πij , (3.9)

where −DKSGS

k = −Dτij
ijk/2 is the sum of the turbulent and moleular �uxes of the SGS stress

and SGS kineti energy, respetively.

Although the prodution of the SGS stress Pij and SGS kineti energy P = Pii/2 are given in

terms of τij and �ltered gradients, the SGS pressure strain Πij and SGS dissipation rate tensor εij
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3. Subgrid-sale stress models for LES 3.3 Expliit Algebrai SGS stress model

need to be modelled. Those terms are

Pij = −τik
∂ũj
∂xk

− τjk
∂ũi
∂xk

= KSGS

[
− 4

3
S̃ij − (aikS̃kj + S̃ikakj) + (aikΩ̃kj − Ω̃ikakj)

]
, (3.10)

Πij =
2

ρ
(S̃ijp− S̃ij p̃), (3.11)

εij = 2ν

(
˜∂ui
∂xk

∂uj
∂xk

− ∂ũi
∂xk

∂ũj
∂xk

)
(3.12)

and their modelling leads to [Launder et al., 1975℄

Πij = −εc1aij+KSGS

[
3

5
S̃ij+

9c2 + 6

11

(
aikS̃kj+S̃ikakj−

2

3
akmS̃mkδij

)
+
7c2 − 10

11
(aikΩ̃kj−Ω̃ikakj)

]
,

(3.13)

εij = ε
2

3
δij , (3.14)

where c1 is a relaxation oe�ient and c2 = 5/9 is a parameter of the model for the rapid part

of Πij , whih depends diretly on hanges in the resolved veloity gradients, and ε = εii/2.

Like in Wallin & Johansson's [Wallin and Johansson, 2000℄ RANS model, the derivation of the

EASSM model involves the weak equilibrium assumption, whih implies that the advetion and

di�usion terms of the Reynolds stress anisotropy are negleted. In order to simplify the model,

together with the weak equilibrium assumption, we assume also that P = ε. This leads to

0 = Pij − εij +Πij . (3.15)

Using the modelling given by 3.13 and 3.14 in 3.15 we have

c1aij = τ∗

[
− 11

15
S̃ij +

4

9
(aikΩkj − Ωikakj)

]
(3.16)

note that τ∗ = KSGS/ε is the SGS time sale.

Finally, equation 3.16 has been solved using an ansatz

aij = β1τ
∗S̃ij + β4τ

∗
2

(S̃ikΩ̃kj − Ω̃ikS̃kj), (3.17)

where β1 and β4 are model parameters and funtions of the �ltered stress and strain-rate. Using

that ansatz, equation 3.16 beomes
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τij = KSGS

[
2

3
δij + β1τ

∗S̃ij + β4τ
∗
2

(S̃ikΩ̃kj − Ω̃ikS̃kj)

]
, (3.18)

whih is the main EASSM model formulation. Using normalized strain and stress-rate tensors

it an be rewritten as

τij =
2

3
δijKSGS + β1KSGSS̃

∗

ij︸ ︷︷ ︸
eddy−viscosity

+ β4KSGS(S̃
∗

ikΩ̃
∗

kj − Ω̃∗

ikS̃
∗

kj)︸ ︷︷ ︸
anisotropy of
SGS stresses

. (3.19)

The seond term on the right-hand-side is an eddy visosity term responsible for SGS dissipation,

whereas the third term reprodues anisotropi e�ets of SGS stresses and gives a disalignment of

the SGS stress and resolved strain-rate tensors. β1 and β4 oe�ients have the form:

β1 = −33

20

9c1/4

[(9c1/4)2 + |Ω̃∗|2]
, β4 = −33

20

1

[(9c1/4)2 + |Ω̃∗|2]
(3.20)

where |Ω̃∗| =
√
2II∗Ω =

√
2τ∗2Ω̃ikΩ̃ki ≤ 0 is the SGS time sale-normalized seond invariant.

The unknown quantities KSGS and τ∗ an be dynamially or non-dynamially omputed.

The equation 3.19 an also be related to the tensorial formulation of the SGS stress tensor, given

in the previous setion : the �rst term on the right-hand side reprodues the isotropi part of the

SGS stress, while the seond and third terms an be onsidered as two polynomial tensors, for the

ase k = 1 and k = 4.

The dynami version of the EASSM involves Germano's dynami proedure; here the SGS kineti

energy is modelled in terms of the squared Smagorinsky veloity sale ∆|S̃ij | [Yoshizawa, 1986℄:

KSGS = c∆2|S̃ij |, (3.21)

where ∆̃ is the �lter sale; |S̃ij | = (2S̃ij S̃ij)
1/2

, and c is a dynami parameter, omputed in the

following way:

̂̃uiũi − ̂̃ui ̂̃ui = c
̂̃
∆

2

2
̂̃
Sij
̂̃
Sij − c∆̃22

̂̃
SijS̃ij . (3.22)

The quantities with .̂ are test-�ltered quantities. In this ase the equation is not over-

determined, beause the number of �lter operations needed for the dynami onstant omputation

is smaller than in DEVM.

One c is omputed, it is possible to obtain the oe�ient c1 and the SGS time sale τ∗:
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3. Subgrid-sale stress models for LES 3.3 Expliit Algebrai SGS stress model

c1 = c′1
√
c′3

c1.25

(2Cs)2.5
, τ∗ = c′3

1.5C1.5
k

√
c

2Cs
|S̃|−1

(3.23)

where c′1 = 3.12, c′3 = 0.91, Ck = 1.5 is the Kolmogorov onstant and Cs = 0.1.
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CHAPTER

4

IMPLEMENTATION IN A CFD CODE

�Patiene is the ompanion of wisdom. (St.Augustine)�

In this hapter the implementation of the previous DEVM and EASSM models in a CFD ode

will be explained, together with a partiular fous on pseudospetral methods and their features.

4.1 The need for auray: spetral methods

The aim of this thesis is to prove the e�etiveness in predition of the �ow properties, given a

spei� turbulene model. In order to measure the auray of it, �rst we have to ensure that the

only auray error that ould be generated is given by the model, i.e. the auray is independent

from the main ode and the numerial method used. To �t this requirement, we need our ode

to have a numerial sheme whih is not a�eted by numerial errors (e.g. trunation errors),

therefore the use of the lassi �nite-di�erene (FD) method or �nite-elements method (FEM) is

not reommended for this purpose.

While �nite-elements methods hop the interval in x into a number of sub-intervals, and hoose the
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4.1 The need for auray: spetral methods 4. Implementation in a CFD ode

φn(x) to be loal funtions whih are polynomials of �xed degree, non-zero only over a ouple of

sub-intervals, spetral methods use global basis funtions in whih φn(x) is a polynomial of high

degree whih is non-zero over the entire omputational domain, exept at isolated points.

One more, spetral methods, even if they generate algebrai equations with full matries ( in

ontrast with the FD, whih uses sparse ones), the high order of the basis funtions gives high

auray for a given number of degrees of freedom N .

Despite spetral methods are the most useful when the geometry of the problem is fairly smooth and

regular, when fast iterative matrix-solvers are used, spetral methods an be muh more e�ient

than FEMs and FDs shemes. Therefore, for the ase of hannel �ow, where the geometry is simple,

they represents the best hoie in terms of auray.

4.1.1 Auray and memory saving properties

Finite di�erene methods approximate the unknown u(x) by a sequene of overlapping polyno-

mials whih interpolate u(x) at a set of grid points. The derivative of the loal interpolant is used

to approximate the derivative of u(x). The result onsists of a weighted sum of the values of u(x)

at the interpolation points. The following piture shows how the polynomials are in the di�erent

methods.

Figure 4.1 � Spetral methods and �nite di�erene shemes

To ensure a omputational ease, together with ompleteness and rapid onvergene of the solu-

tion, there are several alternatives for the hoie of the basis funtions.

One of the best ombinations used is to employ Fourier series in x and z diretions, where the

solution is assumed to be periodi; along the y diretion, instead, the solution won't be periodi,

and Chebyhev polynomials represents the best disguise for a spetral method [Boyd, 2001℄ there.

For this reason, a ode with suh ombination like this one is alled a Pseudo-Spetral method.
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4. Implementation in a CFD ode 4.2 The SIMSON ode

Let's onsider now a 3-points FD method (like a seond-order one), and a N-point pseudo-spetral

method. It has been proved that, to equal the auray of the pseudospetral proedure for N = 10,

one would need a 10th order �nite di�erene or FEM with a O(h10) error.

Inreasing N , the pseudospetral method have two positive aspets: the interval h between grid

point beomes smaller, and the error rapidly dereases even if the order of the method is �xed;

whih is not true, sine the order of the method is not �xed. The ombination of these two aspets

makes this method extremely e�ient: passing from N = 10 to N = 20, the error beomes O(h20),

with also a new smaller h, sine h is O(1/N). Summarizing it holds that

Pseudospetral error ≈ O[(1/N)N ]

whih means that the error dereases faster than any �nite power of N beause the power

in the error formula is always inreasing, too. We an desribe this behaviour as in�nite order

or exponential onvergene. This feature makes the pseudospetral method the best hoie when

many deimal plaes of auray are needed.

This is not the only one bene�t of using spetral method, though. Pseudospetral methods are also

memory-minimizing, this means that the number of degrees of freedom required in eah dimension

by them are about half as the ones needed by a fourth-order FD method. This leads to the fat

that high-resolution problems ould be solved satisfatorily by spetral methods, when a three-

dimensional seond order FD ode would fail beause of the need for eight or ten times as many

grid points would exeed the ore memory of the available omputer.

4.2 The SIMSON ode

To perform the LES, the SIMSON ode has been used. SIMSON is a pseudo-Spetral Solver for

InoMpreSsible bOuNdary layer �ows, developed by Chevalier [Chevalier et al., 2007℄. In Simson

hannel and boundary layer solvers have been ombined together with many additional features

developed over the years. The ode an ompute either diret numerial simulations (DNSs) or

large-eddy simulations (LESs); in LES mode, di�erent subgrid-sale models are available, inluding

the DEVM. The EASSM has been reently implemented.

The ode is ompletely written in Fortran 75/90 and an be run with distributed or with shared

memory parallelization using the Message Passing Interfae (MPI) or OpenMP.

The wall-parallel diretions are disretized using Fourier series and the wall-normal diretion using

Chebyshev series. Time integration is performed using a third order Runge-Kutta method for the

advetive and foring terms, and a Crank-Niolson method for the visous terms.
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4.2 The SIMSON ode 4. Implementation in a CFD ode

4.2.1 Theory

The SIMSON ode is an inompressible Navier-Stokes solver. In a rotating referene frame, N-S

equations are, written in tensor notation:

∂ui
∂t

= − ∂p

∂xi
+ ǫijkuj(ωk + 2Ωk)−

∂

∂xi

(
1

2
ujuj

)
+

1

Re
∇2ui + Fi,

∂ui
∂xi

= 0. (4.1)

where (ω1, ω2, ω3) = (χ, ω, ϑ) are the vortiities along streamwise, wall-normal and spanwise

oodinates. Ωk is the angular veloity of the oodinate frame around axis k. The body fore

F = (F1, F2, F3) is used for numerial purposes and to introdue external disturbanes to the �ow.

Taking the divergene of the momentum equations we derive the Poisson equation for the pressure

∇2p =
∂

∂xi
[ǫijkuj(ωk + 2Ωk) + Fi︸ ︷︷ ︸

Hi

]−∇2

(
1

2
ujuj

)
(4.2)

Applying the Laplae operator to the momentum equations for the wall-normal veloity one

�nds

∂∇2v

∂t
=

(
∂2

∂x2
+

∂2

∂z2

)
H2 −

∂

∂y

(
∂H1

∂x
+
∂H3

∂z

)
+

1

Re
∇2v (4.3)

for numerial purposes, this equation an be rewritten as a system of equations:





∂φ
∂t = hv +

1
Re∇2φ

∇2v = φ,
(4.4)

where

hv =

(
∂2

∂x2
+

∂2

∂z2

)
H2 −

∂

∂y

(
∂H1

∂x
+
∂H3

∂z

)
(4.5)

Moreover, taking the url of the momentum equations, an equation for the normal vortiity an

be derived as well:





∂ω
∂t = hω + 1

Re∇2ω

hω = ∂H1

∂z − ∂H3

∂x

(4.6)

The system of equation above an be solved with the same numerial routine. One the normal

veloity v and vortiity ω have been alulated, the other veloity omponents an be omputed

from the inompressibility onstraint and the wall-normal vortiity de�nition.
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4.2.2 Numerial method

Time disretization. The time disretization used by Simson an be explained using the

following equation:

∂ψ

∂t
= G+ Lψ (4.7)

ψ represents φ or ω. L is the linear di�usion and is impliitly disretized by a Crank-Niolson

(CN) sheme, while G is expliitly disretized by a third order three or four stage Runge-Kutta

(RK3) sheme. The overall time disretization an be shown in the following way

ψn+1 = ψn + anG
n + bnG

n−1 + (an + bn)

(
Lψn+1 + Lψn

2

)
, (4.8)

where an and bn are onstants hosen aording to the expliit sheme.

Using the sheme 4.8 in 4.7, the previously written equations beome:





(
1− an+bn

2Re ∇2

)
φn+1 =

(
1 + an+bn

2Re ∇2

)
φn + anh

n
v + bnh

n−1
v ,

∇2vn+1 = φn+1,

(4.9)

and

(
1− an + bn

2Re
∇2

)
ωn+1 =

(
1 +

an + bn
2Re

∇2

)
ωn + anh

n
ω + bnh

n−1
ω . (4.10)

Horizontal disretization. The horizontal disretization has been made using a Fourier

expansion, assuming that the solution is periodi. Eah variable is assumed to be spanwise and

streamwise-dependent, that is

u(x, z) =

Nx
2

−1∑

l=−(Nx
2

−1)

Nz
2

−1∑

m=−(Nz
2

−1)

û(αl, βm)ei(αlx+βmz)
(4.11)

where αl = 2πl/xL and βm = 2πm/zL and Nx and Nz are the number of Fourier modes in the

two diretions. Note that k2 = α2+β2
. Using this disretization the equations 4.9 an be rewritten

as





(
1− an+bn

2Re (D2 − k2)

)
φ̂n+1 =

(
1 + an+bn

2Re (D2 − k2)

)
φ̂n + anĥ

n
v + bnĥ

n−1
v ,

(D2 − k2)v̂n+1 = φ̂n+1,

(4.12)
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where D stands for the derivative in wall-normal diretion.

Wall-normal disretization. The normal disretization has been done through Chebyhev's

polynomials. Using an example of seond order onstant oe�ient ordinary di�erential equation

(D2 − κ)ψ̂ = f̂ , ψ̂(0) = γ−1, ψ̂(yL) = γ1. (4.13)

This is solved expanding ψ, its seond derivative, f̂ and the boundary onditions in Chebyhev

series:

ψ̂(y) =

Ny∑

j=0

ψ̃jTj(y), (4.14)

D2ψ̂(y) =

Ny∑

j=0

ψ̃
(2)
j Tj(y), (4.15)

f̂(y) =

Ny∑

j=0

f̃jTj(y), (4.16)

ψ̂(1) =

Ny∑

j=0

ψ̃j = γ1, (4.17)

ψ̂(−1) =

Ny∑

j=0

(−1)jψ̃j = γ−1, (4.18)

where Tj are the Chebyhev polynomials of order j and Ny the highest order of polynomial

inluded in the expansion.

Non-linear terms. Non-linear terms of LES equation, ũj
∂ũi

∂xj
, are known to be omputationally

expensive anyhow. Despite the omputation of the whole veloity �eld is performed in a Fourier

spae through Fast Fourier Trasforms (FFTs), i.e. in the omplex spae (C), the non-linear terms

are alulated oming bak to real spae, R . Then the following omputation will be �nished in

Fourier spae.
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4.2.3 MPI parallelization

An important proess able to boost performanes of the CFD ode and derease omputational

time is the parallelization of the ode.

In serial omputations the problem is broken into a disrete series of instrutions, whih are exeuted

sequentially one after another on a single proessor.

Figure 4.2 � Serial omputation sheme

Di�erent from serial runnings, in parallel omputing:

� A problem is broken into disrete parts that an be solved onurrently;

� Eah part is further splitted in to a series of instrutions;

� Instrutions from eah part exeute simultaneously on di�erent proessors;

� eah proessor send/reeive information to/from the other ones through MPI ommuniation,

therefore

� An overall ontrol/oordination mehanism is employed.
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Figure 4.3 � Parallel omputation sheme

For parallelization purposes, the omputational problem should be able to be broken apart into

disrete piees of work that an be solved simultaneously, and exeute multiple program instrutions

at any moment in time. Of ourse, the problem is expeted to be solved in less time with multiple

ompute resoures than with a single ompute resoure. Typially, ompute resoures an be

either a single omputer with multiple proessors/ores or an arbitrary number of suh omputers

onneted by a network. There's also a way to quantify how muh omputational time an be saved

using parallel omputing. Amdahl's Law states that potential program speedup is de�ned by the

fration of ode (P) that an be parallelized:

speedup =
1

1− P
(4.19)

If none of the ode an be parallelized, P = 0 and the speedup = 1 (no speedup), while if all of

the ode is parallelized, P = 1 and the speedup is in�nite (in theory).

If 50% of the ode an be parallelized, speedupmax = 2, meaning the ode will run twie as fast.

Introduing the number of proessors performing the parallel fration of work, the relationship an

be modeled by:

speedup =
1

P/N + S
(4.20)

where P is the parallel fration, N the number of proessors and S the serial fration.

The diagrams in the next page show how parallelization improves performanes in terms of speedup.
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4.2.3.1 MPI ommuniation between proesses

One the problem has been splitted into several proessors, the neessity of oomuniation be-

tween proesses ours. In other words, we need proessors to send and reeive data between them,

in order to run a distributed simulation.

Communiation ours when a portion of one proess' address spae is opied into another proess'

address spae. This operation is ooperative and ours only when the �rst proess exeutes a send

operation and the seond proess exeutes a reeive operation. On the sender's side, the way to

desribe data is to speify a starting address, a length of the message (in bytes), the destination

address, and a tag. The tag is needed for the mathing between messages, it is an information (an

integer) to let the proess ontrol whih messages it reeives.

On the other side, the reeiver will need to reeive the address and the length of the plae the data

has to be plaed, together with the tag, the soure and the length of the message reeived. The

message interfae therefore will be:

send (address, length, destination, tag)

and

rev (address, length, soure, tag, atlen).

Figure 4.4 � Parallel omputing performanes diagrams [Laure, 2014℄

In SIMSON ode parallelization is made using Message-Passing Interfae protool. In parti-

ular, what MPI parallelization does is to split the omputational grid into several parts, equal to

the number of available proessors; then every CPU proessor (or ore) omputes its part at the

same time. There are several ways the omputational domain an be split to; however the most
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ommon ones are 1D parallelization and 2D parallelization. In the following simulations both of

the parallelization methods are used; in the �gure below both types of them are shown.

Figure 4.5 � Parallel omputing distributions [Gropp et al., 1999℄

In this work two versions of SIMSON ode have been used. The former one is 1D parallelized,

therefore the domain is splitted in retangular proessors, only in 1 diretion, whih is along the z

axis (on�guration CYCLIC,*) .

The latter one is the 2D parallelization: in SIMSON ode it involves the domain splitting in x

(nprox is the number of proessors in that diretion) and z (nproz) and the total number of

proesses is then npro = nprox * nproz. Therefore the BLOCK,BLOCK on�guration has been

implemented.

To arry on simulations, several superomputers that belong to the Swedish National Infrastruture

for Computing (SNIC) will be used. For the last and more time-onsuming simulation, Lindgren

superomputer will be employed. A photo of it is shown below.

Figure 4.6 � Lindgren superomputer at PDC, KTH
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CHAPTER

5

POSTPROCESSING TOOLS FOR

TURBULENCE

�However di�ult life may seem,

there is always something you an do and sueed at. (S. Hawking)�

One the simulation has been run, the output generated is a turbulent veloity �eld, and has to

be postproessed using several tools; some of them ome from statistial analysis. The results are

the mean values, two-point time statistis, i.e. orrelations, and the so-alled vortial strutures.

5.1 Mean Values

The simplest statistial property is the mean value, or �rst moment. The mean value of a random

variable at a partiular spatial loation an be derived by averaging the long time measurement of

that variable. Considering the measurement period T we have:
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〈u〉 = lim
T→∞

1

T

t0+T∫

t0

u(t)dt. (5.1)

where 〈u〉 indiates the mean value of a random variable u (the �ow veloity in this ase), and

t0 is the measurement starting time. This time average only makes sense if 5.1 is independent of

t0 and T for large T ; in this ase we would say that the integral onverges and the �ow an be

assumed as statistially steady and therefore is meant as a stationary proess.

However, this integral doesn't onverge in some situations. In suh ases the mean �ow behaviour

an be desribed by the ensemble average, whih is taken on a �nite volume V , and de�ned as:

〈u〉 = lim
V →∞

1

V

∫

V

u(x)dxdydz. (5.2)

The integration is therefore performed over a volume at one instant of time. Note that the

previous relation holds only if the �ow is spatially-independent. In a disrete volume domain we

an refer to a number of samples, N , and the equation 5.3 beomes

〈u〉 = lim
N→∞

1

N

N∑

1

u(x). (5.3)

Sine we will onsider a fully-developed �ow, in our spei� ase we will assume the mean value

as the quantity of the �ow whih is averaged both in time, and spae. Thus, the �ow will be

assumed to be statistially stationary, i.e. mean veloities keep onstant along the x and z-axis.

5.2 Root-mean squared Values, rms

Turbulene has to be quanti�ed also in its strength. In turbulene, the root-mean squared oper-

ation onsists in the square root of the of the mean value of the squared of the veloity �utuations,

u′i:

ui,rms =
√

〈u′i(t)2〉 (5.4)

on a disrete domain

ui,rms =

√√√√ 1

N

N∑

i=1

(u′i)
2

(5.5)
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5.3 Vortial strutures

Up to now we have desribed turbulene in a statistial way. However, a useful method to

analyze vortial strutures is well appreiated.

Between di�erent methods that have been developed during the past years, we an �nd several

riteria to identify vorties, but the most preise and oherent one is the λ2 strutures method.

Aording to the paper of Jeong & Hussain [Jeong and Hussain, 1995℄, the λ2 method uses the

strain and rotation-rate tensors to determine the existene of a loal pressure minimum due to

vortial motion; the vortex ore is de�ned as a onneted region with two negative eigenvalues of

S
2 +Ω

2
.

Sine S
2 +Ω

2
is a symmetri tensor, it has only real eigenvalues.

Calling the eigenvalues λ1, λ2 and λ3, with λ1 ≥ λ2 ≥ λ3, the requirement for a pressure minimum

is that λ2 < 0 within the vortex ore. In partiular,

tr(S2 +Ω
2) = λ1 + λ2 + λ3. (5.6)

Considering a general veloity gradient for a planar �ow:

∇u =


 a b

c −a




(5.7)

whih an be rewritten in

S
2 +Ω

2 =


 a2 + bc 0

0 a2 + bc




(5.8)

λ2 is the seond eigenvalue of that tensor. The ondition previous ited requires that λ2 < 0,

therefore a2 + bc < 0.
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CHAPTER

6

RESULTS

�Continuous e�ort - not strength or intelligene - is the key to unloking our potential.

(W.Churhill)�

In this hapter results of several LES at di�erent Reτ will be analyzed. The substantial di�er-

enes between DEVM and EASSM model will be ommented upon and speial attention will be

paid to anisotropy e�ets of the latter model. In all the simulations, the �ow domain is a retan-

gular box. Streamwise and spanwise dimensions are varied with the frition Reynolds number. A

sketh of the �ow domain is shown in �gure 6.1
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6.1 LES at Reτ = 590 6. Results

Figure 6.1 � Sketh of the �ow domain used for LESs.

The resolution of the LES is de�ned in terms of grid spaings; ∆+
x , ∆

+
y , ∆

+
z are the grid spaings

in physial spae in streamwise, wall-normal and spanwise diretions respetively, in wall units; in

x and z diretions they are de�ned as

∆+
x =

lx
Nx

Reτ , ∆+
z =

lz
Nz

Reτ (6.1)

where Nx and Nz are the number of Fourier modes, lx and lz the lengths of the omputational

box, in x and z diretions, and Reτ is the Reynolds number based on frition veloity.

The following simulations were started using an initial �eld, generated with random �utuations.

Then they have been run for some time, in order to reah a statistially stationary state. One the

simulations have been �nished, statistis of the �ow has been olleted for a ertain time period.

6.1 LES at Reτ = 590

In this setion LES results of turbulent hannel �ow at the bulk Reynolds number orresponding

to the DNSs of Moser & Kim at Reτ = 590, are presented. In order to show anisotropi e�ets of

the EASSM, the related results have been ompared with the isotropi DEVM model. Three ases,

with asending order of resolution, are presented. For these simulations,a omputational box with

a streamwise and spanwise size of 2πδ and πδ respetively, where δ is the hannel half width, has

been hosen. The bulk Reynolds number is Reb = uδ/ν = 10935 and the frition Reynolds number

is Reτ = 593 in the DNS.

The parameters of the LES are given in table 6.1. Sine Reb in the LESs is the same as in the DNS,

Reτ an vary. The table shows that Reτ depends on the SGS model and the resolution.
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Table 6.1 � Channel Flow simulations, for Reτ = 590. The �rst three ases have been

omputed with the Dynami Smagorinsky model (DEVM) while the latter ones refer to the

expliit algebrai SGS model (EASSM). Nx, Ny, Nz are the numbers of Fourier modes in the

streamwise, wall-normal and spanwise diretions, respetively. ∆y+,min and ∆y+,max are

the minimum and maximum grid spaings in wall-normal diretion. τw/τw,DNS is the ratio

between the wall shear stress given by the LES and the one from DNS.

Case SGS model Nx ×Ny ×Nz ∆+
x ∆+

z
∆+

y

min∼max Reτ
τw

τw,DNS

DS0 DEVM 64× 65× 64 58 29 0.68 ∼ 27.69 564 0.92

DS1 DEVM 96× 97× 72 38 25 0.31 ∼ 18.91 578 0.97

DS2 DEVM 128× 97× 96 29 19 0.31 ∼ 18.91 583 0.99

EA0 EASSM 64× 65× 64 57 29 0.70 ∼ 28.65 584 0.99

EA1 EASSM 96× 97× 72 39 26 0.32 ∼ 19.47 595 1.03

EA2 EASSM 128× 97× 96 29 19 0.31 ∼ 19.20 587 1.00

Table 6.2 � Channel Flow simulations for Reτ = 590. MPI parallelization details. The �rst

three ases have been omputed with the Dynami Smagorinsky model (DEVM) while the

latter ones refer to the expliit algebrai SGS model (EASSM)

Case SGS model n (no. proessors) N (no. nodes) Superomputer

DS0 DEVM 16 2 Abisko

DS1 DEVM 16 2 Abisko

DS2 DEVM 12 1 Povel

EA0 EASSM 12 1 Povel

EA1 EASSM 16 1 Povel

EA2 EASSM 16 1 Povel
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6.1 LES at Reτ = 590 6. Results

Convergene riterion. In order to obtain reliable results, the onvergene of the solution

has been heked in two ways:

1. the stationarity of the turbulent kineti energy;

2. the approah to steady-state of the total shear stress.

After several time units, t = 2000, the diagram below ensures the steady-state of the solution,

sine the total shear stress assumes the shape of a perfetly-straight line.
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Figure 6.2 � Deviatori part of the Reynolds stress pro�le in wall units, together with the

total shear stress (in dashed line). −− : EA0 −− : DS0

Resolution study. Before investigating the main harateristis of the �ow, an important

aspet to look at is the e�et of the spatial resolution, whih an be heked by studying the ratio

between the frition at the wall for the LES ase and the one for the DNS ase, i.e. τwall/τwall,DNS.

This ratio an be readily derived from the Reτ of eah ase,

τwall

τwall,DNS
=

ρu2τ
ρu2τ,DNS

=
Re2τ

Re2τ,DNS

(6.2)

This value should be one is the LES perfetly agrees with DNS.
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Figure 6.3 � Variation of averaged wall shear stress, normalized with the DNS value, with

resolution. −△− : EASSM ases, −©− : DEVM ases, − : DNS

From �gure 6.3 we an see the di�erent trends of the two models adopted. While the DEVM gives

a monotoni behaviour as the resolution inreases, the EASSM onvergene of the τwall towards the

DNS pro�le is not monotoni. Overall the EASSM gives the best preditions in omparison with

the DNS.

Pro�les. The mean veloity pro�les are shown in �gure 6.22. EASSM preditions are learly

more aurate than DEVM at any resolution; the di�erene in results beomes remarkable as soon

as we go further from the inner region and we approah the outer layer, towards the entreline.

The DEVM overpredits the mean veloity pro�le at oarser resolutions, while EASSM approahes

fairly well the DNS veloity pro�le also at the oarsest resolution.

57



6.1 LES at Reτ = 590 6. Results

PSfrag replaements

y+

〈u〉+

10−1 100 101 102
0

5

10

15

20

25

PSfrag replaements

y+

〈u〉+

10−1 100 101 102
0

5

10

15

20

25

Figure 6.4 � Mean veloity pro�les in wall units at inreasing resolutions. − : EA0, − · − :
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The omponents of Reynolds stress tensor are shown in �gure 6.5. The presene of the walls

and the shear fores the �ow to be highly anisotropi. Therefore, �utuations along streamwise

diretion are muh bigger than in the wall-normal and spanwise diretions. Here the DEVM shows

a good predition of the u′ omponent, while the estimation of the other omponents v′ and w′

is quite inaurate ompared to the EASSM. This is reasonable, sine the DEVM is an isotropi

model and doesn't properly model the SGS anisotropy.

By ontrast, we an onlude that the EASSM gives a good predition of the anisotropy, whih is

well modelled through the SGS model. A lose-up of the deviatori omponent of the Reynolds

stress pro�le is shown in �gure 6.6. Both models seem to give a good performane. The e�ets of

inreasing resolution are highlighted in the �gure: the arrow points to asending resolution ases.
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: DS2, − : DNS
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6.1 LES at Reτ = 590 6. Results

The following diagram shows that EASSM and DEVM have a similar predition also of the ratio

turbulene prodution P and the turbulent dissipation ε, and they present results lose to DNS.

Regarding EASSM, an important aspet to remark is the P = ε assumption in the SGS model.

However, this assumption is not valid for the resolved sales.
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Figure 6.7 � Turbulent prodution-dissipation ratio at inreasing resolutions. − · − : EA1,

−− : EA2, − · − : DS1, −− : DS2, − : DNS
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6. Results 6.1 LES at Reτ = 590

SGS Anisotropy e�ets. Let's perform now a deep analysis of the ontribution of the sub-grid

sale model to predition performane. First of all, a distintion between the resolved quantities

and the SGS ones must be de�ned. In order to fous on anisotropy predition, we will analyze

the deviatori part of the Reynolds stress. Let's all the resolved part of this quantity τr,+12 , and

the SGS ontribution (given by the spei� model), τSGS,+
12 . Therefore, the total predition of the

quantity will be

τ+12 = τr,+12 + τSGS,+
12 (6.3)

a)
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Figure 6.8 � Deviatori part of the Reynolds stress pro�le in wall units, a) with DEVM

model b) with EA model. Blak arrows point at inreasing resolutions. − : DNS

From the �gures above we an note an important aspet of the SGS models: at inreasing

resolutions, the SGS predition dereases, while the resolved part inreases. This is reasonable:

the �ner the resolution is, the larger the range of resolved sales will be. Therefore, the SGS

ontribution will beome smaller with inreasing resolution. Vie versa, at the smallest resolution

we an analyze the performanes of eah model: EASSM gives the best predition, its ontribution

is larger than DEVM, and is a superior model for the quality of the �ow preditions given.
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6.1 LES at Reτ = 590 6. Results

Flow visualizations. Some �ow visualizations of the �utuating �ow �eld have been arried out

in order to apture the elongated strutures (streaks), whih have been generated by the in�uene

of the wall shear stress at a very small distane from the wall. LES results are ompared with DNS

(by a ourtesy of P.Shlatter), at the same frition Reynolds number.

Although the desription of the streaks is not that detailed, LES with the EASSM model is able to

apture some of this partiular strutures at the wall. On the other hand, DNS gives a omplete

desription and the �ow is perfetly desribed sine a wider range of sales have been omputed.

The streaks are only seen in the visualizations of the streamwise veloity �eld; in the visualizations

of the other two veloity omponents the streaks are absent.

a)

b)

Figure 6.9 � Horizontal ontour plots of streamwise �utuations u′+
at y+ ≈ 8, along the

xz plane, a) simulation EA2, b) DNS by P.Shlatter.

62



6. Results 6.1 LES at Reτ = 590

a)

b)

Figure 6.10 � Horizontal ontour plots of wall-normal �utuations v′+ at y+ ≈ 8, along the

xz plane, simulation EA2, b) DNS by P.Shlatter.

a)

b)

Figure 6.11 � Horizontal ontour plots of spanwise �utuations w′+
at y+ ≈ 8, along the

xz plane, simulation EA2, b) DNS by P.Shlatter.
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6.2 LES at Reτ = 2000 6. Results

6.2 LES at Reτ = 2000

Let's study now a higher Reτ ase. In this setion LES of a hannel �ow at the bulk Reynolds

number orresponding to the DNSs of Jiménez et al (2006) of Reτ = 2000, are presented.

For this ase two simulations have been arried out, one with the DEVM and the other with EASSM,

with a omputational box 5πδ long in streamwise diretion and 2πδ long in spanwise diretion. The

bulk Reynolds number is Reb = 43466 and the DNS frition Reynolds number is Reτ = 2003.

Details of these simulations are shown in table 6.3.

Table 6.3 � Channel Flow simulations, for Reτ = 2000. The �rst ase has been omputed

with the Dynami Smagorinsky model (DEVM) while the latter one refers to the expliit

algebrai SGS model (EASSM)

Case SGS model Nx ×Ny ×Nz ∆+
x ∆+

z
∆+

y

min∼max Reτ
τw

τw,DNS

DS DEVM 160× 193× 160 180 72 0.25 ∼ 30.04 1836 0.84

EA EASSM 160× 193× 160 198 79 0.27 ∼ 32.98 2016 1.01

Table 6.4 � Channel Flow simulations, for Reτ = 2000. MPI parallelization details. The

�rst ase has been omputed with the Dynami Smagorinsky model (DEVM) while the latter

one refer to the expliit algebrai SGS model (EASSM)

Case SGS model n (no. proessors) N (no. nodes) Superomputer

DS DEVM 40 5 Abisko

EA EASSM 40 2 Povel

From the τw/τw,DNS value we an note that the LES with DEVM strongly deviates from DNS;

on the other hand, EASSM ratio agrees with DNS. Despite the resolution of the LESs is oarse, we

an dedue that EASSM gives the best predition of Reτ .

Pro�les. While in the previous simulations mean veloity pro�les have been well-predited by

both EASSM and DEVM, here the di�erene between these two methods beomes more notable.

Steady-state has been reahed after t = 800, and EASSM gives a good predition of the entire pro�le,

while DEVM gives results that deviates strongly from DNS as the outer layer is approahed. The

good performane of EASSM is on�rmed when having a look at the root-mean-squared of the

streamwise, wall-normal and spanwise �utuations. Due to an additional desription of anisotropy,

the EASSM is able to apture well the values of the �utuations peaks, whih are visible lose to
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6. Results 6.2 LES at Reτ = 2000

the wall.

Like the previous Reτ = 590 ase, the deviatori part of the Reynolds stress is well predited by

both methods, however, the EASSM still gives the results losest to the DNS. The lose-up of the

Reynolds shear stress piture in proximity of the peak shows an important feature of the EASSM.

EASSM is more suessful in the peak predition. This means that the DEVM would require a

substantially better resolution for a similar result, therefore using more omputational time.
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Figure 6.12 � Mean veloity pro�les in wall units. − : EA − : DS0 − : DNS
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6.2 LES at Reτ = 2000 6. Results
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Figure 6.13 � a,b,)Root-mean squared �utuations in wall units, on a semilogarithmi plot

d) Deviatori part of the Reynolds stress, with total shear stress in dashed line.

− : EA, − : DS, − : DNS
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6. Results 6.2 LES at Reτ = 2000

Regarding turbulent prodution vs dissipation ratio, we note that the DEVM underpredits

it largely, most of all in the outer region, while the expliit algebrai model shows a reasonable

agreement with DNS. Results are shown in �gure 6.15.
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Figure 6.15 � Turbulent prodution-dissipation ratio. − : EA − : DS0 − : DNS
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6.2 LES at Reτ = 2000 6. Results

SGS Anisotropy e�ets. In the following diagrams the di�erent ontributions from the

resolved sales and the SGS sales to the Reynolds shear stress are given, aording to the de�nition

6.3.

Looking at the peaks ( at −1 < y/δ < −0.9) we an see that both models give a higher ontribution

of the SGS stresses, with respet to the Reτ = 590 ase. It ould be reasonable to expet that at

higher frition Reynolds number, the bigger will be the anisotropy of the �ow, most of all near the

wall. For this reason the anisotropi EASSM gives the best estimation of the total Reynolds shear

stress; the ontribution of the SGS model is �ve times bigger than in the DEVM.
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Figure 6.16 � Deviatori part of the Reynolds stress pro�le in wall units, a) with DEVM

model b) with EA model. Blak arrows point at inreasing resolutions. − : DNS
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6. Results 6.2 LES at Reτ = 2000

Flow visualizations. As in the previous setion, some snapshots of the �ow in LES, with the

Expliit Algebrai (EA) and the Dynami Smagorinsky (DS) models are presented; the snapshots

have been generated at a very lose distane to the wall. From a physial point of view, in this ase

more elongated strutures are visible. This is reasonable, the higher the frition Reynolds number,

the larger the total shear stress will be, with a strong ontribution given by the Reynolds stress.

Therefore, longer and more energeti strutures will appear, than in other lower Reτ ases.

Experimental (with partile-image veloimetry, PIV) and DNS studies have given a deeper insight

of these spatially oherent, stress-bearing strutures and shown that they play an important role

in transport problems, partiularly in the near-wall region [Marusi et al., 2010℄. Therefore, in this

ase the auray of the model is investigated regarding the apability of the model to apture these

elongated strutures.

The EA is seen to be more able to predit these. In partiular, it aptures a wider range of

�utuating amplitudes, with respet to the DS model.

a)

b)

Figure 6.17 � Horizontal ontour plots of streamwise �utuations u′+
at y+ ≈ 8, along the

xz plane, a) simulation EA2, b) simulation DS2.
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6.2 LES at Reτ = 2000 6. Results

a)

b)

Figure 6.18 � Horizontal ontour plots of wall-normal �utuations v′+ at y+ ≈ 8, along the

xz plane, simulation EA2, b) simulation DS2.

a)

b)

Figure 6.19 � Horizontal ontour plots of spanwise �utuations w′+
at y+ ≈ 8, along the

xz plane, simulation EA2, b) simulation DS2.
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6. Results 6.2 LES at Reτ = 2000

λ2 strutures. The auray of the model have also been studied by looking at the ability

to predit the vortiity. Here vortial strutures, omputed by the lambda method are shown.

The most signi�ant di�erene between the two models onerns here the generation of vortial

strutures in the enterline; here the DEVM presents fewer vortial strutures than the EASSM.

This is a onsequene given by the anisotropy estimation, sine anisotropy strongly in�uenes the

�ow vortiity.
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Figure 6.20 � Vortial strutures in turbulent hannel �ow at Reτ = 2000, visualized by

isosurfaes of λ2, olored by the veloity magnitude, from EA simulation.
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Figure 6.21 � Vortial strutures in turbulent hannel �ow at Reτ = 2000, visualized by

isosurfaes of λ2, olored by the veloity magnitude, from DS simulation.
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6.3 LES at Reτ = 5200 6. Results

6.3 LES at Reτ = 5200

For this �nal ase, we will show some results of LES, omputed for the frition Reynolds number

Reτ = 5200. All the results will be ompared with the DNS performed by Lee & Moser (2014).

Di�erently from the other two simulations, in the Reτ = 5200 LES with the EASSM an important

issue has been faed: the previous 1D-parallelized ode wasn't able to arry out simulations, beause

of the limited amount of proessors that ould be used. This problem has been solved implementing

the EASSM in the SIMSON 2D parallelized ode, where the work of this thesis has been foused

on. Thus, it has been possible to largely extend the number of proessors and, with the help of

larger superomputers, the omputation has been arried out in roughly half a month.

The simulation has been arried out with a omputational box 5πδ long in streamwise diretion and

2πδ long in spanwise diretion. The bulk Reynolds number is Reb = 128127 and the DNS frition

Reynolds number is Reτ = 5186.

Details of these simulations are shown in table 6.5.

Table 6.5 � Channel Flow LES simulation with the expliit algebrai SGS model (EASSM),

at Reτ = 5200

Case SGS model Nx ×Ny ×Nz ∆+
x ∆+

z
∆+

y

min∼max Reτ
τw

τw,DNS

EA EASSM 512× 385× 512 162 65 0.17 ∼ 42.54 5293 1.04

Table 6.6 � Channel Flow simulations, for Reτ = 5200 LES with the expliit algebrai SGS

model (EASSM). MPI parallelization details.

Case SGS model n (no. proessors) N (no. nodes) Superomputer

EA EASSM 16/32× 16/32 11/43/64 Lindgren/Triolith

Despite the resolution is still oarse, the τw/τw,DNS value shows that the Reτ predition with

the EASSM model is very lose to DNS.
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6. Results 6.3 LES at Reτ = 5200

Pro�les. Here the good predition of the mean veloity pro�le given by EASSM is even more

visible in �gure 6.22.The EASSM gives results that are very lose to the DNS, but they begin to

di�er as we approah the outer layer. The underpredition by the EASSM of the outer layer an

be due to onvergene problems due to the limited time of the entire simulation, whih is slightly

small aording to the previous experienes. In fat, the maximum time units reahed are t = 210.

This ould indiate that the LES is not fully onverged yet.

The Reynolds stress omponents are however well-estimated by the EASSM, apart from the fat

that the u′ and w′
�utuations peaks are shifted a bit in the wall-normal diretion.

Reynolds stress pro�les are well omputed, the only exeption stays in the R+
vv inner layer pro�le

1

. Anisotropy is aptured in a good way: Reynolds shear stress predition gives only very small

disrepanies, beause of the limited simulation time and the not omplete apparoah to the steady-

state. One more, the resolution used for the LES seems quite suitable for this frition Reynolds

number.
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Figure 6.22 � Mean veloity pro�les in wall units. − : EA − : DNS

1

However, the mispredition of this quantity in the inner layer is due by the SGS model, and it has been proved

that it doesn't in�uene the other results at all.
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6.3 LES at Reτ = 5200 6. Results

a)
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Figure 6.23 � Reynolds stress omponents pro�les in wall units, on a semilogarithmi plot.

d) Reynolds shear stress, with total shear stress in dashed line. − : EA, − : DNS
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Figure 6.24 � Deviatori part of the Reynolds stress pro�le in wall units. − : EA − : DNS
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6. Results 6.3 LES at Reτ = 5200

SGS Anisotropy e�ets. Let's onsider only LES with EASSM. In the Reτ = 590 LES a fair

and high resolution of the �ow has been used so that the SGS ontribution revealed to be relatively

small ompared to the resolved sale one. In ontrast, Reτ = 2000 LES has been performed using

a relatively low resolution in terms of grid spaings. As a onsequene, the SGS ontribution

beomes signi�ant with respet to the resolved sales. In terms of resolution, the Reτ = 5200 is

an intermediate ase, with grid spaings that are bigger than in the Reτ = 590 ase and smaller

than in the Reτ = 2000 ase.

For simpliity, a reminding table with the respetive grid spaings for eah EASSM ase is shown

below.

Table 6.7 � Channel Flow simulations, for di�erent Reτ .

Case SGS model ∆+
x ∆+

z
∆+

y

min∼max Reτ

EA2 EASSM 58 29 0.31 ∼ 19.20 587

EA EASSM 198 79 0.27 ∼ 32.98 2016

EA EASSM 162 65 0.17 ∼ 42.54 5293

As a result, the SGS ontribution is anyway notable and pushed most of all towards the wall,

where it helps in the overall predition.
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Figure 6.25 � Deviatori part of the Reynolds stress pro�le in wall units, with EA model.

− : DNS
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6.3 LES at Reτ = 5200 6. Results

Flow visualizations. A rough resolution hek an also be done by having a look at some

snapshots of the �ow at a very lose distane from the wall. Here we an say that the resolution

hosen for the streamwise and spanwise diretion is right for the purpose of this simulation. One

more, some elongated strutures are visible, and their length appears to be longer than in the

previous ases. Aording to Huthins [Huthins and Marusi, 2007℄ in the near-wall region there

are large-sale high-speed events, where the loal istantaneous Reynolds stresses (all omponents:

u2,v2,w2
and uw) are ampli�ed, and large low-speed events, where they are damped. This is due

to the loal shear rate near the wall, whih is higher under high-speed events.

Regarding the resolution adopted, one may say that for the preditions of the spanwise �utuations

are aurate with a wide range of values shown.

Figure 6.26 � Horizontal ontour plots of streamwise u′+
�utuations at y ≈ −δ, along the

xz plane, simulations EA at Reτ = 5200. The absissa is divided by a fator of 10−4.
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6. Results 6.3 LES at Reτ = 5200

a)

b)

Figure 6.27 � Horizontal ontour plots of wall-normal v′+ and spanwise �utuations w′+
at

y ≈ −δ, along the xz plane, simulations EA at Reτ = 5200. The absissa is divided by a

fator of 10−4.
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6.3 LES at Reτ = 5200 6. Results

λ2 strutures. For resolution reasons, this ase is hard to postproess in terms of volume

renderings. Therefore, λ2 strutures for this last ase are visualized only for a part of the main �ow

domain. In order to see how the model behaves at the wall, we have deided to redue the domain

in the following way:

Nx ×Ny ×Nz = 512× 385× 512 −→ 256× 195× 256

Vortial strutures are oloured by the the veloity magnitude. The more we approah the

entreline, the weaker the vortial strutures will be. A possible reason to that lies in the fat that

this simulation is a LES, so that the resolution adopted is not enough to ompletely desribe the

smallest sales that appears on the entreline. Therefore, LES is not able to ompletely apture

vortial strutures that are generated along the entreline.
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Figure 6.28 � Vortial strutures in turbulent hannel �ow at Reτ = 5200, visualized by

isosurfaes of λ2, and oloured by the veloity magnitude, from EA simulation.
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6. Results 6.3 LES at Reτ = 5200

LES vs DNS: a volume perspetive. To omplete the analysis of the LES and the impat

of EASSM on anisotropy predition let's have an overall look to the results in terms of volume

renderings of the �ow. In the �gures below the volume rendering of the LES with the EASSM

together with the volume rendering from the DNS simulation of Lee & Moser are shown; both of

them have been omputed at Reτ = 5200. The resolution of the LES is high enough so that it an

be ompared with the DNS.

The LES is able to predit a wide range of sales, inluding small sales that are visible by the

human eye. Apart from the smallest strutures, the LES volume rendering seems of a reasonable

quality and strutures near the wall seem to be well-predited.
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Figure 6.29 � Volume rendering of the u veloity in a turbulent hannel �ow at Reτ = 5200,

from LES with the EASSM .

Figure 6.30 � Volume rendering of the u veloity in a turbulent hannel �ow at Reτ = 5200,

from a DNS of Lee & Moser (2014).
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6.3 LES at Reτ = 5200 6. Results

High-Reynolds number reliability of the EASSM. As it was written before, EASSM is a

LES model that solves an additional equation for anisotropy in order to model the SGS stress ten-

sor. By ontrast, DEVM is an eddy-visosity based model that doesn't take into aount anisotropy

at all.

If we inrease the frition Reynolds number anisotropi e�ets will beome larger and larger, espe-

ially near the wall. Therefore, inreasing the LES frition Reynolds number, we would expet the

Expliit Algebrai model to improve the �ow predition, and the Dynami Smagorinsky model to

degrade. In order to investigate this aspet, a olletion of the LES at the best resolution has been

done, and a partiular fous on the Reynolds shear stress has been given in �gure 6.31.

For omputational reasons, LES with DEVM are given only for the �rst two frition Reynolds

numbers. The results are satisfatory and onsistent with the expetations: Dynami Smagorinsky

performanes beome worse and worse as soon as we push the Reynolds number up to Reτ = 5200,

while the EASSM get loser and loser to DNS results.

Thus, we think that with inreasingRe LES with the EASSM shows better and better agreement

with DNS.
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Figure 6.31 � A lose-up of the Reynolds shear stress peaks very lose to the wall, for three

di�erent Reynolds numbers.−△− : EA ases, − ∗ − : DEVM ases, − : DNS
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CHAPTER

7

CONCLUSIONS & FUTURE WORK

�Towards In�nite and Beyond! (B.Lightyear)�

Large-eddy simulations of a fully developed hannel �ow have been performed at three di�erent

frition Reynolds numbers: Reτ = 590, Reτ = 2000 and Reτ = 5200. The �rst simulations, arried

out for Reτ = 590, proved the apaity of the EASSM model to apture anisotropy e�ets of the

�ow. SGS ontribution to the overall estimation of the �ow, and in partiular to the Reynolds shear

stress, dereases with inreasing resolutions. In ontrast to the Dynami Smagorinsky model, the

averaged wall shear stress ratio of LES with the EASSM has a non-monotoni behaviour. Thus the

EASSM overpredits as well as underpredits the wall shear stress.

EASSM has also revealed to be more aurate and suitable for high frition Reynolds number �ows.

The LES at Reτ = 2000 shows that the EASSM predition of the mean �ow veloity pro�le is muh

loser to the DNS results than LES with DEVM. This is a remarkable aspet most of all in the

outer layer, where a big gap between DNS and LES with DEVM is notied. A deeper study of the

root-mean-squared �utuations in x, y and z diretion proves the ability of the anisotropi model

to apture in a better way the peaks found lose to the wall. Similar results have been obtained
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7. Conlusions & future work

for the LES with the EASSM of the last ase at Reτ = 5200; EASSM behaved fairly well regarding

the omputation of the Reynolds stress omponents, espeially for the Reynolds shear stress.

We have found that the gap in terms of auray between DEVM and EASSM beomes larger and

larger at inreasing frition Reynolds numbers. This is reasonable, the higher the frition Reynolds

number, the more the e�ets of �ow anisotropy are important, most of all near the wall. Therefore,

EASSM is able to give a satisfatory performane also at high Reτ , while the DEVM gives get

worse and worse preditions.

Another important aspet is that a onsiderable redution of omputational resoures is possible

using the EASSM. The auray ahieved with a oarser mesh is omparable only to a DEVM

ase with a �ne mesh. The oarser the mesh, the lower the omputational time needed to run the

simulation.

In this thesis work, only non-rotating �ows, are investigated. However, the EASSM is also very

suitable for LES of rotating �ows, e.g. rotating hannel �ows. A possible ontinuation of this

work would be a omplete study of LES of rotating hannel �ows with separation ases and the

investigation of the behaviour of the Expliit Algebrai SGS Salar Flux (EASFM), for the ase at

Reτ = 5200 and beyond. Complex geometries will also be taken into aount in further studies.

The work will be ontinued with a PhD work in LES modelling at KTH, in order to present the

results at the European Turbulene Conferene 15 (ETC15) where the simulation results with the

Expliit Algebrai SGS model at Reτ = 5200 will be ompared with the performanes of the

Dynami Smagorinsky model, together with DNS data as referene.

The simulation time will be inreased using a more powerful superomputer, in order to reah a

fully developed steady state of the �ow.
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