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ABSTRACT 

The Adriatic Sea is considered a feeding and developmental area for Mediterranean 

loggerhead turtles, but this area is severely threatened by human impacts. In the Adriatic 

Sea loggerhead turtles are often found stranded or floating, but they are also recovered as 

by-catch from fishing activities. Nevertheless, information about population structuring 

and origin of individuals found in the Adriatic Sea are still limited. Cooperation with 

fishermen and a good network of voluntary collaborators are essential for understanding 

their distribution, ecology and for developing conservation strategies in the Adriatic Sea. 

In this study, a comparative analysis of biometric data and DNA sequence polymorphism 

of the long fragment of the mitochondrial control region was carried out on ninety-three 

loggerheads recovered from three feeding areas in the Adriatic Sea: North-western, 

North-eastern and South Adriatic. Differences in turtles body sizes (e.g. Straight Carapace 

Length) among the three recovery areas and relationship between SCL and the type of 

recovery were investigated. The origin of turtles from Mediterranean rookeries and the 

use of the Adriatic feeding habitats by loggerheads in different life-stages were assessed 

to understand the migratory pathway of the species. The analysis of biometric data 

revealed a significant difference in turtle sizes between the Southern and the Northern 

Adriatic. Moreover, size of captured turtles resulted significantly different from the size 

of stranded and floating individuals. Actually, neritic sub-adults and adults are more 

affected by incidental captures than juveniles because of their feeding behavior. The 

Bayesian mixed-stock analysis showed a strong genetic relationship between the Adriatic 

aggregates and Mediterranean rookeries, while a low proportion of individuals of Atlantic 

origin were detected in the Adriatic feeding grounds. The presence of migratory pathways 

towards the Adriatic Sea due to the surface current system was reinforced by the finding 

of individuals bearing haplotypes endemic to the nesting populations of Libya, Greece 

and Israel. A relatively high contribution from Turkey and Cyprus to the Northwest and 

South Adriatic populations was identified when the three sampled areas were analyzed 

independently. These results have to be taken in account in a conservative perspective, 

since coastal hazards, affecting the population of turtles feeding in the Adriatic Sea may 

also affect the nesting populations of the Eastern Mediterranean with a unique genetic 

pattern. 
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1. INTRODUCTION 

 

Caretta caretta 

Taxonomy 

 

The genus Caretta (order Testudines, family Cheloniidae) is now considered to be 

monotypic, containing the single species Caretta caretta, but in the past this group has 

been more inclusive. The name Caretta is a latinized version of the French word "caret" 

meaning turtle, tortoise, or sea turtle (Smith and Smith 1980). The species Caretta caretta 

was first described by Linnaeus in 1758 and named Testudo caretta (Conant et al. 2009). 

Over the next two centuries more than 35 names were applied to the species (Dodd 1988), 

but there is now agreement on Caretta caretta as the valid name (Conant et al. 2009). The 

common name of Caretta caretta is loggerhead, which derived for its relatively large and 

triangular head, supporting powerful jaws that enable the species to feed on hard-shelled 

prey (Valente et al. 2008).  

 

Morphological features of Loggerheads 

 

Shape and color of turtle carapace represent a distinctive feature between different 

species. About Loggerheads, carapace and plastron undergo substantial changes after 

hatching (Dodd 1988). Hatchling colors vary from light to dark brown to dark gray 

dorsally (Fig. 1A); and lack the reddish-brown coloration of adults and juveniles. Flippers 

are dark gray to brown above with distinct white margins. The ventral coloration of the 

plastron and other areas of the integument are generally yellowish to tan (Conant et al. 

2009). Hatchlings have three typical dorsal keels (Fig. 1B) on the roughly heart-shaped 

carapace and there are two longitudinal ridges on the plastron, which disappear with age 

(Dodd 1988).  

The carapace of adult and juvenile loggerheads (Fig. 1C-D) is reddish-brown. The 

dorsal and lateral head scales and the dorsal scales of the flippers are also reddish-brown, 

but with light to medium yellow margins. The unscaled areas of the integument (neck, 

shoulders, limb bases, inguinal area) are dull brown dorsally and light to medium yellow 

laterally and ventrally. The plastron is medium to light yellow (Conant et al. 2009), with 
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diffuse dark margins. There are different descriptions of loggerhead coloration coming 

from distinct areas, however geographic color variation is difficult to assess because no 

quantitative or qualitative standards have been established for comparison (Kamezaki 

2003). 

 

Fig. 1 Loggerhead sea turtle. A: Hatchlings; B: small juvenile with dorsal keels indicated by the arrow; C-D: juvenile 

and adult loggerheads, respectively. 

 

In loggerheads growth is allometric. Both hatchlings and small juveniles have the 

vertebral scutes wider than long, but as the turtle grows, the length increases relatively 

greater than the width (Dodd 1988). There usually are 11 or 12 pairs of marginal scutes, 

five pairs of costals, five vertebrals, and a nuchal (precentral) scute that is in contact with 

the first pair of costal scutes (Fig. 2). However anomalous arrangements are occasionally 

observed (Kamezaki 2003). The plastron is composed of paired gular, humeral, pectoral, 

abdominal, femoral, and anal scutes and connected to the carapace by three pairs of 

poreless inframarginal scutes (Kamezaki 2003; Conant et al. 2009). Both the carapace and 

plastron of the loggerhead are heavily keratinized as a protective barrier against attacks 

and the environment (Dodd 1988).   

 

Fig. 2 External morphology of the loggerhead turtle. V: vertebral scute; C: costal scute; M: marginal scute; N: nuchal 

scute; S: supra-caudal scute (From Kamezaki 2003). 
 

Since it is necessary to asses some biological parameters like age, growth rate and 

turtle size frequency in order to identify the demographic structure of a population, 

A D C B 
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carapace length and width, turtle weight and other measures are taken using different 

appropriate methods and equipments. In particular, on nesting beaches adult body size is 

measured to be related to the reproductive output, to determine minimum size at sexual 

maturity and to monitor nesting female size for a particular rookery. Marine turtles are 

measured on foraging grounds to determine the frequency of size classes of turtles present 

as well as to monitor growth rates. Analyses of growth rates can indicate habitat quality 

and physiological status.  

Dodd (1988) separated size classes of loggerhead sea turtles as follows: 

Hatchling- averages 45 millimeters (mm) SCL (see Sample Collection for information 

related to the measures) at emergence and attains about 10 cm to the first few weeks of 

life. The weight is approximately 20 grams (g) soon after hatching.  

Juvenile- from 10 centimeters reaches approximately 40 cm SCL. In this stage the center 

of dorsal scutes is elevated forming the sharp keels. 

Subadult- SCL is about 70-90 cm in females before arriving at the onset of sexual 

maturity, but it depends on the population. 

Adult-attains reproductive maturity at >70-90 cm SCL; the size of nesting females 

depends on populations however, in the Atlantic Ocean adult SCL is the largest one, 

while it is smaller in some other areas, the smallest adult being in the Mediterranean (to 

about 90 cm; Margaritoulis et al. 2003). The size at sexual maturity for males is assumed 

to be similar to that of females (Dodd 1988). 
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Biology of the species 

 

The generalized marine turtle life cycle is showed in the Figure 3.  

 

Fig. 3 Generalized marine turtle life cycle (From http://www.sharkbay.org/Loggerheadturtlefactsheet.aspx). 

 

Caretta caretta is a widespread sea turtle living in the temperate, subtropical and 

tropical waters of the Atlantic, Pacific and Indian Oceans. It is a generalist species, 

probably the most ecologically generalized compared to the other sea turtle species. As a 

matter of fact, loggerheads have the greatest geographic range in their nesting beaches, 

which are found in both tropical and temperate latitudes; their foraging range (Fig. 4) also 

extends seasonally from temperate to tropical waters (Bolten 2003a). They inhabit open 

oceanic waters as well as shallow near-shore waters and live in a variety of environments 

for a relative long time. Principal habitats are open deep waters, continental shores of 

warm seas or waters around islands, as Masirah in Oman and Zakinthos in Greece. 

Moreover, turtles are frequently associated with brackish waters of costal lagoon or river 

mouths. During the winter, loggerheads may remain dormant and buried in muddy bottom 

of sounds, bays and estuaries characterized by moderate deep waters. Apparently the limit 

of distribution is water of about 10°C, although they could be encountered in colder 

waters of high latitudes during the summer season of warm years (Márquez 1990).  

Loggerheads migrate intermittently throughout their life. As hatchlings, turtles 

swim frenzy from their natal beaches into the open ocean, often taking refuge in circular 
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current systems, that represent moving open-sea nursery grounds (Lohmann and 

Lohmann 2003). 

 

Fig. 4 Caretta caretta distribution maps. The grey lines represent the geographical distribution of the species (From 

http://www.nmfs.noaa.gov/pr/images/rangemaps). 

 

The post-hatchling transitional stage consists in turtles that are still in the neritic 

zone and begin to feed before entering the open waters. After this transition, hatchlings 

theoretically tend to follow warm currents such as the Gulf Stream, or may enter big gyre 

of currents as the North Equatorial current system, consequently of their limited 

swimming capacity that let them often to be considered passive drifters (Casale and 

Mariani 2014). They possibly aggregate in sea fronts (ocean current convergences), 

down-welling zones and eddies, where remain feeding and growing because of the 

presence of floating resources (Márquez 1990). This phase is the oceanic juvenile stage in 

which turtles are epipelagic for 75% of the time and occasionally dive to grater depths 

than 5 meters (Bolten 2003b) cause of the presence of floating resources under the 

surface. In this life stage individuals are difficult to observe (Márquez 1990) and for this 

reason researchers have named “lost years” the first turtle life period (Casale and Mariani 

2014). A previous research (Dodd 1988) suggested that the ‘lost years’ may cover a range 

of about 3/5 years but other authors (Musick et al. 1997) have extended this range to ten 

years or longer. Bjorndal et al. (2000) estimated that the time elapsed as juveniles in 

feeding and growing pelagic nurseries ranges between 6.5 and 11.5 years for loggerheads 

http://www.nmfs.noaa.gov/pr/images/rangemaps
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of Atlantic rookeries. However, the duration of this transitional stage before entering the 

neritic zones is extremely variable (Musick et al. 1997) and the cause of this variation is 

not really known. It may depend on different geographic regions in which this phase is 

spent, on current regimes and probably on the availability of food resources (Bolten 

2003b). Furthermore, even the mean size of turtles leaving the pelagic zone for benthic 

habitats may vary among populations; in the western North Atlantic, individuals of 

Caretta caretta make this habitat shift at a smaller size (and so younger age) than do 

populations in the western South Pacific (Musick et al. 1997). Whilst loggerheads of 

North Atlantic origin leave the pelagic habitat to recruit in the neritic zone over a range of 

sizes from 46 to 64 cm curved carapace length (CCL) (Bjorndal et al. 2000), juveniles in 

the Western South Pacific recruit to coastal foraging habitats across a wide range of sizes 

from 66.7 to 93.9 cm (Limpus and Limpus 2003). Hence, age and size at which 

loggerheads make this habitat shift differs between and within populations. The reason is 

that individuals are characterized by different growth rates. These differences are due to 

several factors, for example environmental or genetic matters (Casale et al. 2009), and 

variations of growth rates may be relevant in determining the occurrence of the transition 

from a stage to another. Thermal and trophic characteristics of different oceanic areas 

may influence the growth of an individual or a group of individuals. Juveniles that recruit 

the same nursery ground have probably a similar development, using the same resources, 

and so a similar size at which they make this ontogenetic shift. However, also individual 

genetic patterns have a function in establishing the variability of turtle growth rates.  

Approaching the demersal areas, juveniles enter neritic habitats and recruit 

actively continuing to develop till maturity. In temperate areas juvenile loggerheads move 

from higher latitude foraging grounds in summer to lower latitudes in winter, while in 

tropical areas migrations are more localized (Musick et al. 1997; Bolten 2003b). Oceanic 

juveniles, migrated to near shore coastal grounds (neritic zone), forage and continue 

maturing until adulthood. In some cases neritic juvenile habitats may be geographically 

distinct from those of adults, but in others they may overlap or coincide (Musick et al. 

1997; Bolten 2003b). Sub-adults may stay long time, up to 10 years, in foraging habitats 

before reaching sexual maturity. Age and size of loggerheads at maturity, as at the 

previous stage, differs between and within populations (Dodd 1988). This fact may 

depend on geographic location of rookeries or origin of individuals, but essentially on 

turtle growth rates that show considerable variation during their life. Overall, the SCL of 

nesting females ranges from approximately 70 to 109 cm (Dodd 1988). Studies made on 
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specimens in captivity showed that ages at maturity might range from 6 to 20 years, with 

a carapace length (SCL) always over about 70 cm within a size range. Instead, capture-

recapture data of tagged nesting females in the southeastern coasts of the United States 

have produced age ranges from 12 to 30 and more years through the back calculation 

technique (Márquez 1990).  

Nesting of Caretta caretta usually occurs in spring and summer, with variations 

according to the latitude and geographical characteristics of the coast (Márquez 1990). 

Approaching the tropics, the nesting season becomes more extended. Loggerheads are 

known to nest anywhere from one to six times in a nesting season. The inter-nesting 

interval of loggerheads varies, but it is generally about 14 days depending on locations 

(Dodd 1988). Females usually deposit on each occasion from 40 to 190 eggs. A single 

female could lay a maximum of 560 eggs per season. In general, there is much confusion 

about nesting cycles in sea turtles. The major pattern of the reproductive cycle is two or 

three years, but some individuals of the population may shift from one cycle to another, 

including to a yearly cycle (Márquez 1990). Nesting is found mainly on open beaches or 

along narrow bays having suitable sand, and it may be in association with other species of 

sea turtles. They show strong fidelity to their nesting areas, which are usually the same 

where they were born (natal homing) (Bowen et al. 1993; Casale et al. 2007a).  

Regarding feeding areas, coral reefs, rocky places, and shipwrecks are often used 

as foraging grounds. During the foraging stage, adult turtles are active and feed on the 

bottom (epibenthic/demersal) or sometimes throughout the water column (Bolten 2003b). 

They exhibit natal philopatry to colonial nesting beaches as well as high levels of fidelity 

to migratory routes towards foraging areas and wintering sites both between and within 

years and after successive breeding migrations. Loggerhead migrations between foraging 

areas and mating or nesting sites are considerable, typically hundreds or thousands of 

kilometers. In a study by Broderick et al. (2007), adult females tracked for two 

consecutive migrations after lying have shown to use highly similar routes to return to the 

same foraging locations. In another work made by Lazar et al. (2000), the longest 

migration recorded from eleven tagged loggerheads nesting in Greece and recovered in 

the Northern Adriatic was of about 1,200 km. It is likely that foraging habitats are the 

same ones where turtles recruited as juveniles (Casale et al. 2007a). 

As the nesting season approaches, adults upon maturity migrate towards the 

nesting beaches from mating areas that may occur either relatively close compared to 

feeding grounds or lightly remote from nesting beaches (Musick et al. 1997).  
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However, the current ontogenetic model of loggerhead life history does not reflect 

the tendency of this species to create temporary association to specific oceanic or neritic 

zones according to food availability and oceanographic features in the foraging or 

migratory areas, independently of the stage performed. In this matter, a relaxed model has 

been proposed by Casale et al. (2008a) suggesting that the life history model for Caretta 

caretta would be characterized by an early short obligate epipelagic stage due to limited 

diving capacity, followed by the main opportunistic amphi-habitat stage. 

 

Distribution of the nesting areas 

 

The major nesting grounds are generally located in warm temperate and 

subtropical regions, with the exception of Masirah Island, Oman (Fig. 5).  

 

Fig. 5 Global distribution of Loggerhead Sea Turtle nesting assemblages. From NMFS and USFWS 2008. 

 

The most recent reviews for the status of loggerhead nesting distribution show that only 

two nesting beaches have greater than 10,000 females nesting per year: South Florida 

(U.S.) and Masirah Island (Oman) (Ehrhart et al. 2003; Conant et al. 2009). In the 

Atlantic the majority of loggerhead nesting is at the western rims of the Ocean (Conant et 

al. 2009). Total estimated nesting in the U.S. Atlantic and Gulf coasts of Mexico is 

approximately 68,000 to 90,000 nests per year. Brazil supports an intermediately-sized 
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loggerhead nesting assemblage, estimated by publised and unpublished accounts. There 

are about 4,000 nests per year contrywide. Throughout the Caribbean loggerhead nesting 

is sparse and rare compared with the green turtle and the hawksbill. The Cape Verde 

Islands support a loggerhead nesting assemblage of intermediate size. In 2000, 

researchers tagged over 1,000 nesting females on just 5 km of beach on Boavista Island. 

There may be as many as 5,000 nesting females per year in the entire archipelago, but this 

needs to be confirmed. The Atlantic coast of the african mainland represents a minor 

nesting area, with infrequent loggerhead nests and where informations are scant (Ehrhart 

et al. 2003).  

In the Mediterranean (Fig. 6), loggerhead nesting is confined almost exclusively to 

the eastern portion of the basin. The main nesting assemblages occur in Cyprus, Greece, 

and Turkey, but small numbers of loggerhead nests have been recorded in Egypt, Israel, 

Italy, Lebanon, Syria, Tunisia and occasionally in Spain (Margaritoulis et al. 2003). 

Substantial nesting was also discovered in Libya (Laurent et al.1995) but the nesting 

effort there needs to be quantified (Margaritoulis 2003). Based on the recorded number of 

nests per year in Cyprus, Greece, Israel, Tunisia, and Turkey, loggerhead nesting in the 

Mediterranean ranges from about 3,375 to 7,085 nests per season (Margaritoulis et al. 

2003). However, these numbers are considered minimum figures as they do not include 

nests outside the monitored areas or in countries where regular monitoring has not yet 

been initiated (e.g. Libya) (Margaritoulis 2003). 

 

Fig. 6 Annual nesting effort per country in the Mediterranean Sea. Numbers represent average value of nests per 

season. Solid triangles values derived from monitoring project, while open triangles are estimates. Quadrates are 

exceptional nests. (From Margaritoulis et al. 2003). 
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Within the North Pacific, loggerhead nesting has been documented only in Japan. 

In the South Pacific, nesting beaches are restricted to eastern Australia and New 

Caledonia (Limpus and Limpus 2003). 

Most trends in loggerhead nesting populations in the Indian Ocean are unknown 

(Conant et al. 2009). 

 

Endangered species 

 

Loggerheads are listed as endangered in the IUCN Red List of Threatened Species 

and their populations are globally decreasing in a drastic way especially cause of human 

impact (IUNC, 2011; Conant et al. 2009). Loggerhead turtles face threats on both nesting 

beaches and in the marine environment. The greatest cause of decline and the primary 

threat to their populations worldwide are incidental captures in fishing gear, primarily in 

long lines and gillnets, but also in trawls, traps, pots and dredges because of their feeding 

behavior and their habit of overwintering in shallow waters. Populations in Honduras, 

Mexico, Colombia, Israel, Turkey, Bahamas, Cuba, Greece, Japan, and Panama have 

been declining. This decline continues and it is attributed beyond to by-catch also to 

directed harvest, coastal development, increased human use of nesting beaches and 

pollution. Furthermore, directed harvest of loggerheads still occurs in many places as the 

Bahamas, Cuba, and Mexico (NMFS and FWS 2008). 

 

Caretta caretta in the Mediterranean and Adriatic Sea 

Caretta caretta represents the most abundant sea turtle species in the Mediterranean 

Sea, having evolved local populations (Margaritoulis et al., 2003b). It seems that the 

latest colonization occurred about 12,000 years ago from stocks of the western Atlantic 

(Bowen et al. 1993). One of the most distinctive characteristics of Mediterranean 

loggerheads is the significantly smaller adult size in comparison with other populations, 

primarily the Atlantic ones (Margaritoulis 2003). This may be an adaptation to particular 

conditions and it could be due to earlier sexual maturation and/or slower growth. 

Differences in female sizes and clutch sizes are considerable even among the 

Mediterranean colonies. Individual nesting females range between 60 and 99 cm CCL, 
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while average sizes in different nesting sites range from 66.5 to 84.7 cm CCL 

(Margaritoulis et al. 2003). Although individuals of Atlantic populations enter the 

Mediterranean and share foraging habitats with local population, there is a limited gene 

flow between turtles of different origins (Encalada et al. 1998; Laurent et al. 1998).  

Reproductive habitats concentrate in the eastern basin but turtles may disperse 

widely in the entire Mediterranean. The average number of documented reported in 

literature is over 7200/y (Casale and Margaritoulis 2010). The majority of loggerheads 

nesting in the Mediterranean occur between the beginning of June and the early August 

with sparse nest from mid-May and early September (Margaritoulis et al. 2003). This 

basin hosts the northernmost record for a loggerhead turtle nest worldwide.  

The oceanic and neritic features of the Mediterranean make these waters very 

advantageous both for juvenile and adult loggerheads. The analyses of tag recoveries 

provide evidence of active passage of turtles in both eastern and western directions of the 

basin. Turtles captured in pelagic fisheries (Casale et al. 2007b), as well as recovery of 

tagged juveniles of C. caretta (Casale et al. 2007a), suggest that the Mediterranean 

habitats are widely exploited by pelagic juvenile loggerheads (Laurent et al. 1998). They 

frequently occur in the oceanic zones from the Alboran Sea to the Balearic Islands, where 

there are also many individuals of Atlantic origin (Carreras et al. 2006). The Strait of 

Sicily represents the connection between the two sides of the basin, featuring either a key 

route or a trophic area for loggerheads (Casale et al. 2007a). Recently, genetic markers 

demonstrated a demographic link between the nesting colonies in the eastern basin and 

the oceanic feeding juvenile aggregates of the western waters (Margaritoulis et al. 2003). 

The turtle distribution in the open basin is merely driven by the large current system 

(Bentivegna et al. 2007). 

  The occurrence of incidental captures in bottom trawl fisheries demonstrates that 

loggerheads are very abundant in the Mediterranean neritic zones as well. These feeding 

habitats are in the north Adriatic, off Tunisia-Libya, off Egypt and off the southeast coast 

of Turkey (Casale and Mariani 2014). The two major areas suggested as the main benthic 

habitats for adult and juvenile loggerheads are Gulf of Gabès and northern Adriatic Sea 

(Fig. 7). These very extensive shallow waters host important developmental grounds for 

juveniles in the benthic phase and a feeding area for adult females, a part of which comes 

from the Greek rookeries (Casale and Margaritoulis 2010; Lazar et al. 2000). Genetic tags 

have revealed that these areas are also frequented by individuals from other 

Mediterranean nesting colonies such as those of Cyprus and Turkey (Casale et al. 2008b).  
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In conclusion, the Mediterranean Sea hosts both oceanic and neritic habitats for 

loggerhead populations and for juveniles that migrate from Atlantic and return to their 

nesting sites to breed (Laurent et al. 1998; Carreras et al. 2006).  

 

Fig. 7 Map of the Mediterranean region showing approximate locations of nesting areas and of known oceanic and 

neritic habitats. The 200 isobath delimits the continental shelf. Oblique lines indicate pelagic and demersal habitats. 

Triangles represent nesting areas. (From Margaritoulis et al. 2003). 

 

Threats on Mediterranean individuals 

 

The Mediterranean is a major destination of millions of tourists during the 

summer, in concurrence with the loggerhead-nesting season. As a consequence, several 

nesting areas are very threatened (Casale and Margaritoulis 2010). However, the major 

cause of turtle mortality in the Mediterranean is represented by incidental catches in 

fisheries. The capture of turtles in various fishing gears occurs practically in all 

Mediterranean countries and it seems to be also high in “less industrialized” fisheries, as 

set gill nets (Margaritoulis 2003). A recent review of sea turtle by-catch in the 

Mediterranean Sea estimated over 150,000 captures per years within the basin (over 

50,000 by pelagic longlines, 40,000 by trawls, 35,000 by demersal longlines and 30,000 

by set nets), and in excess by 50,000 deaths per year (Casale 2008; Casale and 

Margaritoulis 2010). Although these numbers seem exhaustive, quantification of turtle 

captures in the widely spread fisheries is very difficult to assess. Moreover, mortality 

following incidental capture has not been fully documented. Usually, turtles hooked in 

drifting long-lines are released by cutting the branch line, but the effect of hooks left on 
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turtles are not actually known. Regarding turtles caught in trawl nets, they may suffocate 

and die, but if released in a comatose state they surely drawn later cause of the inability of 

swim in that condition (Margaritoulis 2003). Therefore, it is necessary to take into 

account a high degree of uncertainty of available data relative to mortality rate of 

loggerheads in the Mediterranean.  

Other important reasons of turtle mortality are boat strikes; oil pollution and 

ingestion of debris (Margaritoulis 2003), but no quantitative data are available.  

 

Incidental captures and strandings: evidence of loggerhead migration to the 

Adriatic Sea 

 

 Incidental captures and strandings indicate that loggerhead turtles occur in high 

numbers in the Adriatic primarily during the warm seasons. A ten year study along the 

coasts of Croatia and Slovenia assessed that adult sea turtles (CCL>70cm) were caught at 

high frequency in trawls during the fishing season, while smaller individuals (from 30 to 

50 cm CCL) were affected in higher proportion by gill nets (Lazar et al. 2003) cause of 

their pelagic behavior. These data indicate that even turtles smaller than 40 cm inhabit the 

Adriatic waters. A study about the feeding behavior of loggerheads in the Nord Adriatic 

confirmed that loggerheads with CCL n-t as small as about 30 cm recruit the neritic zones 

of the basin (Lazar et al. 2005). Probably, these individuals have already shifted from 

pelagic nursery ground to benthic habitat and this fact might be ascribed to the presence 

of transitional habitats, favorable sea temperatures and rich benthic communities in the 

basin. Juveniles shift to the following ontogenetic stage in a smaller size than in most of 

other populations worldwide (Lazar et al. 2005). The presence of these small individuals 

has been widely demonstrated (Affronte and Scaravelli 2001; Vallini et al. 2011), 

however the occurrence of small turtles (<40 and even <20) in shallow waters is not 

really expected (Casale and Margaritoulis 2010).   

 According to a research based on a wide dataset of records in the Italian waters 

(Casale et al. 2010), the highest number of stranded loggerheads was recorded in the 

Northwestern Adriatic in spring, summer and autumn, with a density of an order of 

magnitude higher than in the other areas investigated (Tyrrhenian, Ionian, Sicily Channel 

and South Adriatic). With regard to the South Adriatic, strandings were not so numerous 

as in the North, and the major proportion of records concerned turtles smaller than 30 cm 
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CCL, and/or in the first four years of life. Conversely, the monitoring of bottom trawler 

activity in the Gulf of Manfredonia showed that a high density of sub-adults is caught in 

the neritic zone. The average size of sub-adults turtles captured in this area (mean CCL: 

56.1 cm, Casale et al. 2012b) was similar to specimens caught (mean size: 55.4 cm, 

Casale et al. 2014) or stranded dead (51.5 cm CCL; Casale et al. 2010) in the North 

Adriatic basin. These results suggest that juvenile sea turtles select both the North and the 

South Adriatic demersal habitats with a wide size range. Data collected along the west 

coast of the Adriatic Sea confirmed that the main represented classes, considering CCL 

classes of 10 cm, are that of 40-49 and 50-59 cm CCL (Scaravelli and Affronte 2003). 

Incidental catches (Casale et al. 2004; Lazar et al. 2003) occurring in bottom trawls 

during the winter months suggest that part of loggerheads overwinters in the Adriatic as 

well. There is evidence of a seasonal migration of turtles from a small area in the 

northernmost part of the Adriatic where temperature in winter drops even to 8°C, which is 

within the cold-stunning temperatures for loggerheads. Hence, the overwintering occurs 

south of about 45° N and in the northeast part of the North basin where temperatures are 

higher (between 12.5 and 13.5°C) compared to the west. It is likely that loggerheads are 

lethargic in such low temperature regimes and this fact would explain the statistical 

association between by-catch in bottom trawls and the cold period (Lazar et al. 2003).  

 The occurrence of loggerheads in the Adriatic Sea is related to immigrations from 

Mediterranean rookeries, mainly belonging to the Greek nesting population (Lazar et al. 

2004; Lazar et al. 2000;). As showed in many investigations (Lazar et al. 2000; Lazar et 

al. 2003; Casale et al. 2004; Casale et al. 2012b; Affronte and Scaravelli 2001; Scaravelli 

and Affronte 2003), the Adriatic habitats are shared by the majority age classes of 

loggerheads and represent a main migratory corridor. Satellite telemetry has played an 

important role in determining migratory routes and assessing habitat utilization (Vallini et 

al. 2006; Zbinden et al. 2008; Casale et al. 2012a). Together with tag recoveries (Casale 

et al. 2007a; Lazar et al. 2000; Lazar et al. 2004), satellite tracks described the main 

migratory routes of C. caretta in the Adriatic that lead mainly along the eastern coast 

toward the north (Lazar et al. 2004). This pathway overlaps with the current that enters 

the Adriatic and surely has an influence on the direction of loggerhead migrations. 

However, migration against the prevailing currents cannot be excluded (Lazar et al. 2000; 

Vallini et al. 2006). At the light of 29 recoveries of adult females originally tagged in 

Greece, the eastern Adriatic Sea results the preferred migration corridor for part of this 

nesting population. However Zbinden et al. (2008) demonstrated that adult females 
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nesting on Zakynthos might travel throughout the western Adriatic too. Juveniles and 

adults have either a small residential behavior remaining in the Adriatic throughout the 

year or perform seasonal migrations to other areas (Casale et al. 2012a). In other words, 

they are not just travelers through the basin but they may reside into it for a period of 

time. They do not exhibit site fidelity for specific foraging habitats, but essentially for a 

wider area such as the entire Adriatic Sea (Lazar et al. 2004).  

 

Threats on Adriatic migrating specimens 

 

The principal threat on loggerheads at sea remains fishing activities. In the eastern 

Adriatic, bottom trawl by-catch by Croatian fishery was conservatively estimated at a 

minimum of 2,500 captures per year, with a much higher by-catch rate in the northern 

sub-basin (Lazar and Tvrtković 1995). However, it is likely that the CPUE is higher than 

that originally reported by fishermen (Casale et al. 2004). The capture trend of turtles in 

northeastern waters has usually a peak in the cold season with a direct mortality (12.5%) 

higher than in the northwestern basin (9.4%; Casale et al. 2004). The cause might be 

associated to the longer haul duration of trawling in the Croatian waters (Lazar et al. 

2003). A higher mortality percentage should be expected if delayed deaths would be 

included in the estimation. Another fishery with concerning impact on loggerheads in the 

eastern Adriatic is gill net fishery. Numbers of captures per year (658 with direct 

mortality of 74.4%) are low if multifunctional vessels are not considered. Otherwise, total 

gill net by-catch may potentially be as high as 4,038 turtles/year, suggesting a significant 

conservation concern for loggerheads in the northern Adriatic (Lazar 2010). 

The Italian Peninsula has one of the largest fishing fleets of the Mediterranean, 

with several type of fishing gear used (Casale 2008).  Its activity at sea represents a major 

threat to sea turtle loggerheads on a regional scale. The uncertainty in the total fishing 

effort, due to an important illegal fishing activity, make it difficult to estimate the total 

number of turtle captured (Casale and Margaritoulis 2010). However, the conservative 

estimation of turtle caught in the Northern Adriatic by Italian bottom trawls is about 

4,300 per year, and 161 by mid-water trawls (Casale et al. 2004). In the south Adriatic, 

Gulf of Manfredonia, the catch rate per bottom trawler vessel was estimated 8.6 turtles 

per year (Casale et al. 2012b). Generally, mortality rate induced by pelagic long lines is 

unknown because of the many parameters involved and the difficulty of monitoring 
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turtles after the captures (Casale and Margaritouli 2010). No estimates are available in the 

whole Adriatic about pelagic fishing activity, except in the northeastern waters (Lazar et 

al. 2003). Even regarding demersal longline and set net, the overall mortality induced by 

these fishing gears may be very high. However, trawling represents the principal fishing 

activity because of the shallow water features of the Adriatic at least in the northernmost 

part. The main cause of turtle death seems to be in general the prolonged forced apnea. 

Casale et al. (2014) suggested that the CCL range of turtles caught by trawlers is 23.5-

85.0 cm in the North Adriatic and 21.3-92.0 cm in the South Adriatic. All age and size 

classes are affected by fishery-related mortality.  

In the last year, the molecular analysis has supported tag return, satellite telemetry 

and mark-recapture techniques (Bowen et al. 2004) assaying which rookery undergo 

population decline due to the human impact. In fact, the genetic tag carried using a 

portion of the mitochondrial genome has been applied as innovative tools to assess the 

rookeries of origin of turtles found on feeding grounds, to establish migratory routes and 

to define population structure (Avise and Bowen 1994). 

 

The importance of Mitochondrial DNA in sea turtles  

Molecular techniques to define philopatry and matrilines 

 

 Genetic techniques have illuminated several aspects of marine turtle life history in 

order to manage and preserve marine turtle stocks. Genetic tools allow identifying 

discrete breeding populations on the nesting beaches and in the corresponding feeding 

habitats. Migrations in sea turtles may cause confusion when discriminating populations, 

due to the presence in the foraging aggregates of individuals from different rookeries. 

Then it is fundamental designate the geographic range of feeding habitats that supports a 

specific breeding colony and, conversely, assess proportions of different breeding 

populations in those areas (FitzSimmons et al. 1999).  

 Mitochondrial DNA (mtDNA) has proved to be a natural source of genetic markers 

to detect population structure in marine turtles and to infer patterns of dispersal. The 

highest degree of resolution for population discrimination can be obtained by examining 

sequence variation in the rapidly evolving portion of mtDNA such as the control region 

(Norman et al. 1994), a non-coding origin of replication (D-loop). D-loop polymorphisms 
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and haplotype identification have been extensively applied in both older and more recent 

studies on population structure, ecology and phylogeography of Caretta caretta 

populations (Drosopoulou et al. 2012). The main purpose of genetic studies on C. caretta 

and other sea turtles is to establish independent units suitable for the conservation 

management of rookeries threatened and affected by demographic decline. The 

application of these genetic tags has substantially demonstrate the natal homing behavior 

of turtle females that return to nest on their natal beaches and the philopatry of juveniles 

as well (FitzSimmons et al. 1997; Bowen et al. 2004). In some cases these markers have 

been used to document long migrations in juvenile loggerheads throughout the Atlantic 

(Bolten et al.1998) and from Atlantic to Mediterranean Sea. 

 The mtDNA molecule is maternally transmitted, meaning that male offspring 

inherit their mother’s mtDNA but do not pass it on to subsequent generations. 

Nonetheless, the finding of genetic differences between nesting populations in the female 

lineages makes it possible to determine which rookeries contribute to a particular feeding 

area, migratory pathway or harvest that are affected by mortality (FitzSimmons 1999). 

The reproducibility of mtDNA sequence data has been a boon to sea turtle genetic 

surveys, and registries of known haplotypes are maintained in the Archie Carr Center for 

Sea Turtle Research (http://accstr.ufl.edu/).  

 

Previous genetic studies on Caretta caretta in the Mediterranean Sea 

 

 In the Mediterranean Sea loggerheads constitute a population genetically isolated 

from the Atlantic one (Carreras et al. 2007). The current genetic composition of C. 

caretta rookeries in the Mediterranean would be the result of different colonization events 

from the Atlantic during the Pleistocene (Clusa et al. 2013) and the Holocene (Bowen et 

al. 1993). During Pleistocenic glaciations local extinction and re-colonization from glacial 

refuge may be occurred. Although few haplotypes (i.e. CCA2 – CC-A3) are shared with 

the Western Atlantic nesting aggregates, the Mediterranean nesting populations are highly 

distinct in terms of haplotype frequencies (Carreras et al. 2011). The shared haplotypes 

may indicate recent contact, otherwise a Mediterranean colonization from Atlantic during 

the current interglacial interval (Bowen and Karl 2007).  

In the Mediterranean, the distribution of mtDNA haplotypes on nesting beaches has been 

compared to the haplotype frequencies on the feeding grounds, and this comparison has 

http://accstr.ufl.edu/
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been used to calculate the most likely contribution from each nesting beach (Bowen et al. 

1993). According to several investigations (Laurent et al. 1998; Carreras et al. 2006; 

Maffucci et al. 2006; Carreras et al. 2011) the Mediterranean basin seems to be exploited 

by loggerheads from Atlantic and Mediterranean rookeries. MtDNA analysis has revealed 

that juveniles from Atlantic occur mainly off the North African coasts in the southwestern 

basin, while the western European shore seem to be inhabited by turtles from eastern 

Mediterranean cohorts in accordance with sea-surface current patterns. Endemic 

haplotypes from Atlantic rookeries (CC-A1, CC-A5, CC-A7) confirmed that individuals 

recruiting the southwestern Mediterranean basin have an Atlantic origin (Carreras et al. 

2006). On the other hand, specimens with Mediterranean endemic haplotypes (i.e. CC-

A6), detected from rookeries confined in the eastern side of the basin (Greece), are 

located mainly in Mediterranean foraging habitats distant from Atlantic water masses. 

Anyway, individuals from Atlantic that enter the Mediterranean may also share foraging 

habitats with local populations but nonetheless turtles of Mediterranean origin remain 

genetically isolated (Carreras et al. 2011).  

 Within the Mediterranean Sea populations are also genetically differentiated. The 

existence of genetic structure within the Mediterranean was previously detected with 

short sequences (~380bp) of the mtDNA control region (Laurent et al. 1998; Encalada et 

al. 1998). The first studies by Laurent et al. (1998) reported that Turkish colonies are 

genetically distinct from nesting areas of Cyprus, Greece and southeastern basin. This 

genetic tag has been also employed to identify the contribution of different nesting areas 

to foraging grounds shared by turtles of different origins, throughout the mixed stock 

analysis (MSA) technique (Carreras et al. 2006). 

 Further evidence of genetic diversity within the Mediterranean has been provided in 

a recent work conducted by Carreras et al. (2007), where haplotypes CC-A29 and CC-

A32, not previously found in any nesting beach but only reported from Western 

Mediterranean feeding grounds, have been unveiled in Israel and Zakynthos respectively. 

Even concerning the haplotype CC-A31, it has been described once in a specimen 

sampled off the south-eastern Italian coast (Mafucci et al. 2006) and after recorded in a 

nesting site located among coasts of Calabria (Garofalo et al. 2009). Although exclusive 

haplotypes were considered rare in the Mediterranean compared to the Atlantic ocean 

(Encalada et al. 1998), the overall diversity in the Mediterranean may be significantly 

underestimated due to either the existence of unknown nesting population or the 

incomplete sampling of known colonies (Garofalo et al. 2009). Numerous published 
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works (Mafucci et al. 2006; Carreras et al. 2007; Giovannotti et al. 2010; Chaieb et al. 

2010) adopted the short mtDNA fragment as genetic marker for molecular differentiation 

between loggerhead populations (Fig. 8). However, the limited assignment power of this 

short sequence marker has yet precluded a fine-scale genetic assessment of Mediterranean 

rookeries and their contribution to foraging grounds (Clusa et al. 2014).  

 

 

Fig. 8 Mediterranean nesting areas with mtDNA haplotype frequencies as summarized from Carreras et al. 2014. 

 

 In more recent investigations, a new designed set of primers (Abreu- Grobois et al. 

2006) notably increased the length of the fragment sequenced (815 bp), allowing 

enhanced description of management units, inter-population connections and genetic 

barriers within the Mediterranean (Carreras et al. 2014). The increase in genetic 

resolution has improved at regional and fine-scale levels the origin assignment power of 

juveniles from Mediterranean foraging grounds, potentially unveiling previously 

unknown distribution patterns. The sequence differentiation based on the 815 bp has been 

defined through the sub-division of the short sequence nomenclature in long haplotype 

variants. In other words, the use of the longer sequence allowed the splitting for instance 

of the short CC-A2 common haplotype into the long haplotypes CC-A2.1, CC-A2.8, CC-

A2.9 etc. which revealed further structuring within the Mediterranean (e.g Crete and 

Israel with CC-A2.8 and CC-A2.9 respectively, Clusa et al. 2013). The distribution of 
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these long haplotypes in the Mediterranean nesting areas is showed in Fig. 9 provided 

from a recent work of Carreras et al. (2014). 

 

 

Fig. 9 Published long (~800 bp) mtDNA sequences in Mediterranean loggerhead nesting areas from Carreras et al. 

(2014). 
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AIMS 

 

The Adriatic Sea, due to its great availability of food and shallow waters, represents 

an ideal foraging and over-wintering environment for the loggerheads. In the last years 

human-related impact on loggerheads in the Adriatic Sea increased, as observed by the 

number of incidental catches and strandings along all the coasts. These impacts derive 

mainly from trawl fishery operations, and affects loggerheads that migrate in the Adriatic. 

Moreover, these impacts also affect the Mediterranean nesting populations with a decline 

of rookeries, that represent distinct genetic units and that need to be conserved. 

 The aim of the study is to unveil the biometric and genetic characterization of 

loggerhead specimens recovered in three different foraging grounds along the Italian and 

Croatian coasts of the Adriatic Sea.  

 Differences in turtle sizes among the three foraging grounds, and the use of the 

Adriatic Sea by loggerheads at different life stages have been analysed using biometric 

data, essentially the SCL. Moreover, the description of the finding data could be helpful 

to understand the proportion of loggerheads affected by the different threats, and the 

relationship between turtle size classes and threats. 

 The long sequence mtDNA analysis was implemented for the first time on 

loggerheads recovered from the Adriatic Sea. Previously, only short haplotypes were 

detected from individuals found along the Italian and Croatian coasts of the North 

Adriatic Sea. The long fragments of the mitochondrial control region have been used to: 

1) describe the mtDNA haplotype distribution within the Adriatic Sea and to infer the 

migratory pathway;  

2) quantify the contribution of Mediterranean and Atlantic nesting groups to the Adriatic 

populations, using Bayesan mixed-stock analysis (MSA). 
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2. MATERIALS AND METHODS 

 

Study Area  

Adriatic Sea: ecological role for loggerhead sea turtles 

 

 The Adriatic Sea is the northernmost basin of the Mediterranean Sea, lying between 

the Italian and Balkan Peninsulas. It extents northwest from 40° to 45° 45’ N, connecting 

to the Ionian Sea to the south. It is about 800 km long, with an average width of 160 km 

and an area of 130.000 km². Three regions could be identified: the northernmost region 

extending to the latitude of Ancona, Italy, that is shallow with depths of no more than 100 

meters. The second region departs from the south of Ancona where the topography drops 

quickly to more than 200 m in the Jabuka Pit (also called the Pomo Depression). Finally, 

the third and deepest part of the Adriatic reaches 1.324 m of depth and rises up again to 

780 m depth in the Strait of Otranto, where meets the rest of Mediterranean Sea (Venegas 

li 2009).  

 The Northern and Central Adriatic constitutes a wide continental shelf. In the west 

and east side, shelves are long (shore parallel) and narrow. The substrate is characterized 

by muddy to sandy bottoms. The western coast is lower and generally sandier than the 

eastern one that is rugged with islands and coves (Kourafalou 1999). Owing to river 

runoff and oceanographic conditions, the region exhibits a decreasing trend of nutrient 

concentration and production from north to south and from west to east. Circulation is 

mainly controlled by wind stress, river discharge, topography and interaction with the 

deep basin flow. The mean surface circulation consists of a basin-wide cyclonic gyre. 

Water enters on the east from the Ionian Sea and floes northward along the Balkan coast. 

Along the Italian side, water flows south, re-entering the Ionian Sea on the west part of 

the Otranto strait (Venegas li 2009). The western Adriatic current, flowing southward, is 

intense because of the rivers emissions that fuel and sustain the cyclonic circulation. On 

the other side, the eastern Adriatic current, less influenced by river discharges, is weak, 

warm, salty and more oligotrophic with relevant remineralization processes. The water 

column stratification in the Northern Adriatic, caused by freshwater buoyancy and 

heating of the sea surface, occurs from spring to mid autumn, whereas in winter cooling 
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and cold north-easterly wind cause intense mixing and the formation of dense waters 

(Giani et al. 2012). However oceanographic conditions are subject to great seasonal and 

inter-annual variations (Venegas li 2009). The geographical location of the Adriatic Sea 

and the geomorphology of the basin dictate intensive variability in the wind field 

(Kourafalou 1999), while natural and anthropogenic pressures are responsible for 

modifying environmental conditions. These oceanographic and trophic features and the 

current system make the Northern-central Adriatic an important feeding area for juveniles 

of C. caretta. Furthermore, its shallow waters host an extensive neritic usable habitat even 

for sub-adult and adult turtles. The temperature conditions of the eastern side in the cold 

season allow sea turtles to overwinter in this basin as well. 

 The Southern Adriatic is considered a more oceanic developmental habitat (Casale 

et al. 2012a), nevertheless it has been demonstrated (Casale et al. 2012b) that its shallow 

bottoms, as the Gulf of Manfredonia, may represent a neritic feeding area too.  

As a consequence, turtles with different body size that may be in both neritic and oceanic 

life stage use the entire Adriatic, depending on habitats they are recruiting within the 

basin. 

 

Sample collection 

 

 Ninety-three loggerhead turtles were recovered along the Adriatic coast of Italy and 

Croatia, from 2005 to 2014 (Table 1) thanks to the help of three organizations. These 

three associations (Fondazione Cetacea, Rescue Center of Manfredonia and Pola 

Acquarium) are actively involved in rescue and conservation of marine vertebrates.   

 Fondazione Cetacea is a no profit organization that attends to the protection of 

marine ecosystems and the assistance of large marine animals, but especially it is 

involved in the hospitalization of marine turtles. The Foundation is located in Riccione 

and the mainly field of its activity is the North Central Adriatic Sea. It is also occupied in 

data collection of specimens found stranded or caught as by-catch and at sea.  

 The CRTM of Manfredonia is situated in the Gargano National Park and act to 

rescue and monitor marine turtles affected with fishery and other human threats. Its work 

is based on the rehabilitation of injured animals and on the awareness and scientific 

divulgation about this endangered species.  
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Table 1 Sampling data on loggerhead turtles recovered in the Adriatic Sea. 
Sample Name Rescue Association Recovery Location Date of Recovery 

Agata FondazioneCetacea Cesenatico(FC) 21/02/2014 

Alice FondazioneCetacea PortoCorsini(RA) 22/01/2013 

Amleto FondazioneCetacea Chioggia(VE) 22/07/2014 

Andreina FondazioneCetacea Ravenna(RA) 27/03/2013 

Angelo FondazioneCetacea FalconaraMarittima(AN) 14/04/2013 

Ani FondazioneCetacea PortoGaribaldi(FE) 03/12/2013 

Benedetta FondazioneCetacea Bellaria(RN) 05/06/2013 

Biondina FondazioneCetacea Casalborsetti(RA) 31/08/2014 

Catarina FondazioneCetacea Cesenatico(FC) 21/02/2014 

Cdr FondazioneCetacea Riccione(RN) 07/04/2013 

Chicca FondazioneCetacea FalconaraMarittima(AN) 27/06/2013 

Christian FondazioneCetacea Ravenna(RA) 04/02/2014 

Cleo FondazioneCetacea Bellaria(RN) 05/12/2013 

Cristina FondazioneCetacea BaiaVallugola(PU) 17/08/2014 

Daniel FondazioneCetacea Ravenna(RA) 04/02/2014 

Davide FondazioneCetacea PortoCorsini/Savio(RA) 04/12/2012 

Dente FondazioneCetacea MarinaRomea(RA) 12/06/2014 

Diamantina FondazioneCetacea Cesenatico(FC) 21/02/2014 

Dory FondazioneCetacea PortoSanGiorgio(FM) 15/03/2014 

Edo FondazioneCetacea Portonovo(AN) 11/03/2014 

EmanuelaII FondazioneCetacea Cesenatico(FC) 09/06/2014 

Fegghy FondazioneCetacea SanBenedettodelTronto(AP) 21/11/2005 

Fortunato FondazioneCetacea Ravenna(RA) 23/01/2013 

FrancescaMaria FondazioneCetacea Grado(GO) 15/09/2013 

Francesco FondazioneCetacea PortodiAncona(AN) 08/09/2014 

Giada FondazioneCetacea LidoAdriano(RA)/Cesenatico(FC) 18/07/2013 

Gigi FondazioneCetacea Ravenna(RA) 23/07/2014 

Gioele FondazioneCetacea Bellaria(RN) 24/06/2013 

Giulia FondazioneCetacea Cesenatico(FC) 13/02/2014 

Graziano FondazioneCetacea Bellaria(RN) 10/12/2013 

Iside FondazioneCetacea Bellaria(RN) 15/01/2013 

Jane FondazioneCetacea Cesenatico(FC) 13/02/2014 

Kiss FondazioneCetacea Ravenna(RA) 09/12/2013 

Lisa FondazioneCetacea Cesenatico(FC)/MilanoMarittima(RA) 02/01/2014 

Lucia FondazioneCetacea PortoCorsini(RA) 05/12/2012 

Martina FondazioneCetacea Cesenatico(FC) 07/01/2014 

Matteito FondazioneCetacea n/a 29/09/2013 

Melissa FondazioneCetacea Cesenatico(FC) 04/07/2014 

Michelino FondazioneCetacea Senigallia(AN) 10/12/2013 

Milagro FondazioneCetacea Ancona(AN) 21/08/2013 

Montone FondazioneCetacea Ravenna(RA) 13/11/2014 

Natale FondazioneCetacea Ravenna(RA) 20/12/2013 

Paola FondazioneCetacea Riccione(RN) 27/11/2013 

Patroclo FondazioneCetacea Bellaria(RN) 30/01/2013 

Piccolina FondazioneCetacea Cesenatico(FC) 17/09/2014 

Pilone FondazioneCetacea Ravenna(RA) 13/12/2012 

Pimpa FondazioneCetacea LidodelleNazioni(FE) 27/04/2014 

Pipino FondazioneCetacea Ravenna(RA) 13/12/2012 

Polifemo FondazioneCetacea Ravenna(RA) 04/01/2013 

Quasimodo FondazioneCetacea Numana(AN) 13/06/2009 

Radia FondazioneCetacea Ravenna(RA) 23/12/2013 

Richi FondazioneCetacea SanBenedettodelTronto(AP) 28/08/2014 
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 The Pola Acquarium cooperates with the Brijuni national park for the recovery of 

marine turtles and participate, as the Fondazione Cetacea, in the NETCET project that 

have the aim to realize a strengthened network of organizations involved in help and 

treatment of injured and sick sea turtles and other protected species.  

 The specimens were divided based on their foraging ground of provenience: North 

Central Adriatic east (NCAeast) recovered from Grado (45°40'41"88 N; 13°23'44"88 E) 

in the North to Porto D’Ascoli (42°55′00″N 13°53′00″E); North Central Adriatic west 

Salina FondazioneCetacea LidodegliScacchi(FE) 17/08/2013 

Senigallia FondazioneCetacea Senigallia(AN) 17/08/2013 

Serebirra FondazioneCetacea Cesenatico(FC) 05/12/2013 

Serena FondazioneCetacea MarinadiMontemarciano(AN) 07/08/2014 

Shakira FondazioneCetacea Ancona(AN) 14/03/2014 

SperdutaSperanza FondazioneCetacea PortoD'Ascoli(AP) 26/08/2014 

Steam FondazioneCetacea Cesenatico(FC) 06/12/2013 

Stephen FondazioneCetacea LidodelleNazioni(FE) 27/11/2014 

Steve FondazioneCetacea LidoAdriano(RA) 10/07/2013 

Susy FondazioneCetacea Ancona(AN) 07/09/2014 

Theta FondazioneCetacea Ravenna(RA) 20/09/2011 

Tommaso FondazioneCetacea MiramarediRimini(RN) 07/08/2014 

Valeria FondazioneCetacea Cesenatico(FC) 13/12/2013 

Vanity FondazioneCetacea Bellaria(RN) 30/12/2013 

Venerdì FondazioneCetacea Ravenna(RA) 25/11/2014 

864 CRTM Manfredonia 6MNVignanotica-Vieste(FG) 30/09/2014 

865 CRTM Manfredonia 4MNVignanotica-Vieste(FG) 30/09/2014 

866 CRTM Manfredonia 4MNMergoli-Mattinata(FG) 30/09/2014 

867 CRTM Manfredonia 4MNMattinatella-Mattinata(FG) 02/10/2014 

868 CRTM Manfredonia 1MNZapponeta(FG) 07/10/2014 

869 CRTM Manfredonia 6MNMattinata(FG) 07/10/2014 

870 CRTM Manfredonia 3MNManfredonia(FG) 08/10/2014 

871 CRTM Manfredonia 4MNZapponeta(FG) 08/10/2014 

873 CRTM Manfredonia 4MNMattinata(FG) 09/10/2014 

874 CRTM Manfredonia 4MNMattinata(FG) 09/10/2014 

875 CRTM Manfredonia 4MNMattinata(FG) 09/10/2014 

876 CRTM Manfredonia 4MNMattinata(FG) 09/10/2014 

877 CRTM Manfredonia 4MNMattinata(FG) 09/10/2014 

878 CRTM Manfredonia 4MNMattinata(FG) 09/10/2014 

879 CRTM Manfredonia 6MNManfredonia(FG) 13/10/2014 

880 CRTM Manfredonia 4MNZapponeta(FG) 14/10/2014 

Croazia1 Pula Aquarium Spalato 05/06/2014 

Croazia2 Pula Aquarium Savudrija 18/09/2014 

Croazia3 Pula Aquarium Umag 20/07/2014 

Croazia4 Pula Aquarium Savudrija 11/08/2014 

Croazia5 Pula Aquarium Savudrija 22/08/2014 

Croazia6 Pula Aquarium SudDalmatia 17/08/2014 

Croazia7 Pula Aquarium MaliLošinj 18/06/2014 

Croazia8 Pula Aquarium Savudrija 18/09/2014 

Croazia9 Pula Aquarium BaiadiKoria,Zaklopatica,IsoladiLastovo 17/09/2014 

Croazia10 Pula Aquarium Savudrija 19/10/2014 
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(NCAwest) from Savudrija, in the Northern Croatia, to Dalmacija, a region in the South 

of Croatia; South Adriatic (SA) recovered in the Gulf of Manfredonia.  

 The specimens were caught alive and nearly all turtles were released at sea after the 

hospitalization, even though few individuals died during treatments. 

 Blood samples were collected and stored in Queen’s lysis buffer (Seutin et al. 1990) 

with contribution of the organizations that recovered turtles and then conserved at 4°C for 

the molecular analysis. 

 

Biometric data 

 

Body size of all captured individuals was measured following Bolten (1999). Over-

the-curve measurements are taken with a non-stretching tape measure. Two Curved 

Carapace Length (CCL) are generally used: minimum and notch to tip. Minimum CCL is 

measured from the anterior point at midline (nuchal scute) to the posterior notch at 

midline between the supra-caudals (Fig. 10a). CCL n-t (notch to tip) is measured from the 

anterior point at midline to the posterior tip of the supra-caudals (Fig.10b). An alternative 

measure is straight carapace length (SCL) that is taken with caliper. It is measured in one 

of three ways: minimum SCL, SCL notch to tip or maximum SCL taken from the anterior 

edge of the carapace to the posterior tip of the supra-caudals (Fig.10c). Anterior and 

posterior locations must be on the same side of the carapace (Bolten 1999).  

 

 

Fig. 10 Anatomical points for straight (SCL) and curved (CCL) carapace length measurements. (a) minimum SCL and 

minimum CCL; (b) SCL notch to tip and CCL notch to tip; (c) maximum SCL. From Bolten (1999).  

 

 In the present work the measure techniques used to collect sample sizes were the 

minimum CCL and the Curved Carapace Length notch to tip (CCL n-t). 

 To figure out differences in biometric parameters depending on the foraging ground 

of provenience, measures were standardized. Although variations exist in CCL 
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measurements, we assumed discrepancies to be minimal. Minimum CCL measures taken 

from CRTM of Manfredonia and from the Pola Acquarium and CCL notch to tip 

measures taken from Fondazione Cetacea on recovered individuals were converted in 

SCL measures. Data conversion to SCL parameter was accomplished using an empirical 

equation (SCL = 0.948 * CCL – 1.442) based on linear regression of paired CCL and 

SCL data for Caretta caretta (Teas 1993).  

 A size frequency distribution was carried out distributing individuals into 10 cm 

size classes following Piovano et al. (2011). The size class frequency distribution was 

analyzed in relation to the different recovery modalities and to the three foraging areas.  

A One–way ANOVA (R command “aov,” package “stats,” R Core Team 2014) was 

performed to test the effect of the Factor “Site” with three levels (three feeding areas) on 

SCL. When a difference was detected, a post hoc test was performed (R command 

“Tukey HSD,” package “stats,” R Core Team 2014). Before carrying out these analyses, 

normality and homogeneity of variances were tested with Bartlett’s test. 

 Significant differences in the mean SCL of samples depending on the type of 

recovery were examined as well. In this case, the Factor “Recovery” with four levels (by-

catch, floating, stranded and not classified recovery) was tested on SCL of turtle 

individuals. 

 

DNA extraction and amplification 

 

 Genomic DNA from blood samples was extracted with the NucleoSpin® kit 

(MACHEREY-NAGEL), following the manufacturer’s instructions. 815 base pair (bp) 

fragment of the mtDNA control region was amplified by the polymerase chain reaction 

(PCR) using the primers LCM15382 (5’-GCTTAACCCTAAAGCATTGG-3’) and H950 

(5’-TCTCGGATTTAGGGGTTTG-3’) designed by Abreu-Grobois et al. (2006). The 

resulting fragment contains the 380 bp fragment traditionally used for population studies 

on this species (Carreras et al. 2006; Giovanotti et al. 2010).  

 PCR reactions were performed in 20 µL volumes under the following conditions: an 

initial denaturation step at 95 °C for 3 min; followed by 35 cycles of 95 °C for 30 

seconds, 56 °C for 1 min, 72 °C for 30 s; with a final extension at 72 °C for 10 min.  

 All amplifications were sent to Macrogen Europe for sequencing reaction using 

both forward and reverse primers to confirm the nucleotide polymorphisms. 
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 Electropherograms were checked using Bioedit Sequence Alignment Editor 

v.7.0.9 and sequences were aligned using the ClustalX program (Thompson et al. 1997).  

 

Data analysis 

 

 The data sets were divided in short and long data set based on the short (~380 bp) 

and long (~815 bp) fragments of the mitochondrial control region. The haplotypes were 

compared to previously identified haplotypes from nesting and foraging locations in the 

Eastern Atlantic and Mediterranean (Carreras et al. 2006; Revelles et al. 2007; Clusa et al. 

2013; Clusa et al. 2014; Garofalo et al. 2013), according to the standardized nomenclature 

of the Archie Carr Center for Sea Turtle Research (ACCSTR; 

http://accstr.ufl.edu/ccmtdna.html). 

 Long Haplotype diversity (h; Nei 1987) and nucleotide diversity (π; Nei 1987) 

were estimated using ARLEQUIN version 3.5 (Excoffier and Lischer 2010) to analyze 

the genetic diversity of each foraging ground (NCA west, NCA east and SA).  

 Relationships between the haplotypes were visualized in unrooted haplotype 

networks, calculated by Median Joining with the software Network v. 4.6.1.1 (Bandelt et 

al. 1999). 

 The statistical significance of haplotype frequency differentiation among the three 

feeding grounds was tested on long sequences with ARLEQUIN software package. 

Pairwise genetic distances (FST) were calculated with 1,000 permutations setting P value 

on the 0.01 significance level. Significant differences in haplotype frequencies were also 

tested between the three feeding grounds and published Mediterranean foraging grounds 

(see Table S1 in Supplementary materials for references). When the same geographical 

area was analyzed in different published studies considered for the comparison, data of 

absolute haplotype frequencies were combined (i.e. Tyrrhenian Sea). The feeding 

aggregates within the Mediterranean Sea included in the analysis are showed in Table S1.  

 Significance levels were corrected using a false discovery rate (FDR) 

methodology (Benjamini and Hochberg 1995). 

 To assess the proportion of individuals in the Adriatic feeding ground (all the three 

sampling site altogether) coming from different rookeries, the mixed sock analysis (MSA) 

was applied as implemented in the program ‘Bayes’ (Pella and Masuda 2001). The 

analysis was performed on the basis of haplotype frequency differences between baseline 

http://accstr.ufl.edu/ccmtdna.html
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(nesting populations) and our Adriatic sample. This baseline (Table S2) was obtained 

from published data from 13 Mediterranean nesting areas (Garofalo et al. 2009; Saied et 

al. 2012; Clusa et al. 2013; Carreras et al. 2014; Yilmaz et al. 2011) and 10 Atlantic 

rookeries (Monzón-Argüello et al. 2010; Shamblin et al. 2012) reporting the absolute 

haplotype frequencies analyzed using the same primer pair (LCM 15382; H950). 

The test was performed in two ways: first combining all the Atlantic and all the 

Mediterranean nesting beaches (regional level) and then considering each nesting site as a 

separate potential contributor (fine scale level) (Giovannotti et al. 2010; Clusa et al. 

2014).  

An additional Bayesian analysis was performed to unveil differences in the proportion of 

individuals in each foraging stock originating from different Mediterranean rookeries. 

The test was applied to the three Adriatic recovery areas independently and only the 

Mediterranean nesting sites were included in the analysis cause of the low proportion of 

Atlantic rookery contribution. The Gelman-Rubin criterion was used to test for 

convergence in the algorithm. Values above 1.2 indicate lack of convergence and the 

corresponding estimates are considered unreliable (Gelman et al. 1996). 
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3. RESULTS 

 

3.1  Analysis of biometric and finding data 

 

 Biometric measures (minimum CCL and CCL n-t) and date, place and recovery 

modality (Table 2) were recorded in 93 specimens.   

The  CCL of the recovered individual ranged between 11 and 87.5 cm.  

Table 2 Data set of recovered turtles. Data not recorded are indicated as n/a (not available).  

Name Finding modality CCL (cm) 

Chicca stranded 11 

Paola stranded 16 

Edo stranded 20 

Susy floating 20 

Cristina  floating 21 

Angelo floating 23.5 

Matteito n/a 24 

Salina  floating 24 

Pipino trawling  24.5 

Dente floating 27 

Sperduta speranza stranded 27 

Biondina floating 28 

Cdr stranded 28 

Michelino mussel line 28 

Piccolina  trawling  28 

Senigallia floating 28 

Serena  stranded 28 

Steve trawling  28 

Croazia10 trawling  28.7 

Davide trawling  29 

Croazia1 n/a 31.7 

Croazia8 trawling  31.8 

Giada trawling  33 

Kiss trawling  35 

Venerdì trawling  35 

Gioele trawling  36 

Croazia2 trawling  36.2 

Tommaso floating 36.5 

865 trawling  37.5 

Croazia5 trawling  39.2 

Dory stranded 40 
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Richi  floating 40 

880 trawling  40.8 

Stephen stranded 41 

Gigi trawling  41.5 

Milagro floating 42 

Serebirra trawling  43 

Diamantina trawling  48 

Croazia4 trawling  48 

Croazia3 trawling  49.1 

879 trawling  49.8 

Steam trawling  50 

Amleto trawling  51.5 

Ani floating 52 

Francesco floating 52 

Quasimodo floating 52 

Theta stranded 52 

Pilone trawling  53 

Patroclo trawling  54 

876 trawling  55 

Croazia6 floating 55.7 

Benedetta trawling  57.5 

Melissa  trawling  58 

Montone  trawling  58 

Valeria trawling  58 

Lisa trawling  59 

Martina trawling  59 

Shakira floating 59 

Croazia9 n/a 59.9 

Catarina trawling  60 

869 trawling  60 

867 trawling  60.2 

Alice trawling  62 

Fortunato  trawling  62 

Giulia trawling  62 

Iside trawling  62 

Pimpa  stranded 62 

Agata trawling  63 

Cleo trawling  63 

875 trawling  63.2 

Andreina trawling  64 

Christian trawling  65 

Fegghy fishing net 65 

866 trawling  65 

Graziano  trawling  66 
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Vanity trawling  66 

868 floating 66 

877 trawling  67 

FrancescaMaria floating 68 

870 trawling  68.5 

Jane trawling  69 

874 trawling  69 

Daniel trawling  70 

871 trawling  70 

Croazia7 n.d 70 

878 trawling  70.5 

Natale trawling  71 

EmanuelaII trawling  73 

Radia trawling  73 

864 trawling  74.2 

Lucia trawling  76 

Polifemo trawling  81 

873 trawling  87.5 

 

The size of the turtles after conversion of CCL to SCL ranged from 9.0 to 81.5 cm 

and the mean SCL of all the individuals was 45.6 cm (SD=16.6).  

The SCL measures meet the normality and homogeneity of variances (Bartlett’s 

K-squared = 3.2487, df = 2, p = 0.197). The one–way analyses of variance showed that 

the SCL measures of the individuals differ significantly based on their feeding area 

(Table 3).  The post hoc test revealed that significant differences in the SCL occurred 

between the NCA (SCLNCAwest = 43.3 ± 16.9 cm; SCLNCAest = 41.2 ± 13.1 cm) and the 

South Adriatic (SCLSA = 58.1 ± 11.8cm) with Tukey’s post hoc tests  < 0.05 for both the 

comparisons (Fig. 11a). 

Table 3 Results from one-way ANOVA on the straight carapace length measures between the three recovery areas 

 Df Sum Sq Mean Sq F value Pr(>F) 

Site 2    3028 1514.00 6.0456 0.003439  
Residuals 90  22539    250.43   

 

The dominant size class was the size class 50-59 cm (23.7%), followed by the 60-

69 and the 20-29 size classes (20.4% and 19.3% respectively) (Fig. 11b). The size 

frequency distribution in the single recovery areas, as shown in the Fig. 12, shows that 

size classes vary among the three feeding aggregates. 
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Fig. 11 a) Turtle mean SCL for each Adriatic sub-area and total sample mean size. Standard deviation (SD) is included 

in the bar graph and values are expressed in the text. b) Frequency distribution of measured SCL referred to the total 

number of collected individuals. 

 

The frequency distribution of size classes from the NCA west sample (n=67) 

showed the same trend of Figure 11b, although here the 20-29 size class was more 

abundant than the 60-69 size class. In the NCA east the distinct size classes seemed quite 

homogeneously distributed, with a predominance of individuals within the 20-29 size 

class (Fig. 12). Regarding the South Adriatic, 8 of the 16 rescued turtles fall into the size 

class 60-69 cm (50%). However, the restricted sample size of recovered turtles in the 

Croatian waters (n=10) and in the South Adriatic (n=16) in contrast with the NCA west 

sample should be taken into account when analyzing the entire data set.  

 
Fig. 12 Frequency distribution of measured SCL class loggerheads recovered in the three recovery areas of the Adriatic 

Sea. 

 

The finding modality of the individuals was classified into stranded, floating and 

incidental captured turtles. The highest proportion (67.4%) of individuals was found as 

by-catch in trawl nets (Fig. 13a), while turtles found floating at sea and stranded were the 

18.5% and 10.9% respectively. Even considering the three recovery locations 

independently, incidental capture was the most recurrent type of recovery (Fig. 13b).  

a) b) 
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Fig. 13 Proportion of individuals associated to the three different types of recovery in the Adriatic (a) and in each study 

area (b).  

 

The mean SCL of stranded specimens was 29.4 cm (SD ± 15.3), while the mean 

sizes of captured and floating turtles were 50.7 cm (SD ± 14.5) and 37.3 (SD ± 15.5) 

respectively (Fig. 14). This finding was comparable with the distribution of finding 

modality in each SCL classes (Fig. 15).  

 

Fig. 14 The figure shows the relationship between turtle mean size expressed as SCL and the three recovery modalities. 

Mean SCL of not available data are also showed. 

 

a) b) 
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Fig. 15 Distribution of the different finding modalities in each SCL class for all sampled turtles.  

 

 After Bartlett test confirming the normality and homogeneity of variance (K-

squared = 0.9367, df = 3, p = 0.8166), the one-way ANOVA revealed statistically 

significant differences in the mean SCL of samples depending on the type of recovery 

(Table 4). The Tukey analysis outcome suggested that this statistical differences 

concerned stranded and floating turtles versus individuals captured as by-catch with a 

probability of 0.0004 and 0.008398 respectively.  

Table 4 One – way ANOVA results testing the statistical relationship between type of recovery and the mean SCL of 

turtles. 

 Df Sum Sq Mean Sq F value Pr(>F) 

Recovery 3 5467 1822.4 8.069 8.17e-05 *** 

Residuals 89 20099 225.8   

 

 

  

3.2 Mitochondrial DNA haplotype analysis  

 

Data on short and long haplotypes assigned to the loggerhead turtles captured in the 

Adriatic study areas are displayed in Table 5. 

Table 5 Long and short haplotypes assigned to each turtle specimen. 
Sample Name Recovery location Short Haplotype Long Haplotype 

Agata NCA west CC-A2 CC-A2.1 

Alice NCA west CC-A2 CC-A2.1 

Amleto NCA west CC-A2 CC-A2.1 

Andreina NCA west CC-A3 CC-A3.1 

Angelo NCA west CC-A2 CC-A2.1 

Ani NCA west CC-A2 CC-A2.1 

Benedetta NCA west CC-A2 CC-A2.1 

Biondina NCA west CC-A2 CC-A2.1 
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Catarina NCA west CC-A2 CC-A2.1 

Cdr NCA west CC-A2 CC-A2.1 

Chicca NCA west CC-A2 CC-A2.1 

Christian NCA west CC-A2 CC-A2.1 

Cleo NCA west CC-A2 CC-A2.1 

Cristina NCA west CC-A2 CC-A2.1 

Daniel NCA west CC-A2 CC-A2.1 

Davide NCA west CC-A2 CC-A2.1 

Dente NCA west CC-A2 CC-A2.1 

Diamantina NCA west CC-A2 CC-A2.1 

Dory NCA west CC-A2 CC-A2.1 

Edo NCA west CC-A2 CC-A2.1 

EmanuelaII NCA west CC-A2 CC-A2.1 

Fegghy NCA west CC-A2 CC-A2.1 

Fortunato NCA west CC-A2 CC-A2.1 

FrancescaMaria NCA west CC-A2 CC-A2.1 

Francesco NCA west CC-A2 CC-A2.1 

Giada NCA west CC-A2 CC-A2.1 

Gigi NCA west CC-A2 CC-A2.1 

Gioele NCA west CC-A2 CC-A2.1 

Giulia NCA west CC-A2 CC-A2.1 

Graziano NCA west CC-A2 CC-A2.1 

Iside NCA west CC-A2 CC-A2.1 

Jane NCA west CC-A2 CC-A2.1 

Kiss NCA west CC-A2 CC-A2.1 

Lisa NCA west CC-A2 CC-A2.1 

Lucia NCA west CC-A2 CC-A2.1 

Martina NCA west CC-A2 CC-A2.1 

Matteito NCA west CC-A2 CC-A2.1 

Melissa NCA west CC-A2 CC-A2.1 

Michelino NCA west CC-A2 CC-A2.1 

Milagro NCA west CC-A2 CC-A2.1 

Montone NCA west CC-A2 CC-A2.1 

Natale NCA west CC-A2 CC-A2.1 

Paola NCA west CC-A2 CC-A2.1 

Patroclo NCA west CC-A2 CC-A2.1 

Piccolina NCA west CC-A2 CC-A2.1 

Pilone NCA west CC-A2 CC-A2.1 

Pimpa NCA west CC-A2 CC-A2.1 

Pipino NCA west CC-A2 CC-A2.1 

Polifemo NCA west CC-A2 CC-A2.1 

Quasimodo NCA west CC-A2 CC-A2.1 

Radia NCA west CC-A31 CC-A31.1 

Richi NCA west CC-A2 CC-A2.1 

Salina NCA west CC-A2 CC-A2.1 

Senigallia NCA west CC-A2 CC-A2.1 

Serebirra NCA west CC-A2 CC-A2.1 

Serena NCA west CC-A2 CC-A2.1 
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Shakira NCA west CC-A2 CC-A2.1 

Sperdutasperanza NCA west CC-A2 CC-A2.9 

Steam NCA west CC-A2 CC-A2.1 

Stephen NCA west CC-A2 CC-A2.9 

Steve NCA west CC-A10 CC-A10.4 

Susy NCA west CC-A2 CC-A2.1 

Theta NCA west CC-A2 CC-A2.1 

Tommaso NCA west CC-A2 CC-A2.1 

Valeria NCA west CC-A2 CC-A2.1 

Vanity NCA west CC-A2 CC-A2.1 

Venerdì NCA west CC-A2 CC-A2.1 

864 SA CC-A2 CC-A2.1 

865 SA CC-A2 CC-A2.1 

866 SA CC-A2 CC-A2.1 

867 SA CC-A2 CC-A2.1 

868 SA CC-A2 CC-A2.1 

869 SA CC-A2 CC-A2.1 

870 SA CC-A2 CC-A2.1 

871 SA CC-A2 CC-A2.1 

873 SA CC-A2 CC-A2.1 

874 SA CC-A2 CC-A2.1 

875 SA CC-A2 CC-A2.1 

876 SA CC-A2 CC-A2.1 

877 SA CC-A2 CC-A2.1 

878 SA CC-A2 CC-A2.1 

879 SA CC-A2 CC-A2.1 

880 SA CC-A3 CC-A3.1 

Croazia1 NCA east CC-A2 CC-A2.9 

Croazia2 NCA east CC-A2 CC-A2.9 

Croazia3 NCA east CC-A2 CC-A2.1 

Croazia4 NCA east CC-A2 CC-A2.1 

Croazia5 NCA east CC-A2 CC-A2.9 

Croazia6 NCA east CC-A2 CC-A2.1 

Croazia7 NCA east CC-A2 CC-A2.1 

Croazia8 NCA east CC-A2 CC-A2.1 

Croazia9 NCA east CC-A2 CC-A2.1 

Croazia10 NCA east CC-A2 CC-A2.1 

 

The sequence analysis of the ninety-three loggerhead individuals examined revealed four 

short mtDNA haplotypes: CC-A2 (95.7%), CC-A3 (2.2%), CC-A10 (1.1%) and CC-A31 

(1.1%) according to Bowen et al. (2004) (Fig.16). 

The long sequence analysis split the short CC-A2 haplotype into CC-A2.1 and CC-A2.9 

haplotypes, due to further polymorphism of the longer mtDNA fragment. Moreover, the 

CC-A3, CC-A10 and CC-A31 short haplotypes were resulted equal to the haplotypes CC-

A3.1, CC-A10.4 and CC-A31.1 respectively based on the long sequence.  
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Fig. 16 Short haplotype proportion in the sampled turtles. 

 

Table 6 Distribution of the short haplotypes for the examined loggerheads in the three sampling regions. 

SHORT HAPLOTYPES NCA west NCA east SA Total 

CC-A2 64 10 15 89 

CC-A3 1 - 1 2 

CC-A10 1 - - 1 

CC-A31 1 - - 1 

 

CC-A2 haplotype was the most represented in all the three foraging areas (Table 6). 

Regarding the long variants, the CC-A2.1 haplotype was the most abundant among the 

sample data set (Fig. 17), while CC-A2.9 was found only in five individuals (5.4%) 

collected in the North Central Adriatic.  The short CC-A3 was identified in the 2.2% of 

examined individuals, that correspond all to the long CC-A-3.1 haplotype. CC-A10/CC-

A10.4 and CC-A31/CC-A31.1 were each recorded in one specimen of the NCA west 

(Table 7). 

 

 
Fig. 17 Long haplotype proportion in the sampled turtles. 
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Table 7 Distribution of the long haplotypes for the examined loggerheads in the three sampling regions. 

LONG HAPLOTYPES NCA west NCA east SA Total 

CC-A2.1 62 7 15 84 

CC-A2.9 2 3 - 5 

CC-A3.1 1 - 1 2 

CC-A10.4 1 - - 1 

CC-A31.1 1 - - 1 

n 67 10 16 93 

h 0.1443 ± 0.0581 0.4667 ± 0.1318 0.1250 ± 0.1064 

 π 0.037087 ± 0.059156 0.116667 ± 0.125221 0.031250 ± 0.056569 

  

The haplotype network (Fig. 18) showed the relationship between haplotypes. All 

of them differed from the most abundant CC-A2.1 by a single mutational change with a 

probability higher than 95%. Pie graphs, each representing one haplotype and its 

frequency in each foraging ground, indicated that the three feeding areas shared the 

principal haplotype CC-A2.1. All five haplotypes detected in the data set were present in 

the NCA west sample. Although the low number of turtles collected in the SA and in the 

NCA east, the CC-A3.1 haplotype was also found in the South Adriatic, while the other 

most common haplotype CC-A2.9 was found in the NCA east sample as well as in the 

NCA west.  

 

Fig. 18 Unrooted haplotype network of mtDNA long fragment for Caretta caretta in the Adriatic feeding grounds. Each 

pie graph represents one haplotype and the different colours represent it frequency in each feeding grounds. The size of 

each pie graph depends on its absolute frequency. Solid lines connect haplotypes by single mutational changes with a 

probability higher than 95%.  
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The highest haplotype and nucleotide diversities were found in the NCA east (h = 

0.4667 ± 0.1318; π = 0.11667 ± 0.125221). Conversely, values of haplotype and 

nucleotide diversities in the NCA west and in the SA were comparable (h = 0.1443 ± 

0.0581 and 0.1250 ± 0.1064; π = 0.037087 ± 0.059156 and 0.031250 ± 0.056569, 

respectively; Table 7). 

Pairwise FST between the three foraging ground ranged from 0 to 0.25. No 

significant genetic structuring was found between the SA and the NCA west and east 

sample (p FST NCAest vs SA = 0.06153; p FST NCAwest vs SA = 0.7334). A weak statistical 

difference was found between the NCA west and NCA east sample (p FST NCAwest vs NCAeast 

= 0.04686)  after correction with FDR (Table 8).  

 

Table 8 Pairwise comparison (FST) of haplotype composition differences between the studied foraging areas. 

 

SA NCA west NCA east 

SA - 

  NCA west -0.01391 - 

 NCA east 0.22465 0.25225* - 

Significant values were corrected with FDR methodology. ∗∗∗P <0.001; ∗∗P <0.01; ∗P <0.05 

 

The Pairwise FST estimates between Mediterranean foraging aggregates (see Table 

S1 for compared feeding grounds) revealed the most significant genetic heterogeneity 

between Lampedusa (LAM) and all the three Adriatic feeding grounds (Table 9) with the 

major genetic differentiation observed between LAM and NCAwest (FST = 0.528). Even 

the pairwise comparison between Algerian basin (ALG) and the three Adriatic samples 

resulted statistically different from zero. However, no significant difference of the genetic 

structure was found between the Algerian basin and the NCAeast. This latter feeding 

ground showed a low statistical difference in haplotype frequency with Driny Bay and the 

sample NCAwest. A great statistically significant difference occurred between the 

NCAwest and the Ionian Sea (P < 0.001), while a weak heterogeneity was computed 

between the NCAwest and the Catalano-Balearic Sea (CAB) after correction with a false 

discovery rate (P<0.05) 

 

Table 9 Genetic structure of Mediterranean feeding populations based on pairwise genetic distances (FST values).  

 SA NCAwest NCAeast LAM MAL CAB ALG TYR ION SLE NADR SADR DrinyBay 

SA -    
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NCAwest -0.0261 -    
         NCAeast 0.1774 0.2203* -    

        LAM        0.3767*** 0.5283*** 0.2257*** -    
       MAL  0.0134 0.0836 0.1023 0.2736*** -   

      CAB  0.0169 0.0518* 0.0188 0.2584*** 0.0022 -   
     ALG   0.1983*** 0.2717*** 0.1005 0.0738* 0.1468** 0.099*** -   
     TYR 0.0001 0.0267 0.0784 0.3457*** 0.0112 -0.0085 0.144*** - 
     ION 0.0813 0.1438*** 0.0125 0.1716*** 0.0142 0.0179 0.090*** 0.0568** -  

   SLE     -0.0149 0.0235 0.0905 0.3239*** -0.0183 -0.0071 0.159*** -0.0061 0.0396 -  
   NADR    -0.0047 0.0367 0.0833 0.3382*** -0.0214 -0.0027 0.167*** 0.0029 0.0351 -0.0160 -    

SADR     -0.0560 -0.0199 0.2288 0.4229*** 0.0474 0.0375 0.222*** 0.0157 0.1072* 0.0057 0.0158 -  

DrinyBay         -0.0231 -0.0108 0.2206* 0.4733*** 0.0813 0.0455 0.241*** 0.0228 0.128** 0.0190 0.0321 -0.0176 - 

References and acronyms as in Table 2. P values were corrected with the FDR methodology and thresholds of 

significance are indicated as ∗∗∗P <0.001; ∗∗P <0.01; ∗P <0.05 

 

The mixed stock analysis results showed that all the Mediterranean source 

populations potentially contributed to the Adriatic stock (99.5%) and that only a small 

proportion of specimens appeared to belong to the Atlantic stock (0.5 ± 1%) (Table  10). 

The weak contribution to the Adriatic mixed stock from Atlantic populations was 

confirmed when Atlantic rookeries were analyzed independently as single potential 

source.  The contribution from Atlantic populations ranged from 0.05% (± 0.2%) to 1.2% 

(± 6%).  

 Within the Mediterranean rookeries the Adriatic stock is made by a contribution of 

54.3% (± 36.7%) from the nesting sites of Misurata in Lybia, 10.8% (± 24.8%) from the 

Israel nesting population and 10.8% (± 17.9%) from the nesting site of the Western 

Greece. Contributions of the other Mediterranean nesting beaches were low and ranged 

from 0.2% (DLM) to 6.7% (LEB). 

When the three Adriatic foraging grounds were considered separately, the 

contribution of each Mediterranean nesting population was differently distributed (Table 

11). In the NCAwest, Misurata remained the major contributor (27.3 ± 34.1%), followed 

by Cyprus (19 ± 29.4%) and Western Greece (16.7 ± 24.9%). A low relative contribution 

(11 ± 22.7%) was also detected from Middle Turkey. On the other hand, most individuals 

of the NCAeast came from Lybia (35.7 ± 31.1 %  Sirte; 12.5 ± 25.5% Misurata), while 

20.3% of turtles (± 31.8%) were ascribed to the rookeries of Israel. Finally, the SA 

feeding ground showed a different composition, hosting a high proportion of individuals 

from Turkey (10.7 ± 23% ETU; 11.6  ± 23.2% MTU; 11.6 ± 23.4% WTU). Even nesting 

sites of Lebanon resulted important contributors (16.6 ± 28.8%) to the South Adriatic, 
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together with rookeries of Cyprus and Misurata, which contributed with a proportion of 

13.6% (± 25.3%) and 11.4% (± 24%), respectively. The main directions followed by 

individuals found in the Adriatic areas were reconstructed in Figure 19 according to the 

results of the Mixed Stock Analysis.  

 

 

Fig. 19 Reconstruction of the main directions followed by individuals found in the Adriatic areas analyzed (circled), as 

emerged from the Mixed Stock Analysis. Contributions above 10% from rookeries to the Adriatic areas are shown with 

solid arrows. Dashed lines indicate further flows identified for each Adriatic sample. Each line is drawn to connect the 

origin and sampling places and does not necessarily describes the specific route followed by turtles. Rookeries: SIR 

(Sirte), MIS (Misurata), CAL (Calabria), WGR ( Western Greece), WTU (western Turkey), MTU (Middle Turkey), 

ETU (Eastern Turkey), DLM (Dalaman), DLY (Dalyan), LEB (Lebanon), ISR (Israel), CYP (Cyprus), CRE (Crete).   

 

Table 10 Results of the mixed stock analysis: estimates of contributions by the Atlantic and Mediterranean rookeries to 

the Adriatic feeding ground. The analysis was performed combining all the Atlantic and all the Mediterranean nesting 

beaches and considering each nesting site as a separate potential contributor. 

STOCK MEAN SD 2.5% MEDIAN 97.5% 

Mediterranean rookeries¹ 0.9953 0.0105 0.9605 1.000 1.000 

MIS 0.5433 0.3677 0.0000 0.6620 0.9832 

SIR 0.0132 0.0373 0.0000 0.0000 0.1395 

ISR 0.1085 0.2484 0.0000 0.0000 0.8944 

LEB 0.0675 0.1847 0.0000 0.0000 0.7584 

CYP 0.0568 0.1605 0.0000 0.0000 0.6528 

ETU 0.0102 0.0461 0.0000 0.0000 0.1176 

MTU 0.0291 0.1010 0.0000 0.0000 0.3869 

WTU 0.0114 0.0447 0.0000 0.0000 0.1349 

DLM 0.0022 0.0086 0.0000 0.0000 0.0266 

DLY 0.0042 0.0161 0.0000 0.0000 0.0510 

CRE 0.0037 0.0202 0.0000 0.0000 0.0390 
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WGR 0.1082 0.1787 0.0000 0.0133 0.6760 

CAL 0.0092 0.0211 0.0000 0.0000 0.0718 

Atlantic rookeries² 0.0047 0.0105 0.0000 0.0000 0.0395 

NOR 0.0005 0.0022 0.0000 0.0000 0.0051 

CEF 0.0098 0.0142 0.0000 0.0037 0.0492 

SEF 0.0013 0.0062 0.0000 0.0000 0.0152 

SAL 0.0117 0.0591 0.0000 0.0000 0.1213 

DRT 0.0057 0.0266 0.0000 0.0000 0.0670 

QMX 0.0008 0.0036 0.0000 0.0000 0.0087 

SWF 0.0009 0.0043 0.0000 0.0000 0.0104 

CWF 0.0008 0.0036 0.0000 0.0000 0.0087 

NWF 0.0005 0.0025 0.0000 0.0000 0.0057 

CPV 0.0005 0.0023 0.0000 0.0000 0.0054 

¹Sample obtained by combining all Mediterranean nesting areas; ²sample obtained by combining all the Atlantic nesting 

areas; Mediterranean and Atlantic codes as in Table S2. 

 

 

 

 

 

 

 

 

 

Table 11 Relative contribution of each Mediterranean rookery to the three Adriatic foraging grounds. In bold values 

above 0.100. Rookery acronyms as in Table S2. 

NCA west Rookeries MEAN SD 2.5%  percentile MEDIAN 97.5% percentile 

 
MIS 0.2732 0.3412 0.0000 0.0671 0.9683 

 
SIR 0.0167 0.0340 0.0000 0.0001 0.1191 

 
ISR 0.0758 0.1791 0.0000 0.0003 0.7466 

 
LEB 0.0974 0.2221 0.0000 0.0002 0.8517 

 
CYP 0.1900 0.2944 0.0000 0.0033 0.8920 

 
ETU 0.0176 0.0575 0.0000 0.0000 0.1845 

 
MTU 0.1103 0.2269 0.0000 0.0003 0.8165 

 
WTU 0.0152 0.0488 0.0000 0.0000 0.1527 

 
DLM 0.0035 0.0111 0.0000 0.0000 0.0364 

 
DLY 0.0073 0.0231 0.0000 0.0000 0.0737 

 
CRE 0.0125 0.0535 0.0000 0.0000 0.1211 

 
WGR 0.1666 0.2491 0.0000 0.0282 0.8586 

 
CAL 0.0139 0.0313 0.0000 0.0001 0.1082 

NCA east 
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MIS 0.1253 0.2552 0.0000 0.0004 0.9169 

 
SIR 0.3567 0.3115 0.0000 0.3387 0.9520 

 
ISR 0.2031 0.3182 0.0000 0.0031 0.9655 

 
LEB 0.0415 0.1129 0.0000 0.0001 0.4379 

 
CYP 0.0471 0.1206 0.0000 0.0001 0.4740 

 
ETU 0.0335 0.0976 0.0000 0.0000 0.3706 

 
MTU 0.0401 0.1092 0.0000 0.0001 0.4209 

 
WTU 0.0323 0.0960 0.0000 0.0000 0.3531 

 
DLM 0.0104 0.0377 0.0000 0.0000 0.1130 

 
DLY 0.0215 0.0738 0.0000 0.0000 0.2365 

 
CRE 0.0341 0.0977 0.0000 0.0000 0.3575 

 
WGR 0.0366 0.1044 0.0000 0.0000 0.3964 

 
CAL 0.0178 0.0564 0.0000 0.0000 0.1967 

SA 

 
MIS 0.1145 0.2396 0.0000 0.0004 0.8864 

 
SIR 0.0110 0.0395 0.0000 0.0000 0.1184 

 
ISR 0.0402 0.1240 0.0000 0.0000 0.4662 

 
LEB 0.1659 0.2882 0.0000 0.0015 0.9444 

 
CYP 0.1361 0.2530 0.0000 0.0008 0.8752 

 
ETU 0.1070 0.2305 0.0000 0.0004 0.8797 

 
MTU 0.1159 0.2325 0.0000 0.0004 0.8375 

 
WTU 0.1164 0.2341 0.0000 0.0006 0.8772 

 
DLM 0.0179 0.0500 0.0000 0.0000 0.1721 

 
DLY 0.0474 0.1233 0.0000 0.0001 0.4507 

 
CRE 0.0415 0.1262 0.0000 0.0000 0.4729 

 
WGR 0.0723 0.1785 0.0000 0.0001 0.7125 

 
CAL 0.0138 0.0491 0.0000 0.0000 0.1442 
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4. DISCUSSION  

 Distribution of loggerheads in the Mediterranean Sea has been widely investigated. 

Nesting sites and pelagic and demersal feeding habitats have been described 

(Margaritoulis et al. 2003; Casale and Margaritoulis 2010). Few studies have only 

recently investigated the genetic structure based on the analysis of long fragments within 

the Adriatic basin. In the present work, the long haplotype frequency was analyzed from a 

wide sample of turtles that inhabit these waters. Then, the contribution of previously 

undetected nesting colonies to the Adriatic aggregates was identified. Moreover, long 

sequences mtDNA have been analyzed for the first time in individuals sampled along the 

Croatian coast. 

 The occurrence of both neritic sub-adults and adults (range: 52-70 cm SCL 

according to Giovannotti et al. 2010) in the samples analyzed supports previous 

observations on the role of the Adriatic Sea as foraging area for adult and sub-adult 

loggerheads (Margaritoulis et al. 2003). Moreover, juveniles (13-32 cm) and pelagic sub-

adults (33-51cm; following the classification of Giovannotti et al. 2010) were the 28% 

and the 25.8%, of the total number of the individuals, respectively. These findings 

suggest that the Adriatic could provide suitable environments for different turtle’s life 

stages. In particular, these results provide new evidences that juveniles undertake 

developmental migrations towards this basin. The presence of different life stages in the 

Adriatic Sea is likely due to the occurrence of closely connected coastal and open sea 

ecosystems, and these features may allow the trophic shift from pelagic-omnivorous to 

benthic-carnivorous stages (Lazar et al. 2000; Giovannotti et al. 2010).  

 The recovery of juveniles and sub-adults in the North Central Adriatic is consistent 

with turtle size range observed previously in other investigations in the same area 

(Scaravelli and Affronte 2003; Lazar et al. 2003; 2005; Casale et al. 2010; 2014).  

However, the mean size of turtle sampled on the Eastern and Western coast of the 

Adriatic Sea, was lower than the mean size previously registered, suggesting that the 

presence of smaller individuals migrating into the North Adriatic is likely increasing. On 

the other hand, the significant differences in the mean turtle body size between North and 

South Adriatic is due to the recovery of a greater proportion of turtles ranging from 60 to 

69 cm in the Gulf of Manfredonia. The South Adriatic and Ionian Sea are considered 



50 
 

developmental areas for juveniles in the first years of life (Casale et al. 2010). However, 

in the South Adriatic the Gulf of Manfredonia may represent a neritic foraging ground for 

loggerhead sea turtles in a wide range of sizes. The results support previous evidences of 

the use of this area as an inter-breeding foraging ground from adult loggerheads (Casale 

et al. 2012).  

The analysis of the relationship between the mean SCL and recovery modality 

showed that juveniles are more affected by strandings. Instead, turtles found floating were 

in a wide size range (17 - 63 cm SCL) suggesting that all size classes might be gathered at 

sea with buoyancy and diving problems. Finally, by-catch occurs mainly in larger 

individuals, especially the 50-59 and 60-69 cm size classes. The significant differences 

between turtle body size and the type of recovery is consistent with turtle behavior, as 

neritic sub-adult individuals feed on the sea bottom and hence they are more affected by 

trawling fishery operations. Differently, juveniles have a more pelagic behavior so they 

may undergo other threats, probably deriving from human activities. It is difficult to 

assess the causes of strandings or floating turtle findings unless there are evidences of the 

impact of fishing gears or other anthropogenic factors (boat strikes, pollution, marine 

debris) or natural factors (infections). However, there are estimates that anthropogenic 

impact is one the primary cause of floating and stranded turtle recovery (Casale et al. 

2010). The mean size of captured turtles as by-catch in the Adriatic confirms previous 

estimates on turtle size incidental captured in the Adriatic Sea (Casale et al. 2004; 2014). 

The high fishing effort in the North Adriatic might explain the relevant numbers of 

floating, stranded or captured turtles of different sizes found in this part of the basin. Only 

a small portion of these turtles is recovered and rescued. 

         The long sequence analysis of the mitochondrial control region allowed the splitting 

of the short haplotypes (e.g. CC-A2) into long haplotypes (e.g. CC-A2.1, CC-A2.9) 

which revealed further structuring within the Adriatic loggerhead populations. The CC-

A2 haplotype and its long variant CC-A2.1 are the most represented in the Adriatic 

feeding grounds and they are also the most common in the Mediterranean feeding 

aggregates (Carreras et al. 2006; Mafucci et al. 2006; Garofalo et al. 2013; Clusa et al. 

2014). Despite these haplotypes are widely distributed among the Mediterranean nesting 

populations (Carreras et al. 2007; Garofalo et al. 2009; Yilmaz et al. 2011; Clusa et al. 

2013; Carreras et al. 2014), they are common also in the Atlantic rookeries, especially in 

nesting beaches of Florida. However, the haplotype CC-A1 and its long variants are the 

most frequent haplotypes in the Atlantic nesting populations. The long haplotype CC-
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A2.9, found in five individuals collected in the North Central Adriatic, was recently 

identified in the nesting sites of Lybia and Israele (Saied et al. 2012; Clusa et al. 2013) 

and represents an exclusive genotype of Mediterranean rookeries (Clusa et al. 2014). 

Individuals bearing this haplotype were recorded at low frequency in the west central 

Mediterranean feeding aggregates (Clusa et al. 2014) and only one time in the Adriatic 

Sea (Garofalo et al. 2013).   

 The long haplotyp CC-A3.1 (deriving from the short CC-A3) was recently 

detected at low frequency in nesting beaches of Lybia and Lebanon (Saied et al. 2012; 

Clusa et al. 2013) and widely among Turkish nesting populations (Yilmaz et al. 2011). 

CC-A3/CC-A3.1 was also found in various feeding and developmental loggerhead 

aggregates of the Eastern and Western Mediterranean and off the Italian coasts including 

the Adriatic basin (Carreras et al. 2006; Mafucci et al. 2006; Revellas et al. 2007; 

Giovannotti et al. 2010; Garofalo et al. 2013; Clusa et al. 2014). In this study, the long 

haplotype CC-A3.1 was found in two individuals rescued in the North Western Adriatic 

and in the Southern Adriatic. This is unexpected, since this mtDNA genotype seems more 

common than the haplotype CCA-2.9 in the Adriatic populations (Garofalo et al. 2013; 

Clusa et al. 2014). However, the lack of resolution of the short mtDNA marker used in 

previous studies (Mafucci et al. 2006; Giovanotti et al. 2010) might have hidden the 

abundance of the haplotype CC-A2.9, because of the inability of splitting the common 

haplotype CC-A2 into subtypes.  

CC-A10/CC-A10.4 and CC-A31/CC-A31.1 are rare haplotypes and in fact they were 

recorded only in two individuals. These haplotypes were found at very low frequency in 

the Mediterranean foraging grounds. CC-A10 was identified once in the Alboran Sea 

(Revellas et al. 2007) and Northeastern Spain (Carreras et al. 2006). While in the Atlantic 

feeding grounds, it was recently detected in the Canary Islands (Monzón-Argüello et al. 

2009) and previously in Madeira Island (Bolten et al. 1998). The long form CC-A10.4 

was reported for the first time in the southern Adriatic basin (Driny bay; Yilmaz et al. 

2012), and then in the southern Mediterranean feeding grounds (Southern Levantin Sea; 

Clusa et al. 2014). This haplotype seem to be an exclusive haplotype of Atlantic rookeries 

(Clusa et al. 2014) since the short variant was previously described in Mexico (Encalada 

et al. 1998; Bowen et al 2005) and the long CC-A10.4 was found recently in a nesting 

population of Florida (Shamblin et al. 2012). The presence of this haplotype in the 

Mediterranean basin is still unclear, but records of the short form in the Western 

Mediterranean might be explained by migration of juveniles from Atlantic to the 
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Mediterranean pelagic habitats.  Since the long haplotype CC-A10.4 was detected from 

one individuals collected in the Northwestern Adriatic, we could hypothesize that Atlantic 

juveniles can arrive by chance in the Eastern Mediterranean coastal waters, including the 

Adriatic Sea, probably following favorable surface currents, as suggested by Mafucci et 

al. (2006). The haplotype CC-A31, bore by a single individual from the North Western 

Adriatic, was found previously among the feeding aggregates of the southeastern Italian 

coast (Carreras et al 2006; Mafucci et al. 2006). Recently, its correspondent long 

haplotype was described in nesting sites of Calabria and Kyparissia Bay, in western 

Greece (Garofalo et al. 2009; Carreras et al. 2014). It is absent in the Atlantic, and likely 

it represents an endemic haplotype of the Mediterranean colonies (Clusa et al. 2014). The 

individual recorded with this haplotype in our sample was an adult female and hence, it is 

reasonable to suppose that it came from mentioned nesting colonies, because of the habit 

of adult loggerheads to migrate, feed, and overwinter in the neighboring neritic habitats. 

Pairwise comparison of haplotype composition of the three Adriatic samples 

revealed only a weak heterogeneity between the North Western and the North Eastern 

Adriatic and no statistical differences between the North and the South Adriatic. It is 

likely that the Adriatic basin represents a wide unique feeding habitat for loggerheads.  

The significant difference in haplotype frequency observed in the individuals 

recorded in the North Western Adriatic compare to other Mediterranean feeding 

aggregates (e.g. Ionian Sea and Catalano-Balearic Sea) could be ascribed to the rare 

haplotypes CC-A10.4. The South Adriatic resulted significantly different only from the 

heterogeneous aggregates of Algerian Sea and Lampedusa, and this is likely in 

accordance with the abundance in the South Adriatic of the common haplotype CC-A2.1. 

On the other hand, the homogeneity detected between the North Eastern Adriatic and the 

Algerian Sea could be due to the low number of sampled turtles in the North Eastern 

Adriatic and to the presence of a relevant number of individuals with the haplotypes CC-

A2.9 in both basins.   

The analysis carried out using the long sequence of the control region allowed 

inferring about migration routes and the origin of the recovered turtles in the Adriatic 

throughout the Bayesan approach of the Mixed Stock Analysis (MSA). Results of the 

MSA let hypothesize short and long migratory pathways towards the Adriatic mostly 

from the Mediterranean nesting populations. In fact, the contribution of Atlantic rookeries 

is minimal and lower compare to Clusa et al. (2014). This might be explained by the fact 

that Clusa et al. (2014) sampled smaller turtles in several Mediterranean feeding areas 
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hence, more Atlantic individuals may have been included. Atlantic loggerheads are 

supposed to migrate back to the Ocean at an average length of 58.8 cm CCL (Revellas et 

al. 2007) and to follow Atlantic water masses after entering the Mediterranean Sea. In 

addition, the lack of population size as a weighting factor for the MSA in our study could 

have implied an underestimation of the Atlantic rookery contribution. 

The contributions from specific rookeries to the Adriatic foraging ground 

described here are important not only for a better understanding of the biology of this 

species, but also for its conservation. Fisheries bycatch stands as one of the major 

anthropogenic factors threatening sea turtle populations around the Mediterranean Sea 

(Casale 2008) and in particular in the Adriatic Sea (see results). The knowledge of which 

rookeries major contributes to the Adriatic feeding habitats is of great concern to design 

specific conservation measures for these populations in their foraging grounds. 

The MSA results ascribed the highest contribution to the Adriatic feeding areas by 

the nesting site of Misurata in Libya. The high frequency of CC-A2.1 haplotype and the 

presence of CC-A2.9 and CC-A3.1 in the nesting colonies of Misurata probably 

emphasized the contribution of this rookery in comparison with other potential sources 

(i.e. Sirte). Since the mixed stock analysis is sensitive to the occurrence of rare haplotypes 

in rookeries, it may yield biased results when population sizes are not included. However, 

the haplotype CC-A2.9 is present only in rookeries of Libya and Israele (Saied et al. 

2012; Clusa et al. 2013) and this could explain the prevalence of the Libyan nesting 

population as source of individuals for the Adriatic and also the contribution of the 

nesting colonies of Israele. Consistently, long-range migrations were previously reported 

for a low proportion of juvenile loggerheads from Libya which were supposed to drift 

passively through the local eddies in the eastern Mediterranean basin (Saied et al. 2012). 

In fact, the sizes of turtles bearing the Libyan haplotype in our sample were in the range 

of pelagic juveniles. The presence of this haplotype in the Adriatic supports the wide 

dispersal of the Mediterranean loggerhead juveniles predicted by Baran and Kasparek 

(1989).  

Greek nesting site resulted another possible source of individuals for the Adriatic, 

demonstrating the occurrence of short-range migrations as well. Circulation patterns of 

marine water masses might influence this migratory pathway from Greece as previously 

observed (Lazar et al. 2004; Zbinden et al. 2008). The presence in the Adriatic of the CC-

A31.1 haplotype, which was recently recorded in nesting colonies of Kyparissia Bay 

(Carreras et al 2014), probably highlighted the contribution from Western Greece.  
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When the contribution from Mediterranean rookeries to each Adriatic feeding area 

was computed, the contribution of Lybia and Israele was confirmed in the North East 

Adriatic area, since here individuals bore exclusively the haplotype CC-A2.1 and CC-

A2.9. Conversely, the nesting populations of Turkey seem to be important sources of 

individuals for the North western and the South Adriatic and they probably migrate 

towards the Adriatic following the principal marine surface currents. An additional 

contribution from Cyprus was detected both in the North Western and in the Southern 

Adriatic. Moreover, Lebanese rookeries seem to contribute to the South Adriatic 

aggregates with a relative high proportion. The rookery of Cyprus is characterized by the 

prevalence of the haplotype CC-A2.1 in a restricted sample of individuals and this might 

have overestimated its contribution. Instead, in Lebanon the presence of the haplotype 

CC-A3.1 supports our finding about the contribution of these nesting colonies to the 

South Adriatic. The geographic location of both these rookeries is in accordance with the 

MSA results, since the surface circulation patterns may drive the distribution of 

loggerheads in the Adriatic feeding areas. 

The genetic relationships between the Libya, Turkey and Greece rookeries and the 

Adriatic Sea suggest that conservation actions should be addressed to both nesting areas 

and related feeding/developmental areas. In particular, because of the unique genetic 

structure of rookeries in Libya, Turkey or Greece, their status is of great concern and 

should be kept under special protection by both national and international legislations. In 

this context, the use of MSA was a useful tool to understand the main migratory routes of 

Adriatic recovered specimens. However, this technique should be implemented 

integrating rookery sizes as weighting factor and other methods should be associated to 

improve the knowledge of genetic and demographic structure of loggerheads in their 

foraging habitats. Here, the importance of the use of long mtDNA fragments was 

highlighted to increase the genetic resolution. Future management plans should include 

updated genetic assessments of loggerhead populations to unveil marine regions with 

peculiar genetic structure and to establish independent management units.  
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Supplementary materials 
 

Table S1 Absolute long (~815 bp) mtDNA haplotype frequencies found in the Mediterranean foraging areas for 

loggerheads. Sample size (n) and total number of individuals bearing the different haplotypes are also shown. Data of 

haplotype frequencies from different published papers were combined when the same geographical area was analyzed. 
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Table S2 Published long (~815 bp) sequence haplotype frequencies in the Atlantic and Mediterranean rookeries that 

represent possible source populations for loggerheads foraging in the Adriatic Sea. Total number of haplotypes per 

rookery (n) and rookery sizes (mean nests per year) are included. References for each Atlantic and Mediterranean 

rookery considered for the present MSA are introduced below in the table.  
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References: a) Saied et al. 2012 b) Clusa et al. 2013; c) Yilmaz et al. 2011; d) Carreras et al. 2014; e) Garofalo et al. 

2009; f) Shamblin et al. 2012; g) Monzón-Argüello et al. 2010. Mediterranean and Atlantic nesting areas and acronyms: 

Misurata (MIS), Sirte (SIR), Israel (ISR), Lebanon (LEB), Cyprus (CYP), eastern Turkey (ETU), middle Turkey 

(MTU), western Turkey (WTU), Dalaman (DLM), Dalyan (DLY), Crete (CRE), WGR (western Greece, consisting in 

Zakynthos, Lakonikos and Kyparissia bay), Calabria (CAL), South Carolina and Georgia (NOR), central eastern 

Florida (CEF), south eastern Florida (SEF), Cay Sal Bank- Bahamas (SAL), Dry Tortugas-Florida (DRT), Isla Cozumel 

and mainland Quintana Roo-Mexico (QMX), south western Florida (SWF), central western Florida (CWF),  north 

western Florida (NWF)  and Cape Verde (CPV).  
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