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“Scylla loco mansit.
. . .mox eadem Teucras fuerat mersura carinas,

ni prius in scopulum, qui nunc quoque saxeus exstat,
transformata foret; scopulum quoque navita vitat.”

The legend of Glaucus and Scylla, Ovidius
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Abstract

The Scilla rock avalanche occurred on 6 February 1783 along the coast of the
Calabria region (southern Italy), close to the Messina Strait. It was triggered by
a mainshock of the “Terremoto delle Calabrie” seismic sequence, and it induced
a tsunami wave responsible for more than 1500 casualties along the neighbor-
ing Marina Grande beach. The main goal of this work is the application of
semi-analtycal and numerical models to simulate this event. The first one is
a MATLAB code expressly created for this work that solves the equations of
motion for sliding particles on a two-dimensional surface through a fourth-order
Runge-Kutta method. The second one is a code developed by the Tsunami
Research Team of the Department of Physics and Astronomy (DIFA) of the
Bologna University that describes a slide as a chain of blocks able to interact
while sliding down over a slope and adopts a Lagrangian point of view.
A wide description of landslide phenomena and in particular of landslides in-
duced by earthquakes and with tsunamigenic potential is proposed in the first
part of the work. Subsequently, the physical and mathematical background is
presented; in particular, a detailed study on derivatives discratization is pro-
vided. Later on, a description of the dynamics of a point-mass sliding on a
surface is proposed together with several applications of numerical and analyt-
ical models over ideal topographies. In the last part, the dynamics of points
sliding on a surface and interacting with each other is proposed. Similarly, dif-
ferent application on an ideal topography are shown. Finally, the applications
on the 1783 Scilla event are shown and discussed.
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Chapter 1

Overview of Landslide
Problems

1.1 Introduction

Landslides are important natural agents that shape mountainous areas and re-
distribute sediment in gentler terrain. Much of the present Earth’s landscape
has been extensively sculpted by episodic large landslides; more subtle, but
significant modifications have also been made by frequent, smaller scale mass
movements.
In general terms, we can define a landslide as a variety of processes that result in
the downward movement of materials composed of natural rocks, soil, artificial
fill, or combination of these materials. The displaced mass can move in a num-
ber of different ways: gravity is always the primary driving force, but it may be
supplemented by water. Landslides differ from surface erosion processes, where
water is the only driving mechanism.
The conditions that permit gravity to overcome the inertial forces of friction
(that hold a slope together) include several kind of processes such as: varia-
tions in soil/rock water content, moisture levels, freezing of ice in jointed rock,
seismic/volcanic activity or destabilizing human activities. Broadly speaking,
heavy rains and earthquakes are the major landslides cause.
Several excellent summaries and books have been published on prediction, anal-
ysis, and control of landslides, particularly from an engineering or geotechnical
perspective [Turner and Schuster,1996; Abramson et al.,2002;Cornforth,2005].
Additionally, several significant books have focused on specific landslide pro-
cesses and environments [Brunsden and Prior,1984; Eisbacher and Clague,1984;
Dikau et al.,1996].
Another important section of studies is focused on the hazard assessment and
prediction methods. Essentially, methods of assessing landslide hazards can
be roughly divided into four categories: terrain stability mapping [e.g.Ives
and Messerli,1981; Kienholz et al.,1984;Howes and Kenk,1988]; simple rainfall-
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landslides and earthquake-landslide relationship[e.g.Caine,1980; Keefer et al.,1987;
Larsen and Simon,1933]; multi-factor, empirical landslide hazard assessments
[e.g.Gupta and Joshi,1990;Pachauri and Pant,1992]; distributed, physically based
models [e.g. Miller,1995;Wu and Sidle,1995].Some of these methods are more
amenable to assessing relative landslide hazard at regional scales, others can be
used as predictive tools for more specific sites, and yet others can be used to
develop real-time warning system.
However, since this work is focused on the dynamics of a tsunamigenic landslide
induced by an earthquake, the hazard assessment we’ll not be treated in detail.

1.2 Classification System

To introduce the various classification systems, a brief description of landslides
morphology is required.

Figure 1.1: Schematic representation of a landslides. [Credit: Idaho Geological
Survey ]

As it’s shown in figure 1.1 , we can define typical landslides characteristics:

1. Crown: the practically undisplaced material still in place and adjacent
to the highest parts of the main scarp.

2. Main scarp: a steep surface on the undisturbed ground at the upper
edge of the landslide, caused by movement of the displaced material away
from the undisturbed ground.

3. Top: the highest point of contact between the displaced material and the
main scarp.
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4. Minor scarp: a steep surface on the displaced material of the landslide
produced by differential movements within the displaced material.

5. Main Body: the part of the displaced material of the landslide that
overlies the surface of rupture between the main scarp and the toe of the
surface of rupture.

6. Foot: the portion of the landslide that has moved beyond the toe of the
surface of rupture and overlies the original ground surface.

7. Toe: the lower, usually curved margin of the displaced material of a
landslide, it is the most distant from the main scarp.

8. Surface of Rupture: the surface which forms (or which has formed)
the lower boundary of the displaced material below the original ground
surface.

9. Toe of the Surface of Rupture : the intersection (usually buried)
between the lower part of the surface of rupture of a landslide and the
original ground surface.

10. Surface of Separation: the part of the original ground surface overlain
by the foot of the landslide.

Furthermore, geometrical characteristics of a landslides are generally defined as:

1. Total length L: the minimum length from the tip of the landslide to the
crown.

2. Total width W : the distance among the landslide lateral border.

3. Total depth D: the maximum vertical length from the landslide summit
to the sliding surface.

4. Length of the displaced mass Ld: minimum distance from the tip to
the top.

5. Width of the displaced mass Wd: maximum breadth of the displaced
mass perpendicular to the length of the displaced mass.

6. Depth of the displaced mass: the maximum depth of the displaced
mass, measured perpendicular to the plane containing Wd and Ld.

From a geological point of view, several materials and soil characterizations have
been defined. Since we are focused mainly on the landslide dynamics, a detailed
description of these aspects we’ll not be proposed.
Essentially, a classification system can be taxonomic, implying a hierarchy of
descriptors to form a branch-like structure, or it can be a filing system. In this
case, different items are placed into classes on the basis of various attributes.
Otherwise, a typological classification is particularly useful . This is based on
selected features and it’s designed to present solutions at the problem at hand.
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Taxonomy is difficult to achieve due to the uncertainties related to the process
mechanism in many landslides phenomena. Since the main goal with landslides
is to solve problems (like the hazard assessments) , typological classification
appears to be the most useful one.
Slope movements have been classified in many ways, with each method having
some particular usefulness or applicability related to the recognition, avoidance,
control or correction of the hazard. Sharpe[1938] proposed a comprehensive
scheme for classyfying mass wasting based on geomorphology in which processes
were divided into four categories:

1. Slow-flowage types: creep and solifluction.

2. Rapid-flowage types: earthflows, mudflows and debris avalances.

3. Landslides: slumps, debris slides, debris falls, rockslides and rockfalls.

4. Subsidence.

On the other hand, the widely used classfication, Varnes[1978] (figure 1.2) dis-
tinguish five types of mass movements:

1. Falls: the sliding mass is actually free to fall over a steep slope. Velocity
range can reach values of a free falling body.

2. Topples: rotational motion of rock blocks around a hub collocated under
the blocks or on the blocks base. The motion is generally gravity induced.
The dimensions can reach considerable values (up to 106m).

3. Slides: movement parallel to planes of weakness and occasionally parallel
to slope. The motion is caused by shear stresses acting on inward surfaces.
Generally, two types of slides are defined: rotational and translational .
In the first ones the failure plane is typically concave and the movement
is extremely slow (less than 1m/day ). The second ones occur on existent
disruption surfaces with an inclination equal (or lower) to the slope one.
The sliding mass can go through lots of kilometers, reaching velocity of
50m/s in the rocks slide.

4. Spreads: huge lateral motion over a plastic-like surfaces. The movement
is generally slow(1m/10min - 1m/day)

5. Flows: viscous to fluid-like motion.

Other classes are defined as combinations of these principal types along with
the type of material : bedrock (rock underlying the surface), coarse soils and
predominately fine soils. Further subdivision is based on speed of movement.
When a landslide passes through several phases as it progresses downslope it
can be considered complex, even if one type usually predominates in different
parts of the moving mass or at different times during the period of displacement.
Several modifications of the original Varnes[1978] have been made: [Cruden and
Varnes,1996,Brunsden,1985;
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Hutchinson,1988]. This kind of classification is weakly taxonomic.

Figure 1.2: Varnes[1978] landslide classification system.[Credit: British Geolog-
ical Survey ]
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Keefer [1984] employed similar principles and terminology as Varnes[1978] to
classify earthquake-induced landslides based on material type (soil or rock), type
of movement( disrupted or coherent), and other characteristics (e.g. velocity,
depth, water content). This classification includes three main categories of
landslides:

1. Disrupted slides and falls.

2. Coherent slides (e.g. slumps, earthflows)

3. Lateral spreads and flows.

Moreover, based on the frequency of occurrence during 40 earthquakes (M5.2
to 9.2), Keefer [1984] categorized landslides as very abundant (> 2500 event−1),
abundant (250− 2500 event−1), and uncommon.
Obviously, limitations exists for any type of classifications. For example, Cruden
and Varnes[1996] use the prehistoric Blackhawk landslide in the San Bernadino
Mountains of southern California as a case of significant mass movement that
is difficult to classify according to their system. Additionally, their system,
among others, employs an elaborate set of descriptors that, while informative
for engineering geologists, may be confusing for land managers dealing with
slope stability. For the purposes of assessing the effect of land management in
potentially unstable terrain as the degree of landslide risk, the most important
aspects to consider are: the size of the landslide(typically given by depth to
the failure plane) , the rate of movement response to climate and earthquakes
and the sensitivity to various anthropogenic disturbances (e.g. climate change,
vegetation modification).
The classifications system we introduced have been developed from either ge-
omorphological or geotechnical perspectives . Intrinsically, these system pro-
vide detailed descriptions of the mode of failure, materials, velocity and failure
mechanism of landslides. To have a rather simple categorization of soil mass
movements, Sidle and Dhakal [2002] proposed another classification that rec-
ognize the importance of combinations of mass displacements and follows the
terminology employed by Varnes[1978] as much as possible. Five functional
categories of mass movements are described:

1. Shallow , rapid landslides . Debris slides and avalanches are typical
shallow movement types in steep (> 25 gradient) terrain. Soil are charac-
teristically < 2m deep and have low cohesive properties. The shallow soil
mantle overlies either bedrock or another permeability layer (e.g., glacial or
marine till) that acts as failure plane. This plane is generally oriented par-
allel to the soil surface, allowing the use of the infinite slope model. This
landslides are typically longer than their width and have length do depth
ratio < 0.1 [Wentwoth,1943; Skempton and Hutchinson,1969;Cruden and
Varnes,1996] and initiate on slopes that are typically either concave or
linear in plan form[Swanston,1969; Gao,1993; Palacious et al.,2003]. Se-
quence of linked debris slides, avalanches, and flows are major sources of
sedimentation in mountain streams. Typically, this kind of landslides are
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generally triggered by rainstorms, rapid snowmelt, earthquakes, or com-
binations of these factors. Also lahar (debris flow that initiate on volcanic
slopes in recently deposited ash or debris) belong to this category (figure
1).

Figure 1.3: Lahar formed after 1982 Mount St. Helens eruption in Washington
state as an example of shallow and rapid landslides. (Credit: Tom Casade-
vall,USGS)

2. Rapid, deep slides and flows. Rapid, deep slides and flows include
large debris slides, debris flow, dry flows, bedrock slides and certain block
glides and rapid earthflows. Some of the terrain and material character-
istics are similar to those of shallow, rapid landslides but responses to
triggering factors often differ. Anyway, the main difference with respect
to the previous category is the slide thick (> 5m). Furthermore, the slid-
ing mass often include a significant proportion of weathered or fractured
bedrock. The main trigger mechanism are typically long rainfall periods or
strong earthquakes. In fact, strong ground motion is sometimes required
to initiate failures in deeper regoliths [e.g., Shoaei and Ghayoumian,2000].

3. Slower, deep-seated landslides. The deep-seated landslides include
slumps, earthflows and lateral spreads that move at rates generally <
1mday−1. Both active and dormant slides characteristically occur in gen-
tly sloping topography that is often hummocky with immature drainage
system [Swanson and Swanston,1977; Bechini,1993; Ocakoglu et al.,2002].
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Failure occurs in deep, heavily weathered clay-rich soils or regoliths that
exhibit plastic behavior over a range of water contents. Slumps and earth-
flows are quite often a coupled phenomena: the initial movement is typ-
ically a rotational slumps, and subsequent downslope movement of the
mass is by earthflow [e.g., Okunishi,1982; Rohn et al.,2003]. The dimen-
sions of these displacements are generally larger than shallow rapid land-
slides and move in response to seasonal or at least multi-day accretion
of groundwater related to inputs from rainfall or snowmelt: once a criti-
cal level of groundwater is present, movement accelerates rapidly [Camp-
bell,1966;Furuya et al.,1999; Coe et al.,2003]. It’s important to underline
that, despite their slower rates, deep-seated mass movements are respon-
sable for the transport of large volumes of sediment to streams and rivers
in certain regions [Sasaki et al.,2000].
Lateral spreads (figure 3) can be defined as the lateral displacement of a
large mass of cohesive rock or soil overlying a deforming mass of soft
materials [Dikau et al.,2000; Varnes,1996]. Movement is initiated by
high internal pore water pressure from rainfall or snowmelt or by earth-
quakes[Asch.,1996 ].

Figure 1.4: Lateral spreads in Anchorage, Alaska, caused my the Great Alaska
Earthquake (M = 9.2) as an example of slower, deep-seated landslides. (Credit:
A. Grantz.,USGS)

4. Slow flows and deformations. These displacement occur in terms of
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soil creep that is not properly a failure per se, but a plastic deformation
of the soil mantle. Active soil creep are often associated with slump-
earthflow; thus, terrain characteristic are the same. Movement rates typ-
ically decrease with depth [Swanston,1981; Sonoda,1998] and have values
of the order of millimeters per year.

5. Surficial mass wasting. This motion is generally not considered to-
gether with landslides; however, it is a gravity-driven process that is tech-
nically a mass movement. In fact, dry ravel and dry creep belong to this
category even if they are superficial processes. They involve the downs-
lope of individual soil grains, aggregates, and coarse fragments by rolling,
sliding or bounding. The main cause of these mechanisms can be found in
the loss of interlocking frictional resistence among soil aggregates or grains
[e.g.Hough,1951;Rahn,1969]. These are a less perceptible type of erosion
and usually transport far less sediment compared to other mass wasting
processes.

1.3 Earthquake-induced landslides

There are several natural factors influencing landslides but we’ll focus our atten-
tion mainly on seismicity. Earthquake-induced landslides are not very common,
so there have been few opportunities to study the mechanism of the former.
However, studies have shown that they often occur in convex topography be-
cause convex landforms respond strongly to earthquake motion [e.g., Harp et
al.,1981; Murphy,1995; Okunishi et al.,1999]. It’s generally very difficult to asso-
ciate earthquake-induced motion to landslide mass displacement because quakes
exert very complex stresses on slopes since the seismic loads vary dynamically.
Virtually, all types of landslides can be associated with different magnitude
earthquakes in various settings. Furthermore, quakes can also reactivate dor-
mant or slow-moving landslides.
From a physical point of view, the propagation of seismic waves causes a hori-
zontal acceleration of the soil mantle. The cyclic loading and unloading of soils
during earthquakes depends on many factors and exert major stress that can
causes landslides. Moreover, cycling loading of regoliths may generate high pore
water pressures that trigger landslides [Seedand Lee,1966; Wu and Sangrey,1978;
Ochiai et al.,1985].
Many factors related to earthquakes and the settings in which they propagate
affect the number, sizes and types of landslides. Even if the intrinsic physics
features of the earthquake (magnitude, focal depth, etc.) are fundamental, fac-
tors related to the environments in which the shake occur are essential. The
most crucial are:

1. Inert stability of the potential failure sites.

2. Existence of old or dormant landslides.

3. Vegetation and land use.
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4. Orientation of potential failures in relation to the earthquake epicenter.

5. Orientation of existing faults with respect to the direction of seismic wave
propagation.

6. Regolith wetness.

7. Slope gradient and other topographic factors.

All these factors, at least at some degree, are quite difficult to separate. Broadly
speaking, rock falls, rock slides, soil falls and disrupted soil slides are triggered
by the weakest seismic activity; deep-seated slumps and earthflows are gener-
ally initiated by stronger (and probably of longer duration) seismic activity;
lateral spreads, debris flows and subaqueous landslides require the greatest seis-
mic activity [Keefer,1984,2002]. Compared to other land shapes, convex land
form exhibit stronger seismic amplification. Particulary, mountain ridges shake
strongly during earthquake and shear failure may occur on these slopes, trig-
gering a landslide [Harp and Gibson, 1996; Tang and Grunert, 1999; Khazai
and Sitar, 2003]. This particular phenomenon is generally called topographic
effect. Studies have demonstrated that significant amplification occurs when
the wavelength of the seismic wave is the same as the length of the land shape
[Boore, 1973; Nishimura and Morii, 1983]. Intensification of ground acceler-
ation by as much as 75% can occur, but in areas of complex topography the
overall influence of ground motion cannot be easily predicted. Evidences have
shown that scarp that faced away the direction of oncoming seismic waves are
most prone to landslides. In other cases, large topographic effects have been
observed at sites where slope gradient changed and on convex land shape along
streams. [Harp et al., 1981]. However, in spite of the many empirical investi-
gations that associate topographic effects with earthquake-induced landslides,
the degree to which such effects amplify seismic motion and the influence of
this amplified motion on the resultant stress have yet to be clarified, due to the
lack of detailed seismic observations in mountainous areas. Hence, to determine
the degree of the topographic effect, behavior of slopes during an earthquake
was quantitatively modeled to estimate the acceleration response [Ochiai et al.,
1995]. Results have proved that a large response to the acceleration waveform
input was observed from the bottom of the model in a direction orthogonal
to the ridge line. Furthermore, the amplification can be caused also by the
contact of jointed rock masses [Li et al.,2000; Rovelli et al.,2002; Martino et
al.,2006].Based on seismometric records, this effect can be identified in terms
of: monofrequancial wave packages of recorded earthquakes; clear frequency
peaks in both horizontal to vertical spectral ratios and site-to-reference spectral
ratios; directional effects in energy azimuthal distribution.
Another factor influencing earthquake-induced landslides is represented purely
by geologic aspects. Some studies have shown the possibility of landslide initia-
tion due to liquefaction of pumice layers based on a stability analysis of a gradual
slope [Ochiai et al., 1985]. In some areas of Japan and southern Italy, numerous
earthquake-induced landslides occurred in weathered and foliated rocks formed
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mainly by quartz and mica (’biotite gneiss’) [Murphy, 1995]. Moreover, many
studies have noted the susceptibility of poorly consolidated sedimentary rocks
and sediments to landslides during earthquakes.

1.4 Tsunamigenic landslide

Tsunamis are a particular type of long waves induced by a strong and quick
impulse that can propagate in a ocean basin also for long distances.
Basically, tsunami waves are generated by a rapid displacement or motion of
large volumes of water. The main sources of such events are normal faulting
of earth plates during submarine earthquakes, volcanic eruptions or subaerial
and submerged landslides. The tsunami wavelength in deep waters can be very
considerable (hundreds of kilometers) with respect to its elevation (few centime-
ters up to one meter)and its velocity is of the order of hundreds of kilometers.
Hence, when the wave approaches shallower waters, due to mass and energy
conservation, it slow down and increases its elevation. Due to its time and
space scale , it’s easy to imagine how potentially destructive and dangerous this
phenomenon can be.
Since the focus of this study is the dynamic of a tsunamigenic landslide, we’ll
describe in detail only the mechanism of impulse waves generated by sub-aerial
landslides. Actually, there are few documented cases of large subaerial landslides
falling into water and causing large localized impulse waves. One of the most
spectacular examples was the Lituya Bay (Alaska) landslide on July 10, 1958.
The landslide, triggered by an earthquake, fell into a narrow fjord and caused a
wave that reached a maximum height of 520m. However, when the wave reached
the open ocean, its amplitude diminished quickly [e.g., Miller, 1960]. The Va-
jont reservoir disaster in 1963 [Muller, 1964;Trollope, 1980; Zaniboni, Paparo,
Tinti, 2013] represents another event of this nature. Despite the landslide am-
plitude, the following three stages in the evolution of the landslide generating
tsunami can be distinguished:

1. Triggering of slope failure.

2. Post failure landslides.

3. Tsunami generation and propagation.

Slope failure (stage I) occurs primarily on open continental-margin slopes and
in the active river deltas in under,and normally consolidated, sandy and clayey
sediments. At the onset of stage II, when the slide breaks out, the moving land-
slide generates the tsunami wave. Subsequently to the sliding process, some
landslides mobilize into flows and turbidity currents, whereas others remain
slides or slumps with limited deformations and displacements [Locat and Lee,
2002]. During stage III, the water wave propagates through the water towards
the shore. Commonly, three different boundary value problems for the analy-
sis of the tsunami wave are distinguished: wave generation at the source ;wave
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propagation in the open water ;wave run-up along the continental slope into the
shore. While stages II and III of the evolution process are usually viewed as
dynamic processes, conventional analysis of the slope failure (stage I) focuses
commonly on the final limiting equilibrium state, which is a static condition.
Researchers have been studying the process of tsunami generation by submarine
and subaerial landslides both analytically and numerically [Harbitz, 1992; Peli-
novsky and Poplavsky, 1996; Ward, 2001; Tinti et al., 1997; Satake, 2001;Murty,
2003; Dutykh and Dias, 2009].

In order to explain higher maximum velocities, models accounting for the
initial acceleration from earthquakes have been developed [e.g., Harbitz, 1992].
However it is known that this is not always legitimate. For instance, in the
Aitape 1998 event , the submerged landslide occurred some 10 − 15min after
the earthquake [Davies et al., 2003]. Consequently, earthquake acceleration
cannot always explain an initial landslide velocity.
However, the whole process is complex and, as we have seen in the previous
section, depends on several kind of factors, both physical and geological.

1.5 Scilla 1783 event

The Scilla (Calabria region, Italy) rock avalanche is one of the main ground ef-
fects induced by the 1783 “Terremoto delle Calabrie” seismic sequence [Boschi,
2000] and represent one of the most damaging landslides in the Italian history.
The sequence struck the southern part of Calabria region between February 5th
and March 28th 1783 and it was characterized by five main shocks, with mag-
nitude among 5.8 and 7.3 . All these earthquakes resulted to be tsunamigenic,
though the size of the generated tsunamis differed very much case to case. Fur-
thermore, due to it’s relevant time scale and relatively small space scale this
process leads to several cumulative effects, bringing great changes in the envi-
ronment morphology.
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Figure 1.5: Location of Mt.Paćı and approximate landslide area. Credit[Google
earth,2015]

The Scilla event occurred on 6th February 1783 at 1 : 45 a.m. in the Mt.
Pacı’ coastal slope (figure 1.5, located few kilometers away from the Scilla vil-
lage. The terrain collapse took place some 30min after an earthquake with an
estimated surface magnitude of 5.8 [Sarconi,1784; De Lorenzo, 1877; Minasi,
1970-1971]. The rock mass fell into the sea as a rock avalanche, inducing a huge
tsunami, as high as 16m, that killed more then 1500 inhabitants along the Ma-
rina Grande beach [Hamilton, 1783;Sarconi,1684; Minasi, 1785; Vivenzio, 1788;
De Lorenzo, 1877]. The Mt.Paćı slope is quite steep (up to 45) and intensely
jointed gneiss rock and breccias crop out extensively [Bozzano et al., 2008; Maz-
zanti, 2008 ]. The landslide was bounded by two faults in the upper and lower
part of the scar area and laterally confined (in the left part) by a major regional
fault. Actually, this particular geological set represented both a predisposing
factor and kinematic control for the 1783 event. In fact, it is suggested that
rock avalanche it’s been induced by the failure of a wedge of rock, due to the
fragmentation of the jointed rock mass and to the slope morphology [Bozzano et
al., 2008-2010; Mazzanti, 2008 ]. For this reason we can consider the landslide
as complex, in the [Varnes, 1978] classification system.
The subaerial volume of the displaced mass has been calculated as the difference
among a hypothetical pre-landslide morphology and the present one by reshap-
ing the slope based on both geomorphological features and engravings by [A.
Minasi, 1970].
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Figure 1.6: 3D view of Mt. Paćı and Scilla coastal line.The with dashed line
bounds the 1783 mandslide deposit. The red dashed line point out the sub-
aerial landslide. The yellow dotted lines underline the lateral boundaries of the
submarine depression. Source: art[2]

Thanks to the submarine geophysical investigations [Bosman et al., 2006],
a large submarine depression close to the toe of the subaerial scar it’s been
recognized. (figure 1.5). Moreover, a huge depositional bulge with hummocky
morphology was identified just at the toe of the submarine depression, and it has
been interpreted as the landslide deposit. The maximum deposit depth is of the
order of 15m. In a distance of 1.7km from the coast line, large blocks (volumes
between 100 and 200.000m3) randomly distributed have been detected. Any-
way, the landslide accumulation is widely spread over a relatively flat seafloor
and covers an area of about 1km2. Hence, an estimated landslide volume of
9.4× 106m3 seems comparable with the total volume of the deposit.
Analysis of the correlation between the subaerial and submarine depression sug-
gest that they occured as two separate events [Mazzanti, 2008]. Evidence from
HR Multybeam Bathymetry in the conjunction zone between the subaerial and
the submarine scars suggest that the submarine landslide occured before the
1783. Anyway, in this work we consider only the subaerial landslide and its
collapse into the water that leads to the tsunami generation.
In several studies [Tinti and Guidoboni, 1988; Tinti et al., 2004; Graziani et al.,
2006; Gerardi et al., 2008] it’s shown how the February 6th tsunami at Scilla
was induced by the Mt. Paćı landslide. The time sequence of the earthquake,
landslide and tsunami can be seen as the first clear evidence of a landslide source
for the tsunami. As a matter of fact, according to historical reconstruction, the
landslide occurred 30 minutes after the shock and the tsunami hit the close
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Marina Grande beach after 30-60 seconds after the landslide. Moreover, the
corresponding wave height distribution in the area nearby the landslide, con-
firm the landslide origin of the tsunami. Maximum run-up heights ranging from
6to9m according to [Sarconi, 1784] and up to 16m, according to [Minasi,1785]
were recorded along the Marina Grande beach. Going further from the source,
the wave run-up acutely decrease: Chianalea (Sicily) 5−6m; Cannitello (Sicily)
0.8− 2.9m; Catona (Sicily) 0.3− 0.7m.
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Chapter 2

Physical and mathematical
background

2.1 Differential equations

A differential equation relates a function with its derivatives. Hence, the solution
will be a function, or a class of functions, not a number. From a physical point
of view, if the equation describes the time evolution of a process, it relates
quantities characterizing the process with their rate of change. Basically, most
kinds of physical processes are described by means of differential equations
An ordinary differential equation (ODE) problem is defined as:

du

dt
= f(u, t) u(t = 0) = u0 (2.1)

where u = u(t) is a general variable, f is a continuous function and du/dt
indicates the total derivative of u with respect to the time t. We can distinguish
different kinds of ODE, depending on the f shape. A linear ODE occurs when
f(u, t) = A(t)u+B(t) and it is well known that its solutions form a linear space,
since the sum of any set of solutions or multiples of solutions is also a solution.
Homogeneous ODEs are a further subclass for which B(t) = 0 and therefore the
ODE takes the form f(u, t) = A(t)u
In the ODE general form u is an array formed by n components, so we have
a system composed by n equations like the ??. An important aspect of this
kind of equations is that we can always re-write any differential equation with
derivatives of higher order in this form including only functions and first-order
derivatives. To have a clear understanding of this kind of equations, let us
consider the following example:{

ut = Au
u(t = 0) = u0

(2.2)
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where ut indicates the derivative of u with respect to t, and A is a constant. It
is well known that the solution of the above problem, that specifies an initial
condition and is called a Cauchy problem, is u(t) = u0 exp(At)). In particular,
the solution to any Cauchy problem exists and is unique only if: u is continuous
and can be derived, f is continuous in the t variable and uniformly continuous
in the u one. Calling D the domain of definition, the last condition is always
satisfied if: ∀u, v ∈ D, ∃M :

‖ f(u, t)− f(v, t) ‖< M ‖ u− v ‖

When we are dealing with more complex systems, quite often we have to
link different variables together and with their rates of change. Formally, we
relate unknown multi-variable functions and their partial derivatives. In this
case the equations are called ”Partial differential equation” (PDE). A part from
the presence of multi-variable functions, the main difference with the ODE is
that we have to know not only initial conditions, but also boundary conditions.
To show the PDE properties let us consider the example of the heat diffusion
equation in the simplest possible form where only one space coordinate is in-
volved: i.e.:

∂u

∂t
= b2

∂2u

∂x2
u(x, t = 0) = u0(x) (2.3)

where u = u(x, t) is the temperature, ∂u/∂∗ indicates the partial derivatives
whit respect to ∗and b is the thermal diffusivity. Let us further assume that the
solution belongs to the domain [−L/2,+L/2] , with L ∈ Re. If we impose the
initial condition u0(x) = U cos( πLx) and the boundary condition u(±L/2, t) = 0,
and if we suppose that the solution has the form:

uα(x, t) = U cos(
π

L
x) e−αt

which automatically satisfies the initial condition as well as the conditions at
the boundaries, we can easily find the exact solution to be:

u(x, t) = U cos(
πL

x
) e−

π2b2t
L2 (2.4)

This example clearly shows the need of specifying boundary conditions in addi-
tion to initial condition in order to identify univocally a solution for a PDE.

2.2 Numerical Methods

Analytical solutions like the ones given in the previous very simple examples
exist only for few particular cases, and hence some general way of finding solu-
tions to problems based on differential equations has to be introduced. The key
for solving every kind of problem is discretization, that is the process of trans-
ferring continuous models and equations into discrete counterparts. Solutions
computed with this process are called numerical.
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Firstly, let us consider an ODE. In this case we have to discretize only the
time axis. Choosing a specific time step ∆t = k, we can represent the time
by means of a sequence of equally spaced instants tn = nk and search for an
approximate solving sequence vn ≈ u(tn), with the first-step value being given
by v0 = u0 = u(t = 0). Expanding the u time derivative we find:

∂u

∂t
(tn) = lim

∆t→0
=
u(tn + k)− u(tn)

k
=
vn+k − vn

k
= f(vn, tn) = fn

Taking this into account, we are able to define the most elementary discretization
method, that is named Euler method:{

vn+1 = vn + kfn

v0 = u0

This method is explicit because it uses variables of the previous step n to eval-
uate variables at the next one n+1. The implicit version of the method has the
form: {

vn+1 = vn + kfn+1

v0 = u0

There are several kinds of formulas that provide different approximate solutions.
Among these special relevance have the so-called linear multi-step methods,
such as the Adams-Bashforth’s (explicit) and the Adams-Moulton’s (implicit)
formulas that can be given the following general forms respectively:

A.B. vn+1 = vn + k(α0f
n + α1f

n−1 + α2Ff
n−2...+ αs−1f

n+1−s) (2.5)

A.M. vn+1 = vn + k(α−1f
n+1 + α0f

n + α1f
n−1...+ αs−1f

n+1−s) (2.6)

where αi are numerical coefficients. Notice that these methods cannot be applied
in the first steps since one has to know the values fn−1, fn−2... that can be
evaluated by iterating the Euler formula.

2.2.1 Runge-Kutta discretization methods

Another kind of methods that provide a very useful discretiazation are due to
the work of the German mathematicians C. Runge and M. W. Kutta. and
are universally known as Runge-Kutta methods. We will denote them as RK
methods. It is worth stressing that the equations of motion for the landslide
problem that is the key-topic of this work have been solved via one of such
methods.
Differently from the multistep approaches, the RK methods take into account
only one single time step. The simplest RK method can be introduced as follows.
Let us focus our attention on the time step [tn, tn+1] and integrate both members
of the equation ?? over this time interval. Hence we get :

vn+1 = vn +

∫ tn+1

tn

f(u, t) dt (2.7)
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Further, let us introduce some intermediate temporary values (designated by
means of the symbol ∼) :

ṽn+1/2 = vn + k/2 fn ⇒ f̃n+1/2 = f(ṽn+1/2, tn+1/2)

If we approximate the integral in 2.7 by the product of ∆t times the mean value
of f in the interval [tn, tn+1], we obtain the final formula:

vn+1 = vn + kf̃n+1/2

In the general approach, we introduce, in the step [tn, tn+1], a number of in-
termediate values in correspondence of the s times tn+ci , with 0 < ci < 1 and
c1 = 0. Basically, the procedure can be written in the form:

vn → vn+c2 = vn + kα21f̃n ⇒ f̃n+c2 = f(ṽn+c2 , tn+c2)

ṽn+c3 = vn + k (α31f
n + α32f̃

n+c2)⇒ f̃n+c3 = f(ṽn+c3 , tn+c3)

...

ṽn+cs = . . . = f̃n+cs = f(ṽn+cs , tn+cs)

Using the s intermediate values of f , we can write:

vn+1 = vn + k (β1f̃
n + β2f̃

n+c2 + . . .+ βsf̃
n+cs) (2.8)

We refer to 2.8 as Runge-Kutta s-order explicit method.
Hence, to specify a particular method, one needs to provide the integer s (the
number of stages), and the coefficients αij (for 1 ≤ j < i ≤ s), bi (for i =
1, 2, . . . , s) and ci (for i = 2, 3, . . . , s). The matrix [αij ] is called the Runge-
Kutta matrix, while the coefficients bi and ci are known as the weights and the
nodes [Iserles, Arieh, 1996]. These data are usually arranged in a mnemonic
device, known as a Butcher matrix:

c1 = 0
c2 α21

c3 α31 α32

...
...

. . .

cs αs1 . . . αs s−1

b1 . . . bs

The method is consistent if:

i−1∑
j=1

αij = ci
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2.3 Derivative discretization

These discretization formulas can be proven to be either exact for a limited class
of functions or to be accurate up to the first order in the ratio h/(x − x0) or
k/(y− y0), where x0 and y0 are zeros of the corresponding function derivatives,
which means that the relative errors have order of magnitude of (h/(x − x0))2

and (k/(y − y0))2 respectively. To verify this accuracy, a comparison between
derivatives estimated trough 2.9−2.13 and their analytical expressions was made
by considering a large number of functions f(x, y) . Of all of these cases, for
the sake of brevity we present here only one example in the following. A fourth-
degree polynomial function has been chosen of the form:

δ+V
j
i =

V ji+1 − V
j
i

k
δ+V ji =

V j+1
i − V ji

h

δ−V
j
i =

V ji − V
j
i−1

k
δ−V ji =

V ji − V
j−1
i

h

where V ji is an approximation of the value f(xi, yj). In terms of the above
expressions, we can write:

fx =
1

2
(δ+ + δ−)V ji (2.9)

= (V ji+1 − V
j
i−1)

1

2k

fy =
1

2
(δ+ + δ−)V ji (2.10)

= (V j+1
i − V j−1

i )
1

2h

fxx =
1

2
(δ+(δ−V

j
i ) + δ−(δ+V

j
i )) (2.11)

= δ+(δ−V
j
i )

= δ+
(V ji − V

j
i−1)

k

=
V ji+1 − V

j
i − V

j
i + V ji−1

k2

=
V ji+1 − 2V ji + V ji−1

k2
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fyy =
1

2
(δ+(δ−V ji ) + δ−(δ+V ji )) (2.12)

= δ+(δ−V
j
i )

= δ+ (V ji − V
j−1
i )

k

=
V j+1
i − V ji − V

j
i + V j−1

i

h2

=
V j+1
i − 2V ji + V j−1

i

h2

fxy =
1

4
(δ+(δ+V

j
i ) + δ+(δ−V

j
i ) + δ−(δ+V

j
i ) + δ−(δ−V

j
i )) (2.13)

=
V j+1
i+1 − V

j−1
i+1 − V

j+1
i−1 + V j−1

i−1

4kh

These discretization formulas can be proven to be either exact for a limited
class of functions or to be accurate up to the first order in h/x or k/y, which
means that the relative errors have order of magnitude of (h/x)2 and (k/y)2 re-
spectively. To verify this accuracy, a comparison between derivatives estimated
trough 2.9−2.13 and their analytic expressions was made by considering a large
number of functions f(x, y) . Of all of these cases, for the sake of brevity we
present here only one example in the following. A fourth-degree polynomial
function has been chosen of the form:

f(x, y) = ax4 + by4 + cxy + dx2 + ey2 + f (2.14)

Where a = 0.2, b = 0.3, c = 0.5, d = 0.2, e = 0.07, f = 10, and z has to be
considered as given in meters. The analytic derivatives are:

fx = 4ax3 + cy + 2dx fy = 4by3 + cx+ 2ey

fxx = 12ax2 + 2d fyy = 12by2 + 2e fxy = 2c

Through a MATLAB code, we have computed the discrete and analytic deriva-
tives. Calling fdisi the discrete ones, and fani the analytic ones, the percentage
absolute error was estimated by means of the formula

E = 100× |f
dis
i − fani |
|fani |

(2.15)
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Figure 2.1: Topography given by the expression 2.14 over the grid x = y = [50 :
200] spaced in both direction by 2.5m.

Analytic and discrete values have been estimated on a regular grid of testing
points belonging to the surface 2.14 with x = y = [60 : 160] spaced in both
directions by 5m.To compute the discrte derivatives the incremental values h
and k have been taken both equal to 2.5m. In figure 2.2 − 2.6 the derivatives
fx, fy, fxx, fyy and fxy are plotted in the order. The results show errors ranging
between 0.02− 0.17% for the first-order derivatives, and between 0.005− 0.03%
for the second-order derivatives. Notice that the mixed derivative is constant,
and the error is actually zero. Notice further that the largest error values for
fx, fxx and for fy, fyy are reached expectedly for the minimum values of the
variables x and y.
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Figure 2.2: Percentage discretization error of fx.

Figure 2.3: Percentage discretization error of fy.

26



Figure 2.4: Percentage discretization error of fxx.

Figure 2.5: Percentage discretization error of fyy.
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Figure 2.6: Percentage discretization error of fxy.

Figure 2.7: Topography given by the function 2.14 represented in the range
x = y = [−20 : +20] spaced in both direction by 0.25m.

.
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Figure 2.8: Percentage discretization error of fx. Notice the spikes that are
located close to the points where the analytical derivative vanishes.

Figure 2.9: Percentage discretization error of fy. Notice the spikes that are
located close to the points where the analytical derivative vanishes.
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Figure 2.10: Percentage discretization error of fxx. Notice that the error di-
verges as x−2 as x approaches 0.

Figure 2.11: Percentage discretization error of fyy. Notice that the error di-
verges as y−2 as y approaches 0.
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Figure 2.12: Percentage discretization error of fxy. In this case the discetisa-
tion formula is exact and discrepancies are random and only due to numerical
rounding errors.

Around the points where the analytical derivatives vanish, the percentage
error is expected to grow infinite according to the inverse of the square of the
distance. To test this behavior, we have explored the derivatives in proximity
to the origin where the analytical derivatives of the studied topography go to
zero. The explored region is the grid x = y = [−20 : +20] spaced in both di-
rections by 0.25m and is plotted in (figure 2.7 ). The grid with the test points
is in the interval x = y = [−16 : +16] spaced in both directions by 0.5m. The
incremental step for the computations of all derivatives are h = k = 0.25m. As
we can see from the results 2.8 − 2.12 the errors output shows several spikes
in the first-order derivatives and a regular growth in the second-order deriva-
tives fxx and fyy. Indeed the behavior is the same, that is a percentage error
growth of the type d−2 when the distance from the test point to the point where
the analytical derivatives vanish goes to zero. This is more evident where the
vanishing curve is well captured by the test grid nodes (like in the plots of fxx
and fyy) and less evident when such curves pass through the nodes at different
distances and the resulting spikes seem randomly distributed. Local maximum
of 40− 50% can be seen in the first-order derivatives, while in the second-order
ones we find 7% maximum for fxx and 20% for fyy. On the contrary, mixed
derivatives errors are very close to 0 since the formulas provide exact results for
the chosen function: the discrepancy is quite small and only due to numerical
rounding errors.

As we will see in the next chapters, computing the motion of a point or more
points on a surface requires the computation of quantities involving the surface
and its derivatives up to the second-order along the trajectories of the moving
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points at each time step. Since the positions of the points might be arbitrary
and in general do not coincide with the nodes of a discrete grid, there is the
need to compute all the required functions by means of opportune methods of
interpolation. Let us assume that one needs to compute the variable g in the
position P = (x, y) that happens to belong to the grid cell delimited by the four
grid nodes (xi, yj), (xi, yj+1), (xi+1, yj+1) and (xi+1, yj). We have tested two
interpolation methods on the polynomial function 2.14 and on all its relevant
derivatives. The first one is an inverse-distance interpolation.

P (x, y)

d2

(i, j)

(i, j + 1) (i+ 1, j + 1)

(i+ 1, j)

Figure 2.13: Inverse-distance interpolation. Only the distance d2 of the point P
to the vertex 2 is shown.

The interpolation formula is a weighted average where the weights are the
inverse of the geometrical distances of the point P (x, y) to the vertices of the
cell, that is:

g =
g1/d1 + g2/d2 + g3/d3 + g4/d4

1/d1 + 1/d2 + 1/d3 + 1/d4

where the indexes 1 − 4 represent the cell vertices, from the node i, j going
clockwise .
In order to assess the effect of the interpolation on the computation of the dis-
crete derivatives, we have used the values of the discrete derivatives coalculated
on the grids introduced in the previous examples 2.1 and 2.7, and then we have
built two additional test grids, actually staggered, and in these nodes we have
calculated the derivatives through interpolation. . The two tested grids, one
in the larger domain and the other in the smaller domain around the origin,
are formed resepctively by nodes x = y = [60 : 4.3 : 160] and by nodes
x = y = [−16 : 0.85 : +16]. The interpolated functions have been then com-
pared to the corresponding analytical values. The resulting percentage errors
are shown in the following figures:
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Figure 2.14: Percentage error of fx evaluated on points over the staggered test
grid. Inverse-distance interpolation.

Figure 2.15: Percentage error of fy evaluated on points over the staggered test
grid. Inverse-distance interpolation.
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Figure 2.16: Percentage error of fxx evaluated on points over the staggered test
grid. Inverse-distance interpolation.

Figure 2.17: Percentage error of fyy evaluated on points over the staggered test
grid. Inverse-distance interpolation.
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Figure 2.18: Percentage error of z evaluated on points over the staggered test
grid. Inverse-distance interpolation.

Figure 2.19: Percentage error of fx evaluated on points over the staggered test
grid around the origin. Inverse-distance interpolation.
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Figure 2.20: Percentage error of fy evaluated on points over the staggered test
grid around the origin. Inverse-distance interpolation.

Figure 2.21: Percentage error of fxx evaluated on points over the staggered test
grid around the origin. Inverse-distance interpolation.
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Figure 2.22: Percentage error of fyy evaluated on points over the staggered test
grid around the origin. Inverse-distance interpolation.

Figure 2.23: Percentage error of z evaluated on points over the staggered test
grid around the origin. Inverse-distance interpolation.

Errors values for the first grid reach the maximum of 6% for the first-order
derivatives and of3.5% for the second-order ones and for the topography func-
tion z = f . This suggests us that in general this interpolation method could
lead even to bigger errors on irregular geometries. In fact, as we can see from
the last set of figures ( 2.19 − 2.23), the errors near origin, that for the deriva-
tives of this function is a critical region (x = 0, y = 0), become large reaching
local values of 100% in fx, 80% for fy, 25% for fxx, 40% for fyy and 8% for the
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function z.
This interpolation study conducted on the polynomial function has been ex-
tended also on many other functions with more complex shapes. The results
happened to be even worse in some cases. Hence, we have explored a different
kind of interpolation process, that uses more than a single cell. In particular,
the best results have been obtained by a bicubic interpolation (spline) method.
Basically, this is an extension of a cubic interpolation technique to interpolate
data sets on a two dimensional regular grid. In the application to the case
of the fourth-degree polynomial, it is found that the interpolation errors are
not larger than the discretization errors. We show here below the results of
the interpolation test only for the staggered grid around the origin previously
introduced.

Figure 2.24: Percentage error of fx evaluated on points over the staggered test
grid around the origin. Bicubic spline interpolation.
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Figure 2.25: Percentage error of fy evaluated on points over the staggered test
grid around the origin. Bicubic spline interpolation.

Figure 2.26: Percentage error of fxx evaluated on points over the staggered test
grid around the origin. Bicubic spline interpolation.
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Figure 2.27: Percentage error of fyy evaluated on points over the staggered test
grid around the origin. Bicubic spline interpolation.

Figure 2.28: Percentage error of z evaluated on points over the staggered test
grid around the origin. Bicubic spline interpolation.

The results (figure 2.24 − 2.28) show clearly the good performance of the
spline interpolation process. In particular, for the topography functionz we
have maximum errors of 10−3% against the 8 − 9 % of the inverse-distance-
based interpolation technique. For second-order derivatives we have much better
results than in previous test. Still, we have isolated peaks in the first-order
derivatives but, as we have seen, this is due to the discretization itself and not
to the interpolation.
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Chapter 3

Dynamics of a point sliding
on a surface

3.1 1D Equations of motion

In this chapter we outline the basic mathematics of the motion of a point mass
sliding on a surface. We start from the simplest case of a 1D problem to gain a
better understanding of the physical background, and therefore we assume that
the motion occurs in the plane (y, z) and that the point-particle moves on the
curve z = f(y):

z

y

~ac

~at~g

f(y)

Figure 3.1: Point acceleration components and gravitational acceleration (~g).
~ac and ~at are the centripetal and tangential components.

On the trajectory curve, the driving force being the gravity, the motion is
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described by means of the tangential (at) and centripetal (ac) accelerations:

~a = ~at + ~ac

Splitting ~a into the Cartesian components:{
~ay = ~aty + ~acy
~az = ~atz + ~acz

and considering that at is due to the contribution of the gravity acceleration
along the sliding curve, we can write:

at = geff = g sin θ

where θ is the local angle of slope, that is the angle between the slope and
the horizontal y axis. Taking this into account, the y and z components of ~at
result to be: {

aty = g sinα cos θ
atz = −g sin2 α

Remebering that ac = v2/R, where v is the point velocity and R is the local
radius of curvature, we can write: acy = −v2

R sin θ

acz = v2

R cos θ

Summing up, if we use the dot notation to designate time derivatives, we obtain: v̇y = g sin θ cos θ − v2

R sin θ

v̇z = −g sin sin2 θ + v2

R cos θ

where the velocity square modulus is obviously given by v2 = v2
y +v2

z . Since the
point is constrained to move on the surface, then its vertical position z is linked
to y through the relation z = f(y), and so:{

vy = ẏ = v cos θ
vz = ż = ẏf ′(y) = vyf

′(y)

Re-writing all the equations in function of y, we obtain:

ẏ = vy (3.1)

v̇y = −g sin θ cos θ −
v2
y + v2

z

R
sin θ (3.2)

ż = vz (3.3)

v̇y = −g sin2 θ +
v2
y + v2

z

R
cos θ (3.4)
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Through simple differential geometry considerations it is possible to express
the angle θ(y) by means of the first derivative of the function f(y):

f ′(y) = tan θ ⇒ θ = arctan f ′(y)

and hence to obtain the following relations:

cos θ =
1√

1 + tan2 θ
=

1√
1 + f ′(y)2

sin θ =
tan θ√

1 + tan2 θ
=

f ′(y)√
1 + f ′(y)2

Also the radius of curvature can be written as a function of the first and second
order derivatives of f(y):

R =
(1 + f ′(y)2)3/2

f ′′(y)

Thus, the general expression for the equations describing the particle motion
are:

ẏ = vy (3.5)

v̇y = −g f ′(y)

1 + f ′(y)2
− v2

y

f ′(y)

1 + f ′(y)2
f ′′(y) (3.6)

ż = vyf
′(y) (3.7)

v̇z = −g f ′(y)2

1 + f ′(y)2
− v2

y

1

1 + f ′(y)2
f ′′(y) (3.8)

As it is clear from 3.5-3.8 we just have two independent equations. Indeed
the last two equations of the above system do not need to be solved. Once
the horizontal position y of the particle is known, the vertical position is also
known being z = f(y). The last two equations express the vertical velocity and
acceleration of the particles in terms of its horizontal counterparts. For this
reason this is a one dimensional problem, even if the motion actually develops
over a 2D curve.

3.2 2D Equations of motion

We now find the equations describing the motion of a particle moving on a
surface described by the analytic functon z = f(x, y). Hence, we need to solve a
2D problem, since the vertical position of the particle is simply evaluated from
its horizontal coordinates xand y.
Let us consider the surface function and the generic tangent vector over it:

z = f(x, y)⇒ z − f(x, y) = 0
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~t =

∣∣∣∣∣∣
a
b

afx + bfy

∣∣∣∣∣∣
where a and b are arbitrary coefficients. The normal vector is defined by ~t·~n = 0,
so: ∣∣∣∣∣∣

a
b

afx + bfy

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
x
y
z

∣∣∣∣∣∣ = 0

↓

ax+ by + z(afx + bfy) = 0

a(x+ zfx) + b(y + zfy) = 0

(3.9)

Setting z = 1, we obtain nx = −fx and ny = −fy.So the normal ~n can be
written as:

~n =

∣∣∣∣∣∣
−fx
−fy

1

∣∣∣∣∣∣
and the unit normal vector is:

n̂ =
~n

||n||
=

∣∣∣∣∣∣
−fx
−fy

1

∣∣∣∣∣∣ 1

(f2
x + f2

y + 1)1/2

We need the maximum steepness vector ~s (and the corresponding unit vec-
tor ŝ) that is the tangential vector that is obtained by projecting n̂ over the
tangential plane, and results to be:

~s =

∣∣∣∣∣∣
−fx
−fy

−f2
x − f2

y

∣∣∣∣∣∣→ ŝ = [f2
x + f2

y + (f2
x + f2

y )1/2]−1/2 · ~s

The point acceleration can be written as:

a = at · ŝ+ an · n̂ (3.10)

in terms of the tangential and normal components at and an respectively. Taking
the gravity acceleration as ~g = (0, 0,−g), the tangential acceleration takes the
form:

at = ~g · ŝ =
g(f2

x + f2
y )

f2
x + f2

y + (f2
x + f2

y )2

∣∣∣∣∣∣
−fx
−fy

−f2
x − f2

y

∣∣∣∣∣∣
=

g

1 + f2
x + f2

y

∣∣∣∣∣∣
−fx
−fy

−f2
x − f2

y

∣∣∣∣∣∣
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For the normal component, we get:

an = ~a · n̂ =
d

dt
~v · n̂ =

= −~v · dn̂
dt

= −~v ·
[
(
d~x

dt
) · (dn̂

dx
)

]
= ~v · (~v · ∇n̂)

After some manipulations, the above expression becomes:

an =
v2
xfxx + vxvyfxy + v2

yfyy√
1 + f2

x + f2
y

Eventually, the equations describing this kind of motion are:

ẋ = vx (3.11)

v̇x = −g fx
1 + f2

x + f2
y

−
(
v2
xfxx + vxvyfxy + v2

yfyy
) fx

1 + f2
x + f2

y

(3.12)

ẏ = vy (3.13)

v̇y = −g fy
1 + f2

x + f2
y

−
(
v2
xfxx + vxvyfxy + v2

yfyy
) fy

1 + f2
x + f2

y

(3.14)

As already remarked before, the vertical position of the particle can be derived
from the horizontal coordinates x and y and vertical velocity and acceleration
are correspondingly given by:

ż = vz = fxvx + fyvy.

v̇z = fxv̇x + fy v̇y + vx(fxxvx + fxyvy) + vy(fyxvx + fyyvy) =

= fxv̇x + fy v̇y + fxxv
2
x + fyyv

2
y + vxvyfxy

Substituting 3.12 and 3.14 in the previous equation we find:

v̇z = −g
f2
x + f2

y

1 + f2
x + f2

y

+
(
v2
xfxx + vxvyfxy + v2

yfyy
) 1

1 + f2
x + f2

y

(3.15)

3.2.1 Friction

To introduce the resistant acceleration due to friction forces, we have to add to
3.10 the appropriate term, which is opposite to the velocity direction:

~a = at · ŝ+ an · n̂+ µ(gn − an)v̂ (3.16)

where µ is the friction coefficient depending on the material properties of the
moving particle and of the sliding surface. Here gn is the component of the
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gravity acceleration in the normal direction and v̂ is the unit vector parallel to
the velocity, i.e.:

gn = ~g · ~n =
−g√

1 + f2
x + f2

y

(3.17)

v̂ =
1√

v2
x + v2

y + v2
z

∣∣∣∣∣∣
vx
vy
vz

∣∣∣∣∣∣
=

1√
v2
x + v2

y + (vxfx + vyfy)2

∣∣∣∣∣∣
vx
vy

vxfx + vyfy

∣∣∣∣∣∣
If we incorporate the last equations in the 3.11-3.14 we find the final equations
of motion:

ẋ = vx (3.18)

v̇x = −g fx
1 + f2

x + f2
y

− γxy
fx

1 + f2
x + f2

y

+ µΓxy
vx√

v2
x + v2

y + (vxfx + vyfy)2

(3.19)

ẏ = vy (3.20)

v̇y = −g fy
1 + f2

x + f2
y

− γxy
fy

1 + f2
x + f2

y

+ µΓxy
vy√

v2
x + v2

y + (vxfx + vyfy)2

(3.21)

Where:

Γxy =
−g√

1 + f2
x + f2

y

−
v2
xfxx + vxvyfxy + v2

yfyy√
1 + f2

x + f2
y

The vertical velocity and accelerations can be computed from the horizontal
quantities through the same procedure seen in the case with no friction.
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3.3 Main Runge-Kutta discretization Method

To solve the equations 3.18–3.21 we used an explicit Runge-Kutta at fourth
order. The matrix of the ai coefficients is:

A =

∣∣∣∣∣∣∣∣
0 0 0 0
0.5 0 0 0
0 0.5 0 0
0 0 1 0

∣∣∣∣∣∣∣∣
The coefficients for the temporal partition are:

c1 = 0 c2 = 1/2 c3 = 1/2 c4 = 1

while the coefficients for the computation of the next step quantities are:

β1 = 1/6 β2 = 1/3 β3 = 1/3 β4 = 1/6

Setting the initial position and velocity of the particle at the values they have at
the previous time step k, we can evaluate the solution using the same procedure
seen in chapter 2. In this case in the first sub-step we have:

w1x = x0

w1y = y0

w1vx = vx0

w1vy = vy0

˜f1x = ẋ0 = vx0

˜f1y = ẏ0 = vy0

˜f1vx = v̇x0

˜f1vy = v̇y0

For the second sub-step we have:

w2x = x0 + k/2 ˜f1x

w2y = y0 + k/2 ˜f1y

w2vx = vx0 + k/2f̃1vx

w2vy = vy0 + k/2f̃1vy

˜f2x = w2vx

˜f2y = w2vy

f̃2vx = ẇ2vx

f̃2vy = ẇ2vy

In the third one:
w3x = x0 + k/2 ˜f2x

w3y = y0 + k/2 ˜f2y

w3vx = vx0 + k/2f̃2vx

w3vy = vy0 + k/2f̃2vy

˜f3x = w3vx

˜f3y = w3vy

f̃3vx = ẇ3vx

f̃3vy = ẇ3vy
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and in the last sub-step we have:

w4x = x0 + k ˜f3x

w4y = y0 + k ˜f3y

w4vx = vx0 + kf̃3vx

w4vy = vy0 + kf̃3vy

˜f4x = w4vx

˜f4y = w4vy

f̃4vx = ẇ4vx

f̃4vy = ẇ4vy

When we write ẇivx or ẇivy we mean the acceleration of the mass evaluated
in the previous sub-step (for i = 2, 3, 4) or at the previous time step (for i = 0).
The explicit expression for this value depends on the forces we consider. For
example, if we consider just the gravity acting on the surface, we use 3.11 and
3.14. As a matter of fact, the procedure structure is always in this form. Even
when we will handle the case of more interacting particles, the solution will be
provided in the same way. Basically, we just need to change the expressions for
the acceleration case by case.
At every time step, the solution for the particle is estimated by:

xRK = xk+1 = xk + ∆t (1/6f̃1x + 1/3f̃2x + 1/3f̃3x + 1/6f̃4x)

yRK = yk+1 = yk + ∆t (1/6f̃1y + 1/3f̃2y + 1/3f̃3y + 1/6f̃4y)

vxRK = vx k+1 = vxk + ∆t (1/6f̃1vx + 1/3f̃2vx + 1/3f̃3vx + 1/6f̃4vx)

vyRK = vy k+1 = vy k + ∆t (1/6f̃1vy + 1/3f̃2vy + 1/3f̃3vy + 1/6f̃4vy)

where ∆t is the time step.

3.4 Applications to ideal no-friction topographies

As was underlined in the previous sections, no general solution to the prob-
lem of a particle moving on a surface exists. The previous analysis, however,
provides a system of ODEs governing the dynamics of the particle over the ana-
lytic surface z = f(x, y) and we can call the numerical solution to this system a
semi-analytical solution. Using a MATLAB code, we have solved the equations
of motion through the fourth-order Runga-Kutta method described in section
3.3 (in short an RK4 method) obtaining a description of particle motion that is
very accurate. Comparison with merely analytical solutions available in cases
of plane surfaces shows that the RK4 solutions are practically undistinguishable
from the analaytical ones within the range of times and velocities of geophysical
interests.
The main goal of having a solution built in this way, is that we can compare
it with solutions obtained by means of numerical models when even analyti-
cal surfaces are discretized. In the following we perform such a comparison by
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solving the same cases by means of the RK4 method and by a means of a 2D
block model developed by the Tsunami Research Team of the Department of
Physics and Astronomy (DIFA) of the University of Bologna and widey applied
to compute the dynamics of subaerial and submarine landslides (see [Tinti et al.]
2000;Tinti et al., 2003; Tinti et al., 2004]). The code, called UBO-BLOCK2,
describes a slide as a matrix of blocks with a quadrilateral base able to interact
while sliding down over a slope and adopts a Lagrangian point of view. The
sliding surface is discretised in triangles. In the first stage of discretization, the
slide is partitioned into the constituent blocks that can be equalized either in
the base or in the volume. During the motion, they can change their shape
keeping their volume constant, although, interpenetration of blocks is not al-
lowed. Basically, the motion is characterized at every time step by geometrical
and kinematic properties of each block. The model UBO-BLOCK2 is written
in FORTRAN77 programming language.
In the following examples, we solve the problem described by the 3.11-3.14 and
when using the RK4 method we compute all the derivatives analytically. When
using the model UBO-BLOCK2, the friction forces are disabled, and, since we
assume that the landslide is formed only by one block, interaction forces do not
play any role. We further note that we take a unitary mass that starts from a
rest state with initial zero velocity.

3.4.1 Parabolic topography

The first bottom surface we propose for the comparison of the models is de-
scribed by a simple parabolic function, that is:

f(x, y) = ax2 + by2 + dx+ f ; (3.22)

where the values of the coefficients are:

a = 0.00005 b = 0.01 d = −0.1 f = 50

The first- and second-order derivatives are:

∂f

∂x
= 2ax+ d

∂f

∂y
= 2by

∂f2

∂x2
= 2a

∂f2

∂y2
= 2b

∂f2

∂x∂y
= 0

The grid to represent the surface is built in the intervals x = [0 : 1000]m
and y = [−100 : 100]m with equal space steps dx = dy = 1m. In the MATlLAB
routine the time array is t = [0 : 60] s, while in the UBO-BLOCK2 model it
stops at t = 50s. In both simulations the time step is dt = 0.5 s. The starting
position is in (x = 10, y = −90)m. In the F77 programme a single block cube
with a 2m side is defined as the landslide body.
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Figure 3.2: Comparison between trajectories from analytical (MATLAB RK4,
blue) and numerical (UBO-BLOCK2, yellow) simulation. The initial landslide
roof is shown in red. The bottom surface is represented by a contour map. The
elevation scale is shown on the right.

Figure 3.3: Same results shown in figure 3.2 but with a 3D view perspective.
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Figure 3.4: Total (potential + kinetic) energy trends: analytic (blue), numerical
(green).

Figure 3.5: Velocity trends: analytic (blue), numerical (red).
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Figure 3.6: Total energy (solid line) and energy components: kinetic (asterisks),
potential (open circles). Analytical solution (blue) vs. numerical (red).

Figure 3.7: Particle trajectories in the horizontal plane: analytical (blue) and
numerical (green). The absolute difference is also shown in red.

The results of the simulation are shown in figures 3.2- 3.7. From figures 3.2 ,
3.3 and 3.5 it is clear that trajectories and velocities are quite similar. To allow
a better trajectory comparison, a planar view from above is shown in figure 3.7
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together with the x-distance between them.
Some discrepancy is evident in the energy result (figures 3.4 and 3.6) with the
UBO-BLOCK2 model exhibiting some energy dissipation. When the trajectory
has a big change in direction, the energy loss is small. Instead energy loss is
higher in correspondence with velocity peaks , i.e. when the point is in the
trough and the velocity is higher, corresponding to a change of sign in the accel-
eration. This could suggest a problem in the numerical routine, possibly related
to the way UBO-BLOCK2 evaluates the acceleration (second order derivative)
of the ’next step’.

3.4.2 Gaussian topography

The second surface considered is given by a Gaussian function:

f(x, y) = e−(x2/2b2+y2/2c2)

Where b = c = 30.The first- and second-order derivatives are:

∂f

∂x
= − x

b2
∗ f(x, y) ;

∂f

∂y
= − y

c2
∗ f(x, y)

∂f2

∂x2
= − 1

b2
∗ f(x, y) ∗ (1− x2

b2
)

∂f2

∂y2
= − 1

c2
∗ f(x, y) ∗ (1− y2

c2
)

∂f2

∂y∂x
= f(x, y) ∗ xy

c2b2
;

In this case the grid is represented by two row vectors x = y = [−100 : 1 : 100]m.
The simulation time step is dt = 0.2 s for the MATLAB code and dt = 0.5 s for
the F77 code. The initial position of the particle is set on (x = 5, y = 5)m.
As in the previous case, the UBO-BLOCK2 landslide is formed by one 2m-side
cube centered in (5, 5)m.
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Figure 3.8: Comparison between trajectories from analytical (MATLAB RK4,
blue) and numerical (UBO-BLOCK2, yellow) simulation. The initial landslide
roof is shown in red. The bottom surface is represented by a contour map. The
elevation scale is shown on the right.
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Figure 3.9: Same results shown in figure 3.8 but with a 3D view perspective.

Figure 3.10: Total (potential + kinetic) energy trends: analytical (blue), nu-
merical (green).
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Figure 3.11: Velocity trends: analytic (blue), numerical (green).

Figure 3.12: Total energy (solid line) and energy components: kinetic (aster-
isks), potential (open circles). Analytical solution (blue) vs. numerical (red).

The simulation results are shown in figures 3.8− 3.12.
The paths match perfectly (figures 3.8− 3.9 ). Energy is almost constant:

the discrepancy among the two simulations is less then 1% (figure 3.10). The
velocities are almost overlapped (Figure 3.11). The particle has its maximum
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speed at the end of the slope; extending the time range, the velocity become
constant (as it should be because the friction is zero). There is also a perfect
balance between potential and kinetic energies (figure 3.12).

3.4.3 Multiple-ridge topography

The functions used in the previous cases can be taken as representative of a
valley or of a single mountain block. To test the codes in a more complex
situation, we have chosen a topography showing a sequence of crest and valleys
like in the radial direction, i.e. :

f(x, y) =
sin(r)

r
r =

√
a(x2 + y2)

Where a = 0.05. The first-and second-order derivatives are:

∂f

∂x
=
xcos(r)

x2 + y2
− xa sin(r)

r3

∂f

∂y
=
ycos(r)

x2 + y2
− ya sin(r)

r3

∂f2

∂x2
=

cos(r)

x2 + y2
− 3x2 cos(r)

(x2 + y2)2
− a sin(r)

r3
+

3a2x2 sin(r)

r5
− x2a2 sin(r)

r3

∂f2

∂y2
=

cos(r)

x2 + y2
− 3y2 cos(r)

(x2 + y2)2
− a sin(r)

r3
+

3a2y2 sin(r)

r5
− y2a2 sin(r)

r3

∂f2

∂x∂y
= − axy sin(r)

r(x2 + y2)
− 3xy cos(r)

(x2 + y2)2
+

3a2xy sin(r)

r5

Space and time arrays are the same as in the previous simulation. The initial
position of the particle is (1, 1), and on this point is centered the cubic landslide
of 2m thickness handled by UBO-BLOCK2.
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Figure 3.13: Comparison between trajectories from analytical (MATLAB RK4,
blue) and numerical (UBO-BLOCK2, yellow) simulation. The initial landslide
roof is shown in red. The bottom surface is represented by a contour map. The
elevation scale is shown on the right.
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Figure 3.14: Same results shown in the previous figure 3.13, but with a 3D view
perspective.

Figure 3.15: Total (potential + kinetic) energy trends: analytical (blue), nu-
merical (green).
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Figure 3.16: Velocity trends: analytic (blue), numerical (green).

Figure 3.17: Total energy (solid line) and energy components: kinetic (aster-
isks), potential (open circles). Analytical solution (blue) vs. numerical (red).
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Figure 3.18: Trajectory along x axis: analytic (blue) and numerical (green).
The difference is shown in red.

The results are shown in figures 3.13− 3.17. There is a very good match
between the trajectories (figures 3.13− 3.14) and their x-distance is quite small
(figure 3.18), being almost constant proving the similarity. The velocity trends
shows a good match too (figure 3.16). The difference among the energy trends
does not exceed 1% (figure 3.15). An expansion of the energy components is
shown in figure 3.17. As it should be, kinetic energy maxima correspond with
potential energy minima, and viceversa.

3.4.4 Topography with a linear, exponentially damped,
trend

The last example we treat is a topography that alternates a mountain with a
deep depression around the origin, that is:

f(x, y) = xe−a(x2+y2)

Where a = 0.001. Writing ψ = e−a(x2+y2), the first- and second-order deriva-
tives are:

∂f

∂x
= ψ(1− 2ax2)

∂f

∂y
= −ψ2axy

∂2f

∂x2
= ψ2ax(2ax2 − 3)

∂2f

∂y2
= ψ2ax(2ay2 − 1)

∂2

∂x∂y
= ψ2ay(2ax2 − 1)
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Space and time arrays for the MATLAB simulation are x = [−900 : 1 : 100]m,
y = [−100 : 1 : 100]m and t = [0 : 0.5 : 20] s. The initial position is in the point
(50, 10). The 2m square-base landslide has a 2m thickness.

Figure 3.19: Comparison between trajectories from analytical (MATLAB RK4,
blue) and numerical (UBO-BLOCK2, yellow) simulation. The initial landslide
roof is shown in red. The bottom surface is represented by a contour map. The
elevation scale is shown on the right.
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Figure 3.20: Same results shown in figure 3.19, but with a 3D view perspective.
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Figure 3.21: Total (potential + kinetic) energy trends: analytical (blue), nu-
merical (green).

Figure 3.22: Velocity trends: analytic (blue), numerical (green).
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Figure 3.23: Energy trend from Analytic simulation.

The results are shown in figures 3.19−3.23. The two trajectories have some
differences after the second considerable change of slope. The same differences
can be found in the velocity trend (figure 3.22): the numerical F77 simulation
provides a smaller velocity maximum. The largest simulation discrepancies are
in the energy trends. As it is clear in figure 3.21, there is a big energy collapse
in the F77 results linked to the first change in slope. The MATLAB solution
energy (figure 3.23) is instead constant (apart from a small perturbation around
0.3%). This example shows that the F77 code needs improvements facing local
strong high-gradient slopes of the provided sliding surface.
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Chapter 4

Dynamics of points sliding
on a surface and interacting
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4.1 Interaction force among two material points

We want to describe the motion of particles sliding on a surface and interact-
ing. We illustrate here below the theory for two interacting particles, with the
interaction being such that the 3D Cartesian distance between the particles is
constant: this is a good approximation for rocks, since, even though they can
deform during motion, displacements are always quite small with respect to the
typical dimension of the body. We suppose the sliding surface is described by
the function z = f(~x), where ~x = (x, y). The particles have coordinates ~r1 and
~r2 in the space. So, we have ~x1 and ~x2 in the Cartesian plane and z1 and z2 in
the vertical direction. Hence, we can write the position points as:

P1 = (~x1, f(~x1)) P2 = (~x2, f(~x2))

The distance between the particles can be written as:

d12 = (~r1 − ~r2) ◦ (~r1 − ~r2) = (~x1 − ~x2) ◦ (~x1 − ~x2) + (z1 − z2)2

where ◦ denotes the dot product. The equations of motion are:{
m1~̈x1 = ~F1 + ~h12

m2~̈x2 = ~F2 − ~h21

(4.1)

where ~F1 and ~F2 are the forces acting on the points (gravity, friction and

reaction force) and ~h12 is the interaction force. We suppose that ~h12 is the force

acting on P1 by P2 and ~h21 = −~h12 is the one acting on P2 by P1.
Extracting the acceleration from 4.1, we obtain:{

~̈x1 = (~F1 + ~h12) 1
m1

~̈x2 = (~F2 − ~h12) 1
m2

Subtracting the previous equation:

~̈x1 − ~̈x2 =
~F1

m1
−

~F2

m2
+
~h12

m1
+
~h12

m2
=

~F1

m1
−

~F2

m2
+
m1 +m2

m1m2

~h12

We can use the invariance of d12 to obtain (~̈x1 − ~̈x2). Deriving two times d2
12

with respect to time:

2(~̇x1 − ~̇x2) ◦ (~x1 − ~x2) + 2(ż1 − ż2) = 0

↓

(~̈x1 − ~̈x2) ◦ (~x1 − ~x2) + (~̇x1 − ~̇x2◦)(~̇x1 − ~̇x2) + (z̈1 − z̈2)(z1 − z2) + (ż1 − ż2) = 0

The difference among the accelerations is given by the 4.1. Replacing it in the
previous equation we obtain :

m1 +m2

m1m2

~h12 ◦ (~x1 − ~x2) =
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(~x1 − ~x2) ◦ (
~F1

m1
−

~F2

m2
)− (ẋ1 − ẋ2) ◦ (ẋ1 − ẋ2)− (z̈1 − z̈2)(z1 − z2)− (ż1 − ż2)2

The previous relation shows how the invariance of the distance between the
particles implies that the interaction force in the direction of the line joining
the two points on the Cartesian plane is determined. We now assume that ~h12

lies on the (~r1 − ~r2) direction, that is:

~h12 = h12
~r1 − ~r2

[(~r1 − ~r2) ◦ (~r1 − ~r2)]1/2
(4.2)

↓
m1 +m2

m1m2

~h12 ◦ (~x1 − ~x2) =
m1 +m2

m1m2
h12

(~x1 − ~x2) ◦ (~x1 − ~x2)

[(~r1 − ~r2) ◦ (~r1 − ~r2)]1/2

Hence, the modulus of h12 is given in the form:

h12 = − m1m2

m1 +m2

[(~r1 − ~r2) ◦ (~r1 − ~r2)]1/2

(~x1 − ~x2) ◦ (~x1 − ~x2)
×

[(~x1 − ~x2) ◦ (
~F1

m1
−

~F2

m2
) + (ẋ1 − ẋ2) ◦ (ẋ1 − ẋ2) + (z̈1 − z̈2)(z1 − z2) + (ż1 − ż2)2]

Using 4.2 we can write the expression of ~h12 :

~h12 = − m1m2

m1 +m2

[(~r1 − ~r2)

(~x1 − ~x2) ◦ (~x1 − ~x2)
× (4.3)

[(~x1 − ~x2) ◦ (
~F1

m1
−

~F2

m2
) + (ẋ1 − ẋ2) ◦ (ẋ1 − ẋ2) + (z̈1 − z̈2)(z1 − z2) + (ż1 − ż2)2]

If we switch the indexes in the previous relation we can find ~h21 and we can
verify that:

~h21 = −~h12

For the general form, we can use the indexes i, j:

~hij = − mimj

mi +mj

[(~ri − ~rj)
(~xi − ~xj) ◦ (~xi − ~xj)

(αij + βij) (4.4)

Where:

αij = (~xi − ~xj) ◦ (
~Fi
mi
−

~Fj
mj

) + (ẋi − ẋj) ◦ (ẋi − ẋj) + (żi − żj)2

βij = (z̈i − z̈j)(zi − zj)

It’s clear that αij = αji and βij = βji. Moreover, αij depends only on the
particles positions and velocities in the horizontal plane, while βij depends also
on the accelerations.
In fact, assuming that ~Fi = ~Fi(~xi, ~̇xi) and knowing that zi = f(~xi) and żi =
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fx(~xi)ẋi + fy(~xi)ẏi, where xi and yi are the horizontal components of ~xi it can
be easily proven that αij depends just on horizontal positions and velocities.
To have a more clear writing, from know on we will follow these assumptions:

fi = f(~xi) zi = fi żi = fixẋi + fiy ẏi

To isolate terms that depend only on the accelerations, we can re-write the 4.3
in the form:

~hij = − mimj

mi +mj

[(~ri − ~rj)
(~xi − ~xj) ◦ (~xi − ~xj)

[γij+(fixẍi+fiy ÿi−fjxẍj−fjy ÿj)(zi−zj)]

(4.5)
Where:

γij = (~xi−~xj) ·(
~Fi
mi

+
~Fj
mj

)+(fixẋi+fiy ẏi−fjxẋj−fiy ẏi)2 +(~̇xi− ~̇xj) ·(~̇yi− ~̇yj)+

+(fixxẋ
2
i + 2fixyẋiẏi + fiyy ẏ

2
i − fjxxẋ2

j − 2fjxyẋj ẏj − fjyy ẏ2
j )(zi − zj)

Gathering some terms together, we can write:

Mij =
mimj

mi +mj

Γij = −Mij
γij

(~xi − ~xj) · (~xi − ~xj)

∆ij = − (zi − zj)
(~xi − ~xj) · (~xi − ~xj)

Thus, the interaction force can be write in the form:

~hij = (~ri − ~rj)[Γij −∆ij(fixẍi + fiy ÿi − fjxẍj − fjy ÿj)] (4.6)

Mij and Γij are symmetric matrices, while ∆ij is not.
The motion of the two points is described by a linear second−order differ-

ential equations system. Introducing:

~pT = [xi, yi, xj , yj ]

~bT = [Fix + (xi−xj)Γij , Fiy + (yi− yj)Γij , Fjx + (xi−xj)Γij , Fjy + (yi− yj)Γij ]

we can write the equations in the compact form:

A~̈p = ~b (4.7)

where the mass matrix A is given by:

A =

∣∣∣∣∣∣∣∣
mi + (xi − xj)∆ijfix (xi − xj)∆ijfiy − (xi − xj)∆ijfjx − (xi − xj)∆ijfjy
+(yi − yj)∆ijfix mi + (yi − yj)∆ijfiy − (yi − yj)∆ijfjx − (yi − yj)∆ijfjy
−(xi − xj)∆ijfix (xi − xj)∆ijfiy mj + (xi − xj)∆ijfjx + (xi − xj)∆ijfjy
+(yi − yj)∆ijfix − (yi − yj)∆ijfiy (yi − yj)∆ijfjx mj + (yi − yj)∆ijfjy

∣∣∣∣∣∣∣∣
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4.2 Analytical applications

We have solved the system previously described through a MATLAB code, using
an RK4 method, as in the previous cases, obtaining a solution for the motion
of the sliding particles we can refer to as analytical. Analogously to what was
performed in section 3.4, a comparison will be carried out between the solution
provided in this way and numerical solutions calculated by means of numerical
codes UBO-BLOCK1 and UBO-BLOCK2.
The first one is a code developed by the Tsunami Research Team of the De-
partment of Physis and Astronomy (DIFA) of the Bologna University. It is a
1.5D model for a landlside evolution, based on the same assumptions as UBO-
BLOCK2, but with the main difference that the landlside is partitioned into a
chain of blocks rather than a matrix of blocks, and that the path of the landslide
is prescribed a priori (see the paper [Tinti et. al., 1997, 1999, 2006, 2008; Lo
Iacono et al., 2012; Zaniboni et al., 2013; Zaniboni and Tinti, 2014] that are
some of the several papers showing applications of the model to real and/or
realistic scenarios). We further notice that the UBO-BLOCK1 requires as input
the undisturbed sliding surface, the initial sliding body, the predefined centre-of-
mass trajectory and the lateral boundaries. Theoretically, these factors depend
on the landslide evolution, but in many real cases they can be estimated by
means of geological considerations. The model UBO-BLOCK1 is written in
F77 programming language.
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Figure 4.1: Ideal topography described by function 4.8

We have tested the models over an ideal parabolic topography described by
a function depending only on the variable y and is uniform n the x direction:

z = by2 − 100 (4.8)

where b = 0.00004. The slope is shown in figure 4.1. In the first applica-
tion, we consider two sliding masses, interacting with each other in the sense
described in the previous section, and driven by the gravity force. Since the in-
teraction distance-conserving force can be shown to not produce any work over
the system, we expect the total system energy to be conserved. Considering a
2-particle system, basically, is like dividing the sliding body in two blocks, which
means that the models UBO-BLOCK1 and UBO-BLOCK2, that can treated an
arbitrary number of blocks N, are used with a value of N=2.
The grid to represent the surface is built in the intervals x = [−2000 : 2000]m
and y = [−5000 : 5000]m with equal space steps dx = dy = 200m. In all
the simulations the time step is dt = 0.1 s. The starting positions of the two
centers of mass are (x1 = 0, y1 = −2800)m and (x2 = 0, y2 = −1600)m. In the
F77 programs two blocks with height, width and length equal to 20, 400, 1200m,
are defined as the landslide body. We observe that, since the assumed initial
positions have the same x coordinate and the sliding surface depend only on y,
this case is a mere 1D problem and no transversal motion for the landslide is
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expected.

Figure 4.2: Comparison between trajectories from analytical (MATLAB RK4,
black), numerical 1D (UBO-BLOCK1, red) and numerical 2D (UBO-BLOCK2,
blue) simulation.

Figure 4.3: Velocity time-histories along the y direction for each mass: analytical
(thick blue and black lines), numerical 1D (dashed red and blue lines with
asterisks), numerical 2D (dashed green and magenta dashed line with triangles).
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Figure 4.4: Total energy for each mass trends: analytic (thick blue and black
line), numerical 1D (dashed red and blue line with open circles, numerical 2D
(dashed green and magenta dashed line with open circles).

Figure 4.5: Distance changes between the masses: analytical (thick red line),
numerical 1D (magenta asterisks), numerical 2D (blue line)

The results of the simulation are shown in figures 4.2 - 4.5. From figures 4.2
and 4.3 it is clear that trajectories and velocities are quite similar. In general
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the discrepancy among the analytic and numerical solutions for velocities and
trajectories is less then 0.5%. Maximum velocity values are reached at the bot-
tom of the surface (61.5− 61.9m/s ).
Total energy for each mass trends are shown in figure 4.4. We can see some
differences among the outputs. These differences are linked to discrepancies in
the vertical positions, that is in the z coordinates of the masses. In fact, due to
geometrical factors, the initial values of z in the numerical models are slightly
different, and this leads to some level of discrepancy also at the following times.
As regards the distance between the masses (figure 4.5), we can see that it is
well conserved in the analytical solution since this is incorporated in the system
of equations, while it is almost conserved in the UBO-BLOCK2 model solution
and changes by about 2% in the UBO-BLOCK1 model. It is to be remarked
that in both models the interaction forces are computed on a more general basis
also allowing for deformations and internal energy dissipation and can be forced
at most to conserve distances measured along the trajectories (and not the 3D
distances) only indirectly by a specific setting of the basic parameters.

A second test has been carried out on the same topography, but considering
the effect of friction forces as well as of buoyancy. We have considered the
presence of water in the area of the slope where z < 0. Hence, when the
blocks go below this level, a mass reduction is applied in order to account
for buoyancy effect. This reduction depends on water and rock density ratio
(αrid = 1−ρsea/ρrock). The assumed friction coefficients values are: µdry = 0.09
for the subaerial sliding phase and µsea = 0.05 for the underwater sliding, which
are typical values for this problem that can be found in the literature. We also
consider a transition belt z0 < z < z1 (z0 = 0m, z1 = −40m) in which the values
of masses and µ have intermediate values between the ones of rock and water.
For z∗ belonging to this range, we calculate masses and friction coefficients as:

m∗ = m0 (1− z ∗ −z0

z1 − z0
(1− αrid))

µ∗ = µdry +
z ∗ −z0

z1 − z0
(µsea − µdry)

where m0 is the value of the block mass outside the water.
In this test, space arrays and initial centers of mass positions are the same as
in the previous simulation. Density fraction is set to ρsea/ρrock = 1/3. Time
array is t = 0 : 136 for MATLAB code and the UBO-BLOCK2D model stop
as well at t = 136. UBO-BLOCK1D stop at t = 147.2. Time step is equal for
every simulation: dt = 0.1s.
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Figure 4.6: Comparison between trajectories from analytical (MATLAB RK4,
black), numerical 1D (UBO-BLOCK1, red) and numerical 2D (UBO-BLOCK2,
blue) simulation.
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Figure 4.7: Velocity time-histories along the y direction for each mass: analytical
(thick blue and black lines), numerical 1D (dashed red and blue lines with
asterisks), numerical 2D (dashed green and magenta dashed line with triangles).

Figure 4.8: Total energy for each mass trends: analytic (thick blue and black
line), numerical 1D (dashed red and blue line with open circles, numerical 2D
(dashed green and magenta dashed line with open circles).
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Figure 4.9: Z time-histories for each mass: analytical (thick blue and black
lines), numerical 1D (red and blue lines with open circles), numerical 2D (red
and blue line with triangles).

Figure 4.10: Total system energy: analytical (thick black line), numerical 1D
(dashed red line with open circles), numerical 2D (dashed blue line with trian-
gles).
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Figure 4.11: Distance changes between the masses: analytical (thick red line),
numerical 1D (magenta asterisks), numerical 2D (blue line)

Results are shown in figures 4.6 - 4.11. The trajectories are similar (figure
4.6). Discrepancy in vy output can be seen. From the analytical output we can
deduce that the masses actually stop at the time t = 120s. In the numerical
2D time histories the velocities vanish at t = 140s, while in the 1D model the
masses stop at t = 147s . Moreover, the maximum values of velocities are
underestimated in both numerical models (36m/s in the numerical, 38m/s in
the analytical).
Total energy for each mass is shown in figure 4.8. In all trends we see a general
energy loss, as expected owing to the presence of dissipative friction forces. Some
discrepancies can be noticed after t = 100s due to the different stopping-time
in each simulation. In fact, as it can be noticed in the Z time histories 4.9, in
the numerical outputs particles reach different values of z in the end.
This difference is clear also in the total system energy trends (figure 4.10) after
t = 90s. The 3D distance is shown in figure 4.11. Analytical and numerical 2D
match almost perfectly, while in the numerical 1D we can see a loss of about
2% as in the previous case.

4.3 Semi-analytical results on Scilla event

In this section we show the results of the application of the MATLAB code to
the Scilla region topography. The sliding surface (a regular grid 20m spaced)
has been obtained by interpolating low-resolution data (GEBCO, SRTM public
databases and a bathymetry provided by CNR). This provides a not detailed
coastline, but is sufficient for the purposes of this work. Due to the strong
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geometrical irregularity in the sliding area, the contour has been smoothed to
reduce code numerical instabilities. The smoothed topography is shown in the
next figure:

Figure 4.12: Smoothed topography of Scilla region.

The dynamics is fully described by equations 4.7, solved through the RK4
method described in section ??. Moreover, we consider also the buoyancy force
due to the presence of the water. Water and rock density ratio is set as:

ρsea/ρdry = 1/3 µdry = 0.4 µsea = 0.1

The initial positions, given in UTM coordinates, are set in:

x1 = 561323 y1 = 4233578

x2 = 561249 y2 = 4234015

The time array is t = 0 : 150s and time step is dt = 0.5s. To have a better
understanding of the whole landslide system, the results are shown in terms of
the center of mass of the two particles.
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Figure 4.13: Center−of− mass trajectory .

Figure 4.14: Center− of − mass plane trajectory (black thick line). The two
initial points are shown in open red circle.
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Figure 4.15: Center − of − mass velocity .

Figure 4.16: Energy trends: COM potential energy (blue line), COM kinetic
energy (green line), COM total energy (red line), total system energy (cyan line)
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Figure 4.17: 3D distance among the two particles.

Results are shown in figures ??- 4.17. COM velocity maximum is about
48m/s (figure 4.15). Moreover, the COM velocity plot suggests us that the the
center-of-mass enters in the water approximately at t = 30s . The landslide
stops at t = 110s where velocity became constant and equal to zero.
Energy graphs (COM kinetic,COM potential, COM total and total system) are
shown in figure 4.16. Kinetic energy reaches a maximum when the velocity
reaches higher value, as we expected. Potential energy shows a general loss
since the landslide is moving downward. The total system energy overlaps the
COM total energy, as we expected, showing a general loss due to the presence
of dissipative forces.
The distance is conserved, whit small fluctuations (figure 4.17).

4.4 Numerical results on Scilla event

The simulation of the 1783 Scilla landslide has been run by means of the UBO-
BLOCK1 numerical code . A topography and bathymetry composed by the
same grid of the previous section is been used.
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Figure 4.18: Map of the 1783 Scilla landslide, with in evidence the initial slide
thickness (yellow-red-brown scale), the centre of mass trajectory (black dashed
line) and the area covered by the slide motion (light grey). Panel A reports
the final deposit (green scale) for the 10-blocks simulation, Panel B the 2-blocks
mass subdivision.

The sliding body, marked by the yellow-red-brown-scale area accounting
for the initial thickness, is reconstructed by considering the worst case for the
1783 collapse, i.e. a subaerial-submarine mass detaching from Mount Paćı from
almost 400m a.s.l. down to 50m sea depth. This results into a mobilized vol-
ume of 9.4 106m3, higher than the volume hypothesized by other authors, that
considered only a subaerial portion by means of morphological considerations
[Bozzano et al., 2011; Mazzanti and Bozzano, 2011). As can be noticed in 4.18,
the maximum thickness ranges 50m, with an average value of 20m.
The centre of mass trajectory (marked by the black dashed line in figure 4.18
has been chosen following the maximum local gradient and by considering the
location of some submarine deposit associated with the 1783 event [Bozzano
et al., 2011), at about 250m depth; the slide underwater lateral spreading is
accounted for by the light-grey area in figure 4.18.
As we have seen, the numerical code UBO-BLOCK1 has been applied by tak-
ing into consideration two possible initial configurations: the sliding mass has
been divided into 10 and into 2 blocks, the remaining parameters (basal fric-
tion, drag, interaction coefficient) maintained the same. This procedure has
been adopted in order to discern the influence of the number of subdivisions of
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the initial mass on the simulated slide dynamics and on the generated tsunami.
Figure 4.18 shows the position and the distribution of the final simulated de-
posit for the 10-block case (panel A) and for the 2-block one (panel B). We can
notice that the main deposit thickness (up to 40m) concentrates on the deeper
area, around 250m b.s.l., the sliding body maintaining almost unchanged its
longitudinal extension along the sliding direction.

Figure 4.19: Velocity time histories for the two considered initial configurations
of the Scilla slide: 10-blocks (blue line) and 2-blocks (red line). The velocity
here shown is computed as the average of the single blocks velocity.

Concerning the dynamics, the numerical code provides also the velocity at
each time step, necessary to evaluate the tsunami impulse. As can be seen in
Figure 4.19, the velocity follows the typical trend for slides along continental
margins [Zaniboni et al., 2014]: an initial strong acceleration phase brings the
mass to velocities ranging 30m/s for the 10-block case, and 34m/s for 2-blocks,
corresponding to the motion in steepest slopes, in around 20 seconds. After
this, a slow deceleration phase occurs, corresponding to the motion in milder
bathymetry and in presence of the water. The two simulations show very similar
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dynamics, even if the 2-block one reaches higher values (about 10% more), this
effect accounting for the lower number of blocks, meaning less energy dispersion
due to internal interaction.

4.4.1 Tsunami generation

The movement of the mass on the sea bottom causes the displacement of the
sea surface, that begins to oscillate propagating the perturbation. The gen-
erated tsunami wave is here simulated via the numerical code UBO-TSUFD,
developed by the University of Bologna Tsunami Research Team as well, adopt-
ing a finite difference technique to solve the Navier-Stokes equations in shallow
water approximation: in this application they have been solved in their linear
expression, using a staggered grid scheme. Further details on the model and
some applications can be seen in [Tonini et al., 2011 and Tinti and Tonini,
2013]. The impulse provided by the sliding mass is introduced as a forcing
term in the hydrodynamical equations, and is computed at each time step of
the sliding motion by filtering it with the sea depth, and interpolating it on the
tsunami computational grid. These tasks are performed by the intermediate
code UBO-TSUIMP. The code requires as input a regular grid, accounting for
the bathymetry (for wave propagation) and topography (for land inundation) of
the studied area. In this application, the focused area is the near-field, and es-
pecially the coastline close to Scilla, where most of the casualties were registered.
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Figure 4.20: Tsunami propagation over the computational domain. Sea level
rise is marked in yellow-red, sea withdrawal in cyan-blue. The pale yellow area
marks the sliding surface boundary, in light grey the positions of the slide at
the different time steps are reported.

The propagation of the tsunami (here the 10-block case) is shown in Figure
4.20, at different time steps. It first manifests as a positive signal, meaning sea
level rise, followed by an almost radial propagation form the source area (see also
the t = 20 s sketch). After this, the interaction with the bathymetry and the
coast deforms the wave, while into the open sea, northward, the tsunami propa-
gates with a main circular positive front of some meters. The Scilla coastline is
hit by a sea level rise of 6−8m after around one minute (t = 60−70 s sketches):
at this stage it is already evident the sequence of sea level rise-retreat, marked
by the yellow-red and cyan-blue areas respectively. Notice also that only after
80 s the tsunami front begins to distance itself from the sliding mass (whose
evolution is marked in light grey in the sketches), meaning that for the previous
phase they move with similar velocities, reaching the resonance conditions that
provides the maximum energy transfer from the mass to the wave.
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Figure 4.21: Virtual marigrams computed on 5 points along the coastline, which
location is shown on the right. The tsunami generated by the 10-blocks (blue)
and 2-blocks (red) cases are reported.

Synthetic marigrams positioned close to the source and along the Scilla coast-
line (Figure 4.21, right panel), show the comparison between the 10-block and
2-block cases: in both cases, a first positive wave hits the coast, rising over
up to10m almost everywhere, in full compatibility with historical reports. A
long series of oscillations characterize the coastal stretch with a period ranging
1 minute. The first wave is not necessarily the highest one (see for example
marigram 4). The sea level oscillations provided by the two slide simulations
are almost superimposed, apart from some higher frequency oscillations charac-
terizing the 2-block case.

4.5 Comparison between semi-analytical and nu-
merical results

Comparing the analytical and numerical results shown in the previous sections
we can notice some differences in the velocity plots. (Figure 4.15 and Figure
4.19). The maximum values reached are different: 48m/s in the analytical
output, 34m/s in the numerical simulation with 2 blocks and 30m/s in the nu-
merical results with 10 blocks. Moreover, the general curves are different: the
numerical outputs show a general decrease− phase for t > 30 s, while in the
analytical one the velocity growth-phase terminates at t = 70 s. On the other
hand, the decreasing occurs rapidly in the analytical graph, while in the numer-
ical one we can notice a slower decline. This discrepancy is due to the absence
of drag forces in the analytical program. This kind of forces act opposite to
any mass moving with respect to a surrounding fluid (in this case air or water).
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Unlike other resistive forces, such as dry friction, which are nearly independent
of velocity, drag forces depend on it and lead to a general velocity decrease.
Anyway, all codes applied to the 1783 Scilla landslide show that the sliding
body reached high velocity in short time (over 30m/s in about 30 seconds).
From the numerical simulations we deduce that the generated tsunami reaches
the coast of Scilla in about 1 minute, with a considerable sea level rise, up to
8−10 meters, fully compatible with the historical reports. After the first arrival,
a series of oscillations affect the coast for many minutes, with dominant period
around 1 minute. A sensitivity analysis on the effect of 10-block vs. 2-block
initial mass subdivision shows that the maximum velocity change ranges within
the 10%, while the discrepancy between the corresponding tsunamis is almost
negligible, the 2-block wave showing higher frequency disturbances.
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Conclusions

In this thesis we have shown the development of a semi-analytic model to cal-
culate the motion of sliding particles over a surface.
In the first part of this work a detailed study has been conducted on the math-
ematical characteristics of the model. Studies on derivatives discretization and
interpolation over arbitrary points of a grid in a Cartesian reference system sug-
gest us that smoothed geometries are more suitable to these processes and lead
to more reasonable results.
Furthermore, several applications of the semi-analytical model and comparison
with Lagrangian numerical models of landslide evolution have been carried out.
The cases of single particle motion allow us to show the model behavior over
very different shapes, providing very consistent results in all ideal scenarios.
The comparisons helped us to understand numerical model weaknesses facing
particular sliding surface geometries. Even in this case we have proven that
strong geometry irregularities (such as rapid changing in slope gradient) are the
main source of errors.
Another set of applications has been carried out considering the interacting force
between two sliding particles. It has to be outlined that the formal description of
the interaction force leads to several kinds of mathematical and computational
issues that cannot be avoided in some cases. To solve the linear second-order
differential equations system that describes the motion of the particles, we need
the inverse of the mass matrix A. This process is not always possible due to
numerical instabilities and in some cases can produce non-realistic system so-
lutions. A detailed study on the stability of this particular system was not
performed. Further studies could bring a more comprehensive pattern of initial
conditions that ensures stability. Anyway, the applications on ideal surfaces
have shown appropriate results. Comparison with numerical models has shown
very good results despite they adopt different parametrization of the interaction
forces.
Clearly, the main core of this work is the model application to the Scilla 1783
event and the subsequent comparison with results obtained by means of the
UBO-BLOCK1 numerical code. This comparison is essential to prove the effec-
tive working value of the MATLAB code. The landslide body has been divided
in 2 and 10 blocks in order to show that this a-priori assumption does not de-
termine strong differences in the model output. In particular, since the 2-block-
and the 10-block-model runs provide consistent results for the tsunami genera-
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tion, we can deduce that an analytical description of the landslide based on just
two main centers of mass is actually a satisfactory first-level approximation. In
fact, it has to be outlined that the numerical model has the potential to describe
in more details the geometries and kinematics of a complex sliding body, while
in the analytical approach we describe the landslide system with just two points,
that keep their distance constant during their motion on the surface.
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