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Abstract

La sezione d’urto totale adronica gioca un ruolo fondamentale nel programma
di fisica di LHC. Un calcolo di questo parametro, fondamentale nell’ambito
della teoria delle interazioni forti, non é possibile a causa dell’inapplicabilità
dell’approccio perturbativo. Nonostante ciò, la sezione d’urto può essere sti-
mata, o quanto meno le può essere dato un limite, grazie ad un certo numero
di relazioni, come ad esempio il Teorema Ottico. In questo contesto, il detec-
tor ALFA (An Absolute Luminosity For ATLAS) sfrutta il Teorema Ottico
per determinare la sezione d’urto totale misurando il rate di eventi elas-
tici nella direzione forward. Un tale approccio richiede un metodo accurato
di misura della luminosità in condizioni sperimentali difficoltose, caratteriz-
zate da valori di luminosità istantanea inferiore fino a 7 ordini di grandezza
rispetto alle normali condizioni di LHC. Lo scopo di questa tesi è la determi-
nazione della luminosità integrata di due run ad alto �⇤, utilizzando diversi
algoritmi di tipo Event-Counting dei detector BCM e LUCID. Particolare
attenzione è stata riservata alla sottrazione del fondo e allo studio delle in-
certezze sistematiche. I valori di luminosità integrata ottenuti sono L =
498.55 ± 0.31 (stat) ± 16.23 (sys) µb�1 and L = 21.93 ± 0.07 (stat) ± 0.79
(sys) µb�1, rispettivamente per i due run. Tali saranno forniti alla comunità
di fisica che si occupa della misura delle sezioni d’urto protone-protone, elas-
tica e totale. Nel Run II di LHC, la sezione d’urto totale protone-protone
sarà stimata con un’energia nel centro di massa di 13 TeV per capire meglio
la sua dipendenza dall’energia in un simile regime. Gli strumenti utilizzati e
l’esperienza acquisita in questa tesi saranno fondamentali per questo scopo.





Abstract

The total hadronic cross section plays a fundamental role in the physics pro-
gram of the Large Hadron Collider. A calculation of this fundamental para-
menter of strong interactions is not possible because a perturbative approach
is not applicable. Even though, it can be estimated or bounded by a certain
number of relations, such as the Optical Theorem. The ALFA (An Absolute
Luminosity For ATLAS) detector exploits an experimental approach based
on the Optical Theorem, to determine total cross section by measuring the
elastic event rate in the forward direction. This approach requires an accurate
method of measurement of the luminosity in very challenging experimental
conditions characterized by an instantaneous luminosity up to 7 orders of
magnitude below the standard LHC conditions. The aim of this thesis is the
determination of integrated luminosity of two high-�⇤ runs, using different
Event-Counting algorithms of BCM and LUCID detectors. Particular atten-
tion has been paid to the background subtraction and to the study of the
systematic uncertainties. Luminosity values of L = 498.55 ± 0.31 (stat) ±
16.23 (sys) µb�1 and L = 21.93 ± 0.07 (stat) ± 0.79 (sys) µb�1 were obtained
for the two runs, respectively. The luminosity values determined in this the-
sis will be provided to the physics community performing the measurement
of the pp elastic and total cross section. In LHC Run II, it is planned to
perform a pp total cross section measurement at a center of mass energy of
13 TeV in order to increase the understanding of its energy dependence. The
tools and the experience developed in this thesis will be fundamental for this
purpose.
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Introduction

The total hadronic cross section �tot is a fundamental parameter of the strong
interaction theory. Unfortunately, direct calculation of this parameter from
quantum chromodynamics is not possible because the perturbation theory is
not applicable. Even though �tot can be estimated or bounded by a certain
number of fundamental relations in high-energy scattering theory, such as
the Optical Theorem (which relates the imaginary part of the forward elastic
amplitude to the total cross section), a direct measurement at high energy is
of the highest importance.
Traditionally, the Optical Theorem has been used at colliders in order to
measure, via elastic scattering, the total hadronic cross section but there are
other methods to perform this measurement.
The ALFA (Absolute Luminosity For ATLAS ) detector, located at 240 me-
ters from the IP1 of the Large Hadron Collider (the ATLAS Interaction
Point), employs a method that requires an independent luminosity measure-
ment. The total cross section measurement is performed during special runs
using a dedicated high-�⇤ optics and a parallel-to-point focusing. Such ex-
perimental conditions are required for the measurement of the elastic event
rate. During these runs, the instanteous luminosity is up to seven orders of
magnitude lower with respect to the normal runs, (L ⇠ 0.5 ⇥ 1027 cm�2s�1).
The detectors used for luminosity determination are BCM (Beam Conditions
Monitor) and LUCID (Luminosity measurements Using Cherenkov Integrat-
ing Detector), exploiting different event-counting algorithms.
The purpose of this thesis is the determination of the integrated luminosity
for two different low-luminosity runs, acquired in the 2012 data-taking atp
s=8 TeV.

Chapter 1 focuses on the beam dynamics and on the concept of luminosity,
one of the main figures of merit for any particle collider. A description of
the main methods for luminosity determination and calibration follows, with
particular attention to the LHC conditions in 2012.
Chapter 2 provides a description of the ATLAS Luminosity sub-detectors, of
the algorithms used for the luminosity measurement and of the calibration

1



LIST OF TABLES 2

procedure.
Chapter 3 describes the various experimental approaches to the measurement
of the total pp cross section focusing on the measurements performed by the
ALFA and TOTEM experiments in 2011 with a center of mass energy of

p
s

= 7 TeV.
Finally, Chapter 4 provides a detailed description of the analysis procedure
used for the determination of the integrated luminosity needed for the total
pp cross section measurement at ATLAS at

p
s = 8 TeV with 2012 data.

Particular attention was devoted to the background subtraction, one of the
most delicate issues given the experimental conditions of the data-taking. A
detailed treatment of the systematic uncertainties related to the luminosity
measurement is also provided, as these directly enter in the overall system-
atics of the total cross section result.



Chapter 1

Beam Dynamics and
Luminosity Determination
at the Hadron Colliders

1.1 Beam Dynamics
In order to provide a description of the techniques used in the determination
of luminosity in a collider, a brief overview of the beam dynamics is necessary.

1.1.1 Magnetic and Electric Fields
A charged particle, in the electromagnetic field of an accelerator, gains energy
by the interaction with the electric field ~E and its trajectory is curved when
it passes through a dipole magnet. At relativistic velocities, an electric field
~E and a magnetic field ~B have the same effect: a magnetic field of 1 T would
be, at this condition, equal to an electric one of 3 · 108V · m�1. Producing
such an electric field is far beyond our actual technical limits, magnetic fields
are used to steer the beams.
The physical fundamentals of beam steering and focusing are called beam
optics.
A typical coordinate system (x, y, s) used to describe the particle’s motion
is shown in Fig. 1.1. In order to describe the path of the particles, s is
the longitudinal direction along the reference orbit, while x and y are the
transversal coordinates which define the transverse plane. We call ~r0 the
reference trajectory with null x and y coordinates for all s. The particle

3



1.1 Beam Dynamics 4

Figure 1.1: Scheme of a typical coordinate system for a circulating particle.

trajectory around the reference orbit can be expressed as:

~r = ~r0 + xx̂(s) + yŷ(s) (1.1)

The ~B field components can be expressed as a function of a dipolar and
quadrupolar term. Dipole and quadrupoles are important in the comprehen-
sion of the beam optics.
Dipole magnets guide the charged particles along the closed orbit and the
Lorentz force bends the trajectory with a bending angle ✓

✓ =
q

p

Z s2

s1

Bdl =
1

B⇢

Z s2

s1

Bdl (1.2)

where p and q are the momentum and the charge of the particle, respectively,
while ⇢ is the bending radius.
Knowing that the total bending angle of a circular accelerator is 2⇡, the total
dipole field is I

Bdl =
2⇡p

q
= 2⇡B⇢ (1.3)

from which we derive and expression for the bending radius ⇢

⇢ =
mv

qB
=

p

qB
(1.4)

While dipole magnets are used to bend the particle’s trajectory, quadrupole
magnets are used to focus or defocus the beam and to control the beam size.
A focusing quadrupole in the horizontal plane corresponds to a defocusing
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one on the vertical plane and viceversa. In an accelerator, quadrupoles with
opposite polarities are used to provide focusing in the two transverse direc-
tions.
The task of the electric fields is to accelerate the charged particles. There are
several technologies that can be used and the choice depends on the scale of
energy. At high energies, radiofrequencies (RF) are used to generate a longi-
tudinal electric field. The passage through a RF cavity induce a gain/loss of
energy expressed as �E = q�V , where �V = V0sin(!RF t+�) is the effective
gap voltage, !RF is the RF frequency, V0 is the effective peak accelerating
voltage and � is the phase angle. The reason of using RF cavities is that
particles accelerated to high energy require syncronization. It’s necessary
that the particle always sees the accelerating voltage, so the RF frequency
must be an integer (h) multiple of the revolution frequency. In that way,
the particle crosses the electric field every turn at a constant phase and so
experiences a constant force.

fRF = h · frev (1.5)

A particle with a speed � (in units of c) circulates in the accelerator with a
period Trev =

2⇡R
�c and a frequency frev =

�c
2⇡R .

1.1.2 Betatron Motion and Transverse Emittance
The betatron motion describes the motion of the particle in the transverse
plane, around the reference orbit.
The equation describing this motion is derived from the Lorentz force. Know-
ing that ~B is non-null only on the transverse plane xy, the Hill’s equations
(See Appendix A) can be written as:

x00 +Kx(s)x = 0 (1.6)
y00 +Ky(s)y = 0

Kx =
1

⇢2
⌥K1(s) (1.7)

Ky = ⌥K1(s)

where K1(s) =
B1(s)
B⇢ is the effective focusing function which sign depends on

the charge of the particle and B1(s) is the magnetic field evaluated at the
center of the quadrupole. Kx(s) and Ky(s) are periodic and can be assumed
constant because in the accelerator magnetic field components are nearly
uniform.
Considering K as both the vertical and horizontal component (assuming the
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periodic condition K(s + L) = K(s)), being L the distance between two
successive quadrupole stations (see Fig.1.2), the solution to Hill’s equation
will be:

y(s) =

8
<

:

Acos(
p
Ks+ b) K > 0
As+ b K = 0

Acosh(
p
�Ks+ b) K = 0

An alternative expression can be expanded in terms of the betatron state
vector y(s) and the betatron transfer matrix M(s|s0) [1]:

y(s) =

✓
y(s)

y0(s)

◆
(1.8)

y(s) = M(s|s0)y(s0) (1.9)

Eq. (1.9) is the solution of Hill’s equation in terms of betatron state vector
and the betatron transfer matrix, where M(s|s0) has the following expression,
depending on K (` = s� s0):

• K>0 (focusing quadrupole)
 

cos
p
K` 1p

K
sin

p
K`

�
p
Ksin

p
K` cos

p
K`

!

• K=0 (drift space) ✓
1 `
0 1

◆

• K<0 (defocusing quadrupole)
 

cosh
p
|K|` 1p

|K|
sinh

p
|K|`

p
|K|sinh

p
|K|` cosh

p
|K|`

!

The solution of Hill’s equations for K > 0 can be interpreted as an harmonic
oscillator for which the solution is:

y(s) = Aw(s)cos(�(s)� �0) (1.10)

where w(s) is a periodic function with periodicity L, �(s) =
p
Ks, A and �0

are the integration constants and w(s) is a periodic function with periodicity
L. Since K(s) is a periodic function, K(s + L) = K(s) where the period L
can coincide with the accelerator circumference but usually corresponds to
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Figure 1.2: Layout of a FODO Cell.

the distance between two FODO cells (typically, the structure of the focus-
ing/defocusing system is the so-called FODO cell, F stands for focusing, O
for drift space and D for defocussing, see Fig.1.2) for a schematic picture.
The substitution of Eq.(1.10) in the Hill’s equation allow us, at last, to define
a new set of variables:

�(s) =
w2(s)

k
(1.11)

↵(s) = �1

2

@�(s)

@s
(1.12)

�(s) =
1 + ↵2(s)

�(s)
(1.13)

Eqs. (1.11), (1.12) and (1.13) represent the Courant - Snyder functions or
Twiss parameters and they can be used to parametrize the transfer matrix
M that describes a complete turn around the ring

M =

✓
cos�+ ↵sin� �sin�

��sin� cos�� ↵sin�

◆
(1.14)

where� is the betatron phase advance, defined as:

� =

Z s0+L

s0

ds

�(s)
(1.15)
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where L is the length of the periodic beam line for which the K function
is periodic and �(s) is the betatron amplitude function. For an accelerator
of circumference C = NL with N identical superperiods, N� is the phase
change per revolution. We can also derive characteristic quantities Qx and Qy

for an accelerator called the betatron tunes, the number of betatron oscillation
per turn.

Qi =
N�i

2⇡
=

1

2⇡

Z s+C

s

ds

�y(s)
(1.16)

where i = x, y. The betatron oscillation frequency is Qif0, where f0 is the
revolution frequency.
The general solution of Hill’s equations in the vertical plane becomes:

y(s) = a
q
�y(s)cos[�y(s) + �0] (1.17)

with
�y(s) =

Z s

0

ds

�y(s)
(1.18)

This means that we have a pseudo-harmonic oscillation with varying ampli-
tude �

1/2
y (s).

In an accelerator structure, the motion can be reconstructed knowing the
evolution of the Courant- Snyder parameters and of the phase advance along
the coordinate s.

1.1.3 Beam Emittance
The particle distribution is generally described by a six dimensional density
function ⇢ in which x, y, s represent the variables that define the coordinate
system. In linear dynamics the transverse and longitudinal distributions
are often considered as uncorrelated, so the six dimension can therefore be
factorized into three indipendent phase-space (x,x0), (y,y0) and (s, E).
Replacing �y + �0 by ✓(s) in Eq. (1.17),

y(s) = a
p
�(s)cos✓(s) (1.19)

and
y0(s) = � a

�(s)
[sin✓(s) + ↵(s)cos✓(s)] (1.20)

and combining them, the following equation can be written as:

�y2 + 2↵yy0 + �y02 = a2 (1.21)

which is the Courant - Snyder invariant which remains constant along a
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Figure 1.3: Scheme of the motion of a single particle in the phase space
(y, y0): typically it defines an ellipse, characterized by the Courants-Snyder
parameters ↵, � and �

particle trajectory and describes an ellipse (Fig 1.3), in the phase-space (y,
y’). The parameters are determined by the lattice functions ↵, � and � at the
location s. a2 is called emittance of a single particle following its individual
trajectory:

✏ = a2 =
Ellipse area

⇡
(1.22)

The emittance is the area of the ellipse which contains a certain percentage of
particles. For example, a 95% emittance is defined as the area of the ellipse
which contains 95% of the total particles. The ellipse can have different
orientations depending on the location s around the ring but its area remains
constant.
A beam is composed by particles centered around the reference orbit, so for
any distribution of particles, it’s possible to define a region in phase space
occupied by all of them. Taking a normalized distribution function ⇢(y, y0),
the moments of the beam distribution are

hyi =
R R

y⇢(y, y0)dydy0 (1.23)
hy0i =

R R
y0⇢(y, y0)dydy0

�2
y =

R R
(y � hyi)2⇢(y, y0)dydy0

�2
y0 =

R R
(y0 � hy0i)2⇢(y, y0)dydy0 (1.24)

�2
yy0 =

R R
(y � hyi)(y0 � hy0i)⇢(y, y0)dydy0 = r�y�y0
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where �y and �y0 are the RMS beam widths, �yy0 is the correlation and r is
the correlation coefficient.
The RMS beam emittance is defined as:

✏rms =
q

�2
y�

2
y0 � �2

yy0 = �y�y0
p
1� r2 (1.25)

and it is equal to the phase space area enclosed by the Courant-Snyder ellipse
of the RMS particle. It can be shown that for a beam with RMS emittance
⇡✏, the RMS beam width is

�y =
p
�✏ (1.26)

1.2 Beam-Beam Interactions
A beam is a charged particle collection and it behaves as an electromagnetic
potential for other particles. This force acts both on the other beam and
within the beam itself. In the case of a collider where the two beams travel
in different rings, as in the LHC case, the beam-beam forces act only close to
the Interaction Points (IPs), where the two beams intersect each other [2].
The distribution of the particles within a beam can have different shapes.

Figure 1.4: Scheme of collision between two beams with a crossing-angle
✓c. The beam-beam forces occur when particles of one beam encounter the
fields produced by the opposite one.

The easiest case is the one of the Gaussian beam.
At LHC, the beams collide in the IPs with an angle which allow them not
to intersect each other out of this region, see (Fig.1.4). When the beams
are close to the IP, they feel the effects of a long-range force, due to the
electromagnetic force each beam exert on the other one. Fig.(1.5) shows the
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Figure 1.5: Kick produced by a beam-beam force as a function of the
amplitude (distance between the two beams) in red and linear force of a
defocusing quadrupole is shown in green.

kick produced by the beam-beam force as a function of the distance between
the two beams. For small distances (head-on collisions) the force is linear,
while for larger distances it becomes non-linear. The linear part resembles
that of a quadrupole field. A defocusing effect and, consequently, a change
of the � functions of the beams are therefore expected and lead to orbit
distortion. The beam-beam forces change thus the effective beam-optics.
This change of the beam-optics can result in an increase of the emittance and
in non-Gaussian tails of the particles distributions. The linear forces have
higher impact on high-density beams (high intensity and small beam-sizes),
exactly the ideal condition to achieve high luminosity. So, the beam-beam
interactions are a limiting factor for the luminosity at a collider.

1.2.1 Head - on Collisions
The two beams have different distribution functions and their overlap integral
is proportional to luminosity [3]:

Lb = frN1N2NbK

Z Z Z Z
⇢1(x, y, s,�s0)⇢2(x, y, s, s0)dxdydsds0 (1.27)

being ⇢1 and ⇢2 the particle distribution functions, N1 and N2 the bunch
intensities (the number of particles per bunch), fr is the revolution frequency
and Nb the number of colliding bunches (see Fig 1.6). K is a kinematic factor
defined as follows (assuming that s0 = 0 because the beams are moving
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Figure 1.6: Scheme of head-on collision between bunch 1 and bunch 2.

against each other):

K =

r
(~v1 � ~v2)2 �

(~v1 ⇥ ~v2)2

c2
(1.28)

In case of head-on collisions and relativistic particles, ~v1 = ~v2 = c2, K = 2.
In the assumption of uncorrelated densities, Eq. 1.27 can be rewritten as:

Lb = 2frN1N2Nb

Z Z Z Z
⇢1x(x)⇢1y(y)⇢1s(s�s0)⇢2x(x)⇢2y(y)⇢2s(s+s0)dxdydsds0

(1.29)
Assuming the beam profiles being Gaussian, the integrals can be calculated
analitically. The distribution functions are expressed as:

⇢ix(x) = 1p
2⇡�ix

e
� x2

2�2
ix (1.30)

⇢iy(y) = 1p
2⇡�iy

e
� y2

2�2
iy (1.31)

⇢is(s± s0) = 1p
2⇡�is

e
� (s±s0)

2

2�2
is (1.32)

where i = 1, 2 refers to the two beams and Eq. (1.29) becomes:

L = 2N1N2fNb

(
p
2⇡)2�2

1x�
2
2x�

2
1y�

2
2y�

2
1s�

2
2s
·

R R R R +1
�1 e

�x2

✓
1

2�2
1x

+ 1
�2
2x

◆
�y2

✓
1

�1y

2
+ 1

�2y

2
◆
� (s�s0)

2

2�2
1s

� (s�s0)
2

2�2
2s dxdydsds0 (1.33)

Solving Eq. (1.33) like a Gaussian integral, the general expression of the
luminosity for unequal Gaussian bunched beams colliding head-on is:

L =
N1N2fNb

2⇡
/
q
�2
1x + �2

2x

q
�2
1y + �2

2y = Lmax (1.34)

Eq. (1.34) expresses the maximum luminosity which is available for head-on
collisions in a collider with Gaussian bunched beams.
In practice, we have to include additional effects which reduce the maximum
achievable luminosity, namely:



1.2 Beam-Beam Interactions 13

• crossing angle

• offset collisions

• hourglass effect

1.2.2 Crossing Angle
The crossing angle is introduced in order to restrict collisions only to the IP
and to avoid unwanted parasitic-collisions at the other positions in the ring
where the two beams are not separated, see Fig.(1.4). Due to the crossing
angle ✓c, the luminosity is reduced by a factor:

Fc =

s

1 +

✓
✓c�s

2�⇤

◆2

(1.35)

where �s is the longitudinal (s) bunch length and �⇤ the transverse R.M.S.
beam size at the interaction point.

1.2.3 Offset Collisions
The two beams do not always collide head-on, actually they can be shifted
in the horizontal and vertical directions by arbitrary displacements xi and yi
(i = 1, 2). In real conditions, the density distribution in the transverse plane
is thus expressed as:

⇢ix =
1

�ix

p
2⇡

e
�
✓

(x�xi)
2

2�2
ix

◆

(1.36)

⇢iy =
1

�iy

p
2⇡

e
�
 

(y�yi)
2

2�2
iy

!

(1.37)

Despite the displacements, the velocities are still collinear and K is un-
changed (K = 2). The luminosity will be

L = LMAXe
�


�x2

2(�2
1x+�2

2x)
� �y2

2(�2
1y+�2

2y)

�

(1.38)

where LMAX is the luminosity in head-on collision case and �x and �y rep-
resent the two displacements of the centroids in the transverse plane. The
dependence on the transverse offset is a Gaussian function.
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Figure 1.7: Pictorial view of Hourglass Effect. The bunch shape at the
IP is drawn in red and the blue line indicates the parabolic shape of the �
function. The bunch has a minimum in transverse size at the IP and grows
moving away from it.

1.2.4 Hourglass Effect
The beam size �(s) is related to the betatron function and emittance:

�(s) =
p
✏�(s) (1.39)

At the interaction point, �(s) is typically adjusted to have a local minimum in
order to minimize the beam size and consequently maximize the interaction
rate. The value of �(s) at the IP is known as �⇤.
The assumption of the previous discussion is that the beam density functions
are uncorrelated in the transverse and longitudinal planes and that the beam
sizes are constant in the collision region. Actually, for low �⇤, this is not a
good approximation. The �-function varies around the minimum value as:

�(s) = �⇤
✓
1 +

s2

�⇤2

◆
(1.40)

and the transverse beam size �(s) depends on s:

�(s) = �⇤

s

1 +
s2

�⇤2 (1.41)

The effect is known as hourglass effect because of the shape of the function
(Fig. 1.7). The � functions and beam sizes have a minimum at the IP
and grow away from it, Fig.(1.8). The maximum luminosity is obtained for
collisions occurring exactly at the IP, while away from the IP the beam size
increases and the luminosity decreases. This effect becomes relevant if �⇤ is
small compared to the bunch length, in particular if the ratio r = �⇤/�s is
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Figure 1.8: Evolution of the beta-function �(s) and the beam size as a
function of the distance from the IP. Two different values for the �⇤ are
plotted: 11 m in solid line and 0.55 m in dotted line.

of the order of one of less.
Typical values of �⇤ and �s for the LHC case are reported in Tabs. (1.1) and
(1.2) both for the normal running conditions and for the runs analysed in
this thesis. In this latter case where �⇤ = 90 m or �⇤ = 1 km, the hourglass
effect is negligible.

1.3 The Concept of Luminosity
The term "Luminosity" was introduced in particle physics between 50s and
60s at AdA, an e�e+ collider at the Frascati Laboratory: it was called the
source factor and it connected the e+e� cross section �e�e+ to the rate of
annihilation events. The source factor was determined from the intensities,
geometry and time structure of the circulating beams. Probably the appel-
lation of "luminosity" in the context of Particle Physics was introduced by
the founding father of AdA, B. Touschek, in analogy with the astronomical
definition [4].
Together with the energy available in the centre of mass, the luminosity is the
second main figure of merit of a collider because it quantifies its potentiality
in providing a statistically significant sample of a class of events.
The luminosity has different definitions:

• the instantaneous luminosity L ([cm�2s�1]) reflects the instantaneous
performance of the collider. The time interval where it is measured may
fluctuate from tens of nanoseconds to minutes, depending on the type
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of collider (bunched or continuous beams). L decays exponentially
with a time constant of hours or days. It is defined as follows:

L =
R

�
(1.42)

where R is the rate and � is the cross section of a general physical
process.

• the integrated luminosity L =
R

L dt ([cm�2]) is the instantaneous lu-
minosity integrated over a certain time interval. It is defined as:

L =

R
Rdt

�
=

N

�
(1.43)

where N is the number of produced events of a certain type and � is
the cross section of this class of events. The definition is independent
of the class of events considered provided that the corresponding � is
used.

There are two ways of measuring the luminosity depending on the goal to
achieve. In order to obtain the cross section of any physics channel, the
absolute luminosity is necessary as visible by inverting Eq. (1.43). Such a
measurement, of course, needs a calibration of the detectors used to measure
the relative luminosity.
In order to monitor the relative luminosity variations, a relative luminosity
monitoring is sufficient and it is useful, for example, to control the beam
quality of the collider. Each detector able to provide a quantity which is
proportional to the luminosity can be used to evaluate the relative luminosity.

1.4 Status of LHC in 2012
LHC is a proton-proton and heavy ion collider operating at the CERN labo-
ratories in Geneva. LHC is the last stage of a set of accelerators, the injector
chain, composed by the LINAC2, PS Booster, PS, SPS [5], which permits
the final acceleration of LHC protons through these stages: Fig.(1.9) shows
the LHC injector complex (in the regime of 7 TeV and including the heavy
ion route). The acceleration of the LHC protons is performed in different
successive stages:

• LINAC2. It is a linear accelerator for protons and ions. It injects
beams of 50 MeV in the following accelerator with a rate of 1 Hz. The
duration of each pulse ranges from 20 µs to 150 µs depending on the
number of required protons.
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Parameters Value in 2012 Design value
Beam energy [TeV] 4 7
�⇤ in IP1[m] 0.6 0.55
Bunch spacing[ns] 50 25
Max Number of bunches 1380 2808
�x,y [µm] ⇠ 12-18 16.6
�s [mm] ⇠ 42-52 75
Average bunch intensity[protons/bunch] 1.6 - 1.7⇥1011 1.5⇥1011
Normalized emittance at the start of the fill [mm mrad] 2.5 3.75
Peak luminosity[cm�2 s�1] 7.7⇥1033 1⇥1034
Max mean number of events per BCID ⇡40 19
Stored beam energy[MJ] ⇡140 362

Table 1.1: Performance parameters achieved in 2012 data taking compared
with the design values for physics runs.

• Proton Synchrotron Booster (PSB). It accelerates the beams coming
from LINAC2 to an energy of 1.4 GeV. The accelerator is composed
of 4 superimposed rings. Five bunches circulate in each ring that are
then focused and sent through a magnet deflector into a single line for
injection into the next accelerating element.

• Proton Sinctrotron (PS). It accelerates protons up to an energy of 28
GeV. It has been set to separate the bunches by 25 ns.

• Super Proton Synchrotron (SPS). It is used as final injector for protons
and heavy ions bringing the energy from 28 GeV to 450 GeV.

After injection in the LHC ring at 450 GeV, protons are accelerated up to
the final energy (for each circulating beam). In 2012 the final energy was 8
TeV per beam.
As said in Sec.(1.1.1), particles are accelerated using a RF system deployed in
specially designed cavities. At LHC, knowing that the RF frequency is 400.79
MHz, the frev is 11.245 kHz, the proton’s speed is ⇠ c and 2⇡R ⇠ 26659 m
(LHC circumference), from Eq.(1.5) h = 35640 [6].
A particle exactly synchronized with the RF frequency is called synchronous

particle and the other ones will oscillate longitudinally around her orbit,
thanks to the RF system, see Fig.(1.10). This means that the particles
are not spred uniformly around the accelerator circumference but they get
"clumped" around the synchronous particle in the so-called bunch. There’s
a chain of 35640 RF-buckets around the machine which, thus, could be filled
with bunches. In the nominal filling scheme, the bunches are spaced by 25
ns (i.e. 40 MHz). Therefore, 3564 potential slots are available, each of them
having a unique bunch crossing identifier (BCID). The number of occupied
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Figure 1.9: The LHC injector complex.

Figure 1.10: Scheme of RF voltage (top) and, consequently, formation of
RF buckets and bunches (bottom). The particle A is synchronous, while B
is non-synchronous and performs oscillations in phase space.

buckets is, by design, 2808, although a maximum of 1380 was filled in 2012
for technical reasons. Not all the bunches are paired or colliding and we can
define different groups of BCIDs can be defined:
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• paired : a filled bunch in both beams in the same BCID. This will collide
at the IP.

• unpaired isolated : a filled bunch in one beam only, with no bunch in
the other beam within 3 BCIDs.

• unpaired non-isolated : a bunch in one beam only, with a bunch in the
other beam within 3 BCIDs.

• empty : a BCID without proton bunch in either beam.

Tabs. (1.1) and (1.2) report the relevant parameters of LHC as achieved in
2012 data taking for physics runs (2012) and for the high-�⇤ runs analysed
in this thesis.

�⇤=90 m �⇤ = 1000 m
Beam energy [TeV] 4 4
�⇤ in IP1[m] 90 1000
Bunch spacing[ns] irrelevant irrelevant
Number of bunches 108 3
Average bunch intensity[protons/bunch] 6 - 7⇥1010 1⇥1011
Normalized emittance at the start of the fill [mm mrad] 2-3 2-3
Peak luminosity[cm�2 s�1] 5⇥1027 3⇥1027
Mean number of interaction/BCID 0.05÷0.1 0.001÷0.005

Table 1.2: Performance parameters achieved in ALFA runs, performed at
�⇤ = 90 m and at �⇤ = 1000 m, these runs are analyzed in this thesis.

1.5 The Luminosity Measurement
The bunch luminosity may be written as:

Lb =
µfr
�inel

(1.44)

where �inel is the pp inelastic cross section.
In Eq.1.44, a new fundamental parameter has been introduced: µ, the aver-
age number of inelastic p� p interactions per bunch crossing (BC) or pile-up
parameter. This quantity is varying with time following the beam degrada-
tion formula L = L0e

� t
⌧ with time-constant of 14 h at LHC. Due to this

degradation, the luminosity is evaluated in short time period, called Lumi-
nosity Blocks (LB), in which the luminosity can be considered constant. In
this perspective µ and L have to be considered as the average number of
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interactions per bunch crossing and the average luminosity within each LB.
There are several methods for the luminosity determination [4], the main
being:

• Event-Counting algorithms: they are based on the determination of the
fraction of bunch crossings in which a specified detector registers an
"event" satisfying a given selection requirement. For example, a bunch
crossing contains an "event" if at least one pp interaction induced at
least one observed hit in the luminosity detector.

• Hit-Counting algorithms: they are based on the counting of the number
of hits per bunch-crossing in luminosity detector. A hit can be, for
example, an electronic channel providing a signal above a specified
threshold.

• Particle Counting algorithms: they are based on the measurement of
the particle distribution per bunch crossing inferred from reconstructed
quantities as number of tracks or vertices in the tracking detector, en-
ergy distribution in the calorimeters, total ionization current, ...)

Eq. (1.44) can be rewritten, along with our approach, as:

Lb =
µfr
�inel

=
µvisfr
✏�inel

=
µvisfr
�vis

(1.45)

where

• ✏ is the efficiency for detecting one inelastic pp interaction with the
defined selection criteria;

• µvis ⌘ ✏µ represents the average number of visible inelastic interactions
per bunch crossing;

• �vis ⌘ ✏�inel is the fraction of the inelastic cross section visible by a
detector with the defined selection criteria and it represents the cali-
bration constant that relates the measured quantity µvis to the absolute
luminosity.

The calibration parameters ✏ (and therefore �vis) depends on the colliding
particles, the available center of mass energy, the pseudorapidity and trans-
verse momentum distribution and the defined selection criteria for any lumi-
nometer and reconstruction algorithm.
In the next section, the formulas needed to measure µvis from the observables
accessible to the different luminosity algorithms are discussed.
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1.5.1 Event - Counting Methods
The value of µvis is necessary to determine the luminosity Lb of a bunch
crossing within each LB. Two assumptions are made in the following:

• the number of pp interactions follows the Poisson statistics;

• the efficiency ✏1 to detect a single inelastic pp interaction doesn’t change
if, in the same bunch crossing, several interactions occur.

The efficiency ✏n for detecting n interactions occurring in the same bunch
crossing is thus:

✏n = 1� (1� ✏1)
n (1.46)

In the following the formulas used to determine the luminosity with various
algorithms are reported, based on the described assumptions.

Inclusive-OR Algorithms

In an Event-OR algorithm, a bunch crossing is considered as containing an
event if at least one hit is observed in the luminosity detector. Under the
assumption that the probability of n pp interactions in a bunch-crossing is
described by a Poisson distribution with average value µ:

Pn(µ) = µn e
�µ

n!
(1.47)

and calling ✏OR the single interaction detection efficiency of the detector, the
probability of counting zero interactions is

P0(µ, ✏OR) = e�µ✏OR = e�µvis = P0(µvis) (1.48)

The probability of observing at least one event is therefore:

PEvent�OR(µvis) =
NOR

NBC
= 1� P0(µvis) = 1� e�µvis (1.49)

where NOR is the number of bunch crossings, in a given LB, in which at least
one pp collision satisfies the event-selection criteria of the OR algorithm, while
NBC is the total number of bunch crossings occurred in the same interval.
Solving for µvis Eq.(1.49), we get:

µvis = �ln

✓
1� NOR

NBC

◆
(1.50)

µ =
µvis

✏
= �1

✏
ln

✓
1� NOR

NBC

◆
(1.51)
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Coincidence Algorithms

In most of the experiments operating in a collider, the luminosity detec-
tors consist in two independent parts located symmetrically on the two sides
(Backwards and Forwards, B and F) of the IP. Coincidence (AND) algo-
rithms requests both sides to record an event in the same bunch crossing
(i.e. within 25 ns at LHC). In case of Event-AND selection, the relation
between µvis and N is more complicated then in Event-OR case. This coinci-
dence condition can be satisfied both by a single pp interaction or from single
hits from different pp collisions in the same bunch crossing. The efficiency is
no longer one single parameter, three different efficiencies have to be taken
into account: ✏F , ✏B and ✏AND that correspond of having, respectively, at
least one hit in the F-side, at least one hit in the B-side and at least one hit
on both sides. The three efficiencies are related to ✏OR by

✏OR = ✏F + ✏B � ✏AND (1.52)

see Tab. (1.3).

Algorithm Forwards Backwards
OR 1 0

0 1
1 1

OR-F 1 0
1 1

OR-B 0 1
1 1

AND 1 1

Table 1.3: Hit-configurations in F and B sides for the various Event-
counting algorithms.

Defining PEvent�AND the probability of the Event� AND algorithm:

PEvent�AND(µ) = NAND
NBC

= 1� P0(µ) (1.53)

= 1� (e�µ✏F � e�µ✏B � e�µ✏OR
) (1.54)

= 1� (e�µ✏F + e�µ✏B � e�µ(✏F+✏B�✏AND) (1.55)

This expression can’t be inverted analitically to obtain µ from NAND
NBC

. The
best approach depends on the values of ✏F , ✏B and ✏AND. The equation can
be semplified under the assumption that ✏F ⇡ ✏B, if the layouts, geometries
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and efficiencies of the two sides of the luminometers are sufficiently similar.
In this case, Eq.1.55 can be rewritten in the following way:

NAND

NBC
= 1� 2e�µ(✏AND+✏OR)/2 + e�µ✏OR (1.56)

If the efficiencies are high enough, ✏AND ' ✏F ' ✏B, the Eq.(1.55) can be
approximated by:

µvis = �ln

✓
1� NAND

NBC

◆
(1.57)

In the limit of µ << 1, the equation can be approximated, with a Taylor
expansion, as

PEvent�AND ⇠ 1� (1 + ✏Aµ+ 1� ✏Cµ� 1� ✏Aµ� 1� ✏Cµ+ ✏ANDµ) (1.58)

And consequently
µvis / PEvent�AND (1.59)

The analysis carried out in this thesis is performed on a sample which fulfil
this condition and this simplification is therefore applied.

1.5.2 Hit - Counting Methods
Event-counting algorithms loose sensitivity when µvis >> 1 because fewer
bunch-crossings report zero observed interactions in a given time interval,
implying that NOR

NBC
! 1, which makes Eq.(1.49) not usable anymore. This

effect is known as saturation or zero starvation. The event-counting method
is no longer exploitable and new techniques, such as the hit-counting method,
where the number of hits in a given detector is counted rather than just the
total number of events, have to be implemented.
Under the assumption that the number of hits due to pp interaction has a
binomial distribution and the number of interactions per BC follows a Poisson
distribution, the average probability of having a hit per bunch crossing in one
of the detector channels can be computed as:

PHIT (µ
HIT
vis ) =

NHIT

NBCNCH
= 1� e�µHIT

vis (1.60)

In Eq.(1.60), NHIT and NBC are, respectively, the total numbers of hits and
bunch crossings during a certain time interval, while NCH is the number of
detector channels, each having the possibility to independently record a hit.
It’s important to underline that the binomial assumption is true only if the
probability to observe one hit in a channel is independent of the number of
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hits observed in the other channels. Using this method, the mean number of
interactions is:

µHIT
vis = �ln

✓
1� NHIT

NBCNCH

◆
(1.61)

and the bunch luminosity is:

Lb =
µHIT
vis fr
�HIT
vis

(1.62)

Despite being preferrable to event-counting in the high-µ regime, the hit-
counting algorithms are more sensitive with respect to the event-counting
ones to instrumental effects such as threshold variations, instrumental noise,
channel-to-channel efficiency variations, etc. Such algorithms are very useful
at LHC, where very high values of the pile-up parameter makes it hard to
use the event-counting algorithms. In the present analysis, as said before,
µ << 1, the hit-counting algorithms are no longer used.

1.5.3 Pile-up Effects and Non-Linearity
The applicability of the Poisson formalism depends on the validity of the
assumption expressed by Eq. 1.46: the efficiency for detecting an elastic pp
interaction is independent of the number of interactions that occur in each
bunch crossing or equivalently, from the detector’s point of view, the inter-
actions are independent of each other. This latter assumption is intrinsically
not true when a threshold is set to define a hit (and consequently one event),
which is exactly the way event and hit counting work. If, for example, two
pp interactions happen in the same bunch crossing, both producing signals in
the detector which are individually below the threshold (i.e. they would not
be individually detected), but whose sum is above the threshold, then the
assumption of Eq.(1.46) is clearly violated. The same holds if background
not related to the pp interaction add up to produce a hit in addition or even
without signals from collisions. The result is that the Poisson assumption is
violated and non-linearities appear in the luminosity measurement with in-
creasing pile-up (µ). This effect is called migration and can be reduced, but
not eliminated, by lowering as much as possible the thresholds. Only in the
impossible limit of zero-threshold, the effect disappears. Migration becomes
important in case of high pile-up parameter and it affects more hit-counting
methods than event counting ones.
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1.5.4 Particle-Flux Methods
The particle-counting algorithms are based on the use of observable directly
proportional to the rate of particles interacting in the detector. These meth-
ods are intrinsically free from migration effects described in the previous
section as no threshold is used in order to define an event or hit. A possible
approach exploiting this principle and used by both ATLAS and CMS at
LHC is to measure the current drawn by the readout PMTs in the calorime-
ters (both electromagnetic and hadronic) which is proportional to the particle
flux inside the calorimeter, which is, in turn, proportional to the luminosity.
Other quantities as the energy deposited in the calorimeter or the number of
track counted by tracking devices are also frequently used.

1.6 Luminosity Calibration Methods
Each luminometer and algorithm must be calibrated by determining its vis-
ible cross section �vis, in order to determine the absolute luminosity (see
Eq.1.45). There are several approaches to obtain the calibration constant
[8].
The first method is to compare the visible interaction rate to the abso-
lute luminosity computed, in the same time interval, from measured beam-
parameters using Eq.(1.34). For example, far from the IP, the parameters
of the two beams can be separately estimated and then extrapolated to the
collision point. Unfortunately this technique has a limited precision (see
Sec.1.6.1). A more accurate technique is the determination of the beam-
overlap area directly at the IP using the beam-separation scans. This tech-
nique is described in Sec.(1.7).
A different approach is to measure, in dedicated runs, the elastic pp cross
section at small angle and, using the optical theorem, to extract both the
total cross section and the luminosity and relate it with the rate measured
by the luminosity detectors, see Sec.(2.2.4).
Finally well known physics processes for which not only the cross section, but
also the total acceptance and efficiency are known with sufficient precision
can be used, see Sec.(1.6.2).

1.6.1 Single-Beam Parameters from Accelerator
Instrumentation

The bunch luminosity can be inferred from the bunch population nB and the
transverse beam size �iB (i = x, y;B = 1, 2) at the IP, see Eq.(1.34). The
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single-beam profiles are difficult to measure accurately at the IP because of
instrumental resolution and space limitation, while beam-current monitoring
is more accurate.
The beam-profile monitoring is based on wire scanners or synchrotron light
telescope methods. The monitors are installed in diagnostic regions away
from the IP and they usually reports the projected horizontal and vertical
RMS beam sizes, which can be extrapolated to the interaction point using an
optical model of the collider lattice. Nevertheless, this technique has some
limitation to be taken into account.

• Instrumental systematics (such as wire scanning speed, beam-induced
heating, distortion of optical mirrors, resolution effects, etc.) make
the precise determination of the absolute transverse beam size at the
monitor rather challenging.

• The determination of the single-beam sizes to the IP requires the knowl-
edge of a certain set of parameters, such as the betatron functions and
betatron phases, both at the monitor points and at the IP. These pa-
rameters must be determined in separated sessions and their combina-
tion typically contribute with significant amount to the uncertainty to
each of the four IP single-beam sizes �iB.

• Extrapolation becomes challenging when transverse coupling, disper-
sion and dynamic-� effects play a significant role.

• The assumption of Gaussian beams, factorizable in x and y, may de-
mostrate itself as an incorrect hypothesis, because of instrumental lim-
itations.

Typical precisions obtained with such methods are not better than 10-15%.

1.6.2 Calibration through Reference Physics Processes:
Semileptonic W and/or Z decays

Another way of determining the calibration constant is to use reference
physics processes with well-known cross section and sufficiently high rates.
The W and Z production are very good candidates thanks to the small
uncertainties in the theoretical prediction of the cross section. Indeed at
L = 1033 cm�2s�1 and

p
s = 14 TeV , the vector bosons production rate is

about 1 ÷ 10Hz, the leptonic decay modes are clean and the background
controllable. The integrated luminosity, in this case, is

Z
L dt =

N � B

�thAC
(1.63)
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Figure 1.11: Sketch of head-on collisions.

where N is the number of observed events, B the number of background
events and �th the product of the production cross section by the leptonic
branching ratio, A the geometric acceptance that relates the cross section in
the fiducial volume to the full phase space and C the event reconstruction
efficiency. By relating this luminosity to the measured rates in the lumi-
nometers an absolute calibration can be obtained.
In ATLAS, A and C have been evaluated with a systematic uncertainty of
1-2% while a precision of order of less then 5% is, at present, available for
the theoretical calculations of �th, limited by the knowledge of the parton
distribution functions. These uncertainties imply that the typical precision
on the calibration constant using physics channels is of the order of 5%.

1.7 Calibration through van der Meer Scans
The luminosity calibration through beam-separation scans was originally pro-
posed by Simon van der Meer at the ISR (Intersecting Storage Ring at CERN,
the first hadron collider in 1968 [7].
The underlying idea is to measure the parameters of the colliding bunches,
namely the transverse dimensions of the beams, by varying the distance be-
tween the colliding beams in dedicated "scan sessions". Once measured such
transverse sizes �ix and �iy and knowing the number of protons in the two
beams, using the Eq. 1.34 the absolute luminosity at zero beam-separation
from the beam parameters can be obtained (see Fig.1.11). By comparing
such luminosity with the visible interaction rate µvis, measured by the lu-
minosity detectors, and using the Eq.(1.45), the visible pp cross section �vis,
i.e. the calibration constant, can be determined. In order to achieve high
accuracy, the scans are performed not during normal runs, but in controlled
and optimized conditions.
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1.7.1 Absolute Luminosity from Beam Parameters
The bunch luminosity in the transverse plane can be expressed in terms of
colliding beam parameters and, for zero crossing angle, is given by

Lb = frn1n2

Z
⇢1(x, y)⇢2(x, y)dxdy (1.64)

where ⇢1(x, y) and ⇢2(x, y) are the particle densities in the transverse plane of
the beam 1 and 2, respectively. Under the assumption that the particle den-
sities may be factorized into independent horizontal and vertical components
⇢(x, y) = ⇢̂x(x)⇢̂y(y), Eq.(1.64) becomes

Lb = frn1n2⌦x(⇢̂x1 , ⇢̂x2)⌦y(⇢̂y1 , ⇢̂y2) (1.65)

where

⌦x(⇢̂x1 , ⇢̂x2) =
R
⇢̂x1(x)⇢̂x2(x)dx

⌦y(⇢̂y1 , ⇢̂y2) =
R
⇢̂y1(x)⇢̂y2(y)dy (1.66)

Eqs.(1.66) are the so called beam-overlap integrals in the two transverse di-
rections.
The method proposed by van der Meer was first introduced for continuous
ribbon beams and it was generalized by Rubbia for elliptical bunched beams.
The overlap integral, considering the y direction, is:

⌦(⇢̂y1 , ⇢̂y2) =
Ry(0)R
Ry(�y)d�y

(1.67)

where Ry(�y) is the visible rate measured by a certain luminosity detector
during a y-scan when the two beams are separated by the distance �y and
�y = 0 is the case of zero beam separation (head-on collisions).
Defining the parameter ⌃y as

⌃y =
1p
2⇡

R
Ry(�y)d�y
Ry(0)

(1.68)

and (similarly for ⌃x), the bunch luminosity can be written as:

Lb =
frn1n2

2⇡⌃x⌃y
(1.69)

Eq.(1.69) allows to determine the luminosity from the machine parameters
by performing a pair of beam-separation scans in the x and y transverse
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direction separately. It is a general expression because the ⌃ depends only
upon the area of the luminosity curve and not upon its shape. In case of a
Gaussian luminosity curve, ⌃y coincides with the standard deviation of the
distribution.
The measurement of ⌃x and ⌃y are provided by the luminosity detectors
only, while n1 and n2 are the only parameters evaluated from machine mea-
surements.

1.7.2 Luminosity Calibration by Beam Separation Scans
Every luminosity algorithm needs a calibration that can be obtained equating
the absolute luminosity obtained through the measurement of ⌃x, ⌃y, n1 and
n2 during the scan and the luminosity measured by a particular algorithm
at the peak of the scan curve:

�vis = µMAX
vis

2⇡⌃x⌃y

n1n2
(1.70)

Eq.(1.70) provides a direct calibration of the visible cross section �vis for each
algorithm in terms of the peak visible interaction rate µMAX

vis , the product of
the convolved beam widths ⌃x⌃y and the bunch population product n1n2.
In case of non-zero crossing angle, the luminosity distribution is wider by a
factor that depends on the bunch length, the transverse beam size and the
crossing angle. The peak luminosity is also reduced by the same factor. The
increase of the measured value of ⌃x is thus cancelled by the decrease in
the maximum of the distribution. Consequently, no correction is needed in
the determination of �vis and the van der Meer scan is a completly general
method for calibrating a luminometer.
In this context, the specific luminosity is also used, defined as

Lspec =
Lb

n1n2
=

fr
2⇡⌃x⌃y

(1.71)

The specific luminosity depends on the product of the convolved beam sizes
and can be measured in the same scan by different luminometers and algo-
rithms. It constitues a direct check on the mutual consistency of the absolute
luminosity scale provided by these methods.
In Sec.(2.4), the description of the van der Meer scans performed by LHC in
the ATLAS interaction point in 2012 is given together with the systematic
uncertainties affecting the detector calibration. These uncertainties will en-
ter in the total systematic uncertainty affecting the measurement performed
in this thesis.





Chapter 2

Luminosity Determination
at the ATLAS Experiment

At the ATLAS experiment, the luminosity is determined using several de-
tectors and multiple algorithms in order to have a reduntant measurement.
Each of the used detectors has different acceptance, systematic uncertainties
and sensitivity to background. The ratios of the luminosities obtained with
different detectors are monitored as a function of time and µ (the average
number of interactions per bunch crossing) in order to quantify the system-
atic uncertainties on the measurement. The absolute luminosity calibration
is performed with beam separation scans independently for the various algo-
rithms and detectors.

2.1 The ATLAS Experiment
The ATLAS (A Toroidal LHC ApparatuS ) detector [9] is one of the general
purpose experiment of LHC and it is nominally forward-backward symmetric
with respect to the interaction point. Its dimension are 25 m in height
and 44 m in lenght, while the weight is approximately 7000 tones. The
magnet configuration comprises a thin superconducting solenoid surrounding
the Inner Detector cavity, and three large superconducting toroids (one barrel
and two end-caps) arranged with an eight-fold azimuthal symmetry around
the calorimeters. This choice has driven the design and the developement of
the rest of the detector, Fig. 2.1.
The coordinate system used to describe the ATLAS detector has its origin in
the nominal interaction point. The beam direction defines the z-axis and the
x�y plane is transverse to the beam direction. The positive x-axis is defined

31
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Figure 2.1: The ATLAS Experiment

pointing from the interaction point to the center of the LHC ring, while the
positive y-axis is defined pointing upwards. ATLAS is ideally divided in a
side-A and a side-C, the former corresponding to the positive z, the latter
to the negative z. The azimutal angle � is measured around the beam axis
and the polar angle ✓ is the one from the beam axis. The pseudorapidity
is defined as ⌘ = �ln(✓/2), but, when the objects are massive, the rapidity
y = 1/2ln[(E + pz)/(E� pz) is used. In the pseudorapidity-azimuthal space,
the distance �R is defined as �R =

p
�⌘2 +��2. A brief description of

the ATLAS subsystem for the luminosity measurement follows.

2.2 ATLAS Luminosity Sub-detectors
The ATLAS strategy to understand and control systematic uncertainties af-
fecting the luminosity determination is to compare measurements from dif-
ferent approaches. The measurements of the inelastic pp rate are performed
with multiple event and hit counting algorithms that are different in their
statistics and background sensitivity as well as particle counting algorithms
which exploit totally different observables. The ATLAS luminosity com-
munity chooses one preferred detector and algorithm and the measurement
provided is called the "ATLAS preferred".
Offline and Online preferred algorithms have to be distinguished: the former
is used for physics analysis, the latter is used to provide fast-feedback to
LHC on the luminosity conditions at IP1. Long-term stability, independence
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from changing the running conditions and reliability in a large range of lu-
minosity scales, independence of dead-time and the ability to determine the
luminosity at the per-bunch level (i.e. separately for each colliding bunch)
are the main requirements for the ATLAS preferred method. In Fig.(2.2) the

Figure 2.2: The ATLAS Luminosity detectors.

main luminosity detectors within ATLAS are shown. Most of them have two
stations on either side of the IP (side A and side C), which allows to perform
coincidence requirements.

2.2.1 The Inner Detector
In order to achieve a precise momentum and vertex resolution, the Inner De-
tector (ID) is composed of high granularity detectors exploiting different tech-
nologies: pixel and silicon microstrip in the Semiconductor Trackers (SCT)
and straw tubes in the Transistion Radiation Tracker (TRT). In Fig(2.3), a
view of the ATLAS Inner Detector. The ID is immersed in a 2 T solenoidal
magnetic field. The precision tracking detectors are composed by pixel and
silicon microstrips and they cover the pseudorapidity region |⌘| < 2.5. In
the barrel region, they are disposed in cylindric symmetry around the beam
axis while in the end-cap ones they are located perpendicularly to the beam
axis. The pixel layers are segmented in R � � and z with typically three
pixel layers crossed by each track. All pixel sensors have a minimum pixel
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Figure 2.3: Inner Detector

size (R��)⇥ z of 50⇥400 µm2. The pixel detector has 80.4 million readout
channels [10].
For SCT, eight strip layers are crossed by each track. In the barrel region,
it uses small-angle stereo strips to measure both coordinates, with one set of
strips in each layer parallel to the beam axis, measuring R��. They consists
of two 6.4 cm long daisy-chained sensors with a strip pitch of 80 µm. The
total number of read-out channels in the SCT is 6.3 million [11].
The track-following is possible thanks to the TRT, which provides a large
number of hits (tipically 36 per track) thanks to the straw tubes. TRT gives
only R � � information. In the barrel region, the straws are parallel to the
beam axis and are 144 cm long, with their wires divided into two halves,
approximately at ⌘ = 0. In the end-cap region, the straw is 37 cm long and
aranged radially in wheels. The total number of TRT readout channels is
351000 [12].
The ID system provides tracking measurements and allows the electron iden-
tification by the detection of the transition-radiation photons in the xenon-
based gas mixture of the straw tubes. The semiconductor trackers also allow
parameter measurements and vertexing.

2.2.2 BCM
The task of the Beam Condition Monitor (BCM) [13] is to monitor beam
losses and provide fast signals that will abort the beam safely if the loss
rates become dangerous. It also provide bunch-by-bunch luminosity mea-
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Figure 2.4: Schematic illustration of 4 BCM stations. Two identical mod-
ules are mounted in the two sides of ATLAS. The horizontal and vertical
modules deliver separate luminosity measurements.

surements. The BCM consists of two sets of four modules mounted symmet-
rically at a positions of zBCM = ± 1.84 m and at a radius of 55 mm with
respect to the beam axis, on each side of the IP, Fig (2.4).
The sensors are made of 500 µm thick radiation hard polycrystalline chemi-
cal vapor deposition diamonds and they are mounted with a tilt of 45° with
respect to the beam axis. The low acceptance of the BCM requires each
sensor to be sensitive to single minimum ionization particles (MIPs). A fast
readout (⇡ 2 ns) enables the measurement on a per-bunch level and allows
to measure time of flight and pulse amplitudes. In order to expand the dy-
namic range each signal is split into a high and low amplitude channel. The
low-threshold channels have MIP sensitivity and are suited for luminosity
determination. All signals are then transmitted over 70 m optical fibers and
one readout path uses the low-threshold channels of the four horizontal mod-
ules, which is called BCM-H, another one uses the low-threshold channels of
the vertical modules, which is called BCM-V. In this way, the BCM delivers
two independent measurements that can be used for cross-checks. Both the
BCM-V and BCM-H exploit event counting methods to determine the lumi-
nosity. These methods include inclusive algorithms (BCMVOR, BCMHOR),
single side inclusive algorithms (BCMVORC, BCMHORC) and coincidence
algorithms (BCMVAND, BCMHAND). In 2012 BCM was used as a preferred
detector for the ATLAS luminosity measurement.
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2.2.3 LUCID
LUCID (LUminosity measurements using Cherenkov Integrating Detectors)
[14] is the only ATLAS detector uniquely dedicated to luminosity measure-
ments. It is composed by two modules on each side of the IP, at a distance
of approximately ± 17 m form the IP and at a radial distance of 10 cm from
the beam line (|⌘| ± 5.8). Each module consists of 20 alluminium tubes that
are arranged along the beam line.
The tubes have a diameter of 15 mm. In the original project, they were filled
with C4F10 used as Cherenkov radiator for charge particles at a pressure of
1.2÷1.4 bar, providing a Cherenkov threshold of 2.8 GeV for pions and 10
MeV for electrons. The Cherenkov light produced by charged particles was
collected by the PMTs installed at the end of each tube. Due to the large
migration effects produced by secondary particles crossing the tubes at large
angles, the detector was emptied in the 2012 data taking leaving the quartz
PMT windows to act as active areas. Therefore the Cherenkov light is now
produced by charged particles crossing the PMT windows.
The signals of all PMTs are sent to the readout system where a dedicated
electronic board applies luminosity algorithms at the per-bunch level. Ad-
ditional to the algorithms used by BCM, hit-counting algorithms are also
available with LUCID.

2.2.4 ALFA
ALFA (Absolute Luminosity For ATLAS ) [14] is a system of detectors for
the measurements of elastic scattering in the Coulomb-Nuclear interference
region. The detector is aimed to the measurement of the luminosity with
2-3% error and the measurement of the elastic and total pp cross section, see
Sec.(3.6.4). The detector must approach the beam to about 1.5 mm in order
to measure the particles scattered at very small angles. The subdetectors
used to achieve this goal are the so-called Roman Pots (Fig.2.5), a system
integrated with the beam pipe and able to move the detector close to the
beam. ALFA is made of two arms situated at 240 m from the interaction
point at either sides of ATLAS. Each module is composed by 2 groups of
scintillating plastic fibers, mounted at 90° with respect to each other. A
detailed description of ALFA is given in Sec. (2.2.4).

2.2.5 The Calorimeters: FCAL and TileCal
An independent measurement of the luminosity is performed using the AT-
LAS calorimeters to provide a cross-check of the stability and non-linearities
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Figure 2.5: A schematic view of a Roman Pot.

of the main luminosity subdetectors. The PMT current drawn in TileCal
modules and the current drawn across the liquid argon gaps in the FCAL
modules are used. As described in Sec. (1.5.4), such currents are proportional
to the particle fluxes across the calorimeters, which is in turn proportional to
the luminosity. The measurement is performed once per LB meaning that,
differently with respect to the BCM and LUCID case, it is not a per-bunch
measurement. Due to the small sensitivity of the PMT-current measurement
at low particle fluxes (low µ), the calibration in the vdM scans is not possible.
A detailed description of the luminosity measurement of TileCal and FCAL
is reported [15].

2.3 ATLAS Luminosity Algorithms

2.3.1 Online Algorithms
The online luminosity monitoring [16] can be used to provide luminosity
information for machine tuning indipendently of the "busy" state of the
acquisition system and the status of the other detectors. The calculation
and publication of instantaneous luminosity data is performed by the Online
Luminosity Calculator (OLC) and the results are displayed in the ATLAS
control room and sent to the LHC operators with a frequency of about 1
sec for fast feedback on the accelerator tuning. The task of the OLC is to
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collect the raw information such as event and hit counts, number of colliding
bunches, number of LHC orbits in time observed interval and then determine
µ and the measured luminosity. Due to the small time allowed for online lu-
minosity measurement, no background subtraction is performed. The OLC
outputs are the instantaneous luminosities averaged on the number of col-
liding BCIDs, computed for all luminosity algorithms. Thanks to the OLC
values, a collision optimization at IP1 is possible.
Most methods provide an LB-averaged luminosity measured from colliding
bunches only, but for different detectors the requirement is imposed at differ-
ent stages of the analysis. The BCM and the LUCID readout boards provide
bunch-by-bunch luminosity information for each LB, as well as the luminosity
per LB summed over all colliding BCIDs. For these two detectors the OLC
calculated the bunch-integrated luminosity using the following sum over all
colliding BCIDs:

L =
X

i2BCID

µvis
i fr
�vis

(2.1)

BCM uses only two of its four sides for online luminosity determination and
three algorithms are implemented in the firmware of the BCM readout driver:

• BCM_Event_OR counts the number of events per BC in which at least
one hit above the threshold occurs on either the A-side, the C-side or
both within a 12.5 ns window centered on the arrival time of particles,
coming from the IP1.

• BCM_Event_AND counts the number of events per BC where at least
one hit above the threshold is observed, within a coincidence window
of 12.5 ns, both on the A and C side.

• BCM_Event_XORC counts the number of events per BC where at
least one hit above threshold is observed in the C-side and with none
on the A-side within the same 12.5 ns window.

LUCID has four algorithms implemented in the readout board:

• LUCID_Hit_OR reports the mean number of hits per BC. In this
algorithm, hits are counted for any event where there is at least one hit
in any one of the 16 tubes in either detector side in one BCID.

• LUCID_Hit_AND reports the mean number of hits per BC and the
event must contain one hit in each of the two sides of the detector
within a BCID.



2.4 ATLAS Luminosity Calibration 39

• LUCID_Event_AND reports the number of events with at least one
hit on each detector side.

• LUCID_Event_OR reports the number of events with one hit on any
of the sides of the detectors.

2.3.2 Offline Algorithms
For LUCID and BCM, the same algorithms used online are also implemented
offline [16]. Additional single-side OR algorithms (ORA and ORC) are im-
plemented. The Tile, the Forward calorimeter and the tracking system also
contribute to the measurement. Offline analysis has no stringent time limita-
tions and therefore a background subtraction can be performed. The offline
luminosity can be moreover updated once more precise calibration are avail-
able which is not the case for the online algorithms.

2.4 ATLAS Luminosity Calibration
In 2012, to calibrate the luminosity detector ATLAS exploits the van der
Meer calibration procedure (see Sec.1.7). Three sessions were performed in
April, July and November 2012 in order to calibrate the luminosity detector
along the whole data taking period. The main features of such scans are
reported in Tab. 2.1, [17]. The procedure followed to perform the vdM scans
is very time-consuming an technically challenging. It consists normally on
the following steps:

• The horizontal scan is performed starting at zero nominal separation
and moving to the maximum separation in negative direction, stepping
back to zero and then again to the maximum positive direction. The
maximum separation is 6 �b where �b is the nominal transverse size
of the beam. The maximum beam separation is scanned in 25 steps.
Finally, it returned to the nominal zero separation.

• An identical procedure is then reported for the vertical plane.

• In each scan of 25 steps in relative displacement, the beams is left in
a quiescent state for about 30s. In this time interval, relative lumi-
nosities are measured by active luminosity monitors and recorded, as a
function of time, in a dedicated online-data stream, together with the
nominal separation, the beam currents and other relevant accelerator
parameters transmitted to ATLAS by the accelerator control system.
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Figure 2.6: Specific interaction rate as a function of the nominal beam
separation for the BCMV_EventOR algorithm in the horizontal scanning
direction (x). The residual deviation of the data from a double Gaussian
plus constant background fit, normalized to the statistical uncertainty at
each scan point, is shown in the bottom panel.

The specific µvis distribution measured by BCMV_EventOR algorithm is
shown in Fig.2.6 as a function of the beam separation. Various fitting func-
tions are used to determine, from the distribution of Fig.2.6 the ⌃x (⌃y)
transverse beam widths which are two of the parameters needed for the lu-
minosity calibration as from Eq.1.71. For all detectors and algorithms the
use of a double Gaussian with a flat background results in a �2 per degree of
freedom close to one. The other quantity to be determined to measure the
calibration constant �vis is the rate corresponding to zero-beam separation
(RMAX) while the bunch intensities n1 and n2 are provided by the accelera-
tor.
Knowing these quantities, the calibration constant can be determined as:

�vis =
RMAX

L MAX
= RMAX 2⇡⌃x⌃y

nbfr(n1n2)MAX
(2.2)

Since the measurements in the horizontal and vertical plane are independent,
RMAX is the average of RMAX

x and RMAX
y .
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Date 16 April 2012 19 July 2012 22, 24 November 2012
LHC Fill Number 2520 2855, 2856 3311, 3316
Center-of-mass energy (TeV) 8 8 8
Scan Labels I–III IV–IX X–XV
Scan Sequence 3 sets of centered H+V scans 4 sets of centered H+V scans 4 sets of centered H+V scans

plus 2 sets of H+V off-axis scans plus 2 sets of H+V off-axis scans
Total Scan Steps per Plane 25 25 25
Maximum beam separation ±6�b ±6�b ±6�b

Scan Duration per Step 20 s 30 s 30 s
Total number of bunches per beam 48 48 39
Number of bunches colliding in ATLAS 35 35 29
Typical number of protons per bunch [n1,2] 0.6 · 1011 0.9 · 1011 0.9 · 1011
Nominal �-function at the IP [�?] (m) 0.6 11 11
Approximate transverse emittance [✏N ] (µm-radians) 2.3 3.2 3.1
Approximate transverse single-beam size [�b] (µm) 18 91 89
Nominal half crossing angle (µrad) ±145 0 0
Typical luminosity/bunch (µb�1/s) 0.8 0.09 0.09
µ (interactions/crossing) 5.2 0.6 0.6

Table 2.1: Summary of the main characteristics of the 2012 vdM scans
performed at the ATLAS interaction point.

While RMAX , ⌃x and ⌃y are provided by the luminosity detectors, beam
currents are measured by two different LHC system: Fast bunch-current
transformers and Direct-Current Current Transformers.
The FBCTs are AC-coupled, high-bandwidth devices which use gated elec-
tronics to perform continuous measurements of individual bunch charges for
each beam. The DCCTs measure the total circulating intensity in each of
the two beams. The latter have better accuracy but needs to average over
hundreds of seconds to achieve the precision. The bunch-by-bunch currents
are therefore measured by FBCT. The absolute scale of the bunch intensities
n1 and n2 is determined by rescaling the total circulating current measured
by the FBCT to the more accurate DCCT measurements.
In Tab. (2.1) the main characterics of the van der Meer scans performed in
2012 are reported.

2.5 Systematic Uncertainties in the Luminosity
Measurement
in 2012

2.5.1 Systematic Uncertainties in the Absolute
Luminosity Calibration

The main sources of systematic uncertainties [16] on the measurement of �vis

from van der Meer calibration scans are summarized in the following list and
their evalutation is presented in Tab.(2.2) [17].

• Beam centering. The two beams are not perfectly centered in the
non-scanning plane at the start of a vdM scan, the assumption that
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the luminosity observed at the peak is equal to the maximum head-on
luminosity is not completely true.

• Beam-position jitter. At each step of the scan, the actual beam
separation may be affected by random deviations of the beam posi-
tions from their nominal setting, causing fluctuations in the luminosity
measurements at each scan point.

• Bunch-by-bunch consistency of visible cross section measure-
ments. �vis value for a given detector or algorithm should be an uni-
versal scale factor independent of machine conditions and equal for all
colliding bunches. The bunch-by-bunch spread in �vis is taken into
account in the systematic uncertainty evaluation.

• Emittance growth and other sources of non-reproducibility.
This calibration method assumes that the luminosity and the convolved
beam sizes ⌃x/y are constant within a single x or y scan. A variation in
the transverse emittance during the scan results in a distortion of the
scan curve shape. An emittance growth between scans would manifest
itself by a slight increase, from one scan to the next, of the measured
value of ⌃ and, consequently, by a decrease of the peak specific lumi-
nosity.

• Fit model. The vdM scan data are analysed using a fit to a dou-
ble Gaussian, plus a constant term interpreted as a single-beam back-
ground. Refitting the data with two different model assumptions (a
single Gaussian multiplied by a fourth-order polynomial plus a con-
stant and a single Gaussian multiplied by a sixth-order polynomial
plus a constant) lead to different values of �vis. The maximum frac-
tional variation between the scan averaged results of these different fit
assumptions is used as uncertainty associated to the fit model.

• Background subtraction. The uncertainty associated with potential
backgrounds to the luminosity signal is estimated using double Gaus-
sian plus constant term as baseline fit model and comparing the bunch
and scan averaged cross section, assuming :

– either that the constant term results from luminosity-independent
background sources;

– or that the background is negligible and that the constant term
integrated out to the scan limits of ± 6�b is a pure luminosity
contribution to the scan integral.
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Taking the maximum deviation between these two assumptions as a
measure of the systematic error, an uncertainty of ± 0.06% arises.

• Reference specific luminosity. The transverse convolved beam sizes
⌃x/y measured by the vdM scan are related to the reference specific lu-
minosity, see Eq.(1.71). Each detector and algorithm should measure
identical values from the scan curve fits. The visible cross section value
extracted from a set of vdM scans for a given detector and algorithm
uses the specific luminosity measured by the same detector and algo-
rithm. The difference in ⌃ as measured by different detectors is also
considered in the systematic uncertainties.

• Lenght-scale calibration. In the vdM scan technique, it is important
to know the beam separation at every scan point, the ability to measure
⌃x,y depends, in fact, upon knowing the absolute distance by which
the beams are separated during the scan procedure. This absolute
distance is monitored by a set of closed orbit bumps applied locally
near the ATLAS IP using steering correctors. Dedicated length scale
separation measurements are performed close to each vdM scan set
using the same collision-optics configuration. Lenght scale scans are
performed by displacing the beams in collision by five steps over a
range of up to ± 2.5 �b. Since the beams remain in collision during the
scans, the actual position of the luminous region can be determined
with high accuracy using the primary vertex position reconstructed by
the ATLAS tracking detectors.

• Absolute lenght scale of the ATLAS Inner Detector. The deter-
mination of the lenght scale relies on comparing the scan step requested
by the LHC with the actual trasverse displacement of the luminous
centroid measured by ATLAS. This depends on the length-scale of the
ATLAS Inner Detector (ID) and its capability of measuring displace-
ments of vertex positions away from the center of the detector. The
uncertainty on this absolute scale is evaluated by analysing simulated
Monte Carlo events using several different misaligned ID geometries.

• Beam-beam effects. The beam-beam interactions have already been
discussed in Sec. 1.2. These effects can cause a mutual de-focusing of
the two colliding bunches.

• Transverse correlations. In presence of linear x � y coupling in
either beam and assuming the horizontal and vertical emittances to be
sufficiently different, the luminosity distribution as a function of the
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beam-separation in the x � y plane may transform from an upright
ellipse into a tilted ellipse, with a potential underestimation of ⌃x and
⌃y.

• µ-dependence. Potential non-linearities with the average number of
interactions for bunch crossing in the different detectors can affect the
shape of the distribution in Fig.(2.6) leading to an error in the mea-
surement of ⌃x and ⌃y.

• Bunch-population product. The bunch-by-bunch fraction determi-
nation has to be considered for the systematic uncertainty determina-
tion and additional corrections have to be applied for satellite bunches
and ghost charge. The satellite bunches refers to protons captured in
an LHC RF bucket with a nominally filled BCID, but separated from
the nominal bucket by a multiple of the LHC RF period. Their current
is integrated by both the DCCT and the FBCT, even though these
protons do not contribute to the luminosity produced by collisions be-
tween the nominal bunches. The ghost charge refers to protons, both
captured and unbunched, that populate any RF bucket outside the
nominally colliding BCIDs and whose charge is integrated by the DC-
CTs but remains below the threshold for the FBCTs.

The overall systematic uncertainty in the calibration due to the listed sources
is evaluated to be 3.27% in 2012, see Tab.(2.2). This value directly enters in
the overall systematic uncertainty of the luminosity measurement, together
with the contributions due to instrumental effects along the whole data taking
which are discussed in the next section.

2.5.2 Systematic Uncertainties on Luminosity
Extrapolation

Additional to the systematic uncertainties related to the detectors calibra-
tion, other sources of uncertainties are to be considered related to the detector
operation at high luminosity during the physics data taking [17]. In order
to produce the integrated luminosity values used in ATLAS physics analysis,
a single algorithm was chosen to provide a central value for a certain data-
taking period, while the remaining calibrating algorithms are used as cross-
checks to test the reliability of the result. In 2012, the BCMH_EventOR
algorithm has been used because of its availability over the whole data tak-
ing. The other detectors (LUCID, FCAL, TileCAL) were used to evaluate
the systematic uncertainties on the main luminosity measurement.
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Year 2012
Fill Number 2520
Beam Centering 0.80%
Beam-position jitter 0.60%
Bunch-to-bunch �vis consinstency 0.29%
Emittance growth 2.06%
Fit Model 0.21%
Background subtraction 0.06%
Specific luminosity 0.70%
Lenght scale calibration 0.10%
Absolute ID lenght scale 0.30%
Beam-beam effects 0.50%
Transverse correlations 2.00%
µ dependence 0.50%
Scan subtotal 3.25%
Bunch-population product 0.38%
Total 3.27%

Table 2.2: Relative systematic uncertainties on the determination of the
visible cross section �vis from the vdM scans of April 2012 at

p
s = 8 TeV.

The following systematic uncertainties were considered and evaluated for the
physics runs in 2012.

• Subtraction of Background. Both LUCID and BCM observe some
activity in the empty BCIDs immediately following a collision. This
is attributed to a background component, often called afterglow. Dif-
ferent approaches for the afterglow subtraction were used leading to a
systematic effect of 0.2% (See Sec. 4.5).

• Long-term stability. A possible source of uncertainty is the assump-
tion that the �vis determined in set of vdM scans is stable across the
entire 2012 data set. Several effects can in fact degrade the long-term
stability of a given detector, including slow drifts in the detector re-
sponse and sensibility with a corresponding variation in the LHC beam
conditions, in particular the total number of colliding bunches. In
Fig.(2.7), the percentage deviations, with respect to BCM_HOR, be-
tween the integrated luminosity measured by different detectors for all
the runs acquired in 2012 are shown as a function of time. A normaliza-
tion of all measurement in a run at the end of the data taking is done,
so that relative variations with respect to this run are shown. From



2.5 Systematic Uncertainties in the Luminosity Measurement
in 2012 46

Figure 2.7: Percentage deviations between the integrated luminosity mea-
sured by different detectors with respect to BCMHOR and as a function of
time in 2012.

the figure a maximum systematic uncertainty of 2% can be quoted all
over 2012.

• µ-dependence. Another source of uncertainties is the linearity of the
luminosity algorithms as a function of the number of interactions per
crossings. The comparison among the response of various detectors as a
function of µ is used to evaluate such an effect. From Fig.(2.8) a maxi-
mum systematic uncertainty of 0.5% can be estimated as µ dependence
during normal physics runs (10. µ . 35).

In Tab.(2.3), the various contributions to the total systematic uncertainty
affecting the 2012 luminosity measurement are reported. A total systematic
uncertainty of about3.9% is evaluated for the high-luminosity operation. This
table will be used in Sec.(4.5) to derive some of the systematic uncertainties
affecting the measurement discussed in this thesis.
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Figure 2.8: Percentage deviations of the measurement of µ from differ-
ent detectors and algorithms with respect to BCM_HOR as a function of
µBCM_HOR.

Uncertainty Sources @L /L
Bunch-population product 0.38%
Other calibration uncertainties (vdM ) 3.25%
Afterglow correction 0.20%
Long-term consistency 2.00%
µ-dependence 0.5%
Total 3.87%

Table 2.3: Main sources of systematic uncertainties on the calibrated lumi-
nosity.





Chapter 3

Measurement of the Total
Cross Section from Elastic
Scattering in pp Collisions at
p
s = 7 TeV in 2011

In order to obtain the total pp cross section at LHC at
p
s = 7 TeV, an in-

tegrated luminosity of about 80 µb�1 was accumulated for the measurement
of the differential elastic cross section as a function of the Mandelstam mo-
mentum transfer variable t. The measurement was independently performed
both by ATLAS (using ALFA) and by TOTEM.

3.1 The Total Hadronic Cross Section
The total hadronic cross section is a fundamental parameter of strong inter-
actions theory. Fundamentally, it sets the size of the interaction region at a
given energy [20].
The hadronic processes are described by the Quantum Chromodynamics
(QCD), the non-Abelian gauge theory of strong interactions. Due to the
non-Abelian nature of theory, the gluons themselves carry a color charge and
can therefore interact with other gluons. The strong force is characterized
by a running coupling constant ↵s and the color charge is small at short
distances and large at large distances. This charecteristics creates two dif-
ferent regimes named, respectively, asymptotic freedom and confinement. In
hadron-hadron collisions, these correspond to hard scattering and to soft scat-

49
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tering. The former is characterized by small distances and large momentum
transfer, while the latter by large distances and small momentum transfer.
To describe hard interactions, QCD has successfully used a perturbative ap-
proach, but this is not possible for the soft ones because of the rise of the
coupling constant with the decrease of the momentum transfer.
Soft scattering embodies elastic collisions and diffractive dissociation and

Figure 3.1: Dependence of the total cross section from the centre-of-mass
energy.

they constitute a crucial problem for the theory of strong interaction. The
lack of a pure QCD result for the elastic scattering constitutes a serious issue
for the theoretical investigation of the total hadronic cross section. Experi-
mental observations may help the comprehension of a possible development
of the theory in the soft sector, at least as it concerns the forward elastic
scattering amplitude.
The total cross section is defined by

�tot = �el + �inel =
Nel +Ninel

L
(3.1)

where L is the luminosity and Nel and Ninel are the rate of elastic and in-
elastic interactions. The definition in Eq. (3.1) opens to two interpretations.
The first one is statistical, that connects �tot to a probability of interaction,
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the second one is geometrical, where �tot represents the effective area of in-
teraction, usually measured in mb for hadronic scattering.
The growth of the pp �tot with the center of mass energy is an experimental
fact (see Fig.3.1), confirmed in every energy regime at different colliders, but
the Froissart - Martin bound states that �tot cannot grow asymptotically
faster than ln2 s, where

p
s in the centre-of-mass energy [18].

�tot(s) <
⇡

m⇡
· ln2 s

s0
(3.2)

where m⇡ is the mass of the pion. The nuclear force is in fact typically
mediated by mesons, the lightest of which is the pion. While in classical
mechanics, this exchange isn’t possible because of the violation of the energy
conservation, in quantum mechanics this is possible thanks to the so-called
tunnel effect. The probability of the tunnel effect decreases exponentially
with the distance. The maximum is reached when the incident particle is
closest to the target particle, at a distance b (called impact parameter), per-
pendicular to the incident line-of-flight, see Fig.(3.2). There are two cases to

Figure 3.2: Pictorial viwe of the incident particle beam and the related
target particle. Within a circle of radius b0 in the plane of the target particle,
the scattering probability cannot be larger than 1. Outside, it’s not negligible
essentially in a ring of width 1/k. The total cross section is bounded by
⇡(b0 + 1/k)2.

be considered:
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• for b < b0, the force of the interaction is not affected by the tunnel
effect. The interaction probability is less than, or equal to, 1.

• for b > b0, the tunnel effect wins and the interaction probability is
bounded by the exponential exp(kb0 � kb), since it’s constrained to be
one at b = b0.

After some calculus, the total probability is obtained:

� = ⇡(b0 + 1/k)2 (3.3)

The quantity k is given by the theory of tunnel effect and it’s related to the
mass of the lightest meson that can be exchanged, i.e. the pion, k = mhc

2⇡ .
Intrinsic couplings of particles are generally accepted not to increase faster
than some power of the center-of-mass energy s as it becomes very large.
The crucial point is the determination of the impact parameter b0 that is
given by

Csnexp(�kb0) = 1 (3.4)

and thus
b0 =

nlns+ lnC

k
(3.5)

where s in the centre-of-mass energy, n and C are constants. The essential
outcome of this reasoning is that the total cross section, which is bounded by
⇡(b0+1/k)2 does not increase faster than ln2s, multiplied by some constant.
This is expressed by the Froissart bound (Eq.3.2).
Although there are several theoretical boundaries on the total cross section
that can predict the general trend of the energy dependence of �tot, no precise
predictions on energy dependence can be done.
For this reason the experimental measurement of the cross section in pp and
pp̄ at increasing centre-of-mass energy at LHC is crucial.

3.2 Measurement of �tot with Elastic Scattering
through Optical Theorem

The total cross section at hadron colliders can be measured via elastic scatter-
ing using the Optical Theorem [19] which links the rate of elastic interaction
to the total cross section. The total cross section is related to the imaginary
part of the forward elastic scattering amplitude via:

�tot / Im[fel(t ! 0)] (3.6)
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where fel(t ! 0) is the elastic scattering amplitude extrapolated to the for-
ward direction at |t| ! 0 (t is the four-momentum transfer). A measurement
of elastic scattering in the very forward direction gives thus information about
the total cross section. The differential elastic cross section is related to the
strong interaction amplitude by

d�el

dt
= ⇡|fel(✓)|2 (3.7)

where fel(✓) is
fel(✓) = Re[fel(✓)] + iIm[fel(✓)] (3.8)

Applying the optical theorem yields

�2
tot =

16⇡

1 + ⇢2

✓
d�el

dt

◆

t!0

(3.9)

where ⇢ is the ratio of the real to the imaginary part of the elastic scattering
amplitude:

⇢ =
Re[fel(t = 0)]

Im[fel(t = 0)]
(3.10)

Eq.(3.9) can be rewritten as:

�2
tot =

16⇡(~c)2
1 + ⇢2

1

L

✓
dNel

dt

◆

t!0

(3.11)

where the luminosity value has been isolated. Eq.(3.11) shows that �tot can
be determined by measuring the elastic rate extrapolated at t=0 and, inde-
pendently, the luminosity.
A second technique permits the measurement of �tot in a luminosity-independent
approach. Reminding that �tot =

Ntot
L and d�el

dt = 1
L

dNel
dt , the total cross sec-

tion and the luminosity can be expressed in terms of the total interaction
rate Ntot and of the elastic event rate dNel

dt extrapolated to zero momentum
transfer:

�tot =
16⇡

1 + ⇢2
(dNel/dt)t=0

Ntot
(3.12)

L =
1 + ⇢2

16⇡

N2
tot

(dNel/dt)t!0
(3.13)

In this case both dNel
dt at t=0 and Ntot have to be determined simultaneously,

the sum of elastic and inelastic rate. While the elastic rate can be extracted
from the measurement of the elastic cross section, the inelastic one has to be
determined separately but simultaneously. On the other hand, in this second
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approach, the L determination is not necessary.
In the present thesis, as well described later, the first approach is used and
thus the luminosity determination is necessary. The second approach is in-
stead used by TOTEM.

3.3 Measurement of �tot with Elastic Scattering
in the Coulomb-Nuclear Interference
Region

The general expression of the pp differential elastic cross section is
d�el

dt
=

1

16⇡
|fN(t) + fC(t)e

i↵�(t)|2 (3.14)

obtained from the contributing diagrams. In Eq.(3.14), fN is the strongly
interacting amplitude, fC is the Coulomb amplitude and a phase � is induced
by long-range Coulomb interactions. The problem is the accurate estimation
of the inelastic rate in the very forward direction that can be circumvented
by measuring the elastic cross section down to angles small enough for the
t-dependence to become sensitive to the Coulomb amplitude. The individual
amplitudes are given by:

fC(t) = �8⇡↵~cG
2(t)
t (3.15)

fN(t) = (⇢+ i)�tot
~c e

�Bt/2 (3.16)

where G is the electric form factor of the proton, B is the nuclear slope and
⇢ = Re(fel)

Im(fel)
. It’s important to note that the expression of fN is valid in the

approximation of small |t| only. The theoretical form of the t-dependence of
the cross section is obtained from the evaluation of the square of the complex
amplitudes:

dNel

dt
/ L⇡|�2↵

|t| +
�tot

4⇡
(i+ ⇢)e�B|t|/2|2 (3.17)

The Eq.(3.17) contains three terms which correspond to different kinds of
interactions. The first term represents the Coulomb interaction, the second
one the Coulomb-Nuclear interference and the last one the hadronic inter-
action. In Eq.(3.17) the only free parameters are B, ⇢ and �tot. By fitting
the experimental distribution (see Fig.3.3), the previous three parameters
can be determined them extracting simultaneously. In order to perform this
fit, one needs to reach |t| ⇠ 0.001 GeV2. This order of magnitude has been
approached in LHC by TOTEM, while ATLAS has reached a minimum |t| ⇠
0.1 GeV2.
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Figure 3.3: Differential elastic cross section estimation at LHC as a function
of transferred momentum. The differential cross section is plotted for ⇢=0
(dashed line) and ⇢=0.15 (solid line) in order to highlight the interference
region, as well as for ↵=0 (dotted line) to isolate the nuclear contribution.

3.4 Beam Optics for �tot Measurement
In order to measure the rate of pp elastic interactions, it is necessary to
reach small enough angles with a dedicated beam optics and with detectors
positioned far from the Interaction Point [21]. Only in this way the practically
undeflected protons emerging from the elastic interaction and travelling in
the beam-pipe can be detected. This implies that the relevant detectors must
be integrated in the LHC lattice and that a certain number of quadrupoles
separate the IP from the detectors. The assembly of the field gradient of
the quadrupoles, which determine the beam optics, has to be optimized for
a good measurement of small angle elastic scattering.
There are several criteria that such beam optics has to fulfill:

• The focusing at the IP has to be done in a way that the beam diver-
gence is significantly smaller than the scattering angles to be measured.
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The divergence is given by
p
✏/�⇤, where ✏ is the beam emittance and

�⇤ is the betatron function at the IP. Knowing that the typical LHC
emittance is 2-3 µm, �⇤ has to assume values of the order of 100 m in
order to achieve divergence of few µrad.

• The "parallel-to-point" focusing implies that the position trajectory in
the detector is independent of the unmeasured vertex position at the
IP.

• An effective lever arm, Lx,y
eff , between the Interaction Point and the

detector can be defined as:

✓x,y =
x, y

Lx,y
eff

(3.18)

where ✓x,y is the scattering angle at the IP and x, y are detectors space
coordinate. The lever arm should be large in at least one of the two
transverse projection, giving a good separation at the level of the detec-
tor and, consequently, a good resolution for different scattering angles
at the IP.

A beam optics fulfilling these three requirements in the vertical plane and
the first criteria on the horizontal plane was developed both by TOTEM
and ATLAS, with small differences implying different approaches in the t
reconstruction method.

3.5 t-reconstruction
In order to get an estimation of the �tot, the measurement of the differential
elastic cross section at small values of t. The key to getting small t or,
equivalentely, small scattering angles, is to place the detectors close to the
beam and far away from the Interaction Point. In addition, a dedicated
optics to get small t-values is needed.
For small value of the scattering angle and at high energy,

�t = (p✓)2 (3.19)

where p is the beam momentum and ✓ is the scattering angle at the Interac-
tion Point, which can be written as

p
✓2x + ✓2y, ✓x and ✓y being, respectively,

the scattering angles in the horizontal and vertical planes. In general, the
reconstruction of the scattering angle is performed by using the fact that
elastic scattering is back-to-back, so the vertex position is identical for the
two scattered protons. In this case, the scattering angle at the IP can be
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calculated either from a measurement of the position at the Roman Pots or
from the measurement of the angle of the tracks at the Roman Pots.
The parallel-to-point focusing and the large lever-arm in the vertical plane
make the reconstruction method of ✓y straight forward. The best resolution
and the smallest sensitivity to the optics is achieved by just transforming the
position measurement at the Roman Pots to an angle at the IP. This method
has a good t-resolution which is determined in the vertical plane by the beam
divergence at the IP and not by the spatial resolution of the detector.
The t-resolution for ATLAS is significantly better using the position measure-
ment but this method is sensitive to the optics. In order to overcome this
problem and better understand the sensitivity to the optics, the kinematics
of the elastic-scattering data were used.

3.6 Measurement of �tot at
p
s = 7 TeV in

ATLAS in 2011

3.6.1 Data Taking
The total cross section has been measured at a centre-of-mass energy of 7
TeV and most of the data reported by ATLAS and TOTEM were taken
during a single fill in October 2011, during which 14 bunches circulated in
each beam: one high-intensity bunch (6 - 7 ⇥ 1010 protons), 12 low-intensity
bunches (1-2 ⇥ 1010 protons) and one non-colliding bunch. Only events
from the high-intensity colliding bunches were used and this corresponded
to an instantaneous luminosity of 5 ⇥ 1027 cm�2s�1. The pile-up conditions
were favorable with an average of about 4% inelastic interactions per bunch
crossing.

3.6.2 The Roman Pots
The Roman Pots (RP) [22] are the detectors that are traditionally designated
for the measurements of elastic cross section, since the early 70th. A Roman
Pot is a vessel that contains a detector connected to the accelerator vacuum
via bellows (Fig. 3.4). This particular design allows a nearest as possible
approach to the beam, without entering the machine. The system was mainly
developed by the TOTEM experiment and the ATLAS collaboration followed
their guidelines with some changes due to the adaptation to their specific
needs. Both TOTEM and ALFA have two stations, located symmetrically
on each side of the Interaction Point. Each station consists of two units
separated by about 5 meters, each of which consists of two Roman Pots
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Figure 3.4: Picture of two Roman Pot vessels.

approaching the beam from above and below. Although, the basic methology
is similar for both experiments, the detector technologies used inside the
Roman Pots are completely different.

3.6.3 The ALFA Detector
The ALFA detector [14] is composed two stations, placed at each side of the
central ATLAS detector, one at 238 m and one at 241 m from the interaction
point. Each of them carries an upper and a lower RP made of stainless steel
with thin windows of 0.2 mm and 0.5 mm thickness at the bottom and front
sides to reduce the interactions of traversing protons. In Fig. 3.5, the ALFA
tracking system is shown with the main detectors (MDs) and the overlap de-
tectors (ODs). The formers detect the elastic scattered protons, the latters
are dedicated devices for the measurements of the distance between upper
and lower MDs.
Each MD consists of two times 10 layers of 64 square scintillating fibres with
0.5 mm side length glued on titanium plates. The fibres are orthogonally
disposed at ±45 with respect to the y-axis and the projection perpendicu-
larly to them define the u and v coordinates for the track reconstruction.
The theoretical resolution is 14.4 µm but experimental effects such as optical
cross-talk, noise, inefficient fibre channels and imperfect staggering (in fact,
the fibres are staggered by 1/10 of the their size) lower the actual value. The
efficiency of detecting a proton in a single layers is about 93%, with varia-
tions of 1% layer to layer.
The ODs consist of three layers of 30 scintillating fibres per layer measuring
the vertical coordinate of traversing beam-halo particles or shower fragments.
Two independent ODs are attached at each side of both MDs. The signals
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Figure 3.5: Schematic view of the ALFA tracking system where the two
kinds of detector, main (MD) and overlap (OD) are visible.

from both types of tracking detectors are amplified by 64-channel multi-
anode photomultipliers (MAPMTs). Overall, 23 MAPMTs are used to read
out each MD and its two respective ODs.
Three mm thick scintillator plates constitute the trigger counters, which com-
plete the tracking detectors. MDs are equipped with two trigger counters and
their signals are used in coincidence to reduce noise contributions, while the
ODs are covered with just one trigger counters and all signals are recorded.
Before the data taking, precision motors move the RPs vertically in 5 µm
steps towards the beam. The position is measured by inductive displacement
sensors (LVDT) whose calibration is performed by a laser survey in the LHC
tunnel.
In Fig. (3.6), a sketch of the experimental set-up shows the position of the
ALFA Roman Pot stations. The stations A7R1 and B7R1 are positioned in
the outgoing beam 1 (C side) at z=-273.4 m and z=241.5 m, respectively,
while A7L1 and B7L1 are situated in the outgoing beam 2 (A side). The
detectors are numbered from 1 to 8 (A1, A2,...) and they are inserted in
increasing order (the even-numbered are in the lower part of the RPs). Two
spectrometer arms for elastic scattering event topologies are defined. The
arm 1 includes the detectors A1, A3, A6, A8, the arm 2 the detectors A2,
A4, A5, A7.
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Figure 3.6: Schematic sketch of the experimental set-up showing the ALFA
Roman Pot station positions.

3.6.4 Principles of Measurement
The idea at the basis of the measurement is the detection of the two back-
to-back protons emerging at very small angles from the elastic interactions
on the two sides of the IP. The data taking was performed with special beam
optics characterized by �⇤=90 m at the interaction point resulting in a small
divergence and providing parallel-to-point focusing on the vertical plane. In
parallel-to-point beam optics the betatron oscillation has a phase advance
� of 90° between the interaction point and the RPs, such that all particles
scattered at the same angle are focused at the same position at the detec-
tor, independent of their production vertex position. This focusing is only
achieved in the vertical plane. The beam optics parameters are needed for
the reconstruction of the scattering angle ✓⇤ at the interaction point starting
from the measured angles and position on the detectors. The momentum
transfer t, at high energies, is given by

�t = (✓⇤p)2 (3.20)

where p is the nominal beam momentum of LHC of 3.5 TeV and ✓⇤ is mea-
sured from the proton trajectories in ALFA. The formalism of transport ma-
trix allows to relate positions and angles of particles of two different points of
the magnetic field lattice (Sec.1.1.2). Let’s call (w(s), ✓w(s)), where w=x,y
are the transverse positions, s is the longitudinal direction and ✓w the an-
gle between w and s. We can obtain the trajectory (w(s), ✓w(s)) via the
transport matrix M applied to (w⇤, ✓⇤), the coordinates at the interaction
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point: ✓
w(s)
✓w(s)

◆
= M

✓
w⇤

✓⇤w

◆
=

✓
M11 M12

M21 M22

◆✓
w⇤

✓⇤w

◆
(3.21)

where the elements of the transport matrix, as seen in Sec.(1.1.2), can be
calculated from � and its derivative with respect to s and �.
In the elastic scattering protons emerge back-to-back and the scattering an-
gles at the A- and C-side of ATLAS are the same in magnitude and opposite
in sign. The beam optics is optimized to maximize M12, in the vertical plane,
in order to access the smallest possible scattering angle. The positions mea-
sured in the two sides are approximately of the same size but with opposite
sign. Various methods can be used to determine ✓⇤w. All of them are ex-
ploited and the variations in the results are used to quote the systematic
uncertainties in t reconstruction.

• Using the so-called "subtraction method", the scattering angle is cal-
culated according to:

✓⇤w =
wA � wC

M12,A +M12,C
(3.22)

This is the baseline method for ✓⇤y determination due to the parallel-
to-point focusing in the y-direction.

• An alternative method for the reconstruction of the horizontal scatter-
ing angle is to use the "local angle" ✓w measured by two detectors on
the same side

✓⇤w =
✓w,A � ✓w,C

M22,A �M22,C
(3.23)

• Another method performs a "local subtraction" of measurements at
the inner station at 237 m and the outer station at 241 m, separately
at the A- and C-side, before combining the two sides, (S=A,C):

✓⇤w,S =
M241

11,S ⇥ w237,S �M237
11,S ⇥ w241,S

M241
11,S ⇥M241

12,S

(3.24)

• Finally, the measured positions and the local angle are used to recon-
struct the scattering angle by the inversion of the transport matrix:

✓
w⇤

✓⇤w

◆
= M�1

✓
w
✓w

◆
(3.25)

From the second row of the inverted matrix, the scattering angle is
determined

✓⇤w = M�1
12 ⇥ w +M�1

22 ⇥ ✓w (3.26)
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All methods, which use the local angle, suffer from a poor resolution due to
the moderate angular resolution of about 10 µrad.
For all methods t is calculated from the scattering angles as:

�t = ((✓⇤x)
2 + (✓⇤y)

2)p2 (3.27)

where ✓⇤y is always reconstructed with the subtraction method because of the
parallel-to-point focusing in the vertical plane, while the various methods,
explained above, are used to reconstruct ✓⇤x.

3.6.5 Data Acquisition and Analysis
Two main triggers were used to detect the elastic-scattering events. They re-
quired a coincidence of the main detector trigger scintillators between either
of the two upper (lower) detectors on side A and either of the two lower (up-
per) detectors on side C in order to maximize the back-to-back configuration
expected from elastically scattered protons.
The alignment of the Roman Pots is a fundamental issue in order to achieve
the desired precision in the measurement in both vertical and horizontal
dimensions. A beam-based alignment procedure is necessary in order to
determine the position of the RPs with respect to the proton beams. The
beam-based alignment procedure was performed in a dedicated fill with iden-
tical beam settings, before the data-taking run. From the positions of the
upper and the lower RP windows with respect to the beam edges, the centre
of the beam as well as the distance between the upper and the lower pots are
computed. The distance between the upper and the lower pots was measured
to be 8.7 mm for the station nearest to the interaction point and 7.8 mm for
the station far away.
The reconstruction of elastic-scattering events is based on local tracks of
the proton trajectory in the RP stations. A track is considered a well-
reconstructed elastic-scattering event if it consists of local tracks in all four
RP stations. In each MD, 20 layers of scintillating fibres are arranged per-
pendicular to the beam direction. The hit pattern, which allows the recon-
struction of the local tracks, is usually a straight trajectory, almost parallel
to the beam direction. Tipically, in elastic scattering events, the average
multiplicity per detector is about 23 hits, where 18-19 are attributed to the
proton trajectory and the remaining 4-5 hits are due to beam-related back-
ground, cross-talk and electronic noise.
In order to reject events with hadronic showers and layers with high noise
level, fibre layers with more than ten hits are not used in track reconstruc-
tion. At least three layers out of the possible ten are required to have a
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Figure 3.7: Comparison of golden (top) and anti-golden (bottom) topology
for reconstruction of elastic scattered candidates.

hit-multiplicity between one and three. In elastic scattering events, multi-
ple tracks, originated from shower events associated, may happen mostly in a
single side of the spectrometer arms and can be removed by a track-matching
with the other side. In case of elastic scattering pile-up (multiple tracks are
reconstructed in both sides of the detector), only the candidate with the best
track-matching is accepted.
The track reconstruction in the ODs is based on the same method as de-
scribed here for the MDs, but with a lower precision, because only three
fibre layers are available.
The triggered events having a reconstructed track in all the four detectors
of the arm which fired the trigger are the candidates of elastic-scattering
events. Moreover these events are required to fulfill the so-called golden
topology with two track in opposite vertical detector positions on the left
and right side, see Fig.(3.7). The rate of elastic-scattering events is corrected
for losses due to partly reconstructed events. This correction is defined as
the event reconstruction efficiency and it is evaluated on the data with a
tag-and-probe methodology.

3.6.6 Luminosity Determination with ALFA
The ALFA measurement is based on the optical-theorem approach which
requires the simultaneous measurement of the luminosity and of the elas-
tic event rate. In normal running condition at high luminosity (L >1033
cm�2s�1), ATLAS exploits several detectors and algorithms to determine
the luminosity and evaluate the relate systematic uncertainties, see Sec.2.2.
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Algorithm L (µb�1)
BCMV_EventOR 79.68 ± 0.13
BCMH_EventOR 79.11 ± 0.13
LUCID_EventOR 78.63 ± 0.04
LUCID_EventAND 78.48
LUCID_HitOR 79.72 ± 0.03
VTZ5 79.72 ± 0.03

Table 3.1: Luminosity results for the different algorithms in the 2011 mea-
surement. The uncertainties listed are statistical only.

The conditions in the low-luminosity run analysed here are very different
from those in high-luminosity runs. The instantaneous luminosity is about
of six orders of magnitude lower (L ⇠ 5⇥ 1027 cm�2 s�1) which makes the
calorimeter methods unusable due to the lack of sensitivity. Another differ-
ence with respect to the normal high-luminosity conditions is the background
composition. The beam-gas contribution, normally negligible, can, in fact,
become competitive with the collision rate in the low-luminosity regime. On
the other hand, the "afterglow" background is less important due to the pres-
ence of only a few colliding bunches.
In 2011 data taking, BCM was used as the baseline detector for the lumi-
nosity determination. For high-�⇤ runs, an inclusive-OR algorithm was used
to measure the luminosity, LUCID_EventOR, but also a coincidence (AND)
and hit-counting algorithms (HitOR) were used. A third method for mea-
suring the per-bunch luminosity was provided by the Inner Detector, which
counts the number of primary vertices per event, a quantity proportional to
the luminosity. The vertex selection criteria required a minimum number of
tracks with pT>400 MeV forming a common vertex, with additional quality
requirements.
The absolute integrated luminosity during ALFA runs should be regarded as
a combined measurement of all the detectors because with this redundancy,
it’s possible to solve inconsistency and to assess correctly the systematic un-
certainties. In Tab.(3.1), the luminosity results for the various algorithms
are reported. In Fig.(3.8), the values of luminosity are shown as a function
of time during the run (top) and percentual deviations with respect to the
reference algorithm (bottom). The total integrated luminosity measured in
2011 is:

Lint = 78.72± 0.13(stat)± 1.93(sys)µb�1 (3.28)

The systematic uncertainties are listed in Tab.(3.2) with a total uncertainty
of 2.45%.
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Figure 3.8: Values of luminosity determined using various algorithms as
a function of time during the run (top) and as percentual deviations with
respect to the reference algorithm (bottom).

Source value(%)
Calibration 1.53
BCM drift 0.25
Consistency 1.6
Background 0.2
Time Stability 1.0
Total 2.45

Table 3.2: List of the main sources of systematic uncertainties affecting the
luminosity determination in the 2011 high �⇤ runs. The total uncertainty is
2.45%.
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3.6.7 ALFA Total Cross Section Results
The results of the ATLAS measurement of �tot and �el between 0.01 GeV <
|t|min < 0.1 GeV are

�el = 24.00± 0.19(stat)± 0.26(sys)mb (3.29)

and

�tot = 95.35± 0.36(stat)± 1.25(sys)± 0.37(extrapolation)mb (3.30)

3.7 Measurement of �tot at
p
s = 7 TeV with

TOTEM
The TOTEM experiment was designed to measure the total proton-proton
cross section with a separate measurement of the elastic and inelastic cross
section [23].
TOTEM has three different Roman Pot stations, two approaching the beam
vertically and the third horizontally inside the LHC ring. With respect to
ALFA, TOTEM uses silicon sensors. Two sets of RP stations, placed at
±147 m and ±220 m from the Interaction Point, and their detectors allow a
study of the elastic scattering cross section down to a four-momentum trans-
fer square of |t| ' 10�3 GeV�2.
To measure the inelastic cross section by identifying the inelastic beam-beam
events, two telescopes (T1 and T2) detect charged particles produced in a
certain range of pseudorapidity. Each telescope is made of two arms, sym-
metrically placed at about 9 and 13.5 m from the IP respectively [24].
The three TOTEM subsystems have each their own particular electronic sys-
tem, but nevertheless follow a common architecture.

3.7.1 TOTEM Results
TOTEM has reported four different measurements of �tot at 7 TeV. The first
measurement is based upon data taken in the first LHC run with a �⇤=90
m optics in June 2011 with an integrated luminosity of 1.7 µb�1. The other
two measurements are based upon two different methods to extract the total
cross sections using the same data set of 84 µb�1.
The first measurement used the Optical Theorem and an indipendent mea-
surement of the luminosity as for ALFA. The detectors were not as close to
the beam as they were in the later measurements and 30% of hadronic elastic
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events were not detected. A |t|min of 0.02 GeV2 was achieved. The value of
�tot reported is

�tot = 98.3± 0.2stat ± 2.8systmb (3.31)

The systematic uncertainty is dominated by the extrapolation to t=0 and
the luminosity uncertainty. The luminosity was taken from a measurement
of the CMS experiment with an uncertainty of 4%, twice the value provided
by ALFA.
The settings and the positioning of the RPs allowed to reach |t|min values
in the range 4.6⇥10�3 ÷ 7.3⇥10�3 GeV2. The three different data sets were
analyzed separately to better understand the systematic uncertainties. Con-
sidering the excellent agreement found between the three samples, they were
merged to extract final result. The differential elastic cross section was thus
fitted in the t-range 5⇥10�3 GeV < |t|min < 0.2 GeV, obtaining for the total
elastic cross section

�el = 25.40± 0.03(stat)± 1.1(sys)mb (3.32)

and for the total cross section

�tot = 98.6± 2.2mb (3.33)

In case of �tot, the uncertainty is only systematic because, merging all the
data samples, (nearly one million elastic events), the statistical uncertainty
is negligible. The luminosity uncertainty is the main source of systematic
and it is about 4%.
Thanks to the very low |t| value reached, the sample was also analysed using
the luminosity-independent method (see Sec.3.2).
The result for the total cross section is

�tot = 98.0± 2.5mb (3.34)

The value is consistent with the one measured with the luminosity-dependent
method and the uncertainty on the luminosity determination is substituted
by the one of the inelastic rate.
TOTEM used a third method for the calculation of �tot. The first two ap-
proaches used the Optical Theorem and so they depend on the value of ⇢.
Alternatively, �tot can be simply calculated as the sum of �inel and �el, where
�el is estimated from the measured differential elastic cross section. Using
the same data sample, TOTEM obtains:

�tot = 99.1± 4.3mb (3.35)
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3.8 Comparison of ATLAS and TOTEM Mea-
surements

3.8.1 Systematic Uncertainties

Figure 3.9: Comparison of the three TOTEM results and ALFA (ATLAS
detector performing this measurement) result in the determination of �tot atp
s=7 TeV (2011 data).

• luminosity determination at ATLAS is based upon vdM scans (See
Sec.2.4) and the measurement by BCM, LUCID and Inner Detector.
There are three factors which contribute to the overall uncertainty:

– the uncertainty of the absolute scale as determined by the van der
Meer scans.

– the transfer of the absolute scale from the conditions of the cali-
bration to the very low luminosity conditions of data taking.

– the contribution of the uncertainties from the substraction of beam-
associated background in the luminosity monitor that has been
used.

On the other hand TOTEM determined �tot both with luminosity-
dependent and independent methods. When using the former ap-
proach, it is thus necessary to include the uncertainty on the luminosity
determination from the CMS experiment (note that the ATLAS sys-
tematic uncertainty due to the luminosity determination is about half
the corresponding value from CMS calculation).
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• t extrapolation. Both experiments extrapolate to t=0 assuming an ex-
ponential form of the hadronic amplitude. Differently from ATLAS,
TOTEM quotes a negligible systematic uncertainty due to this extrap-
olation. Moreover ATLAS included the Coulomb and Coulomb-Nuclear
Interference term in the fit to the elastic cross section, while TOTEM
didn’t include it. However, this should not imply substantial differences
in the lower limit of the measured t-range thanks to the relatively large
values of t reached by the 2 experiments compared to the Nuclear-
Coulomb interference region.

• Beam Energy. The uncertainty of the value of the beam energy influ-
ences the extracted value of the total cross section indirectly through
the calculation of t in the assumed limit: -t=(p✓)2. While ATLAS in-
cludes this contribution in the systematic uncertainty, TOTEM does
not mention it.

• Results comparison. ATLAS and TOTEM measurements show a sat-
isfactory consistency of 1.3 �, assuming that the uncertainties are un-
correlated, see Fig.(3.9).





Chapter 4

Luminosity Determination
for the Total Cross Section
Measurement at p

s = 8 TeV

In 2012 the LHC center of mass energy was raised for 7 to 8 TeV. A new
measurement of the total cross section was therefore performed in order to
add further experimental information to the energy dependence of �tot. Two
different data samples have been acquired, with different experimental con-
ditions. The first run (number 206881) has been performed in July 2012 with
�⇤=90 m (similar to 2011 case), the second (number 213268) in October 2012
with �⇤ = 1000 m. The main characteristics of LHC configuration have been
reported in Tab.(1.1). In this chapter, the procedure for the determination
of the integrated luminosity is described. This evaluation is necessary for the
measurement of the total cross section �tot, performed by the ALFA detector,
as explained in Chapter 3.
The two acquired runs are both characterized by a very low value of µ,
the average number of interactions per bunch crossing, with respect to the
normal runs (up to 3 ÷ 4 orders of magnitude difference), with substantial
implications on the problematics of the luminosity measurement.

4.1 The Data Sample
The two data samples have been taken during the so called ALFA runs (or
high-�⇤ runs), with a dedicated machine optics set up, necessary for the
measurement of the pp elastic scattering in the forward direction.

71
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4.1.1 Run 206881 at �⇤ = 90 m
Run 206881 was acquired between July 12 and July 13 2012 at center-of-mass
energy of

p
s=8 TeV with �⇤=90 m. Both beams had an average number

of protons of about 2.5⇥1011. Overall, 647 Luminosity Blocks were acquired
with an average duration of 60 seconds each, but only the first part of the
run (before LB=335) was dedicated to the elastic scattering measurement.
The LBs from 335 on are therefore discarded in this analysis.
The number of colliding bunches was 108 but only 3 of them can be used in
this analysis since the ALFA detector was triggered on these three bunches
only. The average number of interactions per bunch-crossing was in the range
0.08. µ .0.1.

4.1.2 Run 213268 at �⇤ = 1000 m
Run 213268 was taken between October 24 and October 25 2012 at a center-
of-mass energy of

p
s=8 TeV with �⇤=1000 m. Both beam 1 and 2 had a

typical intensity of ⇠ 2⇥1011 protons. Three bunches were colliding during
this run, but the first (called pilot) is not used in this analysis, due to partic-
ularly low number of protons, and consequently low luminosity, with respect
to the other two. The average number of interactions per bunch-crossing was
in the range 0.001. µ .0.005.

4.2 Analysis Procedure
As for the standard high luminosity runs, ALFA strategy consists in using
as many detectors and algorithms as possible in order to better cross-check
the results and assess the systematic uncertainties. In the special case of
high-�⇤ runs, where the instantaneous luminosity is very low, only LUCID
and BCM are sensitive enough to measure the luminosity. Tile Calorimeter
can be used as cross-check for run 20688 only (with 108 bunches) but, as
it only provides BCID-averaged luminosity, it is not possible to restrict the
measurement to the 3 triggered BCIDs. Finally the data to be used for the
vertex and track-counting analysis are still not fully reprocessed so that this
measurement is also not possible.

4.2.1 Luminosity Algorithms
The used algorithms are Event-counting type (see Sec.2.3.1), namely: BCMHOR,
BCMVOR (double-side inclusive OR for the horizontal and vertical parts
of BCM), BCMHORC and BCMVORC (single-side inclusive OR), LCDOR
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(LUCID double-side inclusive OR), and LCDORA and LCDORC (single-side
OR for LUCID). All other algorithms, such as the coincidence ones (AND)
were not calibrated in the vdM scans, so they are not used. BCMHOR has
been used as reference algorithm for consistency checks with the standard
physics runs at high luminosity.
As mentioned above, in principle TileCal can be used for consistency checks
for run 206881, but without the possibility to select the 3 triggered BCIDs.
For run 213268, due to the even lower µ-values and number of colliding
bunches, TileCal is not usable at all, due to the lack of sensitivity. The same
considerations are applied also for the forward calorimeter FCAL.

4.2.2 Statistical Errors
As described in Sec.(1.5.1), the average number of interactions per bunch
crossing (µ) in a Luminosity Block can be calculated as

µ = �1

✏
ln

✓
1� Nev

NBC

◆
(4.1)

where NBC crossings have happened and Nev have been detected by the
luminosity detector, under the assumption that the number of interactions
per BC is distributed following the Poisson statistics. Defining

P (Nev) =
Nev

NBC
(4.2)

and assuming that Nev follows a Binomial distribution, then the variance can
be expressed as
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◆
(4.3)

and the error on Nev is:

�Nev =

s

Nev ·
✓
1� Nev
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◆
(4.4)

The statistical error associated to µ can be therefore evaluated using the
following formula:
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(4.5)



4.3 Background Definition and Evaluation 74

�vis(mb) �vis(mb)
Algorithm July 2012 November 2012
BCMHOR 5.1334 5.0799
BCMHORC 2.6589 2.6371
BMCVOR 5.1549 5.0458
BCMVORC 2.6631 2.5848
LCDOR 36.4170 35.4962
LCDORA 23.8922 23.1923
LCDORC 21.1661 20.5268

Table 4.1: Values of �vis measured in July and November 2012 calibration
for LUCID and BCM algorithms.

4.2.3 Calibration
The van der Meer calibration for 2012 has been described in Sec.(2.4). Having
various vdM calibrations available, each of the two ALFA runs was analysed
using the closest calibration in time, namely: for run 206881 the July vdM
calibration, while for run 213268 the one performed in November. For run
206881, the calibration has been performed few days apart from the data
taking: this reduces systematic effects of long term stability of the lumi-
nometers. A month separates run 213268 from the corresponding vdM scan
calibration, so that effects due to long term stability cannot be ignored. In
Tab.(4.1) the values of calibration constants �vis for the used algorithms are
reported for both the July and November vdM scans.

4.3 Background Definition and Evaluation
The background subtraction is one of the most delicate issues of the lumi-
nosity measurement in ALFA runs. In fact, due to the very low value of the
luminosity, the contribution of the background (or at least of some of back-
ground components) can become competitive and therefore a detailed under-
standing and modelling of the various background contributions is needed. In
normal physics runs at high-luminosity, the background evaluation, although
necessary, is less crucial.
Two main background components are usually considered:

• afterglow background;

• beam-gas (also called single-beam) background.
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In the following sub-sections, these two contributions are discussed and the
approach for their evaluation and subtraction are explained.

4.3.1 Afterglow Background
The afterglow background is caused by the emission of photons from nuclear
de-excitation, induced by the hadronic cascades originated by pp collision
products. The typical shape of the afterglow background induced by a single
colliding bunch can be seen in Fig.(4.1) and consists of an exponential tail
following the colliding bunch with a decay time of the order of µs. In normal

Figure 4.1: Typical shape of afterglow background induced by a single
colliding bunch, an exponential tail with decay time of few µs.

running conditions, with a large number of colliding bunches at high µ, the
afterglow contribution is expected to be high because each colliding bunch
produces afterglow and therefore influences the following ones.
In ALFA runs, µ is low and few bunches with a large time separation are
colliding, so this background source is expected to be reduced.
As the afterglow background results in an overestimation of the signal in the
BCID following a colliding one, however its level must be carefully evaluated.
In the following actions, modelling and subtraction procedure are described.
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4.3.2 Afterglow Modelling
In this sub-section, the modelling of signal and afterglow background are
described both separately and in superimposed conditions. The aim is to
come up with formulas which allow the estimation, from the measured prob-
abilities of the various algorithms (which are by definition composed by both
signal and background), the corresponding background-subtracted probabili-
ties (and therefore the background subtracted µ). In Fig.(4.2), the modelling
of the SIGNAL contribution and the corresponding probabilities of the fol-
lowing event-counting algorithms are shown:

• P0: zero-counting probability (SIGNAL ONLY)

• PA, PC : exclusive single-side probabilities (SIGNAL ONLY)

• PAND: coincidence probability (SIGNAL ONLY)

from these formulas the inclusive (SIGNAL ONLY) probabilities can be cal-
culated:

• POR = 1 - P0 (SIGNAL ONLY)

• PORA = PA + PAND (SIGNAL ONLY)

• PORC = PC + PAND (SIGNAL ONLY)

Figure 4.2: (A): Signal modelling for zero-counting, exclusive single-side
(PA, PC) and coincidence (PAND) algorithms.

A table (4.3) similar to the one obtained for signal can be built for the
BACKGROUND contribution and for the corresponding probabilities us-
ing the exclusive single-side probabilities (BACKGROUND ONLY), PbA and
PbC , the suffix "b" reflects the BACKGROUND ONLY contribution. Having
the separate contributions of signal (POR, PORA, PORC , PA, PC , PAND)and
background (PbA, PbC) probabilities, the different cases, corresponding to the
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Figure 4.3: (B): Background-only modelling based on the exclusive single-
side background probabilities PbA and PbC .

different algorithms, can be modelled by combining tables in Fig.(4.2) and in
Fig.(4.3) into a third table containing all possible combinations of signal and
background. Table in Fig.(4.4) show for different algorithms all the probabili-
ties obtained combining signal and background separated ones. Calling Pmeas

X

the measured probabilities for algorithm "X", i.e. the "signal+background"
probability (measured by the detector), PbX the "background-only" contri-
bution to the measured probability (as for table in Fig.4.3) and PX the corre-
sponding "signal-only" probability (i.e. the background subtracted one, goal
of all this modelling description, as from Fig.4.2) using table in Fig.4.4 derive
from table C the useful equations providing the background-subtracted prob-
abilities from the measured and the pure-background ones can be derived:

• OR Algorithm.

POR =
Pmeas
OR � (PbA + PbC � PbAPbC)

(1� PbA � PbC + PbAPbC)
(4.6)

• A(C)_Exclusive Algorithm.

PA(C) =
Pmeas
A(C) � (1� POR)(PbA(C) � PbAPbC)

1� PbC(A)
(4.7)

• And Algorithm.

PAND =
Pmeas
AND � (PAPbC + PCPbA + PbAPbC � PAPbAPbC � PCPbAPbC)

1� PbAPbC
(4.8)

The only open point is how to define the "background-only" probabilities
(PbX). The best approximation is to use as the "background-only" probabil-
ity estimation, the probability measured in the "previous-to-colliding" bunch.
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Figure 4.4: (C): Table reporting the modelling of signal+background con-
tributions to the different algorithms.

In the 2012 LHC bunch configuration, spacing between colliding bunches was
not 25 ns as in the original design, but 50 ns, so that the bunch preceeding
any colliding one was empty. Therefore whatever activity a detector mea-
sures in such empty bunch must be due to afterglow background produced
by all preceeding colliding bunches. In Fig.4.5 a typical BCID-distribution
of the measured activity in LUCID is shown, for a high-luminosity run with
many colliding bunches, where the colliding bunches are drawn together with
the "previous-to-colliding" ones, used to estimate the background-only prob-
abilities.

4.3.3 Afterglow Subtraction Results
In this section the verification of the quality of the afterglow subtraction
evaluation using Eqs. 4.6, 4.7, 4.8 and the assumption that the "previous-
to-colliding" bunch is a good estimate of the afterglow are presented. If the
above assumptions and afterglow modelling are correct, after the afterglow
background correction, a probability compatible with zero will remain.
In Figs. 4.6 and 4.7, in the so-called "forbidden-gap", that is the range of
BCIDs never filled, for run 206881, the measured (blu) and afterglow sub-
tracted (green) probabilities are shown for both BCM and LUCID algorithms.
The afterglow-subtracted probabilities, as a function of the BCID number,
are flat and compatible with zero as a function of the BCID number, showing
that the method is reliable.
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Figure 4.5: A typical BCID-distribution of the measured activity in LUCID,
for a high-luminosity run, where the colliding bunches are visible together
with the "previous-to-colliding" ones.

In Figs.4.8 and 4.9, the ratio between the afterglow-subtracted and the
measured µ is shown for BCMHOR and LCDOR as a function of µ for run
206881, showing an afterglow level of about 0.05% for BCM 0.1% for LU-
CID, with no relevant dependence on µ. As it regards run 213268, the same
is shown in Fig.(4.12) (blu) for BCMHOR (Left) and LCDOR (Right). The
average values of afterglow background for this run is 1% for BCMHOR and
2% for LCDOR.

4.3.4 Beam Gas (Single-Beam) Background
The second source of background is the so-called beam-gas background, pro-
duced by the interactions of the beam protons with residual gas moleculas
in the beam-pipe and by halo-particles in time with the beam. As this is
related to the presence of protons in one beam (no matter whether the other
beam is also filled, i.e. no matter if there are collisions), it is often called
single-beam background.
The beam-gas is the most important source of the background in the high-�⇤

runs at very low µ, which is not the case of the standard high-µ runs. In order
to evaluate this background, the unpaired bunches are used, where, by defi-
nition, only one beam is filled. In general there are several unpaired bunches
in each beam. By measuring the average probability, measured by a cer-
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Figure 4.6: Measured (blue triangles) and afterglow-subtracted (green
squares) µ for BCMHOR in the forbidden gap.

tain algorithm, in such unpaired bunches and rescaling it by the ratio of the
proton currents in the colliding bunch under investigation and the unpaired
bunches used for beam-gas monitoring, the expected beam-gas background
contribution is obtained:

P beam gas
coll =

 
nX

i=1

Pi

Ii

!
· Icoll (4.9)

where the sum runs over the unpaired bunches and Pi and Ii are, respec-
tively, the measured probabilities and the proton currents in the considered
bunches. P beam gas

coll is the probability in the colliding bunch. From P beam gas
coll ,

the µbeam gas
coll can be determined using the standard logarithmic formula and

finally the µcoll with all backgrounds subtracted can be written as:

µall bkg subtracted
coll = µafterglow subtracted

coll � µbeam gas
coll (4.10)

In order to verify the quality of the subtraction of single-beam background,
the procedure has been tested for the unpaired bunches themselves. In
Fig.4.10, the measured, afterglow subtracted and beam gas subtracted µ-
values for the unpaired bunch number 3196 in run 206881 is presented (on
the left BCMHOR and on the right LCDOR), showing a very satisfactory
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Figure 4.7: Measured (blu triangles) and afterglow-subtracted (green
squares) µ for LCDOR in the forbidden gap for run 206881.

subtraction result, with the µvalue with all background subtracted at zero.
The overall levels of background subtracted in the two ALFA runs can be
summarized as follows.

• Run 206881: In Fig.4.11: the percentages of afterglow plus beam-gas
background are shown in blue for BCMHOR and in red for LCDOR al-
gorithms, showing a level of 0.4% for BCMHOR and 0.2% for LCDOR.

• Run 213268: In Fig.4.12, the percentages of the afterglow plus beam-
gas background are shown, in blue for BCMHOR and in red for LCDOR.
The overall background level for BCMHOR is 10%, while for LUCID
is 4%.

The systematic uncertainty related to the background subtraction is de-
scribed in Sec.(4.5).

4.4 Luminosity Results
Once the background subtracted µ has been measured, the instantaneous
(Lj) and the integrated luminosities (Lj) for each Luminosity Block (j) and
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Figure 4.8: Ratio between afterglow background subtracted and measured
µ for run 206881 for BCMHOR as a function of µ measured.

for the whole run (LRUN) can be evaluated as:

Lj =
f

�pp

nX

i=1

µi (4.11)

Lj = Lj ·�tj (4.12)

LRUN =
NX

j=1

Lj (4.13)

where index j indicates the LB number (j=1,...,N), index i refers to the
colliding bunches (i=1,...,n), f is the LHC revolution frequency, �tj is the
duration of each LB and �pp is the inelastic pp cross section. Although �pp

appears in Eq.4.11, it cancels with the �pp contained in the calibration of µ
(✏ = �vis

�pp
) so that the luminosity result is independent of the choice of the

to-be-measured �pp.

4.4.1 Results for run 206881 at �⇤ = 90 m
In Tab.4.2, the integrated luminosity values are reported for run 206881
using the various algorithms, together with their statistical uncertainties and
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Figure 4.9: Ratio between afterglow background subtracted and measured
µ for run 206881 for LCDOR as a function of µ measured. The ratio is about
2% with no dependency on µ.

the deviations with respect to the reference BCMHOR measurement. The
integrated luminosity is therefore (using the reference BCMHOR algorithm):

L206881 = 498.55± 0.31µb�1 (4.14)

In Fig.4.13, the average number of interactions per bunch crossing (µ) as a
function of the LB number is shown for the different luminosity algorithms,
while in Fig.4.14 the percentage deviations with respect to the reference
algorithm BCMHOR are shown. A very good consistency (<2�) with the
only exception of LCDORA (5�) can be observed.

4.4.2 Results for run 213268 at �⇤ = 1000 m
In Tab.4.3, the integrated luminosity values are reported for run 213268,
together with their statistical uncertainties and the deviations with respect to
the reference BCMHOR measurement. The integrated luminosity is therefore
(using the reference BCMHOR algorithm):

L213268 = 21.93± 0.07µb�1 (4.15)
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Figure 4.10: (Left)BCMHOR measured (blue triangles), afterglow sub-
tracted (green squares), afterglow and beam gas subtracted (red circles) µ
for the unpaired bunch 3196 of run 206881.(Right)LCDOR measured (tri-
angles), afterglow subtracted (squares), afterglow and beam gas subtracted
(circles) µ for the unpaired bunch 3196 of run 206881.

Algorithm L206881(µb�1) �L206881(stat)(µb�1) �L206881/�L206881

BCMHOR 498.55 0.31 -
BCMHORC 497.51 0.43 -2
BCMVOR 498.97 0.31 1
BMCVORC 498.15 0.43 -1
LCDOR 499.28 0.12 2
LCDORA 500.29 0.15 5
LCDORC 498.73 0.15 1

Table 4.2: Integrated luminosity values (first column) and statistical errors
(second column) determined with different algorithms for run 206881. In the
third column, the deviations among the various algorithms to the reference
BCMHOR are reported in units of the statistical errors.
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Figure 4.11: Percentages of afterglow only (red triangles) and afterglow
plus beam-gas (blue circles) for BCMHOR (left)and for LCDOR (right) for
run 206881.

Figure 4.12: Percentages of afterglow only (red triangles) and afterglow
plus beam-gas (blue circles) for BCMHOR (left) and for LCDOR (right )for
the run 213268.

In Fig.(4.15), the average number of interactions per bunch crossing (µ) as
a function of the LB number is shown for the various luminosity algorithms,
while in Fig.(4.16) the percentage-deviations with respect to the reference
algorithm BCMHOR are shown. For this run the all algorithms, with no
exceptions, are compatible with the reference BCMHOR within less than 2�.
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Figure 4.13: Average number of interactions per bunch crossing µ as a
function of the LB number for the different luminosity algorithms for run
206881.

Figure 4.14: Percentage deviation of the various algorithms with respect
to the reference one, BCMHOR.
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Algorithm L213268 (µb�1) �L213268(stat) (µb�1) �L213268/�L213268

BCMHOR 21.93 0.07 -
BCMHORC 22.17 0.10 2
BCMVOR 21.76 0.07 -2
BMCVORC 21.89 0.10 0
LCDOR 21.81 0.02 -2
LCDORA 21.88 0.03 -1
LCDORC 21.78 0.03 -2

Table 4.3: Integrated luminosity values (first column) and statistical errors
(second column) determined with different algorithms for run 213268. In the
third column, the deviations among the various algorithms to the reference
BCMHOR are reported in units of the statistical errors.

Figure 4.15: Average number of interactions per bunch crossing µ as a
function of the LB number for the various luminosity algorithms for run
213268.
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Figure 4.16: Percentage deviation of the various algorithms with respect
to the reference one, BCMHOR.
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4.5 Systematic Uncertainties Evaluation
To estimate the systematic uncertainties related to the luminosity measure-
ment, the analysis of the standard high-luminosity runs (see Sec.2.5) was
used as a guideline, although not all the uncertainties quoted there should
be considered in the special case of the high-�⇤ runs, while additional ones
should be added. The following list of systematic uncertainties is considered:

• van der Meer calibration. The systematic uncertainty evaluated
from the vdM scan in 2012 is 3.27% (see Sec.2.5).

• µ-dependence. This contribution, relevant for the high-µ runs due to
the very different µ-ranges from vdM calibration to data taking, is not
relevant for the present analysis.

• Long-term stability. This uncertainty is related to the observed
time-related drifts of the various luminosity detectors. For run 206881
a vdM calibration close in time to the ALFA run was used, so no
drift is expected and no systematic uncertainty is quoted. Run 213268
was taken one month before the corresponding vdM session. From
Fig.4.17 a relative drift among detectors of 0.5% is visible between run
213268 and the corresponding vdM session. Such conservative value is
therefore associated to the long-term drift systematic for this run only.

• Background evaluation. The main contribution to the background
systematic uncertainty comes from the assumption that the single-
beam background is well describes by using the unpaired bunches. In
order to test this assumption and the related systematic uncertainty a
particular effect, visible in LUCID only, has been exploited. As visible
in Fig.4.18 in 5 BCIDs before any colliding or unpaired bunch, LUCID
shows some activity which is related to the passage of Beam 1 (Beam
2) hitting LUCID C (A) from the back (i.e. from the opposite direction
with respect to particles coming from the IP). This effect is observed
in LUCID with a small but visible activity 5 BCIDs before the BCID
in time measured at the IP (t=0). This difference in time is due to
the position of LUCID with respect to the IP. The activity is entirely
due to beam-gas interactions. The beam-gas induced activity (normal-
ized to the bunch current) observed 5 BCIDs before both colliding or
unpaired bunches can be used to assess systematic uncertainty in the
background estimation.
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Figure 4.17: Long-term stability of the different luminosity algorithms
along 2012. The dates of two ALFA runs (light green) and the corresponding
vdM sessions (orange) are marked with vertical lines.

Figure 4.18: µ as measured by LUCID (LCDOR algorithm) as a function
of BCIDs. The activity 5 BCIDs before colliding and unpaired bunches is
marked with coloured squares.
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Figure 4.19: Run 206881: Beam-gas induced activity in LCDORA normal-
ized to the bunch proton current for all colliding (blue), unpaired (red) and
for the 3 ALFA-triggered colliding-bunches.

Figure 4.20: Run 206881: Beam-gas induced activity in LCDORC normal-
ized to the bunch proton current for all colliding (blue), unpaired (red) and
for the 3 ALFA-triggered colliding-bunches.
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– run 206881. In Figs.(4.19) and (4.20) a maximum difference be-
tween the beam-gas induced activity 5 BCIDs before unpaired
and colliding bunches of about 40% for LCDORA and 60% for
LCDORC can be observed. We therefore assume a systematic
uncertainty due to the background evaluation of 50% of the back-
ground itself (0.4% for BCMHOR, see 4.3.4), i.e. 0.2%.

– run 213268. From Figs.(4.21) and (4.22), we can evaluate a max-
imum difference between the unpaired and the colliding bunches
of about 18% for LCDORA and 12% for LCDORC. Therefore, we
assume a systematic uncertainty of 15% of the background level
itself (10% for BCMHOR, see Sec.4.3.4), i.e. 1.5%.

In Tab.(4.4) the systematic uncertainties arising from the different sources
are listed separately for the two runs. Overall a systematic uncertainty of
3.3% is estimated for run 206881 and 3.6% for run 213268.
The final luminosity value for the two runs, including the systematic uncer-
tainties are therefore

L206881 = 498.55± 0.31(stat)± 16.33(sys)µb�1 (4.16)
L213268 = 21.93± 0.07(stat)± 0.80(sys)µb�1 (4.17)

Uncertainty Sources 206881 213268
vdM calibration 3.27% 3.27%
Long-term stability 0 0.5%
Background Subtraction 0.2% 1.5%
Total 3.3% 3.7%

Table 4.4: Systematic uncertainties on the luminosity measurement for runs
206881 and 213268.
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Figure 4.21: Run 213268: Beam-gas induced activity in LCDORA normal-
ized to the bunch proton current for all colliding (pink), unpaired (red) and
for the 3 ALFA-triggered colliding-bunches.

Figure 4.22: Run 213268: Beam-gas induced activity in LCDORC normal-
ized to the bunch proton current for all colliding (pink), unpaired (red) and
for the 3 ALFA-triggered colliding-bunches.
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4.6 General Comments
A few general remarks should be made about the obtained results:

• Compatibility of the results: despite the challenging conditions of the
analysed high-�⇤ runs in term of instantaneous luminosity, a remarkable
consistency among LUCID and BCM measurements was achieved. The
typical luminosity values of run 213268 is about 7 orders of magnitude
lower than the values of the standard physics runs due to lower values of
both µ (⇠ 10�3 compared to µ ⇠ 20) and number of colliding bunches
(2 compared to 1400) and much lower than the value for which both
LUCID and BCM were designed for. This is very encouraging for the
future of ALFA runs to be acquired in LHC Run II with even higher
�⇤, aimed to reach the Coulomb-nuclear interference region for the total
cross section measurement.

• In the present analysis we assumed as reference BCMHOR algorithm
for consistency with the standard analysis, despite the fact that LUCID
shows a clearly smaller background level and, consequently, a smaller
systematic uncertainty. Studies are ongoing in order to verify the ab-
sence of additional effects in LUCID which would prevent using it as a
reference detector in the ALFA runs. In such case a drastic reduction in
the systematic uncertainty on the background would be possible (about
a factor 2), although at the moment this is not the largest systematic
contribution (represented by the vdM calibration).

• From Eq.(3.11), the percentage systematic uncertainty ( �LL ) in the lu-
minosity measurements enters in the overall �tot uncertainty as half
(12

�L
L ). This means that the real contribution to the total systematic

uncertainty for luminosity to the one on �tot is 1.6% (run 206881) and
1.8% (for run 213268).

• The analysis of the elastic distribution is far from being finished by the
ALFA community. The luminosity values for the absolute normaliza-
tion cannot be nevertheless provided.



Conclusions

The work described in this thesis has been performed within the ATLAS
experiment operating at the LHC collider at CERN. The analyzed data con-
sist in two ATLAS runs acquired in special beam conditions, optimized for
the measurement of the total proton-proton cross section at a center of mass
energy of

p
(s) = 8 TeV. This measurement is crucial as the total cross sec-

tion is not calculable in the context of perturbation theory but can only be
estimated and bounded, under special hypotheses, as a function of the center
of mass energy. The particular beam-optics used for the data taking mainly
consist in very high betatron-function values at the ATLAS interaction point
(�⇤) and parallel-to-focusing configuration, necessary to allow for the mea-
surement of the elastic interaction rate at very low scattering angles. The
measurement of the proton-proton elastic scattering at low angles is used,
within the Optical Theorem formalism, to determine the total proton-proton
cross section. Using such formalism, an independent evaluation of the lumi-
nosity delivered by LHC is necessary for the total cross section measurement.
The luminosity determination is the main argument of this thesis. The two
runs acquired for this purpose are characterized by �⇤ = 90 m and �⇤ = 1000
m. Such large values of �⇤ and low number of colliding bunches imply that
the instantaneous luminosities are up to seven orders of magnitude lower
than the standard LHC running conditions. This represents a real challenge
for the luminosity measurement for various reasons. First, the luminosity de-
tectors are close, if not below, the sensitivity range which they were designed
for. Second, the different sources of physical background become competi-
tive with the interaction rate, and must be therefore carefully evaluated and
subtracted, and the related systematic uncertainties assessed. Finally, in-
strumental effects such as ageing and calibration stability with time must be
carefully understood in order to correct the measurement. All the steps of
the analysis were entirely and personally developed by the candidate and can
be summarized as follows:

• development of a code aimed to measure the luminosity for various
luminosity detectors and algorithms in particular the Beam Condition

95
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Monitor (BCM) and the LUCID detectors were used as they measure
the luminosity bunch-by-bunch with various algorithms;

• modelling of the background from different sources and implementation
of a background subtraction procedure;

• assessment of the systematic uncertainties due to the various sources, in
particular related to the background subtraction and the time-stability
of the luminometers.

The results obtained show a remarkable consistency among the detectors
and algorithms (at the 2� level), which was not straightforward given the
challenging conditions of the data taking. The main systematic uncertain-
ties are related to the absolute calibration of the detectors through the Van
der Meer scans (3.27% , not evaluated in the context of this thesis) and to
the background subtraction. An original method for the determination of
this uncertainties was developed in this thesis exploiting a side-effect of the
beam-background in the LUCID detector. The final background percentage
level has been evaluated to be 0.2% and 1.5% for the �⇤ = 90 m and of �⇤=
1000 m runs, respectively.
The luminosity values determined in this thesis will be provided to the physics
community performing the measurement of the proton-proton elastic scatter-
ing rate in order to allow the necessary normalization for the determination
of the elastic (and then total) cross section. Such analysis is still not in a
final state, while the luminosity determination is ready to be used.

L206881 = 498.55± 0.31(stat)± 16.33(sys)µb�1

L213268 = 21.93± 0.07(stat)± 0.80(sys)µb�1

In LHC Run II, starting in 2015, a proton-proton total cross section mea-
surement at a center of mass energy of 13 TeV is planned to be performed,
in order to extend the energy-range of the measurement and study, with a
larger arm, the behavior of the total cross section with increasing energy. If
the Coulomb-Nuclear interference region of the elastic scattering cross sec-
tion would not be reached (for which an even more challenging increase of
the �⇤ would be needed), a luminosity-dependent measurement based on the
Optical Theorem will again be necessary.
The tools and the experience developed in this thesis will therefore be fun-
damental for such a goal.



Appendix A

Derivation of Hill’s
Equations

In this Appendix, the derivation of the Hill’s Equations will be reported,
starting from the equation of motion in a dipolar magnet and in a quadrupo-
lar magnet.

d~p

dt
= q( ~E + ~v ^ ~B) (A.1)

d

dt
(pxx̂+ psŝ+ pyŷ) = q(vx, vs, vy) ^ (Bx, 0, By) (A.2)

ṗxx̂+ px ˙̂x+ ṗsŝ+ ps ˙̂s+ ṗxx̂+ py ˙̂y = q(vyBx � vxBy)ŝ� qvsBxẑ (A.3)

Remembering the Poisson relations:

˙̂x = ~! ^ x̂ = �̇ŷ ^ x̂ = 1
⇢⇢�̇ŝ =

vs
⇢ ŝ (A.4)

˙̂s = �̇ŷ ^ ŝ (A.5)

ṗxx̂+ ṗsŝ+ ṗyŷ+px
vs
⇢
ŝ�ps

vs
⇢
x̂ = qvsByx̂+q(vyBx�vxBy)ŝ�qvsBxŷ (A.6)

✓
ṗx � ps

vs
⇢

◆
ŝ+ ṗyŷ = qvsByx̂+ q(vyBx � vxBy)ŝ� qvsBxŷ (A.7)

ṗx � ps
vs
⇢ = qvsBy (A.8)

ṗs + px
vs
⇢ = q(vyBx � vxBy) (A.9)
ṗy = �qvsBx (A.10)
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The field in a dipolar magnet is:

Bx = 0 (A.11)
By = �B (A.12)
Bs = 0 (A.13)

while the reference orbit is

vx = 0 (A.14)
vs = v (A.15)
vz = 0 (A.16)

ps
vs
⇢ = qvsB (A.17)

ps = q⇢B (A.18)

The motion in a dipolar magnet is, then:

ṗx � ps
vs
⇢ = �qvsB (A.19)

ṗs + px
vs
⇢ = qvxB (A.20)

ṗy = 0 (A.21)

The field in a quadrupolar magnet is:

Bx = axxx+ axyy (A.22)
By = ayxx+ ayyy (A.23)

Bs = 0 (A.24)

This contribution added to the dipole magnet gives:

Bx = axxx+ axyy (A.25)
By = B0y + ayxx+ ayyy (A.26)

Bs = 0 (A.27)

Bx = ↵x+ �y (A.28)
By = B0y + �x� ↵y (A.29)

Bs = 0 (A.30)

With the following conditions:

div ~B = axx + ayy = 0 (A.31)
rot ~B = (0, axy � ayx, 0) = 0 (A.32)
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in the chosen coordinate system

By = B0y + �x� ↵y (A.33)
By(x = 0) = B0y � ↵y = B0y ↵ = 0 (A.34)

The magnetic field becomes:

Bx = ��y (A.35)
By = �B0y � �x (A.36)

Bs = 0 (A.37)

The equations of motion become:

ṗx = �ps
vs
⇢ = qvsBy (A.38)

ṗs + px
vs
⇢ = q(vyBx � vxBy (A.39)
ṗy = �qvsBx (A.40)

We have a solution that focuses in x

ṗx � ps
vs
⇢ = �qvs(B0y + �x) (A.41)
ṗy = qvs�y (A.42)

and an other one that focuses in y

ṗy = qvsBy (A.43)

The motion in the quadrupole is:

ṗx � ps
vs
⇢ = �qvs(B0y � �x) (A.44)

m
. . . x� ps

vs
⇢ = �qvs(B0y � �x) (A.45)

d

dt
= vs

d

ds
(A.46)

Finally we get the Hills equation:

mv2sx
00 �mv2s

1
⇢ = �qvs(B0y + �x) (A.47)

x00 � 1
⇢ = � q

ps
(B0y + �x) (A.48)

x00 � 1
⇢0

⇣
1 + x

⇢0

⌘
= � q

p0

⇣
1� �p

p0

⌘
(B0y � �x) (A.49)

x00 � 1
⇢0

+ x
⇢20

' � q
p0
B0y � q

p0
�x p0 = q⇢0B0y (A.50)

x00 � 1
⇢0

+ x
⇢20

' � 1
⇢0

� �
⇢0B0y

x (A.51)

x00 ' �
✓

1
⇢20

+ 1
⇢0

�
B0y

◆
x (A.52)

x00 ' �K(s)x (A.53)
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