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ABSTRACT

I lavoro che ho sviluppato presso 1'unita di RM funzionale del Po-
liclinico S.Orsola-Malpighi, DIBINEM, e incentrato sull’analisi dati di
resting state - functional Magnetic Resonance Imaging (rs-fMRI) me-
diante 'utilizzo della graph theory, con lo scopo di valutare eventuali
differenze in termini di connettivita cerebrale funzionale tra un cam-
pione di pazienti affetti da Nocturnal Frontal Lobe Epilepsy (NFLE) ed
uno di controlli sani.

L’epilessia frontale notturna € una peculiare forma di epilessia ca-
ratterizzata da crisi che si verificano quasi esclusivamente durante il
sonno notturno. Queste sono contraddistinte da comportamenti moto-
ri, prevalentemente distonici, spesso complessi, e talora a semiologia
bizzarra.

L'fMRI e una metodica di neuroimaging avanzata che permette di
misurare indirettamente 'attivita neuronale. Tutti i soggetti sono stati
studiati in condizioni di resting-state, ossia di veglia rilassata.

In particolare mi sono occupato di analizzare i dati fMRI con un ap-
proccio innovativo in campo clinico-neurologico, rappresentato dalla
graph theory. I grafi sono definiti come strutture matematiche costitui-
te da nodi e links, che trovano applicazione in molti campi di studio
per la modellizzazione di strutture di diverso tipo.

La costruzione di un grafo cerebrale per ogni partecipante allo studio
ha rappresentato la parte centrale di questo lavoro. L'obiettivo & stato
quello di definire le connessioni funzionali tra le diverse aree del cer-
vello mediante 1'utilizzo di un network. Il processo di modellizzazione
ha permesso di valutare i grafi neurali mediante il calcolo di parametri
topologici che ne caratterizzano struttura ed organizzazione.

Le misure calcolate in questa analisi preliminare non hanno eviden-
ziato differenze nelle proprieta globali tra i grafi dei pazienti e quelli
dei controlli. Alterazioni locali sono state invece riscontrate nei pazien-
ti, rispetto ai controlli, in aree della sostanza grigia profonda, del siste-
ma limbico e delle regioni frontali, le quali rientrano tra quelle ipotiz-
zate essere coinvolte nella fisiopatologia di questa peculiare forma di
epilessia.
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INTRODUCTION

Nocturnal frontal lobe epilepsy (NFLE) is a peculiar form of focal
epilepsy in which seizures, characterized predominantly by dystonic-
dyskinetic postures, but often with complex motor behavioral semio-
logy, appear almost exclusively during nocturnal sleep. To date, the
pathophysiology of disease has not yet been fully characterized, and
several studies performed over the last thirty years with different te-
chiniques have allowed to make assumptions about multiple brain struc-
tures from which the typical seizures may originate, predominantly sub-
cortical like the basal ganglia and limbic system.

The problem of differential diagnosis between NFLE and parasom-
nias is an important clinical challenge. In fact, the techniques, such as
EEG and conventional brain neuroimaging, usually utilized to inves-
tigate both these paroxysmal nocturnal events often show no specific
abnormalities. On the other hand, many studies showed the possibili-
ty and the advantages of investigating non invasively changes in func-
tional brain connectivity of different forms of epilepsy. Therefore, a
possible way to improve the clarification of pathophysiology of NFLE
could be to analyze the possible variations of brain functional organiza-
tion of NFLE patients compared to those of healthy controls.

Different techinques allow to explore the functional connectivity of
the brain areas. We used one of these, called functional magnetic reso-
nance imaging (fMRI). It is a neuroimaging technique that measures the
brain activity indirectly, by detecting associated changes in blood flow
related to energy used by neurons. This procedure relies on the fact
that cerebral blood flow and neuronal activation are coupled: when a
certain area of the brain is activated, blood flow to that region increases.

Also during rest condition the brain network is not inactivate, but it
shows a spontaneous activity that is highly correlated between multiple
brain regions. The main focus of the application of fMRI technique in
rest condition, also called resting state functional magnetic resonance
imaging (rs-fMRI), is to map functional associations between multiple
brain regions at their basal state.

This study make use of rs-fMRI technique to analyze eventual dif-
ferences of functional brain connectivity in rest condition between a
group of NFLE patients and a group of healthy controls, using a rela-
tively new methodological approach to investigate neuroimaging data,
called graph-based analysis.



The graph theory is the study of graphs, which are mathematical
structures, made by nodes and edges that connect them. The graph
theory is used to model many types of relations and processes and it
can be applied in different fields of study.

In the present work, we performed a graph theoretical analysis on
rs-fMRI data to construct a brain network for each of the subjects in
this study, with the aim of characterizing the functional pattern of these
graphs. This objective may be achieved measuring different topologi-
cal parameters from the resulting networks. This kind of analysis of
rs-fMRI data of NFLE patients and healthy controls using the graph
theoretical approach has never been done before.

This thesis is organized as follows: the first chapter describes the
basic principles of fMRI technique, with a detailed explanation of the
rs-fMRI and its main features. The second chapter goes into the graph
theory, starting from the description of what a graph is and how a
graph can be generated, and ending with a description of several pos-
sible measures that can be performed on these networks. The third
chapter provides a brief description of nocturnal frontal lobe epilepsy,
which summarizes the main diagnostic tools and describes the main
pathophysiological hypothesis. The fourth chapter reports the meth-
ods and the materials that we used during the entire analysis and the
tifth one shows the obtained results. The sixth chapter provides the dis-
cussion and the interpretation of the results, while the seventh chapter
analyzes the possible future directions which might be explored.



FUNCTIONAL MAGNETIC
RESONANCE IMAGING

Functional Magnetic Resonance Imaging (fMRI) is a neuroimaging
technique that indirectly measures brain activity by detecting associ-
ated changes in blood flow related to energy use by brain cells [1]. This
procedure relies on the fact that cerebral blood flow and neuronal acti-
vation are coupled: when a certain area of the brain is activated, blood
flow to that region increases. Therefore neuronal activity is not mea-
sured in itself, but the metabolic consequences of such activity (haemo-
dynamic response). The signal that allows us to measure the hemody-
namic response is called Blood Oxygen Level Dependent (BOLD) effect:
it is generated by the dilution of the deoxyhemoglobin of blood (see
section 1.1).

Tipically, fMRI acquisitions are useful to find associations between
different stimuli (visual, auditive, motor or cognitive) and a variation of
BOLD signal in specific areas of the brain. However, it is also possible
to evaluate regional functional interactions that occur when subjects are
not engaged in a particular task. This method of brain imaging is called
resting state fMRI. This approach is useful to explore the functional
organization of the brain at rest, because the brain activity is present
even in the absence of an external task. In fact, in the awake resting
state, the brain receives 11% of the cardiac output and accounts for 20%
of the total oxygen consumption of the body, despite the fact that it
represents only 2% of body weight [4].

For the basic principles of nuclear magnetic resonance (NMR) and
magnetic resonance imaging (MRI) we refer you to [2] and [3].



1.1 THE BASIC PRINCIPLES OF FMRI

There are two ways in which the information is transferred within
the brain: through propagation of an altered membrane potential and
through the release of chemical neurotransitters [1]. Both processes
involve the ion transport across the neuronal cell membranes, using
sodium-potassium (Na*/K") pumps. The Na™/K" pumps, located in
the plasma membrane of cells, work through an active transport pro-
cedure. Therefore they use chemical energy (in the form of adenosine
triphosphate, ATP). It is possible to affirm that if a particular area of
the brain consumes a certain quantity of ATP in response to a stimulus,
then this region can be considered activated.

The glycolysis is the metabolic pathway that converts glucose into
pyruvate and the energy released is used to form the high energy com-
pounds ATP (and also the nicotinamide adenine dinucleotide or NADH).

The brain requires glucose and oxygen to work properly but it does
not store neither of them. The brain absorbs these two primary sources
of energy from blood, in particular it takes O, from red blood cells
(RBCs) and glucose from plasma.

The oxygen is carried by hemoglobin (Hb) in the RBCs. It is a protein
composed of four sub-unities (2« and 23). Each sub-unity is formed by
one proteic group and one (heme) group with an atom of Fe*" (which
is the one that binds the oxygen) in the middle, as we see in Figure 1 .
Each Hb molecule transports four O, molecules.

The hemoglobin can be saturated with oxygen molecules (oxyhemo-
globin) or desatureted with oxygen molecules (deoxyhemoglobin):

when O, is bound with Hb (HbO,), the electrons of Fe*" are
paired up and they are located in the state of lower energy. There-
fore HbO, is diamagnetic.

When O, detaches from Hb, the electrons of Fe*" are unpaired and
they are located in the state of greater energy: Hb is paramagnetic.

The diamagnetic substances generate an insignificant quantity of in-
homogeneities in the external magnetic field. Instead, the paramagnetic
ones distort the sorrounding magnetic field induced by MR scanner,
causing a phase displacement of nuclear spin. The transversal relax-
ation and the signal go to zero more rapidly than the situation with-
out inhomogeneities. Consequently, the contrast in magnetic resonance
images depends on different ratio between oxy/deoxy-hemoglobin con-
centration in the activated /inactivated regions of the brain.
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Figure 1: (a) Structure of hemogoblin: the proteins’« and 3 sub-units are in
red and in blue. The heme groups, that contain iron, are in green.
The image is taken from Protein Data Bank, www.rccsb.org.
(b) Heme group in detail.
The image is taken from http://en.wikipedia.org/wiki/Hemoglobin

Hence, if the brain consumes the oxygen of the blood, a reduction of
the signal in that region is expected. Indeed this effect does not occur
and to an increase of metabolism corresponds the increase of the MR
signal. It seems to be a nonsense. Actually, all the consequences of
the metabolism were not considered. In fact, an increase of metabolism
produces also a vasodilation and the consequent increase of the blood
flow. Therefore, the oxygen quantity carried by the blood is higher than
the quantity of oxygen consume, and the result is an increase of con-
centration of the oxyhemoglobin with a reduction of concentration of
the deoxyhemoglobin. Consequently, an increase of MR signal respect
to the baseline follows, and it can be measured by the BOLD effect.
The BOLD signal is an indirect measure of neuronal activity, which is
generated from the dilution of deoxyhemoglobin in the vessel blood,
so it does not measures neuronal activity directly, but it measures the
metabolic consequences of that activity (hemodynamic response).
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Figure 2: Hemoglobin as an MRI contrast agent. Blood oxygenation or deoxy-

genation in the brain can result from changes in metabolic-related
oxygen uptake, and changes in blood flow. This is manifested as an
increase or decrease in signal intensity in T, -weighted images. As
the oxygenation state of hemoglobin changes to deoxyhemoglobin,
the iron molecule becomes paramagnetic and thus alters the local T,
by disturbing the local magnetic field. This causes decreases in T,
(in the upper left of the image).

As more oxygenated blood is delivered to the area the T, is then
increased, causing an increase in signal (in the upper right of the image).
The T, is higher in the activated state. The echo time with the opti-
mal fMRI contrast is about equal to T, (in the lower of the image).



1.2 FMRI ACQUISITION

The sequence used during fMRI acquisition is the GE-EPI sequence
(Gradient Echo - Echo Planar Imaging).

Gradient echo imaging

In the gradient echo (GE) imaging sequence initially a slice selective
RF pulse is applied [3]. This RF pulse typically produces a rotation
angle of the magnetization less than 90°. At the same time of the RF
pulse, a slice selection gradient is applied (Gs). Subsequently, a phase
encoding gradient is applied (G4). A dephasing frequency encoding
gradient (G¢) is applied at the same time as the phase encoding gradient,
so as to cause the spins to be in phase at the center of the acquisition
period. This gradient is negative in sign from that of the frequency
encoding gradient turned on during the acquisition of the signal. An
echo is produced when the frequency encoding gradient is turned on
because this gradient refocuses the dephasing which occurred from the
dephasing gradient. This type of echo is called a gradient echo.

The period called echo time (TE) is defined as the time between the
start of the RF pulse and the maximum in the signal. The repetition
time (TR) instead is defined as the time between the RF pulse and the
following one.

In a gradient echo sequence, a gradient is used instead of a 180° RF
pulse to rephase the spins (unlike the spin echo sequence). Imaging
with a gradient echo is intrinsically more sensitive to magnetic field in-
homogeneities because of the use of the refocusing gradient. The use of
a small flip angle and of a gradient for the refocusing of magnetization
vectors allow this sequence to have a shorter duration.

In Figure 3 the temporal diagram of the gradient echo sequence is
shown.
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Figure 3: The temporal diagram of the gradient echo sequence.
The image is taken from [2]
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Echo Planar imaging

Echo-planar imaging (EPI) is a rapid magnetic resonance imaging
technique, by which it is possible to record an entire image in a few
seconds. To reduce the acquisition time it is possible to derive multiple
echoes from a single excitation pulse, using n echoes to encode n lines
of k-space in a single image. This is done by reversing the polarity of
the read gradient for alternate echoes, which leads to the formation of
the train of gradient echoes, with each echo representing a point where
the net applied read gradient refocused. This process can be repeated as
long as there is appreciable transverse magnetization present. The EPI
is the most widely used acquisition method in fMRI. In these cases the
EPIs are usually acquired with a relative long TR (2-3 sec) that allows
a large number of slices to be registred, even covering the whole brain
volume.

If we are interested in acquisition of N volumes, the brain activity
is monitored for a time of TRxN. Hence, this period TR represents the
temporal resolution of the acquisition technique.

The main advantages of the GE-EPI sequence are that it is sensible to
magnetic susceptivity variations and it is a ultra fast acquisition method.
The disadvantages are the low contrast of the images, the low Signal to
Noise Ratio (SNR) and the distorsions that are created in the images.

In Figure 4 the temporal diagram of the GE-EPI sequence is shown.
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Figure 4: The temporal diagram of the GE-EPI sequence.



1.3 RESTING-STATE FUNCTIONAL MAGNETIC RE-
SONANCE IMAGING

Biswal et al. [8] were the first who demonstrated that, during rest con-
dition, the left and the right hemispheric regions of the primary motor
cortex showed a high temporal correlation between their fMRI BOLD
time series. This pioneering study, [8], with others subsequently per-
formed (e.g. [9], [10]), demonstrated that during rest the brain network
is not inactivate, but it shows a spontaneus activity that is highly corre-
lated between multiple brain regions. The main focus of these analysis
was to map functional association between these regions.

1.3.1  Rs-fMRI BOLD signal

In order to investigate the basal activity through fMRI technique, it
is important to minimize any sensorial input or cognitive task. In fact,
during fMRI acquisition, the subjects should lie down with eyes closed,
they should not sleep and they should not focus on a single thought.

We described the spontaneus neuronal activity as an activity not re-
ferred to an input or an output, but it represented the basal neuronal
activation of the brain. These fluctuations are carachterized by a fre-
quency range of 0.01 —0.THz. The neuronal basis of these low frequency
rs-fMRI oscillations is not yet fully understood. An important issue
consists of taking into account that different sources of noise could be
present, like termal noise, system noise, movement noise and physiolog-
ical noise, such as respiratory and cardio-oscillatory ones. It is however
important to consider that the observed spontanues BOLD signals are
mainly dominated by lower frequency (< 0.01Hz) with only a mini-
mal contribution of higher frequent cardiac and respiratory oscillations
(> 0.3Hz), [11].

1.3.2 Definition of a baseline

In cognitive neuroscience, the physiological baseline of the brain is
defined as the absence of activation, where the concept of activation
represents an increase in blood flow (and glucose utilization) that is not
accompanied by a commensurate increase in oxygen consumption, [4]
and [21]. As a result of this process, the quantity of blood oxygen in the
area of activations increases (which substantially represents the BOLD
signal).

We can define the concept of baseline with the absence of these chan-
ges.
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Instead, the deactivation process represents the opposite configura-
tion of metabolic and circulatory changes, and Gusnard et al. in [4] and
[21] hypothesized that the deactivation that is observed in an area with
the functional imaging may reflect a decrease in the activity of the cells
that are projecting to that area. The authors proposed also to consider
the uniformity of Oxygen Extraction Fraction (OEF, which represents
the percentage of the oxygen delivered to the brain that is utilyzed by
the brain) at rest as the baseline level of neuronal activity.

This uniformity, in the awake (with eyes closed) resting state, repre-
sents an equilibrium reached by the metabolic requirement and blood
flow in the region of interest. Those areas with less OEF than baseline
are considered activated and those areas in which OEF is greater than
level of baseline is defined inactivated.

In figure 5 the tipical parameters during activation and deactivation
processes are shown.

Metabolic and Circulatory Consequences

Deactivation of Activation

CBF
cBv
CMRO, A
OEF

Hgo-0,

BOLD

e 0 @ o W
Percentage Ghange From Baseline

Figure 5: Schematic representation of changes of several metabolic and circu-
latory parameters during activation and deactivation processes: the
cerebral blood flow (CBF), the cerebral blood volume (CBV), the cere-
bral metabolic rate for oxygen (CMRO,), the oxygen extraction func-
tion (OEF), the amount of oxygen attached to hemoglobin (HbO,)
and the blood oxygen level dependent (BOLD). On the left side the
deactivation is shown and on the right side the activation is dis-
played.

The image was taken from Reichle et al., A default mode of brain function,

[21]



1.3.3 Resting-state networks

Several studies showed a high level of functional connectivity in rest
condition between the left and right hemispheric motor cortex, but also
between other brain areas. Many functional networks have been iden-
tify, like the primary visual cortex, the auditory cortex and the language
system (e.g. [9], [10], [12]).

For functional connectivity we mean the temporal correlation between
spatially remote neurophysiological events [13]. Particularly, resting
state functional connectivity focuses on connectivity assessed across the
BOLD time points during resting conditions [14].

It can be defined as the temporal correlation between spatially re-
mote neurophysiological events, expressed as deviation from statistical
independence across these events in distributed neuronal groups and
areas.

As reported in [11], these resting-state networks (RSNs) consist of
anatomically separated, but functionally linked brain regions that show
a high level of ongoing functional connectivity during rest. To date, the
most often reported RSNs are, [15]: the Default Mode Network (DMN),
that is the most studied RSN; the somatomotor network, which includes
primary and higher order motor and sensory area; the visual network,
which spans much of the occipital cortex; the auditory network consist-
ing of Heschl’s gyrus, superior temporal gyrus and posterior insula;
the language network, that includes Broca’s and Wernicke’s areas and
it is extended to prefrontal, parietal and subcortical regions; the dor-
sal attention network, which includes the intraparietal sulcus and frontal
eye field; the ventral attenction network, which includes the tempopari-
etal junction and ventral frontal cortex; the frontoparietal control network,
which includes the lateral prefrontal cortex and inferior parietal lobule;
the cingulo-opercular network, which includes the medial superior frontal
cortex, anterior insula and anterior prefrontal cortex. The most interest-
ing thing is that these networks were obtained in different studies, per-
formed with different MR scanners and data analysis. It demostrates
the robust formation of resting state networks during rest. In Figure 6
these RSNs are showed.

Of particular interest is the so-called Default Mode Network. The
functionally linked areas that make up the network are posterior cingu-
late cortex/precuneus, medial frontal and inferior parietal regions. The
regions of DMN are known to show an elevated level of neuronal activ-
ity during rest, in comparison to when tasks are performed, in which
these regions are consistently deactivated, [20]. This fact suggests that
neuronal activity of this network reflects a default state of neuronal ac-
tivity of the human brain, [11].

11
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Figure 6: The most often reported RSNs in literature: (A) Default Mode Net-
work, (B) Somatomotor network, (C) Visual network, (D) Language
network, (E) Dorsal attention netwok, (F) Ventral attention network,
(G) Frontoparietal control network.

The image was taken from [15].



1.3.4 Pre-processing of BOLD fMRI data

Pre-processing is necessary in fMRI analysis in order to take data
from the scanner and prepare them for statistical analysis. The aim of
the different steps of the pre-processing phase is to apply various image
and signal processing techniques to reduce noise and artefacts. The aim
of these steps is to improve the power of the subsequent analyses.

Generally, the usual method of pre-processing is to apply a sequence
of individual steps in a particular order [1]:

Reconstruction from k-space data: the raw signal is obtained by
digitizing the RF signal detected by the receiver coil. This raw
datum does not appear as an image, but it is represent by a k-
space datum, that must be convert into image-space, so an inverse
transformation is required. Generally a fast fourier transform is
performed.

The reconstruction stage often includes some form of artefact cor-
rection technique, like the ghost correction. It is a correction tech-
nique for the artefact known as the N/2 ghost (or Nyquist ghost).
This artefact is represented by a lower intensity replication of the
image, shifted by half the field of view in the phase-encode direc-
tion.

Motion correction: if a subject moves his head during an fMRI
acquisition, the position of the brain within the functional images
will vary over time. This means that any voxel’s temporal series
does not refer to the same point in the brain. Therefore, motion
correction is always recommendable in fMRI experiments. This
step has the aim of find a common orientation for all images and
resample the original data to this reference orientation. This ob-
jective is achieved by registering each volume of the series to a
chosen reference one.

Slice timing correction: functional volumes are tipically acquired
one slice at a time with the timing of the slice acquisition equally
spread over the repetition time (TR). Therefore it is not correct to
assume that all slices were acquired at the same time or that the
timing in all voxels is the same. Hence, the slice timing correction
has the aim of adjust the voxel temporal series so that a common
reference timing exists for all voxels. The reference time is often
chosen as that corresponding to the first slice. The temporal ad-
justment is achieved by shifting the time series of values forward
and backward in time.

13



Spatial filtering: this step is usually applied because blurring can
potentially increase signal to noise ratio (SNR) in the data - so
we want to reduce the noise level while retaining the underlying
signal - and also because certain later steps require the functional
images to be spatially smooth. The most common method of car-
rying out spatial filtering is to convolve each volume with a Gaus-
sian filter. The width of this filter will determine the extent of the
blurring that take place.

Intensity normalisation: this step attempts to rescale the mean
intensity of the fMRI signal in order to compensate for variations
of global signal within, and also between, sessions.

Temporal filtering: it works on each voxel time series separately.
The main point of this step is to remove unwanted components of
a time series, without damaging the signal of interest. It can be
used a high-pass filter to remove slowly varying unwanted signals,
such as physiological effects like heartbeat and breathing, or a
low-pass filter to reduce high frequency noise in each voxel time
series (a simple convolution with a Gaussian filter is generally
performed).

1.3.5 Rs-fMRI analysis methods

After preprocessing the BOLD signals, different methods can be used
to analyze the data, each with its own advantages and disadvantages.

The first used method, and also the most robust, is the seed based
analysis. This method performs a correlation between the resting
state time series of a particular region and the time series of all
other regions. This region of interest (ROI) is called seed, and it
can be selected from task dependent activation map acquired in
another fMRI experiment or it can be "a priori" defined region.
The main advantages of this method consist in relative simplicity
of the analysis and in straight forwardness of the results. Besides,
the disadvantages are that the information is limited to the func-
tional connections of the selected region, and this makes difficult
to investigate functional connections on a whole-brain scale, and
the fact that this approach requires "a priori" selection of ROlIs.

Another approach is Independent Component Analysis (ICA), a meth-
od that maximizes statistical independence between its compo-
nents. Compared to seed-methods, ICA has the advantage of re-
quiring few "a priori" assumptions, but to use this procedure the



users must select manually the most important components and
distinguish noise from physiologic signal by themselves.

Other kinds of methods are clustering algorithms, which attempt
to group items that are based on relevant characteristics to the
problem of interest. For example we may want to group some
regions that have similarities in their BOLD temporal series, such
as correlation metrics.

We can use also multivariate pattern classification as a method to an-
alyze fMRI data. This approach uses patterns in the data that were
previously assumed important in a training dataset to classify new
datasets.

Graph-based analysis: this approach considers the Resting State Net-
works as a collection of nodes connected by edges. The ROIs are
represented as nodes and the association between them as the con-
nectivity of the edges. After definition of the model, topological
parameters of these networks can be calculated.

One of the methods which allow to investigate the directionality
of the neural interactions is the Granger Causality. Matematically,
this analysis is based on the concept of predictability: a signal y
is said to causally influence a signal x if the future course of x is
more accurately predicted based on the history of signals x and y
compared to that based on the history of the signal x alone [25].

1.3.6  Clinical research applications

To date, many potential clinical applications of rs-fMRI are currently
being investigated even though they are still experimental [15], [16].
For example, rs-fMRI has been applied to identify specific brain RSNs
for presurgical planning in patients with brain tumor, like the study of
Zhang et al. [17] in which they reported the successful localization of
motor areas in patients with tumors distorting sensorimotors regions.

Moreover, rs-fMRI may also be used for presurgical planning in pa-
tients with epilepsy, mapping the epileptic foci or networks, as Liu et
al. did [18].

Several studies have also demonstrated the potential utility of rs-fMRI
in identifying patients with Alzheimer disease, using, for example, tipi-
cal topological parameters of graph-based analysis during a comparison
between patients and healthy controls [19].

In conclusion, despite the use of resting state fMRI in clinical appli-
cations has not been fully developed, there are already application at-
tempts that bode well for future improvements. Further work is needed

15



16 | FUNCTIONAL MAGNETIC RESONANCE IMAGING

to compare the various analysis methods and their efficacy in detecting

different disease states both in groups and especially in individual sub-
jects.



GRAPH THEORY

The graph theory is the study of the mathematical structures called
graphs, which are made by nodes (vertices) and links (edges) that con-
nect them.

These theoretical instruments are very useful to model pairwise re-
lations between different kinds of objects. In fact, the graph theory
tinds application in various fields: in computer science, graphs are used
to represent networks of data organization or to represent the flow of
the information; in linguistics, the analysis of semantic, phonology and
morphology through the use of graphs is frequent; in chemistry and
physics, graph theory is used to model molecules (where vertices rep-
resents the atoms and edges the bonds) or local connections between
interacting parts of a physical system; in sociology, the graph theory
is used to model the social networks; in biology and in neuroscience,
the graph theory represents a very efficient technique of modelling bi-
ology structures, from the organization of human brain connectome or
the protein dynamics to the migration process of particular species of
animal.

In this study we analyzed rs-fMRI data with graph theory, in order to
model the human brain connectome as a set of nodes, represented by
anatomical regions, and edges, represented by the connections between
them.

To have a better understanding of this new, relative simple, way of
describing the complex systems, like neuronal connections pattern, it is
summarized how a brain graph can be constructed. We analyzed the
different types of graphs that can be constructed and the characteristic
measures that can be calculated on these networks.
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21  WHAT IS A GRAPH

A graph can be represented by G = G(N,E), with N denoting the
number of the nodes and E the number of the edges.

Graphs can be divided in directed or undirected, based on whether
egdes have directionality or not.

They also can be classified as unweighted (binary) or weighted, based
on the value of the weights of the edges: if each edge has an equal
weight of 1, the graph is called binary; if edges have different weights,
the graph is called weighted.

In the specific case of unweighted and undirected graphs, the connec-
tivity structure can be represented by NxN symmetric square matrix
called adjacency matrix. If in the position i,j there is a 1, the node i and
node j are linked, otherwise they are not.

In the case of weighted (and undirected) graphs, the connectivity pat-
tern is described by a correlation matrix (see section 4.4.3), that is a sym-
metric and a square matrix and in each position i, there is a value
between o and 1, which represents the strenght of that particular asso-
ciation.

In Figure 7 different types of graphs are displayed.
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Figure 7: Different type of graphs: (a) directed and unweighted graph, (b)
undirected and unweighted graph, (c) directed and weighted graph,
(d) undirected and weighted graph.
The images are taken from http://think-like-a-git.net/sections/graph-
theory/directed-versus-undirected-graphs.html. They were later partially
modified.
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2.2 CONSTRUCTION OF A BRAIN GRAPH

During the construction of a graph, an accurate method for defining
nodes and edges is necessary. As reported by Sporns et al. [26], these
foundamental network elements can be described at different spatial
level: microscale, mesoscale and macroscale.

attempting to construct the human brain connectome at microscale
level means that each node corresponds to a neuron and each
edge to a synapse. This is unrealistic because this choice implies
the definition of 10'" neurons and 10" connections. The excessive
number, variability and dynamics of these elements, make this
choice inappropriate.

The description of connection pattern at mesoscale level involves
the use of elementary processing units that correspond to local
populations of neurons, such as cortical minicolumns. These struc-
tures generally containe about 100 neurons each and they may
represent functional elements that are crucial for cortical informa-
tion processing.

To date, the most feasible organizational level for describing an
accurate model of human connectome is the macroscale level, with
the definition of anatomically distinct brain regions and inter-re-
gional connections. Most current studies focus on macroscale net-
works, also because of technical limitations and computational de-
mand.

After the choice of the description level, nodes and edges must be de-
fined: the first ones generally correspond to Regions Of Interest (ROIs)
derived from anatomical atlas or appropriate segmentation process, and
the edges can be defined as functional or structural association between
these ROIs.

2.2.1  Nodes decision

In the opinion of Bullmore and Bassett [27], a node is a portion of
the system that is separable from the rest of the system. Nodes should
be encapsulated informational components that have internal integrity
and external independence, [74].

Generally, as we defined above, nodes should represent brain regions,
which are labelled by a particular atlas. The choice of a template is a
very important and delicate step because it determines different net-
work structures and different topological characteristics, as reported by



Wang et al. [28]. They used resting state fMRI data to investigate the
effects of different brain parcellation atlases on the topological organi-
zation of brain functional networks. They constructed two different
networks starting from two different anatomical parcellation schemes.
At the end of the graph theoretical analysis, they found that there were
significant differences in multiple topological parameters (e.g. small-
worldness and degree distribution) between the two structures. This
study, but many others exist too, provides quantitative evidence on
how the topological organization of brain networks is affected by the
different parcellation strategies applied.

The main advantage of using an anatomically defined atlas is that
results of different studies could be compared. The main disadvantage
is the step of the registration from EPI image to a standard space, such
as MNI 152. A secondary issue is that the size of the ROIs (defined as
number of underlying voxels) can vary considerably, which means that
nodal values obtained by averaging across voxels in larger regions will
be less noisy than nodal values estimated by averaging across smaller
regions. In order to avoid this bias, it could be possible to sample ran-
domly the same number of voxels in estimation of each nodal value.

In order to minimize the registration problem a possible way is to
introduce a subject-specific segmentation process, based on the volu-
metric high resolution images.

A voxel-based modality of choosing nodes also exists: these networks
are constructed by assigning a node to each equally sized brain area,
called voxel, which corresponds to the spatial resolution of the image.
The fMRI series recorded from each voxel is then used to create the
functional network. This method is greatly appreciated because it is not
limited by a priori assumptions. Nevertheless, it has its advantages and
its disadvantages, like all the other techniques. Represented equally
sized nodes, for example, allows the voxel-based approach to escape
the problem of averaging the signals across regions of different size.
Instead, a common criticism is that connectivity between neighboring
nodes is spurious and over-represented. Moreover, there are also seri-
ous problem concerning the Signal to Noise Ratio (SNR) and spurious
connections due to the low signal in the small voxels [59].

2.2.2 Links decision

It is correct to affirm that a single method to define nodes does not
exist. The same thing happens with the choice of edges.

Links between nodes are differentiated on the basis of the type of the
connectivity, which could be functional or structural, but also on the fact
that they could have weights and directionality.
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We focused our attention on functional association between nodes, be-
cause we were interested in obtain the functional connectivity between
brain regions, and not the structural one. The first thing to do is to
choose the statistical association between time series. Many different
measures of functional connectivity exist, each ones with specific char-
acteristics. The most used in literature is the Pearson correlation coef-
ficient: this is considered the most reliable measure of connectivity for
rs-fMRI data. It measures the extent to which two processes behave
similarly over time, but it evaluates only linear interactions. Instead
other measures such as mutual information, phase synchronization or
synchronization likelihood are sensitive to both linear and non linear
associations [27]. Many others typologies of measures exist, like those
that are sensitive to interactions relative to a particular frequency range
(e.g. wavelet correlation) or those that are specific for building undi-
rected graphs, like partial correlation or partial coherence, [29].

A similar approach can be considered for graph theoretical analysis of
the structural networks derived from measures of anatomical connectiv-
ity between regions. This connectivity can be defined in different ways,
based on different kinds of MRI data. For diffusion tensor imaging for
example, it is possible to assign a probability of axonal connection be-
tween any pair of regions on the basis of tractographic analysis of a
subject. The main disadvantage of DTI based networks is that tractog-
raphy on data seems generally to underestimate the probability of the
connections between regions that are a long distance apart in the brain,
because long distance projections are more likely to intersect with other
projections, and it is more difficult to trace the course of a single tract
in this condition [27].

In addition to the type of the connectivity, we said that we can also
distinguish links for the presence, or not, of the weights and direction-
ality. The difference between binary and weighted links consists in the
fact that the first ones contain simply information about presence or ab-
sence of connection, instead the second ones contain also information
about the strenght of the association.

Regarding the presence of directionality into a brain network, a di-
rected edge expresses causal relation between nodes whereas undirected
ones is simply a representation of an association.

2.2.3 Definition of correlation and adjacency matrices

In the study of binary graphs, after the definition of the correlation
matrix, which is immediatly subsequent to the choice of the correlation
metric (each element aj; of the correlation matrix is a value correspond-
ing to the correlation coefficient between node i and j), an adjacency



matrix must be generated (in weighted graphs, the correlation matrix al-
ready represents the final network). Generally, this procedure involves
an application of a threshold to all values of the correlation matrix: if
ajj > T the corresponding element of the adjacency matrix is set to 1; o
otherwise.

For the choice of the implementation process of a threshold to the
adjacency matrix, there were two possibilities:

to choose a single, optimal value of threshold to apply to the cor-
relation matrix and describe the topological parameters of the net-
work only at that threshold;

to choose different values of threshold and describe the network
properties as a function of threshold (or connection density);

The adjacency matrix so defined corresponds to the final network.
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2.3 MEASURES ON GRAPHS

After constructing the brain networks, it possible to characterize them
usiyng topological measures. These measures are numerous and grow
in number year after year, thanks to the continuous expansion of the
application of graph theory to neuroscience. In this work we proposed
only a few of these measures.

There is not a specific way to classify topological parameters, so we
decided to refer to the schematic representation made by Rubinov and
Sporns in [74].

An important category of topological measures is that related to
the functional segregation. Segregation and integration are two im-
portant aspects of neural systems [30]. Segregation refers to the
existence of specialized neurons and brain areas, organized into
distinct neuronal populations and grouped together to form seg-
regated cortical areas. Measures of segregation primarily quantify
the presence of such groups, known as clusters or modules. One of
these measures is Clustering Coefficient, which is equivalent to the
fraction of the node’s neighbors that are also neighbors of each
other and is defined as
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where Cj is the Clustering Coefficient of node 7, n is the number
of nodes and t; is the number of triangles around the node i.

Instead the Modularity is a parameter that describes the exact size
and composition of interconnected groups. This measure provides
to define a modular structure of the networks, through a maxi-
mization of number of within-group links and a minimization of
number of between-group links [31]. Modularity is defined as
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where the network is subdivided into a set of nonoverlapping
modules N, and ey, is the proportion of all links that connect
nodes in module u with nodes in module v.

Another foundamental category is represented by the measures
of functional integration. This is the ability to combine specialized
information from distribuited brain regions [74]. One important
measure belonging to this group of parameters is the Characteristic



Path Length which is the average shortest path length between all
pairs of nodes in the network. It is defined as
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where L; is the average distance between node i and all other
nodes and dj; is the shortest path length (distance), between nodes
iand j.

The average inverse shortest path length is related measure called
Global Efficiency, which is defined as
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where E; is the efficiency of node i.

A great difference exists between these two parameters: the Global
Efficiency may be calculated for disconnected networks, on the
contrary the Characterist Path Length may be computed only for
connected ones.

Another measure of efficiency is the Local Efficiency. Global Effi-
ciency and Local Efficiency measure the ability of a network to
transmit information at the global and local level, respectively. Lo-
cal Efficiency is defined as
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where By, is the local efficiency of node i, and djn(N;) is the
length of the shortest path between j and h, that contains only
neighbors of i.

A very useful measure that "combines" both segregation and in-
tegration ability of networks is the Small-Worldness. A network
that is simultaneously segregated and integrated has small-world
topology. It is defined as a network that has more clusters than
random networks and has the same Characteristic Path Length as
random ones, as follows

. C/Crand

S =
L/Lrand

(6)
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where C and C,qnq are the Clustering Coefficients, and L and
Lyang are the Characteristic Path Lengths of the respective tested
network and a random network. Small-world networks often have
S>1.

Measures of centrality assess the importance of the individual no-
des. In fact they may play important role in network resilience for
example, or they may are foundamental in functional integration.

To date, many measures of centrality exist. One of these corre-
sponds to measure that we discusses above, the Degree. In fact,
in functional networks, a node that interacts with many others
partecipates actively in many network’s (functional) processes.

A great number of centrality parameters is based on the idea that
central nodes partecipate in many short paths within a network.
The most common, and probably most used, is the Degree (or
Nodal Degree). The Degree of a node is equal to the number of
links connected to that node. This value reflects the importance
of the individual node inside the entire network. It is a simply
measure of centrality. The Degree of a node i is defined as

ki = Z Qij (7)
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where N is the set of all nodes in the network and aj; is the con-
nection status between i and j. aj; = 1 when link (i,j) exists; a;; =0
otherwise (ai; = 0 for all 7). For the directed graphs, it should be
considered that there is a difference between incoming connectiv-
ity (k™) and outgoing connectivity (k?“!), while for the weighted
ones the weighs could be considered.

The collection of the Node Degree of all nodes represents the so-
called Degree Distribution, which is an important marker of net-
work development and resilience to the removal of nodes.

Closeness Centrality and Betweenness Centrality are other two mea-
sures that are part of this group of centrality measures. The first
one is defined as the inverse of the average shortest path length
from one node to all the others nodes. For the node i, the Close-
ness Centrality is defined as

n—1
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The second one is defined as the fraction of all shortest paths in
the network that pass through a given node. Nodes with high



Betweenness Centrality are considered to be "hubs" that tend to
link other, more segregated nodes in the network [35]. For the
node i, the Betweenness Centrality is defined as
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where py; is the number of shortest paths between /1 and j, and
Phi(i) is the number of shortest paths between I and j that pass
through i.

Betweenness Centrality is extended also to links and it is used to
detect important functional connections.

Spectral Centrality and Salient Centrality are other two measures of
centality. k-Spectral Centrality of a subset B of a connected graph
is defined as a measurement of the relevance in terms of eigenval-
ues of the graph Laplacian associated with the graph. The graph
Laplacian is defined as L = D — A, in which A is the adjacency
matrix and D a diagonal matrix with node connectivities as its
terms (for the references see [71]). The Salience S of a network is
defined as [72]

S=(T) = % > T(k) (10)
k

where S is a linear superposition of all Shortest Path Trees (SPTs).
For a fixed reference node r, the collection of shortest paths to
all other nodes defines the shortest-path tree (SPT) T(r), which
summarizes the most effective routes from the reference node r to
the rest of the network. T(r) is represented by NxN symmetric
matrix with elements t;;(r) = 1 if the link (i,j) is part of at least
one of the shortest paths and tij(r) = 0 if it is not. According
to these definitions, the element Sij of the marix S quantifies the
fraction of SPTs the link (i,j) partecipates in.

An important class of topological parameters that deserve atten-
tion, is composed by measures of network resilience. This cate-
gory is divided into indirected and directed measures. Indirect mea-
sures quantify the network vulnerability to attacks, like Degree
Distribution and Assortativity Coefficient, which is a correlation co-
efficient between the degrees of all nodes on two opposite ends of
a link. It is defined as
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Instead, the direct measures test the network before and after a
presumed attack, such as a targeted removal of nodes or links.

3 (11)



2.4 COMPARISON BETWEEN GRAPHS

An important step of the graph theoretical analysis is the comparison
between networks. For example, a comparison between graph gener-
ated by construction of connectivity pattern and Erdosh-Renyi random
graphs [36] is very useful. In fact random graphs are often generated
with the aim of obtaing topological parameters as a point of reference
to judge the nonrandomness characteristic of the measures calculated
from brain networks.

It is also frequent a comparison between groups of subjects in which
topological parameters are compared between healthy controls and pa-
tients. In doing this, Bullmore and Bassett [27] recommended several
important rules to be followed for an efficient comparison between
brain graphs: firstly the networks must have the same number of nodes
and links, because the topological parameters depend on the connec-
tion density and size of the graphs. Moreover it is recommended to use
non-parametric tests for a statistical comparisons between group.
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2.5 CLINICAL RESEARCH APPLICATIONS

To date, the graph theoretical analysis has not an effective applica-
tion in clinical neuroscience, but it is interesting (also in a possible fu-
ture clinical application) to investigate how brain graph can change - in
parameters or in characteristics - when different diseases or conditions
occur. In fact, many cognitive disorders have been characterized as
dysconnectivity syndromes, as indicated by abnormal profiles of func-
tional connectivity pattern. Application of graph analysis for cases of
schizophrenia, Alzheimer’s disease, epilepsy, multiple sclerosis, atten-
tion deficit hyperactivity disorder, and many others, were performed in
the last years (for a deepening of these studies see [15] and [16]).

The architecture and organization of the human brain connectome,
in addiction to diseases, also depend on different factors including age,
gender and cognitive ability.

One of the most important aspects that must be considered during
a graph theoretical analysis is the effect due to different age between
subjects of study. Fair et al., in three different works, [32], [33], [34],
described a dynamic reorganization of brain network structure over the
course of development. They found, for example, some networks in chil-
dren that became two disconnected networks in adults. They also de-
mostrated an increasing in functional integration during development
and also the comparable small-world topology observed in groups of
subjects with different age, which means that the architecture of brain
graphs is conserved over age.

Another important study performed using graph theoretical analysis
was made by Archard et al. [37]. In this work they tested the hypothesis
that resting state functional brain networks have performances affected
by normal aging. They found that normal aging reduced the Global
and Local Efficiency of parallel information processing.

Many others studies exist, in which analysis of influence of aging
on the brain networks were performed, many of these are focalized on
changes of module structures.

Together, these studies highlight the power and the efficacy of the
graph theory in modeling brain networks.



2.6 FUTURE ISSUES

Brain graphs are apparently simple but powerful models of the brain’s
functional (and also structural) connectome. The reason why graph
theory is an efficient tool for analysis of the complexity of brain struc-
ture and organization are its high degree of generalizability and inter-
pretability. In fact, this kind of analysis is applicable to many scales and
type of neuroimaging data and it is interpetable in relation to general
principle of complex system organization.

The construction of a valid model passes through different steps,
made of basic assumptions and different choices, from the selection
of nodes and links, to the decision of what are the best topological pa-
rameters to be calculated.

Despite the application of graph theoretical analysis to the neuro-
sciences is a field in continous expansion, it will be necessary in the
near future to solve several issues. For example, it could be very inter-
esting to be able to construct directed brain graphs, which means that
improvements in techniques to capture directionality of connections are
needed. Another important aspect that can be improved is the relation-
ship between psycological and topological properties of brain networks,
in order to have a better comprehension of the linking graph character-
istics and cognitive performance. Besides, also a deeper analysis of the
utility of graph measures as diagnostic markers of neurophysiatric syn-
dromes should be done.

All these aspects, in addiction to the power and the elegance of graph
theory, suggest that this approach will play an increasingly important
role in the long process of comprehension of the dynamics underlying
the human brain connectome.
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NOCTURNAL FRONTAL LOBE
EPILEPSY

Nocturnal Frontal Lobe Epilepsy (NFLE) is a peculiar form of focal
epilepsy in which seizures, characterized by often bizarre motor behav-
iors or sustained dystonic posture, appear almost exclusively during
sleep, [42], [43], [471, [48], [49]

In 1981 Lugaresi and Cirignotta [39] described five patients which
presented episodes characterized by sprawls and dystonic-dyskinetic
postures during sleep. The polygraphic recording had documented
that the episodes were stereotyped and arose from stage 2 of non-rapid
eye movement (NREM) sleep. The authors proposed three different
hypotheses to explain the nature of the phenomena: a movement disor-
der not yet described; a particular type of pavor nocturnus; a peculiar
epileptic syndrome with seizures originating from deep or mesial re-
gions of frontal lobes. The last hypotesis was the most likely. In 1990,
Tinuper et al. [40] described the semeiology of the crisis originated from
mesio/orbital regions of the frontal lobe. These seizures are character-
ized by complex and bizarre motor behavior with bipedal and biman-
ual activity, weghing of the pelvis, torsion of the bust and sometimes
rollators automatisms, and they were often accompanied by normal or
aspecific EEG tracings. The analogies between frontal seizures and the
episods observed by Lugaresi and Cirignotta, in addiction to the demon-
stration of the presence in several patients of epileptiform abnormalities
by using depth electrodes, gave finally confirmation that the episods ob-
served in 1981 were actually epileptic crisis which were originated from
frontal lobe.

The epileptic syndrome was labelled under the term "nocturnal frontal
lobe epilepsy" by Scheffer et al. in [42] and [44]. Although NFLE is con-
sidered mostly idiopathic, it has been demonstrated that in 25% of the
cases is a positive familiarity for the epilepsy and in the 8% an autoso-
mal dominant fashion can be described without clinical differences in
comparion to sporadic cases, due to a mutations in the neuronal nico-
tinic acetylcholine receptor (nAChR) [44], [45].

The clinical spectrum of Nocturnal Frontal Lobe seizures comprises
distinct paroxysmal sleep-related attacks of variable duration and mo-
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tor pattern complexity. Based on these two parameters, four different
semeiological patterns can be distinguished, [51]:

Paraxysmal Arousals (PA), that are the shorter episodes (less than
20 sec) and consist in rude awakening from NREM sleep;

Hyperkinetic Seizures (HS), that start from awakening from NREM
sleep too, but they last longer (from 20 sec to 2 min) and have more
complex motor activities than PA;

Asymmetric Bilateral Tonic Seizures (ATS), which are character-
ized by a sudden assumption of a tonic/dystonic position of the
four limbs;

Epileptic Nocturnal Wandering (ENW), that are extended paroxys-
mal episodes (1 - 3 min), starting from NREM sleep and continue
with agitated ambulation and dystonic movements.

In Figure 8 an example of video-images and scalp EEG recording of a
paroxysmal arousal are displayed. This image is taken from [49]. In this
study, all patients underwent a comprehensive presurgical evaluation,
which included clinical history, interictal EEG, scalp video-EEG mon-
itoring, high resolution MRI and invasive recording by stereo-EEG, if
necessary. In particular, the video-EEG recordings were performed be-
cause more than 90% of seizures of the patients occurred during sleep.
In three different cases, the MRI and video-EEG findings were consid-
ered adequate to consistently localize the epileptogenic zone and to
define a surgical strategy.
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Figure 8: Example of a video-images and scalp EEG of a paroxysmal arousal.
The first electromyographic modification corresponds to the second
snapshot from the left.

The figure is taken from [49].
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3.1 DIAGNOSIS

The problem of differential diagnosis between NFLE and parasom-
nias is an important clinical challenge. EEG and MR imaging often
show no abnormalities. In fact, an epileptogenic lesion is documented
in less than 20% and EEG is often normal [43].

The best method for the clinical and polysomnographic diagnosis
of paroxysmal nocturnal events is the video EEG-polysomnography.
This kind of investigation involves monitoring the patient during sleep
through neurophysiological, cardio-respiratory, and video modalities.

It is proven that dystonic posturing and hyperkinetic automatism are
specific for NFLE, and other motor patterns like sitting, standing or
walking are not discriminant for the diagnosis instead [57].

From a therapeutic point of view, carbamazepine is the drug of first
choice for the EFN. The response to low doses of this drug is even
considered a diagnostic element ex adiuvantibus. In most patients is
obtained a complete seizures control or a significant reduction of the
episodes. In about a third of the cases, patients are resistant to treatment

[58].



3.2 PATHOPHYSIOLOGY

Dystonic—dyskinetic features, observed during the seizures, suggest
an involvement of subcortical structures like the basal ganglia (whose
main components are the striatum - caudate nucleus and putamen nu-
cleus - the pallidum nucleus, the sustantia nigra and the subthalamic
nucleus). Instead, the characteristic motor beahaviors of NFLE patients
are difficult to abscribe to a specific brain areas. Complex behaviors, as
demonstrated by several surgical studies, [52], [53], [54], [55], have been
demonstrated to be sustained by ictal discharges that may originate in
the frontal lobes (including the insular structures and the anterior cin-
gulate) and in the temporal lobe (including amygdala) and brainstem.

Various studies, in NFLE patients, have reported occurrence of sizures
in the early stages of NREM sleep, especially the EEG discharge on-
set coincided with physiological sleep transient (K-complex, periodic
arousals) [46], [47]; these evidences support the hypothesis that thalamo-
cortical drive evoking physiological sleep transients and subcortical cir-
cuit, controlling the arousal mechanism, may trigger the epileptic foci
in frontal mesial structures [47].

Besides, it is likely that the cortical discharges are not confined to
the orbitofrontal or mesiofrontal regions but also act on other networks,
involving for example the limbic system, to explain the primitive behav-
iors. In Figure 9, from [56], the limbic loop is shown. It participates in
the production of sudden awakenings and complex motor behavior.
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CLINICAL MANIFESTATIONS :
SUDDEN AROUSAL, COMPLEX MOTOR AND AUTONOMIC BEHAVIOUR

Figure 9: The limbic loops partecipating in the production of sudden awaken-
ings and complex motor behaviors.
The image is taken from [56]



4 METHODS AND MATERIALS

4.1  PARTICIPANTS

Thirteen NFLE patients (6 males and 7 females), with a mean age of
38.3 years and standard deviation of 11.8 years (range between 18 and
55) participated in the study. The patients that underwent this study
had been recruited by the Epilepsy and Sleep Center of IRCCS, Istituto
delle Scienze Neurologiche di Bologna, Department of Biomedical and
Neuromotor Sciences, University of Bologna, Italy. A total of thirteen
healthy controls (6 males and 7 females), with a mean age of 38.5 years
and standard deviation of 10.8 years (range between 19 and 53), were
selected to match the patient group in age and gender. All the acquisi-
tion were performed between March 2012 and October 2014. This study
was approved by the local Ethical Committee. General information of
both groups are summarized in Table 1.

Table 1: List of patients and healthy controls, matched in gender and age.

Patients Healthy Controls

N sex age(yrs) N sex age (yrs)

1 F 18 1 F 25
2 M 20 2 M 19
3 F 28 3 F 27
4 F 29 4 F 32
5 M 35 5 M 37
6 F 36 6 F 37
7 F 42 7 F 40
8§ M 44 § M 39
9 F 45 9 F 46
10 M 46 10 M 42
11 F 49 11 F 53
12 M 50 12 M 51
13 M 55 13 M 54
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The clinical features of patients are various between the different sub-
jects. The frequency of seizures was different at the onset of the disease
and at the time before fMRI evaluation. In fact, at onset the seizures fre-
quency ranged from 3/4 crises a year to several crises during a single
night, instead in the last six months before the fMRI acquisition some
patients showed no more symptoms and seizures frequency correspond
at most to 2/3 crises during a night.



4.2 FMRI DATA ACQUISITION

The MRI scans were acquired using a MR scanner GE Medical System
Signa HDx15, with the following characteristics:

magnetic field strength: 1.5 T;
gradient strength: 33 mT/m;
receiver channels: 8 channels;
slew rate: 276 ms;

maximum rise time: 120 T/m s;

coil: 8-channel brain phased array coil GE (1.5 T HD 8 Channel
High Res Head Array for the GE HDx MR System).

For each subject two runs of resting-state were collected, one follow-
ing the other one, during the same scan section. The subjects did not
exit the MR scanner between the two scans. During each scan, gradient
echo - echo planar imaging (GE-EPI) sequences were acquired over a
period of 4 min 30 s. The partecipants were instructed to rest with their
eyes closed and to stay awake during the acquisition process.

In Table 2 the parameters of rs-fMRI acquisition are shown.

Table 2: Parameters of resting-state fMRI acquisition process

TR 3000 MS
TE 40 ms
flip angle 90°
slices per volume 34
number of volumes 90
FOV 24 cm (nv 128)

voxel dimension  1.875 x 1.875 x 4 mm

For each acquisition, the first five volumes acquired, called dummy
volumes, were rejected, beacause an imaging steady-state has not yet
been reached.
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4.3 DATA PREPROCESSING

Data preprocessing was previously performed by the functional MR
Unit, paying specific attenction to the removal of noise and in particular
physiological noise. In this study the entire procedure for completeness
is reported.

Data preprocessing was carried out using FSL (the FMRIB Software
Library, version 5.0.6), [64] . This software is a comprehensive library of
analysis tools for functional, structural and diffusion MRI brain imaging
data.

The FSL tool MELODIC (Multivariate Exploratory Linear Optimized
Decomposition into Indipendent Components, version 3.14) was used
to perform a single-session ICA on each run of each subject [66]. Here
the procedure is briefly reported: firstly a high pass filtering with cut
off of 100 s was applied, the motion correction with MCFLIRT (an intra-
modal motion correction tool designed for use on fMRI time series and
based on optimization and registration techniques used in FLIRT, a fully
automated robust and accurate tool for linear inter- and inter-modal
brain image registration) was performed and also slice timing correc-
tion (acquired in an inteleaved way) was accomplished. Subsequently,
a Gaussian smoothing with a FWHM of 6 mm was performed and a
maximum automatic dimensionality estimation was achieved. Finally,
a threshold of 0.99 was applied to IC maps.

In Figures 10, 11, 12, 13, 14, the parameters listed above are shown in
the MELODIC toolbox windows.

After using MELODIC, a linear registration of EPI images to 3D space
was performed for each run of each subject, using the Boundary-Based
Registration (BBR) method [67]. In Figure 15 the EPI image of one
patient (N=12) is displayed.

Subsequently, a visual inspection of the components was performed,
following the criteria reported in [65].

Finally the noise components were regressed out, with fsl function

fsl_regfilt.
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Figure 15: EPI of the 12th patient.
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4.4 DATA ANALYSIS

The pre-processing procedure has had the aim of prepare fMRI data
for the following statistical analysis. I have dealt with this analysis in
the first person.

We dealt with several steps, from the modalities of choice of nodes of
future networks to graph analysis performed by using Matlab software.

4.4.1  Nodes decision method

Firstly, we chose a way to segment 3D brain image in different region
of interest (ROIs). This step is usually carried out using an anatomical
atlas. To date, many atlases exist but there is not an atlas better than
the others. Nevertheless, the Automated Anatomical Labeling (AAL)
is the most used in functional brain studies, [59], [60], and the second
most commonly used is the Harvard-Oxford probabilistic atlas, [61].
However, these methods, and in general any methods using atlases, are
flawed and limited by a priori knowledge. The best thing to do is to
use a method with the fewest prior assumptions (the only method that
completely avoid any a priori assumption is the voxel-wise method, in
which any voxel corresponds to a node).

We chose a different modality to obtain the ROIs in our study. We
resorted to a specific software, called Freesurfer [62], that works with
complex segmentation algorithms. The main advantages in using this
software are that the segmentation is subject-specific and we can avoid
the critical step of registration to a standard space. Freesurfer is an open
source software suite for processing and analyzing brain MRI images.
We performed it for each subject and this allowed us to obtain regions
subject-specific. We then obtained all the ROIs that Freesurfer was able
to segment, and we chose 85 regions between these covering the entire
cortex and deep grey matter. For the result of segmentation, see Figure
20.

In Tables 3, 4 and 5 subcortical and cortical ROIs are listed. All the
regions, i.e. the future nodes, are associated with a number which will
make the recognition easier.
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Table 3: List of subcortical ROIs, left and right side

N ROI

1 Brainstem

2 Left Accumbens area
3 Left Amygdala

4 Left Caudate

5  Left Cerebellum Cortex
6 Left Hippocampus

7 Left Pallidum

8 Left Putamen

9 Left Thalamus

10 Left VentralDC

11 Right Accumbens area
12 Right Amygdala

13 Right Caudate

14 Right Cerebellum Cortex
15 Right Hippocampus
16 Right Pallidum

17 Right Putamen

18 Right Thalamus

19 Right Ventral DC
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Table 4: List of cortical ROIs on the left side

N ROI

20 Left Caudal Anterior Cingulate
21 Left Caudal Middle Frontal

22 Left Cuneus

23 Left Entorhinal

24 Left Frontal Pole

25 Left Fusiform

26 Left Inferior Parietal
27 Left Inferior Temporal
28 Left Insula

29 Left Isthmus Cingulate
30 Left Lateral Occipital
31 Left Lateral Orbito Frontal
32 Left Lingual

33 Left Medial Orbito Frontal
34 Left Middle Temporal
35 Left Paracentral

36 Left Parahippocampal
37 Left Pars Opercularis
38 Left Pars Orbitalis

39 Left Pars Triangularis
40 Left Pericalcarine

41 Left Postcentral

42 Left Posterior Cingulate
43 Left Precentral

44 Left Precuneus

45 Left Rostral Anterior Cingulate
46 Left Rostral Middle Frontal

47 Left Superior Frontal
48 Left Superior Parietal
49 Left Superior Temporal
50 Left Supramarginal
51 Left Temporal Pole

52 Left Transverse Temporal
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Table 5: List of cortical ROIs on the right side

N ROI

53 Right Caudal Anterior Cingulate
54 Right Caudal Middle Frontal

55 Right Cuneus

56 Right Entorhinal

57 Right Frontal Pole

58 Right Fusiform

59 Right Inferior Parietal
60 Right Inferior Temporal
61 Right Insula

62 Right Isthmus Cingulate
63 Right Lateral Occipital
64 Right Lateral Orbito Frontal
65 Right Lingual

66 Right Medial Orbito Frontal
67 Right Middle Temporal
68 Right Paracentral

69 Right Parahippocampal
70 Right Pars Opercularis
71 Right Pars Orbitalis

72 Right Pars Triangularis
73 Right Pericalcarine

74 Right Postcentral

75 Right Posterior Cingulate
76 Right Precentral

77 Right Precuneus

78 Right Rostral Anterior Cingulate
79 Right Rostral Middle Frontal

8o Right Superior Frontal
81 Right Superior Parietal
82 Right Superior Temporal
83 Right Supramarginal
84 Right Temporal Pole

85 Right Transverse Temporal
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4.4.2 Temporal series

For each RO, the respective temporal series was obtained by averag-
ing the time series across all voxels inside that specific region, using the
fsl function fslmerge.

An interesting and important issue arises before importing time se-
ries in Matlab: we had two temporal series for each region for all the
patients and the healthy controls, because two runs per subject were
acquired initially. This is the standard protocol for rs-fMRI acquisition
optimised at the functional MR Unit at the S.Orsola-Malpighi polyclinic.
This method reduce the problems related to incorrect acquisitions (e.g.
if one run was damaged by head motion or by some other artifacts, it is
however possible to use the other for studies) but primarily this process
allows to improve the Signal to Noise Ratio (SNR).

Unlike the fMRI analysis, in which the two runs are tipically aver-
aged at different possible levels, a procedure to handle with two scans
does not exist in fMRI graph based analysis. Hence, we decided to av-
erage these two acquisitions for each ROI. The problem was to decide
at which level of the entire process of data analysis we should have had
average the two temporal series. We decide that the averaging process
would have been done before binarization of correlation matrices, be-
cause after that, the information inside the temporal series would have
been lost. Therefore, we decided to average the time series in their
signal form, as the first process subsequent to their importation in Mat-
lab. It could be interesting in the future to develop other processing
methods to handle with the two runs.



4.4.3 Graph theoretical data analysis in binary graphs

The graph theory data analysis consisted in generating a network
for every subject and calculating the topological parameters for each
of these. After rs-fMRI data have been collected from the subjects and
mean time series of each region of interest have been extracted from the
set of images, the Pearson Correlation analysis was performed between
all possible pairs of ROIs. The correlations were represented in the form
of a correlation matrices, which were binarized at given thresholds to
yield different adjacency matrices. Therefore the functional networks
were defined, since each ROI was represented by a node and each func-
tional connection was represented by a link. In Figure 16 the whole pro-
cess of generating functional network is shown, following the scheme
of Wang et al. in [68], with our own data.

In the next subparagraphs the entire process will be explained in
more detail.
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Figure 16: Process of generating functional network: (1) Extraction of the time
series (C) from rs-fMRI data (B) within each anatomical region.
ROIs are obtained according to the Freesurfer results (A); (2) Calcu-
lation of the functional connectivity correlation matrix (D) between
any pairs of nodes; (3) Application of the threshold to the correla-
tion matrix to generate the binary connectivity matrix; (4) Visual-
ization of the association matrix as a graph (F).
The structure of the image was taken from [68].
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Definition of Correlation Matrices

Once the temporal series have been imported in Matlab and the av-
erage of the two runs has been performed, the first step was to de-
cide which correlation metrics must be used to generate the correlation
matrices. There were different possibilities of choice. As reported in
the study made by Xia Liang et al. [63] , which investigated the influ-
ences of different correlation metrics on the topological properties of
functional brain networks obtained starting from rs-fMRI, the Pearson
Correlation showed the most valid and reliable results for resting-state
brain network studies, whereas partial correlation should be treated
with caution.

Based on these results, we chose the Pearson Correlation to obtain
the correlation matrices. In Matlab environment, this corresponds to
use corr function between every couples of ROIs for each subject. An
example of the resulted matrix is shown below in Figure 17
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Figure 17: Correlation matrix of a healthy control (N=10). The colorbar shows
the range of the values, between -1 and 1.
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To evaluate the correlation coefficients values, the histograms of these
distributions and the histograms of p values distributions were plotted.

We also plotted these distributions with a magnification on x axes
and y axes separately, with the aim of obtaining the plots of p values
distributions with better details.

To understand if there were any obvious differences between the cor-
relation coefficients of the patients and the correlation coefficients of the
healthy controls, we performed a preliminary statistic test for each of
these between the two groups.

First of all, we performed the normality test, namely one-sample
Kolmogorov-Smirnov test, to figure out if the samples were normally
distribuited or not. The normality test rejected the null hypotesis that
the samples had Gaussian distributions, so we chose a non-parametric
test, namely the Mann-Whitney test (see section 5.2).

Finally, to be sure that the information extracted from the temporal
series were not due to chance, we performed a phase shuffling of data.
We shifted a number (n) of values from the start to the end in each
temporal series of each subject, since n was a random number between
1 and 9o (number of values in each time series that correspond to the
number of the acquired volumes). In this way we wanted to understand
if the data - and the information carried by them - were due to fortuity
or not (see section 5.2).



Thresholding and Adjacency Matrices

Before any consideration on which threshold we chose, we have ne-
glected all the values of the correlation matrices between -1 and o, as
reported in [74], because, to date, there is not a physiological interpreta-
tion for the negative functional connection between two regions of the
brain. Maybe, the future network methods may be able to quantify the
role of the negative weights in the global network organization.

As Bullmore and Bassett affirm, [70], the best choice to implement
process of a threshold to the adjacency matrices is to investigate the
topological properties as a function of changing connection density
value.

The connection density (), or density link, is defined as

&t
2
where ¢ is the number of links generated by that value of threshold

T, N is the number of nodes and w is the maximum number of

links that could exist in a network with N nodes.

In order to calculate network properties as function of the threshold,
we started with choosing one hundred different values of "density link"
between o and 1, with step of 0.01. For every & value we force all the
adjacency matrices to have the same number of links.

At each step, we knew § value and the total number of links, so we
calculated the number of connections (&) for a specific threshold T, for
each network for every value of 6. ¢; correspond at each step to the
number 7 of link with greater significance.

Deepening the methodological process, we sorted in descending or-
der, for every §, the r values of the n links, knowing that the n-th of
these values (where the n-th value is equal to ;) coincides with the r
value relative to the threshold value for that particular 5.

So, we had 100 different values of density link for 26 different correla-
tion matrices (13 healthy controls and 13 patients).

In Figure 18 the same connection matrix with different number of
links is shown. That means that for each matrix was used a different
threshold (and different ).

Obviously, the number of the connections in the matrices (white pix-
els) are twice the number of the links, because if a connection between
the node i and the node j exists, then there is a connection in both i,
and j,i positions. It follows that the connection matrices are symmetric.
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Topological parameters and group analysis

The calculation of the topological parameters of the networks was
performed using Matlab functions contained in BGL [73], and BCT [74],
software libraries.

The parameters that we chose to calculate can be divided into two
main groups: those related to the entire network and those related to a
specific node.

For the first group, we calculated the number of the connected compo-
nents, the dimension of the giant connected component and the Global
Efficiency, all three as function of threshold values, for every network.
The Matlab functions that we used are components.m and efficiency_bin.m
respectively. We performed also the Mann-Whitney test to analyze dif-
ferences between the connected components of the healthy controls and
the patients, for each value of the threshold. We performed the same
Mann-Whitney test also for Global Efficiency (see 5.3).

The second group of parameters, those related to a specific node, is
composed by Clustering Coefficient, Node Degree, Local Efficiency and
Betweenness Centrality.

The respective functions in Matlab are clustering_coefficient.m, degrees_-
und.m, efficiency_bin.m and betweenness_bin.m. For each of these parame-
ters the Mann-Whitney test was carried out with the aim of investigate
about the possible significant differences between the healthy controls
and the patients for all values of the thresholds (see section 5.3).
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4.4.4 Graph theoretical data analysis in weighted graphs

Until this moment, we have analyzed the unweighted graphs, in
which the information carried by the links is limited to the connection
existence. If the links of the graphs had a weight for each connection,
the information would extend to the strenght of the connection itself.

We resumed the correlation matrices of networks and we considered
only values between 0.2 and 1. Starting from this matrices, we gener-
ated weigthed networks, in order to study two more topological param-
eters, namely Spectral Centrality and Salient Centrality.

The two functions used in Matlab are spectral_centrality_scott.m and
salient_centrality.m. For the reference, see respectively [71] and [72].



RESULTS

5.1 FREESURFER SEGMENTATION

The Freesurfer segmentation performed on the 3D image of one heal-
thy control (Figure 19) is shown in Figure 20, where the 85 ROIs that
we chose as nodes are represented in false colors.

Figure 19: Morphological 3D image of one healthy control. From left to right
sagittal, coronal and axial views are shown.

Figure 20: Result of Freesurfer segmentation performed on 3D image of one
healthy control. The 85 ROIs are represented with false colours.
From left to right sagittal, coronal and axial views are shown.
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5.2 CORRELATION ANALYSIS

Pearson correlation was used to measure the association between ev-
ery couple of nodes.

Figures 21 and 22 show the distribution of correlation coefficients of
13 healthy controls and 13 patients. We can note that values in the
histograms go from - 0.5 to 1, and these bin distributions are centered
around o.5.

We were also interested in the significance of these correlations, so we
analyzed and plotted the distributions of the p values of the correlations
seen before. The distribution of p values of the correlation coefficients
of one healthy control is shown in Figure 23 and the same distribution
for one patient is shown in Figure 24. In order to better visualize the
distributions, we zoomed in all the plots of the p values distributions
along both axes separately. In Figures 25 and 26 the plots of all subjects
with y values between o and 100 are shown, in Figures 27 and 28 the
same distributions are displayed but with a zoom on x axis, in particular
with x values that go from o to 0.1. In this way we can observe in a better
detail the range of p values that are lower than o.05, that correspond to
correlations that are significant.



Counts

Counts

Counts

400 400
300 300
2
200 g 200
100 ‘ 100,
% 0 0 05 1 -1
Correlation coefficients
(a)
400 400
300 300
2
200 § 200
100 100,
% 05 0 05 1 Kl
Correlation coeficients
400 400
300 300
2
£
200 3 200
100 100,
% 0 0 05 1 %
Correlation coefficients
400 400
300 300
2
200 S 200
3
100 100,
% 05 0 05 1 %

Correlation coefficients

400

trols.

400

-05 0
Correlation coefficients

(b)

400,

0
Correlation coefficients

(e)

—_ 0

0
Correlation coefficients

(h)

0 05 1 9’\
Correlation coefficients

(k)

0
Correlation coefficients

(m)

5
Correlation coefficients

o
o
o

S
@
o
o
@

I

61

o
o
o

(c)

Correlation coefficients

(f)

Correlation coefficients

(V)

Correlation coefficients

(1)

Figure 21: Histograms of correlation coefficients distributions in healthy con-



62

600 600
500 500
400 400

£ £

S 300 5 300,

o o
200 200
100, 100

% 05 1 %

-05 0 05
Correlation coefficients

(a)

600 600
500 500
400 400

£ £

S 300 5 300,

o (o]
200 200
100 100

% 05 0 05 1 %
Correlation coefficients
600 600
500 500
400 400
£ £

S 300 5 300,

o (8]

200 200
100 100

% 0 0 05 1 %

Correlation coefficients
600 600
500 500
400 400
£ £
S 300 S 300,
o (8]
200 200
100 ‘ I 100
% 0 0 05 1 9
Correlation coefficients
600
500
400
28
5 300
o
200
100
g

600

500!

400

200

100

Counts
g
.
g
.
s

0 05 -05
Correlation coefficients Correlation coefficients

(b)

600
500!

400

Counts
w
3
3

200

100

;
)

-05 0 05
Correlation coefficients

() (f)

05 0 05
Correlation coefficients

600
500

400

£
3 300
o
200
100
- 0 e
-0.5 0 05 1 -1 -05 0 05 1
Correlation coefficients Correlation coefficients

(h) (V)

600
500

400

200!

100

Counts
w
3
3
)
o
o

0 05 % 05
Corelation coefficients Correlation coefficients

(k) (1)

-0.5 0 05
Correlation coefficients

(m)

Figure 22: Histograms of correlation coefficients distributions in patients.



25':":' T T T T T T T T T

2000

1500

Counts

1000

200

D ] L i L 1 -

0 .1 oz 0.3 0.4 0.5 0.6 0.7 0.5 0.9
p wvalue

Figure 23: Histogram of p values distribution in one healthy control.

25':":' T T T T T T T T T

2000

1500

Counts

1000

500

I:I - i — R p— 1 . ke 1

0 0.1 0.z 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p walue

Figure 24: Histogram of p values distribution in one patient.

63



64

100,

80

60|
2
£
s
3

40

20|

% 02 0.4 06
100

Counts
N s 2 0=
o 8 &8 3 8
E
3
=
-
E
E
1
b

&
o
Y

pvalue

(d)

S
o
Y

Counts
) IS @ @
o S S 3 3

100,

80
60)
2
£
s
3
40|
20|
% 02 0 06 0.8 1

pvalue

Counts

100

80

60

Counts

40

20

o

Counts
o
o
=
o
Y
-

% 0.2 0.4 06 08 1
pvalue

(b)

(c)

100, 100

80 80

60
40
20

20

0 wlaly
0 02 04 06 08 1
p value

(e)

o

Counts
IS
S
Counts
o

(f)

100
80
60

40

Counts
N IS Y ®
o S S 3 3
Counts

20
RPN TV TR 0
0 02 04 06 08 1 0 02 04
pvalue pvalue
(h) (i
100,

100

80

60

40

20

o

Counts
N IS
S S
Counts
o
o
o
@

% 02 0.4 06 08 1
pvalue

(k)

02 4
pvalue

(V)

100
80
60
40

20

% 02 0.4 06 08 1
pvalue

(m)

0.8

pvalue

06 0.8

pvalue

06 0.8

0.8

Figure 25: Histograms of p values distributions in healthy controls, with a

Zoom on 'y axes.



5.2 CORRELATION ANALYSIS | 65

100 100 100
80 80 80
60 60| 60
2 2 2
€ € €
8 § §
40 40 40
20 20 20
0 P o e B s m Ll s .. 0 BT TP S -
0 02 4 0.8 1 0 02 04 06 08 1 0 02 04 06 08 1
pvalue pvalue p value

() (b) (c)

100 100, 100,
80 80 80

60 60| 60

40 40

20 20 20

[N P T AT
04 06 08 1

o
o
N

Counts
o
o
Y
Counts
IS
S
E
Counts
o

FT ORI T TR Y 0
0.4 086 0.8 1 0 02 04 06 08 1

pvalue pvalue p value

(d) (e) (f)

100 100, 100,

80 80 80
60 60| 60
2 2 2
£ £ £
H s s
3 3 8
40 40 40
20 20| 20
) S - - — 0 . T 0 [ 11N Y SR T S
0 02 04 086 0.8 1 0 02 04 06 08 1 0 02 04 06 08 1
pvalue pvalue pvalue

(9) (h) (V)

100 100

80 80 80

60 60| 60

40 40
20 20 20

WY VTN T RN
08 1

o
o
N
o
@
of
o
Y
S
o
®
ey

Counts
o
Counts
s
o S
o !
o
Y
Counts
3
S

06 02 0.4
pvalue pvalue pvalue

(i) (k) (1)

Counts

% 02 0.4 06 08 1
pvalue

(m)

Figure 26: Histograms of p values distributions in patients, with a zoom on y
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Figure 27: Histograms of p values distributions in healthy controls, with a
ZOoom on X axes.
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Figure 28: Histograms of p values distributions in patients, with a zoom on x
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The results of the Mann-Whitney test performed for each correlation
coefficient between the two groups are shown in Figure 29. The colours
represent the p values of the statistic test, from o to 1. If the value of
p is less than 0.05, the difference between the correlation coefficients is
statistically significant, instead if p is greater than o.05, the difference is
not significant, since 0.05 has been chosen as the discriminant level for
the test. We did not performed any correction for multiple comparisons
beacause it was only an explorative analysis.

|

i

5 B

1

Figure 29: Matrix of p values of Mann-Whitney test for correlation coefficients.

In Figures 30 and 31 the distributions of correlation coefficients of
healthy controls and patients are shown after shifting the first n values
from the start to the end of the temporal series. As we expected, after
data shuffling, correlation coefficients distributions are centered around
zero and they have a tipical Gaussian shape. We plotted also the dis-
tributions of p values of shuffled data, and the results are displayed in
Figures 32 and 33. We noticed that the number of p values that are less
than 0.05 are substantially less than p values in the same range before
shuffling of data.
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Figure 32: Histograms of p values distributions in healthy controls after phase
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Figure 33: Histograms of p values distributions in patients after phase shuf-
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5.3 TOPOLOGICAL PARAMETERS AND GROUP ANA-
LYSIS

Topological parameters are divided into two main groups: those re-
lated to the entire network and those related to a specific node.

For the first group, we calculated the number of the connected compo-
nents, the dimension of the giant connected component and the Global
Efficiency for different thresholds for every networks. In Figures 34
and 35 we noticed that the number of the connected components, both
in healthy controls and in patients, decreases with the increasing of the
threshold value. The connected components averaged across all healthy
controls and all patients are shown in Figure 36, and we noticed a very
similar tendency for the two groups of subjects. We did also the Mann-
Whitney test (also called Wilcoxon test) to analyze differences between
the connected components of healthy controls and patients, for each
value of the threshold. The result showed that there were not statisti-
cally significant differences between the two groups of values.
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Figure 36: Connected components as function of threshold in healthy controls
(blue) and patients (red), with bar errors. The result of the Mann-
Whitney test showed that there were not statistically significant dif-
ferences between the two groups.

In Figures 37 and 38 the dimensions of giant connected components
for different thresholds for each subject are shown. We noticed that
for a threshold value equal to 0.1, which means that there is 10% of
maximum number of links, the giant connected component in almost
every subject contains already 50-60 nodes, so it is already well defined.

The Global Efficiency was calculated for every threshold point, aver-
aged across all patients and all healthy controls. The results are shown
in Figure 39. Once more, the Global Efficiency is similar for the two
groups and the Mann-Whitney test revealed that there weren’t statisti-
cally significant differences.
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Figure 39: Global Efficiency in patients (red) and healthy controls (blue) as
function of threshold. The result of the Mann-Whitney test showed
that there weren't statistically significant differences between the
two groups of values

The second group of parameters, those related to specific node, is
composed by Clustering Coefficient, Node Degree, Local Efficiency and
Betweenness Centrality. For each of these parameters the Mann-Whitney
test was performed with the aim to investigate about possible signifi-
cant differences between healthy controls and patients along all values
of threshold. The results are shown below: the Clustering Coefficient in
Figure 40, the Node Degree in Figure 45, the Local Efficiency in Figure
52, the Betweenness Centrality in Figure 57.

All of these results were corrected for multiple comparisons, using
False Discovery Rate. Any difference after correction did not survive.
For this reason, we considered a more strict criterion to test significance
(p < o0.01), without performing multiple comparison correction. The
four specific node measures showed some significant differences at this
new level of significance, which are displayed in figures 41, 46, 53, 58,
near the images with p < 0.05.

We consider more robust the differences that we found within a den-
sity link range approximatively between 0.2 and 0.6. This range in-
cludes the Small-Worldness topology range [37], but it is slightly wider
because we did not evaluete the Small-Worldness of our data.
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Figure 40: Statistically significant differences in Clustering Coefficient be-
tween patients and healthy controls. Along x axis the index for
the nodes is reported, from 1 to 85, and along y the density link is
reported as a percentage. Color white means that there is a signifi-
cant difference (p < 0.05), with a higher value for the patients and
color red means that there is a significant difference (p < 0.05), with
a lower value for the patients.
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Figure 41: Statistically significant differences in Clustering Coefficient be-
tween patients and healthy controls. Along x axis the index for
the nodes is reported, from 1 to 85, and along y the density link
is reported as a percentage. Color white means that there is a sig-
nificant difference (p < 0.01), with a higher value for the patients
and color red means that there is a significant difference (p < 0.01),
with a lower value for the patients. The main values that survived
are in nodes 4 (left caudate), 13 (right caudate) and 73 (right peri-
calcarine).



In all the nodes 4 (left caudate), 13 (right caudate) and 73 (right per-
icalcarine), the value of Node Degree of the patients is higher than the
value of Node Degree of healthy controls.

Figures 60 and 55 show the ROIs obtained by segmentation of Freesur-
fer in which some significance differences have been identified for Clus-
tering Coefficient.

Figure 42: Result of Freesurfer segmentation of left and right caudate per-
formed on 3D image of one patient (N = 11). The ROIs are rep-
resented in red. From left to right sagittal, coronal and axial views
are shown.

Figure 43: Result of Freesurfer segmentation of left pericalcarine performed
on 3D image of one patient (N = 11). The ROI is represented in red.
From left to right sagittal, coronal and axial views are shown.
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In Figure 44 the 85 ROIs are visualized with the BrainNet Viewer (Xia
et al. [75]). The regions in which we found a significant difference for
the Clustering Coefficient value, within a density link range between 0.2
and 0.6, are represented in green (if the value is higher for the patients
than the healthy controls, like left caudate and right pericalcarine) and
in red (if the value is lower for the patients than the healthy controls).
The regions in which we did not found any significant difference within
that range are represented in blue.
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Figure 44: The 85 ROIs are visualized with the BrainNet Viewer. Color blue
means that there is not a significant difference, color green means
that there is a significant difference (p < 0.05), with a higher value
for the patients and color red means that there is a significant differ-
ence (p < 0.05), with a lower value for the patients. L.CAU stands
for left caudate and R.PERIC stands for right pericalcarine.
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Figure 45: Statistically significant differences in Node Degree between pa-
tients and healthy controls. Along x axis the index for the nodes is
reported, from 1 to 85, and along y the density link is reported as a
percentage. Color white means that there is a significant difference
(p < 0.05), with a higher value for the patients and color red means
that there is a significant difference (p < 0.05), with a lower value
for the patients.
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Figure 46: Statistically significant differences in Node Degree between pa-
tients and healthy controls. Along x axis the index for the nodes is
reported, from 1 to 85, and along y the density link is reported as
a percentage. Color white means that there is a significant differ-
ence (p < 0.01), with a higher value for the patients and color red
means that there is a significant difference (p < 0.01), with a lower
value for the patients. The main values that survived are in nodes
3 (left amygdala), 6 (left hippocampus), 9 (left thalamus), 61 (right
insula).
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In the nodes 3 (left amygdala), 6 (left hippocampus) and 61 (right
insula), the value of Node Degree of the patients is higher than the
value of Node Degree of healthy controls. Instead, in the nodes 9 (left
thalamus), the values of Node Degree of the patients is lower than the
value of Node Degree of healthy controls.

Figures 59, 48, 49 and 50 show the ROIs obtained by segmentation of
Freesurfer in which some significance differences have been identified
for Node Degree.

Figure 47: Result of Freesurfer segmentation of left amygdala performed on
3D image of one patient (N = 11). The ROI is represented in red.
From left to right sagittal, coronal and axial views are shown.

Figure 48: Result of Freesurfer segmentation of left hippocampus performed
on 3D image of one patient (N = 11). The ROl is represented in red.
From left to right sagittal, coronal and axial views are shown.



Figure 49: Result of Freesurfer segmentation of left thalamus performed on
3D image of one patient (N = 11). The ROI is represented in red.
From left to right sagittal, coronal and axial views are shown.

Figure 50: Result of Freesurfer segmentation of right insula performed on 3D
image of one patient (N = 11). The ROI is represented in red. From
left to right sagittal, coronal and axial views are shown.
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| RESULTS

In Figure 51 the 85 ROIs are visualized with the BrainNet Viewer
(Xia et al. [75]). The regions in which we found a significant difference
for the Node Degree value, within a density link range between o.2
and 0.6, are represented in green (if the value is higher for the patients
than the healthy controls, like left amygdala and right insula) and in
red (if the value is lower for the patients than the healthy controls, like
left thalamus). The regions in which we did not found any significant
difference within that range are represented in blue.

io 40

Figure 51: The 85 ROIs are visualized with the BrainNet Viewer. Color blue
means that there is not a significant difference, color green means
that there is a significant difference (p < 0.05), with a higher value
for the patients and color red means that there is a significant differ-
ence (p < 0.05), with a lower value for the patients. LLAMY stands
for left amygdala, R.INS stands for right insula and L.THA stands
for left thalamus.
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Figure 52: Statistically significant differences in Local Efficiency between pa-
tients and healthy controls. Along x axis the index for the nodes is
reported, from 1 to 85, and along y the density link is reported as a
percentage. Color white means that there is a significant difference
(p < 0.05), with a higher value for the patients and color red means
that there is a significant difference (p < 0.05), with a lower value
for the patients.
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Figure 53: Statistically significant differences in Local Efficiency between pa-
tients and healthy controls. Along x axis the index for the nodes is
reported, from 1 to 85, and along y the density link is reported as a
percentage. Color white means that there is a significant difference
(p < 0.01), with a higher value for the patients and color red means
that there is a significant difference (p < 0.01), with a lower value
for the patients. The main values that survived are in nodes 4 (left
caudate), 13 (right caudate) and 73 (right pericalcarine).
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In all of these nodes, in which the difference is significance, the value
of Local Efficiency of the patients is higher than the value of Local Effi-
ciency of healthy controls.

Figures 54 and 55 show the ROIs obtained by segmentation of Freesurfer
in which some significance differences have been identified for Local Ef-
ficiency.

Figure 54: Result of Freesurfer segmentation of left and right caudate per-
formed on 3D image of one patient (N = 11). The ROIs are rep-
resented in red. From left to right sagittal, coronal and axial views
are shown.

Figure 55: Result of Freesurfer segmentation of right pericalcarine performed
on 3D image of one patient (N = 11). The ROI is represented in red.
From left to right sagittal, coronal and axial views are shown.
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In Figure 56 the 85 ROIs are visualized with the BrainNet Viewer (Xia
et al. [75]). The regions in which we found a significant difference for
the Local Efficiency value, within a density link range between 0.2 and
0.6, are represented in green (if the value is higher for the patients than
the healthy controls, like left caudate and right pericalcarine) and in
red (if the value is lower for the patients than the healthy controls). The
regions in which we did not found any significant difference within that
range are represented in blue.
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Figure 56: The 85 ROIs are visualized with the BrainNet Viewer. Color blue
means that there is not a significant difference, color green means
that there is a significant difference (p < 0.05), with a higher value
for the patients and color red means that there is a significant differ-
ence (p < 0.05), with a lower value for the patients. L.CAU stands
for left caudate and R.PERIC stands for right pericalcarine.
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Figure 57: Statistically significant differenct in Betweenness Centrality be-
tween patients and healthy controls. Along x axis the index for
the nodes is reported, from 1 to 85, and along y the density link is
reported as a percentage. Color white means that there is a signifi-
cant difference (p < 0.05), with a higher value for the patients and
color red means that there is a significant difference (p < 0.05), with
a lower value for the patients.
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Figure 58: Statistically significant differences in Betweenness Centrality be-
tween patients and healthy controls. Along x axis the index for
the nodes is reported, from 1 to 85, and along y the density link
is reported as a percentage. Color white means that there is a sig-
nificant difference (p < 0.01), with a higher value for the patients
and color red means that there is a significant difference (p < 0.01),
with a lower value for the patients. The main values that survived
are in nodes 3 (left amygdala) and 4 (left caudate), the nodes 45
(left rostral anterior cingulate) and 54 (right caudal middle frontal)
survived also to a more stringent significance level (p < 0.001).



In node 3 (left amygdala) the value of Betweenness Centrality of the
patients is higher than the value of Betweenness Centrality of healthy
controls. Instead, in node 4 (left caudate), 45 (left rostral anterior cin-
gulate) and 54 (right caudal middle frontal) the value of Betweenness
Centrality of the patients is lower than the value of Betweenness Cen-
trality of healthy controls.

Figures 59, 60, 61 and 62 show the ROIs obtained by segmentation of
Freesurfer in which some significance differences have been identified
for Betweenness Centrality.

Figure 59: Result of Freesurfer segmentation of left amygdala performed on
3D image of one patient (N = 11). The ROI is represented in red.
From left to right sagittal, coronal and axial views are shown.

Figure 60: Result of Freesurfer segmentation of left caudate performed on 3D
image of one patient (N = 11). The ROI is represented in red. From
left to right sagittal, coronal and axial views are shown.
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Figure 61:

Figure 62:

Result of Freesurfer segmentation of left rostral anterior cingulate
performed on 3D image of one patient (N = 11). The ROI is repre-
sented in red. From left to right sagittal, coronal and axial views
are shown.

Result of Freesurfer segmentation of right caudal middle frontal
performed on 3D image of one patient (N = 11). The ROI is repre-
sented in red. From left to right sagittal, coronal and axial views
are shown.
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In Figure 63 the 85 ROIs are visualized with the BrainNet Viewer (Xia
et al. [75]). The regions in which we found a significant difference for
the Betweenness Centrality value, within a density link range between
0.2 and 0.6, are represented in green (if the value is higher for the pa-
tients than the healthy controls, like left amygdala) and in red (if the
value is lower for the patients than the healthy controls, lik left cau-
date). The regions in which we did not found any significant difference
within that range are represented in blue.

Figure 63: The 85 ROIs are visualized with the BrainNet Viewer. Color blue
means that there is not a significant difference, color green means
that there is a significant difference (p < 0.05), with a higher value
for the patients and color red means that there is a significant differ-
ence (p < 0.05), with a lower value for the patients. L. AMY stands
for left amygdala and L.CAU stands for left caudate.
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We were also interested in calculating two topological parameters
like Spectral Centrality and Salient Centrality. These two measures,
however, are more suitable for weighted graphs. So we went back to
correlation matrices, we considered only weights from 0.2 to 1, and
from those we calculated these two new parameters. The results of
Mann-Whitney test for patients and healthy controls are displayed in
Figures 64 and 66. Also in this case we performed correction for multi-
ple comparisons, with False Discovery Rate, but nothing survived. So
we changed level of significance from 0.05 to 0.01. These two results are
showned in Figures 65 and 67.
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Figure 64: Significant differences for Spectral Centrality in weighted graphs.
Color white means that there is a significant difference (p < 0.05),
with a higher value for the patients and color red means that there
is a significant difference (p < 0.05), with a lower value for the
patients.
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Figure 65: Significant differences for Spectral Centrality in weighted graphs.
Color white means that there is a significant difference (p < 0.01),
with a higher value for the patients and color red means that there
is a significant difference (p < 0.01), with a lower value for the
patients. The value that survived is in node 71 (right pars orbitalis).
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Figure 66: Significant differences for Salient Centrality in weighted graphs.
Color white means that there is a significant difference (p < 0.05),
with a higher value for the patients and color red means that there
is a significant difference (p < 0.05), with a lower value for the pa-
tients.



12346678 310111213141516171819202122232425 2627 2829 3031323334 353637 383940414243 4445 4647 48 4950 515263 5456 5657 58596061 6263646566 676869 7071 7273747457677 78796081 52838485

Figure 67: Significant differences for Salient Centrality in weighted graphs.
Color white means that there is a significant difference (p < 0.01),
with a higher value for the patients and color red means that there
is a significant difference (p < 0.01), with a lower value for the pa-
tients. The values that survived are in nodes 23 (left entorhinal), 33
(left medial orbito frontal) and 62 (right isthmus cingulate).

In the node 71 (right pars orbitalis) the value of Spectral Centrality
of the patients is higher than the value of Spectral Centrality of healthy
controls.

In all the nodes 23 (left entorhinal), 33 (left medial orbito frontal)
and 62 (right isthmus cingulate), the value of Salient Centrality of the
patients is higher than the value of Salient Centrality of healthy controls.

Figures 68, 69, 70 and 71 show the ROIs obtained by segmentation of
Freesurfer in which some significance differences have been identified
for Spectral Centrality and Salient Centrality.

Figure 68: Result of Freesurfer segmentation of right pars orbitalis performed
on 3D image of one patient (N = 11). The ROI is represented in red.
From left to right sagittal, coronal and axial views are shown.
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Figure 69: Result of Freesurfer segmentation of left frontal pole performed on
3D image of one patient (N = 11). The ROI is represented in red.
From left to right sagittal, coronal and axial views are shown.

Figure 70: Result of Freesurfer segmentation of left medial orbito frontal per-
formed on 3D image of one patient (N = 11). The ROI is repre-
sented in red. From left to right sagittal, coronal and axial views
are shown.

Figure 71: Result of Freesurfer segmentation of right isthmus cingulate per-
formed on 3D image of one patient (N = 11). The ROI is repre-
sented in red. From left to right sagittal, coronal and axial views
are shown.



DISCUSSION

This study investigated the global organization properties of func-
tional brain networks using graph theoretical analysis on rs-fMRI data,
which were recorded in nocturnal frontal lobe epilepsy patients and in
healthy controls.

To date, this study is the only one that provides a graph theoretical
analysis on rs-fMRI data acquired from NFLE patients (and healthy
controls).

There are only four other studies performed with different neuroimag-
ing techniques based on a comparison between NFLE patients and
healthy controls. In the study performed by Ferini Strambi et al. [76],
they utilized magnetization transfer imaging (MTI) and diffusion-weigh-
ted imaging (DWI) in patients with NFLE to assess in vivo whether
subtle brain changes able to modify the relative proportions of free and
bound water and water diffusivity were present in patients with NFLE.
The study involved 29 patients with NFLE and two control groups, one
consisted of 17 healthy controls and the other one consisted of 9 patients
with idiopathic generalized epilepsy (IGE) without sleep disorders. The
results showed that patients with NFLE have lower peak heights of the
whole brain magnetization transfer ratio (MTR) and mean diffusivity
(MD) histograms than those from healthy controls and patients with
IGE. These findings have suggested mild but widespread changes in
the brain of NFLE patients. Therefore they found that in patients with
NFLE the extent of the truly normal brain tissue was reduced. They
did not find any difference in MTR and MD metrics between frontal
and nonfrontal brain regions. These results suggested that subclinical
abnormalities were not confined to a single anatomic location.

In other studies in NFLE patients single photon emission computed
tomography (SPECT) or the positron emission tomography (PET) were
used.

Fedi et al. [77] put their attention to the unresolved issue of how al-
tered function of the neuronal nicotinic acatylcholine (nACh) receptor
causes frontal lobe seizures. Their hypothesis was that the mutation of
nACh caused changes in excitability of a network of cortical and subcor-
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tical neurons preferentially affecting the mesial prefrontal area, which
is the site of seizure origin. They also hypothesized that dopaminergic
system was a key part of the network. To test this hypothesis, they ex-
amined the effect of a mutation associated with NFLE on dopamine re-
ceptor binding measured with PET. The study involved 12 affected sub-
jects with the same mutation of a subunit of the nACh receptor and 19
healthy controls. The reduction in the D1 receptor (the dopamine recep-
tor) binding in the striatum, detected in the right and left putamen was
postulated secondary to elevated extracellular dopamine levels. The
authors concluded that the increase in striatal dopamine results in re-
duced inhibition of excitatory thalamocortical projections to the frontal
lobe and then contributes to paroxysmal motor events genesis.

In another study made by Picard et al. [78], the metabolic conse-
quences of the molecular defect of the receptors nAChRs were explored
in NFLE patients compare to healthy controls. The study involved 8
NFLE patients and 7 age-matched healthy controls with the aim to as-
sess NAChR distribution using PET with a tracer of nicotinic acetyl-
choline receptor. The images showed a difference in the pattern of the
nAChR density in the brains of the patients compared to the healthy
controls in the mesencephalon, the pons and the cerebellum. Further-
more, the volume of distribution values revealed an increase in the
NFLE patients in the same regions seen before when compared to con-
trol subjects. Statistical paramteric mapping (SPM) confirmed the in-
crease in nAChR density in the epithalamus, ventral mesencephalon
and cerebellum of patients, associated with a decrease in nAChR den-
sity in the right prefrontal cortex, right caudatus and right rolandic area.
An additional [18F]-ﬂuorodeoxyglucose (FDG) PET experiment revealed
a hypometabolism in the neighbouring area of the right orbitofrontal
cortex. They finally concluded that the nAChR density decrease in
the prefrontal cortex was consistent with a focal epilepsy involving the
frontal lobe and hypothesized that the nAChR density increase in mes-
encephalon was correlated to the brainstem ascending cholinergic sys-
tem involved in the arousal mechanism.

The fourth study of Heymann et al. [79] focused on NFLE investi-
gated seizure localization and intrafamilial variation combining video-
EEG monitoring and functional neuroimaging. The ictal EEG localiza-
tion resulted inaccurate in the localization of sizures in several cases.
The study involved 4 NFLE patients. Three of these performed in-
terictal PET studies, using FDG, and two performed both interictal
and ictal SPECT. The PET analysis showed that one patient had a con-
sistent left fronto-polar onset that was corroborated by congruent fo-
cal hypometabolism on interictal PET and focal hyperperfusion on ic-
tal SPECT. A second case studied with ictal SPECT showed a right



parasagittal, midfrontal focus. They concluded that NFLE causes frontal
lobe foci that are unilateral and in variable locations in different indi-
viduals.

To date, a complete pathophysiological interpretation of the noctur-
nal frontal lobe epilepsy is not defined. Nevertheless, some hypothesis
have been proposed, since the first description of NFLE was done. Tin-
uper at al. [56] formulated a tentative hypothesis designed to unify
the clinical, anatomo-physiological, and genetic aspects underlying this
disease. They proposed that NFLE was due to a disorder in the thalam-
ocortical circuit involved in the arousal mechanism and they also sug-
gested that the primitive behavior observed in the disease, like scream-
ing, grasping, implorations, imprecations and compulsive wandering,
were due to other cortical networks involving the limbic system (for a
detailed explanation of the areas involved in NFLE see section 3.2).

Another important study in which the possible areas involved in the
fronto-limbic seizures and in parasomnias were investigated, is the one
made by Tassinari et al. [80]. In this study they considered only the mo-
tor expression of events related to epileptic seizures and parasomnias,
in order to establish if these two disorders can be the expression of
tha same central pattern generator (CPG). They analized seizures only
of a proven epileptic nature, recorded by intensive video-polygraphic
monitoring of patients. For each recorded seizure they focused their
attention on movements involving the limbs, the trunk and particularly
the face. On the basis of video and polygraphic analysis of movements
in NFLE patients they finally suggested that in some seizures, the con-
sequent behaviors were the expression of inborn motor patterns, re-
lated to CPG, mainly located outside the cerebral cortex in the meso-
diencephalic-pontine regions and the spinal cord.

Regarding this study, we calculated different parameters from the
constructed brain graphs (see section 5.3), with the aim to characteriz-
ing the functional networks of NFLE patients and healthy controls.

In our study in NFLE patients we did not found any alteration of the
global topology in the brain networks that we constructed. The same
result was obtained in the study of Wang et al. in [82] although focused
on a set of temporal lobe epileptic patients. We compared our results
with fMRI studies that investigated different forms of epilepsy respect
to NFLE because, to date, there are no works in literature that exam-
ined NFLE patients. The Connected Components and Global Efficiency,
in our study, did not show differences between the two groups of sub-
jects, unlike the study made by Liao et al. [84], in which they found
differences in several parameters, such as the degree of connectivity or
the absolute clustering coefficient (defined as the average between all
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the Clustering Coefficient of the nodes), between healthy controls and
patients affected by mesial temporal lobe epilepsy (mTLE).

The local measures that we calculated, Clustering Coefficient, Node
Degree, Local Efficiency and Betweenness Centrality, showed several
differences into the deep grey matter, the limbic system and the frontal
regions.

The Clustering Coefficient resulted to be different for the regions of
left caudate and right pericalcarine. The Node Degree resulted to be
different for the regions of left amygdala, left thalamus and right insula.
The Betweenness Centrality is different for left amygdala and left cau-
date. The Local Efficiency measure showed differences for the regions
of left caudate and right pericalcarine.

For the Clustering Coefficient, which is a measure of the degree to
which nodes in a graph tend to cluster together, the presence of cau-
date could be explained remembering its localization in the brain: the
caduate is part of basal ganglia, which are thought be one of the compo-
nents involved in the dystonic—dyskinetic features during the epileptic
seizures of NFLE patients. We found that this measure was higher for
the patients than the healthy controls, and this could be reflect that cau-
date is more connected to its close regions (the higher the clustering
coefficient of a node, the bigger is the number of that node’s neighbors
that are also neighbors of each other). Indeed, a region that shows an
increase of Clustering Coefficient, increases its ability for specialized
processing [74] and this happens when a group of regions are densely
interconnected. Regarding the Clustering Coefficient value of right per-
icalcarine, to date, we can not give a definitive physiopathological inter-
pretation on the basis of known findings of the disease.

For the Node Degree, a measure that underlines the importance of
a node in the network (if a node shows an high value of Node Degree
means that it is interacting with many other nodes in the graph [74]),
the regions that resulted significantly different between patients and
healthy controls are left amygdala, left thalamus and right insula. The
amygdala is a region that is part of the temporal lobe, which is one of
the two areas (the other is the frontal lobe) involved in the generation
of the ictal discharges, that are the main causes of complex behaviors
during seizures. For this region, the Node Degree is higher for the
patients, and it could be explained as a greater functional participation
in the creation of these particular motor attitudes.

Also the presence of the region of right insula could be explained
focusing on its localization in the brain. In fact this region is part of
the frontal lobe, which is the other structure (with the temporal lobe)
involved in the generation of the aforementioned ictal discharges. Also
for this area the Node Degree is higher in the patients than the healthy



controls, and we could hypothesized that if the number of connections
of a particular region increases, this could represents a greater involve-
ment of the brain structure in the mechanism of generation of the com-
plex behaviors typical of the NFLE.

Regarding the region of left thalamus, the mean value of Node De-
gree of the healthy controls is higher than the mean value of the patients.
This result could be explained analyzing the connection pattern of the
region of interest: maybe, in the NFLE patients, we observed a decrease
of number of connections of the thalamic structure, but the remained
associations might be the strongest ones. We could not know if this hy-
pothesis is true or not, because we generated unweighted brain graphs,
but it could be an interesting future integration of this work.

For the Local Efficiency, which is a measure of integration that rep-
resents the efficiency of a given node in communicating with the rest
of the brain [83], the implication of left caudate could be explained in
a similar way: the higher values obtained in patients groups could rep-
resent the fact that the regions involved in the process of generation
of epileptic seizures might be more efficient in the flowing of the infor-
mation to other parts of the brain, and that could cause an overload
of information which determines those particular dystonic-dyskinetic
tfeatures. The measure of the Local Efficiency assumes even greater im-
portance if we recall the Small Worldness definition (see section 2.3) in
fact, if a network has a Small World topology means that it has an in-
crease of Clustering Coefficient and a decrease of Characteristic Path
Lenght [74], which is inversely related to the Local Efficiency. There-
fore, since we obtained an increase of Local Efficiency measure in the
patients, we can only suppose that this group of subjects has a stronger
Small World topology than healthy controls. Regarding the Local Effi-
ciency value of right pericalcarine, we made the same consideration as
for Clustering Coefficient.

In the case of Betweenness Centrality, which represents a measure of
the node importance inside the network (nodes with high Betweenness
Centrality are located on highly traveled paths), the main important
differences appear for the left amygdala and the left caudate. The first
one shows an increase of the value of the Betweenness Centrality for the
patients than the healthy controls, and this could mean that in NFLE pa-
tients the amygdala becomes an important region through which passes
most of the flow of the information. Instead, for the left caudate, the
value of the Betweenness Centrality is lower in the patients than the
healthy controls: it means that there is a decrease in the number of total
paths that pass through the caudate.

Finally, we found also statistically significant differences in several
regions, across the four topological measures node-specific that we cal-
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culated, only for a small range of thresholds. During the entire study
we focused on statistical differences that we observed into a range of
thresholds between 0.2 and 0.6 (or 20% of link and 60% of links), based
on several studies that reported their range selection (and their relative
modalities of selection [37],[38]). In this case we found these differ-
ences outside the prefixed range, and we report them for completeness.
For the Clustering Coefficient we found the right caudate (the value of
patients is higher than healty controls, such as left caudate), and this re-
gion was found with the same characteristic also for the Local Efficiency
outside our preselected range. For the measure of Node Degree we
found differences in left hippocampus (the value of patients is higher
than healthy controls), instead for Betweenness Centrality the statisti-
cally significant differences was found for left rostral anterior cingulate
and for right caudal middle frontal. These two regions show higher val-
ues for healthy controls than patients and the respective differences was
found in a very little range of density value, but they have a very high
significance. All these last mentioned regions are involved in the afore-
mentioned processes related to the generation of primitive behaviors
typical of NFLE.

We also performed an exploratory analysis on two relatively new
graph measures, Spectral Centrality and Salient Centrality, that have
not been applied yet in brain networks. In both cases we performed
the analysis on weighted graphs. For the Spectral Centrality we found
statistically significant differences in right pars orbitalis and for Salient
Centrality in left entorhinal, left medial orbito frontal and right isthmus
cingulate. In all of these regions, the respective values are higher for
patients than healthy controls.



CONCLUSIONS AND FUTURE
DIRECTIONS

In conclusion, in this study we investigated using graph theoretical
analysis the global and the local topological organization in the whole
brain functional networks constructed starting from rs-fMRI data of thir-
teen NFLE patients and thirteen healthy controls.

Whole brain network organization showed no alterations in NFLE pa-
tients compared to healthy controls. Indeed, the number of Connected
Components and the Global Efficiency, as we saw in section 5.3, did
not show any differences between the group of NFLE patients and the
group of healthy controls.

In NFLE patients an altered topology was observed in limbic system
and basal ganglia. Regarding node-specific measures of centrality, the
Node Degree was higher in amygdala and insula in patients while it
was lower in thalamus; Betweenness Centrality was higher in amyg-
dala and lower in caudate in patients compared to healthy controls. As
for measures of integration/segregation, the Clustering Coefficient and
Local Efficiency were higher in caudate and pericalcarine in patients.

These results showed local alterations in brain structures which are
hypothesized to be involved in the pathophysiology of the NFLE. In
fact the typical dystonic—dyskinetic features and primitive and complex
behaviors, observed during the seizures, suggest an involvement of sub-
cortical structures like the basal ganglia and limbic system.

As far as our analysis is concerned, possible future deepening and
development could be suggested by the results obtained so far. First of
all it could be interesting to investigate the predominant involvement
of the left side of the brain. It could be related to the lateralization
of seizures, that it was impossible to clearly define with scalp EEG in
some patients. So, it could be suggestive to further investigate in this
direction to find out if there is a sort of correspondence between the
data and the obtained side differences of parameters. In the next future,
it could be interesting to flip only a part of the initial EPI images (those
with a predominant lateralization) applying the entire protocl study
analysis to explore the same connectivity parameters. Regarding to the
topological parameters, there is a huge number of measures that could
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be calculated in order to better characterize the brain graphs. One of
these is the Small-Worldness, a parameter that represents the high ca-
pacity of the network to integrate and segregate, which is one of the
most important feature of the (fully connected) graphs. Another fasci-
nating application of the graph-based analysis on rs-fMRI data could be
the construction of a single network focused on specific brain regions,
using the voxel-wise technique to define nodes. Combining these multi-
levels modalities of fMRI data analysis based on graph approach an
advance in the characterization of brain networks connectivity related
to epileptogenesis will be achieved.
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