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Abstract

Capire come modellare l'attività del cervello a riposo, resting state, è il primo passo nec-

essario per avvicinarsi a una reale comprensione della dinamica cerebrale.

Sperimentalmente si osserva che, quando il cervello non è soggetto a stimoli esterni, par-

ticolari reti di regioni cerebrali presentano un'attività neuronale superiore alla media.

Nonostante gli sforzi dei ricercatori, non è ancora chiara la relazione che sussiste tra le

connessioni strutturali e le connessioni funzionali del sistema cerebrale a riposo, orga-

nizzate nella matrice di connettività funzionale. Recenti studi sperimentali mostrano la

natura non stazionaria della connettività funzionale in disaccordo con i modelli in letter-

atura.

Il modello implementato nella presente tesi per simulare l'evoluzione temporale del net-

work permette di riprodurre il comportamento dinamico della connettività funzionale.

Per la prima volta in questa tesi, secondo i lavori a noi noti, un modello di resting state

è implementato nel cervello di un topo. Poco è noto, infatti, riguardo all'architettura

funzionale su larga scala del cervello dei topi, nonostante il largo utilizzo di tale sistema

nella modellizzazione dei disturbi neurologici. Le connessioni strutturali utilizzate per

de�nire la topologia della rete neurale sono quelle ottenute dall'Allen Institute for Brain

Science. Tale strumento fornisce una straordinaria opportunità per riprodurre simulazioni

realistiche, poichè, come a�ermato nell'articolo che presenta tale lavoro, questo connet-

toma è il più esauriente disponibile, ad oggi, in ogni specie vertebrata. I parametri liberi

del modello sono stati scelti in modo da inizializzare il sistema nel range dinamico ot-

timale per riprodurre il comportamento dinamico della connettività funzionale. Diverse

considerazioni e misure sono state e�ettuate sul segnale BOLD simulato per meglio com-

prenderne la natura. L'accordo soddisfacente fra i centri funzionali calcolati nel network

cerebrale simulato e quelli ottenuti tramite l'indagine sperimentale di Mechling et al.,

2014 comprovano la bontà del modello e dei metodi utilizzati per analizzare il segnale

simulato.





Abstract

Understanding how to model brain activity at rest, resting state, is the �rst necessary

step towards a real comprehension of the cerebral dynamics.

Experimentally it is observed that, when the brain is not subject to external stimuli, char-

acteristic networks of brain areas show neural activity greater than the mean. Despite

despite the e�orts of researchers, it is still unclear the link between structural connec-

tions and functional connections of the brain system at rest, organized in the functional

connectivity matrix. Recent experimental studies show the non-stationary nature of the

functional connectivity in disagreement with the models in literature.

The model used in the present thesis to simulate the network temporal evolution allow us

to reproduce the dynamical behavior of the functional connectivity. For the �rst time in

this thesis, at list from the literature we are aware of, a resting state model is implemented

in the mouse brain. Actually little is known about large-scale functional architecture in

mouse brain, despite the wide use of such system in the neurological disorders modeling.

The structural connections used to de�ne the network topology were obtained in the Allen

Institute for Brain Science. The tool supplies an extraordinary chance to obtain realistic

simulation since, as stated in the paper which presents the work, such connectome is the

most comprehensive, available to date, in any vertebrate species. The free parameters

of the implemented model were chosen in order to initialize the system in the optimal

dynamical range to reproduce the non-stationary behavior of the functional connectivity.

Several observations and measures were made on the simulated BOLD signals to better

understand its nature. The agreement between the functional hubs calculated on the

simulated brain network and the ones experimentally identi�ed in the paper of Mechling

et al., 2014, reveals the goodness of the implemented model and of the methods used to

analyze the simulated signal.
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Introduction

The human brain represents only the 2% of the body total mass but it consumes 20% of

the body's energy, most of which is used to support spontaneous neural activity. Instead

the task-related brain activity produces an increase in neuronal metabolism usually small

(< 5%) when compared with the large resting energy consumption [15]. Therefore, to

understand how the brain operates, it is necessary to take into account the component

that consumes most of the brain's energy: the resting state activity.

It was observed that such brain activity is not random but displays speci�c features, as

the correlation in time of the BOLD signal between brain areas. Moreover the resting

state activity it is not an human prerogative but it is observed also in non-human primate

as rodents [24], [25].

Understanding how this activity emerges during rest is not a trivial problem since, in

complex system like the brain, the collective outcome of system-wide dynamics is di�cult

to predict. Modeling studies [20], [18], [9] have demonstrated the importance of the in-

terplay between the anatomical structure, the local neural dynamics and the noise in the

emergence of resting state correlations described by the functional connectivity. Many

models [18], [11], [13] operate at a working point close to the critical edge of instability;

in this state the brain network is in a low �ring stable state and it is continuously driven

by the noise towards other con�gurations. Thus, according to such results, the resting

state re�ects the dynamical capabilities of the brain, which emphasizes the vital interplay

of time and space.

Despite the progress in the discovery of potential mechanisms for explaining how a given

anatomical structure produces dynamics at di�erent temporal and spatial scales, the

relationship between the anatomical connections in the brain and the resting-state func-

tional connections is still not clear. One drawback in the empirical and simulated stud-

ies, is the assumption, often implicit, that the relationships between brain areas, shown

by functional connectivity, are spatially and temporally stationary throughout the en-

tire measurement period of BOLD signals. The groundlessness of such assumption was

demonstrated by recently empirical studies as the one of Allen et al., 2014 [2], where
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Introduction

the authors observed that functional connectivity matrices computed over smaller time

windows vary greatly during a scan session. In the work of Hansen et al., 2015 [19] the au-

thors were able to reproduce the observed switching of the FC by using a model (enhanced

non-linearity mean-�eld model - eMFM) that enriches the non-linearity of the dynamics

of each brain region, in order to increase the number of attractors in the system.

Despite the large amount of mouse brain models used to understand human neurological

disorders, little is known about the large-scale functional architecture of the mouse brain.

This is the �rst study, at list from the literature we are aware of, where a resting state

model is implemented in the whole mouse brain.

Moreover, unlike all cited works, where the anatomical wirings of the brain network are

obtained with the DTI and/or DSI methods, in this work the structural connectivity

matrix is an anterograde tracer mapping of the axonal projection in the mouse nervous

system. The matrix is from the Allen Institute for Brain Science of Washington (USA)

and it represents, to date, the most comprehensive connectivity map in any vertebrate

species [28]. Using this careful biological realistic matrix, the resting state network is

simulated with the eMFM in order to reproduce the functional connectivity switching.

Several measures are performed on the simulated data to better understand the simulated

system behavior. In particular, once de�ned the functional resting state networks, the hub

regions of these networks are identi�ed. The goodness of the comparison between such

simulated functional hubs and the empirical ones as identi�ed in the paper of Mechling

et al., 2014 [25], give us con�dence in our results and, more broadly, in the connectome

based model approach.

This thesis is organized as follows. The �rst chapter introduces the resting state from the

discovery to its possible, debated and fascinating, interpretations; moreover in the chapter

the main principles of functional magnetic resonance imaging (fMRI) are summarized.

The second chapter describes the concepts used in this work to model the brain activity.

The neural population activity can be understood only by reducing the degrees of freedom

of the system, and this is obtained by the mean �eld approximation; the most striking

achievement in this regard is the reduction of a large population of spiking neurons to a

distribution function describing their probabilistic evolution. In turn, this can be further

reduced to a single variable describing the mean �ring rate. This theoretical framework

allows to understand the model used in the present work: the reduced Wong Wang model.

The third chapter summarizes the state of the art of the resting state modeling. The fourth

one illustrates the materials and methods used to simulate and to analyze the mouse brain

resting state activity; it contains information about the structural connectivity matrix,

the implementation of the computer simulations, the kind of analysis performed on the

BOLD signals: the identi�cation of the functional hubs and the decomposition. In the

�fth chapter the results obtained are presented and discussed.
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Chapter 1

The resting state

The resting state is the spontaneous state of the brain i.e. the activity of the brain in

absence of any external stimuli or other behaviorally salient events. Unlike the equilibrium

state of an unperturbed noisy physical system, the spontaneous state of the brain does

not show a trivial random activity, as was expected by the scientists until two decades

ago. Actually there is a remarkable amount of coordinated activity taking place in the

brain even in absence of any speci�c externally-driven task. Since the discovery of such

striking behavior, interest has increased in trying to understand the dynamics of this

resting condition, when we are supposedly not doing anything but our brain keeps active,

organized and coordinated.

In this �rst chapter we provide a general outline of the resting state, starting from its

history and ending with the current discussion on its interpretation; two sections deal

respectively with the anatomy of the resting state network and its relevance for brain

disease.

1.1 A brief history

The idea that the brain of humans exhibits ongoing activity regardless of the presence or

absence of any observable behaviors is an ancient idea: as noted by Seneca in 60 A.D.

in Epistulae morales ad Lucilium �The fact that the body is lying down is no reason for

supposing that the mind is at peace. Rest is... far from restful�.

Nevertheless the �rst clue that the brain activity persists during rest dates to the years

following World War II from early studies of cerebral metabolism. Louis Sokolo� and

colleagues (1948) noted that, although the human brain amounts to just 2% of the total
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1.1 A brief history

body mass, it consumes 20% of the body's energy; these measurements were made over

brains in resting state. Seven years later the group adopted the same technique to ask

whether cerebral metabolism changes globally when one goes from a quiet rest state to

performing a challenging arithmetic problem. Surprisingly, metabolism remained con-

stant; the local changes were too small (usually less than 5% compared with the resting

energy consumption) to be detected by methods designed to measure the energy con-

sumption of the brain as a whole.

Thus, the resting state is not truly a resting state at all.

Despite these considerations, for almost �fty years nobody studied the resting state: it

was not clear how to undertake a study of intrinsic activity. This is why, nowadays, the

vast majority of our knowledge about brain functioning comes from studies in which a

task or stimulus is presented and the resulting neuronal activity changes are recorded as

images. Neuroimaging practices, like the simple one explained in �gure 1.1, were largely

based on the assumption that ongoing activity is su�ciently random and then it can be

averaged out in statistical analysis. Spontaneous brain activity was systematically over-

looked.

Figure 1.1: We can observe a change in the BOLD signal (magenta line) in a subject who

is asked to perform a task as simple as closing and opening his eyes; by repeating the

paradigm (blue line) several times, and subtracting the eyes closed condition from the

eyes open condition, one can identify the BOLD signal intensity in the primary visual

cortex (shown on the right). This successful experimental approach allows to build a

topographical map of the brain related to functionality. However, an implicit assump-

tion is taken: the spontaneous modulations of the BOLD signal not connected with the

paradigm are regarded as noise and are minimized through averaging.

Source: Fox et al.,2007 [15] p.701

By the mid-1990s all the e�orts of researchers were focused on understanding cognitive

behavior; scans of resting state brain activity were often acquired across these studies
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1.2 Method to investigate the resting state: fMRI

for mere control comparison, but researchers routinely began noticing that some brain

regions showed more activity in resting state condition than during the execution of tasks.

This progressively led to a radical change in the way of thinking the so-called baseline

state, and would have shed new light on its mysteries.

The de�nitive recent event in the explication of the resting state came with the series

of publication of Raichle, Gusnard and colleagues in 2001 [29]. In this study they indi-

viduate a set of brain regions, the Default brain Mode Network (DMN) as they call it,

characterized by extraordinarily high metabolic rate during rest, and, on the other hand,

by the greatest deactivation during externally imposed cognitive challenge. Their article

made clear that DMN is to be studied as a fundamental neurobiological system, like the

motor system or the visual system. It contains a set of interacting brain areas that are

tightly functionally connected and distinct from other systems within the brain.

As pointed out in the study of Snyder et al., 2012 [32], Moreover convincing evidence of

something equivalent to human DMN has been found in monkey and cat [32], rat [24]

and mouse [25].

1.2 Method to investigate the resting state: fMRI

The main way used to reveal the manifestation of spontaneous neuronal activity is the

�uctuation in the blood oxygen level dependent (BOLD) signal, revealed by the functional

magnetic resonance imaging (fMRI). In the following the physical mechanism at the base

of the magnetic resonance imaging and of the BOLD signal formation is brie�y described.

1.2.1 Physical principles of MRI

The magnetic resonance imaging (MRI) is a non-invasive method to obtain images of the

interior of structures as the human body. The method is based on the magnetic properties

of materials composed of nuclei having a non-zero spin. Such nuclei, when placed in a

magnetic �eld B0, arrange themselves in the energetic levels according to the Boltzmann

distribution and the total magnetization characterizes this order. After a perturbating

pulse, which satis�es the resonance condition of the system, the magnetization realigns

itself with B0 through a characteristic time, in which nuclei make transitions to reestablish

the equilibrium. The MRI detects the evolution of the system during the return to the

equilibrium to obtain information about the system properties.

Let us consider an atomic nucleus with a non-zero total nuclear spin
−→
I ; the relation
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between the magnetic moment µ and the spin is:

−→µ = γh̄
−→
I (1.1)

where γ is the magnetogyric ratio, which is typical for each nuclear isotope. Thus the

component along the z direction of the magnetic moment is:

µz = γh̄m (1.2)

where m can take one of the 2I + 1 values in the interval [−I, I].

As shown in the �gure for the case of I = 1/2,

an homogeneous applied external magnetic �eld

B0 induces a splitting of the nuclear spin energy

level:

∆E = γh̄B0 . (1.3)

Replacing the Planck-Einstein relation (∆E =

hν) in the latter equation, it is simple to obtain

the Larmor resonance frequency:

hν0 =
h

2π
γB0 ⇒ ν0 =

γ

2π
B0 (1.4)

and the corresponding pulsation ω0:

ω0 = γB0 . (1.5)

We can not observe the motion of a single spin, but the collective motion of a set of N

nuclei by means of the total magnetization
−→
M = N〈−→µ 〉. The evolution in time of the

magnetization
−→
M of a set of nuclei placed in the a magnetic �eld

−→
B0 is:

d
−→
M

dt
= γ
−→
M ×

−→
B0 . (1.6)

The equation describes the precession of
−→
M around

−→
B0 at the angular velocity ω0, only

when
−→
M is not aligned with

−→
B0. At the equilibrium, the total magnetization of a param-

agnetic material placed in a magnetic �eld
−→
B0, shares the same direction of

−→
B0 as stated

by the Curie's law:

−→
M0 = C

−→
B0

T
(1.7)

where T is the absolute temperature and C is the Curie constant that depends on the

material characteristics. In the following, for the sake of simplicity,
−→
B0, and thus

−→
M0,

is considered aligned with the z axis. Applying a magnetic �eld
−→
B1 orthogonal to

−→
B0

8



1.2 Method to investigate the resting state: fMRI

and with frequency ν0, the magnetization vector moves away from the z axis; the angle

between z axis and the new position of the magnetization vector depends on the duration

of radio frequency (RF) �eld
−→
B1 applied; in MRI the RF pulse is generated by a coil. At

the end of the pulse application, the spin precession on the transverse plane induces an

oscillatory electromotive force in the coil by electromagnetic induction, that originates a

current in the probe. The detected signal is called Free Induction Decay (FID), which

has an oscillating trend with exponential decaying, and it is originated by the photons in

the radio-wave range emitted by the nuclei returning to the equilibrium.

After the RF pulse, the deterioration of the NMR signal is analyzed in terms of two

separate processes, the longitudinal one and the trasverse one, each with their own time

constants.

The longitudinal relaxation time T1

The underlying process that leads the longitudinal component of the magnetization

(along z) to reach its equilibrium valueM0, is the redistribution of nuclear spin pop-

ulations according to the Boltzman distribution; such process takes place by energy

exchanges between the nuclei and the surroundings.The longitudinal component of

the magnetization decreases in time according to:

dMz(t)

dt
= − (Mz(t)−M0)

T1
(1.8)

and thus:

Mz(t) = Mz(0)e−
t/T1 +M0(1− e−

t/T1 ) . (1.9)

The transverse relaxation time T2

The underlying process that leads the trasverse component of the magnetization to

reach its equilibrium value, i.e. zero, is the decoherence of the transverse nuclear

spin magnetization. Random �uctuations of the local magnetic �eld lead to random

variations in the instantaneous NMR precession frequency of di�erent spins. As a

result, the initial phase coherence of the nuclear spins is lost and the total xy

magnetization is null. The transverse component of the magnetization decays to

zero in time according to:

dMxy(t)

dt
= −Mxy(t)

T2
(1.10)

and thus:

Mxy(t) = Mxy(0)e−
t/T2 (1.11)

9



1.2 Method to investigate the resting state: fMRI

Figure 1.2: Evolution in time, after the RF pulse, of the longitudinal magnetization (left)

and of the transverse magnetization (right) in the rotating frame.

1.2.2 Functional magnetic resonance imaging of the brain

Functional magnetic resonance imaging, fMRI, is a non-invasive way to assess the organ

functionality using MRI signal changes. fMRI can be used to measure, indirectly, brain

activity. The method is able to provide measurement of the consequence of neural activity

in the energy metabolism of the brain; more precisely it is related to the level of oxygena-

tion within the corresponding vasculature. Brain areas activation produces physiological

changes in blood vessel resulting in a decreasing of deoxyhaemoglobin concentration. This

e�ect is referred to as BOLD (blood oxygen level dependent) e�ect, that is the common

used method for brain fMRI studies and manifests itself as a slight increase in the T2

weighted MR images.

Let us examine the brain energy metabolism characteristics that lead to the BOLD sig-

nal formation. The activation of a brain region requires energy in form of oxygen (02)

and glucose, which will be transformed in ATP. Since the brain does not store the glu-

cose and the oxygen, such elements are transported, when required, by blood �ows. The

hemoglobin molecule (Hb) is able to transport four 02 units. The Hb molecule is com-

posed by 4 units; at the center of each unit there is a Fe2+ atom, which is responsible of

the link with the 02. The link or the separation between O2 and Hb produces a change

in the magnetic nature of the hemoglobin molecule. When Hb is not linked to 02, deoxy-

hemoglobin, the 4 Fe2e+ atoms are in the higher spin state (S = 2); consequently, Hb

molecules are attracted by any externally applied magnetic �eld: Hb is paramagnetic.

On the other hand, when 02 is bound to Hb (oxyhemoglobin, HbO2) the two electrons

of the Fe2+ are paired and, consequently, they are in the state of lower energy with a

spin state S = 0: the Hb02 is diamagnetic. Since the deoxyhemoglobin is paramagnetic,

it is able to reduce the NMR signal in the images weighted in T2; indeed the rate of loss

of proton spin phase coherence, measured through T2, can be modulated by the presence

of intravoxel deoxyhaemoglobin. Instead, the oxyhemoglobin, which is diamagnetic, does

10



1.3 Anatomy of the default mode network

not modify the NMR signal. During the neural activation of a brain area, there is an

higher incoming blood �ux with respect to the blood incoming �ux during rest; in such

area blood vessels expand and the brought-in oxygen is more than the oxygen consumed

in burning glucose. Therefore, although paradoxical, in the activate brain region the con-

centration of oxygenated blood increases, and the concentration of deoxygenated blood

decreases respect to the neighbour, non-active, brain areas. In conclusion, when a brain

area is active it is possible to observe an increment in the NMR signal from that area with

respect to the surrounding brain regions, due to the presence of an higher concentration

of oxygenated blood. Such process is schematically shown in �gure 1.3.

The change in the NMR signal from neuronal activity is called the hemodynamic response.

The mathematical framework used in this work to model the BOLD signal is explained

in appendix B.

Figure 1.3: In �gure is shown a schematically representation of the mechanism that lead

to the BOLD signals formation.

1.3 Anatomy of the default mode network

The anatomy of the brain's default network has been characterized using multiple ap-

proaches. The DMN was originally identi�ed with all those regions that showed a signif-

icant increase in neural activity during passive task states with respect to a wide range

of active task states ( Shulman et al., 1997 [31], �gure 1.4a).

In more recent times, the preferred approach (and the one used in this work) moves its

steps from the notion of functional connectivity : the temporal correlation in the recorded

BOLD activity using fMRI data.

In practice, the resting state Functional Connectivity (FC) is a matrix whose each entry

aij is the correlation (generally the Pearson correlation) in time between the intrinsic

activity of the neural source i and the neural source j (�gure 1.4b, see also section 3.1).

11



1.3 Anatomy of the default mode network

(a) Source: Shulman et al., 1997 [31] p. 651

(b) Source: Fox et al., 2005 [14] p.9674

Figure 1.4: Default mode network investigated with di�erent techniques.

In �gure 1.4a there are regions of the brain regularly observed to decrease their activity

during attention demanding cognitive tasks. These data represent a meta-analysis of

nine functional brain imaging studies performed with PET and analyzed by Shulman

and colleagues; 132 individuals contributed to the data in these images. Such decreases

appear to be largely task independent.

The di�erent colors in the upper part of the �gure 1.4b indicate regions of a single subject's

brain that are correlated (positive values) and anticorrelated (negative values) during

resting �xation in a functional MRI study by Fox et al., 2005 [14]. The BOLD �ow in

time of the posterior cingulate/precuneus region (PCC, yellow), almost overlaps with the

�ow of a region in the medial prefrontal cortex (MPF, orange) (positive correlation) and

it is almost opposite to the �ow of another region in the intraparietal sulcus (IPS, blue)

(negative correlation).
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1.4 Resting state in brain disease

Using the fMRI data and the FC analysis many neuroanatomical-systems have been

proved to be coherent in their spontaneous activity including the somatomotor, the visual,

auditory, hippocampus or episodic memory, language, dorsal attention and others (Fox

et al., 2007 [15]). A meaningful �nding is that regions with similar functionality -that is,

regions that are similarly modulated by various task paradigm - tend to be correlated in

the BOLD spontaneous activity. On the other hand regions with opposing functionality

have been found to be negatively correlated in their spontaneous activity. Importantly,

it was noted that resting state networks re�ect the structure of the connections between

brain regions. The information on the anatomical wiring of the brain are encoded in the

Structural Connectivity (SC) or anatomical connectivity that is a matrix whose elements

are aij are the weight of the connection between the region i and the region j. The

SC is generally measured by the Di�usion Tensor Imaging (DTI) an MRI technique that

exploits the restricted di�usion of water through myelinated nerve �bers linking connected

areas (for more details see section 3.1). The DTI-derived structural connectivity can be

compared to functional connectivity obtained by fMRI imaging. The comparison showed

that although structural connectivity is a good predictor of functional connectivity - if

there is a direct anatomical connection there is a functional connection - the opposite

is not necessarily true. This work puts the stress on the importance to go over the

anatomical connectivity in order to predict the realistic functional connectivity.

1.4 Resting state in brain disease

Most, if not all, physiological and psychiatric diseases have disrupted large-scale func-

tional and/or structural properties [21]. Whether they are the cause or consequence of

the disease is unclear, but it was observed that, in these case, brain neural populations

exhibit signi�cant changes in dynamic properties (for the de�nition of neural population

see section 2.3); such fact may underlie many of the observed dysfunctions. Quanti�-

cation of disrupted dynamics in neural populations may lead to a better understanding

of the disorder, more targeted drug treatment, and eventually, diagnostic or prognostic

indicators. As analyzed in the paper of Buckner et al., [6] there is a relationship between

resting state network and mental disorder; the disorders where this link is most evident

are autism, schizophrenia and Alzheimer's disease. Others for which hypotheses on the

role of DMN have been advanced include depression, obsessional disorders, attention dis-

orders and post-traumatic stress disorder.

Moreover, resting state networks take time to emerge in human beings, as it appears from

experiments: it is not present in infant and start being shaped during childhood; changes

could be observed in development and aging.
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1.5 Interpreting the resting state

1.5 Interpreting the resting state

Numerous experiments have been performed to investigate the connections between the

resting state network and cognition: the observation that the DMN is most active during

passive cognitive state, when thought is directed towards internal channels (referred re�ec-

tions, autobiographical memory, moral decision making, self judgments, daydreaming),

encourages consideration of the possibility that the DMN is associated with spontaneous

cognition.

Nevertheless, experimental evidences show that unconstrained cognition alone does not

account for the greatest part of the intrinsic activity although it undoubtedly contributes

a small increment. Indeed when subjects are asked to rest quiet in the scanner they per-

form mental tasks that result in changes in neural activity (cerebral metabolism studies

performed by Sokolo� and colleagues, and discussed in �rst section); if these uncontrolled

tasks are responsible for the coherence pattern observed, then the resting state studies

may be no more interesting than controlled task-activation studies.

The �rst reason to reject the hypothesis of the unconstrained cognition as responsible

for the DMN activation is that imposed tasks evoke response that are modest in magni-

tude in comparison to intrinsic activity; there is no reason to suppose that unconstrained

thoughts are more energy demanding than constrained ones (Snyder et al., 2012 [32]).

The second reason is that the DMN persists during anesthesia and the early stages of

sleep, states during which cognition is absent or at least very attenuated.

The relation between the DMN and the brain areas involved in self referential 'tasks'

highlights a well know problem in neuroimaging, namely the problem of reverse inference:

a certain cognitive operation activates a brain region but if the same brain region is shown

in activity it does not necessarily mean that a cognitive process is occurring.

An interesting interpretation of the resting state network is the one proposed by Deco,

Jirsa and McIntosh 2011 [10]; they link brain dynamics at rest to a constant inner state

of exploration during which the brain makes prediction about the likely con�guration

for a given impeding input. They explained this concept with an e�ective metaphor in

which they compared the brain at rest to a tennis player waiting for the service of his

adversary; during the waiting the player is not static but continues to move with small

lateral jumps to be able to react more e�ectively to the incoming service. The inner brain

state exploration is driven by physiological characteristics of the brain such noise, delays

in conductions, anatomical connections and intrinsic dynamics; these concepts will be

deeper analyzed in this work.
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Chapter 2

Modeling the brain

Biological systems are among the most complex systems in nature and the number of

components of such systems is enormous; for example, the human brain contains 1011

neurons. Hence, in order to understand the brain dynamics, we need to make simpli�ca-

tions and to construct theoretical representations.

With reference to the spatial scale, the brain models could be divided as follows:

Micro-scale models which take into account the way of exchanging information

between the computing elements of the brain: the neurons.

Meso-scale models which describe the dynamics of neural population.

Macro-scale models which give information about the whole brain dynamics and

about the interactions between large-scale neural systems, such as cortical regions.

The main goal of the chapter is to understand the reduced Wong Wang model, the

macro-scale model used in this work. In order to reach this purpose, after a brief general

description of the neuron, three neuron models are described: the leaky integrate-and-�re

model, the Hodgkin-Huxley model and a simpli�cation of the Hodgkin-Huxley model; the

last one allows us to discuss the saddle node bifurcation. In the next sections the idea

at the base of the large scale models are summarized: once de�ned the concept of neural

mass and neural activity, the mean �eld approximation will be derived starting from the

the Chapman-Kolmogorov equation.

Finally, once acquired the necessary tools, the reduced Wong Wang model is derived from

the original paper of Wang 2002 [36].
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2.1 The neuron

2.1 The neuron

The basic unit of the nervous system is the neuron, an electrically excitable cell that

processes and transmits information through electrical and chemical signals.

There are di�erent kinds of neurons, and every neuron has many internal features; so,

considering that even the smallest part of the simplest neuron is already a complex system,

in the next sections the characteristics of the neuron, useful for the purpose of this work,

are pointed out.

2.1.1 The structure

Figure 2.1: Schematic representation of a neuron with its principal components.

A "typical" neuron is divided into four distinct regions: the soma, the dendrites, the axon

and the presynaptic terminals.

The soma is the cell body; it contains the nucleus and the hereditary material, which

directs the operations of the neuron.

The dendrites are thin structures arising from the soma and extending for hundreds of

micrometers; they branch multiple times, getting thinner at each branching and so giving

rise to a complex "dendritic tree". This is where the input to the neuron occurs via the

dendritic spine.

The axon is a tubular appendage of the soma. It is di�erent from dendrites in structure

and in function. Regarding the structure, it is longer (even up to 1 meter in human and

even more in other species) and it maintains the same diameter as it extends. Also, unlike

the dendrites, the axon doesn't receive signal, but it conducts the input away from the

cell.

The swollen ends of the axon's branches are called presynaptic terminals; they transmit

information from one neuron to another.
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2.1 The neuron

2.1.2 The electrical properties

The key of neural function is the synaptic signaling process which is partly electrical and

partly chemical. The electrical aspect depends on properties of the neuron's membrane.

Like all animal cells, the cell body of the neuron is enclosed by a plasma membrane, i.e.

a bilayer of lipid molecules which acts as a powerful electrical insulator; in the membrane

there are the ion channels, a types of integral membrane proteins that are capable of

actively or passively moving speci�c types of ions from one side of the membrane to the

other.

Since between the outside and the inside of the membrane there is a di�erence in charge,

we can de�ne the membrane potential as the di�erence between the potential inside the

cell Vin and the potential outside the cell Vout:

Vm = Vin − Vout . (2.1)

When a neuron is at rest there is an excess of positive charge on the outside with respect

to the inside of the membrane; hence the resting membrane potential VL is negative and

it ranges from -60 mV to -70 mV.

The nerve cell peculiarity is the electrical excitability. In electrically excitable cell a

su�ciently large depolarization of the membrane potential can evoke an action potential,

during which the membrane potential changes quickly. Action potentials are generated

by the activation of certain voltage-gated ion channels in consequence of a stimulation.

Figure 2.2: Time course of a neuron's action potential in response to a stimulus

The shape of the action potential is stereotyped and its time analysis clari�es the process.

With reference to �gure 2.2 in what follows the time intervals are described:
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2.1 The neuron

A. Before the stimulus, the neuron is at rest: the membrane potential is �xed at the

resting membrane potential (VL=[-70,-60] mV).

B. As e�ect of the stimulation, the Na+ channels open and the Na+ ions move into the

axon, causing the depolarization. If the membrane reaches the threshold potential

the action potential is generated.

C. Repolarization occurs when the K+ channels open and K+ ions move out of the

axon. This creates a polarity change between the outside and the inside membrane.

The impulse travels down the axon in one direction only, going towards the axon

terminals where it signals to other neurons.

D. After the action potential has occurred, there is a transient negative shift, called

the refractory period due to additional potassium currents. This is the mechanism

that prevents an action potential from traveling back the way it just came; in this

period of time an other action potential can not be generated.

Neurons have three passive electrical properties that are important to electrical signaling:

intracelluar resistance along axons and dendrites, membrane capacitance and membrane

resistance.

2.1.3 Synapses and synaptic receptors

Figure 2.3: A schematic representation of the basical mode of operation of a chemical

synapse.

The site where one neuron communicates with another is known as synapse. The part

of the neuron that emits the signal is called the presynaptic terminal, and the part of

the neuron that receives the signal is known as the postsynaptic terminal. There are two

basic forms of synapses: chemical and electrical.

In order to understand the WongWang model utilized in this work and discussed in section

2.4, the mode of operation of the chemical synapses is brie�y analyzed in a schematic way.
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2.2 Dynamics of a single neuron

↪→ Chemical synapse begins when an action potential reaches the presynaptic terminal.

↪→ The action potential activates voltage-dependent Ca2+ channels, which allow cal-

cium ions to enter the cell from the tissue �uids outside the neuron.

↪→ In the presynaptic terminal the rise in the concentration of Ca2+ causes the migra-

tion of synaptic vesicles towards the presynaptic membrane.

↪→ When a synaptic vesicle reaches the presynaptic membrane, both membranes fuse,

and, consequently, the vesicle content is released in the space that separates the two

neurons (the synaptic cleft).

↪→ The released neurotransmitters di�use across the synaptic cleft and bind to receptors

in the postsynaptic membrane.

↪→ The binding of neurotransmitters to their receptors on the postsynaptic cell mem-

brane leads to the opening of the ion channels.

↪→ The resulting ion �ux modi�es the conductance of the postsynaptic cell, thereby

the transmission of the signal from one neuron to another is completed.

Synapses can be classi�ed as excitatory or inhibitory. If the membrane potential of the

postsynaptic cell increases, the postsynaptic neuron is driven towards its excited state,

and the synapse is considered excitatory. On the other hand, inhibitory synapse is as-

sociated with a decrease in membrane potential, which drives the postsynaptic neuron

towards its resting state membrane potential.

The major excitatory and inhibitory transmitters in the brain are Glutamate and GABA

(-aminobutyric acid).

The three principal receptors are AMPA, NMDA and GABA.

The AMPA current activates and deactivates rapidly. In contrast, the NMDA current

activates and deactivates slowly and it has a voltage dependence controlled by the extra-

cellular magnesium concentration.

The GABA is the principal inhibitory neurotransmitter.

2.2 Dynamics of a single neuron

In this section are presented three models describing the dynamics of a single neuron: the

Leaky Integrate and Fire model (LIF model), the Hodgkin-Huxley model and a modi�ed

version of the Hodgkin-Huxley model, which has a bifurcation diagram similar to the one

of the reduced Wong Wang model (section 3.3.2). In this work the LIF model is treated
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2.2 Dynamics of a single neuron

before the Hodgkin-Huxley model, although the LIf model is more recent and it is a

simpli�cation of the Hodgkin-Huxley model; it has been preferred following the sequence

that make easier the understanding instead that following the chronological order.

2.2.1 The leaky integrate and �re model

Modeling a neuron as an electric circuit was �rstly investigated by Lapicque over 100

years ago, and his model is known today as integrate-and-�re model or single compart-

ment model. Lapicque's idea captures two of the most important aspects of neuronal

excitability: the integration of the incoming signals and the generation of the spike once

a certain threshold is exceeded.

This is obtained by considering the neuron an electric circuit as the one shown in �g-

ure 2.4 (without the resistor) and by describing the variation in time of the membrane

potential with a single variable V :

C
dV

dt
=
dQ

dt
. (2.2)

When an input current is applied, the membrane voltage increases with time until it

reaches a constant threshold Vth; at this point a delta function spike occurs, the switch

closes and shunts the capacitor that resets the voltage to its resting potential VL.

Figure 2.4: Integrate-and-�re circuit: the integrate-and-�re model consists of a capacitor,

a threshold detector and a switch (without the resistor). Once the voltage reaches the

threshold, the spike is �red and the switch is closed to shunt the capacitor. In the leaky

version, a resistor is added in order to slowly drain the capacitor. This corresponds to

leakage current through a membrane in a living cell.

The main shortcoming of the integrate and �re model is that it has no time-dependent

memory. If the circuit receives a below-threshold signal, the voltage boosts forever until

it �res again. This characteristic clearly does not re�ect the observed neuronal behavior.

In the leaky integrate-and-�re model, the memory problem is solved by adding a "leak"
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2.2 Dynamics of a single neuron

term to the membrane potential, re�ecting the di�usion of ions that occurs through the

membrane when the cell does not reach the proper balance. In the previous electrical

circuit, the LIF model is implemented adding a resistor in parallel with the capacitor

(�gure 2.4 with R); hence the equation 2.2 can be written as:

C
dV (t)

dt
= −g[V (t)− VL] +

dQ(t)

dt
(2.3)

where g is the conductance (g = 1/R).

Then a neural network of Nn spiking neurons can be modeled only adding to the previous

equation the subscript i to denote the i -th neuron. Multiplying the equation by the

speci�c membrane resistance R, and denoting with τ = C/R the membrane time constant,

it is obtained:

τ
dVi(t)

dt
= −[Vi(t)− VL] +RIi(t) (2.4)

where Ii(t) is the total synaptic current �ow into the cell i and it is the sum of the con-

tributions of the δ-spikes produced by the presynaptic neurons. Considering N synapses

going into a neuron i, and denoting with Jij the e�cacy of the synapse j, the total synaptic

a�erent current is given by:

RIi(t) = τ

N∑
j=1

Jij
∑
k

δ(t− t(k)j ) (2.5)

where t
(k)
j is the emission time of the kth spike from the jth presynaptic neuron.

2.2.2 The Hodgkin-Huxley model

The LIF model, described in the previous section, is a simpli�cation, much more compu-

tationally tractable, of the Hodgkin-Huxley model.

In 1952, Alan Lloyd Hodgkin and Andrew Huxley developed their model to explain the

ionic mechanisms that underlies the initiation and propagation of action potentials in the

squid giant axon. For this work they received in 1963 the Nobel Prize in Medicine. A

relevant explication of this model is given in the �rst chapter of the book of Jirsa and

McIntosh [4] that will be brie�y summarized in this section.

As in the LIF model, also in the Hodgkin-Huxley (HH) model the neuron is treated as an

electrical element, but unlike the LIF model, here there are two voltage dependent elec-

trical conductances associated with the voltage-gated ion sodium (Na+) and potassium

(K+) and one linear conductance associated with the static chloride (Cl−) channels.

Hence the circuit temporal evolution is given by:

C
dV (t)

dt
= I − gNa(V (t))[V (t)− VNa]− gK(V (t))[V (t)− VK ]− gL[V (t)− VL] (2.6)
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2.2 Dynamics of a single neuron

Figure 2.5: In the left part of the �gure there is a schematic representation of the neuron

membrane. When the Na+ channels (magenta) open, the Na+ ions �ow inside the cell,

depolarizing the neuron; instead when K+ channels (green) open, K+ ions �ow outside

the cell, hyperpolarizing the neuron.

In the right part of the �gure there is the electric circuit used to model the neuron

membrane: the Na+ and K+ channels are represented by two electric voltage dependent

resistences, respectively RNa and RK ; the linear resistence RL represents the channels

that are not voltage dependent.

where Vion are the respective Nernst potentials1; the dependence on the voltage of the

conductances can be transported as a dependence on the ion �ows (which depend on the

voltage):

gion(V ) = 〈gion〉 fion(V ) (2.8)

where 〈gion〉 represents the maximal conductance for the particular ion channel.

The Na and K ion �ows re�ects the state of the activation and inactivation channels,

which, respectively, open and close as membrane voltage increases. These are given by:

fNa(V ) = m(V )Mh(V )H

fK(V ) = n(V )N
(2.9)

where m and n are activation channels for Na and K, and h is the single inactivation

channel for Na. The exponents are determined by the number of such classes of channel

M = 3, H = 1 and N = 4. Hence equation 2.6 re�ects the combined �ow of all ion

species as they are "pushed through" open channels according to the gradient between

1The expression of the Nernst potential is

Vion =
RT

zF
ln

(
[ion outside the cell]

[ion inside the cell]

)
(2.7)
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2.2 Dynamics of a single neuron

the membrane and the Nernst potential.

To understand the process it is useful to notice that the Na and K channels act like a

�rst order chemical reaction with two states; then this can be written as:

close
α−⇀↽−
β
open (2.10)

where the factors α and β are called the transition rate constants. α is the number of

times per second that a channel in the closed state opens, while β is the number of times

per second that a channel in the open state closes. All the gates within a particular

class have the same value of α and β, but gates which belong to di�erent classes may

have di�erent values of the transition rate constants: this gives the di�erent classes their

di�erent properties.

Then for a whole generic population of gates (Na orK), it is possible to de�ne the fraction

of gates P that are in the open state (where P varies between 0 and 1) and consequently

the fraction of channels (1-P) that are in the closed state. Therefore in a given time:

Fraction of gates opening = α(1− P )

Fraction of gates closing = βP .
(2.11)

The system is in the equilibrium state when the fraction of the gates in the open and

in the closed state does not change; since the rate constants are voltage dependent, this

situation occurs when the voltage is kept constant for a relatively long period of time. P

reaches the steady state when the fraction of the gates open is equal to the fraction of

the gates closed:

α(1− P∞) = βP∞ ⇒ P∞ =
α

α+ β
. (2.12)

The rate at which P achieves a new value, following a change in voltage and consequently

a change in α and β, is equal to the di�erence in the rate of channels closing and opening:

dP

dt
= α(1− P )− βP (2.13)

The solution of the previous equation is:

P = P∞ − (P∞ − P )e−t/τ with: τ =
1

α+ β
. (2.14)

Putting in such equation the expression found for α and β by Hodgkin and Huxley,

and remembering that m is the activation channel for Na, the kinetics of activation and

inactivation of these channels are determined by:

dm(V )

dt
=

(m∞(V )−m(V ))

τm
. (2.15)
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2.2 Dynamics of a single neuron

The kinetic of h (the inactivation channel for Na) and n (the activation channel for K)

are of the same kind, although their rate constant τ are obviously distinct.

The form of the steady state con�gurations of ion channel populations as a function of

the membrane potential is sigmoid shaped of the form:

m∞(V ) =
mmax

1 + e(Vm−V )/σ
(2.16)

where Vm is the threshold potential for the ion channel and σ introduces the variance of

this threshold.

The membrane dynamics discussed in this section is summarize in �gure 2.6.

Figure 2.6: In the upper part of the �gure is shown the sigmoid relationship between the

membrane potential and the steady state conductances as stated by equation 2.16.

In the lower part of the �gure it is displayed the changing in the transmembrane conduc-

tance according to the equation 2.15 following a discrete change in the transmembrane

potential (lower line).

Source: Adapted from the book of Jirsa and McIntosh [4] p. 28
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2.2 Dynamics of a single neuron

2.2.3 The saddle node bifurcation in a simpli�cated of the Hodgkin-

Huxley model

The Hodgkin-Huxley model is a beautiful juncture of empirical and mathematical analysis

that o�ers an explanation of neural �ring and that captures quantitatively the complex

shape of a neural depolarization. However, much of the qualitative behavior can be cap-

tured by good approximations of the model like the one explicated in the third chapter

of the book of Izhikevich "Dynamical Systems in Neuroscience: The Geometry of Ex-

citability and Bursting" [22], and summarized in this section. Furthermore the selected

approximation permits to introduce the complex dynamics presented in the reduced Wong

Wang model.

The Hodgkin-Huxley model can be reduced to one-dimensional system when all trans-

membrane conductances have fast kinetic. For the sake of illustration, let us consider

a membrane having a leak current and a fast voltage-gated current, last one associated

with the sodium channel:

C
dV

dt
= I − gNam(V )[V − VNa]− gL[V − VL] (2.17)

dm(V )

dt
=

(m∞(V )−m(V ))

τm(V )
. (2.18)

The assumption at the base of this approximation is that the gating kinetic (equation

2.18) is much faster than the voltage kinetic (equation 2.17), which means that the time

constant τm(V ) is very small (τm(V ) << 1) in the entire biophysical voltage range. Then

it is possible to assume that fast sodium channels instantaneously reach their steady state

(m∞); therefore the two dimensional system (equation 2.17 and 2.18) can be reduced as

follows:

C
dV

dt
= I

istantaneous I︷ ︸︸ ︷
−gNam∞(V )[V − VNa]−gL[V − VL] (2.19)

where the steady states m∞ is given by:

m∞ =
mmax

1 + e(Vm−V )/σ
. (2.20)

In order to make the next observations more clear, it is useful to introduce the experi-

mental parameter values (table 2.1) obtained using whole-cell patch clamp [22].
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2.2 Dynamics of a single neuron

Parameters Values

Membrane capacitance C 10 µF

Leak conductance gL 19 mS

Sodium conductance gNa 74 mS

Leak potential VL -67 mV

Sodium potential VNa 60 mV

Table 2.1: Parameters used in the next calculations.

Source: book of Izikecih 2005 [22]

Attractors, stability and saddle node bifurcation

Before analyzing the complex dynamics of the previous system, let us de�ne some basic

concepts of continuous one-dimensional dynamical system, that can be written in the

form:
dV

dt
= f(V, I) . (2.21)

The equilibrium points or attractors are the values of the state variables for which the

state variable V does not change: dV/dt = f(V, I) = 0. A su�cient condition for the

stability of an equilibrium point is that, in this point, the derivative of the function f with

respect to V is negative (provided that the function is di�erentiable); instead positive

slope of f ′(Veq) implies instability.

In general the one dimensional system 2.21, that has an equilibrium point V = Vsn for

some value of the parameter I = Isn, is said to be at a saddle-node bifurcation when the

following mathematical conditions are satis�ed:

1. Non-hyperbolicity : the eigenvalue λ at Vsn is zero:

λ =
∂f(V, Isn)

∂V
= 0 (atV = Vsn) . (2.22)

2. Non-degeneracy : the second order derivative with respect to V at Vsn is non-zero:

∂2f(V, Isn)

∂V 2
6= 0 (atV = Vsn) . (2.23)

3. Transversality The function f(V,I) is non-degenerate with respect to the bifurcation

parameter I :
∂f(Vsn, I)

∂I
6= 0 (atI = Isn) . (2.24)
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2.2 Dynamics of a single neuron

Figure 2.7: Geometrical meaning of the three conditions de�ning saddle node bifurcations.

Source: Izhikevich 2005 [22] p. 77

Figure 2.8: In the �gure is displayed the saddle node bifurcation for the system 2.21: as

the graph of f(V) is lifted up, the stable and unstable equilibria approach each other,

coalesce at the tangent point, and then disappear.

Source: Izhikevich 2005 [22] p. 77
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2.2 Dynamics of a single neuron

These conditions are illustrated in �gure 2.7. Saddle node bifurcation consists in appear-

ance or disappearance of a pair of equilibrium points as shown in �gure 2.8. To draw the

bifurcation diagram, it is necessary to determine the locations of the stable and unstable

equilibria for each value of the parameter I and plot them in the (I,V ) plane.

Saddle node bifurcation in the previous model

Let us studying the complex dynamics of the simpli�cation of the Hodgkin-Huxley model

(equation 2.19) when the bifurcation parameter is the injected dc-current. The equilibria

are the zeros of the equation:

C
dV

dt
= I −

I∞(V)︷ ︸︸ ︷
[gL(V − VL) + gNam∞(V )(V − VNa)] . (2.25)

In other words, the membrane potential V is at the equilibrium point if and only if the

net membrane current I − I∞(V ) is zero.

In �gure 2.9 there is the geometrical representation of this equation: any intersection

between the steady-state I-V curve I∞(V ) and the injected dc curve (horizontal line) is

a stable or unstable equilibrium; when I increases past 16 pA the bifurcation occurs.

Figure 2.9: This diagram represents the steady-state I-V curve (I∞) and the injected

current I ; it is obtained using the parameters values in table 2.1. The attractors are the

intersections of the two curves.

Source: Izhikevich 2005 [22] p. 81

In �gure 2.10 is represented the saddle node bifurcation diagram of the discussed model.

The three branches of the S-shaped curve correspond to the rest, to the threshold and
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2.2 Dynamics of a single neuron

Figure 2.10: Saddle node bifurcation diagram of the discussed model obtained using the

parameters in table 2.1. Source: Izhikevich 2005 [22] p. 82

Figure 2.11: Bifurcation in the discussed model: when the injected current I is su�ciently

small the excited state and the treshold state coalesce and disappear. Source: Izhikevich

2005 [22] p. 83
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2.3 From small to large scale models

to the excited states of the model. Each point where the branches fold (minimum and

maximum of I∞(V)) corresponds to a saddle-node bifurcation (I=16 pA and I=-890 pA).

The �rst one (I=16 pA) corresponds to the disappearance of the rest state. The second

one (I=-890 pA) corresponds to the disappearance of the excited state and it is illustrated

in �gure 2.11. The second occurs because I becomes so negative that the Na+ inward

current is no longer strong enough to balance the leak outward current and the negative

injected current; the consequence is that the membrane can not maintain the depolarized

state (excited state).

A neural circuit in the mammalian brain consists of many thousands of cells: its phase

space is enormous. The dynamics of such systems can be very complex, exhibiting a

wide gamut of spatiotemporal activity patterns. In these cases we use large scale models

discussed in the next section, however the concept of bifurcations and attractors are still

helpful for developing intuitions about attractor networks.

2.3 From small to large scale models

The goal of any large-scale description of neural dynamics is to reconstruct all relevant

spatiotemporal dynamics of the neural system while preserving the mechanism which

give rise to the observed dynamics. The assumption behind large scale models is that the

neurocomputational units are more macroscopic than a single neuron. This assumption

is justi�ed by the fact that the key features of brain operations seem to emerge from the

component interplay rather than being generated by each individual component.

Large scale models are the instruments to interpret the enormous data sets obtained

from non-invasive brain imaging like functional magnetic resonance (fMRI ) or electroen-

cephalography (EEG).

Moreover large scale models are easier and less time-consuming to be solved computa-

tionally; actually today the the current technology allows to implement simulations of

network with size signi�cantly smaller than the amount of neurons we have in our brain.

2.3.1 Neural masses

A large scale model is composed of microscopic units which do not represent individual

neurons, but rather complexes, also referred to as neural masses, capturing the non-

reducible dynamics of a set of neurons [4]. These highly connected sets of neurons share

common input and output pathways and functions. The activity of a neural mass (also

known as neural mass action) is described by an m-dimensional vector variable at
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2.3 From small to large scale models

location x and at time t

ψ(x, t) =


ψ1(x, t)

ψ2(x, t)
...

ψm(x, t)

 . (2.26)

The variable ψ(x, t) is also referred as neural population activity. If the distance

between neighboring neural masses is in�nitesimally small, the physical space x is con-

tinuous and ψ(x, t) is referred as neural �eld.

Since the neural mass action is generated by the N neurons within the neural mass, there

is a mapping

φ : Z(x, t) 7→ ψ(x, t) (2.27)

which unambiguously relates the N-dimensional neural activity (with N�m)

Z(x, t) =
[
Z1(x, t) Z2(x, t) ... ZN (x, t)

]T
to the neural mass action (ψ(x, t)) [4].

The nature of this relation will be generally non trivial and involves the mean �eld re-

duction which will be discussed in the next section. A large scale model representation

is successful when the large scale model simulation provides the same neural mass action

ψ(x, t+T ) at a future time point t+T as the simulation of the complete network dynamics

using the microscopic neural activity Z(x, t+ T ):

φ : Z(x, t)→ ψ(x, t)
large scale network dynamics way−−−−−−−−−−−−−−−−−−−−−→ ψ(x, t+ T )← Z(x, t+ T ) .

2.3.2 The mean �eld model

Mean �eld models attempt to model the dynamics of large, theoretically in�nite, popu-

lations of neurons. Following the study of Deco et al., 2008 [8] we will derive the Fokker-

Plank equation for neural dynamics that is speci�ed in terms of spiking neurons; then,

under the di�usion approximation, we will �nd the stationary solutions of the Fokker-

Plank equation.

The population density approach

Each neuron can have several attributes like the membrane potential V, the current I

and the time T since the last action potential. Each attribute induces a dimension in the

phase plane of the neuron; if neurons have all the three attributes the state of each neuron

correspond to a point ν = {V, I, T} ∈ <3 in the phase space. It is possible to de�ne the

neural ensemble probability density ρ(ν, t) that evolves according to the state of each
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neuron. In this approach, individual integrate and �re neurons are grouped together into

populations of statistically similar neurons. In general neuron with the same V(t), at a

given time t, have a di�erent history because of random �uctuations in the input current.

The key assumption in the population density approach is that the input currents, that

arrive to the same population neurons, are uncorrelated. Then, neurons that belong to

the same population and that have the same V(t) are indistinguishable.

It is possible to de�ne the fraction of neurons that at time t have a membrane potential

V(t) in the range [ν, ν + dν] using the notion of probability density function:

ρ(ν, t)dν = Prob{V (t) ∈ [ν, ν + dν]} . (2.28)

The evolution of the population density is given by the Chapman-Kolmogorov equation:

ρ(ν, t+ dt) =

∫ +∞

−∞
ρ(ν − ε, t)ρ(ε|ν − ε)dε (2.29)

where ρ(ε|ν− ε) is the conditional probability that the membrane potential starting from

the value (ν − ε) at time t, increases is value of ε in an in�nitesimal interval of time dt :

ρ(ε|ν − ε) = Prob{V (t+ dt) = ν|V (t) = ν − ε} . (2.30)

The Chapman Kolmogorv equation can be written in a di�erential form by performing

a Taylor expansion in ρ(ν′, t)ρ(ε|ν′) around ν′ = ν (assuming that ρ(ν′, t) andρ(ε|ν′) are
in�nitely many time di�erentiable in ν′):

ρ(ν′, t)ρ(ε|ν′) =

∞∑
k=0

(−ε)k

k!

∂k

∂ν′k
[ρ(ν′, t)ρ(ε|ν′)]ν′=ν . (2.31)

Inserting this expansion in equation 2.29 we obtain:

ρ(ν, t+ dt) =

∫ +∞

−∞

( ∞∑
k=0

(−ε)k

k!

∂k

∂νk
ρ(ν, t)ρ(ε|ν)

)
dε

=ρ(ν, t)

∫ +∞

−∞
ρ(ε|ν)dε− ∂

∂ν

[
ρ(ν|t)

(∫ +∞

−∞
ερ(ε|ν)dε

)]
+

+
1

2

∂2

∂ν2

[
ρ(ν, t)

(∫ +∞

−∞
ε2ρ(ε|ν)dε

)]
+ ... =

=

∞∑
k=0

(−1)k

k!

∂k

∂νk
[ρ(ν, t)〈εk〉ν ] .

(2.32)

Finally, taking the limit for dt that tends to zero:

∂ρ(ν, t)

∂t
=

∞∑
k=1

(−1)k

k!

∂k

∂νk

[
ρ(ν, t) lim

dt→0

1

dt
〈εk〉ν

]
. (2.33)

This equation expresses the time evolution of the population density in a di�erential

form and it is known as the Kramers-Moyal expansion of the original integral Chapman

Kolmogorov equation (eq. 2.29).
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The di�usion approximation

In order to understand the dynamics of the population density obtained in equation 2.33

we need to know the expression for the moments 〈εk〉ν , or, in other words, the average of

the membrane voltage variation ε with respect to the conditional probability ρ(ε|ν) at a

given ν during the interval dt. These calculations can be obtained using the mean-�eld

approximation. As mentioned above, the history of the currents that arrive on each neuron

is uncorrelated, therefore each current have the same statistic. Assuming the ergodicity

for all neurons in a population, the mean �eld approach allows to discard the index that

identi�es each single neuron; the in�nitesimal change in the membrane potential of all

neurons can be written as 2

dV (t) = 〈J〉JNr(t)dt−
V (t)− VL

τ
dt (2.34)

where N is the number of neurons, 〈J〉J is the average of the synaptic weights in the

population, and r(t) is the mean population �ring rate de�ned as:

r(t) = lim
dt→0

nspikes(t, t+ dt)

Ndt
. (2.35)

The moments of the in�nitesimal depolarization ε = dV (t) can be calculated using the

equation 2.34. The �rst two moments in the Kramers-Moyal expansion (eq. 2.33) are

called respectively the drift and the di�usion coe�cients:

M (1) = lim
dt→0

1

dt
〈ε〉ν = 〈J〉JNr(t)−

ν − VL
τ

=
µ(t)

τ
− ν − VL

τ
(2.36)

M (2) = lim
dt→0

1

dt
〈ε2〉ν = lim

dt→0

1

dt

[
〈J〉JNr(t)dt−

V (t)− VL
τ

dt

]2
ν

=

= lim
dt→0

[
〈J2〉JN2

(
lim
dt→0

nspikes(t, t+ dt)

Ndt

)2

dt

]
+

+ lim
dt→0

[
(ν − VL)2

τ2
dt

]
− lim
dt→0

[
2
〈J〉JNr(t)(ν − VL)

τ
dt

]
=

=〈J2〉JNr(t) =
σ(t)2

τ
.

(2.37)

In general for k > 1:

M (k) = lim
dt→0

1

dt
〈εk〉ν = 〈Jk〉JNr(t) . (2.38)

2Taking into account the expressions obtained for the LIF model (section 2.2.1):

τ
dVi(t)

dt
= −[Vi(t)− VL] +RIi(t) ⇒ dVi(t) =

∑N
j=1 Jij

∑
k δ(t− t

(k)
j )dt−

Vi(t)− VL
τ

dt
RIi(t) = τ

∑N
j=1 Jij

∑
k δ(t− t

(k)
j )
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2.3 From small to large scale models

The di�usion approximation is exact in the limit of in�nitely large network (N →∞) and

when the synaptic weights scale appropriately with network size: J → 0 but NJ2 → cost.

In case of exact approximation, all the moments higher than two become negligible in

relation to the drift (µ ) and to the di�usion (σ2) coe�cients.

In the Kramers-Moyal expansion (equation 2.33), under the di�usion approximation, it

is possible to omit all higher orders k > 2; the above-mentioned equation becomes the

Fokker-Plank equation:

∂ρ(ν, t)

∂t
=

1

2τ
σ2(t)

∂2ρ(ν, t)

∂ν2
+

∂

∂ν

[(
ν − VL − µ(t)

τ

)
ρ(ν, t)

]
. (2.39)

When the drift is linear and the di�usion coe�cient σ2(t) is constant, the Fokker-Plank

equation express an Ornstein-Uhlenbeck process, that is a stochastic process that tends

to drift towards its long-term mean; for this reason it is called mean-reverting. This pro-

cess describes the temporal evolution of the membrane potential when the input a�erent

currents is given by:

RI(t) = µ(t) + σ
√
τw(t) (2.40)

where w(t) is white noise. This equation allows to interpret the sum of many Poisson

process in equation 2.5 as a normal random variable with mean µ(t) and variance σ2.

The mean �eld approach

The mean �eld approximation consists in �nding the Fokker-Plank equation (equation

2.39) stationary solutions that represent the stationary solutions of the original leaky and

integrate neural system under the di�usion approximation.

We can use the Fokker-Plank equation to de�ne the �ux of probability F :

∂ρ(ν, t)

∂t
= −∂F (ν, t)

∂ν
≡ − ∂

∂ν

[
−ν − VL − µ(t)

τ
ρ(ν, t)− σ2(t)

2τ

∂ρ(ν, t)

∂ν

]
. (2.41)

At the threshold potential, the probability current has to give the average �ring rate r of

the population. Then, if Vth is the neural �ring threshold, the stationary solution should

satisfy the following boundary condition:

ρ(Vth, t) = 0

∂ρ(Vth, t)

∂ν
= −2rτ

σ2
.

(2.42)

Additionally, for ν → −∞, the probability density has to vanish fast enough to be inte-

grable:

lim
ν→−∞

ρ(ν, t) = 0

lim
ν→−∞

νρ(ν, t) = 0 .
(2.43)
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2.4 The reduced Wong Wang model

In order to make the model realistic, we need to take in account the refractory period

of a neuron tref that is the time that occurs after an action potential; during this time

the neuron is not able to generate another action potential (section 2.1.2). This means

that the probability mass leaving the threshold at time t has to be re-injected at the rest

potential at time t+tref ; then Fokker-Plank equation (eq. 2.41) becomes:

∂ρ(ν, t)

∂t
= − ∂

∂ν
[F (ν, t) + r(t− tref )Θ(ν − Vreset)] (2.44)

where Θ is the Heaviside function. Solving this equation with the boundary conditions,

and taking into account the normalization of the mass probability, the population transfer

function φ of Ricciardi is obtained:

r =

[
tref + τ

√
π

∫ Vth−VL−µ
σ

Vreset−VL−µ
σ

ex
2

(1 + erf(x))dx

]−1
= φ(µ, σ) . (2.45)

The stationary dynamics of each population can be described by the population transfer

function of Ricciardi φ, which provides the average population rate as a function of the

average input current. The result found in equation 2.45 can be generalized for more than

one population of neurons whose input currents share the same statistical properties and

�re spikes independently at the same rate:

ri = φ(µi, σi) . (2.46)

To solve equation 2.46 for all the neural population i, the di�erential equation below can

be integrated while it describes the approximate dynamics of the system which has a �xed

point solutions corresponding to equation 2.46:

τi
dri
dt

= −ri + φ(µi, σi) . (2.47)

The mean �eld approach ensures that this dynamics will converge to a stationary attractor

that is consistent with the steady state required.

In the next section an extended mean �eld framework will be analyzed. This model is

consistent with the LIF model and with the realistic synaptic equations that consider

both the fast and slow glutamatergic excitatory synaptic dynamics (AMPA and NMDA)

and the dynamics of GABA inhibitory synapses.

2.4 The reduced Wong Wang model

The section concerns the model used in this work: the reduced Wong Wang model. The

model is obtained through successive approximation from the work of Wang (2002) [36]
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2.4 The reduced Wong Wang model

that will be described in the �rst part of the section. Next, will be treated the model

reduction by Wong and Wang (2006) [37], and Deco et al.(2013) [13].

2.4.1 The biophysically realistic cortical network model

The network model in Wang 2002 [36] (inspired to the work of Brunel and Wang 2001 [5])

was constructed in order to understand the maintenance of an item in working memory,

which is achieved through persistent activity in selective neural assemblies of the cortex.

This persistent activity of neurons group over a delay period was observed in experiments

with monkeys. The monkeys perform a paradigm of visual motion discrimination like the

one of Funahashi [17] that will be brie�y explained. The monkeys are trained to �x their

eyes on a central position during a sudden presentation of cue. The cues are presented

in one of eight di�erent locations separated by 45◦ angles. Once the cue is given, there

is a delay period until a 'go' signal which indicates that the monkey has to focus its eyes

on the previous location of the cue. The task requires the monkey to retain the location

in its memory during the delay period. These experiments show that some neurons in

the dorsolateral prefrontal cortex are active during the delay period. Thus, the delayed

activity of these neurons indicates the location the eyes must be directed towards after

the delay period.

Starting from these experimental evidences Wang tried to investigate the basic cellular

and synaptic mechanisms in a perceptual decision-making process. In Wang model the

populations of neurons are linked through recurrent excitatory and inhibitory connections

in order to produce an attractor dynamics that amplify the di�erence between con�icting

inputs and that generate a binary choice.

The organization of the network

The network represents a cortical module. It is composed of three populations of pyrami-

dal cells (NE , 80%) and one populations of interneurons (NI , 20%). One of the excitatory

population is sensitive to a leftward motion of the stimulus and another to the rightward.

The interneurons and the remaining pyramidal cells are non-selective to any of the motion

stimuli (�gure 2.12). Each neuron receives:

CE excitatory synaptic contacts from pyramidal cells;

CI inhibitory synaptic contacts from interneuron. Then the inhibitory population acted

not only to globally inhibit the excitatory cells, but also to inhibit itself.

Cext excitatory synaptic contacts from outside the network. These connections send to

the network all the information (stimuli) received from the outside world, as well
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as background noise due to spontaneous activity outside the module.

Figure 2.12: Schematic description of the model. There are three pyramidal population

of cells: one non selective to the stimuli (in gray), and the are two groups (blue and

red) selective to one of the two external stimuli (#1 and #2). Pyramidal cells send

connections to other pyramidal cells and to interneurons through AMPA and NMDA

synapses. Interneuron cells send connections to itself and to pyramidal cells through

GABA synapses. Cells within a selective population have relatively stronger connections

(modulated by w+ > 1), while connections outside the selective population are relatively

weaker (modulated by w < 1).

Source: Adapted from Brunel and Wang 2001 p. 67 [5]

Neurons

Each neuron is described by the leaky and integrate model (section 2.2.1):

Cm
dVi(t)

dt
= −gm (Vi(t)− VL)− Isyn(t) (2.48)

where Isyn(t) is the total synaptic current �owing into cell i, VL is the leak of the resting

potential of the cell in absence of external input, Cm is the membrane capacitance and gm

is the conductance membrane leak. When V (t) reaches Vth the cell generates an action

potential in the form of a spike (a delta function). After that, the cell stays in a short

absolute refractory period, where the membrane potential is clamped at Vreset. All the
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values of these parameters for pyramidal cells and interneurons are shown in the table

2.2.

Synapses

The total synaptic current come from both external (ext) inputs and recurrent (rec)

synaptic connections. The recurrent inputs include both excitatory and inhibitory cur-

rents. The excitatory inputs consist of AMPA (Irec,AMPA) and NMDA receptor-mediated

synapses (Irec,NMDA), while the inhibitory input is a GABA receptor-mediated (Irec,GABA).

Thus the total synaptic current is given by:

Isyn(t) = Iext,AMPA(t) + Irec,AMPA(t) + Irec,NMDA(t) + Irec,GABA(t) (2.49)

where:

Iext,AMPA(t) = gext,AMPA(Vi(t)− VE)

Cext∑
j=1

sext,AMPA
j (t) (2.50)

Irec,AMPA,(t) = grec,AMPA(Vi(t)− VE)

CE∑
j=1

wijs
rec,AMPA
j (t) (2.51)

Irec,NMDA(t) =
gNMDA(Vi(t)− VE)

1 + γe−βVi(t)

CE∑
j=1

wijs
NMDA
j (t) (2.52)

Irec,GABA(t) = gGABA(Vi(t)− VI)
CI∑
j=1

sGABAj (t) . (2.53)

Here gi is the synaptic conductances, si the synaptic gating variable (fraction of open

channels), and VE and VI are respectively the excitatory and inhibitory reversal poten-

tials (parameters in table 2.2). The sum over j represents a sum over the synapses formed

by presynaptic neurons j . Observing the equation 2.52 it can be noted that the NMDA

currents are voltage dependent and they are modulated by intracellular magnesium con-

centrations (γ = [Mg2+]/3.57).

The dimensionless parameter wij is the synaptic weight between nodes i and nodes j, and

it is de�ned as follows:

� Excitatory synapses, which connect cells inside the selective population, are chosen

to be relatively stronger than those which connect cells outside the selective popu-

lation. This particular structure is similar to the Hebbian rule where cells that tend

to �re together form stronger synapses. In this case w = w+ > 1
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Parameters Excitatory neurons Inhibitory neurons

Membrane capacitance Cm 0.5 nF 0.2 nF

Leak conductance gm 25 nS 20 nS

Resting potential VL -70 mV -70 mV

Firing threshold Vth -50 mV -50 mV

Reset potential Vreset -55 mV -55 mV

Refractory period τref 2 ms 1 ms

AMPA external conductance gext,AMPA 2.496 nS 1.944 nS

AMPA recurrent conductance grec,AMPA 0.104 nS 0.081 nS

NMDA recurrent conductance gNMDA 0.327 nS 0.258 nS

GABA recurrent conductance gGABA 0.4375 3.4055 nS

Synaptic parameters Values

Excitatory potential VE 0 mV

Inhibitory potential VI -70 mV

Decay time of AMPA τAMPA 2 ms

Rise time of NMDA τNMDA,rise 2 ms

Decay time of NMDA τNMDA,decay 100 ms

Decay time of GABA τGABA 10 ms

α 0.5 kHz

β 0.062

γ 0.28

Table 2.2: Neural and synaptic parameters used in the model. These values are from

Brunel and Wang 2001 [5]

� Instead w = w− < 1 for the synapses between two di�erent selective populations,

and for synapses between the nonselective population and the selective ones.

� w = 1 for all the other connections.

The gating variables sij(t) are the fractions of open channels of neurons and their evolution
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is given by:

dsAMPA,ext
j (t)

dt
= −

sAMPA,ext
j (t)

τAMPA
+
∑
k

δ(t− tkj ) (2.54)

dsAMPA,rec
j (t)

dt
= −

sAMPA,rec
j (t)

τAMPA
+
∑
k

δ(t− tkj ) (2.55)

dsNMDA,rec
j (t)

dt
= −

sNMDA,rec
j (t)

τAMPA
+ αxj(t)(1− sNMDA,rec

j (t)) (2.56)

dxNMDA,rec
j (t)

dt
= −

xNMDA,rec
j (t)

τNMDA,rise
+
∑
k

δ(t− tkj ) (2.57)

dsGABAj (t)

dt
= −

sGABAj (t)

τGABA
+
∑
k

δ(t− tkj ) . (2.58)

The sum of delta functions denotes the sum of spikes generated from presynaptic neurons

j at times tkj . τNMDA,rise and τNMDA,decay are the rise and decay times for the NMDA

synapses, and τAMPA and τGABA are the decay times for AMPA and GABA synapses

(note that the rise times of both AMPA and GABA synaptic currents are neglected

because they are short (< 1 ms)).

2.4.2 Model reduction

Thanks to its biological realism, the Wang model explained in the previous section is able

to replicate some of the psychophysical and physiological observations obtained during

experiments of the visual discrimination reaction task on primates [37]. The weakness of

the model is its complexity: it consists of thousands of spiking neurons that interact with

each other in a highly non linear manner; then it is di�cult to deeply analyze and under-

stand how it works. This was the reason which motivated Kong-Fatt Wong and Xiao-Jing

Wang to construct a reduced version of the Wang model through a mean-�eld approach.

Their model was presented in 2006 in the paper "A Recurrent Network Mechanism of

Time Integration in Perceptual Decisions" [37]. Through consecutive approximations,

they reduced the original model composed of 7200 dynamical equations to a simpli�ed

model of only 2 variables: the reduced Wong Wang model. This model, despite of its con-

ciseness, is able to reproduce much of the behavior of the original spiking neuron model

of Wang. The main idea of the reduction is that all the neurons in one population are

considered to be homogeneous, while each population in the spiking neural network is

di�erent; then the input of a neuron can be treated as a Gaussian process. As already

mentioned, in this view, the mean activity of a large homogeneous population can be

modeled by the activity of a representative unit. Taking into account that the population
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�ring rates depend on the input currents which in turn depend on the �ring rates, it is

clear that the �ring rate of the representative unit must be self-consistent in order to

represent the population �ring rate.

In the next sections the necessary steps to arrive to this model are presented, following

the paper of Wong and Wang 2006 [37].

Mean Field approximation

As it was observed in section 2.3.2 (eq. 2.45), the �ring rate r of a population of leaky

integrate and �re neurons, receiving a noisy input current, is given by the transfer function

φ of Ricciardi:

r = φ(µ) =

[
tref + τ

√
π

∫ Vth−VL−µ
σ

Vreset−VL−µ
σ

ex
2

(1 + erf(x))dx

]−1
(2.59)

where τ is the membrane time constant, Vth and Vreset are respectively the spiking thresh-

old and the reset value of the membrane voltage. σ is the membrane potential standard

deviation, tref is the refractory period, VL is the leak potential, µ is the drift coe�cient

obtained in equation 2.36 and de�ned as:

µ = 〈J〉JNQ(t)τ =
Isyn
gL

(2.60)

where Isyn is the total input current.

De�ning Vss = VL + Isyn/gL equation 2.59 becomes:

r = φ(Isyn) =

[
tref + τ

√
π

∫ Vth−Vss
σ

Vreset−Vss
σ

ex
2

(1 + erf(x))dx

]−1
. (2.61)

In the work of Wong andWang (2006), instead of using this formula, they used a simpli�ed

input output function:

φ(Isyn) =
cE,IIsyn − IE,I

1− e−gE,I(cE,IIsyn−IE,I)
(2.62)

where E and I are respectively labels for pyramidal cell and interneuron. cE,I is the gain

factor and gE,I is the noise factor.

The values of these parameters are obtained by �tting the model to the Ricciardi transfer

function φ of a LIF neuron whose external stimulus is driven by AMPA receptor mediated

by external Gaussian noise (�gure 2.14). As stated in section 2.3.2, using the mean

�eld approximation, it is possible to describe the temporal dynamics of the system with

equation 2.47; in e�ect this dynamics system will converge to the steady state described

by equation 2.59, and for the observations made above, also to the steady state required in
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Figure 2.13: Schematic representation of the approximation required to arrive to the re-

duced Wong Wang model starting from the Wang model.

NS and I denote respectively the nonselective excitatory (black) and inhibitory (green)

pools of cells. Arrows indicate excitatory connections and circles inhibitory connections.

Ii is the input from external stimulus to i -th selective neural populations. Brown arrows

indicate background noisy inputs. w+ denotes enhanced excitatory connections within

each selective neural pool. The numbers on the right display the total number of dynam-

ical equations involved in the model.

Source: Adapted from Wong and Wang 2006 [37] p. 1316
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2.4 The reduced Wong Wang model

Figure 2.14: Firing rate as function of the synaptic input current of a pyramidal cell (A)

and of an interneuron(B). Bold lines are plotted using the Ricciardi formula (eq. 2.61)

and circles are plotted using the simpli�ed equation 2.62. In the inset there is a close up

of the input-output relation of an interneuron; dashed line is obtained �tting this relation

with the linear function (eq. 2.70)

Source: Wong and Wang (2006) [37], Supplementary Material, p. 4

this case and described by equation 2.62. Then the mean �ring rate dynamics is described

by four equations: τr dridt = −ri + φ(Isyn,i) with i = 1, 2, 3

τr
drI
dt = −rI + φ(Isyn,I)

(2.63)

where i labels the two selective excitatory populations and the non-selective one, and I

labels the inhibitory population. The dynamics of the output synaptic NMDA gating

variable S (equation 2.56 in the Wang model) is described by:

dSNMDA,i

dt
= −SNMDA,i

τNMDA
+ (1− SNMDA,i)F (ψ(ri)) with i = 1, 2, 3 (2.64)

with:

F (ψi) =
ψi

τNMDA(1− ψi)
(2.65)

where ψi is the steady state of Si. F (ψi) can be calculated analytically when the input

spike train is Poissonian (Brunel and Wang (2001) [5]). The result is:

ψ =
γ · r · τNMDA

1 + γ · r · τNMDA
(2.66)
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2.4 The reduced Wong Wang model

where γ = 0.641. Replacing the expression found in equation 2.65 it results F (ψ) = γr;

consequently the dynamics of the NMDA gating variable (eq. 2.68) becomes:

dSNMDA,i

dt
= −SNMDA,i

τNMDA
+ (1− SNMDA,i)γri . (2.67)

Then the dynamics of the gating variables (equation 2.55, 2.56 and 2.58 in the Wang

model) is: 
dSAMPA,i

dt = −SAMPA,iτAMPA
+ ri

dSNMDA,i
dt = −SNMDA,iτNMDA

+ (1− SNMDA,i)γri with i = 1, 2, 3

dSGABA
dt = −SGABAτGABA

+ rI

(2.68)

Summarizing, with the mean �eld approximation, it is possible to reduce the original

model of Wang (2002) to a system of 11 variables i.e. the mean �ring rates and the

synaptic gating variables of four di�erent neural population: two selective and one non

selective excitatory populations, and the inhibitory population. The dynamics of these

variables are described by the equation in the system 2.63 (the mean �ring rates) and in

the system 2.68 (the gating variables NMDA, AMPA and GABA).

Constant activity of non-selective cells

Under a wide range of conditions, the �ring rate of the nonselective population changes

only by a modest amount [37]. Consequently we can assume that the �ring rates of the

non-selective cells is constant; this observation reduces the system of four population to

three population: the inhibitory population and two excitatory populations.

Then the dynamics of the network is given by the following 8 dynamical equations:

τr
dri
dt = −ri + φ(Isyn,i)

τr
drI
dt = −rI + φ(Isyn,I)

dSAMPA,i
dt = −SAMPA,iτAMPA

+ ri with i = 1, 2
dSNMDA,i

dt = −SNMDA,iτNMDA
+ (1− SNMDA,i)γri

dSGABA
dt = −SGABAτGABA

+ rI

(2.69)

Linearization of the transfer function of the inhibitory population

The mean �ring rate of the inhibitory population typically is in the range of 8÷15 Hz. As

can be noticed in the close up of �gure 2.14, within this range the input-output relation
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2.4 The reduced Wong Wang model

is almost linear, and �tted by:

φ(Isyn) =
1

g2
(cIIsyn − II) + r0 (2.70)

where g2 and r0 = 11.5 Hz.

Slow dynamics of NMDA gating variable

The synaptic gating variable of the NMDA receptors has a much longer decay time con-

stant (τNMDA = 100 ms) than AMPA (τAMPA = 2 ms) and GABA (τGABA = 10 ms)

receptors. Furthermore it is possible to assume that the NMDA gating variable (SNMDA)

dominates the time evolution of the system since it reaches its steady state much slower

than the GABA and AMPA gating variables.

Then, if we assume that the GABA and AMPA gating variables reach their steady states

instantaneously, the SGABA and SAMPA become proportional to the average �ring rate

of presynaptic cells:
dSAMPA,i

dt
= 0⇒ SAMPA,i(t) = τAMPAri(t) = τAMPAφi(t)

dSGABA
dt

= 0⇒ SGABA(t) = τGABArI(t) = τGABAφI(t)

(2.71)

In conclusion, the network model is reduced into a two-variable system described by the

following dynamical equations:


dS1

dt
= −dS1

dt
+ (1− S1)γr1

dS2

dt
= −dS2

dt
+ (1− S2)γr2

(2.72)

where 1 and 2 label the two di�erent excitatory populations, S and τS denote respectively

SNMDA and τNMDA.

The �ring rate r is given by the simpli�ed version of the Ricciardi transfer function (eq.

2.62) and depends on the total synaptic current Isyn,i that is given by:{
Isyn,1 =JN,11S1 − JN,12S2 + JA,11r1 − JA,12r2 + I0 + I1 + Inoise,1

Isyn,2 =JN,22S2 − JN,21S1 + JA,22r2 − JA,21r1 + I0 + I2 + Inoise,2
(2.73)

where Ii is the stimulus to the i -th excitatory population, Inoise,i is the noise term and

I0 is the mean external input common to both populations. The coe�cients JN,ij and

JA,ij are the coupling constants from population i to population j mediated respectively

by NMDA and AMPA receptors.
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2.4 The reduced Wong Wang model

Since the terms Jx,ij have negative sign, the connectivity between the two populations is

negative. This is because the inhibitory population I receives stimulus from both excita-

tory populations, and then its output (proportional to input, because of the linearization

of the transfer function) is of the form:

JN,I→EJE→I(S1 + S2) (2.74)

JA,I→EJE→I(r1 + r2) . (2.75)

Then, for example, in Isyn,1 the S2-dependent term associated with the NMDA gating

variable is:

(JN,2→2 − JN,I→2JN,2→I)S2
.
= −JN,12S2 . (2.76)

In order to further simplify the problem it is necessary to �nd an explicit expression for

the �ring rate; indeed the �ring rate expression ri = φ(Isyn,i) depends on Isyn,i that in

turns depends on S1, S2, r1, r2. Once de�ned the following new variables:

x1 = JN,11S11− JN,12S2 + I0 + I1 + Inoise,1 (2.77)

x2 = JN,22S2 − JN,21S1 + I0 + I2 + Inoise,2 . (2.78)

Wong and Wang, in the Supplementary Materials of their article [37], found an equivalent

response function H in terms of them:

r1 = H1(x1, x2) = (2.79)

=
a(JA,11)x1 − fA(JA,12, x2)− b(JA,11)

1− exp{−d(JA,11)[a(JA,11)x1 − fA(JA,12, x2)− b(JA,11)]}
r2 = H2(x2, x1) = (2.80)

=
a(JA,22)x2 − fA(JA,21, x1)− b(JA,22)

1− exp{−d(JA,22)[a(JA,22)x2 − fA(JA,21, x1)− b(JA,22)]}

where the parameters a, b, c, d and the function f are chosen to �t the numerical solutions:

a(JA,11) = 239400JA,11 + 270 [(V nC)−1] (2.81)

b(JA,11) = 97000JA,11 + 108 [Hz] (2.82)

c(JA,11) = −30JA,11 + 0.154 [s] (2.83)

fA(JA,12, x2) = JA,12(−27x2 + 106)θ(x2 − 0.4) [Hz] (2.84)

where θ(x) is 0 if x is negative, and 1 if x ≥ 0.

Finally, combining these results with the dynamical equations in the system 2.72, Wong

and Wang obtained the two dynamical equations able to describe the system:
dS1

dt
= −S1

τS
+ (1− S1)γH(x1, x2)

dS2

dt
= −S2

τS
+ (1− S2)γH(x2, x1)

(2.85)
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2.4 The reduced Wong Wang model

2.4.3 Single neural population reduction

Two years ago in the paper "Resting-state functional connectivity emerges from struc-

turally and dynamically shaped slow linear �uctuations." of Deco et al., (2013) [13] (see

also subsection 3.2.3), the reduced Wong Wang model was used in resting state modeling

with an additional simpli�cation: instead of considering two excitatory populations, they

considered only one neural population.

This is obtained by neglecting the contributions of the AMPA receptors to local recurrent

excitation, i.e. neglecting the terms JA,ij . This means that the �ring rates of the two

populations are "dis-entangled" since the equations de�ning the response function Hi

(eqs. 2.79 and 2.80) depend only on xi:

r1 = H1(x1) =
ax1 − b

1− exp[−d(ax1 − b)]
(2.86)

r2 = H2(x2) =
ax2 − b

1− exp[−d(ax2 − b)]
. (2.87)

In conclusion the mean activity of a neural population composed by excitatory and in-

hibitory leaky integrate and �re neurons, interconnected via NMDA synapses, can be

expressed by a single one variable: S.

Then the whole brain dynamics of the network composed by these kind of neural popu-

lations is described by the following set of coupled nonlinear stochastic di�erential equa-

tions:

dSi(t)

dt
= −Si

τs
+ (1− Si)γH(xi) + σηi(t) (2.88)

H(xi) =
axi − b

1− exp(−d(axi − b))
(2.89)

xi = wJNSi + JNG
∑
j

CijSj + I0 (2.90)

where, summarizing, Si, H(xi) and xi represent respectively the NMDA average synaptic

gating variable, the collective population �ring rate and the total synaptic input to a

cortical region i. The parameters and their values are shown in the third column of the

table 4.1 in section 4.2.
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Chapter 3

Modeling the resting state

The aim of the chapter is to discuss the state of the theoretical framework used to un-

derstand the dynamics of the resting state.

As discussed in the �rst chapter, spontaneous brain activity during wakeful rest is not

random but displays speci�c features, as the slow �uctuating spatiotemporal patterns in

BOLD signals. Understand how this activity emerges during rest is not a trivial problem

and it has enthralled many scientists.

Once de�ned two concepts essential in this �eld (the structural and the functional con-

nectivity), the theoretical analysis about the mechanism of the resting state brain �uctu-

ations, that are interesting for the purpose of the present thesis, are summarized.

The �rst papers analyzed concern a series of models of resting state dynamics, in macaque

and human cortices, that use di�erent implementation for node dynamics and interaction

terms: Honey et al., 2007 [20] ,Ghosh et al., 2008 [18], Deco et al., 2009 [9], Deco and

Jirsa, 2012 [11] and Deco et al., 2013 [13]. These models have achieved a large consistent

set of results: the dependence of functional connectivity from the time on which it is cal-

culated and the key role in the resting state modeling of the anatomical structure, of the

noise and of the time delay. In these works it is stated that the resting state oscillations

emerge from noise-induced transient �uctuations around the stable equilibrium state of

the brain network.

Despite that, one year ago, Messé et al., [26] showed that a simple linear model was able

to reproduce a prediction in the functional connectivity similar to the one obtained with

these models.

Moreover empirical evidences show that changes both in strength and direction of func-

tional connections appear at di�erent time scales [2]. These observations shed light on

the necessity of a new metric: the Functional Connectivity Dynamics. The chapter ends
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3.1 Structural and functional connectivity

with the analysis of the paper of Hansen et al., 2015 [19], where the authors were able to

simulate the functional connectivity switching by enhancing the dynamics repertoire of

the reduced Wong Wang model. The functional connectivity states, de�ned in the paper,

are successfully connected to the default mode networks. The ideas and the strategy used

in the 2015 paper of Hansen et al., are the starting point of this work.

3.1 Structural and functional connectivity

Before starting to analyze the resting state salient models it is necessary to de�ne the

empirical data on which they are applied to generate predictions (the structural connectiv-

ity) and then to discuss the measure used to compare the results obtained (the functional

connectivity).

The structural connectivity

Structural Connectivity (SC ) is the set of physical and structural connections linking

the elements, neurons or bigger structures, within the network. Anatomical connections

range from local circuits to large-scale network of inter-regional pathways.

The principal technique used to generate this kind of data is the Di�usion Tensor Imaging

(DTI ); this is an MRI based technique that was developed in the last decades and which

tracks the di�usion of water molecules, that in the brain is maximally oriented along the

axonal �bers. DTI can only track one direction per voxel and, for this reason, methods

which improve this limitation have been introduced; for example Di�usion Spectrum

Imaging (DSI), together with computational algorithms (tractography), is able to infer

di�erent orientations within a single voxel. The state of the art technique consists in

using the photon tomography to map point-to-point connectivity between all anatomical

regions in the animal brain. This innovative method produces the better data obtained

until now in neuroscience and in this thesis innovative data of this kind are used to

simulate the resting state dynamics (details in section 4.1).

These two techniques are compared and deeper explained in appendix A.

The functional connectivity

To compare the predicting power of the di�erent models existing in the literature, some

kind of measures have to be performed both on the simulated data and on the empirical

one. One can be interested in the actual temporal evolution or in the mean measures,

one can look for the presence of oscillations in particular frequency ranges or calculate
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3.2 The RSNs and the dynamics repertoire

Figure 3.1: Explicative cartoon of meaning of the structural and the functional connec-

tivity in a network composed of three neural populations

the amount of mutual information or of transfer entropy. The range of possibilities is not

narrow, but as simple linear correlation (for example covariance or Pearson correlation

coe�cients) proved to be informative on some characteristics of the network [11], it has

become a common measure for the Functional Connectivity (FC).

Measuring the correlation of the time series, the functional connectivity is able to capture

patterns of deviations from statistical independence between neuronal units. Functional

connectivity is highly time-dependent and does not make any explicit reference to causal

e�ects or to underlying structural model [33].

The resting state brain activity has been investigated with multiple procedures such as

positron emission tomography (PET), magnetoencephalography (MEG), and electroen-

cephalography (EEG), but the dominant approach is presently functional magnetic reso-

nance imaging (fMRI). Resting-state fMRI is a non-invasive method in which the FC and

other properties of Blood Oxygen Level Dependent (BOLD) signals are examined from

scans acquired with no explicit task.

3.2 The RSNs and the dynamics repertoire

In general the resting state models have three principal building blocks (�gure 3.2).

The �rst building block is the anatomical connectivity between brain areas (the structural

connectivity de�ned in the previous section); the models analyzed in the present section

use structural connectivity from human and macaque.

The second building block is the time delays of the signal between brain area due to �nite
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3.2 The RSNs and the dynamics repertoire

Figure 3.2: In this scheme the principal steps used in neuroscience to model the resting

state activity are summarized. By applying the model to the empirical structural con-

nectivity (in this case obtained with DTI or DSI) the dynamics of the brain is simulated;

then, once the BOLD signals from the simulated brain activity are calculated, the sim-

ulated FC, i.e. the correlation in time of the time-series, is achieved. Finally comparing

the simulated FC with the empirical FC (in this case obtained with fMRI) it is possible

to establish the goodness of the model in reproducing the dynamics of the brain.

Source: Deco et al., 2013 [12] p. 270

nature of the speed propagation along nerve �bers. The paper of Ghosh et al., 2008 [18]

and the paper of Deco et al., 2009 [9] state that the space-time structure of the couplings

shapes the emergent network dynamics. Instead in the paper of Deco and Jirsa 2012

[11] the time delays are not used in modeling the RSN with spiking neurons because of

absence of oscillations.

The third building block is the dynamics of the neural populations in the brain i.e. the

dynamics of the network nodes. Some models considered simple oscillatory dynamics, as

in the work of Ghosh et al., 2008 [18] and Deco et al., 2009 [9]; other models considered

chaotic dynamics, as the �rst model analyzed in the next pages (Honey et al., 2007 [20]);

�nally, Deco and Jirsa 2012 [11] and Deco et al., 2013 [13], used the reduced Wong Wang
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3.2 The RSNs and the dynamics repertoire

model in order to model a brain area as a realistic biological network with excitatory and

inhibitory populations of spiking neurons coupled throw NMDA synaptic dynamics.

A common characteristic of all models is that the emergence of the resting state networks

occurs only if the system is at the edge of instability.

3.2.1 Neural populations as chaotic oscillators

In the paper of 2007, Honey et al., [20] investigate functional connectivity patterns at

multiple time scale; they simulate the resting state neural activity of a macaque using a

large-scale connectome.

The units of the model describe interconnected excitatory and inhibitory neurons whose

behaviors are determined by the membrane channels activity. They used the macaque

structural connectivity to determine connections between the network nodes. Non linear

instabilities generate activity in the system; the oscillations of the system are spontaneous

and self organizing and they generate transient synchronous activations between the nodes

i.e. brain regions. They calculated the correlation both on brain activity lasting 4 min-

utes and on brain activity lasting 30 s. They observed that the functional connectivity,

calculated over long time series, re�ects the anatomical connections; instead at smaller

time windows, shorter-lived patterns of functional connectivity, that were not predicted

by the anatomy, emerged. This observation shed light on the temporal dependence of the

FC.

In order to compare the dynamics simulated with the empirical BOLD data, the oscilla-

tions for each node were converted into a BOLD signals using the Balloon - Windkessel

haemodynamic model (Appendix B). The FC is computed as the correlation over BOLD

time series, and the authors individuate the DMNs as the brain region correlated and anti-

correlated. In conclusion, in this model, resting-state activity patterns result from cluster

synchronization between nodes, and di�erent clusters correspond to di�erent DMNs.

The interesting result of this paper is that the functional connectivity depends on the

time scale over which the correlation is calculated.

The principal two lacks of this model are that it does not include the noise and the delay

in the propagation of the signals between brain regions [10].
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3.2.2 The importance of noise and time delay in resting state

�uctuations

Unlike the discussed paper of Honey et al., (2007) [20], in the work of Ghosh et al.,

(2008)[18] and in the work of Deco et al., (2009) [9], not only they introduce the noise

and the time delay in modeling the resting state, but they also put the stress on the

fundamental relevance of these factors.

In the paper of Ghosh et al., (2008) [18], the dynamics of each node of the network were

modeled as oscillators with a constant value of noise. Speci�cally they associate at each

node i.e., at each neural population, two state variables u and v ; therefore the evolution

in time of the network, composed of N nodes, is given by the following system:


dui
dt

= g(ui, vi)−G
N∑
j=1

Wijuj(t−∆tij) + nu(t)

dvi
dt

= h(ui, vi) + nv(t)

(3.1)

where nu and nv represent gaussian noise and ∆tij is the time delay of the signal between

node i and j. Wij is the weight of the anatomical connection between node i and node

j and G is the coupling strength i.e. a parameter which scales all connection strengths

without altering the connection topology of the structural connectivity matrix. The

functions g and h represent the intrinsic dynamics of the node, that ,in this case, are:
g(ui, vi) = τ(vi + γui −

u3i
3

)

h(ui, vi) =
1

τ
(uiα+ bvi)

(3.2)

the values of the parameter are in table 3.1.

In the paper the time delay ∆tij between two coupled brain area i and j is de�ned as the

Parameters Values

α 1.05

β 0.2

γ 1

τ 1.25

Table 3.1: Parameters used in the paper of Ghosh et al., (2008) [18] to implement the

model for simulating activity of the brain during rest.
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ratio between the Euclidean distance between the two nodes de�ned in the three dimen-

sional space, and the propagation velocity of the impulse along the connecting �bers; this

velocity is approximate to a constant. Using this model, the authors perform simulations

with the purpose of �nding the critical boundary between stable and unstable regime of

the network in function of coupling strength and of transmission delay. The resulting

stability diagram is shown in �gure 3.3 where the degree of instability is quanti�ed by

the real part of the eigenvalue (Re[λ]) following a linear stability analysis of the network

equilibrium points.

Figure 3.3: In the upper part of the �gure the degree of instability, equivalent to Re[λ], is

plotted as a function of connection strength and of propagation velocity. In the lower part

of the �gure the critical boundary, equivalent to Re[λ] = 0, is plotted as a contour line

separating unstable and stable regions. The intervals [A;B] and [C;D] indicate biological

relevant velocity ranges.

Source: Ghosh et al.,2008 [18] p.7

Adding the noise, the behavior of the system in the di�erent regimes is studied. When

the system is in the the stable regime, far from the critical boundary, it is observed that

all oscillations are strongly damped; in the unstable regime, the system displays high am-

plitude oscillatory behavior, which resembles pathological, as epileptic, activity. Instead

when the system is close to the critical boundary, it is possible to observe the emergence

of the characteristic oscillatory behavior of the resting state (∼ 10Hz).

The ongoing interplay between noise drive and oscillatory return leads to the exploration

of the brain's dynamics repertoire. A e�ective way to visualize this stochastic mechanism

is the one used by Deco et al., (2011) [10] and shown in �gure 3.4.

Implementing the present model with a real anatomy connectivity and with a biological

realistic propagation velocity, the BOLD signals are computed; in this way realistic rest-

ing state networks are founded.

The work of Ghosh et al., demonstrate the importance of the spatial (anatomical connec-

tivity) and temporal (time delay) structure to construct realistic simulation of the resting
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Figure 3.4: In this �gure are shown the the time series (upper part) and the phase plane

(lower part) of a three dimensional system with an equilibrium point in order to illustrate

the stochastic mechanism that leads to the resting state oscillations in the Ghosh model

[18]. In the absence of noise (left part of the �gure) the system approach to the stable

attractor by spiraling down a paraboloid; the corresponding time series of two of the three

system variables display a damped oscillation (in green and blue), the third one (in red)

relaxes to zero in a non-oscillatory way. In the presence of noise (right part of the �gure)

the system explores the neighborhood of the equilibrium point. Each excursion further

away from the equilibrium is followed by an oscillatory return along the paraboloid.

This behavior is revealed in the time series with intermittent, fast neurophysiological

oscillations.

Source: Deco et al.,2011 [10] p.50

state. When the system is closed to the instability, it is able to explore its dynamical

repertoire, i.e. a number of potential functional network con�gurations: the default mode

networks.

The Ghosh et al. results were con�rmed by the paper of Deco et al., 2009 [9], where it

is underlined that the synchronization between brain area in the resting state strongly

depends of three factors: the neuroanatomical connectivity structure, the delays in the

transmission of information between di�erent brain nodes and the noisy �uctuations.

In summary, the most important �nding of these two works is that spontaneous ongoing

activity is built up by multistable attractors, each one related to di�erent speci�c tasks or
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stimulations; the resting state activity �uctuates through transitions between attractor

states by reason of unstructured input: the noise [10].

3.2.3 Resting state modeling with the reducedWongWang model

Starting from the previous consideration, i.e. the resting state �uctuations emerge if the

system is at the edge of instability, Deco and Jirsa in their paper of 2012 [11] decide

to use a realistic model to explain the dynamics of each brain area: the reduced Wong

Wang model. The stationary �x points of the models as function of the coupling strength

is studied; the attractor landscape of the system (shown in �gure 3.5a) is obtained by

simulating the deterministic evolution of the model with 1000 di�erent initial conditions

for each value of the coupling strength; in this way three di�erent regimes are founded:

1. for small value of the coupling strength (W < W−) only one stable attractor exists.

This attractor corresponds to the spontaneous ground state of the system where all

neurons are �ring at low level of activity.

2. For increasing value of the coupling strength there are more than one attractor; this

leads to a multistable regime of the system. These attractors correspond to high

�ring activity in particular brain area.

3. For very large value of the coupling strength only one attractor is stable: this

corresponds to the state in which all the excitatory neurons are highly activated in

the brain (epileptic state).

The authors simulated the BOLD signals and, calculating the correlation matrix of the

BOLD activity between all brain areas, they obtained the simulated FC. Plotting the

correlation between the empirical FC and the simulated FC as function of the coupling

strength (�gure 3.5b ), they were able to state that the correlation is maximum for values

of the coupling strength near the bifurcation as shown in �gure 3.5a. In conclusion, using

a biological realistic model, Deco and Jirsa were able to prove that the best �t between

empirical and simulated data is obtained when the brain network is at the critical point.

Default mode networks emerge as structured noise �uctuations around the stable low

activity state induced by the presence of a latent "ghost" multistable attractors at the

edge of the bifurcation.

Stated the e�ectiveness of the Wong Wang model in predicting the resting state �uctua-

tions, Deco et al., in the paper of 2013 reduced this model to only one variable as already

discussed in section 2.4.3. As in the previous paper, they evaluated the number of the

system stationary states running deterministic simulations of the model with 1000 dif-

ferent initial conditions. They plotted the maximum �ring rate activity over all cortical
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(a) (b)

Figure 3.5: (a) Attractor landscape of the system in function of the coupling strength. In

the graph (b) dots represent the correlation between the empirical and the simulated FC.

Source: Deco and Jirsa 2012 [11] p. 3371

areas as function of the coupling strength (�gure 3.6 B) for both the reduced model and

the original one.

The value of the external input current (I0, equation 2.90) of the reduced model was

tuned in order to get a structure of the stationary attractors of the global system similar

to the one obtained by using the complete Wong Wang model. In this way the bifurca-

tion diagram (�gure 3.6 B) displays three di�erent regimes as found in the previous work

(Deco and Jirsa 2012 [11]). For small values of the coupling strength only one stable state

exists, characterized by a low �ring activity in all cortical areas. For a critical value of

the coupling strength, it emerges a �rst bifurcation and new multistable states of high

activity appear while the state of low activity is still stable. For even larger values of

coupling strength the spontaneous state becomes unstable.

The correlation, obtained in the paper, between the empirical functional connectivity and

the simulated functional connectivity with the reduced model, is shown in �gure 3.6 A.

The maximal correlation occurs at the edge of the second bifurcation where the low �ring

rate state loses its stability and, therefore, the noise drives the system in the exploration

of the other attractors shaped by the underlying anatomy.

An explication of the meaning of the state of the network brain when it is at the edge of

bifurcation is presented in another work of Deco et al., 2013 [12]. The authors observed

that, at the point of criticality, neuronal networks optimize several aspects of information
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3.2 The RSNs and the dynamics repertoire

Figure 3.6: Correlation between the empirical and the simulated functional connectivity

with the reduced model is plotted as function of the coupling strength (part A of the

�gure).

In the part B of the �gure the maximum �ring rates activity in function of the coupling

strength is shown; in the graph the three di�erent regimes discussed can be observed.

In the part C of the �gure it is plotted the time required to the visual network to converge

to the appropriate attractor after a stimulation in area V1. The system is implemented

with the characteristic of two di�erent working points: one at the edge of the second

bifurcation (point (ii), red line) and the other one further away (point (i), blue line).

Source: Deco et al.,2013 [12] p. 271

processing. They simulated the stimulation of the visual network by the application of

an external bias in the V1 area; for di�erent strengths of the external stimulus I, they

measured the time that the system required to converge to the appropriate network at-
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3.3 Non-stationarity of the Functional Connectivity

tractor. In �gure 3.6 C it is shown the reaction time in function of the strength of the

stimulus when the system is implemented with the characteristics of two di�erent working

points (�gure 3.6 B): one at the edge of the second bifurcation (in red) and the other

further away (in blue). The optimal working point is the one at the brink of the second

bifurcation; in this point the system is maximally sensitive to external stimulation and

able to respond quickly.

3.3 Non-stationarity of the Functional Connectivity

Nevertheless the biological realism of the models discussed in the previous section, Messé

et al., in 2014 paper [26], demonstrate that the accord between empirical and predicted

FC of these models is good as the accord between empirical and predicted FC with a

simple linear model.

Empirical evidences, as the one contained in the paper of Allen et al., 2014 [2], show

that the FC calculated upon smaller time series is signi�cantly di�erent from the one

calculated upon longer time series.

These observations conduct at the paper on which is based the work of this thesis: the

paper of Hansen et al., 2015 [19].

In what follows the three mentioned papers will be summarized.

3.3.1 Evidence of functional connectivity dynamics

Up to this point, when treating FC, it is implicitly assumed that the relationships between

brain areas are constant throughout the length of recording; instead resting state networks

have a rich spatiotemporal signature. As stated for the �rst time in the paper of Honey et

al., 2007 [20] (see section 3.2.1), the calculation of the correlation across di�erent length

of time leads di�erent results. Across a long time window, distinct functional networks,

related to the underlying anatomy, emerge; however at shorter time steps, subnetworks

emerge and dissolve as the full network evolves (�gure 3.7). Consequently quantifying

changes in FC metrics over time may provide greater insight into fundamental properties

of brain networks.

The temporal dependency of the functional connectivity has been empirically validated

in fMRI studies as the one of Allen et al., 2014 [2]. In this work resting state data from a

large sample (n=405) of human are used and for the analysis the sliding window approach

is used. In this approach a time window of �xed length is selected, and data points within

that window are used to calculate FC. The window is then shifted in time by a �xed num-

ber of data that de�ne the amount of overlap between successive windows (�gure 3.7). By
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3.3 Non-stationarity of the Functional Connectivity

Figure 3.7: Schematic representation of sliding windows analysis.

Source: Adapted from Allen et al.,2014 [2] p. 3

the analysis of the windowed FC matrices, the authors not only were able to demonstrate

the dynamic behavior of the functional connectivity, but, performing clustering analysis,

they individuate recurring short-term connectivity patterns which they called FC states.

A part of the individuated FC states diverge strongly from connectivity patterns individ-

uated by global FC.

In conclusion FC, when estimated over long time series (called stationary FC), breaks

down into a variety of correlation patterns that can be observed only if the estimate

is done over short time windows. Since the correlation over long time series leads, for

the de�nition of the Pearson correlation, to a loss of information about the dynamics

evolution of the system, the stationary functional connectivity is mainly related to the

underlying anatomy. On the other hand, once FC is estimated over short time windows,

it mostly re�ects recurrent transitory patterns that aggregate when the FC estimate is

done on a whole session.

An other interesting result is obtained in the paper of Messé et al., 2014 [26]. The authors

investigate the relative contributions in the emergence of the empirical FC of anatomical

connections, stationary and non-stationary dynamics. In order to do that, the predicting

power of increasing complexity models is systematically compared. The predicting power

is calculated as Pearson correlation between the simulated and the empirical FC. The

simplest model considered is a spatial autoregressive model (SAR, as called in the paper)

which is explicitly associated with a stationary FC; more complex models are expected

to generate dynamics that are compatible with the non-stationarity of the FC. Despite

of the expectation, the authors demonstrate that all models tend to perform similarly,

irrespective of model complexity (�gure 3.8). The best performing model in most cases
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3.3 Non-stationarity of the Functional Connectivity

is the SAR model, which, for its de�nition, is connected to the stationary part of the

FC, although a signi�cant part of the variance in the empirical data remains unexplained

(the 63% according to the paper results). This large remaining variance must contain

the non-stationary behavior of the FC as evidenced in literature and that, the models

discussed until know, are not able to capture.

Figure 3.8: Predictive power of the model analyzed in the study of Messé et al.,. Bar

charts represent means and associated standard deviations of the individual predictive

powers. The diamonds represent the predictive powers for average subject using the

original SC obtained by �ber tractography based on di�usion weighted imaging (DWI).

The circles represent the predictive powers for average subject using the SC with addition

of connections across cerebral hemispheres that are usually estimated improperly using

DWI (homotopic connections).

Source: Adapted from Messé et al., 2014 [26] p.3

3.3.2 Exploring the dynamics of the FC

The work of Hansen, Battaglia, Spiegler, Deco and Jirsa "Functional connectivity dy-

namics: Modeling the switching behavior of the resting state", published in the current

year, represents a new stance, necessary at this time, to study the resting state dynamics.

The authors were able to simulate the transition between states at rest.

The structural connectivity matrix, used to reproduce the brain activity, represents the

connections between 66 anatomical cortical regions of human brain obtained by the dif-

fusion spectrum imaging.

In order to model the resting state activity the authors considered two models; the �rst

one is the reduced Wong Wang model, with the reduction performed in Deco et al., 2013

[13], and, following the authors label, in the next this model will be referred as MFM

(Mean Field Model).
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3.3 Non-stationarity of the Functional Connectivity

In the paper the dynamics of a single node (setting the coupling strength to zero G=0 in

equation 2.90) is studied analyzing the relationship between NMDA current related vari-

able S and its time-derivative dS/dt as it is shown in �gure 3.9 and 3.10. Remembering

that the values of S for which dS/dt is equal to zero correspond to �xed points of neural

activation, it is possible to notice that a variation of the local excitability I0 and the local

excitatory recurrence w leads to di�erent regimes.

Fixing the local excitatory recurrence at 0.9, the analysis of the phase portrait of the

model (�gure 3.9) reveals that there is only one stable equilibrium for di�erent, realis-

tically biological values of the local excitability I0; the stable point corresponds to low

activity regime (�gures 3.9a, 3.9b, 3.9c), and to high activity regime (�gure 3.9d).

Interestingly, changing the value of the recurrent connections w from 0.9 to 1.0, it is

possible to notice that when I0 is in the range between 0.32 and 0.34 nA there are two

new equilibria, one stable and one unstable (�gure 3.10c); this situation corresponds to

a bistable con�guration with two �xed point (high and low activation). For other values

of I0 there is only one stable equilibrium (�gure 3.10a, 3.10c and 3.10d).

In conclusion, when each brain region is considered isolated from other brain regions

(G = 0), the increase of the recurrent connections w causes the dynamics of each brain

region to change from monostable to bistable for certain values of the external input

I0. Therefore, in order to increase the dynamic repertoire of the mean �eld system, the

authors decided to model the resting state with the enhanced non-linearity mean-�eld

model (eMFM); such model shares with the MFM the same dynamical equations but

with a slightly modi�cation of the parameters.

To understand how a change in the coupling strength G produces a change in the dynam-

ics of the system, for both models 1000 deterministic simulations, using random initial

conditions, were run for each value of G in the range of [0 : 3.25] with increments of

∆ = 0.05. E�ectively, in absence of noise, the system converges to �xed point of activity

in which each brain region displays a steady level of activity. The �nal stable patterns of

the simulations of each model are correlated with two measurements from graph theory

calculated on the structural connectivity matrix: the in-strength and the s-core. The

in-strength of a brain region i represents the density of ingoing white matter connections

connected to region i; the in-strength is a descriptor of local topology. The s-core of a

network is the maximal connected subnetwork in which all nodes have at least a value of

strength of s or higher; the nodes of the s-core capture the global aspect of the network

topology.

In �gure 3.11 are shown the graphs obtained for the MFM and the eMFM correlating the

stable patterns with the in-strength (blue dots) and with the s-core (red dots). Observing
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3.3 Non-stationarity of the Functional Connectivity

(a) I0 = 0.3 nA (b) I0 = 0.32 nA

(c) I0.33 nA (d) I0 = 0.34 nA

Figure 3.9: In the graphs is shown the neural activation dynamics at the level of a single

brain region when the local excitatory recurrence w is �xed at 0.9. Varying the value of

the local excitability I0 there is only a stable �xed point (�lled dots) that corresponds

to low activation regime in �gure 3.9a,3.9b, 3.9c, and to high activation regime in �gure

3.9d

the graph it is possible to notice that in the range Gc− < G < Gc+ the dynamic repertoire

of the MFM is enriched, as already notice in Deco and Jirsa 2012 [11] and in Deco et al.,

2013 [13]; however all the sampled �xed points are strongly correlated with the local SC

topology (in-strength) or with the global SC topology (s-core). This evidence con�rms

the results obtained in the study of Messé et al., 2014 [26] : the brain dynamics simulated

with the MFM re�ects the underlying anatomical structure. In the eMFM correlation

graph (right part of �gure 3.11) additional classes of �xed points emerge which has poor

correlations with both the local and the global SC topology. As expected, the local mul-

tistability of the eMFM (�gure 3.10b) reinforces the global emergence of multi-stability;

moreover the presence of these new classes of attractors mirrors a non-trivial interplay

between local and collective dynamics that can not be explained by the SC alone. This

result represents the step forward respect to the models analyzed by Messé et al., 2014

[26]. The goodness of the eMFM in reproducing the resting state activity is stressed by

the fact that with such a model the authors were able to observe the switching in FC. In
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3.3 Non-stationarity of the Functional Connectivity

(a) I0 = 0.3 nA (b) I0 = 0.32 nA

(c) I0.33 nA (d) I0 = 0.4 nA

Figure 3.10: The graphs show the neural activation dynamics at the level of a single

brain region when the local excitatory recurrence w is �xed at 1. For the value of the

local excitability I0 equal to 0.3 nA there is only a stable �xed point (�lled dots) that

correspond to a low activation regime (�g 3.10a); at the value of I0 equal to 0.32 nA there

is also an unstable �xed point (empty dots) that leads the system in a bistable condition

between high and low activity regimes (�g 3.10b). For values of I0 greater than 0.32 nA

the isolated brain area exhibits a stable high activation regime (a stable high activity

�xed point).

order to catch the FC switching, the Functional Connectivity Dynamics (FCD) matrix

is constructed as explained in the following (an explanatory cartoon of the procedure is

shown in �gure 4.3 in the next chapter). The BOLD signal time-series is divided in win-

dows of 60 seconds duration, centered at time t, with an overlap of 58 seconds between

windows. The functional connectivity FC(ti) of the BOLD time-series of each time win-

dows is calculated. Finally the Pearson correlation is computed between the components

of the upper triangular part of each FC(ti) arranged in a vector. Such correlations are

organized in a matrix: the functional connectivity dynamics matrix, the FCD, which is

the new metric able to catch the rich structure of the FC non stationarity behavior.

The coupling strength and noise value have an important role in shaping FC dynamics
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3.3 Non-stationarity of the Functional Connectivity

Figure 3.11: The graphs represent the correlation between the deterministic attractor

of the neural activity (MFM, left and eMFM, right) and the total in-strength of each

brain region (blue dots) and the s-core (red dots) of the SC matrix. The �xed points

of activity for each model were found by running 1000 deterministic simulations lasting

15 s for every value of the coupling strength G. The correlation points accumulate to

form a discrete set of di�erent branches; this indicates that di�erent families of attractors

exist with distinctive relations to local and global topology. Gc− and Gc+ indicate the

bifurcation points. It is interesting to notice that in the eMFM correlation graph there

are values of correlation not present in the MFM correlation graph. The Roman numerals

indicate the working point used as initial conditions for simulations.

Source: Hansen et al., 2015 [19] Supplementary data, �gure S5

Figure 3.12: FCD matrices for di�erent noise levels σ and for the coupling strength value

II with reference to �gure 3.11. In both models the FC switching occurs at high noise

level, but the FCD generated with the eMFM displays a richer structure with respect to

the one obtained with the MFM, mirroring its bistable regime at the brain region level.

Source: Hansen et al.,2015 [19] Supplementary data, �gure S3.

for both eMFM and MFM. Indeed, observing �gure 3.12, it is possible to notice that

also MFM gives rise to structured non-stationary patterns, when G is selected at the
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3.3 Non-stationarity of the Functional Connectivity

center of the range [Gc−;Gc+] and the noise is increased until σ = 0.01. However this

patterns are always less prominent that for eMFM; the only signi�cant correlations are in

the main diagonal, which means that only functional connectivity states close in time are

correlated. In both model the FC switching is suppressed in presence of low level of noise

(σ = 0.001) and when the coupling strength is set near the critical points (Gc− or Gc+).

Such behavior is due, in both models, to a poor dynamical repertoire: the dynamics of

the network is settled in a �xed point. At the contrary, when the system is maintained

out-of-equilibrium by higher noise levels, the trajectories of the dynamics of the brain sys-

tem explore di�erent subspaces; the trajectories either converge back towards the �xed

point from which they originated or diverge towards a di�erent attractors.

Observing the empirical and the eMFM FCD in �gure 3.13, it is possible to notice the

Figure 3.13: In the left part of the �gure the empirical and the eMFM FCD matrices are

shown; α and β indicate the epoch of stability of the FC. In the right part of the �gure

are shown the FC states of the epoch of stability and the best match with the FC(t)

found in the empirical data set.

Source: Hansen et al.,2015 [19] p. 530

presence of red, square-shaped blocks occurring along the diagonal that are the signs of

the presence of FC(t)s closely correlated during epochs lasting several minutes. Using the

usnusperving clustering method (K-means) the boundaries between blocks are precisely

de�ned; following the work of Allen et al., 2014 [2], the FC(t) clusters are called FC

66



3.3 Non-stationarity of the Functional Connectivity

states. The two epochs found in the work, α and β, are shown in the right part of the

�gure 3.13 where are also displayed the closest matches found in the empirical data-set.

Finally in the paper the authors compared the simulated FC states with the resting state

network in literature.

In conclusion the work of Hansen et al., 2015 shows that the previous large scale model

(MFM) does not reproduce the switching between the FC states observed in the empiri-

cal data (Allen et al., 2014 [2]). Instead a slight enhancement of the non-linearity of the

network nodes leads the system to enrich its repertoire of attractors and consequently

the simulated FC to display non-stationary switching similar to empirical resting state

recordings.
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Chapter 4

Materials and methods

In this chapter materials and methods used to individuate the functional connections in

mouse brain resting state activity simulation are discussed.

Firstly the matrix used to de�ne the anatomical connections between the brain regions

is presented; such matrix is an anterograde tracer mapping of axonal projections across

the mouse central nervous system and it is obtained in the Allen Institute for Brain

Science [28]. Such structural connectivity matrix represents, to date, the most compre-

hensive connectivity map in any vertebrate species. Consequently, this instrument is an

extraordinary opportunity for understanding the mammalian brain, and speci�cally for

simulating the resting state with a careful biological realistic connectivity structure. The

�rst section brie�y analyzes the matrix using graph theory measures.

Section 4.2 describes the mathematical frameworks used for modeling each local brain

area, i.e. each node in the global brain network. Such models are the (i) Wong Wang

model with the further reduction performed by Deco et al., 2013 [13] (the Mean Field

Model, MFM) and (ii) the enhanced non-linearity Mean-Field Model (eMFM). The eMFM

shares with the MFM the same dynamical equations, but with the modi�cation of a pa-

rameter value which causes, at the brain areas level, the introduction of bistability between

high and low �ring rate states; in the global network such behavior is re�ected in presence

of attractors which don't have any trivial relationship with the local and global network

topology (as shown in the paper of Hansen et al., 2015 [19] discussed in section 3.3.2).

Then the characteristics of the computer simulations are brie�y summarized.

The method used to calculate the functional connectivity matrix and the functional con-

nectivity dynamics matrix starting from the simulated BOLD signals, is illustrated in

section 4.4.

After that, the approach employed to individuate the functional brain hubs is explained.

70



4.1 The structural connectivity

In the same section are also summarized the results obtained in the paper of Mechling et

al., 2014 [25] experimenting resting state fMRI on mice; this article is of interest since the

experimentally functional hubs found by the authors are compared with the ones detected

in the simulation under discussion.

Finally a strategy to reduce the dimensionality of the simulated brain activity is presented.

4.1 The structural connectivity

In this work the state-of-the-art mouse brain anatomical connectivity obtained in the

Allen Institute for Brain Science of Washington (98103 USA) is used. Such structural

connectivity is an anterograde tracer mapping of axonal projections across the mouse

central nervous system and it is, to date, the most comprehensive connectivity map in

any vertebrate species [28].

The method used to map the brain connections is the anterograde tracer method. Such

method permits to trace the axonal projections. This goal is obtained by the injection of

observable tracer molecules which are absorbed locally by the soma of various neurons and

transported to the axon terminals; in this way it is possible to detect the tracer migration

and consequently to trace axonal projections from their source, soma, to their point of

termination, synapse. In particular, to obtain the Allen connectivity matrix, as explained

in the study of Oh et al., 2014 [28], the axonal projections were mapped by injecting in

adult male C57Bl/6J mice the recombinant adeno-associated virus which expresses the

enhanced green �uorescent protein (EGFP) anterograde tracer. The green �uorescent

protein exhibits bright green �uorescence when exposed to light in range from blue to

ultraviolet, and it was isolated for the �rst time in the jelly�sh Aequorea victoria. The

tracer migration signal was detected with a serial two-photon tomography system with

voxel resolution of 100µm x100µm x100µm. Repeating systematically this approach, and

after several data processing and quality control, the whole brain connectivity matrix was

obtained. The matrix, plotted in �gure 4.1, contains the connection strengths between

426 brain regions.

The connectivity matrix reveals that the mouse brain exhibits features of both small-

world networks and scale-free networks [28], i.e. the presence of hubs and the presence

of clusters of nodes; the cluster of nodes are subsets of nodes that have more connections

inside than outside the subset.

Unlike DTI and DSI methods, which force the connectivity matrix to be symmetric, the

tracer method catches the asymmetry of the connectivity matrix and consequently, when

used as base for brain simulations, allows to reproduce more realistic behaviors of the

network (details about the comparison of such methods are in appendix A). The asym-
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4.1 The structural connectivity

metry of the anatomical structure is revealed by the di�erence between the in-strength

and the out-strength of each brain region, i.e. respectively the sum of the incoming and

the outcoming connection weights (�gure 4.2). Both the in-strength and the out-strength

distributions have the characteristics of log-normal distributions with a small number of

strong connections and a large number of weak connections [28].

Figure 4.1: The color map represents the structural connectivity matrix by encoding the

connections strengths by base ten logarithmic scale (for identifying the brain region see

the abbreviation list).
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4.2 The brain models

Figure 4.2: (A) Distribution of the in-strength (red) and out-strength (blue) connections

of the network nodes. Both distributions have a log-normal shape i.e., long tailed distribu-

tions with a small number of strong connections and a large number of weak connections.

In-strenght (B) and out-stength (C) grading of the anatomical connections relative to

each brain area in logarithmic scale. Di�erent colors label di�erent groups of brain re-

gions (such as cerebral cortex) with reference to �gure 4.1.

4.2 The brain models

The mean activity of each brain region, composing the mouse brain network, is described

by the reduced Wong Wang model. In this approach, deeply analyzed in section 2.4, the

dynamics of a brain region is given by the whole dynamics of excitatory and inhibitory

populations of LIF neurons interconnected via NMDA synapses. In this work we take

in account this model with the further reduction performed in Deco et al., 2013 [13],

analyzed in section 2.4.3. In this framework, the dynamics of the output synaptic NMDA

gating variable S of a local brain area i is strictly bound to the collective �ring rate Hi,
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and is given by the following coupled equations:

dSi(t)

dt
= −Si

τs
+ (1− Si)γHi + σηi(t) (4.1)

Hi =
axi − b

1− exp(−d(axi − b))
(4.2)

xi = wJNSi + JNG
∑
j

CijSj + I0 (4.3)

where xi is the synaptic input to the i-th region. γ is a kinetic parameter �xed to 0.641, τs

is the NMDA decay time constant and its value is 100 ms; a,b and d are the parameters of

the input and output function H and are respectively equal to 270 nC−1, 108 Hz, 0.154 s.

G is the coupling strength i.e., a scalar parameter which scales all the connection strengths

Cij without altering the connection topology of the anatomical connectivity matrix; the

value of G, together with the value of the noise amplitude σ of the normally distributed

stochastic variable ηi, are tuned to �nd the optimal network regime as explained in the

next section. JN = 0.2609 nA scales the synaptic input current and I0 is the external

input current sett to 0.3 nA. Finally w is the local excitatory recurrence.

The di�erence in the two models implemented in this work (i.e. the Mean Field Model

(MFM) and the enhanced non-linearity Mean-Field Model (eMFM)) lies in the value of

the parameter w: in the MFM w = 0.9, in the eMFM w = 1. Indeed a modi�cation

of such parameter is able to change the kind of model since it is able to modify the

dynamics at the level of a single brain area and consequently to modify the dynamics of

the global brain network. This behavior was noted in the work of Hansen et al., 2015 [19],

as summarized in section 3.3.2. When w = 0.9 the analysis of the phase portrait (�gure

3.9) reveals that there is only one stable equilibrium (MFM). On the other hand, when w

is set to 1, as in the eMFM (�gure 3.10), the system is characterized by two stable and one

unstable equilibrium points; this con�guration leads the system in a bistable condition.

Such behavior at the level of a single brain area has an impact on the global network by

introducing attractors without any trivial relation with the structural connectivity (�gure

3.11); these observations, made in Hansen et al., 2015 [19], are deeply treated in section

3.3.2.

The values of the models parameters used to implement simulations are summarized in

table 4.1.

4.3 The simulations

All the simulations are performed in Matlab. According with the works discussed in chap-

ter 3, to simulate the resting state activity it is necessary that the system is in an unstable
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Parameters Values

Name Abbr. MFM eMFM

Kinetic parameter γ 0.641 0.641

NMDA decay time constant τs 0.1 s 0.1 s

Parameters of the input-output function a 270 (nC)−1 270 (nC)−1

b 108 Hz 108 Hz

d 0.154 s 0.154 s

Local excitatory recurrence strength w 0.9 1.0

Synaptic coupling JN 0.2609 nA 0.2609 nA

External input I0 0.3 nA 0.3 nA

Coupling strength G variable variable

Noise amplitude σ variable variable

Table 4.1: In the table the values of the parameters used to implement the brain models,

MFM and eMFM, are summarized. These values are taken from Deco et al., 2013 [13],

p. 11242, except for the value of w in the eMFM model that is �xed in accord with the

work of Hansen et al., 2015 [19]

regime. Thus, to identify all possible stationary states, 200 deterministic simulations were

run, each lasting 15 s, with di�erent random initial conditions (100 simulations with ran-

dom initial conditions in the range [0; 0.2] in order to initialize the system in the low

�ring rate regime; 100 simulations with random initial conditions in the range [0.8; 1.0] in

order to initialize the system in the high �ring rate regime). This procedure was repeated

varying the value of the coupling strength G of the models (equation 4.3) in the range

[0; 0.1] with an increment of ∆ = 2 · 10−3. The deterministic Euler integration was used

with a �xed integration step of 0.1 ms.

Once found the optimal values for the coupling strength, stochastic simulations, for both

models, were run. The stochastic simulations last 20 min and were performed using the

stochastic Euler integration with a �xed integration step of 0.1 ms. Simulated BOLD sig-

nal was obtained by converting the simulated neural activity using the Balloon-Windkessel

method; details about this model are in appendix B. The BOLD time-series were down-

sampled to 1 s.

4.4 Functional connections

Functional connections in the simulated time-series are explored from a spatial point of

view and a temporal point of view by using, respectively, the functional connectivity (FC)
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and the functional connectivity dynamics (FCD).

The ij element of the FC matrix is calculated as the Pearson correlation between the

BOLD signal of the brain region i and the BOLD signal of the brain region j.

To estimate the FCD, the entire BOLD time-series was divided in time windows of a

�xed length (2 min) and with an overlap of 118 s; the data points within each window,

centered at the time ti, were used to calculate FC(ti).

Figure 4.3: The image provides an explanatory cartoon of the FCD matrix construction.

After the division of BOLD signals in time windows, the FC(ti) of each time window is

computed. The correlation values between the triangular part of the FC(ti)s, arranged

in a vector, are calculated and organized in the FCD matrix.

Source: adapted from Hansen et al.,2015 [19] p. 528

The ij element of the FCD matrix is calculated as the Pearson correlation between the

upper triangular part of the FC(ti) matrix arranged as a vector and the upper triangular

part of the FC(tj) matrix arranged as a vector.

The FCD matrix allows us to identify the epochs of stable FC con�gurations as blocks
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of elevated inter-FC(t) correlation. These blocks are organized around the FCD matrix

diagonal [19]. For each epoch the corresponding FC matrix was calculated as the mean

value of the FC(ti), with ti belonging to that epoch.

4.5 The resting state functional cores

The simulated data are compared with the empirical data obtained in the paper of Mech-

ling et al., 2014 [25]. Performing resting state fMRI experiments on mice and using graph

theory analysis, the authors have individuated 5 functional modules; furthermore the hub

regions for each modules are identi�ed. In what follows the methods and the results of the

article are summarized. In the last part of the section the approach used to individuate

functional hubs in our simulated data is explained.

4.5.1 The experimental functional hubs in literature

The article "Fine-grained mapping of mouse brain functional connectivity with resting

state fMRI" by Mechling et al., 2014 carefully describes the more functionally active

regions during the resting state in the mouse brain.

The fMRI experiments were executed on 13 female mice anesthetized with iso�urane.

The imaging was performed with a 7 T animal scanner; 12 slices of the mouse brain

were acquired using single shot gradient Echo EPI. The acquisition protocol (lasting 15

minutes) was run twice during the same session to check for stability and reproducibility

of the connectivity patterns.

The Independent Component Analysis (ICA) was performed on the BOLD signal in order

to divide it into additive components generated by several sources, i.e. brain regions; with

this approach the brain is parceled in 92 areas. In �gure 4.4 is shown the adjacency matrix,

averaged across all animals, obtained by calculating the partial correlation coe�cient

between each pair of region. Graph theory method was used to divide in cluster the

functional network de�ned by the weighted PC matrix. For each division in M modules

the modularity Q was calculated as [30]:

Q =
∑
u∈M

euu −(∑
v∈M

euv

)2
 (4.4)

where euv is the proportion of all links that connect nodes in module u with nodes in

module v. The best partition was individuated as the one for which the modularity Q

is maximized. The best modular structure is composed of M = 5 functional modules as

shown in �gure 4.5.

77



4.5 The resting state functional cores

Figure 4.4: The matrices summarize the fMRI resting state data obtained in the study of

Mechling et al., 2014. The left matrix is the weighted indirect partial correlation matrix

obtained by correlating the BOLD signals (15 min.) of the 96 brain areas found with the

ICA. The right matrix is obtained from the left matrix replacing all the positive entries

by 1, and all the negative entries by 0.

Source: Mechling et al.,2014 [25] p. 208

Furthermore, in the paper, for each node of the functional network the normalized con-

Figure 4.5: It is schematically shown, in the sagittal plane of the mouse brain, the mod-

ular organization of the resting state FC obtained as the division which maximizes the

modularity. Di�erent colors label di�erent modules.

Source: Mechling et al.,2014 [25] p. 210

nection strength and the regional connection diversity were calculated; these quantities

estimate the centrality of a node in a network. The measures will be brie�y de�ned

according to the paper of Rubinov and Sporns 2011 [30]. Let us consider a network of

n nodes where the weight of the connection between node i and node j is denoted by

w±ij (in the case of positive connection w+
ij =]0, 1] and w−ij = 0, in the case of negative
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4.5 The resting state functional cores

connection w+
ij = 0 and w−ij =]0, 1]) and where there is a modularity partition M which

divides the network in m modules; in this case the normalized connection strength s
′±
i

and the regional connection diversity h±i of the i-th node are respectively de�ned as:

s
′±
i =

1

n− 1
s±i , with s±i =

∑
j

w±ij (4.5)

h±i = − 1

log m

∑
u∈M

p±i (u)log p±i (u) , with p±i (u) =
s±i (u)

s±i
(4.6)

where s±i (u) is the total weight of connections of node i to all nodes in the module u. As

we can notice in equation 4.6, the topological diversity of a node in a network is quanti�ed

as the Shannon entropy of the strength of node i within module u. The strength and the

diversity are calculated in the paper of Mechling et al., 2014 to distinguish the importance

of each node in the functional network; in �gure 4.6 is shown the ranking of the mouse

brain node according to the highest strength and diversity.

Figure 4.6: The right and the left graph represent respectively the ranking of the mouse

brain area with the higher normalized strength and with the higher diversity. The authors

de�ne as functional hubs the regions that have both the value of the strength and the

value of the diversity over the mean. The brain regions can be identi�ed following the

abbreviation list.

Source: Mechling et al.,2014 [25] p. 211

The authors de�ne functional hub regions as the network nodes that have simultaneously

strength and diversity over the average; at each module is associated one or more hub

regions; these results are summarized in table 4.2.
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Module Hub regions

1. Motor system Primary motor cortex

Secondary motor cortex

2. Somatosensory system Primary somatosensory area

3. Limbic system Retrosplenial granular cortex

Retrosplenial agranular cortex

4. Visual system Visual cortex

Dorsal lateral geniculate nuclei

Pretectum

5. Autonomic system Hypothalamus

Table 4.2: The table summarizes the results obtained in the paper of Mechling et al.,

2014 [25]. In the �rst column there are the 5 modules in which the empirical resting state

FC matrix results partitioned according to the maximization algorithm of the modularity

(equation 4.4). The corresponding hub regions are individuated as the network nodes

that have the strength value and the diversity value greater than the mean value.

4.5.2 The simulated hubs

The functional connectivity matrix of each epoch de�nes a functional network; for each

functional network we identify the hub regions with an approach analogous to the one

used in graph theory for de�ning the eigenvector centrality of a network node [27]. Let

us assume the functional centrality φ(i) of a brain region i as the sum of the functional

centrality of the other brain regions weighted to the functional connection strength fcij :

φ(i) =
1

λ

N∑
j=1

fcijφ
(j) (4.7)

where λ is a constant. De�ning the vector |φ〉 as the column vector whose components

are the functional centrality of each network region, we can rewrite the previous equation

in the matricial form:

|φ〉 =
1

λ
FC |φ〉 . (4.8)

It is simple to notice that |φ〉 is the eigenvector of the functional connectivity matrix asso-

ciated with the eigenvalue λ. Since FC is a real symmetric matrix (thus diagonalizable),

we can decompose it as:

FC = ΦΛΦT =
[
|φ1〉 · · · |φN 〉

]
λ1

. . .

λN



〈φ1|
...

〈φN |

 =

N∑
i=1

λi |φi〉 〈φi| . (4.9)
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It follows that the magnitude of the eigenvalue gives a measure of the role of the corre-

sponding eigenvector in reproducing the original matrix.

Taking into account all these observations, we identify the functional hub regions of the

mouse brain as the regions with the largest eigenvector components associated with the

three largest eigenvalues of the FC matrix.

4.6 Dimensionality reduction

To better understand the nature of the simulated time-series (the entire one, and the

epoch's one), it is interesting to study their main components through a decomposition.

An useful approach to reach this goal is the principal component analysis (PCA).

Let us consider the eigenvector |v〉 of the covariance matrix of the signal |ψ(t)〉, where
|ψ(t)〉 is the original time-series once subtracted its mean value. The set of N eigenvec-

tors, with N number of the total brain areas, forms an orthonormal base. Thus, since∑N
i=1 |vi〉 〈vi| is equal to the identity matrix, the time-series with null mean value, |ψ(t)〉,

can be written as:

|ψ(t)〉 =


ψ1(t)

ψ2(t)
...

ψN (t)

 =

N∑
i=1

|vi〉 〈vi|ψ(t)〉 =

M<N∑
i=1

|vi〉 〈vi|ψ(t)〉︸ ︷︷ ︸
|T (t)〉

+

N∑
i=M+1

|vi〉 〈vi|ψ(t)〉︸ ︷︷ ︸
|R(t)〉

(4.10)

where the residual term |R(t)〉 is the part of the data that does not lie in the space

spanned by the M < N vectors |v〉. If we estimate |ψ(t)〉 as the projection on the �rst

M vectors |v〉, the dimensionality of the problem is reduced, and consequently we lose

information; it is possible to express the goodness of �t g between the lower dimensional

data and the original one as explained in Banerjee et al., 2008 [3]:

g = 1− E[〈R(t)|R(t)〉]
E[〈ψ(t)|ψ(t)〉]

(4.11)

where E[x] indicates the expectation value of x.

In what follows we show that, when the time-series has a null mean value, the choice of

{|v〉} as the �rst M eigenvectors of the covariance matrix leads to have a goodness of �t

equal to the sum of the corresponding M eigenvalues.
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g = 1− E[〈R(t)|R(t)〉]
E[〈ψ(t)|ψ(t)〉]

=

=
E[〈ψ(t)|ψ(t)〉]− E[(〈ψ(t)| − 〈T (t)|)(|ψ(t)〉 − |T (t)〉)]

E[〈ψ(t)|ψ(t)〉]
=

=
E[2 〈ψ(t)|T (t)〉 − 〈T (t)|T (t)〉]

E[〈ψ(t)|ψ(t)〉]
=

=
E[2 〈ψ(t)|

∑M
i=1 |vi〉 〈vi|ψ(t)〉 −

∑M
i=1

∑M
j=1 〈ψ(t)|vi〉 〈vi|vj〉 〈vj |ψ(t)〉]

E[〈ψ(t)|ψ(t)〉]
=

=
E[
∑M
i=1 〈ψ(t)|vi〉 〈vi|ψ(t)〉]
E[〈ψ(t)|ψ(t)〉]

=

M∑
i=1

〈vi|
E[|ψ(t)〉 〈ψ(t)|]
E[〈ψ(t)|ψ(t)〉]

|vi〉 =

M∑
i=1

〈vi|C|vi〉 .

(4.12)

Let us consider the covariance matrix of the time-series:

Cov = E[|ψ(t)〉 〈ψ(t)|]− E[|ψ(t)〉]E[〈ψ(t)|] . (4.13)

When the mean value of the time-series is zero, the expression of the covariance becomes:

Cov0 = E[|ψ(t)〉 〈ψ(t)|] . (4.14)

This is the expression found for the C matrix in equation 4.12 except for the multiplied

scalar factor (E[〈ψ(t)|ψ(t)〉])−1. It is simple to prove that a matrix, X, and the same

matrix multiplied by a scalar, X ′ = yX, share the same eigenvectors; moreover the

following relation between the eigenvalues holds: λi(X) = y · λi(X ′). Consequently, if

we normalize both sets of eigenvalues between 0 and 1, there will be no di�erence in the

eigenvalues (λi(X) = λi(yX)).

In conclusion we have:

g =

M∑
i=1

λi(Cov0) . (4.15)
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Chapter 5

Results and discussion

In the chapter the results obtained with the materials and methods explained in the

previous chapter are described and discussed.

5.1 The optimal range

Firstly, for both models (MFM and eMFM) the stationary states has been calculated in

function of the control parameter G, i.e. the coupling strength (equation 4.3). This was

obtained running 200 deterministic simulations for each value of [0; 0.1] with an increment

∆G = 2 · 10−3. Deterministic simulations were run for 15 s in order to achieve the full

equilibrium: the state of the network at the end of the simulation is stationary. In

particular we initialize the system in the low activity state and then in the high activity

state using random initial conditions belonging, respectively, to the range 0 ≤ S0 ≤ 0.2,

and to the range 0.8 ≤ S0 ≤ 1. The diagrams in �gure 5.2 show the maximum value of

the �ring rate activity (H in equation 4.2) over all brain areas for all possible stationary

states. The resulting diagrams reveal that, in both models, for small values of the coupling

strength (G ≤ 0.04 in the MFM, and G ≤ 0.024 in the eMFM) the �ring rate in all

brain areas reaches values below 50 Hz independently of the state in which the system is

initialized; this means that the system always converges to a stable state characterized by

a low �ring rate activity in all brain areas. In the low range of the coupling strength G it

exists only one stable state. For a critical value of the coupling strength Gc the diagrams

show that the maximum value of the �ring rate depends on the initial condition used to

simulate the model; this means that a bifurcation occurs at Gc and, for G > Gc at least

two stable states exist one characterized by low and the other one by high �ring rate
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activity. The graphs show that the bifurcation occurs for values of G greater in MFM

than in eMFM. Moreover, the MFM graph displays that the state of low activity, for

values of G greater than 0.06 becomes unstable since the system converges to the high

activity state also when initialized to low values. A similar behavior happens in eMFM for

values of the coupling strength G > 0.05 when the state of low activity becomes unstable

but, however, systems with di�erent initial conditions converge to di�erent stable states.

These observations are consistent with the expectations: the dynamical repertoire of

eMFM is richer than that of MFM. In the paper of Deco et al., 2013 [13], discussed in

section 3.2.3, the authors obtain, with the same method, the bifurcation diagram using

the MFM and simulating the dynamics with an human anatomical connectivity achieved

with DSI technique. Their result, shown in �gure 5.1, is consistent with the one of this

thesis.

According to the works described in chapter 3, the resting state activity is simulated in

the range where the dynamics is multistable, i.e. the models are implemented with values

of the coupling strength belonging to the range ]0.04; 0.06] for the MFM and to the range

]0.0240.058] for the eMFM (since a �ring rate greater than 250 Hz is not biologically

possible).

Figure 5.1: Bifurcation diagram obtained by

Deco et al., 2013 [13] for the MFM using

human SC. Each point represents the maxi-

mum �ring rate (H in equation 4.2) among all

nodes when the system is in the steady state.

The graph is obtained running 1000 deter-

ministic simulations, lasting 15 s, for each

value of G. This graph is analogous to the

one obtained in this work (�gure 5.2, upper

part).

Source: Deco et al., 2013 [13], p. 11245
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Figure 5.2: Each point represents the maximum �ring activity rate (H in equation 4.2)

among all nodes when the system is in the steady state. The equilibrium is achieved

running 200 deterministic simulations, for each value of G. Each simulation lasts 15 s

and it is implemented with random initial conditions belonging to the low range (blue

dots) and to the high range (red dots). The model used in the top graph is MFM, while

the model used in the bottom graph is eMFM. For low values of the coupling strength

(G < Gc) the system converges to a single stable state of low activity. Increasing the

value of the coupling strength (G > Gc) in addition to the low activity state the high

activity state appears.
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5.2 The functional connectivity dynamics

The BOLD signals, for both models, are obtained by running stochastic simulations

and implementing the brain system in di�erent con�gurations; in particular the network

behavior is studied for di�erent values of the coupling strengthG (belonging to the optimal

range individuated in the previous section) and for di�erent noise levels (changing σ in

equation 4.1). Then, for each situation, the FCD is calculated as explained in section

4.4. Between all the simulations performed, the most representatives are selected and are

shown in �gure 5.3; this will be discussed in what follows. Speci�cally we have chosen the

BOLD signals and the related FCD obtained using G = 0.058 in the MFM and G = 0.053

in the eMFM; in both cases the levels of noise used to perturb the system are: σ = 10−3,

σ = 3 · 10−3 and σ = 4 · 10−3.

For the weakest level of noise, the network nodes, simulated with the MFM, display

only high or low level of neural activity. There is no switching between the two states,

i.e. each node has a constant level of neural activity for all duration of the simulated

signal, and, consequently, its BOLD signal displays a constant amplitude, in spite of

noise perturbations; this can be noticed in the time-series plotted in �gure 5.3. Such

behavior is re�ected in the FCD matrix which does not contain any clue of FC switching.

Simulating the BOLD signals with the same level of noise (the weakest one selected) and

the eMFM, it can be noticed that some nodes jump from one state to the other one after

t = 15 min. However this switching behavior is not enough intensive to be considered a

clue of the system multistable dynamics, as also indicated by the absence of any signi�cant

FC(ti) correlations in the related FCD matrix.

Thus we can deduce that in both models in the presence of low levels of noise the dynamics

of the network settles into a �xed point, as expected.

Increasing the level of noise in the MFM means only pushing the system into a chaotic

regime as in the time-series obtained with σ = 2·10−3 and σ = 3·10−3. In such graphs the

BOLD signals of certain brain areas display oscillations between high and low amplitude

values, i.e. the network nodes oscillate between high and low activity state. Such network

behavior does not mean that the system is exploring di�erent attractors, but it only

re�ects the e�ect of the high noise perturbation. The absence of any constructed pattern

is indicated also in the FCD matrices which does not contain signi�cant correlations.

On the other hand, increasing the noise level in the eMFM simulations means that the

system is allowed to explore several stable states. As we can notice from the BOLD signals

obtained in these cases, the nodes jump between high activity and low activity state not

in a chaotic way, as it happens in the MFM, but in a structured way: the trajectories of

the
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Model Noise level
σ = 10−3 σ = 3 · 10−3 σ = 4 · 10−3

Figure 5.3: 20 minutes of simulated BOLD signals and relative FCD matrices obtained

implementing the MFM with G = 0.058 (�rst row) and the eMFM with G = 0.053 (second

row), and perturbing the system with di�erent noise levels (columns, weaker to stronger

noise from left to right).
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dynamics of the system explore di�erent subspaces. The trajectories either converge back

towards the �xed point from which they originated or diverge towards a di�erent attrac-

tor. The dynamics behavior of the system give rise to structured dynamics itinerancy as

can be seen by the emergence of stability pattern in the FCD matrices obtained in these

noise regimes.

We can conclude that the MFM is not able to reproduce the switching between the func-

tional connectivity states observed in the empirical BOLD data. Introducing bistability

at the level of single brain area, i.e. implementing the eMFM, it is possible to observe

the emergence of functional connectivity patterns when the system is maintained out-of-

equilibrium by appropriate noise levels.

The results are consistent with the work of Hansen et al., 2015 [19].

Between all the simulations performed, the analysis as explained in the method chapter

(individuation of epoch of stability, identi�cation of functional hubs and decomposition),

is carried out on one of them that has the following characteristics:

. model: eMFM,

. coupling strength: G = 0.052,

. noise level: σ = 3.6 · 10−3.
Unless otherwise speci�ed, from now on, the general terms time-series, BOLD signals,

FCD matrix will refer to the result of this simulation. The BOLD signals and the FCD

are respectively shown in �gure 5.4 A and 5.4 B. The shape of the time-series inform us

that the the brain network is exploring a rich dynamical repertoire. Thus, the functional

patterns evolve in time as shown by the FCD matrix. One can notice that there are

blocks around the diagonal of the FCD matrix that correspond to time intervals during

which the FC(ti) matrices are strongly correlated (� 0.5 Pearson correlation); we call

these temporal lengths epochs of stability since they correspond to periods of functional

stability patterns. In the FCD matrix we individuate 3 epochs of stability indicated with

black lines in �gure 5.4 B. Figure 5.4 C displays the FC matrices calculated over the

identi�ed epochs of stability as explained in the chapter of methods.
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Figure 5.4: A. The simulated BOLD time-series of the resting state activity. The stochas-

tic simulation was performed implementing the eMFM with the coupling strength G equal

to 0.052 and the noise level σ equal to 3.6 · 10−3; the values of the other parameters of

the model are in table 4.1.

B. The FCD matrix obtained from the concerned time-series. Black lines label the indi-

viduated epochs of stability of the functional connectivity patterns.

C. The FC matrices corresponding to the epochs of stability.
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5.3 The functional hubs

Before starting next discussion it is useful to provide the reader with a tool to facilitate

the orientation in the mouse brain; some of the mouse brain areas visualized in the 2D

coronal view in �gure 5.5 can be easily associated with their names using the table un-

der the �gure. Such view will be used to plot the components of the eigenvector of the

functional and structural connectivity matrices.

Figure 5.5: This �gure supplies

an usefull guide for the nomen-

clature of the coronal slice of the

mouse brain. Di�erent colors indi-

cate di�erent brain areas accord-

ing to the parcellation of the SC

matrix used here (the gray color

labels regions which are not con-

tained in the SC matrix). The ta-

ble below contains the name of the

brain areas labeled with the num-

bers in �gure.

1 Restrosplenial area, dorsal part 10 Primary auditory areas

2 Retrosplenial area, ventral part 11 Temporal association areas

3 Primary motor area 12 Posterior hypothalamic nucleus

4 Primary somatosensory area, trunk 13 Lateral hypothalamic area

5 Field CA1 14 Basomedial amygdalar nucleus

6 Lateral habenula 15 Basolateral amygdalar nucleus

7 Dorsal part of the lateral geniculate complex 16 Piriform area

8 Ventral part of the lateral geniculate complex 17 Dorsomedial nucleus of the hypothalamus

9 Caudoputamen 18 Bed nuclei of the stria terminalis

Firstly the functional networks are de�ned as the networks whose adjacency matrix is

the FC matrix computed on the identi�ed epochs (see previous section). Then the hub

regions of each functional network are individuated; as already discussed in the previous

chapter, the functional hubs of the ith epoch are de�ned as the brain regions linked to

the largest eigenvector components associated with the �rst 3 biggest eigenvalue of the

FC matrix computed over the ith epoch. Such eigenvector components are plotted over

the coronal view of the mouse brain as shown in �gure 5.6.
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λ1=0.1557 λ2=0.0356 λ3=0.0214

λ1=0.1616 λ2=0.0271 λ3=0.0230

λ1=0.1222 λ2=0.0351 λ3=0.0218

Figure 5.6: Eigenvectors components mapping in the 2D coronal view of the mouse brain.

Images in the same rows represent the plotting of the eigenvectors components of FC

belonging to the same epoch. The images organized in the �rst, second and third column

are referred respectively to the �rst the second and the third biggest eigenvalue of the

matrices (the normalized magnitude of the eigenvalues is under each �gure). The scale

used changes for each eigenvector: the scale is symmetrical stretched until the biggest

eigenvector component, in absolute value; such scale permits to e�ciently visualize the

relative di�erence between the eigenvectors. According to our de�nition (see method

section), the colored areas are the hub regions of the brain network de�ned by the FC

matrices in left part of the �gure; the importance of each hub regions is proportional to

the corresponding eigenvalue.
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We decide to use a color map that associates black color with all the values close to zero,

so that only the eigenvector components with the highest absolute value are highlighted.

The scale used change for each eigenvector: the scale is symmetrically stretched until the

biggest eigenvector component, in absolute value; this choice is motivated by the fact that

we are interested in visualizing the relative di�erence between the eigenvectors since any

multiple of an eigenvector is also an eigenvector with the same eigenvalue.

The functional hubs obtained are compared with the anatomical connectivity used in

the simulations, and with the functional hubs observed experimentally in literature and

speci�cally with the ones obtained in the paper of Mechling et al., 2014 [25] summarized

in section 4.5.1.

5.3.1 Comparison with the structural hubs

We de�ne the structural hubs with the same methods used to de�ne the functional hubs.

The eigenvectors corresponding to the �rst three highest eigenvalues of the structural

connectivity matrix are plotted in �gure 5.7.

λ1=0.1098 λ2=0.0856 λ3=0.0850

Figure 5.7: The �gure represents the mapping, on the mouse brain coronal view, of the

eigenvector components corresponding to the three highest eigenvalues of the structural

connectivity matrix used to simulate the resting state activity. The normalized value of

the eigenvalue is indicated under the plot of the relative eigenvector. According to our

de�nition, the couloured areas are the structural hub regions; the importance of each hub

regions is proportional to the corresponding eigenvalue.

The structural hubs and the functional hubs are clearly di�erent. Thus, the hub regions

we have detected in our simulation cannot be explained with the underlying anatomy
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only, but they are the result of the interplay of the topology and of the dynamics of the

brain system.

5.3.2 Comparison with the experimental functional hubs in lit-

erature

As discussed in section 4.5.1, in the work of Mechling et al., 2014 [25] the authors divided

the functional connectivity matrix, obtained performing resting state fMRI acquisition

on mice, in 5 functional modules. Using graph theory tools, one or more hub regions are

associated at each module. The functional hubs obtained in the paper are plotted in the

2D coronal view of the mouse brain in �gure 5.8. In the plot and in the following analysis

we neglect the asymmetry in the functional hubs found in the work of Mechling et al.,

2014 [25]; in order to be consistent we neglect also the asymmetry of the functional hubs

found in the simulation.

The hypothalamus and the geniculate complex

Observing the results in �gure 5.6 it is possible to notice that the hypothalamus, the

ventral and the dorsal part of the geniculate complex are associated, in each epoch, with

highest components of the eigenvectors of FC. Thus they are classi�ed as functional hub

regions of the functional networks arranged during the simulated resting state activity.

This result is consistent with the work of Mechling et al., 2014 [25] where the authors

identify the hypothalamus and the geniculate complex as hub regions of the autonomic

system (violet area in �gure 5.8) and of the visual system (yellow area in �gure 5.8) re-

spectively.

The retrosplenial cortex

The retrosplenial cortex (RSC), divided in granular and agranular part, is the the main

hub of the human resting state network (together with the posterior cingulate cortex)

[6], [29], [35]. The RSC is associated with cognitive functions including episodic mem-

ory, navigation, imagination of future events. These cognitive tasks are the ones that

characterize the functional resting state network as discussed in the �rst chapter of this

work. It was noticed that the RSC is a component of the resting state network also in

the rat brains [24]. In the study of Mechling et al., 2014 [25] the authors individuate in

the retrosplenial cortex the hub region of the limbic system (the blue area in �gure 5.8).

The results plotted in �gure5.6 and achieved in this work show that the dorsal part of the

RSC is associated with one of the highest eigenvector components of the third eigenvalue

of the functional connectivity matrix, when calculated on the �rst epoch; in the second

epoch the ventral part of the RSC is associated with a signi�cant eigenvector component

of the second eigenvalue of FC; the ventral and dorsal part of the RSC are associated also

93



5.3 The functional hubs

Figure 5.8: The di�erent col-

ors in the coronal view of the

mouse brain label the func-

tional hub regions associated

with di�erent modules accord-

ing to the study of Mechling et

al., 2014 [25] as explained in

the table below. We have ne-

glected the hemisphere asym-

metry that is present in the pa-

per's data.

Num Module Hub regions

1 Limbic system Retrosplenial granular cortex

Retrosplenial agranular cortex

2 Motor system Primary motor cortex

Secondary motor cortex

3 Somatosensory system Primary somatosensory area

4 Visual system Visual cortex

Dorsal lateral geniculate nuclei

Pretectum

5 Autonomic system Hypothalamus

with important eigenvector components of the third eigenvalue of FC, when calculated

over the second epoch. Thus in our results, the RSC is composed of core regions of the

network de�ned by the functional connectivity of the �rst and of the second epoch of

stability.

The amygdala

The other brain structure that in all the epochs plays an important functional role is the

amygdala. In particular, as shown in �gure 5.6, the basomedial and basolateral amygdala

nucleus, during each epoch, are associated with high components of the eigenvector of

all the considered eigenvalue. The amygdala is a functional core in our simulated rest-

ing state activity. Such area is composed of structurally and functionally distinct nuclei

that contribute to the processing of emotion through interactions with other subcortical

and cortical structures; it is an important part of the limbic system. The amygdala is a

component of the human default mode network [6]. In the work of Lu et al., 2012 [24],

using experimental data, the authors pointed out that all the structures, involved in the
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rat resting state networks, have direct or indirect connections with limbic structures as

hippocampus and amygdala. In the study of Mechling et al., 2014 [25] the amygdala is

not classi�ed as a functional hub region. However in the grading of brain regions that

has high connection diversity (left graph in �gure 4.6) the amygdala has an high rank-

ing: the fourth. Since the hub regions in the paper are de�ned as the regions that have

simultaneously high strength and diversity (respectively equation 4.5 and 4.6), the amy-

gadala is not included in this de�nition because it has not an high strength. On the other

hand when considering the binary FC matrix (right part of the �gure 4.4) the amygdala

shows a number of connections above the mean value: it is the sixth most functional

connected brain region. All these observations underline the signi�cant functional role of

the amygdala in the experimental mouse data; the same importance can be found in our

results.

5.4 The decomposition of the BOLD signals

The complete BOLD time-series and the ones corresponding to each epoch are decom-

posed as explained in the methods section. The decompositions of the complete (20 min)

BOLD signals and of the BOLD signals of each epoch are shown in �gure 5.9 and in �gure

5.10 respectively. Each �gure displays the original BOLD time-series, after subtracting

its mean value, the projected time-series and the four components along the four eigen-

vectors associated with the four biggest eigenvalues of the covariance matrix of the BOLD

signals.

The temporal evolution of the 4 principal components of the �rst and of the second epoch

are very similar. Let us assume, in �rst approximation, that the principal components of

the �rst and of the second epoch are equal. Following the approximation, the two epochs

represent the length of time during which the network nodes have the same covariance

matrix, up to multiplicative factors, and then the evolution of the network nodes is simi-

lar. We can say that a particular functional resting state network is arranged during the

�rst epoch and then it is decomposed. The same network con�guration emerges again

during the second epoch.

As already mentioned in the chapter of method, the operation of projection onto the space

spanned by the eigenvectors of the four largest eigenvalues implies a loss of information.

The loss of information is less signi�cant for the epochs than for the entire time-series as

can be seen comparing the goodness of �t that is obtained for the epochs with respect

to the entire time-series. Since the goodness of �t is closely related to the covariance

matrix of the time-series itself (as shown in the methods section), this means that the

normalized values of the �rst four eigenvalues of the covariance matrix, calculated over
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the entire BOLD signals, are less signi�cant than the ones of the covariance matrices

calculated over the epochs.

In order to understand the meaning of this observation let us consider the limit case in

which all the eigenvalues have the same magnitude and thus all the components 〈vi|ψ〉
are equal. It comes out that the covariance matrix is the identity matrix, since it is

real and symmetric 1. A covariance matrix equal to the identity matrix is typical of a

BOLD signals where all the dimensions (i.e. all brain areas) are statistically independent.

The previous statements, once translated in our case, lead to the consideration that the

network nodes in the entire BOLD signals behave more uncorrelated that the network

nodes in the signal belonging to each epoch. This is a clue of the fact that each epoch

de�nes length of time during which stable brain network con�gurations emerge; such

functional networks are not evident when all the entire signal length is considered.

Original signal Projected signal Components

|ψ〉 =
∑426
i=1 |vi〉 〈vi|ψ〉 |ψproj〉 =

∑4
i=1 |vi〉 〈vi|ψ〉 ki = 〈vi|ψ〉 with i ∈ [1; 4]

Figure 5.9: In the �rst column the simulated BOLD signals, after subtracting its mean

value, is shown; in the second column the BOLD signals projected on the �rst 4 eigenvector

of the covariance matrix, are illustrated, as discussed in the method section; in the last

column the time evolutions of the 4 components ki are displayed.

1Let us consider the matrix C that is real and symmetric (thus diagonalizable). If all its eigenvalues

are equal to one, then there exists a matrix V such that:

C = V IV −1 = V V −1 = I (5.1)

where I is the identity matrix.
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Original signal Projected signal Components

|ψ〉 =
∑426
i=1 |vi〉 〈vi|ψ〉 |ψproj〉 =

∑4
i=1 |vi〉 〈vi|ψ〉 ki = 〈vi|ψ〉 with i ∈ [1; 4]

Figure 5.10: The graphs in the same row are related with the same epoch. In the �rst

column the simulated BOLD signals, after subtracting their mean value, are shown; in

the second column the BOLD signals projected on the �rst 4 eigenvector of the covariance

matrix, are illustrated, as discussed in the method section; in the last column the time

evolutions of the 4 components ki are displayed.
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Conclusion

The increasing amount of e�orts in studying the spontaneous brain activity is motivated

by the promise that such research carries with itself: help to shed light on large-scale brain

dynamics. Models to predict this intrinsic activity were conceived and tested against

resting-state data and they have added pieces to our understanding of the dynamics un-

derlying brain functioning.

However, whatever is the dynamics rule, such activity is to a certain degree constrained

by structure, i.e. the anatomical wirings of brain regions that de�ne the topology of the

network used in the model. The structural connectivity, used in typical resting state

simulation, is obtained with DTI or DSI. These methods have several lacks such as low

spatial resolution (∼ 6mm), ability to give information only about the connection's course

and not on the connection's direction, ability to investigate only white matter and not

brain structures. The structural matrix, used in the present work, is obtained with the

anterograde tracing method, that is able to overcome all the previous limitations: it is

applicable to any brain structure and it permits to label the �ber origin and destination

with microscopic resolution. For these reasons, the connectome used in this work is, to

date, the most comprehensive in any vertebrate species [28]. Such state-of-the-art tool,

obtained in the Allen Institute for Brain Science, contains the connections weight between

426 brain regions of the mouse brain.

The simulation of the BOLD resting state activity in a mouse brain represents the second

original aspect of this thesis. The non-invasive recording of resting state activity in the

human brain has been tied to several neurological and psychiatric conditions, including,

among others, Alzheimer's disease, autism spectrum disorders, and attention de�cit hy-

peractivity disorder. However, key limitations exist in human-only studies, and the ability

to use animal models greatly advances our understanding. Despite the large amount of

human brain disorders that can be modeled in mice, little is known about the large-scale

functional architecture measured by functional brain imaging: the mouse brain activity

in resting state is explored experimentally in few articles and, as far as we know, no work

has explored it from a theoretical point of view until the present one. Here we have used a
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resting state model to explore how the large-scale functional connections emerge in mouse

brain.

A measure often used to evaluate the goodness of resting state models, against empirical

data from BOLD signals, is the linear Pearson correlation coe�cient computed among

each pair of brain areas over long time-series (of the order of 10 minutes); such correlations

are usually organized in the so-called functional connectivity matrix (FC). Unfortunately

this method does not give justice to the brain complexity since resting-state brain ac-

tivity is not stationary. In fact the empirical study [2] showed that FC, when computed

over smaller time windows, varies greatly during a scan session. As shown in the study

of Hansen et al., 2015 [19], the previous large-scale computational models of the human

brain, such as the mean-�eld model (MFM) [11], [13], did not reproduce the switching

between functional connectivity states observed in empirical BOLD data. This is because

the parameters of these models were chosen to �t empirical functional connectivity matri-

ces constructed by using the entire time series of BOLD signals. Consequently, the studies

focused only on those regions of the parameters space in which the dynamics of the MFM

correlate closely with the empirical functional connectivity. Instead a slight enhancement

in the non-linearity of the network nodes leads the system to enrich its repertoire of at-

tractors and consequently FC, stochastically simulated, displays non-stationary switching

similar to empirical resting state recordings. The model used in Hansen et al., 2015 [19],

the so-called enhanced mean �eld model (eMFM), is the one used in this work that gave

us the opportunity to reproduce the dynamical behavior of the functional connections in

mouse brain; instead, simulating the dynamics with the MFM, no FC patterns emerge.

In order to evaluate the evolution in time of the functional connections we calculated

the functional connectivity dynamics (FCD) matrix [19]. Such quantity allow us to in-

dividuate the length of time, epoch, in which the functional connectivity is stable. The

FC matrices calculated over these epochs are the so-called functional connectivity states

since they de�ne a functional con�guration of the brain network that persists for several

minutes.

Then we calculated the hub regions of such functional network as the brain regions asso-

ciated with the greater, in absolute value, components of the eigenvectors corresponding

to the three largest eigenvalues of the FC states. These functional cores are compared

with the experimental ones in literature [25], [24], [35]. The comparison leads to posi-

tive results: our simulation was able to catch the central role of the hypothalamus, of

the geniculate complex, of the retrosplenial cortex and of the amygdala as experimen-

tally observed in mouse resting state networks. The goodness of the comparison gives us

con�dence in the method used to simulate the resting state activity and in the analysis

performed on the BOLD signals. Finally the possibility of restricting the dynamics to a

small sub-space is explored with the aim to reduce the degrees of freedom of the complex
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network and to obtain a more tractable system that allows further insights on otherwise

masked characteristic of the network. In particular, the complete time-series and the ones

calculated over the epochs of stability, were projected on the eigenvectors associated with

the 4 largest eigenvalues of the covariance matrix of the respective BOLD signals. The

projection onto such four dimensional space is able to reproduce around 80% of the signal

belonging to the epochs and around 68% of the entire signal (20 min). As shown in this

work, the goodness of the signal projection is quanti�ed by the normalized magnitude

of the eigenvalues of the covariance matrix of the signal. This means that during the

complete 20 minutes of BOLD signals the network nodes behave in a more uncorrelated

way compared to what happens during the BOLD signals belonging to each epoch. Such

consideration con�rms our approach: the epochs are time intervals during which stable

brain network con�gurations emerge.

The rightness of our results follows from their ability to reproduce the dynamics behavior

of the functional connectivity and from their agreement with the empirical evidences.
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Abbreviation list of brain areas

Abbreviation Brain area

Amyg Amygdala

Au Auditory cortices

CB Cerebellum

Cg Cingulate cortex

CNU Cerebral nuclei

CPu Caudate putamen

CTX Cerebral cortex

DpG Deep gray layer of the superior colliculus

Ect Ectorhinal cortex

Ent Entorhinal cortex

HB Hindbrain

Hipp Hippocampus

Hth Hypothalamus

HypoTh Hypothalamus

M1 Primary motor cortex

M2 Secondary motor cortex

MB Midbrain

MM Mediomedial area

ML mediolateral area

PRh Perirhinal cortex

PO Preoptic area

RSA Retrosplenial agranular cortex

RSC Retrosplenial cortex

RSG Retrosplenial granular cortex

S Subiculum

S1 Primary somatosensory cortex

S1BF Primary somatosensory cortex barrel �eld
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Abbreviation list

S1Fl/Hl primary somatosensory cortex, front/hind legs

S2 Secondary somatosensory cortex

SC Superior colliculus

Th Thalamus

V1 Primary visual cortex

V2 Secondary visual cortex
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Appendix A

Anatomical measures of brain

connectivity

In brain modeling, the anatomy of brain wiring, organized in the so-called structural

connectivity matrix (section 3.1), is considered as an established and permanent body of

knowledge which supposedly provides a secure basis for building neural network models.

Then the goodness of the brain topology used in the modeling is strictly bound to the

methods used to measure the structural connectivity matrix.

The most popular method used, to date, for measuring the structural connectivity is

the DTI; while in this work the method used to construct the matrix is the anterograde

tracing. Both methods will be described and then compared following the work of Kötter

[23] and the one of Alexander and Lobaugh [1] in Handbook of Brain Connectivity.

Di�usion Tensor Imaging

Magnetic resonance imaging (MRI) methods provide information on white matter tissue.

White matter is composed of myelinated axons and glial cells. Myelin is an electrically

insulating material that forms a layer, the myelin sheath, usually around the axon of

a neuron in order to increase the conduction speed of the action potential. Either de-

myelination, myelin degradation, or poor myelin development will impede the e�ciency

of action potentials and a�ect neural connectivity. The glia ("brain glue") are non-neural

cells and are the supporting cells of the nervous system. Imaging methods that can char-

acterize the properties of this complex tissue matrix may be valuable for investigating the
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Di�usion Tensor Imaging

in�uence of tissue substrates on neural connectivity.

The MRI methods provide indirect measurement of tissue architecture.

The Di�usion Tensor Imaging (DTI) tracks the di�usion of water molecules in white

matter. The Einstein di�usion equation:

〈∆r2〉 = 2nD∆t (A.1)

states that the mean-squared displacement 〈∆r2〉 from di�usion is proportional to the

di�usivity D over the di�usion time ∆t; the displacement is scaled by spatial dimension-

ality n (n = 3 in biological tissue).

In �brous tissue, such as white matter tracts in the brain, water di�usion is less restricted

in the direction parallel to the �ber orientation; on the other hand water di�usion is highly

restricted in the direction perpendicular to the �bers. Di�usion imaging experiments, in

order to characterize such di�usion anisotropy, use measurement of parallel (D‖) and

perpendicular (D⊥) di�usion components.

The di�usion tensor is a model of water di�usion, which assumes that the di�usion is

described by a 3D, multivariate normal distribution:

P (∆−→r ,∆t) =
1√

(4π∆t)3|D|
e

−∆−→r TD−1∆−→r
4∆t (A.2)

where ∆r is the displacement vector, ∆t is the di�usion time, and D is the di�usion

tensor:

D =

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 . (A.3)

The eigenvalues (λ1, λ2, λ3) and the corresponding eigenvectors (−→ε 1,
−→ε 2,

−→ε 3) of

the di�usion tensor D describe, respectively, the relative amplitudes of di�usion and the

directions of the principle di�usion axes (�gure A.1). In the central nervous system, water

di�usion is typically anisotropic in white matter regions (λ1 6= λ2 6= λ3) and isotropic in

both gray matter and cerebrospinal �uid (λ1 = λ2 = λ3). The direction of white matter

trajectories is estimate by assuming that the largest di�usion eigenvector is parallel to

the tract orientation.

The motion of water molecules in white matter may cause the signal intensity to decrease

in MRI. The di�usion MR imaging acquisition, typically, is performed using two gradient

pulses with equal magnitude and duration (�gure A.2). The �rst gradient pulse dephases

the magnetization across the sample (or voxel in imaging); and the second pulse rephases

the magnetization. For stationary (non-di�using) molecules, the phases induced by both

gradient pulses will completely cancel, the magnetization will be maximally coherent,

and there will be no signal attenuation from di�usion. In the case of coherent �ow in the
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Figure A.1: Schematic representations of di�usion displacement distributions for the

di�usion tensor. In the left part of the image a schematic representation of the white

matter �bers (gray tubes) in the space is shown. In the right part of the image the

common visual representation of the di�usion tensor is shown: an ellipsoid with the

principal axes aligned with the eigenvectors and with the axes lengths proportional to

the eigenvalues. The direction of greatest di�usivity is generally assumed to be parallel

to the direction of white matter. When the eigenvalues are equal the di�usion is istropic,

otherwise the di�usion is anisotropic.

direction of the applied gradient, the bulk motion will cause the signal phase to change

by di�erent amounts for each pulse so that there will be a net phase di�erence ∆φ, which

is proportional to the velocity, v, to the gradient pulses amplitude, G, to the duration, δ,

to the spacing between the pulses, ∆ and to the gyromagnetic ratio γ:

∆φ = γvGδ∆ . (A.4)

In the presence of di�usion gradients, each di�using molecule will accumulate a di�erent

Figure A.2: Spin echo pulse se-

quence scheme for pulsed-gradient

di�usion weighting.

amount of phase. The di�usion-weighted signal is created by summing the magnetization

from all water molecules in a voxel. The phase dispersion from di�usion will cause de-

structive interference,and consequently signal attenuation. For simple isotropic Gaussian

di�usion, the signal attenuation for the di�usion gradient pulses, �gure A.2, is described

by;

S = S0e
−bDapp (A.5)
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where S is the di�usion-weighted signal, S0 is the signal without any di�usion weighting

gradients, D is the apparent di�usion coe�cient, and b is the di�usion weighting described

by the properties of the pulse pair:

b = (γGδ)2(∆− δ/3) . (A.6)

Thanks to image processing, it is possible to calculate the di�usion tensor from the

apparent di�usion coe�cient.

Anterograde tracing

Anterograde tracing method allows to trace axonal projections from their source (soma)

to their point of termination (synapse). The general approach comprises a vast range of

substances with the common features that they are taken up by neurons and that they

are spread along their projections, where they can be visualize. To reach such goal the

tracer is a molecules with two main characteristics:

(i) the capability to be absorbed locally by the soma of neurons and transported to the

axon terminals, or the capability to be absorbed by axons and transported to the

soma of the neuron;

(ii) in order to be visualized by imaging technique the tracer has to be radioactive or

�uorescent; for such reason the tracing one is an invasive methods.

Tract tracing Di�usion-weighted imaging

microscopic resolution low spatial resolution (several mm)

any species (limited by ethics) applicable to large brains (humans)

�bers quanti�able surrogate myelin measures

long history and known validity unclear validity

invasive animal experiment non-invasive, applicable to humans

few injections per brain entire brain imaged

�ber origin + destination shows �ber course, no direction

applicable to any brain structure limited to white matter

Table A.1: Comparison between the characteristic features of tract tracing and the char-

acteristic features of di�usion-weighted imaging.

Source: Kötter 2007 [23]
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Appendix B

Modeling the BOLD signal

The BOLD signal is an indirect measure of the neural activity as discussed in section

1.2.2. The transformation from neural activity to measured BOLD signal is not trivial

and, in the present study, is done following the mathematical approach described in the

paper of Friston et al., 2000 [16].

The model used to describe the hemodynamic response detected with fMRI technique

during brain activation, is based on the work of Buxton et al., 1998 [7] and its extension

by Friston et al., 2000 [16]. As schematically shown in �gure B.1, such model consists of

three parts:

1. the link between the neural activity and regional cerebral blood �ow (rCBF) (Friston

et al., 2000 [16]);

2. the link between the rCBF and the changes in the blood volume (ν) and the link

between the rCBF and the deoxyhemoglobin content (q) (the Balloon model by

Buxton et al., 1998 [7]);

3. the link between ν and q and the BOLD signal change (Buxton et al., 1998 [7]).

For the sake of clarity, let us examine the three steps starting from the last one.

The Ballon model

Based on theoretical and empirical results, Buxton et al., 1998 [7] derived the following

equation for BOLD signal change (∆S) during activation, relative to the resting signal
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Figure B.1: Schematic representation of the hemodynamic model used in this work.

Source: Stephan et al., 2007 [34] p. 388

S0 (lower part of �gure B.1):

λ(q, ν) =
∆S

S0
≈ V0

[
k1(1− q) + k2(1− q

ν
+ k3(1− ν)

]
k1 = 7E0

k2 = 2

k3 = 2E0 − 0.2

(B.1)

where, as already mentioned, q and ν are respectively the venus blood volume and de-

oxyhemoglobin content (both normalized at their rest values). V0 is the resting venous

blood volume fraction and E0 is the oxygen extraction fraction at rest. The coe�cients

k1,k2, and k3 were estimated by assuming a magnetic �eld of 1.5 T and an Echo Time

(TE) of 40 ms; these parameters are the ones used to implement the Matlab code in this
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work.

The previous equation (equation B.1) requires the knowledge of the blood volume ν evo-

lution and of the deoxyhemoglobin content q evolution; such request is satis�ed by the

Ballon model. The main idea of this model is that the increase in blood �ow in�ates the

venous as a balloon, and consequently the deoxygenated blood is diluted and expelled at

greater rate; the reduction of the deoxygenated blood causes an increase in NMR signal

(see section 1.2.2). The description is based on two main assumptions: (i) the vessels

react to an increase in in�owing blood like an in�ating balloon, and (ii) oxygen extraction

is strictly coupled to blood �ow.

The �rst assumption (i) allows to describe the change in vessel volume ν as the di�erence

between the incoming (fin) and outcoming (fout) blood �ow:

τ
dν

dt
= fin(t)− fout(t) (B.2)

where τ is a time constant that indicates the average time that blood takes to traverse

the vessel, and it corresponds to the ratio between the resting blood volume, V0, and the

resting blood �ow, F0 (τ = V0/F0). In the discussed framework, the out�ow is function of

the volume ν; this function models the balloon-like capacity of the vessel to expel blood

at greater rate when distended. De�ning the parameter α as the resistance of the venous

balloon (the vessel sti�ness), the out�ow has the following form:

fout = ν
1
α . (B.3)

The second model assumption (ii), i.e. the link between the oxygen extraction and

the blood �ow, is the instrument to determine the equation for the deoxyhemoglobin

content q. The change of the deoxyhemoglobin content dq/dt is the di�erence between

the delivery of deoxyhemoglobin into the venous compartment and the one expelled. The

expelled deoxyhemoglobin is simply the out�ow fout times the concentration q/v . The

delivered deoxyhemoglobin into the vessel corresponds to the blood in�ow fin times the

oxygen fraction extracted from the in�ow E(fin, E0), normalized to the oxygen fraction

extracted at rest E0. That is:

τ
dq

dt
= fin(t)

E(fin, E0)

E0
− fout(ν)

q(t)

ν(t)
. (B.4)

The fraction of oxygen extracted from the in�owing blood can be approximated as:

E(fin, E0) = 1− (1− E0)fin . (B.5)

In conclusion the Balloon model determines the following state equations for ν and q :
τ
dν

dt
= fin(t)− ν(t)

1
α

τ
dq

dt
= fin(t)

1− (1− E0)fin

E0
− ν(t)

1
α
q(t)

ν(t)
.

(B.6)
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In the present work we took the values of the parameters of the oxygen extraction fraction

at rest (E0), the mean transit time (τ) and the sti�ness exponent (α) from the work of

Stephan et al., 2007 [34].

Observing the resulting system B.6, it is possible to notice that the only thing required

to specify the evolution of q and ν, and thus of the BOLD signal, is the incoming blood

�ow fin. The issue of how the blood �ow depends on neural activity is discussed in the

paper of Friston et al., 2000 [16] and summarized in the following section.

The regional cerebral blood �ow (rCBF)

The regional cerebral blood �ow (rCBF) is the bloody supply needed to satisfy the

metabolic requirements of a speci�c brain region at any given time.

Blood �ow and synaptic activity are linearly related, as appears by experimental evi-

dences. Thus, Friston et al., 2000 [16] have chosen the most simple model to dynamical

relation between the incoming �ow fin and the �ow inducing signal s:

dfin
dt

= s . (B.7)

The signal s is assumed to be generated by the neural activity u(t). In particular, in the

paper of Friston et al., 2000 [16], the authors consider the behavior of s as homologous to

a very damped oscillator: changes in neural activity u(t) evoke an exponentially decaying

vasodilatatory signal that is subject to feedback-regulation by the �ow it induces. That

is:
ds

dt
= εu(t)− s

τs
− fin − 1

τf
(B.8)

where ε represents the e�ectiveness of the neural activity in producing an increment in

the signal, τs is the time decaying constant of the signal, and τf is the time constant for

autoregulatory feedback for blood �ow.
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