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ABSTRACT 

The hypothalamus-pituitary-interrenal axis is involved in stress response regulation. In addition, 

arginine vasotocin (AVT) and isotocin (IT) are also considered as important players in this stress 

regulation. The present study assessed, using the teleost gilthead sea bream (Sparus aurata) as a 

biological model, hypothalamic mRNA expression changes of AVT and IT and their receptors at 

hepatic level after an acute stress situation. Specimens were submitted to air for 3 min and place 

back in their respective tanks after that, being sampled at different times (15 min, 30 min, 1, 2, 4 

and 8 hours post-stress) in order to study the time course response. Plasma cortisol values increased 

after few minutes post-exposure, decreasing during the experimental time while a metabolic 

reorganization occurred in both plasmatic and hepatic levels. At hypothalamic level, acute stress 

affects mRNA expression of AVT and IT precursors, as well as hepatic expression of their 

receptors, suggesting the involvement of both vasotocinergic and isotocinergic systems in the acute 

stress response. Our results demonstrate the activation and involvement of both endocrine pathways 

in the regulation of metabolic and stress systems of Sparus aurata, which is stated, at least, through 

changes in mRNA expression levels of these genes analysed. 
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!



 

 

 

 
1. INTRODUCTION 





  Introduction 

! 3!

1.1. Endocrine system in teleost: general view 

 

The endocrine system of teleosts involves a high number of glands, and its hormonal secretions 

control several physiological processes in the animal. The pituitary gland is considered in 

vertebrates, including teleost, the master gland involved in the control of different physiological 

processes. However, other peripheral glands (and their endocrine products) are also involved in 

these functions. Thus, we could cite the kidney (production of cortisol and angiotensin), liver 

(somatomedins or inslulin growth factor I, IGF-I), gonads (sex steroids), the urophysis (urotensins I 

and II), the heart (natriuretic peptides) or the corpuscles of Stannius (stanniocalcin), among others 

(Figure 1.1.), as other important endocrine players.!
 

!
Figure 1.1. Scheme of the internal anatomy of a teleost fish (European sea bass, Dicentrarchus labrax) showing the 

main organs involved in different neuroendrocrine axes (modified from oqlarypt.wordpress.com). 

 

 

1.2. Hypothalamic-pituitary axis!

 

Hypothalamic-pituitary axis is one of the most important players in the regulation of various 

endocrine systems at central level.!

 

Hypothalamus presents several nuclei formed by hypothalamic neurons that projecting their axons 

in different brain regions, including the pituitary gland. The hypothalamus receives information 

!
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from the internal and external environment of the animal. This region contains neurons specialized 

in:!
i) Secretion of several hormones, named neurohormones, into the bloodstream.!
ii) Secretion of different peptides or factors that stimulate or inhibit the release of different 

pituitary hormones. For this reason, hypothalamus is considered to be the region where 

the "endocrine cascade" begins (Bertok, 1998).!
 

Pituitary is also considered an important gland for the hormonal control of a great variety of 

physiological functions, such as reproduction, development, growth, osmoregulation, metabolism, 

etc. This gland is composed by two different types of tissues from different sources: i) the 

neurohypophysis, derived from neural tissue, whose hormones are synthesized in hypothalamic 

neurons, and ii) the adenohypophysis, derived from primary endoderm (Gorbman et al., 1983; 

Norris, 1997; Bentley, 1998). The neurohypophysis is connected to the hypothalamus through the 

infundibular stalk, where neuropeptides are transported from different hypothalamic nuclei, as the 

supraoptic nucleus (SON) and the nucleus lateralis tuberalis (NLT), and then released from the 

neurohypophysis into the bloodstream (see section 1.3.). Different cell types of the 

adenohypophysis are located in certain parts of the gland, so that two or more cell types constitute a 

pituitary lobe. Thus, each type of cells integrated in different pituitary lobes are distinguished by i) 

morphology, ii) affinities to different immunocytochemical reactions, as well as iii) physiological 

function related to the hormone produced and secreted. The adenohypophysis of teleost presents 

three differentparts: i) rostral pars distalis (RPD), ii) proximal pars distalis (RPD), and iii) pars 

intermedia (PI), whose main synthesized hormones are described in Figure 1.2.!
 

!
Figure 1.2. Scheme of the pituitary gland of teleost showing hormones released from neurohypophysis and different 

regions of adenohypophysis (RPD, PPD, PI) (aken from Bern and Madsen, 1992).!
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1.3. Vasotocinergic and Isotocinergic systems!

 

A neuropeptide is defined as a peptide synthesized in neurons. The arginine vasotocin (AVT) and 

the isotocin (IT) are neuropeptides consisting of nine amino acids in its mature form (nonapeptide). 

These hormones are, respectively, homologs to the arginine vasopressin (AVP) and oxytocin 

(OXY) in mammals. However, the AVT differs from the AVP in the third amino acid of the mature 

protein, with isoleucine in the case of AVT and phenylalanine in the AVP. On the other hand, IT 

differs from OXY in the fourth amino acid, with glutamine for the IT and serine for OXY (Acher, 

1996) (Figure 1.3).  

 

 

            
Figure 1.3. Neurohypophyseal hormones structure (A) and distribution in vertebrates (B). (Taken from Vertebrate 

Endocrinology by Norris, 1997). 

 

The synthesis of the neuropeptides, starting from messenger RNA (mRNA) which is translated like 

pro-peptides in the cytoplasm of the neuronal soma, occurs at the level of neurons located in various 

hypothalamic nuclei. In teleost, the most important are the nucleus lateralis tuberis (NLT) and the 

nucleus preopticus (NPO). Subsequently, they are transported by axons through the pituitary stalk, 

where the mature peptide is stored in the neurohypophysis awaiting a suitable stimulus for their 

release into the bloodstream, through which it will reach the target tissues and perform its 

physiological action. Most fish show both AVT and IT neurohypophyseal hormones, excepting 

cyclostomes that only possess AVT. For this reason, it is thought that the IT hormone emerged from 

the third genome duplication occurred when cyclostomes appear (Norris, 1997).!

 

 

 

 

 

 

 

La acción de los neuropéptidos está determinada por su unión a receptores 

específicos del sistema nervioso central (SNC) o en otros lugares del organismo, lo que 

muestra que lo importante en este sistema no es solamente la propia hormona, sino el 

tejido diana que la reconoce para poder realizar su efecto. En el SNC los neuropéptidos 

juegan un papel de neurotransmisores y/o neuromoduladores, mientras que otras veces 

actúan como hormonas al ser distribuidas por el sistema circulatorio a través de todo el 

organismo (Van den Dungen et al., 1982; Acher, 1993; Acher y Chauvet, 1995; 

Goodson y Bass, 2000). 

 

1.2. ARGININA VASOTOCINA (AVT) E ISOTOCINA (IT) 

 

Los peces poseen al menos dos hormonas neurohipofisarias diferentes, la AVT y 

la isotocina (IT), exceptuando el caso de los ciclóstomos que solamente presentan AVT. 

Ambos péptidos guardan una estrecha relación estructural y funcional con la AVP y la 

OXY de mamíferos, estando formadas por nueve aminoácidos que han sido 

identificados en el sistema hipotálamo-neurohipofisario de teleósteos por Acher et al. 

(1961, 1962). La AVT fue descubierta por primera vez en la rana y la única diferencia 

respecto a la AVP es el tercer aminoácido de la cadena, siendo isoleucina en al caso de 

la AVT y fenilalanina en el de la AVP (Acher, 1996). La IT, por su parte, se diferencia 

ARGININE VASOTOCIN 
Cys – Tyr – Ile – Gln – Asn – Cys – Pro – Arg – Gly – NH2 
   1        2       3       4        5         6        7         8        9 
ARGININE VASOPRESSIN 
Cys – Tyr – Phe – Gln – Asn – Cys – Pro – Arg – Gly – NH2 
LYSINE VASOPRESSIN 
Cys – Tyr – Phe – Gln – Asn – Cys – Pro – Lys – Gly – NH2 
PHENYPRESSIN 
Cys – Phe –Phe – Gln – Asn – Cys – Pro – Arg – Gly – NH2 
ISOTOCIN 
Cys – Tyr – Ile – Ser  – Asn – Cys – Pro – Ile – Gly – NH2 
OXITOCIN 
Cys – Tyr – Ile – Gln – Asn – Cys – Pro – Leu – Gly – NH2 
MESOTOCIN 
Cys – Tyr – Ile – Gln – Asn – Cys – Pro – Ile – Gly – NH2 
VALITOCIN 
Cys – Tyr – Ile – Gln – Asn – Cys – Pro – Val – Gly – NH2 
GLUMITOCIN 
Cys – Tyr – Ile – Ser – Asn – Cys – Pro – Gln – Gly – NH2 
ASPARGTOCIN 
Cys – Tyr – Ile – Asn – Asn – Cys – Pro – Leu – Gly – NH2 
ASVATOCIN 
Cys – Tyr – Ile – Asn – Asn – Cys – Pro – Val – Gly – NH2 
PHASVATOCIN 
Cys – Tyr – Phe – Asn – Asn – Cys – Pro – Val – Gly – NH2 

Figura 1.2. Estructura de las hormonas neurohipofisarias (A) y distribución de los péptidos 
neurohipofisarios en vertebrados (B). Tomado de Vertebrate Endocrinology de O. Norris. 

A B 
A B 
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In vertebrates both hormones (AVT/AVP and IT/OXY), given the tissue distribution of their 

receptors, have been associated to various physiological processes. In mammals, AVP (also called 

antidiuretic hormone or ADH) stimulates water reabsorption in the kidneys, thus maintaining blood 

osmolality within stable levels. In addition, AVP also regulates cardiovascular activity, being able 

in some cases to play the role of neurotransmitter (Balment et al., 2006; Kulcykowska, 2007). On 

the other hand, OXY plays a key role in reproduction, stimulating uterine contractions during birth 

and milk secretion during lactation (Gainer and Wray, 1994). However, in lower invertebrates like 

fish, these peptides have been associated with different physiological processes, such as 

osmoregulatory processes, control of blood pressure and cardiovascular activity, metabolism, stress, 

reproductive behavior, brain neurotransmission and pituitary endocrine activity (Balment et al., 

2006; Kulczykowska, 2007). The presence of both AVT and IT receptors has been reported in a 

large variety of organs and tissues (Hausmann et al., 1995; Martos-Sitcha et al, 2014a). 

 

The receptor structure presents a typical conformation of seven transmembrane helical domains, 

showing four intracellular and three extracellular domains (Bentley, 1998) (Figure 1.4.). !

! !

Figure 1.4. Topography and structure of AVT/AVP and IT/OXY receptors. Conserved regions, marked as black dots, 

are the putative interaction sites with the hormone. (Taken from Kulczykowska, 2007). 

 

Currently, different types of AVT and IT receptors (AVTR and ITR, respectively) have been 

described in fishes. In the case of the AVT, three receptor types have been cloned, corresponding to 

two different types of V1 receptor (V1a1-type, and V1a2-type) and one of V2, depending on the 

species (Konno et al, 2009; Lema, 2010; other sequences available at http://www.ncbi.nlm.nih.gov/ 

website), including those of the gilthead sea bream Sparus aurata (Martos-Sitcha et al., 2014a). 

Meanwhile, two different types of ITR have been described in some species of fish (i.e., Oryzias 
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orizyases, GenBank access numbers: ITR1, AB646240; ITR2, AB646241.). However, the 

subfunctionalization of each of these types of receptors has not been addressed in detail.  

Receptor of AVT and IT are widely distributed in various organs of teleosts, such as brain, 

pituitary, spleen, sideline, ovary, bladder, intestine, liver, heart, gill, kidney and skeletal muscle and 

smooth, suggesting a specific function of that nonapeptides in these organs (Mahlmann et al., 1994; 

Hausmann et al., 1995; Martos-Sitcha et al., 2014a). Anyway, and according to the mammalian 

model, each of these types of receptor have been described for their participation in different 

paracellular pathways. In this way, the AVT V1-type receptor depends on the Protein Kinase C 

(PKC), using the phospholipase C and the inositol-1,4,5-triphosphate (PLC/IP3) as intracellular 

pathways (Warne, 2001). On the other hand, AVTR V2-type does it primarily through 

phosphorylation sites of Protein Kinase A (PKA) using the cyclic AMP (cAMP) and the adenylate 

cyclase (Wargent et al., 1999). Meanwhile, the IT receptor performs its effect starting from the 

routes of inositol phosphate and Ca2+ as second messengers (Hausmann et al., 1995). The 

importance of these paracellular route lies in the possible role of each of these receptors on the 

regulation of various hormones, enzymes, etc. which regulate different physiological functions 

(Martos-Sitcha et al., 2014a). 

!
!
1.4. Stress system 

!

1.4.1. Stress concept 

!

Stress can be defined as a complex set of adaptive responses to a stressor, which disturbs the normal 

or homeostatic state of the animal (Wendelaar Bonga, 1997; Pottinger, 2008). For their 

classification, we can consider different types of stress i) depending on the time that the stressor 

persists (“acute” short duration, or “chronic” long duration), or ii) depending on the source of stress 

(endogenous or exogenous). These factors threaten the homeostatic balance of the animals, and 

when they exceed a certain time or intensity threshold, trigger a series of coordinated physiological 

and behavioral changes in order to adapt the animal to disturbed conditions. These changes are 

globally called “integrated stress response”. This response produces measurable hormonal changes 

responsible of stress reactions. The stress response not only depends on the intensity of the stressor, 

but also from the susceptibility of the organism. In this respect, the organism activates both the 

hypothalamic-sympathetic-chromaffin (HSC) axis and the hypothalamic-pituitary-interrenal (HPI) 

axis. For its functioning, the organism responds to a stressful situation with the, so called, “general 
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adaptation syndrome”, in which both endocrine axes are involved. This syndrome defines the 

overall timing of response to stress and having different stages depending on the duration of the 

stress agent (Adams, 1990; Schreck, 1990): i) alarm phase, in which the body recognizes the 

stressor as a threat to their basal status; ii) resistance stage, in which resources, mainly hormonal 

and metabolic, are mobilized to meet the threat; and iii) exhaustion phase, in which despite of the 

responses activated the homeostasis stage is lost. These sets of responses have a number of common 

features that pass in a sequential manner and are jointly regulated by both the nervous system and 

the endocrine system. 

 

1.4.2. Endocrinology of stress!

 

At endocrine level, a stressful situation involves two different types of endocrine responses: i) an 

adrenergic response through out the HSC axis, which increases the concentration of plasma 

catecholamines (adrenaline and noradrenaline), and ii) the HPI axis response, where a plasma 

cortisol concentration enhancement is observed (Figure 1.5.). !
 



  Introduction 

! 9!

!
Figure 1.5. Scheme of the main factors involved in the neuroendocrine stress response system of teleost (taken from 

Wendelaar Bonga et al., 1997). 

 

The HSC axis is mainly involved in situations of acute stress, with high intensity and short duration 

of the stressor. In the interrenal tissue, there are chromaffin cells that produce catecholamines 

(adrenaline and/or noradrenaline), releasing these hormones in response to stress after sympathetic 

stimulation. In the HSC axis the synthesis and release of catecholamines into the bloodstream is 

stimulated by cholinergic fibers of the sympathetic system, followed by a slightly delayed increase 

in the release of glucocorticoid hormones. In addition, catecholamines activate several 

cardiovascular, respiratory and metabolic responses aimed to reduce the adverse effects associated 

with acute stress (Perry et al., 2004).!
 

However, the HPI axis is more related to chronic stress situations where the stressor is less intense 

and longer in time. However, activation of this axis is also seen during acute stress situations. The 
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starting point of HPI axis involves release of corticotropin releasing hormone (CRH), mainly from 

NPO and NLT. CRH is a 41 amino acid peptide with a structure highly conserved throughout 

phylogeny, showing a sequence identity of 93% between fish and humans (Flik et al., 2006). In 

teleosts, hypothalamic CRH-producing neurons directly innervate the corticotrophs cells of 

adenohypophysis, where they promote synthesis and secretion of adrenocorticotropic hormone 

(ACTH) (Wendelaar Bonga, 1997; Flik et al., 2006; Bernier et al., 2009). This hormone stimulated 

interrenal tissue to release adrenal steroids, mainly cortisol. ACTH is a hormone of 39 amino acids 

produced from the proteolytic processing of Pro-opiomelanocortin (POMC), which at its amino-

terminal extreme in the anterior pituitary produces β-lipotrophin, instead of ACTH, and in the 

intermediate lobe produces α-MSH, β-MSH, γ-MSH, CLIP (corticotropin-like intermediate lobe 

peptide) and β-endorphin (Castro and Morrison, 1997). In addition, the peptide CRH binding 

protein (CRH-BP) is synthesized in the preoptic area of the hypothalamus, in a different cell group 

from those that synthesizes CRH, modulating the availability of active CRH in plasma and acting as 

a reserve of this peptide (Potter et al., 1991; Cortright et al., 1995; Huising et al., 2004; Flik et al., 

2006). Thus, CRH-BP is considered an antagonist of CRH activity (McClennen et al., 1998).  

 

In addition to the CRH function regarding the control of ACTH synthesis and secretion, AVT has 

been proposed to be one of the most important regulators of this complex cascade (see section 1.5.). 

Moreover, other molecules such as IT, thyrotropin releasing hormone (TRH) and neuropeptide Y 

(NPY) have also been reported as putative players stimulating ACTH secretion, whereas melanin-

concentrating hormone (MCH) could inhibit its secretion (Wendelaar Bonga, 1997).!
 

1.4.3. Physiological responses!

 

a) The physiological responses to stress can be grouped into three categories Primary response 

or neuroendocrine response: catecholamines are secreted from the chromaffin tissue (Reid 

et al., 1998) and HPI axis is stimulated to produce and release cortisol into the bloodstream 

(Wendelaar Bonga, 1997; Mommsen et al., 1999).!
b) Secondary response: changes of electrolytes and different metabolites in plasma and tissue. 

These secondary responses are related to physiological adjustments of metabolism, 

respiratory function, acid-base regulation, osmoregulation, immune function and cellular 

responses (Iwama et al., 1997, 1998; Mommsen et al., 1999).!
c) Tertiary response: individual-level variations such as changes in growth, condition, disease 

resistance, behavior, and finally compromising survival (Wedemeyer et al., 1990).!
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In this regard, an allostatic situation is defined as the level of the homeostatic stability (McEwen 

and Wingfield, 2003) after a sustained activity of agents causing primary stress response 

(catecholamines and/or cortisol), through which the body maintains its adequate homeostasis. The 

allostatic state is part of the primary response to stress, but can also indicate situations where certain 

changes of catecholamine/cortisol levels from baseline are required, without necessarily occur a 

stress situation.!
 

 

1.5. Interactions between vasotocinergic/isotocinergic systems and stress system!

 

Due to all functions mediated by AVT/IT (final products of vasotocinergic/isotocinergic systems) 

and cortisol (final product of the activation of HPI axis) in stress and metabolic processes, it has 

been suggested a possible interaction between these hormones. In fact, previous studies have 

demonstrated the existence of an interaction between both vasotocinegic/isotocinergic and stress 

systems in teleost (Gilchriest et al., 2000; Kulczykowska, 2001, 2007; Balment et al., 2006; Cádiz 

et al., 2015). Thus, hypothalamic neurons responsible for the synthesis and secretion of AVT 

innervate the corticotrophs cells of adenohypophysis to stimulate ACTH release into the 

bloodstream, controlling cortisol secretion in the interrenal tissue (Batten et al., 1990). In this way, 

it has been observed that AVT stimulates ACTH synthesis and secretion (Fryer et al., 1985; Baker 

et al., 1996), as well as regulates plasma cortisol levels in fish subjected to high stress situations 

(Fryer and Leung, 1982). These results suggested a cooperation between both endocrine systems. In 

Oncorhynchuis mykiss, concomitant administration of AVT and CRH in pituitaries incubated in 

vitro, stimulated ACTH secretion dependent on the concentration of both hormones (Baker et al., 

1996). The same synergism has been previously observed in mammals treated with CRH and AVP 

(Rivier and Vale, 1983). For this reason, it has been postulated the existence of a greater plasticity 

of ACTH secretion regulated by at least two hormones (AVT and CRH) whose expression occurs 

independently.!
 

Previous studies on metabolic and osmoregulatory changes in specimens of S. aurata treated with 

AVT shown that plasma cortisol levels increased after transfer from seawater (38 ppt salinity) to 

low salinity water (6 ppt) or high salinity water (55 ppt), but not to seawater (Sangiao-Alvarellos et 

al., 2006). This could be interpreted as a synergistic or additive effect between AVT and osmotic 

stimulation on plasma cortisol levels. In fact, such synergy may be due to:!
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a) The existence of AVT receptors in corticotrophs cells that producing ACTH in pituitary, 

thereby AVT stimulate the production of this hormone and consequently the cortisol release 

(Moons et al., 1989).!
b) The existence of a cooperation between AVT and CRH to increase ACTH release, as it has 

been shown in other teleosts (Baker et al., 1996; Kulczykowska, 2001).!
c) The regulation of cortisol synthesis in situ in the interrenal tissue by AVT (and IT) receptors 

stimulation without activating the typical endocrine cascade (Cadiz et al., 2015).!
 

Results reported by other authors indicate the possible cooperation between exogenous AVT and 

endogenous CRH (stimulated by salinity transfer), so that the transfer to extreme salinities may be 

the necessary stimulus for this cooperation (Martos-Sitcha et al., 2013b), in addition to hormone 

treatment (Sangiao-Alvarellos et al., 2006). Consequently, changes in osmoregulatory and 

metabolic parameters in specimens of S. aurata treated with AVT and transferred to extreme 

salinity can be attributed to the action of cortisol. Considering that treatment with cortisol increases 

hepatic glycogenolysis and hyperglycemia in this species (Laiz-Carrión et al., 2002, 2003), and the 

increase observed in plasma cortisol levels in fish treated with AVT acclimatized to extreme 

salinities, the metabolic effects of AVT in S. aurata specimens transferred to extreme salinities can 

not be ruled out (Sangiao-Alvarellos et al., 2006). These results agree with the stimulation of 

hepatic glycogenolysis by AVT reported previously in other teleost species (Moon and Mommsen, 

1990). 

 

In addition, a role of IT has been proposed in the processes of stress produced by hyperosmotic 

salinities (Martos-Sitcha et al., 2013b), although the role of this hormone as a modulator of the 

stress system remains unclear. It has been demonstrated that osmotic stress do not affect IT plasma 

levels in O. mykiss (Kulczykowska, 2001), although this hormone seems to be involved in the 

response of female fish of the Gasterosteidae family subjected to different stressors (Kleszczyńska 

and Kulczykowska, 2006). In S. aurata, IT plasma levels significantly increased in response to high 

stocking density, while fasting stress has no effect on it (Mancera et al, 2008). In addition, it has 

been shown that the hypothalamic mRNA expression levels of the IT precursor (pro-IT) increase 

after changes in the environmental salinity (Martos-Sitcha et al., 2013b). These data suggest 

plasticity in the stress axis of the isotocinergic system depending on the type of stressor to which 

the animal is subjected. 
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1.6. Biology of gilthead sea bream (Sparus aurata)!

 

The gilthead sea bream (Sparus aurata, Linnaeus 1758) is a marine teleost from the Class 

Actinopterygi, Order Perciformes and Family Sparidae (Figure 1.6.). This species grows to a 

maximum length of 70 cm and 17.2 Kg, living up to eleven years (www.fishbase.org).!

 
Figure 1.6. Sparus aurata (Linnaeus, 1758) (aken from Bauchet and Hureau,1986). 
 
Gilthead sea bream is distributed through all over the Mediterranean Sea as well as in the Atlantic 

Ocean, from the British Islands to Cape Verde and the Canary Islands (Bauchet and Hureau, 1986) 

(Figure 1.7.). In addition, S. aurata is an eurythermic and euryhaline species, as it could tolerate a 

wide range of temperatures and environmental salinities. It is located mainly in coastal areas, but it 

could enter into brackish estuaries, hyperosmotic coastal lagoons or salt marshes (Arias, 1976).!

 
Figure 1.7. Geographic distribution of S. aurata (dark areas: highly present; light grey areas: present). Modified from 

the FishBase (available at www.fishbase.org). 
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Gilthead sea bream is a protandric species. This means that during its first reproduction season, 

which starts at the end of its second year of live, it is a male. Later on, when reaches 30 cm length, 

this species undergoes a process of sex reversal becoming a female (Moretti et al., 1999). Immature 

juveniles are normally find in coastal marshes during the months of spring and summer, moving to 

deeper waters as they become sexually mature at the end of autumn (Arias, 1976).!



 

 

 

 
2. AIM OF THE STUDY 
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Marine aquaculture has expanded in Europe in recent decades, where the gilthead sea bream could 

be considered as one of the species with higher increase in its production. To capitalize this growth, 

it is necessary optimize the biological processes in its production to lead a good farm management. 

The high level of knowledge of this species in captivity reached in the last decades has enabled the 

development of an effective industrial exploitation. In this way, we actually have a deep knowledge 

about different processes related to growth, reproduction, feeding, larval development, etc. 

(Robaina et al., 1995; Rowlerson et al., 1995; Duguay et al., 1996; Moyano et al., 1996; Carnevali 

et al., 1999). 

 

The stress system of the gilthead sea bream has been extensively studied both by our Research 

Group and others (Arends et al., 1999; Laiz-Carrion et al., 2002, 2005; Mancera et al., 2008, 

Rotlant et. al., 2000, 2001; Sangiao-Alvarellos et al., 2003, 2005, 2006). However, the possible role 

of vasotocinergic and/or isotocinergic system in the stress process of this species is less known 

(Sangiao-Alvarellos et al, 2004, 2006; Martos-Sitcha et al., 2013a, 2013b, 2014a, 2014b). 

Moreover, we also have a thorough knowledge about the functioning of the stress system and its 

interaction with osmoregulatory and metabolic processes (Laiz-Carrion et al., 2002, 2005; Sangiao-

Alvarellos et al., 2003, 2005, 2006; Kleszczynska et al., 2006; Cádiz et al., 2015). 

 

This Thesis is focused on the study of the stress process in S. aurata, analyzing an aspect previously 

not addressed: the response of vasotocinergic and isotocinergic systems after an acute stress 

situation (exposure to air during 3 minutes). For this aim, we will investigate the putative role of 

hypothalamic neurohormones (AVT and IT) and their receptors (AVTR type 1, AVTR type 2, ITR) 

at hepatic level. In addition, these results will be supported by evaluation of plasma cortisol levels, 

which are expected to increase during the stress response, as well as hepatic and plasma metabolites 

to investigate the hormonal regulation of fish energetic metabolism. 



 



!

!

 

 

 

 
3. MATERIALS AND METHODS 
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3.1. Animals maintenance 

 

Immature specimens of gilthead sea bream (Sparus aurata, Linnaeus 1758) (n= 64, 108.83 ± 1.47 g 

body mass, 17.79 ± 0.07 cm body length) were provided by “Servicio Central de Investigación de 

Cultivos Marinos (SCI-CM)” (CASEM, University of Cadiz, Puerto Real, Cádiz, Operational Code 

REGA ES11028000312). The specimens were randomly distributed and maintained in this 

installation in sixteen 80 L-tanks (n = 4, density 5 kg/m3) containing seawater (SW, 38 ‰ salinity), 

in open circuit, at constant temperature (18-19 °C) and natural photoperiod for our latitude 

(36°31’44’’N, February-March 2013). These conditions were maintained both during a previous 

acclimation period of 15 days and during the time that experiment lasted. Fish were fed every day 

with commercial pellets (Trow España S.A., Cojóbar, Burgos) with a daily ration of 1% weight, 

except the day before to the start of the experiment where the animals were fasted. The maintenance 

of the tanks during the acclimation period was carried out daily by siphoning to remove faces and 

possible remains of food. 

 

 

3.2. Experimental design and sampling  

 

After the acclimation period S. aurata specimens held in 12 of the 16 tanks were captured all 

together and moved to a rigid mesh where they were exposed to air conditions for 3 minutes. After 

this time of exposition, fish were returned to their respective tanks. No mortality was observed 

during the time that experiment lasted (Figure 3.1.). 

 

The sampling was performed in the following experimental times: 0 hours (control group without 

stress), 15 minutes, 30 minutes, 1 hour, 2 hours, 4 hours and 8 hours after air exposition. For each 

experimental time 2 tanks (n = 4 per tank) were used, so a total of 8 specimens for experimental 

time were sampled. In addition, the other 4 tanks constituted, in duplicate, both control groups at i) 

0 hours and ii) 8 hours without stress (Vera et al., 2014). The extra control group without stress was 

also sampled 8 hours after the start of the experiment. This last group served to identify and discard 

possible circadian rhythms in the levels of metabolites and expression patterns of those genes 

analysed that could mask our results (Vera et al., 2014).  

 

Specimens of each tank were anesthetized, measured, weighed and killed by decapitation. Blood 

samples were collected from the caudal peduncle into 1-mL ammonia-heparinised syringes 
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(Heparin ammonium Sigma, H-6279, 25000 units/3 mL 0.9% NaCl saline) to prevent coagulation 

during extraction, and centrifuged (3 min at 13,000 g; ALC centrifuge, model 4204) to obtain 

plasma, snap-frozen in liquid nitrogen and stored at -80 ° C until use. To obtain liver samples, a 

longitudinal cut was made in the ventral area (from the anal opening to the base of the mandible) to 

leave the entire digestive tract exposed. After removing the viscera, the liver was removed, weighed 

and divided into 2 portions that were introduced in 1.5 mL Eppendorf tubes for subsequent 

measurement of metabolites. The freezing process was the same of the plasma. For studies of 

molecular biology, both hypothalamic lobes and a biopsy (~15 mg) of liver were deposited in 

Eppendorf tubes containing 500% (v/w) of RNAlater (Ambio®, Applied BioSystems). These 

samples were stored 24 hours at 4 °C and subsequently stored at -20 °C until further processing. 

 

 
Figure 3.1. Scheme of the experimental design used in this study. 
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3.3. Analysis techniques 

 

3.3.1. Plasma metabolites 

 

The analyses of all plasma metabolites were performed with specific commercial kits (Table 3.1.) 

adapted to 96-well microplates. Each sample was measured in duplicate using 10 µL of plasma, or 

from those dilutions described in Table 3.1, according to the methodology described by the 

manufacturer. Samples were read using an automated microplate reader (PowerWave 340, BioTek 

Instrument Inc., Winooski, USA) controlled by the KCjuniorTM software. 

 

Metabolites Commercial Kit Standard Abs 
(nm) Diluicion 

Glucose 
Glucose-HK Glucose anhydrous 340 

(read.) 1/1 
Spinreact, Ref. 1001200 Panreac, Cod. 

131341 

Lactate 
Lactate 10 mg/dl 340 

(read.) 1/6 
Spinreact, Ref. 1001330 Spinreact, Ref. 

1002460 630 (ref.) 

Triglycerides 
Triglycerides 200 mg/dl 340 

(read.) 1/6 
Spinreact, Ref. 1001311 Spinreact, Ref. 

1002380 550 (ref.) 

Proteins 
BCATM Protein Assay Kit 2 mg/mL 550 

(read.) 1/50 
Pierce P.O. #23225 BCA, Prod #23209 630 (ref.) 

 
Table 3.1. References of the commercial kits and dilutions used for the measurement of different plasma metabolites. 

Absorbances (Abs, nm) used are marked as reading (read.) and reference (ref.) in each case. 

 

3.3.2. Liver metabolites 

 

Liver biopsies used for the assessment of metabolite levels were finely minced on an ice cold Petri 

dish and subsequently homogenized by mechanic disruption (Ultra-Turrax, T 25 basic, IKA®-

WERKE) with 7.5 vol. (w/v) of ice-cooled 0.6 N perchloric acid (Merck KGaA, 1.00518.1001) and 

neutralized after the addition of the same volume of 1 M KHCO3 (Merck KGaA, 1.04854.0500). 

This homogenization resulted in a dilution of 15 times the weight of the tissue. Previous to 

centrifugation, an aliquot of each homogenate was separated for triglycerides (TAG) measurements. 

After that, the homogenates were centrifuged (30 min, 13,000 g, 4 °C) and the supernatants 
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(aqueous phase) were recovered in different aliquots, which were stored at -80 °C until use in 

metabolite assays, following the manufacturer methodology described in Table 3.2. Samples were 

read using an automatic microplate reader (PowerWave 340, BioTek Instrumincanteent Inc., 

Winooski, USA) controlled by the KCjuniorTM software. 

 

Metabolites Commercial Kit Standard Abs 
(nm) Diluicion 

Glucose / 
Glycogen(*) 

Glucose-HK 
 Glucose anhydrous 340 

(read.) 1/330 
Spinreact, Ref. 1001200 Panreac, Cod. 

131341 

Lactate 
Lactate 10 mg/dl 340 

(read.) 1/15 
Spinreact, Ref. 1001330 Spinreact, Ref. 

1002460 630 (ref.) 

Triglycerides 
Triglycerides 200 mg/dl 340 

(read.) 1/15 
Spinreact, Ref. 1001311 Spinreact, Ref. 

1002380 550 (ref.) 

 
Table 3.2. References of the commercial kits and dilutions used for the measurement of each of different hepatic 

metabolites. Absorbances (Abs, nm) used are marked as reading (read.) and reference (ref.) in each case. (*) The results 

of glycogen are obtained from the difference between samples measured with amyloglucosidase (Sigma, A7420-

100mg), enzyme responsible for the breakdown of glucose-glucose bonds, and free glucose present in the liver. 

 

3.3.3. Measurement of plasma cortisol 

 

Plasma cortisol levels were measured by using the ELISA (Enzyme-Linked Immunosorbent Assay) 

as previously described by Martos-Sitcha et al. (2014b) for this species. This technique is based on 

the use of antigens or antibodies with an enzyme, in a way that the resulting conjugates have both 

immunological and enzymatic activity. In this regards, being one of the components (antigen or 

antibody) coupled to an enzyme and insolubilized on a support (immunoadsorbent, 96-well 

microplate), the antigen-antibody reaction is immobilized and, therefore, is easily revealed by the 

action of a specific substrate that acting on the enzyme, which produces colour observable and 

measurable with the use of a spectrophotometer or a colorimeter at 405 nm in the case of cortisol. 

 

The general steps followed for the development of the technique are: 

1. Dilution of 5 µL of plasma in 100 µL of RB (100 µL 1 M PPB (Potassium Phosphate Buffer), 0.1 

g NaN3, 0.37 g EDTA, 1 g BSA (Bovine Serum Albumin) buffer, screed to 1 L with water 
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distilled), and subsequent extraction of cortisol in three stages by the addition of 600, 300 and 300 

µL of methanol, respectively. 

2. Coating of the wells with the monoclonal antibody (Mouse Monoclonal Ab, Cat. 400003, 

Cayman Chemical Company). 

3. Washing of the wells with a Wash Buffer, consisting in 10 mL of PPB 1 M, 0.5 mL of Tween 20 

and screed up to 1 L with distilled water (scrubber ImmunoWash MODEL 1575, BIO-RAD), to 

remove the excess of unbound monoclonal antibody from each well. 

4. Adding samples and standards to their respective wells, and mix with the second and specific 

antibody (Cortisol Express EIA Antiserum, Cat. # 10007334), producing the binding of this 

monoclonal antibody with its antigen (cortisol) during 1 h of incubation at 25ºC. 

5.  Washing of the well to remove excess of unbound enzyme. 

6. Adding the substrate (Ellman reagent) to the enzyme, and binding of both of them. 

7. Colour development by incubation with continuously shaking at 25 °C for 15-30 minutes and 

measurement at 405 nm in the microplate reader (Benchmark Microplate Reader, BIO-RAD). 

 

Finally, from the absorbance obtained from standard curve, we are able to calculate the 

concentration of cortisol hormone in each plasma sample. Subsequently, a correction of the real 

concentration according to dilutions made from the initial 5 µL of plasma was necessary. In our 

case, this factor was between 50 and 150 times according to the period elapsed after air exposition 

as well as the experimental group (control or air-exposed) in each case. 

 

3.3.4. Total RNA extraction 

 

Total RNA was isolated from complete hypothalamus, as well as from liver biopsies, using the 

NucleoSpin®RNA II kit (Macherey-Nagel, Cat. # 740955), which allows the maximum purification 

of 100 µg total RNA from less than 30 mg of tissue. Moreover, the on-column RNase-free DNase 

digestion was used for gDNA elimination. The manufacturer’s instructions were followed in this 

procedure. Additionally, the amount of RNA was spectrophotometrically measured by the 

fluorimetric determination with Qubit® 2.0 Fluorometer (InvitrogenTM, Life Technologies) using 3 

µL of each of the samples and its quality was determined in a 2100 Bioanalyzer using the RNA 

6000 Nano Kit (Agilent Technologies). Subsequently, total RNA was stored at -80 °C until 

analysis. Only samples with a RNA Integrity Number (RIN) higher than 8.5 were used for real-time 

PCR (qPCR). 
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3.3.5. Relative expression analysis by real-time PCR (qPCR) 

 

Total RNA (500 ng) was reverse-transcribed in a 20 µL reaction using the commercial kit qScript™ 

cDNA Síntesis Kit (Quanta Biosciences, Cat. # 95047-500), which is valid for the synthesis of 

cDNA from amounts of total RNA between 10 pg and 1 µg. Briefly, the reaction was performed 

using qScript Reaction Mix (1x final concentration) and qScript Reverse Transcriptase (2.5 x final 

concentration). The reverse transcription program was carried out using the Mastercycler®ep 

Realplex 2S (Eppendorf), and consisted in a reaction of 5 min at 22 °C, 30 min at 42 °C and 5 min 

at 85 °C. 

 

For semi-quantitative (qPCR) mRNA expression of each of the genes of interest, primer 

oligonucleotide sequences and the final concentrations used in the qPCR reactions are shown in 

Table 3.3. and were as described by Martos-Sitcha et al. (2013b, 2014a). These conditions were 

used due to the previous validation test for each of the primer pairs, checking the optimal range of 

cDNA concentration to ensure efficiencies of reaction (E) near to E ̴1, and regression fits (r2) higher 

than r2=0.99. Each reaction mixture (10 µL) contained 4 µL of cDNA (10 ng from total RNA 

input), 0.5 µL each specific forward and reverse primer, and 5 µL PerferCTaTM SYBR® Green 

FastMixTM (Quanta Biosciences, Cat. # 95072-012) by using the Mastercycler®epgradient S 

Realplex2 controlled by the software Realplex (Eppendorf, version 2.2). Reactions were conducted 

in semi-skirted twin.tec 96-well real-time PCR plates (Eppendorf) covered with adhesive 

Masterclear real-time PCR Film (Eppendorf). The thermocycling procedures were as previously 

described by Martos-Sitcha et al. (2013b, 2014a). In short, the PCR profile was as follow: (95 ºC, 

10 min; [95 ºC, 20 s; 60 ºC, 35 s] X 40 cycles; melting curve [60 ºC to 95 ºC, 20 min], 95 ºC, 15 s). 

Melting curves were used to ensure that only a single PCR product was amplified and to verify the 

absence of primer-dimer artefacts. Each sample was run in triplicate. The results were normalised to 

β-actin (GenBank accession number X89920) levels, which was use like internal control 

(housekeeping gene) for to check the level of expression (in number of cycles); this is due to its low 

variability (less than 0.07 CT in hypothalamus and 0.09 CT in liver) under our experimental 

conditions. Relative gene quantification was performed using the ∆∆CT method (Livak and 

Schmittgen, 2001), based on: 

 

2-ΔΔC
T = 2-( ΔC

T
sample – ΔC

T
calibrador) 
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Which is equal to: 

2-[( C
T

sample – C
T

housekeeping gene)-( C
T

calibrator – C
T

housekeeping gene)] 

 

    
Primers Nucleotide sequence Size 

amplified 
Primer 

concentration 

qPCR-proVTF  5’-AGAGGCTGGGATCAGACAGTGC -3’  
129 pb  200 nM  

qPCR-proVTR  5’-TCCACACAGTGAGCTGTTTCCG-3’  

qPCR-proITF 5’-GGAGA TGACCAAAGCAGCCA-3’ 
151 pb  200 nM  

qPCR-proITR  5’-CAACCATGTGAACTACGACT-3’ 

qPCR-A VTR-V1F  5’-GACAGCCGCAAGTGA TCAAG-3’ 
203 pb  400 nM  

qPCR-A VTR-V1R 5’-CCCGACCGCACACCCCCTGGCT-3’ 

qPCR-A VTR-V2F  5’-A TCACAGTCCTTGCA TTGGTG-3’ 
120 pb  600 nM  

qPCR-A VTR-V2R  5’-GCACAGGTTGACCA TGAACAC-3’ 

qPCR-ITRF 5’-GGAGGATCGTTTTAAAGACATGG-3’ 
120 pb  400 nM  

qPCR-ITRR 5’-TGTTGTCTCCCTGTCAGA TTTTC-3’ 

qPCR-β-actinF 5’-TCTTCCAGCCA TCCTTCCTCG-3’ 
108 pb  200 nM  

qPCR-β-actinR 5’-TGTTGGCATACAGGTCCTTACGG-3’ 

    Table 3.3. Primer sequences of gilthead sea bream used for measuring expression. Take from Martos-Sitcha et al. 

(2013b, 2014a). 

 

 

3.4. Statistical analysis 

 

Significant differences between groups were analysed by one-way analysis of variance (one-way 

ANOVA), taking the experimental time from air exposition as the main factor (T = 0 h, 15 min, 30 

min, 1 h, 2 h, 4 h and 8 h). When significant differences were detected, the Tukey's test for 

comparison of the groups was used. Prior to the execution of the analysis of variance, test for 

normality and homoscedasticity was run. In addition, for the comparison between groups non-

stressed at times T = 0 h and T = 8 h, as well as between the groups with and without stress at time 

T = 8 h, a Student's t test analysis was used. In all analysis performed, statistical significance was 

accepted at P<0.05. All statistical analysis were performed using the GraphPad Prism® (v.5.0b) for 

Macintosh.



!
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4. RESULTS 
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4.1. Plasma metabolites 

 

Metabolic responses of S. aurata specimens submitted to air exposure (3 min) at plasma level are 

shown in Table 4.1. All plasma metabolites analysed did not show changes in specimens 

maintained under normal conditions (control, non-stressed) at 0 and 8 hours post-emersion. Plasma 

glucose rapidly increases its values, which being significantly higher 15 min after air exposure 

when compared with control group, reaching more than 2-fold increase at end of experimental time. 

In turn, lactate values in air-exposed fish enhanced more than 4-fold within 15 min compared with 

unstressed specimens, and then decrease to levels similar to those of departure. However, a second 

increase occurred 4 hours after air exposure, while at end of experimental time (8h) no differences 

between both groups sampled at 8 hours (with and without stress) were observed. Moreover, plasma 

proteins showed a gradual decrease in its values, which only was statistically different 4 hours after 

emersion. Triglyceride levels did not show significant differences during the time that experiment 

lasted. In addition, glucose and proteins levels were statistically different at the end of the 

experiment when compared both stressed and non-stressed specimens. 
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4.2. Hepatic metabolites 

 

Table 4.2. showed changes in hepatic metabolites in S. aurata specimens subjected to an acute 

stress situation produced by air exposure during 3 min. Hepatic free glucose increased rapidly 15 

min after air exposure, but at 30 min. showed similar values that control group. After that, enhanced 

its values until the end of experimental time. Moreover, significant differences were found between 

both groups maintained under normal conditions (control, non-stressed fish), with higher values in 

the group sampled after 8 hours compared to those of the group sampled at time 0 hours, as well as 

when compared with stressed fish at 8 hours. In turn, hepatic glycogen levels decreased clearly 

from the first 15 min post-stress until the end of experimental time, but that resulted in a 

non-statistical difference when compared with the control group at 0 hours. In addition, hepatic 

lactate presented a two-pick increase during the first 15 min after the emersion, as well as at the end 

of the trial, leading to a significant differences between both stressed and unstressed fish (control 

group) after 8 hours of experiment. Triglyceride levels did not show significant differences during 

the time that experiment lasted, in the same way that those observed in plasma. 

  



 Plasm
a 

m
etabolites 

0 h 
15 m

in 
30 m

in 
1 h 

2 h 
4 h 

8 h 
8 h w

ithout stress 

G
lucose 

(m
M

) 
4.16 ± 0.14

a 
6.18 ± 0.62

b 
6.53 ± 0.25

bc 
6.40 ± 0.49

bc 
6.99 ± 0.28

bc 
6.56 ± 0.44

bc 
8.49 ± 0.20

c* 
4.97 ± 0.15

a 

L
actate 

(m
M

) 
0.37 ± 0.05

a 
1.71 ± 0.27

b 
0.65 ± 0.17

ab 
0.85 ± 0.17

ab 
0.37 ± 0.08

a 
1.47 ± 0.28

b 
0.34 ± 0.08

a 
0.26 ± 0.02

a 

T
riglyceride 

(m
M

) 
1.16 ± 0.13 

1.25 ± 0.11 
1.33 ± 0.18 

1.32 ± 0.12 
1.21 ± 0.11 

1.27 ± 0.13 
1.138 ± 0.08 

1.05 ± 0.07 

Proteins 
(m

g/m
L

) 
45.89 ± 1.87

a 
44.64 ± 1.63

ab 
42.52 ± 1.53

ab 
42.17 ± 2.89

ab 
42.27 ± 1.26

ab 
38.54 ± 1.72

b 
44.09 ± 2.24

ab* 
50.66 ± 0.48

a 

 T
able 4.1. Tim

e course changes in plasm
a m

etabolites (glucose, lactate, triglycerides and total proteins) levels in S. aurata exposed to air for 3 m
in. V

alues are represented as 

m
ean ± S.E.M

. (n = 8 fish per group). Significant differences w
ithin each group for different experim

ental tim
es are identified w

ith different letters; asterisks (*) indicate 

significant differences betw
een groups at the sam

e tim
e (P<0.05, one-w

ay A
N

O
V

A
 follow

ed by Tukey’s test). 
   T

able 4.2. Tim
e course changes in hepatic m

etabolites (glucose, glycogen, lactate, triglycerides) levels in S. aurata exposed to air for 3 m
in. V

alues are represented as m
ean ± 

S.E.M
. (n = 8 fish per group). Significant differences w

ithin each group for different experim
ental tim

es are identified w
ith different letters; asterisks (*) indicate significant 

differences betw
een groups at the sam

e tim
e (P<0.05, one-w

ay A
N

O
V

A
 follow

ed by Tukey’s test). 

L
iver 

m
etabolites 

0 h 
15 m

in 
30 m

in 
1 h 

2 h 
4 h 

8 h 
8 h w

ithout 
stress 

G
lucose 

(µm
ol/g w

w
) 

30.86 ± 1.50
a 

37.95 ± 2.57
b 

26.79 ± 1.59
a 

31.91 ± 1.10
ab 

34.97 ± 1.92
ab 

37.06 ± 1.74
ab 

39.56 ± 3.50
ab* 

44.91 ± 2.44
b 

G
lycogen 

(µm
ol/g w

w
) 

154.62 ± 8.90
a 

138.56 ± 2.89
ab 

139.10 ± 5.73
ab 

143.72 ± 4.76
ab 

136.69 ± 3.55
ab 

134.46 ± 7.05
ab 

136.05 ± 4.51
ab* 

122.53 ± 6.61
b 

L
actate 

(µm
ol/g w

w
) 

0.011 ± 0.001
a 

0.017 ± 0.001
b 

0.012 ± 0.001
ab 

0.013 ± 0.001
ab 

0.012 ± 0.001
ab 

0.012 ± 0.001
ab 

0.016 ± 0.001
b* 

0.009 ± 0.003
a 

T
riglyceride 

(µm
ol/g w

w
) 

0.09 ± 0.01 
0.05 ± 0.02 

0.08 ± 0.01 
0.10 ± 0.01 

0.10 ± 0.01 
0.5 ± 0.02 

0.01 ± 0.01 
0.09 ± 0.01 



 Endocrine regulation after an acute stress situation!

! 34!

4.3. Plasma cortisol levels 

 

Specimens stressed by emersion for 3 min revealed significant differences in plasma cortisol levels 

throughout the experimental period (Figure 4.1.). Thus, a significant increase in hormonal values 

was observed at 15 and 30 min post-emergence, reaching the highest levels at 15 min post-stress 

with more than 6-fold enhancement respect to control group. Then, cortisol values decreased over 

time until reaching values similar to those found in unstressed fish, both at 0 hours and 8 hours of 

the experiment. In addition, control group at 8 hours showed no significant differences when 

compared with time 0 hours group, or even with animals from the stressed group after 8 hours. 

 

 
Figure 4.1. Time course changes in plasma cortisol levels in S. aurata exposed to air for 3 min. Values are represented 

as mean ± S.E.M. (n = 8 fish per group). Significant differences within each group for different experimental times are 

identified with different letters (P<0.05, one-way ANOVA followed by Tukey’s test). 
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4.4. Hypothalamic pro-VT and pro-IT mRNA expression 

 

Specimens of the group exposed to air (3 min) significantly increased both pro-VT (Figure 4.2.A) 

and pro-IT (Figure 4.2.B) mRNA expression levels 1 hour after stress. Then, mRNA values 

gradually decreased back to baseline values after 4 hours, maintaining these expression levels until 

the end of experiment. Meanwhile, control group, not subjected to stress and sampled at 8 hours, 

showed no significant differences when compared to control group at 0 hours as well as to those 

found 8 hours after stress. 

 

 

4.5. Hepatic AVT and IT receptors mRNA expression 

 

Hepatic mRNA levels of the two AVT receptors, AVTR V1-type and AVTR V2-type, after 

exposure to air for 3 min showed a different trend in their mRNA expression. AVTR V1-type 

significantly increased its mRNA levels 15 min post-stress decreasing rapidly to similar values 

found in the control group (0 hours) 30 min after air exposure, and maintaining this basal values 

until the end of the experiment (Figure 4.3.A). However, AVTR V2-type mRNA expression levels 

revealed a two-phase pattern. Thus, there was an increase in the first 15 min post-stress, with a 

subsequent decrease presenting its lowest levels 1 hour after air exposure. In addition, a further 

increase in the mRNA expression of this receptor was observed 4 hours after the stress, with an 

ulterior decrease close to those values observed in control group (0 hours) (Figure 4.3.B). Finally, 

ITR gene expression showed a similar trend to that observed in AVTR 2-type, with a rapid increase 

of its mRNA levels during the first 30 min after emersion. Subsequently, a significant fall-down 

was observed 1 hour post-stress with a posterior and gradual recovery of its values close to those 

found at 0 hours (4.3.C). Moreover, no differences between mRNA expression levels of the three 

receptors studied was observed between the specimens sampled at time 8 hours post-stress and the 

two groups at normal conditions (0 hours and 8 hours without stress). 
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Figure 4.2. Time course changes in hypothalamic pro-VT (A) and pro-IT (B) mRNA expression levels (relative to β-

actin) in S. aurata exposed to air for 3 min. Values are represented as mean ± S.E.M. (n = 8 fish per group). Significant 

differences within each group for different experimental times are identified with different letters (P<0.05, one-way 

ANOVA followed by Tukey’s test). 
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Figure 4.3. Time course changes in hepatic AVTR V1-type (A), AVTR V2-type (B) and ITR (C) mRNA expression 

levels (relative to β-actin) in S. aurata exposed to air for 3 min. Values are represented as mean ± S.E.M. (n = 8 fish per 

group). Significant differences within each group for different experimental times are identified with different letters 

(P<0.05, one-way ANOVA followed by Tukey’s test).
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In aquaculture, fish are continually subjected to different management practices such as handling, 

transport or confinement that cause different stress responses (Davis et al., 2002). In the literature 

there are numerous studies on the response of teleost fish to different typical stress situations in 

aquaculture. In addition, it has been addressed several aspects of stress system, from the metabolic 

effects to its regulation by different endocrine systems (Tort et al., 1996; Waring et al., 1996; 

Arends et al., 1999; Barton et al., 2002). Most of these studies have been carried out in the most 

important species for aquaculture, especially in salmonids and cyprinids. Moreover, the response of 

each species previously studied differs about the mechanisms that are triggered to maintain 

homeostasis after a stressful situation (Wedemeyer et. al., 1990). Physiological changes described 

after a stressful situation include variations at hematologic level (Dethloff et al., 1999), balance in 

the osmolyte concentration (McDonald and Milligan, 1997) and various changes in plasma 

hormones and metabolic pathways (Iwama and Barton, 1991; Carragher and Rees, 1994). One of 

the physiological responses in vertebrates, including fish, after exposure to a stressor is increased 

glucose and plasma cortisol (Pickering and Pottinger, 1989; Barton and Iwama, 1991; Barton, 2002; 

Ortuño et al., 2002). Thus, these parameters are considered as the most reliable methods for 

distinguish between a situation of stress and rest (Thompson et al., 1993; Biron and Benfey, 1994; 

Yin et al., 1995; Rotllant and Tort, 1997). 

 

 

5.1. Cortisol 

 

The variation of plasma cortisol levels in response to acute stressors has been defined within the 

range about 30 to 300 ng/mL (Wedemeyer et al, 1990; Barton and Iwama, 1991), although these 

variations depend not only on the source of stress but also on the species used as biological model. 

Barton et al. (1998, 2000) found that the highest levels of cortisol after an acute stress manipulation 

were lower in sturgeon (Scaphirhynchus spp.) and in paddlefish (Polyodon spathula). Their results 

suggest a trend toward lower stress responses in chondrichthyans compared with teleosts. However, 

Belanger et al. (2001) found that plasma cortisol in white sturgeon (Acipenser transmontanus) was 

about 40 ng/mL, indicating that lower stress responses cannot be a universal phenomenon in this 

group of fish. Among teleosts, some species also have low responses to acute stressors. In this way, 

Atlantic cod (Gadus morhua) peaks plasma cortisol levels with 15 ng/mL after handling (Hemre et 

al., 1991). However, Maule et al. (1988) demonstrated increases in the levels of this hormone near 

to 400 ng/mL in juveniles of Chinook salmon (Oncorhynchus tshawytscha) after an acute stress 

situation generated during and after transport processes. Furthermore, Mazik et al. (1991) 
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documented that cortisol levels increased up to 2000 ng/mL in striped bass (Morone saxatilis) 

during the recovery phase after 5 hours of transportation, which is one of the highest levels reported 

in teleosts. 

 

The basal concentration of plasma cortisol obtained for Sparus aurata specimens in this study is 

comparable both to that described in other teleosts (Barton and Iwama, 1991) as well as to that 

previously reported for the same species (Arends et al., 1999; Ortuño et al., 2001; Sangiao-

Alvarellos et al., 2006; Mancera et al., 2007). In our experiment, a significant ≈ 10-fold increase in 

cortisol levels following exposure to air indicates the activation of stress system with the existence 

of a primary stress response. This response can be considered temporary, since the plasma 

concentration of this hormone returned to baseline levels during the first hours post-stress. In a 

previous experiment with the same species and using the same experimental design an increase  of 

≈ 50 times in plasma cortisol values was observed (Arends et al., 1999), demonstrating that this 

experimental design induces an alteration in specimens, activating stress system aimed to restore 

the homeostatic condition of the animal. The results of our experiments also indicate that in S. 

aurata dynamic response depend on the type of stressor, and also that size of the animals can affect 

the magnitude of stress response even being the same pattern. However, Arends et al. (1999) did not 

find that the increase in plasma cortisol was accompanied by an increase in the plasmatic levels of 

adrenocorticotropic hormone (ACTH). This suggests a cortisol increase ACTH-independent, and 

hence the results obtained after exposure to air induces a significant increase in cortisol levels to 

address acute stress, this process must be regulated by different routes/endocrine systems (see 

below). 

 

 

5.2. Metabolites 

!
Liver is one of the main reservoirs of energy in vertebrates, whereas the brain is responsible for 

between 1.5% and 8.5% of the total body energy consumption in vertebrates (Van Ginneken et al., 

1996). Previous studies have demonstrated that different stress situations such as osmotic 

challenges, hormonal injections, high stocking densities or fasting processes enhance hepatic 

glycogenolytic routes and free-glucose production processes in teleosts, including S. aurata 

(Janssens and Lowrey, 1987; Moon and Mommsen, 1990; Mommsen et al., 1999; Sangiao-

Alvarellos et al., 2006; Mancera et al., 2008; Cádiz et al., 2015). Moreover, studies with this species 

have additionally demonstrated that cortisol injection enhanced metabolic rates (Laiz-Carrión et al., 
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2003; Sangiao-Alvarellos et al., 2004, 2006; Cádiz et al., 2015). Our results showed a pattern of 

changes in metabolic parameters at both plasma and hepatic levels that agree also with the 

previously reported for S. aurata submitted to the same experimental design (Arends et al., 1999) or 

even to abrupt salinity challenges, a situation that also is considered as an acute stress for this specie 

(Sangiao-Alvarellos et al., 2005). Thus, the enhancement of plasma metabolites (glucose, lactate 

and protein) levels concomitantly with plasma cortisol values as well as a consumption of energy 

reserves identified by the lower liver glycogen storage, suggested the existence of a clear energetic 

reorganization due to stress situation. 

 

Air exposure induces a strong and rapid increase of both glucose and lactate, which point to a 

sympathetic activation of the chromaffin cells in head kidney with a release of catecholamines 

(CAs). Thus, arterially infused CAs have been shown to induce hyperglycemia in carp (Cyprinus 

carpio), and increased plasma lactate levels are associated with elevated CA concentrations and 

hypoxia situation (van Raaji et al. 1995, 1996; Fabbri et al., 1998). As gas exchange is 

compromised in air-exposed fish, the resulting hypoxia will contribute to the production of high 

lactate levels (Vijayan et al., 1994; Maxime et al., 1995). Furthermore, it has been show that 30 s of 

handling in rainbow trout (Oncorhynchus mykiss) juveniles results in a rise of plasma glucose 

levels, even in fish fed cortisol-enriched food to downregulate their cortisol producing cells (Barton 

et al., 1987). Moreover, hepatic glycogenolysis has been shown to be a source for such a CA-

mediated rise of plasma glucose (Vijayan et al., 1994).  In addition, higher levels of plasma lactate 

could reflect the greater supply required by some important tissues (e.g. gills, kidney or brain), 

where the use of this metabolite in those organs has been demonstrated (Mommsen, 1984; 

Mommsen et al., 1985; Soengas et al., 1998). Furthermore, this metabolite is produced as a 

consequence of anaerobic metabolic pathways, so that its role after air exposure situation cannot be 

rule out as an important player.  

 

In our experiment, plasma proteins values decreased constantly in specimens air exposed, 

suggesting the use of this metabolite to produce amino acids, which could be used as energy 

substrates in peripheral tissues via gluconeogenesis (Van den Thillart, 1986; Cowey and Walton, 

1989; Mommsen and Walsh, 1992). In addition, those amino acids, product of the protein 

breakdown, will be also able to enter in gluconeogenic pathways and the Krebs cycle in order to 

cope with the energetic demands caused by the hypoxia status on the fish (Van Waarde, 1988). On 

the other hand, triglycerides levels, both in plasma and liver, did not show variations during the 

time that the experiment lasted, suggesting a lack of involvement of these metabolites (at least 
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during the first hours) in the short-term response to stress. However, S. aurata specimens subjected 

to a chronic stress situation like osmotic challenge showed an increase of this metabolite at plasma 

level (Martos-Sitcha et al., 2013), while juveniles of red porgy (Pargus pargus) subjected to high 

stocking density and food deprivation condition presented a decreased plasma triglyceride levels 

and enhanced hepatic triglycerides values that suggested a mobilization of hepatic lipids as 

energetic source when protein and glucidic reserves are consumed in this organ. 

 

 

5.3. Hypothalamic mRNA pro-AVT and pro-IT expression 

 

The vasotocinergic and isotocinergic systems present physiological functions (see Introduction), 

and its activity depends on many external/internal factors that regulate different processes at 

neuronal level (gene expression, synthesis of proteins, transport, maturation, storage and release) as 

well as plasmatic AVT/IT values (Martos-Sitcha et al., 2013). In addition, AVT/IT plasma levels 

decrease due to its elimination both by renal clearance processes and by binding to their specific 

receptors on target organs (e.g. liver, gill, kidney, etc.) (Ward et al., 1990; Kulczykowska, 2007; 

Martos-Sitcha et al., 2013). Furthermore, in both vasotocinergic and isotocinergic systems a 

negative-feedback can inhibit hormonal synthesis and release while maintaining AVT/IT circulating 

levels in certain limits. This process ensures the survival of the specimen in variable environments 

and against seasonal changes in the physiological demands (Balment et al., 2006). 

 

In the hypothalamus-pituitary-interrenal axis (HPI), corticotrophs cells of adenohypophysis are 

responsible for the synthesis of adrenocorticotropic hormone (ACTH). This hormone stimulates the 

secretion of cortisol in the interrenal tissue (Wendelaar Bonga, 1997), although AVT hypothalamic 

neurons also innervate these adenohypophyseal cells (Batten et al., 1990). This supports a possible 

role of AVT in the activation of telesot stress system (Kulczykowska, 2001; Balment et al., 2006). 

 

The effect of stress on AVT/IT synthesis and release depends on the type of stressor applied 

(Kulczykowska, 2001; Mancera et al., 2008). However, good correlation between stress indicators 

(e.g. cortisol) and AVT plasma levels allows considered plasma AVT as i) a hormonal marker of 

the internal status of specimens, ii) an important intermediate in the regulation of stress response, 

and therefore iii) seems to be a good candidate as indicator for animal welfare (Kulczykowska et 

al., 2010; Martos-Sitcha et al., 2013). In S. aurata it has been shown that AVT and cortisol plasma 

concentrations increased in specimens submitted to different stress situations, such as cortisol 
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injection (Cádiz et al., 2015), saline transfer (Kleszczynska et al., 2006; Martos-Sitcha et al, 2014th) 

or high stocking density (Mancera et al, 2008). In addition, AVT treatment is effective in increasing 

cortisol levels in S. aurata specimens submitted to further stress situation (which activate HPI 

system, with a clear CRH enhancement), suggesting a cooperation between exogenous AVT and 

endogenous CRH to activate ACTH cells and consequently interrenal tissue, for increasing plasma 

cortisol levels (Sangiao-Alvarellos et al., 2006). These dates suggests a possible role of AVT on 

HPI axis, specifically on ACTH cells stimulation in specimens subjected to chronic stress 

conditions (Batten et al., 1990; Wendelaar Bonga, 1997). Moreover, according to our results, in 

situations of acute stress (such as exposure to air for 3 minutes) high pro-AVT expression levels are 

seen in the first hour post-stress, suggesting a role of AVT also during the acute stress processes. 

This indicates the existence, from the beginning of the application of the stressor, of a regulation of 

the entire cascade endocrine triggered and mediated by different endocrine systems that are 

expressed independently. 

 

Meanwhile, although hypothalamic mRNA expression appeared to be affected by endogenous 

environmental cycles as has been described in AVP secretion in mammals (Tominaga et al., 1992), 

the absence of variations in pro-VT expression between specimens not subjected to stress situation 

for emersion and sampled at different times (0 h and 8 h) suggest that this system, at least in the 

brain, does not appear to be subjected to circadian variations. However, previous studies in trout 

(Oncorhynchus mykiss) have demonstrated the existence of a circadian cycle in hypothalamic pro-

VT expression and pituitary AVT secretion with a peak level at the end of the light phase 

(Rodriguez-Illamola et al., 2011). In addition, the confirmation of this hypothesis was evaluated by 

maintaining specimens of O. mykiss for 24 hours of continuous light, which showed attenuation of 

AVT expression levels (Rodríguez-Illamola et al., 2011), suggesting that this endogenous cycle 

could be species-specific. 

 

The physiological functions of IT in teleosts are not well established, but different authors suggest a 

role of this hormone in the stress system, enhancing its plasmatic levels under stress situation such 

as dominance and subordination (Oreochromis mossambicus: Almeida et al., 2012), or changes in 

the reproductive and social status (Gasterosteus aculeatus: Kleszczynska et al., 2012).  

The results obtained in the present Thesis show a pro-IT mRNA expression enhancement during the 

first hour after stress, suggesting a possible role of IT in acute stress situations (where an increase in 

plasma cortisol levels is observed). In S. aurata, the existence of a high mRNA pro-IT expression 

values, pituitary as well as plasma values IT levels after hypersaline changes, suggest that IT could 
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be involved in modulation of saline stress (Kleszczynska et al., 2006; Martos-Sitcha et al., 2013). 

However, environmental salinity challenges did not induce modifications in the pattern of IT 

receptor expression in different tissues, including hypothalamus (Martos-Sitcha et al., 2014a). Even 

so, treatment with cortisol (that emulated a chronic stress situation with high levels of this hormone) 

induces changes in both central (brain and pituitary) as well as peripheral (liver, gill and head 

kidney) players of isotocinergic system (pro-IT, IT and IT receptor) in S. aurata, suggesting the 

involvement of isotocinergic pathways in stress processes (Cádiz et al., 2015). In this regard it has 

been shown that S. aurata specimens under high stocking density and fasting (two situations that 

can be also considered as chronic stress situations) enhanced plasma cortisol and IT levels 

(Mancera et al., 2008). 

 

Furthermore, the effect of AVT and/or IT on metabolism associated with stress processes cannot be 

ignored (Sangiao-Alvarellos et al., 2004; 2006. Martos-Sitcha et al., 2013, 2014b; Cádiz et al., 

2015). Previous studies have shown that brain undergoes a metabolic reorganization in specimens 

subjected to different types of stress, such as food deprivation, exposure to toxic or hypoxia 

(Soengas and Aldegunde, 2002), hormonal treatments with catecholamines (Sangio-Alvarellos et 

al., 2003a) or cortisol (Laiz-Carrion et al., 2002, 2003), or in response to osmotic changes (Sangiao-

Alvarellos et al., 2003b; Laiz-Carrion et al., 2005; Polakof et al., 2006; Martos-Sitcha et al., 2013). 

Thus, the experimental design used in this Thesis assumed a stress situation that would require 

metabolic activation at brain and hepatic levels, so that a stimulation of AVT and IT synthesis and 

release could be beneficial due to the putative metabolic action of these hormones. 

 

 

5.4. Hepatic mRNA AVT and IT receptor expression 

 

In teleost, the liver is the major organ responsible for energy storage (mainly in the form of 

glycogen/glucose) as well as for fatty acids synthesis and the processes of aminogenesis and 

gluconeogenesis (Peragón et al., 1998). The presence of AVT and IT receptors in liver has been 

described in several teleost species (Moon and Mommsen, 1990; Hausmann et al., 1995; Guibbolini 

et al., 2000; Konno et al., 2009; Lema, 2010; Martos-Sitcha et al, 2014a), suggesting a putative role 

of AVT and IT in the energy metabolism control due to the important metabolic role of this organ. 

So, while the physiological response to the administration of these hormones seems to be unclear in 

fish (Balment et al., 2006; Kulczykowska, 2007), in S. aurata it has been shown that AVT injection 

and the subsequent transfer to different environmental salinities induced variations in hepatic 
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metabolism, with a mobilization of glycogen together with a plasma glucose enhancement 

(Sangiao-Alvarellos et al., 2006). Furthermore, glycogenolytic processes are also stimulated by 

AVT in amphibian’s hepatocytes (Janssens et al., 1983; Ade et al., 1995), and by AVP in mammal’s 

hepatocytes (Smith et al., 2003), so their metabolic function of AVT in liver of S. aurata cannot be 

ruled out. 

 

The increase in the expression levels of the three receptors analysed (AVTR V1a2-type, AVTR V2-

type, and ITR) seems to suggest a role of all of them associated with stressful situations that involve 

high levels of cortisol, with the subsequent need of metabolic activation for energy release into the 

internal medium of the animal (Laiz-Carrión et al., 2002, 2003; Mommsen, 1999). In this way, the 

increase observed may indicate a stimulation of gluconeogenesis and glycogenolysis processes in 

liver. This stimulation of the gluconeogenic potential has been previously demonstrated by our 

research group in specimens of S. aurata treated with cortisol, where high concentrations of this 

hormone in plasma produces important changes in the activity of several enzymes as fructose-

bisphosphatase 1-6 (FBPase) as well as pyruvate kinase (PKase) enzyme activities (Laiz-Carrion et 

al., 2003), together with an increase in the mRNA expression levels of AVT and IT receptors in 

liver (Cádiz et al., 2015). Most hepatic glucose production in specimens treated with cortisol is 

associated with the use of this metabolite in other tissues that require higher energy consumption 

(Soengas et al., 2007). So, it is known that the increase in plasma glucose is one of the most typical 

secondary responses to stress, being the result of the mobilization of hepatic glycogen stores, also 

described in our experiment, as a consequence of activation of glycogenolytic routes cause by the 

action of catecholamine and/or cortisol (Barton et al., 2002). In this way, it has been demonstrated 

that after injection of cortisol, hepatic glycogen levels decrease, inferring the actions of cortisol on 

various metabolic enzymes such as glycogen phosphorylase (GPase) (Laiz-Carrion et al., 2003). 

 

Our results showed a clear and rapid mRNA up-regulation in the expression of both AVTRs, 

already in the first hour of the experiment and 4 hours post-stress in case of AVTR V2-type. Thus, 

AVTR V2-type function is mediated by PKA activation, suggesting that the metabolic actions of 

AVT are controlled by this receptor in hypoxia condition due to the higher energy requirement. 

Furthermore, air exposition stress also increased hepatic AVTR V1a2-type mRNA levels, the effect 

of which could be associated with the incorporation of inorganic phosphate in phosphatidyl inositol 

routes, acting as a substrate for phospholipase C, which is the intracellular pathway for this type of 

AVT receptor (Kirk et al., 1977, 1979). These results suggest that hepatic gene activation of V1a2-

type and/or V2-type receptors is related to the control of the energy supply organs due to the higher 
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requirements produced by the air exposition challenge, both regulating those enzyme activities 

controlled by the same intracellular pathways (Martos-Sitcha et al., 2014a). 

 

To our knowledge, only few data are available concerning the physiological role of IT, mainly 

about its osmoregulatory role (Hiraoka et al., 1996; Kulczykowska, 1997; Warne et al., 2000; 

Kleszczynska et al., 2006; Motohashi et al., 2009). However, hepatic ITR expression appears to be 

undisturbed by osmotic challenge, suggesting a minor role (if any) for IT in S. aurata 

osmoregulatory system during salinity challenge (Martos-Sitcha et al., 2014a). However, specimens 

of S. aurata treated with exogenous cortisol, which simulates a chronic stress situation, showed a 

late activation of the ITR, suggesting a regulatory action of IT on the liver (Cádiz, et al., 2015). Our 

results indicated a rapid ITR expression enhancement in the first hour post-emersion and a 

subsequent increase 4 hours after stress (in a way similar to what was seen for the AVT V2-type). 

These corroborate a role of this hormone in the regulation of the stress response, which may trigger 

processes of metabolic reorganization at hepatic level in S. aurata. 
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5.5. AVT, IT and stress: an integrative view 

 

In this work we studied the response of vasotocinergic and isotocinergic systems after an acute 

stress situation caused by exposure of S. aurata specimens to air for 3 minutes (Figure 5.1.). 

 

There is an increase in the hypothalamic pro-VT and pro-IT expression at 1 h post-emersion. At 

hepatic level, considering the changes observed in receptors gene expression (together with the 

metabolites modifications seen at hepatic and plasmatic levels), we propose that the both AVT and 

IT receptors may trigger a metabolic reorganization in the liver: with an initial regulation by all 

three receptors and later regulation by AVTR V2-type and ITR. In addition, the role of 

catecholamines and cortisol cannot be rule out (Mazeaud et al, 1981; Wendelaar Bonga, 1997). 

 

Acute stress induces a rapid increase in plasma cortisol levels, showing high values of this hormone 

15 minutes after air exposure. In specimens of S. aurata treated with exogenous cortisol, this 

hormone induced significant changes in energy metabolism in the liver, brain and gills (Laiz-

Carrión et al., 2002, Cádiz et al., 2015). In our study, we correlated air exposition with plasma 

glucose and lactate levels enhancement together a decrease in hepatic glycogen and rise of glucose, 

all from the first 15 minutes post-emersion. This fact suggests that the increased energy 

requirements due to hypoxia condition are fulfilled both from glucose and lactate. 

 

In specimens subjected to experimental situations that increased plasma concentration of AVT (e.g., 

hyperosmotic challenges, or AVT treatment) (Kleszczynska et al., 2006; Sangiao-Alvarellos et al., 

2006), a plasma cortisol level enhancement has been reported, suggesting a strict relationship 

between the AVT and ACTH. In this way, it can be inferred that AVT receptors (one of them, at 

least) could be involved in stress processes (both acute and chronic). In fact, in specimens subjected 

to high stocking density (Mancera et al., 2008) or osmotic changes (Martos-Sitcha et al., 2013b, 

2014a) showed a stimulation of hypothalamic pro-VT expression and its receptors, as well as 

plasma AVT levels in plasma, which reflect the physiological regulation performed by this 

endocrine system. In addition, in specimens of S. aurata treated with exogenous cortisol, which 

could be assimilate as a chronic stress situation, a decreased in the expression of AVT receptor V1-

type has been reported, suggesting i) the existence of an inhibition of the expression due to the 

circulating levels of this hormone, and ii) a likely involvement of the vasotocinergic system in 

chronic stress processes for this species (Cádiz, et al., 2015). The results of this work also suggest a 

role of vasotocinergic system after an acute stress situation, as shown in the initial activation of 
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these receptor genes during the first moments of stress in which high levels of cortisol production 

and release are required. 



 
 Figure 5.1. Schem
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1.- Plasma cortisol levels enhances in S. aurata specimens submitted to air exposure for 3 min, 

indicating that this acute stress situation is effective for inducing an activation of stress system. 

 

 

2.- The acute stress due to air exposure triggers a metabolic reorganization in S. aurata specimens 

to cope with hypoxia condition induced. The metabolic changes involve i) an increase in hepatic 

glycogenolysis and lactate production, ii) high levels of glucose and lactate available in plasma, and 

iii) a decrease in free plasma proteins. 

 

 

3.- The acute stress response involves changes in gene expression of both hypothalamic AVT and 

IT precursor levels as well as in their specific hepatic receptors, suggesting that the activation of 

both vasotocinergic and isotocinergic systems is important during the stress system answer induced 

by an acute stress situation. 

 

 

4.- The high mRNA pro-VT and pro-IT expression levels registered one hour after acute stress 

suggest that both hormones may stimulate/regulate hypothalamic-pituitary-interrenal axis activity to 

cope with endocrine function and also the subsequent effect on metabolic pathways. 

 

 

5.- Metabolic reorganization observed at hepatic level seems to be regulated firstly by both AVT 

(V1a2 and V2 types) and IT receptors, and later on by AVTR V2-type and ITR. 
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