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Sommario

Il lambda calcolo è stato introdotto da Church negli anni ’30 nell’ambito

dello studio delle basi formali della matematica. È un sistema che permette

di definire funzioni di ordine superiore. Astraendo una variabile x in un

termine M si costruisce il nuovo termine λx.M che rappresenta quindi una

funzione con parametro formale x. La valutazione della funzione su di un

argomento è espressa mediante l’applicazione di un termine M ad un termine

N .

L’interazione tra questi due meccanismi è data dalla β-regola:

λx.M N →M [N/x]

ovvero dalla sostituzione dell’argomento N al posto del parametro formale x.

Come si può notare il meccanismo è molto intuitivo ed esprime chiaramente

il comportamento dei termini nel calcolo.

È possibile dotare il lambda calcolo di un sistema di regole che assegnano

ad ogni termine un tipo. Se si considerano i tipi come insiemi di termini, si

può dire che un termine appartiene ad un tipo.

In questo lavoro di tesi si vuole iniziare lo studio del lambda calcolo finito,

un’istanziazione del lambda calcolo su tipi finiti, ovvero tipi che hanno solo

un numero finito di elementi canonici. Gli elementi canonici di un tipo T

sono semplicemente gli elementi in forma normale di T , ma nel nostro caso

vengono definiti sintatticamente assieme al tipo.

Il fatto di avere dei tipi con un numero finito di elementi canonici ci con-

sente di aggiungere al calcolo la seguente regola, che trasforma una funzione f

nel vettore che contiene i valori di f calcolati per ogni elemento del dominio:
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λx :σ.M → 〈M [ai/x]〉σ

Con questa regola si vuole implementare un sorta un meccanismo di mem-

oization.

La memoization consiste nel conservare in memoria il risultato di chia-

mate di funzione per evitare di ricalcolarne i valori in un secondo momento.

Visto che lavoriamo con tipi finiti, invece di chiamare la memoization sono in

alcuni casi, la applichiamo in parallelo su tutti i punti su cui è definita una

funzione.

Il meccanismo della memoization, benché ampiamente utilizzato come

tecnica di ottimizzazione, al meglio delle nostre conoscenze non è stato ancora

studiato dal punto di vista teorico.

Il lambda calcolo finito è dunque una base semplice per iniziare l’indagine

teorica della memoization.

Principale fonte di ispirazione dello studio è il lavoro di Goerdt [12, 11]

in cui l’autore, estendendo dei risultati dovuti a Gurevich [17] e comunque

seguendo una consolidata tradizione nell’ambito della teoria dei modelli [16],

interpreta il sistema T di Gödel in un dominio finito.

Com’è noto, i termini del sistema T possono essere organizzati in una

gerarchia basata sul livello dei tipi che occorrono nelle definizioni: il rank

dei termini. Interpretando i termini del sistema in strutture finite gli autori

ottengono una gerarchia di classi di complessità in cui si alternano spazio e

tempo: i termini di rank 1 caratterizzano PTIME, rank 2 PSPACE, rank 3

EXPTIME ecc.

L’idea di introdurre i tipi finiti si riallaccia dunque alla tradizione di in-

corporare nella sintassi le informazioni semantiche di rilievo e che permettono

di ottenere calcoli efficienti.

Nei prossimi capitoli viene introdotta e studiata la metateoria del calcolo:

si dimostrano normalizzazione, subject reduction e confluenza; quest’ultima

in particolare risulta molto interessante a causa di una coppia critica generata

dalla regola di memoizazion. Infine, si dimostrano i limiti di complessità
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analoghi a quelli dimostrati in [12].

Proprio la teoria della complessità è uno dei principali campi di appli-

cazione del calcolo: le sue caratteristiche infatti lo rendono una base teorica

adatta alla dimostrazione formale di risultati di complessità.

I risultati presentati in questa tesi sono descritti nell’articolo [5], in esame

per la pubblicazione.

Uno dei personali contributi a quest’articolo è stato lo studio del problema

della confluenza, in particolare una prima versione del teorema di confluenza

locale; tuttavia quella presentata qui è diversa a causa di alcuni problemi

tecnici discussi in seguito. La dimostrazione di normalizzazione si basa su

quella per il lambda calcolo tipato semplice, descritta in [10].

In ogni caso, l’idea originale del lavoro ed alcune soluzioni tecniche sono

del prof. Asperti.

Nel lavoro di tesi sono stati infine aggiunti alcuni esempi per chiarire

l’intuizione dietro le strategie di riduzione e alcune dimostrazioni di semplici

proprietà che per brevità non sono state incluse nell’articolo.
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Chapter 1

Introduction

1.1 Background

The lambda calculus, introduced by Church in the thirties in his inves-

tigation of the foundations of mathematics, is the synthetic description of

a higher order computational system based on function abstraction and ap-

plication: a new function λx.M may be defined by abstracting a formal pa-

rameter x in the function body M , and the function may be evaluated by

applying it to a specific argument N . The interaction between abstraction

and application is simply described by the so called β-rule

λx.M N →M [N/x]

reducing the computation to a simple process of substitution of the argument

N in place of the formal parameter x. The smallest congruence on lambda

terms containing the β-rule is known as β-equivalence.

Though β-rule is an an extremely simple conceptual tool to express the

the intended behaviour of abstraction and application, it is stated at the

meta-level of the calculus. As consequence, we cannot look at β-rule as a

truly computational device, as this formulation somewhat obscures many

syntactic phenomena hidden under his definition. Such kind of phenomena

were brought to light in particular when was necessary to fill the gap between

1



2 1. Introduction

the (meta) theoretical definition of beta-rule and his real implementations.

In this context, it was (slowly) realized that a less naive description of substi-

tution (avoiding a bruteforce duplication of arguments) is required to obtain

an efficient implementation of the calculus.

One simple and clear way to express an algorithm implementing the β-

reduction is the definition of abstract machines, of which the simplest exam-

ple is probably the well-known Krivine’s machine [22]. With environments

and closures it is possible to provide a mechanism for a lazy management of

substitution that has no clear counterpart in pure lambda calculus, naturally

suggesting to address substitution as an explicit component of the calculus.

In particular in [9] is developed a calculus of explicit substitutions in which,

simply removing some rules, one may express lazy or eager reduction strat-

egy. From those rules it is possible to derive almost deterministically [9] the

corresponding abstract machine.

Many other kind of machines expressing different evaluation strategies

have been developed (see e.g. [9, 8]); however all the machines were obtained

as a combination of ingenuity and skill to use the same words of [8], but

without a complete theoretical investigation. In [8] is thus provided an algo-

rithm that derives from an abstract specification of a strategy in a calculus

with explicit substitution an abstract machine implementing the specified

strategy.

An alternative syntactical framework where the complex issue of duplica-

tion can be better taken into account is provided by Linear Logic and proof

nets [19]. Here, the resources are thoroughly managed, not by means of some

kind of syntactical construct, but by the logical nature of the framework it-

self, which does not allow the use of the structural rules of weakening and

contraction, forbidding the arbitrary reuse of an hypothesis.

The recent structural lambda calculus [2] is a nice synthesis between ex-

plicit substitutions and linear logic. In this work the author add to a calculus

with explicit substitution some structural rules stemming from linear logic’s

sequent calculus. In this way duplication of arguments is carefully avoided
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(as in linear logic is forbidden arbitrary use of hypothesis). From this rules

can be derived (distilled, using the author’s words) many kinds of abstract

machines.

More sophisticated forms of reduction, pursuing sharing under λ-abstractions

[23], require even more complex syntactical representations and metatheoret-

ical frameworks, such as the so called sharing graphs [3].

An alternative way of sharing evaluation of functions is provided by mem-

oization, that consists in progressively caching function calls, avoiding to

re-compute a result on an already occurred input. While memoization is a

largely used optimization technique, up to our knowledge, it has never been

the object of a serious metatheoretical investigation. Here, we start this

study, in the extremely simple case of finite data types. Since we work in

a finite setting, instead of performing memoization “on demand”, we work

in parallel on all possible inputs, unfolding a function into a finite vector of

cases (that is, essentially, its graph).

The finite setting is particularly interesting, since it helps to put in ev-

idence the limitations of β-reduction as a computational mechanism: using

Terui’s colorful expression [27], β-reduction is in fact “desperately inefficient”

for computing finite-valued function. Different “semantic” techniques may be

profitably used for evaluation in the finite case, better exploiting the typing

information.

The finite lambda calculus has its root in the mainstream of characteri-

zations of complexity classes via the interpretation of formal languages into

finite structures (see e.g. [16, 18] for recent surveys.) While most of the re-

sults in this area have a model-theoretic and descriptive nature, Gurevich [17]

opened a more algebraic research direction, by observing that interpreting

primitive recursive functions (resp. recursive functions) over finite structures

one precisely get the log-space (resp. polynomial time) computable functions.

The result was extended by Goerdt [11, 12] to higher complexity classes, us-

ing higher type primitive recursive definitions (i.e. Gödel System T). The

terms of this language can be organized in a hierarchical structure, according
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to the level of the types occurring in their definitions (the so called rank of

a term). By interpreting these terms on finite structures, one obtains, as

rank raises, an alternating hierarchy of time and space complexity classes:

terms of rank-1 characterize LOGSPACE, rank-2 PTIME, rank-3 PSPACE,

rank-4 EXPTIME=DTIME(2poly), and so on. Similar results have been also

obtained by Jones [20] and Kristiansen [21], who investigated the effect of

removing successor-like functions in primitive recursive frameworks.

In Goerdt’s generalization is expressed, though in a different way, the idea

behind memoization. In fact in [12] the author use what he calls an infinite

term, that is a term expressed by a family of related terms and which - in our

case - is nothing but the identification of a function with his graph. However,

the original idea should be credited to Schwichtenberg [25] who used it in

the context of proof theory.

The simply typed lambda calculus that we address in this work is, essen-

tially, the purely functional subcalculus of the system considered by Goerdt.

The main difference is that while Goerdt gives a semantic description of the

calculus, as a result of interpreting primitive recursion on a finite subrange of

natural numbers, we are interested to look at the formal system as a rewriting

system, with its own reduction rules and computational strategies, following

the above mentioned tradition of incorporating into the syntax the relevant

“semantic” techniques (in this case, memoization).

As a final source of inspiration of our work, we would like to mention

some recent achievement in interactive theorem proving, such as the proof of

four color theorem [13], or the formal verification of the Odd-order Theorem

[14], where finite types play an essential role. In fact, in modern, dependently

typed systems (see e.g. [15, 24]), the collection of all finite types is itself a

type, allowing their uniform and parametric management: we can pass finite

types as input to programs, and write polymorphic functions that work on

“generic” finite types, with no knowledge of their cardinality or concrete

definition. Programming with finite types is not only feasible, but also quite

natural, suggesting a better theoretical investigation of this underestimated
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and neglected topic.

The results presented here are described in the paper [5] which is sub-

mitted for publication . In this paper is addressed the generalization of the

results described in [4] and studied the meta-theory of a subcalculs intro-

duced in [4]. One of the personal contributions to that work was in the

study of the confluence problem: in particular a first version of the conflu-

ence proof, as the one presented here is different due to a some technical

problem. The normalization proof is almost identical to the classical proof

based on the reducibility notion [10]. However, the original idea of the work

and many technical solutions are due to prof. Asperti.

In the thesis were also added some examples to explain the intuition be-

hind the reduction strategy and some proofs of simple properties not included

in the paper.

The structure of the work is the following: in the first part (sections 2.1

to 3.3) we investigate the metatheory of reduction (subject reduction, strong

normalization, and confluence); the structure of this part of the work is a

consequence of some interesting peculiarities of the calculus briefly discussed

in the next section. In the second part, we address the complexity of nor-

malization (section 4.1), proving that any term of the finite lambda calculus

of rank 2n+ 2 can be normalized in time expn(p) (a tower of exponential of

length n, ending in a polynomial p, see section 4.1), and similarly any term

of rank 2n+ 3 can be normalized with space expn(p).

In section 4.6, we use this fact to provide an alternative and simpler proof

of a recent result by Terui [27].

1.2 Preliminary discussion

The main feature of the finite lambda calculus is a memoization rule un-

folding a function into a finite vector of cases, one for each canonical element

of the type σ:

(µ) λx :σ.M → 〈M [ai/x]〉σ for ai ∈ C(σ)
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The canonical elements C(σ) of type σ are, essentially, the terms in normal

forms of the corresponding type, but they are defined syntactically along with

types, since we need them for the definition of both typing and reduction

rules. The other operation on vectors is field selection (case switch):

(ι) 〈Ma〉A a→Ma

The β-rule and the µ-rule generate an interesting critical pair:

λx :σ.M N
µ↙ ↘β

〈M [ai/x]〉σ N M [N/x]

If N is an open term (e.g. a variable), we have no hope to close the

diamond.

Instead of restricting the rules of the calculus, that is both unnatural and

problematic, especially in view of substitution lemmata, we shall content

ourselves to prove confluence in case of closed terms.

If N :σ is closed, then it will eventually reduce to a canonical element aj

in C(σ), and we can close the diagram with the ι-rule:

λx :σ.M N
µ↙ ↘β

〈M [ai/x]〉σ N M [N/x]

↓∗ ↓∗
〈M [ai/x]〉σ aj

ι→M [aj/x]

This fact relies however on two important properties:

1. normalization, since the term N must reduce to a canonical form;

2. subject reduction, since the canonical form must be of the same type of

the term N .

Note also, by the way, that confluence may only hold for well typed terms: if

the type of N is not σ (and hence λx :σ.M N is ill typed), we cannot close

the critical pair above.
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Let us finally remark that, in order to close the diagram, we need to reduce

the argument N to the normal form, so we cannot hope to prove confluence

neither by a parallel reduction technique [26], nor by tracing residuals (see

e.g. [7]).

Since in any case we need strong normalization, the most obvious ap-

proach to confluence consists in proving a local confluence property, that, as

it is well known, in conjunction with strong normalization entails confluence1.

The plan of our metatheoretical investigation is thus the following: in

section 2.1 we give the formal definition of the calculus, comprising the type

system and the reduction rules; then we address in turn the properties of

subject reduction (section 3.1), strong normalization (section 3.2) and local

confluence (section 3.3).

1The confluence problems of the finite lambda calculus have strong similarities with

the calculus of singleton types of Abel et al. [1] that is essentially a particular case of our

calculus.





Chapter 2

The calculus

2.1 Definitions and notation

In this chapter we give the syntax of the calculus, the typing rules and

the reduction rules together with the proofs of substitution lemmata.

2.1.1 Types and Terms

Definition 2.1.1. (Types)

1. a finite type A is a type defined by a finite collection of elements (con-

structors) a1, . . . , an

2. a type is either a finite type or an arrow type σ → τ between two types.

Definition 2.1.2. The terms of the language are defined according to the

following syntax, where τ is a type:

M,N := x variable

| ai constructor

| λx :τ.M abstraction

| (M N) application

| 〈M1, . . . ,Mn〉τ vector

9



10 2. The calculus

Free variables are those not bound by a lambda; more formally, le M be

a term, the set FV of the free variables of M is recursively defined by:

Definition 2.1.3. (free variables)

- FV (x) = {x}

- FV (λx.M) = FV (M)− {x}

- FV (P Q) = FV (P ) ∪ FV (Q)

- FV (〈M1, . . . ,Mn〉τ ) =
⋃
i FV (Mi)

A term M is closed if FV (M) = ∅.

Definition 2.1.4. ( substitution )

- x[N/x] = N

- y[N/x] = y if y 6= x

- (λy.M)[N/x] = λy.M [N/x] if y /∈ FV (N) and y 6= x

- P Q[N/x] = P [N/x] Q[N/x]

- 〈M1, . . . ,Mn〉τ [N/x] = 〈M1[N/x], . . . ,Mn[N/x]〉τ

Definition 2.1.5. (Canonical elements)

For each type τ we define a set C(τ) of canonical elements of τ , together with

total ordering <τ on them; two canonical elements are equal if and only if

they are syntactically identical.

• if A = {a1, . . . an} each ai is a canonical element; ai <A aj if and only

if i < j.

• a canonical element of σ → τ is a vector 〈ba〉σ of canonical elements

of τ indexed over canonical elements a ∈ σ; vectors are ordered lexi-

cographically: 〈ba〉 <σ→τ 〈b′a〉 if and only if and only if there exists a

canonical element a : σ such that forall a′ <σ a, ba′ = b′a′ and ba <τ b
′
a.
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Definition 2.1.6. (Cardinality) The cardinality ‖τ‖ of a type τ is the number

of canonical elements of the type.

2.1.2 Typing

Definition 2.1.7. (Typing rules) The type system is defined by the following

rules where, as usual, Γ is a context associating types with free variables:

(variable) Γ ` x : τ if x : τ ∈ Γ

(constructor) Γ ` ai : A if A = {a1, . . . , an}

(abstraction)
Γ, x : σ `M : τ

Γ ` λx : σ.M : σ → τ

(application)
Γ `M : σ → τ Γ ` N : σ

Γ ` (M N) : τ

(vector)
Γ `Ma : τ ∀a ∈ C(σ)

Γ ` 〈Ma〉σ : σ → τ

Let us remark that, according to the vector rule, the vector 〈Ma〉σ is well

typed if it contains a component for each canonical element of type σ, that

is, if it has the expected length.

It is easy to prove, by structural induction on the type σ, that all elements

in C(σ) are well typed terms of type σ:

Lemma 2.1.8. For each c ∈ C(σ) we have ` c : σ.

By inversion on the definition of the typing rules, we easily get the fol-

lowing generation lemma:

Lemma 2.1.9. (generation lemma)

1. if Γ ` λx : σ.M : ρ, then there exists τ such that ρ = σ → τ and

Γ, x :σ `M :τ ;

2. if Γ `M N : τ , then there exists σ s.t. Γ `M :σ → τ and Γ ` N : σ;
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3. if Γ ` 〈Ma〉σ : ρ, then there exists τ such that ρ = σ → τ and, for any

a ∈ C(σ), Γ `Ma : τ .

We also need the following substitution lemma:

Lemma 2.1.10. If Γ, x :σ,∆ ` M : τ and Γ ` N : σ, then Γ,∆ ` M [N/x] :

τ .

Proof. By induction on the type-derivation Γ, x :σ,∆ `M : τ .

2.2 Reduction

Let us come to the reduction rules.

Definition 2.2.1. (one step reduction) One step reduction is the smallest

relation containing the following rules

(β) λx.M N →M [N/x]

(ι) 〈Ma〉σ ai →Mai for ai ∈ C(σ)

(µ) λx :σ.M → 〈M [ai/x]〉σ for ai ∈ C(σ)

and closed with respect to the following congruence rules:

(@l)
M →M ′

M N →M ′N
(@r)

N → N ′

M N →M N ′

(λ)
M →M ′

λx :τ.M → λx :τ.M ′ (v)
N → N ′

〈v,N, v1〉τ → 〈v,N ′, v1〉τ

In the (µ)-rule, vector components are ordered according to <σ. In the

(v)-rule, v1 and v2 are arbitrary lists of terms.

As usual, we shall use the notation M
∗−→ N to denote the reflexive and

transitive closure of the one step reduction relation.
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2.2.1 Basic Properties

Here we prove the following properties, that are required to address the

local confluence of the calculus:

Lemma 2.2.2. For all terms M,M ′, N,N ′

1. if M
∗−→M ′ then M [N/x]

∗−→M ′[N/x];

2. if N
∗−→ N ′ then M [N/x]

∗−→M [N ′/x].

Proof. (1) The proof is by structural induction on the term M .

- M is of the form λy.P . By hypothesis it reduces (in many steps) to

the term M ′. The reduction must take place under the λ ending in an

term of the form λy.P ′. By definition of substitution (λy.P )[N/x] =

λy.P [N/x] (y 6= x). So by induction hypothesis to P [N/x]
∗−→ P ′[N/x].

Then λy.P [N/x]
∗−→ λy.P ′[N/x] (by lemma 2.2.3), and by definition of

substitution we close the case.

- M is of the form P Q. Reduction may take place inside P ,Q or both.

However, applying the induction hypothesis and the definition of sub-

stitution we get the claim.

- M is a vector: 〈v,N, v1〉τ . We then reduce inside a component- say

N - getting N ′. Then we can apply the induction hypothesis to N and,

similarly to the previous cases we get the claim.

- If the term is a variable the case is trivial.

Proof. (2) The proof is by structural induction on the term M , and is similar

to the previous one.

- M is of the form λy.P .

Then, by definition of substitution: (λy.P )[N/x] = λy.P [N/x]. Apply-

ing the induction hypothesis to P we have that: P [N/x]
∗−→ P [N ′/x].

Then we close the case in a way similar to the previous lemma.
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- M is of the form P Q. So, P Q[N/x] = P [N/x]Q[N/x]. Now we can

apply the induction hypothesis to P and Q, obtaining the claim.

- M is a vector: 〈v,N ′, v1〉τ . By definition of substitution we have

〈v,N ′, v1〉τ [N/x] = 〈v[N/x], N ′[N/x], v1[N/x]〉τ . In a way similar to

the previous, cases we get the claim by induction hypothesis.

- If the term is a variable the case is trivial.

Lemma 2.2.3. For all terms P, P ′, Q,Q′

1. if P
∗−→ P ′ then P Q

∗−→ P ′ Q

2. if Q
∗−→ Q′ then P Q

∗−→ P Q′

3. if P
∗−→ P ′ then λx :σ.P

∗−→ λx :σ.P ′

4. if P
∗−→ P ′ then 〈v, P, v1〉σ

∗−→ 〈v, P ′, v1〉σ for all lists of terms v, v1.

The proofs are by induction on the number of steps, and have the same

structure: we first prove the base case by means of the relative congruence

rule, and then, assuming the statement true for (n − 1)-step reductions, we

prove for n-step reductions applying again the right congruence rule.

In the following we shall use P
n−→ Q to indicate that M reduces to N in

n steps.

Proof. Base: n = 1, P −→ P ′ (Q −→ Q′).

We can prove that:

- P Q −→ P ′Q applying the @l rule.

- P Q −→ P Q′ applying the @r rule.

- λx.P −→ λx.P ′ applying the λ rule.

- 〈v, P, v1〉τ −→ 〈v, P ′, v1〉τ applying the v rule.
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Induction. We suppose hypothesis true for reduction of length n − 1.

By hypothesis, we have that P
n−→ P ′ (Q

n−→ Q′). The must exists P ′′ (Q′′)

such that

P
n−1−−→ P ′′ −→ P ′ (Q

n−1−−→ Q′′ −→ Q′)

Now we can use the induction hypothesis to derive that:

- P Q
n−1−−→ P ′′Q.

- P Q
n−1−−→ P Q′′.

- λx.P
n−1−−→ λx.P ′′.

- 〈v, P, v1〉τ −→ 〈v, P ′′, v1〉τ .

As P ′′ −→ P ′ (Q′′ −→ Q′) we close the proof applying respectively @l, @r, λ, v

rules.
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Chapter 3

Meta-theory

In this chapter we shall provide the main results concerning the meta-

theory of the calculus. As anticipated in the introduction, the structure of

the chapter is due to a problem with confluence induced by the critical pair

discussed in chapter 1.1. In the following section we prove subject reduc-

tion lemma, that is the fact that reduction preserves typing. In section 3.2

we prove strong normalisation theorem and we conclude the chapter in sec-

tion 3.3 proving the weak Church-Rosser property from which follows global

confluence.

3.1 Subject Reduction

Lemma 3.1.1. If Γ `M : σ and M → N , then Γ ` N : σ.

Proof. The proof is by induction on the definition of the one step relation.

- Case M
β−→ N . We can only apply the β-rule when M ≡ λx :σ.M1 M2.

So, it holds that

Γ ` λx :σ.M1 M2 : τ

and by lemma 2.1.9.(2) there exists σ′ such that

Γ ` λx :σ.M1 : σ′ → τ and M2 : σ.

17



18 3. Meta-theory

Moreover, by lemma 2.1.9.(1) we must have σ = σ′ and

Γ, x :σ `M1 : τ

By lemma 2.1.10

Γ `M1[M2/x] : τ.

- Case M
µ−→ N . We can only apply µ-rule when M ≡ λx : σ.M1. So it

holds that

Γ ` λx :σ.M1 : σ → τ

By lemma 2.1.9.(1)

Γ, x :σ `M1 : τ

By lemma 2.1.10

Γ `M [ai/x] : τ ∀ai : C(σ)

and, by the typing rule for vectors, we get

Γ ` 〈M [ai/x]〉σ : σ → τ

- Case M
ι−→ N . We can only apply ι-rule when M ≡ 〈Ma〉 ai and

ai ∈ C(σ). By lemma 2.1.9.(2), there exists σ′ such that

Γ ` 〈Ma〉 : σ′ → τ and Γ ` ai : σ′

Moreover, by lemma 2.1.9.(3) we must have σ = σ′ and, for any ai ∈
C(σ), Mai has type τ .

- CaseM N →M ′N , whereM →M ′. If Γ `M N :τ , by lemma 2.1.9.(2),

Γ ` M : σ → τ and Γ ` N : σ for some σ. By induction hypothesis

Γ `M ′ :σ → τ , so Γ `M ′N :τ .

- CaseM N →M N ′, whereN → N ′. If Γ `M N :τ , by lemma 2.1.9.(2),

Γ ` M : σ → τ and Γ ` N : σ for some σ. By induction hypothesis

Γ ` N ′ : σ, so Γ `M N : τ
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- Case λx : σ.M → λx : σ.M ′, where M → M ′. If Γ ` λx : σ.M : ρ,

by lemma 2.1.9.(1), there exists τ such that ρ = σ → τ and Γ, x :

σ ` M : τ . By induction hypothesis Γ, x : σ ` M ′ : τ , and hence

Γ ` λx :σ.M ′ : σ → τ .

- Case 〈v,M, v1〉 → 〈v,M ′, v1〉 σ, where M →M ′. If Γ ` 〈v,M, v1〉σ : ρ,

then by lemma 2.1.9.(1), there exists τ such that ρ = σ → τ and

all components of the vector have type τ . By induction hypothesis

Γ,`M ′ : τ , and hence Γ ` 〈v,M ′, v1〉σ : σ → τ .

3.2 Strong normalisation

In this section we prove the Strong Normalisation Theorem for the finite

lambda calculus, that is the fact that the reduction relation is well founded.

We follow Tait’s approach based on the notion of reducibility (see e.g. [10]).

Reducibility is an abstract property on terms entailing, among other things,

their strong normalisation. So, proving that all terms are reducible implies

strong normalisation as a corollary.

The proof is quite traditional, and we only include it for the sake of

completeness. The main novelties with respect to the simply typed case is

that we exclude vectors from neutral elements, and add a suitable lemma for

them (Lemma 3.2.5):

Definition 3.2.1. (Reducibility)

• If A is an atomic type, a term M is reducible of type A (M ∈ RedA) if

and only if M is strongly normalizable

• A term M is reducible of type σ → τ (M ∈ Redσ→τ) if for any N ∈
Redσ, M N ∈ Redτ .

Definition 3.2.2. If M is a strongly normalizable term, we shall denote with

ν(M) the length of the longest reduction sequence rooted in M .
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3.2.1 Reducibility properties

We shall use s.n. as an abbreviation for “strongly normalizable”.

Definition 3.2.3. A term is called neutral if it is not of the form λx.P or

〈Pa〉σ

A neutral term is a term that cannot create a redex when applied to an

argument.

The property we are interested in are the following:

- (CR 1) If M is reducible of type T , then M is s.n.

- (CR 2) If M is reducible of type T and M
∗−→M ′, then M ′ is reducible

of type T .

- (CR 3) If M is neutral, and whenever we convert a redex of M we

obtain a term M ′ reducible of type T , then M is reducible of type T .

Now we prove, by induction on types, that CR1-3 hold for all the types

of the calculus.

3.2.2 Reducibility Theorem

Atomic types

A term of atomic type is reducible iff it is s.n. So we must show that the

set of s.n terms of type T satisfies the three reducibility conditions:

- (CR 1) is a tautology.

- (CR 2) If M is s.n. then every term M ′ to which M reduces is also.

- (CR 3) A reduction path leaving M must pass through one of the

terms M ′ , which are s.n., and so is finite.
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Arrow type

A term of arrow type is reducible if an only if all its applications to

reducible terms are reducible.

- (CR 1) Assume M ∈ Redσ→τ , and let x be a variable of type σ;

the induction hypothesis (CR 3) for σ says that the term x, which is

neutral and normal, is reducible. So M x is reducible, and the induction

hypothesis (CR 1) for τ tell us that M x is s.n. Since any subterm of

a s.n. term is s.n.too, M is s.n.

- (CR 2) Assume M
∗−→ M ′ and M ∈ Redσ→τ . For any N ∈ Redσ,

M N ∈ Redτ by definition of reducibility; moreover, M N
∗−→ M ′N .

The induction hypothesis (CR 2) for τ gives that M ′N is reducible.

So M ′ is reducible by definition.

- (CR 3) Let M be neutral and suppose all the M ′ one step from M

belongs to Redσ→τ . Let N be a reducible term of type σ; we want to

show that M N is reducible. By induction hypothesis (CR 1) for σ ,

we know that N is strongly normalisable; so we can reason by induction

on ν(N). Since M is neutral, in one step M N converts to

- M ′N with M ′ one step from M ; but M ′ is reducible, so M ′N is.

- M N ′, with N ′ one step from N . N ′ is reducible by induction

hypothesis (CR 2) for σ , and ν(N ′) < ν(N); so, by the induction

hypothesis for N , M N ′ is reducible.

Since all terms reachable in one step from M N are reducible, we can

apply the induction hypothesis (CR 3) for τ and conclude that M N

is reducible. Hence, M is reducible by definition.

We need a couple of lemmas relative to not neutral terms.

Lemma 3.2.4. If for all N ∈ redσ , M [N/x] ∈ Redτ , then λx : σ.P ∈
Redσ→τ .
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Proof. We need to prove that λx : σ.P Q is reducible for all Q ∈ redσ. We

reason by induction on ν(P ) + ν(Q). The term λx :σ.P Q may reduce in one

step to

• P [Q/x], which is reducible by hypothesis;

• λx : σ.P Q where P → P ′; so P ′ is reducible, ν(P ′) < ν(P ), and by

induction hypothesis this term is reducible.

• λx :σ.P Q where Q → Q′; so Q′ is reducible, ν(Q′) < ν(Q), again, by

induction hypothesis we have the claim.

In every case the neutral term λx : σ.P Q converts to reducible terms only,

and by (CR 3) it is reducible. So λx :σ.P is reducible by definition.

Lemma 3.2.5. If for all a ∈ C(σ), Pa is a reducible term of type τ , then

〈Pa〉A is a reducible term of type σ → τ .

Proof. We need to prove that for any Q ∈ Redσ the term 〈Pa〉Q is a reducible

term of type τ . The proof is by induction on
∑

a∈C(σ) ν(Pa)+ν(Q). The term

〈Pa〉Q may convert in one step to

• 〈P ′a〉Q where 〈P ′a〉 is a one-step reduct of 〈Pa〉; then
∑

a∈C(σ) ν(P ′a) <∑
a∈C(σ) ν(Pa) (at least of component has decreased), and we may apply

the induction hypothesis to conclude that 〈P ′a〉Q is reducible;

• 〈Pa〉Q′ where Q→ Q′; so Q′ is reducible, ν(Q′) < ν(Q), and hence by

induction hypothesis 〈Pa〉Q′ is reducible;

• Paj if Q ≡ aj that is reducible by assumption.

In all cases the neutral term 〈Pa〉Q converts to reducible terms only, and by

(CR 3) it is reducible. So 〈Pa〉 is reducible.

Theorem 3.2.6. Let M be a term with free variables in ~x, and let ~N be a

vector of reducible terms. Then the term M [ ~N/~x] is reducible.

Proof. By induction on t.
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- M is xi. Then xi[ ~N/~x] = Ni that is a reducible term by assumption.

- M is a constructor a of some atomic type A. This is a normal form,

hence a strongly normalizable term, hence a reducible term by defini-

tion (since A is atomic).

- M is an application P Q. We want to prove that

(P Q)[ ~N/~x] = P [ ~N/~x]Q[ ~N/~x]

is reducible. By induction hypothesis P [ ~N/~x] and Q[ ~N/~x] are re-

ducible, and so is P [ ~N/~x] (Q[ ~N/~x]), by definition of reducibility.

- M is λy :σ.P . We want to prove that (λy :σ.P )[ ~N/~x]) = λy :σ.(P [ ~N/~x])

is reducible. By lemma 3.2.4, it suffices to prove that for any Q ∈ Redσ,

the term P [ ~N/~x][Q/y] = P [ ~N, P/ ~x, y] is reducible. But this follows

from the induction hypothesis for P .

- The term M is of the form 〈Pa〉. By induction hypothesis Pa[ ~N/~x] is

reducible ∀a ∈ C(σ). So, by lemma 3.2.5, 〈Pa〉[ ~N/~x] = 〈Pa[ ~N/~x]〉 is

reducible.

Corollary 3.2.7. All terms are reducible.

Proof. Obvious, since variables are reducible terms, and for any term M we

have M = M [~x/~x].

Now, by CR 1 we have the following

Corollary 3.2.8. All terms are strongly normalisable.
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3.3 Local confluence

In this section we prove the local confluence lemma. Global confluence

follows by strong normalisation and local confluence. As we anticipated in

the introduction, we shall prove it only for closed and well typed terms since

it doesn’t hold, in general, neither for open nor ill typed terms.

The proof is by induction on the term, and then by cases on the reduction

rules. Induction on the term is required to handle the subcases of two redexes

deep inside a same subterm of the given term. A problem related to this

induction is that, while subterms of a well typed term are still well typed,

subterms of a closed terms are not necessarily closed (hence we could not

use the induction hypothesis). In particular, we are faced with this situation

when we are considering a term λx :σ.M and two redexes R1 : M →M ′ and

R2 : M → M ′′. To solve this situation, we adopt the following approach.

Instead of proceeding by structural induction on the term, we proceed by

induction on a suitable notion of dimension for terms, where the dimension

of a variable of type σ is defined as the dimension of a canonical element in

C(σ).

By memoization,

λx :σ.M → 〈M [a/x]〉σ
λx :σ.M ′ → 〈M ′[a/x]〉σ
λx :σ.M ′′ → 〈M ′′[a/x]〉σ

Consider a given component of the vector. We know that

M [a/x]→M ′[a/x] and M [a/x]→M ′′[a/x]

(in one step!) Moreover, the dimension of M [a/x] is equal to the dimension

of M and hence strictly less than the dimension of λx :σ.M . We can hence

apply the induction hypothesis, to conclude that there must exists, for each

a ∈ C(σ) a term M ′′′
a such that

M ′[a/x]
∗−→M ′′′

a and M ′′[a/x]
∗−→M ′′′

a
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But then

〈M ′[a/x]〉σ
∗−→ 〈M ′′′

a 〉σ and 〈M ′′[a/x]〉σ
∗−→ 〈M ′′′

a 〉σ

that closes the diagram.

λx :σ.M
λ

vvmmmmmmmmmmmmm
λ

((RRRRRRRRRRRRR

λx :σ.M ′

∗
��

λx :σ.M ′′

∗
��

〈M ′[ai/x]〉σ
∗

((PPPPPPPPPPPP
〈M ′′[ai/x]〉σ

∗

vvnnnnnnnnnnnn

〈M ′′′[ai/x]〉σ

The notion of dimension that we need for our purposes is the following

(that is slightly different from the more traditional notion of size of Defini-

tion 4.2.2.)

Definition 3.3.1. (dimension)

1. The dimension D(τ) of a type τ is defined as follows:

• D(A) = 1; for A atomic

• D(σ → ρ) = ‖σ‖ × D(ρ)

2. Let M be a well typed terms (so we know the type of each variable). Its

dimension D(M) is defined as follows

• D(a) = 1

• D(x) = D(σ) if x :σ

• D(M N) = D(M) +D(N) + 1;

• D(λx :σ.M) = D(M) + 1;

• D(〈Ma〉σ) =
∑

a∈C(σ)D(Ma)
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It is easy to prove (by induction on σ) that, for any c ∈ C(σ), D(c) =

D(σ). As a consequence, if x :σ, D(x) = D(c) for any c ∈ C(σ).

Theorem 3.3.2. Let M be a well typed term. If M −→ M1 and M −→ M2,

then exists a term M3 such that M1
∗−→M3 and M2

∗−→M3; in a diagram

M

}}zz
zz

zz
zz

!!DD
DD

DD
DD

M1

∗

!!

M2

∗

}}
M3

Proof. Let R1 and R2 be the two redexes in M . The proof is by general

recursion on D(M), and then by cases (inversion) on R1 and R2. We exploit

the obvious symmetry of the problem to reduce the number of cases; in

particular, the cases where R1 = R2 (at top level) are trivial and will not be

discussed.

Base Case. If D(M) = 1, M is either a canonical element or a variable

of some atomic type A. In both cases it is in normal form, so the case is

vacuous.

Inductive Case We suppose the statement holds for all terms N such that

D(N) < D(M) and prove it for M .

- Subcase R1 is a β − rule. In this case, M must be of the form (λx :

σ.P ) Q. and

(λx :σ.P ) Q
β−→ P [Q/x]

R2 is either inside (λx :σ.P ) or inside Q; in the former case, it is either a

µ rule or it is internal to P . We consider the previous three possibilities:

• R2 is a µ-rule. Since M is well typed (this is the only case where this

hypothesis is used) Q has type σ. By the strong normalisation property

it must have a normal form, and by the subject reduction property, this

must be a canonical element aj ∈ C(σ). Then, by Lemma 2.2.2.(2)

P [Q/x]
∗−→ P [aj/x]
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Now, by the µ-redex we have that:

(λx :σ.P ) Q
µ−→ 〈P [ai/x]〉σQ

Since Q
∗−→ aj we have:

〈P [ai/x]〉σQ
∗−→ 〈P [ai/x]〉σ aj

Applying the ι-rule we get:

〈P [ai/x]〉A aj
ι−→ P [aj/x]

Summing up:

λx :σ.P Q
β

xxqqqqqqqqqqq
µ

''PPPPPPPPPPPP

P [Q/x]

∗
��

〈P [ai/x]〉σQ
∗

��
P [aj/x] 〈P [ai/x]〉σajιoo

• R2 : P −→ P ′, so that

(λx :σ.P ) Q −→ (λx :σ.P ′) Q.

By Lemma 2.2.2.(1)

P [Q/x]
∗−→ P ′[Q/x]

and by β-reduction:

(λx :σ.P ′) Q −→ P ′[Q/x].

Summing up:

λx :σ.P Q
β

xxqqqqqqqqqq

''OOOOOOOOOOO

P [Q/x]
∗

&&MMMMMMMMMM
λx :σ.P ′ Q

β

wwooooooooooo

P ′[Q/x]
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• R2 : Q −→ Q′, so that

(λx :σ.P ) Q −→ (λx : σ.P ) Q′.

By Lemma 2.2.2.(2)

P [Q/x]
∗−→ P [Q′/x]

and by β-reduction:

(λx :σ.P ) Q −→ P [Q′/x]

Summing up:

λx :σ.P Q
β

xxqqqqqqqqqq

''OOOOOOOOOOO

P [Q/x]
∗

&&MMMMMMMMMM
λx :σ.P Q′

β

wwooooooooooo

P [Q′/x]

- Subcase R1 is µ-rule, that is

λx :σ.P
µ−→ 〈P [ai/x]〉σ

for ai ∈ C(σ). The only not trivial case is when R2 is λ-rule, that is

λx :σ.P −→ λx :σ.P ′

due to some redex P
r−→ P ′.

Since P −→ P ′, by Lemma 2.2.2.(1) we have:

〈P [ai/x]〉ai∈A
∗−→ 〈P ′[ai/x]〉σ

On the other side, by memoization:

λx :σ.P ′
µ−→ 〈P ′[ai/x]〉σ.
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In a diagram:

λx :σ.P
µ

wwnnnnnnnnnnnn
r

''OOOOOOOOOOOO

〈P [ai/x]〉σ
∗

''OOOOOOOOOOO λx :σ.P ′

µ

xxppppppppppp

〈P ′[ai/x]〉σ

- Subcase R1 is a ι-rule. In this case, M must be of the form: 〈Pa〉σ aj
with aj ∈ σ. R2 must eventually occur inside some component of the

vector, that is 〈Pa〉σ = 〈v1, Pai , v2〉σ, where Pai → P ′ai , so that

〈v1, Pai , v2〉σ → 〈v1, P ′ai , v2〉σ

We have two possibilities:

- i 6= j. In this case 〈v1, P ′ai , v2〉σ aj
ι−→ Paj .

- i = j. Then 〈v1, P ′ai , v2〉σ aj
ι−→ P ′aj . Since Paj reduces to P ′aj we

have done.

In a diagram (latter case):

〈Pa〉Aaj
ι

{{vvvvvvvvv

%%KKKKKKKKKK

Paj
∗

##GGGGGGGGG
〈Pa〉′Aaj

ι

yysssssssssss

P ′aj

- Subcase R1 is a @l-rule, that is P
r−→ P ′ for some redex r. Omitting

symmetric cases and considering that M = P Q is an application, R2

may only be a @l-rule or a @r-rule.

• In the fist case, P Q −→ P ′′Q, due to some redex P
s−→ P ′′. Since

D(P ) < D(P Q) we may apply the inductive hypothesis to conclude
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that there exists a term P ′′′ such that P ′
∗−→ P ′′′ and P ′′

∗−→ P ′′′. Then,

by Lemma 2.2.3.(1) we can close the following diagram.

P Q
r

zzvvv
vv

vv
vv s

$$IIIIIIIII

P ′ Q
s

$$HH
HH

HH
HH

H
P ′′ Q

r

zzuuuuuuuuu

P ′′′ Q

• In the second case, P Q
r−→ P Q′ due to some redex Q

s−→ Q′. Then

we can reduce s in P ′ Q and r in P Q′ obtaining P ′ Q′ which close the

diagram.

P Q
r

{{vvv
vv

vv
vv s

##HH
HH

HH
HH

H

P ′ Q
s

##HH
HH

HH
HH

H
P Q′

r

{{vvv
vv

vv
vv

P ′ Q′

- Subcase R1 is a @r-rule, that is Q
r−→ Q′ for some redex r. This case

is analogous to the previous one.

- Subcase R1 is λ-rule, that is

λx :σ.P
λ−→ λx :σ.P ′

due to some redex P
r−→ P ′. The only possibility not explored yet (up

to symmetries) is that R2 is itself a λ-rule, that is

λx :σ.P
λ−→ λx :σ.P ′′

due to some redex P
s−→ P ′′. This is precisely the case discussed in the

introduction of this section, so we avoid to repeat the proof.

- Subcase R1 is v-rule. In this case: M ≡ 〈Pai〉ai∈A, and R2 must

be a v-rule as well: that is, both redexes occur inside some compo-

nent of the vector. If both reductions are relative to the same compo-

nent Pai we must use the induction hypothesis for Pai , together with
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Lemma 2.2.3.(4).

If we have a redex Pai
r−→ P ′ai and another redex Paj

s−→ P ′aj . with i 6= j,

the two redexes are disjoint and we close the diagram in the obvious

way, by firing the other redex.
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Chapter 4

Complexity

4.1 Informal discussion

In this chapter, we provide some complexity bounds for the reduction of

terms of the finite lambda calculus, in terms of their type. We first prove

that we can reduce rank-2 terms in polynomial time and rank-3 terms in

polynomial space. Next, we generalize the statement for higher ranks.

However, in the general case, we won’t proof directly the bound on terms

of rank 2n+ 2 (resp. 2n+ 3), but we first lower the rank to 2n+ 2 (2n+ 3)

by means of the LR transformation, introduced in the following sections

together with definition of rank and level and the reduction strategy.

Our analysis essentially follows the approach in [12], that was in turn

inspired by [25].

We shall use the notation expn(p) for a tower of exponential of height n,

that is, formally:

- exp0(p) = p

- expn+1(p) = 2expn(p)

33
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First of all let us give with an informal description of the reduction strat-

egy, together with an example that will help to understand its motivations.

What we call k-strategy is a balance between eager and lazy evaluation.

Now, the memoization mechanism is intended to pre-calculate a function f

for all its arguments. We can do it as we work with finite types and the

complexity of this operation is bounded by the complexity of the function

f times the cardinality of its type. Let us show an example of how exploit

memoization to speed-up the computation.

Let n be a fixed natural number and n the corresponding λ-term according

to the Church encoding. We define M ◦N ≡ λz.M (N z) with z fresh. (Terui

uses these terms as a base to encode turing machines in [27].) If we reduce

weakly the term (n ◦ 2) f , we will get n iteration of 2 f , and eventually 2n

application of f . So if tf is the complexity of f , the overall complexity of

the computation over an input x will be bounded by tf (|x|)2
n
. But if we

perform memoization of 2 f , as we said above, we obtain a complexity that

is bounded by the cardinality of the type of f times the complexity of f . The

iteration of this operation will result in a polynomial complexity.

It is worth to note that in this case the number n is fixed. We could

not define an iteration depending on n; however, simply adding recursion we

gain this possibility. See [4] for an analogous example with an iterator term.

Moreover, lacking recursion, we cannot encode turing machine with a single

term. Indeed, in Terui’s work [27], a turing machine with bounded resources

is encoded with a family of terms, one term for each input length.

We have seen how memoization may help us to speed-up the computation.

However, we must carefully use µ-rule, as if we start to perform memoization

on higher order functions, the complexity may grow very fast.

Let us consider, for a base type o, the terms

True ≡ λx, y.x : (o→ o→ o)

False ≡ λx, y.y : (o→ o→ o)

which are the usual terms encoding booleans in simply-typed λ-calculus.
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Now, if we consider the finite set B = {0, 1}, we can obtain terms of our

finite λ-calculus instantiating the type o to the set B. (We will come back

on this kind of terms in section 4.6, where are provided formal definitions).

Now we can reduce λx, y.x with our rules, especially memoization:

λx, y.x
µ−→ λx.〈x, x〉 µ−→ 〈〈0, 0〉, 〈1, 1〉〉

In a similar way we can reduce False to 〈〈0, 1〉, 〈0, 1〉〉. True and False are

terms of level 1, but if we start to work with boolean operators the level and

the rank raise.

For example, if we reduce by memoization the rank-2-term

λp, q.p q p

which encodes the AND operator, we will get:

〈
〈(〈〈0, 1〉, 〈0, 1〉〉)(〈〈0, 1〉, 〈0, 1〉〉)(〈〈0, 1〉, 〈0, 1〉〉),

(〈〈0, 1〉, 〈0, 1〉〉)(〈〈0, 0〉, 〈1, 1〉〉)(〈〈0, 1〉, 〈0, 1〉〉)〉,
〈(〈〈0, 0〉, 〈1, 1〉〉)(〈〈0, 1〉, 〈0, 1〉〉)(〈〈0, 0〉, 〈1, 1〉〉),

(〈〈0, 0〉, 〈1, 1〉〉)(〈〈0, 0〉, 〈1, 1〉〉)(〈〈0, 0〉, 〈1, 1〉〉)〉
〉

Which suggest us that memoization of higher order argument may not

be a good idea! If we had an higher order functional with the term AND as

argument, reducing it call by value would force us to cope with the duplica-

tion of such a huge term, but lazy evaluation avoid this kind of explosion of

the argument.

The last two examples should had cleared the reason why we need to mix

up lazy and eager evaluation. In a more general view, consider a rank n+3

term applied to a term of level n+1. This term should be reduced eagerly: in

this way we avoid duplication of redexes in the argument, propagating only a

value trough the term. Even if the argument is reduced by memoization his

complexity stays in the required bounds (a tower of exponential of height n).
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But if the argument has level greater than n+1, memoizing it will break the

complexity bound: this is the reason behind lazy evaluation of higher order

arguments.

A similar reason lies behind the lowering of the rank, that allow to work

with a rank-(n + 2)-term; such a term can have argument of level at most

n + 1; so our k-strategy is an eager strategy and evaluates a term in the

required bounds. If we had a rank-(2n + 2)-term, we would have to work

with argument of level at most 2n+1 that, reduced lazily, would be evaluated

in an unknown context in a way that make difficult to keep track of reductions

above level n+ 1.

Thus, as lowering the rank does not break the complexity bounds (we

prove it in section 4.4.3), we use it to work with rank-(n+ 2)-terms.

In the rest of the discussion, we shall use capital letters T, U, V, . . . to

range over types, reserving greek letters for substitutions.

4.2 Preliminaries

We need some definitions about finite lambda terms (level, rank, size,

depth) that will be used for expressing our complexity bounds.

Definition 4.2.1. (Level and Rank) The level `(T ) of a type T is defined in

the following way:

• `(A) = 0 if A is atomic

• `(T1 → T2) = max{`(T1) + 1, `(T2)}

A term M : T is of level `(M) = n if `(T ) = n.

A term M is of rank n if all its subterms are of level ≤ n.

Definition 4.2.2. (Size)

The size |M | of a term M is defined as follows (where c is an arbitrary

constant):

- |x| = |c| = 1;
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- |(M N)| = |M |+ |N |+ 1;

- |λx :T.M | = |M |+ 1;

- |〈Ma〉T | =
∑

a∈C(T ) |Ma|

Note that size and dimension (cfr. Definition 3.3.1) coincide on canonical

elements.

Definition 4.2.3. (Depth)

The depth Dp(M) of a term M is defined as follows (where c is an arbitrary

constant):

- Dp(x) = Dp(c) = 1;

- Dp(M N) = max{Dp(M), Dp(N)}+ 1;

- Dp(λx :T.M) = Dp(M) + 1;

- Dp(〈Ma〉T ) = max a∈C(T )Dp(Ma) + 1

Definition 4.2.4. (maxarg) Given a term M , we define the maximal dimen-

sion of arguments in M at level n:

MaxargM,n = max{D(σ) | σ is the type of a subterm

of M and `(σ) ≤ n }

If t :σ → τ is a subterm of M , and `(σ) ≤ n then

MaxargM,n ≥ D(σ → τ) = ‖σ‖ × D(τ) ≥ ‖σ‖

Moreover, if C is the maximal cardinality of atomic types, then MaxargM,n+1 ≤
expn(pM(C)) for a suitable polynomial pM .

4.3 Complexity measures

We assume that the cost in time of each reduction rule is bound by the

size of the terms involved in it:
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Definition 4.3.1. (redex cost) Let r = M → N be single step reduction.

Then, Time(r) = max{|M |, |N |}.

Definition 4.3.2. (Time and Space) Let M be closed term and let ρ : M
∗→

M ′ be a normalizing reduction sequence; then

• Time(ρ) is the sum of Time(r) for each redex r in ρ;

• Space(ρ) is the maximal dimension of terms along ρ.

4.4 Reduction strategy

The reduction strategy is composed of two phases. In a first phase we

reduce the rank of a term from level 2n+2 (2n+3) to level n+2 (resp. n+3).

Then we apply, for k = n + 1 a k-strategy, that is a strategy that reduces

lazily arguments of degree > k and eagerly those with degree ≤ k (see 4.4.4

below for the precise definition). Note that applying a n + 1-strategy to a

term of rank n+2 and level ≤ n+1 means that all arguments will be reduced

eagerly.

Definition 4.4.1. (rank lowering)

We define the following function LRn+1:

- LRn+1(x) = x;

- LRn+1(λx :T.M) = λx :A.LRn+1(M);

- LRn+1(〈Ma〉T ) = 〈LRn+1(Ma)〉T

- LRn+1((M N)) = M ′[LRn+1(N)/x]

if LRn+1(M) = λx.M ′ and M has level ≥ n+ 1

- LRn+1((M N)) = LRn+1(M) LRn+1(N) otherwise

First we state three facts which can easily proved by structural induction

on the term.
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Fact 4.4.2. Let M be a term, we have that:

Dp(M) ≤ |M |

Dp([M/N ]) ≤ Dp(M) +Dp(N)

|[M/N ]| ≤ |M | · |N |

These facts are useful to prove the following:

Proposition 4.4.3. Let M be a term of rank n+1, without variables of level

n+ 1. Then:

1. |LRn+1(M)| ≤ 2|M |

2. Dp(LRn+1(M)) ≤ |M |

3. LRn+1 M does not contain subterms of the form P Q with `(P ) = n+1

4. if `(M) ≤ n, then rank(LRn+1(M)) = n

Proof. (Property 1) We proceed by structural induction on the term M .

- The term is of the form P Q. We have two subcases, by the definition

of LR.

• In the first case `(P ) ≥ n + 1 and LR(P ) = λx.P ′. (From now we

omit the superscript n+ 1). By the definition of LR, we have:

|LR(P Q)| = |P ′[LR(Q)/x]|

Recalling that, for each M and N , |M [N/x]| ≤ |M | · |N |, we get:

|P ′[LR(Q)/x]|
≤ |P ′| · |LR(Q)|
≤ |P ′| · 2|Q| ≤ 2|P Q|

By induction hypothesis.

• In the second case LR(P ) 6= λx.P ′. By the definition of LR, we

have:

|LR(P Q)| = |LR(P ) LR(Q)|
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By definition of size and by induction hypothesis we have:

|LR(P ) LR(Q)| ≤ 1 + 2|P | + 2|Q|

and we get the claim by easy calculations.

- The term is of the form 〈Ma〉T . By definition of LR:

|LR(〈Ma〉T )| = |〈LR(Ma)〉T |

By definition, the size is: ∑
a∈C(T )

|LR(Ma)|

And by induction hypothesis we get:∑
a∈C(T )

2|Ma|

Doing the calculation we close the case.

- The term is of the form λx : T.P .

|LR(λx : T.P )|
= |λx : T.LR(P )|
≤ 1 + 2|P |

by induction hypothesis and by definition if size. Again, we close doing

the calculations.

- If the term is a variable the case is trivial.

Proof. (Property 2) We proceed by structural induction on the term M . The

proof is similar to the previous one.
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- The term is of the form P Q. We have two subcases.

• In the first case `(P ) ≥ n+ 1 and LR(P ) = λx.P ′. By the definition

of LR, we have:

Dp(LR(P Q)) = Dp(P ′[LR(Q)/x])

Recalling that, for each M and N , Dp(M [N/x]) ≤ Dp(M) + Dp(N),

we get:

Dp(P ′[LR(Q)/x])

≤ Dp(P ′) +Dp(LR(Q)) ≤ Dp(P ′) + |Q|

By induction hypothesis. So, recalling that Dp(P ′) ≤ |P ′|, we get the

claim.

• In the second case LR(P ) 6= λx.P ′. By the definition of LR, we

have:

Dp(LR(P Q)) = Dp(LR(P ) LR(Q))

By definition of depth and by induction hypothesis we have:

Dp(LR(P ) LR(Q)) ≤ 1 + max{|P |, |Q|}

we have done.

- The term is of the form 〈Ma〉T . By definition of LR:

Dp(LR(〈Ma〉T )) = Dp(〈LR(Ma)〉T )

By definition, the depth is:

max a∈C(T )Dp(LR(Ma)) + 1

And by induction hypothesis we get:

max a∈C(T )|Ma|+ 1

Doing the calculation we close the case.
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- The term is of the form λx : T.P .

Dp(LR(λx : T.P ))

= Dp(λx : T.LR(P ))

≤ 1 + |P |

by induction hypothesis and by definition of depth. Again, we close

doing the calculations.

- If the term is a variable the case is trivial.

Proof. (Property 3) The proof is by induction on the structure of M .

- The term is of the form P Q. We have two subcases.

• In the first case `(P ) ≥ n+ 1 and LR(P ) = λx.P ′. By the definition

of LR, we have:

LR(P Q) = P ′[LR(Q)/x]

By induction hypothesis we know that neither λx.P ′, nor LR(Q) con-

tain subterms of the form M N with `(M) = n+ 1. From this we can

conclude that the term:

LR(P Q) = P ′[LR(Q)/x]

does not contain subterms of the form M N with `(M) = n+ 1.

• If LR(P ) 6= λx.P ′ we have that:

LR(P Q) = LR(P ) LR(Q)

The claim follows immediately from induction hypothesis.

- The term is of the form 〈Ma〉T . By definition of LR:

LR(〈Ma〉T ) = 〈LR(Ma)〉T

By induction hypothesis no one of the components of the vector has

subterms of the form M N with `(M) = n + 1. So the whole term

cannot have such subterms.
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- The term is of the form λx : T.P .

LR(λx : T.P ) = λx : T.LR(P )

We close the case easily by induction hypothesis.

- If the term is a variable the case is vacuous.

Proof. (Property 4) The proof is by induction on the structure of M .

- The term is of the form P Q. We have two subcases.

• In the first case `(P ) ≥ n+ 1 and LR(P ) = λx.P ′. By the definition

of LR, we have:

LR(P Q) = P ′[LR(Q)/x]

By hypothesis we know that rank(P Q) = n+1, so `(P ) ≤ n+1 and as

in this case `(P ) ≥ n+1 we must have that `(P ) = n+1. Even the rank

of P is ≤ n+ 1 and as LR does not increase the rank, LR(P ) = λx.P ′

must have rank ≤ n+ 1 . So P ′ cannot contain subterms of level n+ 1.

We must have that `(Q) ≤ n and rank(Q) ≤ n + 1 we can apply the

induction hypothesis obtaining that LR(Q) has rank n. So, the term

LR(P Q) = P ′[LR(Q)/x]

can only contain subterms of level ≤ n, that is, has rank n.

• We fall in this case if LR(P ) 6= λx.P ′ or P has level < n+ 1 and we

have that:

LR(P Q) = LR(P ) LR(Q)

In the former case we know that LR(P ) 6= λx.P ′ and, by hypothesis,

that `(P Q) ≤ n. So, P can have level n+1 only if is of the form λx.P ′.

But this is not the case, so `(P ) ≤ n. Then we can apply the induction

hypothesis to P . Applying the induction hypothesis to Q (which has

level < n) we get the claim.
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In the latter case we have that `(P ) ≤ n and rank(P ) ≤ n + 1. We

can thus apply the induction hypothesis to P . Again, applying the

induction hypothesis to Q too (which has level < n) we get the claim.

- The term is of the form 〈Ma〉T . By definition of LR:

LR(〈Ma〉T ) = 〈LR(Ma)〉T

As the term has rank n + 1 the single component cannot contain sub-

terms of level n + 1. So they all have level ≤ n and, by induction

hypothesis, rank(LR(Ma)) = n for each a ∈ C(T ). The the whole term

has rank n.

- The term is of the form λx : T.P .

LR(λx : T.P ) = λx : T.LR(P )

By hypothesis λx : T.P has rank n+ 1 and level ≤ n, so P must have

rank ≤ n and level < n. So we can apply induction hypothesis to P

and close the case.

- If the term is a variable, cannot have level n+ 1 by hypothesis. So has

trivially rank n.

We give an operational description of the k-strategy by means of a recur-

sive Evalk function, defined as follows:

Definition 4.4.4. (Eval) Let ~A be a list of terms either in normal form or
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of level > k.

Evalk(M N ~A) = let v := Evalk(N)

in Evalk(M v ~A)

if `(N) ≤ k

Evalk(λx :T.M N ~A) = Evalk(M [N/x] ~A)

if `(N) > k or N = v

Evalk(〈Ma〉σ ai ~A) = Evalk(Mai
~A)

Evalk(λx :T.M) = Evalk(〈M [ai/x]〉T )

Evalk(〈~v,N, ~P 〉τ ) = let v := Evalk(N)

in Evalk(〈~v, v, ~P 〉τ )

In most cases, Evalk is tail recursive (that means that there is no ad-

ditional space consumption due to recursion). The only exceptions are the

eager evaluation of arguments (occurring in some pending context) and the

evaluation of a vector component (occurring inside the vector). For the study

of space complexity, we shall count the maximal number of nested (not tail

recursive) calls of the Evalk function, together with the size of input argu-

ments. The actual space consumption is a polynomial of the product of the

size of the arguments and the number of nested calls.

4.5 Complexity Theorems

Here we finally prove the complexity bounds. We start proving that rank-

2 terms can be reduced in polynomial time, rank-3 terms in polynomial space.

Next, we prove the generalization both for time and space.

4.5.1 Applicative contexts and closing substitutions

We introduce now two notions that play an essential role in in the com-

plexity analysis.

Definition 4.5.1. (applicative context)

A context is a term with a (typed) hole C[ ]. An applicative context is a con-



46 4. Complexity

text of the kind ( A1 . . . An) with the hole in head position of the application.

It is k-normal if

1. its level is ≤ k and

2. any argument of level ≤ k is in normal form.

Definition 4.5.2. (Closing substitution)

Given a term M with FV (M) ⊆ {x1, . . . , xn} a closing substitution σ is a

substitution [ ~Mi/~xi] where all Mi are closed (hence Mσ is closed, too). We

say that the substitution is k-normal if any term Mi of level ≤ k is in normal

form.

Suppose to have a term M of rank ≤ k + 1, and free variables of level

≤ k. Then, all arguments in a closing substitution σ and in an applicative

context C[ ] have level ≤ k. So, if they are k − normal all arguments are in

normal form (and there is only a finite number of them).

4.5.2 Polynomial Bounds

In this section we shall prove that any rank-2 terms can be reduced in

polynomial time and rank-3 terms in polynomial space. The proof are almost

identical of those provided in [4] were the same problems are addressed for a

similar calculus extended with primitive recursion. However we include the

proofs for completeness.

Polynomial Time

Theorem 4.5.3. Let M be a term of rank at most 2, with free variables of

level at most 1. Let C be the maximum cardinality of sets in M . Then there

exist a polynomial pM such that

• for any 1-normal closing substitution σ,

• for any 1-normal applicative context C[ ],

Time(C[Mσ]) ≤ pM(C)
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Proof. Note that we can associate with M a polynomial q(x) such that for

all subterms M ′ of M and for any 1-normal closing substitution σ

|Mσ| ≤ q(C)

Such a polynomial q(x) will provide a bound to the cost of 1-step reductions

relative to subterms of M .

Let xiσ = Bi and C[ ] = A1 . . . An. All terms Bi, Aj have level ≤ 1, and

hence are in normal form.

The proof proceeds by induction on the structure of M .

• If M = xi, the level of xi must be either 0 or 1:

– if xi has level 0, the context must be empty, and xiσ = Bi is

already in normal form;

– if xi has level 1 then Bi has level 1 and A1 . . . An have level 0.

The term C[xiσ] = Bi A1 . . . An is hence a vector applied to some

selectors, and can be computed in a number of steps proportional

to the size of B;

• If M is a constant, the result is trivial;

• M is an application (P Q). Then

C[(P Q)σ] = C[(Pσ Qσ)]

We proceed by cases on the level of Q.

– If level(Q) = 0, the reduction starts normalizing Qσ to some value

v; by induction hypothesis we may assume that

Time(Qσ) ≤ pQ(C)

Then, the normalization proceeds with the reduction of C[Qσ v]);

the context C′[ ] = C[ v] is still a 1-normal context, so we can

apply the induction hypothesis for P , obtaining that

Time(C[Pσ v]) = Time(C′[Pσ] ≤ pP (C)
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Summing up

Time(C[Pσ Qσ])

≤ Time(Qσ) + Time(C[Pσ v])}
≤ pQ(C) + pP (C) = pM(C)

– If level of Q = 1, Qσ will reduce to a vector v by means of memo-

ization. The cost of memoization is bound by the sum of C′[Qσ]

for all closing 1-normal substitutions C′[ ], whose number is bound

by some polynomial p(C). So we have:

Time(C[Pσ Qσ])

≤ Time(Qσ) + Time(C[Pσ v])}
≤ p(C) · pQ(C) + pP (C) = pM(C)

• M is a vector 〈Ma〉A. Then, C[〈Ma〉Aσ] = C′[〈Ma〉Aσ ai] that reduces

to C′[Maiσ ai]. We use the inductive hypothesis for Mai .

• M is an abstraction λx.P . Let C[(λx.P )σ] = C′[(λx.P )σ A1]. The

evaluation proceeds reducing the β-redex:

C′[(λx.P )σ A1 → C′[P (σ[x := A1])]

The cost of this step is bound by q(C).

Co′[ ] and σ′ = σ[x := A1] are still 1-normal, so we can apply the

induction hypothesis to P concluding that there exists a polynomial

pP (x) such that

Time(C′[P (σ[x := A1])]) ≤ pP (C)

Hence,

Time(C′[(λx.P )σ A1]) ≤ q(C) + Pp(C)
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Polynomial Space

We want to prove that any term and rank at most 3 can be reduced to

the normal form in polynomial space.

As anticipated in the discussion at the beginning of the chapter,in this

case, an eager strategy would not work, since the memoization of a rank-2

function would require exponential space. So, we consider a 2-strategy: we

reduce eagerly arguments of level ≤ 1 but lazily arguments of level 2.

Since arguments of level 2 are treated lazily, we need to take into account

their space complexity in the inductive statement. We do not know in which

context they will be evaluated, but for the fact that it will be 2-normal.

Definition 4.5.4.

for any term M of level 2 with free variables of level ≤ 1 we define Ŝpace(M)

as the maximum among Space(C[Mσ]) for any (2-)normal substitution σ and

any (2-)normal applicative context C[ ].

Let us observe that, since M is of level 2 and only contains variables of

type ≤ 1, all arguments in σ and C are of level ≤ 1, and hence 2-normal is

the same as normal. The notion is well defined since we only have a finite

number of normal substitutions and applicative contexts.

Theorem 4.5.5. Let M be a term of rank at most 3, with free variables of

level at most 2. Let C be the maximum cardinality of sets in M . Then there

exist a polynomial pM such that the following statement is true:

• let σ be an arbitrary 2-normal closing substitution,

• let C[ ] be an arbitrary 2-normal applicative context,

• let m, l ≥ 1 be two constants such that for all terms U of level 2 in σ

or C[ ]

m ≥ Ŝpace(U) and l ≥ |U |

• then

Space(C[Mσ]) ≤ pM(C) · l +m
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Corollary 4.5.6. Let M be a closed term of rank at most 3. Let C be the

maximum cardinality of sets in M . Then there exist a polynomial pM such

Space(M) ≤ pM(C)

Proof of Theorem 4.5.5

The proof is by induction on the structure of M .

• If M = xi, the level of xi must be ≤ 2.

Suppose xiσ = Bi and C[ ] = A1 . . . An. We proceed by cases on the

level of xi:

– if xi has level 0, the context must be empty, and xiσ = Bi is

already in normal form;

– if xi has level 1 then Bi has level 1 and A1 . . . An have level 0, so

they are all in normal form by definition of 2-normality. C[xiσ] =

Bi A1 . . . An is hence a vector applied to some selectors, and get

normalized by a sequence of σ-rules;

– if xi has level 2, then C[xiσ] = C[B] and

Space(C[B]) ≤ Ŝpace(B) ≤ m

• If M is a constant, the result is trivial;

• M is an application (P Q). Then

C[(P Q)σ] = C[(Pσ Qσ)]

We proceed by cases on the level of Q.

– If level(Q) = 0, the reduction starts normalizing Qσ to some value

v (while the context is pending); by induction hypothesis we may

assume that

Space(Qσ) ≤ pQ(C) · l +m
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Then, the normalization proceeds with the reduction of C[Qσ v]);

the context C′[ ] = C[ v] is still a 2-normal context, so we can

apply the induction hypothesis for P , and assume that

Space(C[Pσ v]) = Space(C′[Pσ] ≤ pP (C) · l +m

Summing up

Space(C[Pσ Qσ])

≤ max{|C[Pσ Q]|+ Space(Qσ), Space(C[Pσ v])}
≤ max{q(C) · l + pQ(C) · l +m, pP (C) · l +m}
≤ pM(C) · l +m

for a suitable polynomial pm(x).

– If level of Q = 1 the situation is similar to the previous one. Sup-

pose that Q has type A → B where both A and B are atomic;

the only difference is that the normalization of Qσ to a vector v

will require the computation of (Qσ ai) for all possible canoni-

cal elements of ai ∈ A. By induction hypothesis, there exists a

polynomial pQ(x) such that for any ai

Space(Qσ ai) ≤ pQ(C) · l +m

and so the computation of v can be done in polynomial space too.

– Suppose level(Q) = 2; in this case, Qσ is not reduced but is passed

by name to Pσ. The induction hypothesis for Q implies that, for a

suitable polynomial pQ, and any applicative context C′[ ] (whose

arguments must eventually be of level 0)

Space(C′[Qσ]) ≤ pQ(C) · l +m

that is equivalent to say that

Ŝpace(Qσ) ≤ pQ(C) · l +m

Moreover,

|Qσ| ≤ q(C) · L
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Hence, the context C′′[ ] = C[( Qσ)], the new size bound l′ =

q(C) · l and the new space bound m′ = pQ(C) · l + m satisfy

the hypothesis of the inductive statement for P . Applying it, we

obtain

Space(C[(Pσ Qσ)])

≤ pP (C) · (q(C) · l) + pQ(C) · l +m

≤ pM(C) · l +m

for a suitable polynomial pM(x).

• M is an abstraction λx.P . Let C[(λx.P )σ] = C′[(λx.P )σ A1]. The

evaluation proceeds reducing the β-redex:

C′[(λx.P )σ A1 → C′[P (σ[x := A1])]

Co′[ ] and σ′ = σ[x := A1] are still 2-normal, so we can apply the

induction hypothesis to P concluding that there exists a polynomial

pP (x) such that

Space(C′[P (σ[x := A1])]) ≤ pP (C) · l +m

Hence,

Space(C′[(λx.P )σ A1])

= max{|C′[(λx.P )σ A1]|, Space(C′[Pσ[x := A1])}
≤ pM(C) · l +m

for a suitable polynomial PM(x).

• M is a vector 〈Ma〉A. Then, C[〈Ma〉Aσ] = C′[〈Ma〉Aσ ai] that reduces

to C′[Maiσ ai]. We use the inductive hypothesis for Mai .
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4.5.3 Higher ranks

In this section we generalize the previous results to higher ranks. As

explained in the introduction to the chapter, the strategy is different, as we

use an auxiliary transformation to lower the rank of the terms.

Time

In this section we prove that any rank-(2n+ 2) term of level ≤ n+ 1, can

be normalized in time O(expn(p)) for some polynomial p.

First we prove an upper-bound on reduction time for a generic term of

rank-(n+2). The main result follows as a corollary, thanks to rank lowering.

Theorem 4.5.7. Let M be a term of rank at most n+ 2, with free variable

of level at most n+ 1. Let MaxargM = MaxargM,n+1. Then

- for any n+ 1-normal closing substitution σ,

- for any n+ 1-normal applicative context C[ ],

Time(C[Mσ]) ≤ |M | ·Maxarg
Dp(M)
M

Proof. Note that since the context is n+ 1-normal, `(C[Mσ]) ≤ n+ 1, so, if

`(M) = n+ 2, then C[ ] contains at least one argument.

The proof proceeds by induction on the structure of M ; we use a n + 1-

strategy (that is, an eager strategy, in this case).

- M = xi : T . Suppose xiσ = Bi and C[ ] = A1 . . . An. As the level of

xi is at most n+ 1, `(Bi) ≤ n+ 1 and hence for each Ai, `(Ai) < n+ 1.

So, all the terms in C[xiσ] = Bi A1 . . . An are in normal form, and the

term reduces in a sequence of ι-steps, bound by MaxargM .

- M is an application (P Q). Then

C[(P Q)σ] = C[(Pσ Qσ)]
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Q must be of level ≤ n + 1 so, due to the n + 1-strategy, it will be

normalized first in an empty context, resulting in some value v. By

induction hypothesis we have:

Time(Qσ) ≤ |Q| ·MaxargDp(Q)

Then the reduction proceeds with reducing P in the context C[ v] that

is still n+2-normal, hence by induction hypothesis we get:

Time(C[Pσ v]) ≤ |P | ·MaxargDp(P )

Summing up,

Time(C[(Pσ Qσ)])

≤ Time(Qσ) + Time(C[Pσ v])

≤ |Q| ·MaxargDp(Q) + |P | ·MaxargDp(P )

≤ (|P |+ |Q|) ·Maxarg1+max{Dp(P ),Dp(Q)}

≤ |P Q| ·MaxargDp(PQ).

- M is an abstraction λx : T.P . There are two subcases: either the

context is empty or not.

If the context is empty, then `(M) ≤ n + 1. The evaluation proceeds

by memoization, computing for each a ∈ C(T ), the component Pσ[a/x]

in an empty context. The substitution σ′ = σ[a/x] is still a closing

substitution, so by induction hypothesis,

Time(Pσ[a/x]) ≤ |P | ·Maxarg
Dp(P )
P

and hence

Time((λx : T.P )σ)

≤ ‖T‖ · |P | ·Maxarg
Dp(P )
P

≤ |P | ·Maxargλx:T.Pσ ·Maxarg
Dp(P )
P

≤ |M | ·Maxarg
Dp(M)
M

If the context is not empty, let

C[(λx :T.P )σ] = C′[(λx :T.P )σ a]
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The evaluation proceeds reducing the β-redex:

C′[(λx :T.P )σ a]→ C′[P (σ[a/x])]

The time required by the β-redex is ≤ |M | ·MaxargM . Moreover, C′[ ]

and σ′ = σ[a/x] are n+ 1 normal. So by the induction hypothesis:

Time(C′[Pσ′]) ≤ |P | ·Maxarg
Dp(P )
P

Then, the total time is given by:

Time(C[(λx :T.P )σ])

≤ |M | ·MaxargM + Time(C′[Pσ′])

≤ |M | ·MaxargM + |P | ·Maxarg
Dp(P )
P

≤ |M | · (MaxargM ·Maxarg
Dp(P )
M )

≤ |M | ·Maxarg
Dp(M)
M

- M is a vector 〈Pai〉T where ai ∈ C(T ). Again, either the context is

empty or not.

In the first case, `(M) ≤ n+1. To reduce M to a normal form, we have

to normalize (in an empty context) every component of the vector. For

each Paiσ we can apply the induction hypothesis:

Time(Paiσ) ≤ |Pai | ·Maxarg
Dp(Pai )

Pai

So the total time needed to compute M is:

Time(〈Pai〉T )

≤
∑

ai∈C(T )(|Pai | ·Maxarg
Dp(Pai )

Pai
)

≤ (
∑

ai∈C(T ) |Pai |) ·Maxarg
Dp(M)
M

≤ |M | ·Maxarg
Dp(M)
M

If the context is not empty, let

C[〈Pai〉Tσ] = C′[〈Pai〉Tσ a]
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By the ι-rule we have:

C′[〈Pai〉Tσ a]→ C′[Paσ]

This step is bounded by: ‖T‖ ≤ MaxargM . By the induction hypothesis

for Paσ we have:

Time(Pa σ) ≤ |Pa| ·Maxarg
Dp(Pa)
Pa

So

Time(Mσ)

≤ MaxargM + Time(Paσ)

≤ MaxargM + |Pa| ·Maxarg
Dp(Pa)
Pa

≤ |M | ·Maxarg
Dp(M)
M

Corollary 4.5.8. Let M be a term of level ≤ n+ 1, rank ≤ 2n+ 2 with free

variables of level ≤ n+ 1. Let C be the maximal cardinality of atomic types.

Then, for some polynomial p:

Time(M) ≤ expn(p(C))

Proof. Iterating n time LR over the term M of rank 2n+2 and level ≤ n+1,

we obtain a term M ′ of rank n+ 2:

M ′ = LRn+3(. . .LR2n+2(M))

By properties 1) and 2) in 4.4.3, M ′ can be computed in time expn(r(C)) for

a suitable polynomial r where moreover |M ′| ≤ expn(r(C)) and Dp(M) ≤
expn−1(r(C)). By Theorem 4.5.7, M ′ can be normalized in time

|M ′| ·Maxarg
Dp(M ′)
M ′ ≤ expn(r(C)) ·Maxarg

expn−1(r(C))
M ′

and since MaxargM ′ ≤ expn(q) the claim follows by easy computations.
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Space

Again, we first prove an upper-bound on reduction space of a generic

rank-(n + 3)-term of level ≤ n + 2. As we anticipated, we split the proof

in two steps: first we provide an upper bound to the number Ncalls(M)

of nested (not tail-recursive) calls to the Eval during the computation of

Eval(M); next we give an upper bound Asize(M) to the size of the input

arguments of all recursive call to Eval .

As we treat lazily arguments of level n + 2, we do not know in which

context they will be evaluated, that motivates the following definition:

Definition 4.5.9. for any term M of level n+ 2 with free variables of level

≤ n+ 1 we define

N̂calls(M) (resp. Âsize(M))

as the maximum among Ncalls(C[Mσ]) (resp. Asize(C[Mσ])) for any (n+1)-normal

substitution σ and any (n+1)-normal applicative context C[ ].

Theorem 4.5.10. Let M be a term of rank ≤ n + 3, with free variables of

level ≤ n+ 2.

- for any n+1-normal closing substitution σ,

- for any n+1-normal applicative context C[ ],

- let l, k,m ≥ 1 be three constants such that for all terms U of level n+ 2

in σ or C[ ]

l ≥ |U |,MaxargM k ≥ N̂calls(U) m ≥ Âsize(U)

then

Ncalls(C[Mσ]) ≤ |M |Dp(M) + k

Asize(C[Mσ]) ≤ max{l · |M |Dp(M),m}
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Proof. The proof is an induction on the structure of M .

We start proving the bound on nested calls (the two proofs are not mutually

recursive).

- M = xi : T .

Suppose xiσ = Bi and C[ ] = A1 . . . An. The level of xi is at most

n+2. We distinguish two cases:

- The level of xi is at most n+1. In this case, all terms in C[xiσ] =

Bi A1 . . . An are in normal form and the term normalizes via a

sequence of ι-steps. We have no recursive calls.

– If the level of xi is n+ 2, then C[xiσ] = C[B] and

Ncalls(C[B]) ≤ N̂calls(M) ≤ k.

- M = (P Q). Then

C[(P Q)σ] = C[(Pσ Qσ)].

We proceed by cases on the level of Q.

- If Level(Q) ≤ n + 1, the strategy starts reducing, in an empty

context, Q to a value v. By the induction hypothesis for Q:

Ncalls(Qσ) ≤ |Q|Dp(Q) + k

Now, the context C′[ ] = C[ v] is still n + 2 normal, so we can

apply the induction hypothesis to P :

Ncalls(C′[Pσ]) ≤ |P |Dp(P ) + k

The total number of nested calls is given by:

Ncalls(C[P Q]σ)

≤ max{1 + Ncalls(Qσ),Ncalls(C′[Pσ])}
≤ max{1 + |Q|Dp(Q) + k, |P |Dp(P ) + k}
≤ |M |Dp(M) + k
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- Level(Q) = n+ 2. The strategy acts lazily. By induction hypoth-

esis it holds that, for each (n+1-normal) context C′[ ]:

Ncalls(C′[Qσ]) ≤ |Q|Dp(Q) + k

that is to say,

N̂calls(Q) ≤ |Q|Dp(Q) + k

The new context C′′[ ] = C[ Qσ] and the constant k′ = |Q|Dp(Q)+

k satisfy the induction hypothesis for P . So we have that:

Ncalls(C[(P Q)σ]) = Ncalls(C′′[Pσ])

≤ |P |Dp(P ) + k′

≤ |P |Dp(P ) + |Q|Dp(Q) + k

≤ |M |Dp(M) + k

- M = (λx :T.P ). We have two cases as in the time case.

- The context is empty: the term reduces by the µ-rule

C[(λx :T.P )σ]→ C[〈P (σ[a/x])〉T ]

The substitution σ′ = σ[a/x] is still n + 1-normal, hence we can

apply the induction hypothesis for P :

Ncalls(C[Pσ′]) ≤ |P |Dp(P ) + k

The total number of nested calls is:

Ncalls(C[Mσ])

≤ maxa∈C(T ) Ncalls(C[Pσ′])

≤ |P |Dp(P ) + k

≤ |M |Dp(M) + k

- If the context is not empty, let

C′[(λx :T.P )σ] = C[(λx :T.P )σ a]
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Applying the β-rule we get:

C[(λx :T.P )σ a]→ C[P (σ[a/x])]

Applying the induction hypothesis to C[P (σ[a/x])]:

Ncalls(C′[Pσ′]) ≤ |P |Dp(P ) + k

Hence we have:

Ncalls(C[Mσ]) ≤ Ncalls(C′[Pσ′])

≤ |P |Dp(P ) + k ≤ |M |Dp(M) + k

- M is a vector 〈Pa〉T , where Pa is indexed over a ∈ C(T ). Again we have

to distinguish two cases. If the context C[ ] is empty, we normalize the

term by normalizing, in an empty context, the single components. We

can apply the induction hypothesis for the single components:

Ncalls(Paσ) ≤ (|Pa|)Dp(Pa) + k

We have:
Ncalls(C[Mσ])

≤ 1 + maxa∈C(T ) Ncalls(C[Pσ′])

≤ 1 + |Pa|Dp(Pa) + k

≤ |M |Dp(M) + k

If the context is not empty, let C′[ ] = C[ ai] the ι-rule is triggered

C[〈Pa〉T σ ai]→ C[Paiσ]

By the induction hypothesis for Pai ,

Ncalls(C[Paiσ]) ≤ |Pai |Dp(Pai ) + k

Then we get

Ncalls(C[Mσ]) ≤
|Pai |Dp(Pai ) + k ≤ |M |Dp(M) + k
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Now we prove the bound for the size of the arguments.

- M = xi : T .

Suppose xiσ = Bi and C[ ] = A1 . . . An. The level of xi is at most

n+2. We distinguish two cases:

– The level of xi is < n+2. In this case, Asize(C[B]) ≤ MaxargM ≤
m.

– The level of xi is n+ 2. Then, Asize(C[B]) ≤ Âsize(M) ≤ m

- M = (P Q). Then C[(P Q)σ] = C[(Pσ Qσ)].

We proceed by cases on the level of Q.

- If Level(Q) ≤ n + 1, the strategy starts reducing, in an empty

context, Q to a value v. By the induction hypothesis for Q:

Asize(Qσ) ≤ max{l · (|Q|)Dp(Q),m}

Now, the context C′[ ] = C[ v] is still n + 1 normal, so we can

apply the induction hypothesis to P :

Asize(C′[Pσ]) ≤ max{l · (|P |)Dp(P ),m}

So, the total size is given by:

Asize(C[P Qσ])

≤ max{|M |,Asize(Qσ),Asize(C′[Pσ])}
≤ max{|M |, l · (|P |)Dp(P ), l · (|Q|)Dp(Q),m}
≤ max{l · (|M |)max{Dp(P ),Dp(Q})+1,m}
≤ max{l · (|M |)Dp(M),m}

- Level(Q) = n + 2. The strategy acts lazily, then we need to take

into account the size of the parameters of the argument Q. By

induction hypothesis it holds that, for each (n+1-normal) context

C′[ ]:

Asize(C′[Qσ]) ≤ max{l · (|Q|)Dp(Q),m}
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that is to say,

Âsize(Q) ≤ max{l · (|Q|)Dp(Q),m}

The context C′′[ ] = C[ Qσ] and the new constants m′ = max{l ·
(|Q|)Dp(Q),m}, and l′ = l · |Q| satisfy the induction hypothesis for

P . So we have that:

Asize(C[(P Q)σ]) = Asize(C′′[Pσ])

≤ max{l′ · (|P |)Dp(P ),m′}
≤ max{l · |Q| · (|P |)Dp(P ), l · (|Q|)Dp(Q),m}
≤ max{l · (|M |)max{Dp(P ),Dp(Q)}+1,m}
≤ max{l · (|M |)Dp(M),m}

- M = (λx :T.P ). We have two cases.

- The context is empty; the term reduces by a µ-rule

C[(λx :T.P )σ]→ C[〈P (σ[a/x])〉T ]

The size of arguments in this step is bounded by:∑
a∈C(T ) |P [a/x]| ≤ ‖T‖ · |P |
≤ MaxargM · |P ↓ | ≤ l · |P |

The substitution σ′ = σ[a/x] is still n + 2-normal, hence we can

apply the induction hypothesis for P :

Asize(C[Pσ′]) ≤ max{l · (|P |)Dp(P ),m}

The total size of the arguments is given by:

Asize(C[Mσ]) ≤ max{l · |P |, l · (|P |)Dp(P ),m}
≤ max{l · (|M |)Dp(M),m}

- If the context is not empty, let

C′[(λx :T.P )σ] = C[(λx :T.P )σ a]
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Applying the β-rule we get:

C[(λx :T.P )σ a]→ C[P (σ[a/x])]

The size of arguments in this step is bounded by:

|P [a/x]| ≤ l · |P |

C′[ ] and σ′ = σ[a/x] are still n + 2-normal, so by induction hy-

pothesis:

Asize(C′[Pσ′]) ≤ max{l · (|P |)Dp(P ),m}

Hence:

Asize(C[Mσ]) ≤ max{l · |P |,Asize(C′[Pσ′])}
≤ max{l · (|M |)Dp(M),m}

- M is a vector 〈Pa〉T . where Pa is indexed over a ∈ C(T ). Again we have

to distinguish two cases. If the context C[ ] is empty, we normalize the

term by normalizing, in an empty context, the single components. We

can apply the induction hypothesis for the single components:

Asize(Paσ) ≤ max{l · |Pa|Dp(Pa),m}

The size of the vector is given by∑
a∈C(T )

|Pa| ≤ ||T || · |M | ≤ l · |M |

So, the overall size of parameters is:

Asize(C[Mσ])

≤ max{l · |M |,
maxa∈C(T ){l · |Pa|Dp(Pa),m}}

≤ max{l · |M |Dp(M),m}



64 4. Complexity

Now we consider the case of a non-empty context. Let C′[ ] = C[ ai].

In this context will be triggered the ι-rule. So

C[〈Pa〉T σ ai]→ C[Paiσ]

Hence, the space needed is the maximum among the size of the vector,

which is again: ∑
a∈C(T )

|Pa| ≤ ||T || · |M | ≤ l · |M |

and the space needed to reduce the term Pai . By the induction hypoth-

esis for Pai ,

Asize(C[Paiσ]) ≤ max{l · |Pai |Dp(Pai ),m}

Then we get

Asize(C[Mσ]) ≤
max{l · |M |,Asize(C[Paiσ])}
max{l · |M |, l · |Pai |Dp(Pai ),m}
max{l · |M |Dp(M),m}

Corollary 4.5.11. Let M be a term of level ≤ n + 1, rank ≤ 2n + 3, with

free variables of level at most n+ 2, for a polynomial p:

Space(M) ≤ expn(p)

Proof. The proof is analogous to the time case. By property 4), LRn+1(M)

has rank n if the term has level < n. Again, iterating n time LR over the

term M of rank 2n+ 3 and level ≤ n+ 2, we obtain a term M ′ of rank n+ 3:

M ′ = LRn+4(. . .LR2n+3(M))

By properties 1) and 2) in 4.4.3, |M ′| is bounded by expn(r(C)) andDp(M) ≤
expn−1(r(C)). By Theorem 4.5.10, M ′ can be normalized in a space that is

polynomially related to the product of:

Ncalls(C[Mσ]) ≤ |M |Dp(M) + k
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and

Asize(C[Mσ]) ≤ max{l · |M |Dp(M),m}

So, the claim follows by easy calculations.
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4.6 The boolean test problem

The boolean test problem BTP (r) consists in deciding if a simply typed

lambda term of rank r and Boolean type is convertible with True = λx, y :

o.x. In a recent paper [27], Terui has proved that this problem is n-EXPTIME1

complete for r = 2n+ 2, and n-EXPSPACE complete for r = 2n+ 3.

The hardness part is relatively easy (see [27] for details). For orders 2 and

3, it can proved by encoding, respectively, Boolean circuits and quantified

Boolean circuits. Beyond order 3, it is possible to encode Turing machines

with bounded time and space; in particular, each Turing machine is encoded

by a family of λ-terms, one for each input length (see also [6] for an encoding

similar to Terui’s one). It is worth to observe that adding primitive recursion

to the language we get that bit of parametricity that is enough to treat such

a family as a single term [11, 21].

To prove that we may compute the normal form of a simply typed boolean

term of rank r within the above mentioned complexity bounds, Terui deployes

a complex machinery involving Krivine abstract machine, linear logic, Scott

models and intersection types. The results obtained in this work, allow us to

give a much more direct and syntactical proof. We just need a simple lemma.

Definition 4.6.1. Let t : Bool be a closed term of the simply typed lambda

calculus of type Bool . We define tB as the term of the finite lambda calculus

obtained by instantiating o with the finite set B = {0, 1}.

Lemma 4.6.2. For any closed term t : Bool of the simply typed λ-calculus,

t
∗−→ True if and only if tB

∗−→ TrueB.

Proof. • (⇒) This direction is obvious since the finite λ-calculus is a

supersystem of the simply typed lambda calculus.

• (⇐) If t 6 ∗−→ True then t
∗−→ False, and for the same reasons of the pre-

vious point, tB
∗−→ FalseB; since the finite lambda calculus is confluent

1The class n-EXPTIME is the union of DTIME(expn(p)) for all polynomials p, and

similarly n-EXPSPACE is the union of DSPACE(expn(p)).
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for closed, well typed terms, we have tB 6 ∗−→ TrueB.

Corollary 4.6.3. The boolean test problem BTP (r) is in n-EXPTIME for

r = 2n+ 2, and n-EXPSPACE for r = 2n+ 3.

Proof. The term t is convertible with True if and only if t
∗−→ True, if and

only if, by the previous lemma, tB
∗−→ TrueB. Clearly, rank(t) = rank(tB). By

Theorem 4.5.7, if rank(tB) = 2n + 2, tB can be normalized with complexity

n-EXPTIME; by Theorem 4.5.10, if rank(tB) = 2n+ 3, tB can be normalized

with complexity n-EXPSPACE.
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Chapter 5

Conclusions

In this thesis we introduced the theory of the finite lambda calculus, that is

a syntactical instantiation of the simply typed lambda calculus to finite types,

exploiting the possibility to unfold a function into a finite number of cases

(memoization rule). We started the study of its meta-theory, proving a large

number of metatheoretical results (subject reduction, strong normalization,

confluence), as well as bounds on the complexity of reduction.

The finite lambda calculus is intended to be a good basis for a formal

and clear way of study the reduction mechanisms. In fact, the framework

we presented here has a simple syntactical nature and embeds in an abstract

rewrite system many aspect which were present in preceding works, but in

a latent way. For instance, the idea of infinite term, which may appear as a

technical trick, here gains a clear computational meaning and an immediate

intuitive interpretation as the graph of a function.

Many aspects of the calculus still deserve a better investigation; concern-

ing the theory of reduction, it could be interesting to address standardiza-

tion, and see how the calculus can be integrated with a mechanism of explicit

substitutions. It would also be worth to explore the relation with different

reduction techniques, such as environment machines and, especially, optimal

reduction.

About complexity, the proofs presented in this work are essentially in-
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spired by [12] and can be possibly refined, both in view of providing tighter

bounds, as well as more elegant and sharper arguments. The main contri-

bution of the finite lambda calculus is in fact that of providing a theoretical

framework inside which one can comfortably address complexity proofs at an

adequate formal level.

The meta-theory presented here was indeed formalized in the matita the-

orem prover, although we have not discussed the formalization here.

Finally, a natural extension of the calculus would consist in studying a

lazy generalization of the memoization rule to inductive types.
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