
ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

SCUOLA DI INGEGNERIA E ARCHITETTURA

Dipartimento di Informatica-Scienza e Ingegneria (DISI)

INGEGNERIA INFORMATICA LM

TESI DI LAUREA

in
Reti di Calcolatori M

Integrating Wireless Sensor Networks and Internet-of-Things:

a CoAP-based approach

CANDIDATO RELATORE:
Alessandro Aloisi Chiar.mo Prof. Antonio Corradi

CORRELATORE
Dott.Ing.Stefan Forsström

Dott.Ing. Luca Foschini

Anno Accademico 2013/2014

Sessione II

Abstract
The growing presence of sensors around us is pushing the develop-
ment of pervasive applications which will enable access sensor data
from remote locations in an Internet-of-Things (IoT) scenario. A
scenario in which objects, animals or people are provided with sen-
sors and the ability to automatically transfer data over the Internet is
called IoT. Many smart sensing nodes that cooperate to sense the
environment may form a Wireless Sensor Network (WSN), provid-
ing sensing services to an ever growing application space. The the-
sis focuses on enabling the communication between WSNs and IoT
applications. In order to achieve this goal, the first step has been to
investigate the concept of the IoT and then to understand how this
scenario could be used to interconnect multiple WSNs in order to
develop context-aware applications which could handle sensor data
coming from this type of network. The architecture of WSNs was
then analyzed followed by a survey about the operating systems and
communication standards supported by these network. Finally,
some IoT software platforms have been studied. The second step
was to design and implement a communication stack which enabled
WSNs to communicate with an IoT platform. The Constrained Ap-
plication Protocol (CoAP) has been used as application protocol for
the communication with the WSNs. CoAP includes the HTTP func-
tionalities which have been redesigned considering the low process-
ing power and energy consumption constraints of small embedded
devices, such as the WSNs. The solution has been developed in Java
programming language and extended the sensor and actuator layer
of the Sensible Things platform. The third step of this thesis has
been to investigate in which real world applications the developed
solution could have been used. Next a proof of concept application
has been implemented in order to simulate a simple fire detection
system, where multiple WSNs collaborate to send their temperature
data to a control center. The last step was to evaluate the whole sys-
tem, specifically the responsiveness and the overhead introduced by
the developed communication stack. The results showed that the so-
lution introduced just a little overhead to the platform and also that
the value of the response time depends on the type of request sent to
the WSN. However, the performances of the system could be im-
proved further and suggested future work involves some policies to
manage multiple CoAP transactions at the same time. Also the chal-
lenge of implementing some security mechanisms for a safe com-

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

munication between the platform and sensor nodes, requires
further work.

2

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Acknowledgements
Firstly I would like to express my sincere gratitude to my super-
visor Stefan Forsström for his patient guidance and his capacity
to answer my numerous questions. Without his help and our nu-
merous meetings, I could not have achieved the results that I
had. Secondly, I would like to thank my examiner, Professor
Ting Ting Zhang for her interest and helpful comments. Finally
I would also like to thank my Italian exchange coordinator,
Prof. Antonio Corradi and both University of Bologna and Mid
Sweden University for giving me the chance to prepare this the-
sis as an exchange student. It was a valuable experience for me
and it helped greatly in improving my professional and social
skills. Lastly, I would like to thank my family and my friends
for their love and all the support given me during this period as
an exchange student.

3

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Table of Contents
Abstract...1

Acknowledgements...3

Acronyms Table..6

1 Introduction...1
1.1 Background and problem motivation...1
1.2 High-level problem statement..1
1.3 Concrete and verifiable goals...2
1.4 Scope..3
1.5 Outline..3
1.6 Contributions..4

2 Theory..5
2.1 Internet-of-Things..5
2.1.1 Context awareness...8
2.1.2 Ubiquitous computing...9
2.2 WSNs overview..9
2.2.1 WSN motes..12
2.3 WSNs' Operating Systems...14
2.3.1 TinyOS...14
2.3.2 Contiki...17
2.3.3 Tiny Os and Contiki evaluation...19
2.4 WSNs communication standards...20
2.4.1 IEEE 802.15.4...21
2.4.2 ZigBee...22
2.4.3 6LoWPAN...24
2.4.4 REST and CoAP..26
2.5 Related work..29
2.5.1 SensibleThings..29
2.5.2 ETSI M2M...32
2.5.3 SENSEWEB..33

3 Methodology..36

4 Implementation...38
4.1 SensibleThings platform..40
4.2 CoAP packet structure..41
4.3 CoapSensorActuator...44
4.4 CoapSensorGateway..49

5 Results..51
5.1 Response time..51
5.1.1 CoapSensorActuator response time...51
5.1.2 CoapSensorGateway response time..56
5.2 Packet size..59

4

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

5.3 Scalability...61
5.4 Proof of concept application..64
5.4.1 Potential real-world scenario...64
5.4.2 Implementation and results..65
5.5 A battery-saving algorithm...67

6 Conclusion...71
6.1 Discussion..72
6.1.1 Ethical issues...74
6.2 Future work..75

References...77

Appendix A: CoapBlip installation guide...81

Abstract in lingua italiana..83

5

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Acronyms Table
6LoWPAN: IPv6 over Low power Wireless Personal Area Net-
works

AODV: Ad-hoc On Demand Distance Vector Routing

ASCII: American Standard Code for Information Interchange

CoAP: Constrained Application Protocol

FFD: Full Function Device

IoT: Internet of Things

ISM: Industrial, Scientific and Medical Radio Bands

LAN: Local Area Network

LLN: Low Power and Lossy Network

M2M: Machine to Machine

MAC: Media Access Control

NFC: Near Field Communications

PAN: Personal Area Network

PPP: Point to Point Protocol

REST: Representational State Transfer

RFD: Reduced Function Device

RFID: Radio Frequency Identification

TCP: Transmission Control Protocol

TLV: Type Length Format

UCI: Universal Context Identifiers

6

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

UDP: User Datagram Protocol

URI: Universal Resource Identifier

WSAN: Wireless Sensor and Actuator Network.

WSN: Wireless Sensor Network

7

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

1 Introduction
This report is a Master's thesis in Computer Science Engineer-
ing and it has been prepared in collaboration with Mid Sweden
University in Sundsvall, Sweden. I am an exchange student
from the University of Bologna (Italy) and I worked on this the-
sis within the Erasmus Exchange Program. This thesis deals
with the challenging question of how to interconnect WSNs
over the Internet and describes a solution that has been devel-
oped within this thesis work.

1.1 Background and problem motivation
Historically, humankind has seen the emergence of different
kinds of global data fields. The planet itself has always gener-
ated an enormous amount of data, as human systems and physi-
cal objects did too, but until recent years we were unable to
capture it. We now can because we are able to embed sensors in
all sort of things and to use them to retrieve data, in a so called
IoT scenario. This kind of network can then be used by applica-
tions that utilize information from sensors attached to different
things in order to display context-aware behavior. However,
since not all sensors may be directly connected to a device, they
could be gathered in local networks such as the WSNs, which
nowadays are the most used technology in this field. WSNs are
composed of a large number of radio equipped sensor devices
that autonomously form a network, through which sensors are
capable of sensing, processing and communicating with each
other. These networks can operate as standalone networks or be
connected to other networks, but for many applications they do
not work efficiently in full isolation. Therefore, one of the big-
gest challenges for the IoT developers is to find resources on
how to interconnect several WSNs over the Internet.

1.2 High-level problem statement
WSNs rely on the collaborative efforts of many small wireless
sensor nodes and on their ability to form networks which can be

1

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

used to gather sensor information. Most sensor networks are
usually deployed over a wide geographical area and their appli-
cations aim at monitoring or detecting phenomena. For such
applications, WSNs cannot operate efficiently in complete iso-
lation because there should be a way for a remote user to gain
access to the data produced by the network. By connecting
these networks to an existing network infrastructure, remote ac-
cess to the sensor data can be achieved. Since the Internet has
the most widespread network infrastructure in the world, it is
logical to look at some efficient methods for interconnecting
WSNs over the Internet; in order to make an IoT. Many IoT
software platforms have already been developed in order to en-
able remote access to sensor data, but just a small quantity of
these platforms deal with WSNs. Thus, a communication stack
is required for implementation in order to enable communica-
tion between IoT applications and WSNs. Another big chal-
lenge is the high heterogeneity between WSNs, since these net-
works often are intended to run specialized communication pro-
tocols. As a consequence of this scenario, it is usually impossi-
ble to directly connect WSNs to the Internet. Therefore, there is
also the need to implement a second stack, which is able to ex-
port sensor data from these particular networks to other devices
connected to the Internet. Therefore, this thesis will attempt to
solve the following problem:

Enabling communication between IoT and WSNs, irregard-
less of their network connection and then to utilize the sen-
sor information available in WSNs for context aware appli-
cations.

1.3 Concrete and verifiable goals
In order to solve the problem of this project, the following goals
have to be accomplished:

1. Find three different solutions of connecting WSNs to an
IoT.

2. Determine the most common operating systems used in
WSNs.

2

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

3. Investigate which communication protocols these operat-
ing systems support.

4. Implement a communication stack which enables com-
munication between WSNs and IoT platforms.

5. Evaluate the performance and responsiveness of the im-
plemented solution.

6. Find possible real world applications for the implemented
solution in order to put together several WSNs, defining
policies for system federation and coordination.

1.4 Scope
This project is focused on creating a communication stack be-
tween IoT applications and wireless sensors and actuator net-
works and then to create a proof of concept application in order
to evaluate it. However, since there are many different operat-
ing systems and communication protocols for WSNs, in this
thesis I will focus on how to enable communication only with
networks which use the most common ones. The management
of the physical layer below these systems and security issues
are out of scope for this project.

1.5 Outline
The second chapter will present the general idea of IoT and
context awareness including the specific devices and protocols
which have been developed in order to spread its diffusion.
Next, some of the most popular IoT platforms are presented.
The third chapter is about the methodology we used for the
project. In this section all the goals that have been presented in
this thesis are listed. The fourth chapter explains the approach
that has been used in the project's implementation. In chapter
five the tests made and their results are reported. Finally, the
sixth chapter presents the conclusions and then discusses future
work needed for this project.

3

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

1.6 Contributions
The SensibleThings platform and its source code was contrib-
uted by and is property of Mid Sweden University. My thesis
work has contributed by adding functionalities to the existing
framework in order to enable communication between IoT ap-
plications and WSNs. The developed communication stack is
independent of the platform itself, therefore it is possible to eas-
ily export it to any kind of implementation of the latter.

4

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

2 Theory
A first important step is to categorize the state of art based on
current research literature. The following sections present the
background theory and related work for this thesis. The first
section provides a short introduction about the IoT concept and
also about context awareness and ubiquitous computing. The
second section gives an overview of the WSN technology and
then a list of the most common motes. In the third section, two
of the most used WSN Operating System are presented and a
comparison between them has been made. The fourth section
provides an overview of the communication standards used in
WSNs. Finally, in the fifth section, three IoT platforms are pre-
sented.

2.1 Internet-of-Things
The Internet-of-Things is a novel paradigm that is rapidly
spreading across the scenario of modern wireless telecommuni-
cations. This concept is based on is the pervasive presence
around us of a variety of things or objects which, through
unique addressing schemes, are able to interact and cooperate
with each other in order to reach common goals. As the name
suggests, the purpose of this architecture is to interconnect all
kinds of objects over the Internet. It is considered a normal evo-
lution of the Internet, which at the beginning was meant just to
interconnect computers but now is developing into a world
wide network which will be able to interconnect all kinds of
devices; as represented in Figure 2.1.

However, IoT is a very broad vision, so the IoT research is still
in progress. Therefore, there are many definitions of IoT within
the research community but there are no standard definitions for
IoT as of yet. The term ‘IoT’ was originally introduced by
Kevin Ashton [2] in a presentation in 1999. He noted that “The
IoT has the potential to change the world, just as the Internet
did. Maybe even more so”.

5

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Figure 2.1: Evolution of the Internet [1].

The very first vision of IoT was presented by the Auto-ID Labs
[3], a world-wide network of academic research laboratories in
the field of networked RFID and emerging sensing technolo-
gies. The group perceived things as very simple items: Radio-
Frequency IDentification (RFID) tags having a unique identifier
called Electronic Product Code. Their purpose was to realize a
global system for object visibility (i.e. the traceability of an ob-
ject and the awareness of its status).

However, according to the authors of [4], RFID still stands at
the forefront of the technologies driving the vision just because
of its maturity, low cost, and strong support from the business
community. The group believes that a wide range of device,
network, and service technologies will eventually build up the
IoT. Near Field Communications (NFC) and Wireless Sensor
and Actuator Networks (WSAN) together with RFID are recog-
nized as ‘‘the atomic components that will link the real world
with the digital world”. According to this heterogeneity, the fol-
lowing definitions are essential to understand the IoT:

Definition by [5]: “The IoT allows people and things to be
connected Anytime, Anyplace, with Anything and Anyone,
ideally using Any path/network and Any service.”

6

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Figure 2.2: Representation of the first definition of IoT.

Definition by [6]:“The semantic origin of the expression
is composed by two words and concepts: Internet and
Thing, where Internet can be defined as the world-wide
network of interconnected computer networks, based on a
standard communication protocol, the Internet suite
(TCP/IP), while Thing is an object not precisely identifi-
able. Therefore, semantically, IoT means a world-wide
network of interconnected objects uniquely addressable,
based on standard communication protocols.”

Many relevant institutions have stressed the concept that the
road to full IoT deployment has to start from the augmentation
in the Things’ intelligence. This is why a concept that emerged
in parallel with IoT is the concept of Smart Items, as a refine-
ment of the general “Things” definition. Smart items are de-
fined as:

objects that can be tracked through space and time through-
out their lifetime and that will be sustainable, enhanceable,
and uniquely identifiable”[7]. “These are a sort of sensors
not only equipped with usual wireless communication,
memory, and elaboration capabilities, but also with new po-
tentials. Autonomous and proactive behavior, context

7

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

awareness, collaborative communications and elaboration
are just some required capabilities [8].

The IoT infrastructure allows combinations of different types of
smart items, using different but interoperable communication
protocols and realizes a dynamic heterogeneous network that
can be deployed also in inaccessible, or remote spaces (oil
platforms, mines, forests, tunnels, pipes, etc.) or in cases of
emergencies or hazardous situations (earthquakes, fire, floods,
radiation areas, etc.). Giving these objects the possibility to
communicate with each other and to elaborate the information
retrieved from the surroundings implies having different areas
where a wide range of applications can be deployed. These can
be grouped into the following domains: healthcare, personal
and social, smart environment (such as at home or in the of-
fice), futuristic applications, transportation and logistics; as rep-
resented in Figure 2.3.

Figure 2.3: IoT application areas [8].

2.1.1 Context awareness
Context awareness plays an important role in the IoT to enable
services customization according to the immediate situation
with minimal human intervention. Acquiring, analyzing, and in-

8

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

terpreting relevant context information regarding the user will
be a key ingredient to create a whole new range of smart appli-
cations. The concept of context is commonly understood as the
situation or surroundings of an entity. The main definition of
context has been given by Dey and Abowd [9]:”Context is any
information that can be used to characterize the situation of an
entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application,
including the user and applications themselves.”. Therefore,
context awareness is the result gained from utilizing context
information, such as the ability to adapt behavior depending on
the current situation of the users in context-aware applications.
Dey and Abowd [9] gave this definition of context aware-
ness:”A system is context-aware if it uses context to provide rel-
evant information and/or services to the user, where relevancy
depends on the users task.”

2.1.2 Ubiquitous computing
The focus on context-aware computing evolved from desktop
applications, web applications, mobile computing, ubiquitous
computing to the IoT over the last decade. However, context-
aware computing became more popular with the introduction of
the term ‘ubiquitous computing’ by Mark Weiser [10], in his pa-
per “The Computer for the 21st Century in 1991”. He described
a new era in which computer devices will be embedded in ev-
eryday objects, invisible at work in the environment around us;
in which intelligent, intuitive interfaces will make computer de-
vices simple to use and in which communication networks will
connect these devices together to facilitate anywhere, anytime,
always-on communication. Ubiquitous computing then, “is the
growing trend towards embedding microprocessors in everyday
objects and refers to how they might communicate and process
information, creating a world in which things can interact
dynamically”.

2.2 WSNs overview
WSNs became one of the most interesting and researched areas
in the field of electronics in the last decade. WSNs are com-

9

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

posed of a large number of radio equipped sensor devices that
autonomously form a network, through which sensor nodes are
capable of sensing, processing and communicating among each
other. The sensor nodes are usually scattered in a sensor field as
shown in Figure 2.4. Each of these sensor nodes has the capa-
bility to collect data and route data back to the sink and the end
users. Data are routed back to the end user by a multi-hop in-
frastructureless architecture through the sink, which may com-
municate with the end user via the Internet or any type of wire-
less network (like WiFi, mesh networks, cellular systems,
WiMAX, etc.), or without any of these networks where the sink
can be directly connected to the end users [11]. There may be
multiple sinks and multiple end users in the architecture shown
in Figure 2.4.

Figure 2.4: WSN architecture [11].

Typical tasks for sensor nodes are: obtaining environmental
data, storing, processing and transferring obtained data, receiv-
ing data from other nodes, using and forwarding received data.
However, not every node in a sensor network has to perform all
of these tasks. The sensor nodes, which are intended to be phys-
ically small and inexpensive, are equipped with one or more
sensors for sensing operations, a short range radio transceiver in
order to enable communication with other nodes, a small micro
controller for computation, and a power supply in the form of a
battery; as represented in Figure 2.5.

10

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Figure 2.5: General sensor node structure.

The main characteristics and challenges of WSNs are:

Dynamic topology: in many applications it is assumed that the
topology of the network is stationary. However, in reality it is
not, because WSN topology can change frequently. The topol-
ogy of the WSNs can vary from a simple star network to a tree
network or even to an advanced multi-hop wireless mesh net-
work.

Limited data rate and short distance: the sensor nodes elec-
tromagnetic range covers short distances (from one to several
tens of meters). This determines the necessity of application
multi-hop topology in WSN.

Different traffic intensity: the highest traffic density in WSN
takes place around the central sensor nodes (that is the sink),
because it collects all data coming from other nodes located in
its vicinity. Quite the opposite, very little traffic takes place
around sensor nodes which directly collect data and in the other
direction, from sink to these nodes.

Energy constraints: the constraint most often associated with
WSNs design is that sensor nodes operate with limited energy
budgets. Typically, they are powered through batteries, which
must be either replaced or recharged when depleted.

11

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Self management: since many WSNs are required to operate in
remote areas and harsh environments, without infrastructure
and the possibility for maintenance or repair, sensor nodes must
be able to self-configure and adapt to failures.

WSNs may consist of many different types of sensors including
seismic, magnetic, thermal, visual, infrared, acoustic and radar,
which are able to monitor a wide variety of ambient conditions
that include: temperature, humidity, pressure, speed, direction,
movement, light, soil makeup, noise levels, the presence or ab-
sence of certain kinds of objects, and mechanical stress levels
on attached objects [11]. As a result, a wide range of applica-
tions are possible. However, in order to extend the applicability
of these architectures and provide useful information anytime
and anywhere, their integration with the Internet is very impor-
tant. It is for this reason that during recent years the IoT re-
search community has focused on WSNs as the upcoming tech-
nology for the IoT.

2.2.1 WSN motes
WSNs nodes are called “motes” and currently they range in size
from disc shaped boards having diameters less than 1cm to en-
closed systems with typical dimensions less than 5cm square.
The term “mote” was coined by researchers in the Berkeley
NEST to refer to these sensor nodes [13]. In Figure 2.6 a list of
the most common motes is reported. The values within this ta-
ble show that all the motes have approximately the same size
but the lightest one is SHIMMER, which is also one of the most
expensive. Regarding memory and CPU power all the motes
are almost identical except for the Sun SPOT which is currently
the most powerful but the most costly.

12

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Width x
Length x
Height
(cm)

Weight
(g)
(with
Battery)

Cost
(per
node)

Processor Memory
RAM/FLASH/
EEPROM

TelosB 3.2x6.6x0.7 63.05 139 $ 4-8 MHz 10 KB/48 KB/1 MB

Crossbow
Mica2

3.2x5.7x0.6 63.82 99 $ 8 MHz 4 KB/128 KB/
512 KB

SHIMME
R

2x4.4x1.3 10.36 276 $ 4-8 MHz 10 KB/48 KB/none

Crossbow
IRIS

3.2x5.7x0.6 69.40 115 $ 8 MHz 8 KB/640 KB/4 KB

Sun
SPOT

6.4x3.8x2.5 58.08 750 $ 180 MHz 512 KB/4 MB/none

Figure 2.6: WSNs motes characteristics [13].

Each of these WSNs motes is equipped with a different set of
sensors:

TelosB: it has a set of on-board sensors such as humidity, tem-
perature and light intensity. In addition to the on-board sensors,
the Tmote Sky provides access to 6 ADC inputs, a UART and
I2C bus and several general purpose ports.

Mica2: it is not equipped with on-board sensors. However,
Crossbow offers an extensive set of sensor boards that connect
directly to the Mica mote, and are capable of measuring light,
temperature, relative humidity, barometric pressure, accelera-
tion/seismic activity, acoustics, magnetic fields and GPS posi-
tion.

Shimmer: it has been designed for mobile health sensing appli-
cations. It incorporates a 3 axis accelerometer and allows con-
nection of other sensors through its expansion board.

Iris: like the other mote from the Crossbow technology (Mica2
mote), it is not equipped with on-board sensors but it can be ex-
tended with the same sensor boards provided for the Mica2
mote.

13

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Sun SPOT: it offers expansion boards with tri-axial ac-
celerometer, temperature sensor and light sensors. Moreover,
custom made sensors can be connected via five analogue inputs
and five general purpose digital ports.

2.3 WSNs' Operating Systems
An operating system (OS) in a WSN is a thin software layer
that logically resides between the node’s hardware and the ap-
plication and provides basic programming abstractions to appli-
cation developers. Its main task is to enable applications to in-
teract with hardware resources, to schedule and prioritize tasks,
and to arbitrate between contending applications and services
that try to seize resources. Other features of a WSNs OS are:
memory and file management, power management, networking,
providing programming environments. The choice of a particu-
lar operating system depends on several factors such as: data
types, scheduling, stacks, system calls, handling interrupts,
multithreading and memory allocation [12]. OS for WSNs
nodes are typically less complex than general purpose operating
systems. They more strongly resemble embedded systems, for
two reasons. First, WSNs are typically deployed with a particu-
lar application in mind, rather than as a general platform. Sec-
ond, a need for low costs and low power leads most wireless
sensor nodes to have low power microcontrollers ensuring that
mechanisms such as virtual memory are either unnecessary or
too expensive to implement.

2.3.1 TinyOS
TinyOS is the most widely used runtime environment in WSNs
and its compact architecture makes it suitable for supporting
many applications. TinyOS has a component-based program-
ming model, codified by the NesC language, a dialect of C and
it is also based on an event driven programming model instead
of multithreading. That means that when an external event oc-
curs, such as an incoming data packet or a sensor reading,
TinyOS signals the appropriate event handler to handle the
event.

14

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

The architecture consists of a scheduler and a set of compo-
nents each of which encapsulate a specific set of services, spec-
ified by interfaces. An application connects components using a
wiring specification that is independent of component imple-
mentations. This wiring specification defines the complete set
of components that the application uses. Components have
three computational abstractions: commands, events and tasks.
Commands and events are mechanisms for inter-component
communication, while tasks are used to express intra-compo-
nent concurrency. A command is typically a request to a compo-
nent to perform some service, such as initiating a sensor read-
ing, while an event signals the completion of that service.
Rather than performing a computation immediately, commands
and event handlers may post a task, a function executed by the
TinyOS scheduler at a later time. The standard TinyOS task
scheduler uses a non-preemptive FIFO scheduling policy [14].

TinyOS abstracts all hardware resources as components and it
provides a large number of components to application devel-
opers, including abstractions for sensors, single-hop network-
ing, ad hoc routing, power management, timers, and non
volatile storage. A developer can then compose an application
by writing components and wiring them to TinyOS components
that provide implementations of the required services [14].

A component has two classes of interfaces: those it provides
and those it uses. These interfaces define how the component
directly interacts with other components. An interface generally
models some service (e.g., sending a message) and is specified
by an interface type. Interfaces contain both commands and
events and they are bidirectional which means that the com-
mands have to be implemented by the interface's provider
whereas the events have to be implemented by the interface's
user. The provided interfaces are intended to represent the func-
tionality that the component provides to its user in its specifi-
cation; the used interfaces represent the functionality the com-
ponent needs to perform its job in its implementation.

15

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

NesC has two types of components: modules and configura-
tions. Modules provide code for defining Tiny OS components.
Configurations are used to wire other components together,
connecting interfaces used by components to interfaces pro-
vided by others. They allow multiple components to be aggre-
gated together into a single “supercomponent” that exposes a
single set of interfaces.

Figure 2.7 shows a simplified form of the TimerM component,
a part of the TinyOS timer service, that provides the StdControl
and Timer interfaces and uses a Clock interface.

Figure 2.7: Specification and graphical depiction of the TimerM
component [14].

Figure 2.8 illustrates the TinyOS timer service, which is a con-
figuration (TimerC) that wires the timer module (TimerM) to
the hardware clock component (HWClock).

Figure 2.8: Example of TinyOS configuration [14].

16

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

2.3.2 Contiki
Contiki is a lightweight operating system with support for dy-
namic loading and replacement of individual programs and ser-
vices. Contiki is built around an event driven kernel but pro-
vides optional preemptive multithreading that can be applied to
individual processes. Contiki is implemented in the C language
and has been ported to a number of microcontroller architec-
tures.

A running Contiki system consists of the kernel, libraries, the
program loader, and a set of processes. A process may be either
an application program or a service. A service implements func-
tionalities used by more than one application process. All pro-
cesses, both application programs and services, can be dynami-
cally replaced at run time.

Communication between processes always goes through the
kernel. The kernel does not provide a hardware abstraction
layer, but lets device drivers and applications communicate di-
rectly with the hardware. A process is defined by an event han-
dler function and an optional poll handler function; interprocess
communication is done by posting events [15].

A Contiki system is partitioned into two parts: the core and the
loaded programs as shown in Figure 2.9. The core is made up of
the Contiki kernel, the program loader, the most commonly
used parts of the language run time and support libraries, and a
communication stack with device drivers for the communica-
tion hardware. This part of the operating system cannot be mod-
ified dynamically.

17

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Figure 2.9: Contiki system partitioning[15].

The partitioning is made at compile time and is specific to the
deployment in which Contiki is used.

The kernel is the central element of the OS. Its basic assign-
ment is to dispatch events and to periodically call polling han-
dlers. Subsequently, a program execution in Contiki is triggered
by either events that are dispatched by the kernel or through the
polling mechanism. Event handlers process an event to com-
pletion, unless they are preempted by interrupts or other mech-
anisms, such as thread preemption in a multithreading scenario.
The kernel supports synchronous and asynchronous events.
Synchronous events are dispatched to the target process as soon
as possible and control is returned to the posting process once
the event is processed to the end. Asynchronous events, on the
other hand, are dispatched at a convenient time. In addition to
these events, the kernel provides a polling mechanism, in which
the status of hardware components is sampled periodically [12].

One of the interesting features of the Contiki OS is its support
of dynamic loading and reconfiguration of services. This is
achieved by defining services, service interfaces, service stubs,
and a service layer. Services are to Contiki what modules are to
TinyOS, that is a process that implements functionality that can
be used by other processes. A Contiki service consists of a ser-
vice interface and its implementation, which is also called a
process. The service interface consists of a version number and
the list of functions with pointers to the functions that imple-

18

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

ment the interface. A service stub enables an application pro-
gram to dynamically communicate with a service through its
service interface. A service layer is similar to a lookup service
or a registry service. Active services register by providing the
description of their service interface and ID and version num-
ber. This way, the service layer keeps track of all active ser-
vices. Figure 2.10 illustrates how application programs interact
with Contiki services [12].

Figure 2.10: Contiki service interaction architecture [12].

When a service is called, the service interface stub queries the
service layer and obtains a pointer to the service interface.
Upon obtaining a service whose interface description as well as
version number matches with the service stub, the interface stub
calls the implementation of the requested function.

2.3.3 Tiny Os and Contiki evaluation
Ranking the strength of an operating system, like all ranking
assignments, is a difficult assignment. However, in WSNs, there
are several contexts pertaining to development, deployment,
runtime performance, and code evolution. In view of these as-
pects, TinyOS is compact in size and efficient in its use of re-
sources, since the cost of managing separate entities (operation
system and application) is related to a single assignment of
managing a single file. But replacement or reprogramming cost
is high.

19

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Contiki provides a flexible support for dynamic reprogramming
and hence is well suited to applications which require intensive
updating and upgrading processes; but this does not come with-
out any costs.

Figure 2.11 and 2.12 provide summaries of the functional and
nonfunctional aspects of both the OSs.

Figure 2.11: Comparision of functional aspects of the OS [12].

Figure 2.12: Comparision of non-functional aspects of the OS
[12].

2.4 WSNs communication standards
In order to achieve interoperability between manufacturer
components, a number of standards have been established in the
WSN field. These standards can be mapped to the ISO-OSI lay-
ers. However, some standards cover only the bottom layers,
others cover the full stack. No single standard has been estab-
lished as the market winner. The most common standards used

20

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

in WSN are: WiFi, Bluetooth, IEEE 802.15.4, ZigBee, 6LoW-
PAN. However, WiFi and Bluetooth are losing ground within
the WSNs research community since they were not developed
for low power devices such as WSNs nodes. On the other hand,
IEEE 802.15.4 was created just for these kinds of devices and is
thus becoming the most important communication standard for
WSNs. Moreover, the ZigBee and 6LoWPAN standards have
been developed in order to extend the features of IEEE
802.15.4.

2.4.1 IEEE 802.15.4
The key requirements for Low Rata Personal Area Networks (as
the WSNs) are low complexity, very low power consumption
and low cost. The IEEE 802.15.4 standard considers these re-
quirements and provides a framework for the lowest two layers
of the OSI mode. The standard defines two types of devices: a
Full Function Device (FFD) and a Reduced Function Device
(RFD). The FFD is capable of all network functionalities and
can operate in three different modes: it can operate as a PAN
coordinator, a coordinator or it can serve simply as a device. An
RFD device is low on resources and memory capacity and is ca-
pable only of very simple applications such as sensing light or
temperature [16]. There are two different topologies in which
the PAN can operate: star or peer to peer, as represented in Fig-
ure 2.13. In the star topology communication can only take
place between the devices and the PAN coordinator, which has
to be a FFD. The PAN coordinator is responsible for inaugurat-
ing or terminating communications in the network and is often
mains powered. In the peer to peer topology all FFD devices in
the network can communicate with each other while the RFD
devices can only communicate with the PAN coordinator [16].

The physical layer is responsible for the transmission and re-
ception of data. It defines the radio bands to be used and type of
spreading and modulation techniques. The standard provide
three different operational frequencies: 16 channels in the 2.4
GHz band, 10 channels in the 915 MHz band and 1 channel in
the 868 MHz band.

21

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Figure 2.13 IEEE 802.15.4 network topology [16].

The MAC layer which appears just above the physical layer in
the OSI model, is responsible for managing beacon transmis-
sion, access to channel and association/disassociation to the net-
work.

The IEEE 802.15.4 standard defines four basic frame types
which are beacon, used by a coordinator to transmit beacons, a
data frame, used for all transfers of data, an acknowledgment
frame, used for confirming successful frame reception and a
MAC command frame, used for handling all MAC peer entity
control transfers.

2.4.2 ZigBee
ZigBee is a specification for a suite of high level communica-
tion protocols used to create personal area networks; built for
small, low power digital radios based on the IEEE 802.15.4
standard. ZigBee is used in applications that require a low data
rate, long battery life, and secure networking. This standard has
a defined rate of 250 kbit/s, best suited for periodic or intermit-
tent data or a single signal transmission from a sensor or input
device. The transmission distances range from 10 to 100 meters
line of sight, depending on power output and environmental
characteristics. The technology defined by the ZigBee specifi-
cation is intended to be simpler and less expensive than other
WPANs, such as Bluetooth or Wi-Fi.

The ZigBee standard defines a stack shown in Figure 2.14
which has a layered structure with four distinct layers, the phys-

22

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

ical layer, the MAC layer, the network layer and the application
layer. The two bottom layers are defined by the IEEE 802.15.4
standard. The network layer is the bottom layer defined by the
ZigBee standard which provides network configuration, ma-
nipulation, and message routing. The routing protocol used by
the network layer is the Ad-hoc On-Demand Distance Vector
Routing Protocol (AODV). In order to find the destination de-
vice, it broadcasts out a route request to all of its neighbors. The
neighbors then broadcast the request to their neighbors, until
the destination is reached. Once the destination is reached, it
sends its route reply via unicast transmission following the low-
est cost path back to the source. Once the source receives the
reply, it will update its routing table for the destination address
with the next hop in the path and the path cost. An application
layer then provides the intended function of the device [17].

Figure 2.14: ZigBee stack architecture.

ZigBee operates in the industrial, scientific and medical (ISM)
radio bands: 868 MHz in Europe, 915 MHz in the USA and
Australia and 2.4 GHz in most jurisdictions worldwide. Data
transmission rates vary from 20 kilobits/second in the 868 MHz
frequency band to 250 kilobits/second in the 2.4 GHz frequency
band. The ZigBee network layer natively supports both star and
tree typical networks, and generic mesh networks; as reported
in Figure 2.15. Every network must have one coordinator de-

23

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

vice, tasked with its creation, the control of its parameters and
basic maintenance. Within star networks, the coordinator must
be the central node. Both trees and meshes allow the use of Zig-
Bee routers to extend communication at the network level [18].

Figure 2.15 ZigBee network topologies.

2.4.3 6LoWPAN
6LoWPAN is an acronym of IPv6 over Low power Wireless
Personal Area Networks (WPAN). 6LoWPAN is the name of a
working group in the Internet area of the Internet Engineering
Task Force (IETF). The 6LoWPAN concept originated from the
idea that “the Internet Protocol (IP) could and should be applied
even to the smallest devices" and that low power devices with
limited processing capabilities should be able to participate in
the IoT [19]. 6LoWPAN enables the use of IPv6 in Low Power
and Lossy Networks (LLNs), such as those based on the IEEE
802.15.4 standard. Given the limited packet size and other con-
straints of this kind of devices, they cannot use the standard
IPv6 directly. Therefore, an adaptation layer to perform header
compression, fragmentation and address auto configuration is
needed to use IPv6. The 6LoWPAN group thereby has encapsu-
lation and header compression mechanisms that allow IPv6
packets to be sent to and received from over IEEE 802.15.4
based networks.

The 6LoWPAN architecture is made up of low-power wireless
area networks (LoWPANs), which are connected to other IP
networks through edge routers, as is shown in Figure 2.16. The
edge router plays an important role as it routes traffic in and out
of the LoWPAN, while handling 6LoWPAN compression and
NeighborDiscovery for the LoWPAN [19].

24

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Each LoWPAN node is identified by a unique IPv6 address, and
is capable of sending and receiving IPv6 packets. Typically
LoWPAN nodes support ICMPv6 traffic and use the User Data-
gram Protocol (UDP) as a transport protocol. The whole 6LoW-
PAN protocol stack is shown in Figure 2.17.

 Figure 2.16 6LoWPAN architecture.

25

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Figure 2.17 6LoWPAN protocol stack.

2.4.4 REST and CoAP
One of the major benefits of IP based networking in LLNs is to
enable the use of standard web service architectures without us-
ing application gateways. As a consequence, smart objects will
not only be integrated with the Internet but also with the web.
This integration allows smart object applications to be built on
top of Representational State Transfer (REST) architectures and
it is defined as the Web of Things (WoT) [20].

In a REST architecture a resource is an abstraction controlled
by the server and identified by a Universal Resource Identifier
(URI). The resources are accessed and manipulated by an appli-
cation protocol based on client/server request/responses. REST
is not tied to a particular application protocol, however, the
vast majority of REST architectures currently use Hypertext
Transfer Protocol (HTTP). HTTP manipulates resources by
means of its methods GET, POST, PUT, DELETE [20].

REST architectures allow IoT applications to be developed on
top of web services. However, the standard HTTP protocol can-
not be used in LLNs since this protocol is relatively expensive
for them, both in implementation code space and network re-
source usage. Therefore, the Constrained RESTful environ-
ments (CoRE) working group has defined a REST-based web
transfer protocol called Constrained Application Protocol
(CoAP). CoAP includes the HTTP functionalities which have
been redesigned considering the low processing power and en-
ergy consumption constraints of small embedded devices [20].
CoAP is based on a REST architecture in which resources are
server controlled abstractions made available by an application

26

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

process and identified by Universal Resource Identifiers (URIs)
and they can be manipulated by means of the same methods as
the ones used by HTTP.

The first significant difference between HTTP and CoAP is the
transport layer. HTTP relies on the Transmission Control Proto-
col (TCP). TCP’ flow control mechanism is not appropriate for
LLNs and its overhead is considered too high. Therefore CoAP
has been built on top of the User Datagram Protocol (UDP),
which has significantly lower overhead. As represented in Fig-
ure 2.18, CoAP is organized in two layers. The transaction layer
handles the single message exchange between end points,
which can be of four types: Confirmable (it requires an ac-
knowledgment), Non-confirmable (it does not need to be ac-
knowledged), Acknowledgment (it acknowledges a Con-
firmable message) and Reset (it indicates that a Confirmable
message has been received but context is missing to be pro-
cessed). It also provides support for multicast and congestion
control.

Figure 2.18 CoAP protocol stack [20].

The Request/Response layer is responsible for the transmission
of requests and responses for the resource manipulation and
transmission. A REST request is piggybacked on a Confirmable
or Non-confirmable message, while a REST response is piggy-
backed on the related Acknowledgment message. Figure 2.19
shows an example of a typical REST request-response transac-
tion.

27

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Figure 2.19 CoAP request-response example, using a con-
firmable message.

The dual layer approach allows CoAP to provide reliability
mechanisms even without the use of TCP as transport protocol.
In fact, a Confirmable message is retransmitted using a default
timeout and exponential back off between retransmissions, until
the recipient sends the Acknowledgement message. In addition,
it enables asynchronous communication, because when a CoAP
server receives a request which is not able to handle immedi-
ately, it first acknowledges the reception of the message and
sends back the response in an off-line fashion [20].

One of the major design goals of CoAP has been to keep the
message overhead as small as possible and limit the use of frag-
mentation. CoAP uses a short fixed length compact binary
header of 4 bytes followed by compact binary options. A typical
request has a total header of about 10-20 bytes.

Since a resource on a CoAP server likely changes over time, the
protocol allows a client to constantly observe the resources. In a
GET request, a client can indicate its interest in further updates
from a resource by specifying the “Observe” option. If the
server accepts this option, whenever the state of the resource
changes it notifies each client having an observation relation-
ship with the resource. The duration of the observation relation-
ship is negotiated during the registration procedure.

Although CoAP is a work in progress, various open source im-
plementations are already available. The two most known oper-
ating systems for WSNs, Contiki and Tiny OS, have already re-
leased CoAP implementation libraries, named Erbium and
CoapBlib respectively.

28

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

2.5 Related work
Applications that utilize information from sensors attached to
different things in order to provide more personalized, automa-
tized, or even intelligent behavior are commonly referred to as
IoT applications [8]. The prediction is that these kinds of appli-
cations will be able to interact with an IoT, a worldwide net-
work of interconnected everyday objects, and thereby be able to
display context-aware behavior [21]. There is also an interest-
ing relationship between the IoT and big data, since all of the
connected things will produce and consume large amounts of
data. In order to enable a widespread proliferation of IoT ser-
vices there must be a common platform for dissemination of
sensor and actuator information on a global scale. However,
there is a large number of practical difficulties that must be
solved to achieve this goal. The main requirements that an IoT
platform should satisfy are the following:

Scalable: logarithmic or better scaling of communication load
in end points;

No central point of failure: fully distributed platform;

Bidirectional: enabling communication between sensors/actua-
tors and the IoT applications in both ways;

Fast: capable of signaling in real time between end points;

Lightweight: able to run on devices with limited resources;

Seamless: capable of handling heterogeneous infrastructures
and different end user devices;

Stable: all queries into the platform should return an answer;

Extensible: capable of adding new features and modules with-
out complete redistribution.

2.5.1 SensibleThings
The SensibleThings platform is an open source architecture for
enabling IoT based applications, developed by Mid Sweden

29

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

University. An overview of the platform and its components is
presented in Figure 2.20. It shows how the platform is distrib-
uted over a number of entities connected to the Internet. The
Figure shows how an application which is running a client of
the SensibleThings platform (SensibleThinghs instance) com-
municates with other entities running the platform. A client can
acquire sensor and actuator information of the other partici-
pants. Furthermore, the platform can act as both a producer and
consumer of sensor and actuator information at the same time,
enabling bidirectional exchange of context information [22].

Figure 2.20: Overview on the function of the SensibleThings
platform.

The SensibleThing platform is a realization and implementation
of the MediaSense architecture explained in [22]. The code is
based on a fork of the MediaSense platform, but with signifi-
cant improvement. The focus has been on the open source as-
pect and maintaining the commercialization possibilities of ap-
plications that are utilizing the platform. The platform is orga-
nized in several levels, as represented in Figure 2.21.

30

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Figure 2.21: SensibleThings platform architecture.

Interface Layer: the public interface through which applica-
tions interact with the SensibleThings platform, using its API's.

Add in Layer: enables developers to add optional functionality
and optimization algorithms to the platform, which can be
loaded and unloaded in runtime when needed.

Dissemination Layer: it enables dissemination of information
between all entities that participate in the system and are con-
nected to the platform. Therefore, it enables registration of sen-
sors in the platform, resolving the location of a sensor in order
to find it, and the communication to retrieve the actual sensor
values.

Networking Layer: it manages connection of different entities
over current Internet Protocol (IP) based infrastructure.

Sensor and Actuator Layer: it enables different sensors and
actuators to connect into the platform into two different ways. If
they are accessible from the application code, they can be con-
nected directly. Otherwise, the sensors and actuators can con-
nect through the sensor and actuator abstraction, which enables
connectivity either directly to WSNs or via more powerful gate-
ways.

31

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

2.5.2 ETSI M2M
The ETSI Machine to Machine (M2M) technical committee
was created in January 2009 at the request of many telecom op-
erators to create a standard system-level architecture for mass
scale M2M applications. The ETSI M2M architecture is re-
source centric and adopts the RESTful style. It aims at integrat-
ing all of the existing standard or proprietary automation proto-
cols into a common architecture. The ETSI M2M system archi-
tecture, represented in Figure 2.22, separates the M2M device
domain and the network and applications domain.

Figure 2.22 ETSI M2M architecture [23].

M2M Device: this kind of device can connect to the M2M net-
work domain directly or via M2M gateways acting as a network
proxy. A M2M Device is a device capable of replying to request
for data contained within those devices or capable of transmit-
ting data autonomously.

M2M Gateway: a gateway module runs a M2M application
which offers M2M capabilities and act as a bridge between
M2M devices and the M2M Access Network. Devices without
M2M capabilities built-in can go through M2M gateway to in-
terconnect and interwork with the M2M access network. M2M
gateways can be cascaded or operate in parallel mode.

32

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

M2M Area Network: a wired or wireless access network pro-
vides connectivity and transport of M2M data/messages be-
tween M2M devices, M2M gateways and M2M servers. Some
M2M area network technologies include: PWLAN, ZWave,
Zigbee, Bluetooth.

M2M Access Network: it manages the communication be-
tween the M2M Gateways and M2M Applications. This layer is
also responsible for defining the transport protocol used for net-
work communication, such as IP transport networks.

Core network layer: it provides service and network control
functions, network to network interconnect and roaming sup-
port. This is the central part of the M2M communication net-
work that provides various services to service providers con-
nected via the access network such as WiMAX, DSL, WLAN.

M2M service capabilities layer: this is an abstraction layer of
the M2M software where common functionalities are imple-
mented to serve the M2M application. It provides a set of APIs
to expose the M2M service capabilities closest to the applica-
tion using them.

M2M Application: this is a software running in the middle-
ware layer designed to perform specific business processes over
the M2M Core network [23].

2.5.3 SENSEWEB
SenseWeb is a IoT platform developed by Microsoft, through
which IoT applications can initiate and access sensor data
streams from shared sensors across the entire Internet. The
SenseWeb infrastructure helps ensure optimal sensor selection
for each application and efficient sharing of sensor streams
among multiple applications. The SenseWeb layer architecture
is shown in Figure 2.23.

33

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Figure 2.23: SenseWeb architecture [24].

Coordinator layer: is the central point of access into the sys-
tem for all applications and sensor contributors. The functions
of the coordinator are internally divided between two compo-
nents: the tasking module and senseDB. The tasking module ac-
cepts the application's sensing queries and tries to satisfy these
from available sensing resources considering their capabilities.
The senseDB manages the overlap among multiple application
needs. Specifically, when multiple applications need data from
overlapping space time windows, senseDB attempts to mini-
mize the load on the sensors or the respective sensor gateways
by combining the requests for common data and using a cache
for recently accessed data. SenseDB is also responsible for in-
dexing the sensor characteristics and other shared resources in
the system to enable applications to discover what is available
for their use.

Sensor gateways: its main task is to hide the complexity re-
garding the heterogeneity of communications interfaces used by
sensor nodes. The gateway might also implement sharing poli-
cies defined by the contributor of the sensors which are using it.
For instance, the gateway might maintain all raw data in its lo-
cal database, possibly for local applications the sensor owner
runs, but only make certain nonprivate sensitive parts of the

34

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

data or data at lower sampling rates available to the rest of
SenseWeb.

Mobile proxy: is a special gateway built for mobile sensors,
which makes the mobility of sensing devices transparent to the
applications providing location-based access to sensor readings.
Applications simply express their sensing needs and the mobile
proxy returns data from any devices that can satisfy those
needs.

Data transformer: a transformer converts data semantics
through processing. Data transformers can also fuse data and
provide data visualization services. Transformers are indexed at
the coordinator and applications might discover and use them as
needed [24].

35

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

3 Methodology
In order to reach the goals described in Chapter 1.3, this project
will be divided into three different phases: a study phase, an im-
plementation phase and an evaluation phase. During the first
phase a survey about different possibilities of connecting WSN
to an IoT will be made; then the most common operating sys-
tems and communication protocols used in WSN will be ana-
lyzed. After these surveys, a solution for the problem statement
explained in chapter 1.2 will be designed and then imple-
mented. In the last phase the performance of the developed so-
lution will be evaluated and finally a proof of concept applica-
tion will be created. During the whole work process, I will have
weekly meetings with the Professor in order to show my own
progress through PowerPoint presentations. To achieve all the
goals the following methods are to be used:

To achieve the first goal, on finding three different solutions of
connecting WSNs to an IoT scenario, documents will be col-
lected regarding existing software platforms which enable the
communication between WSN and IoT applications. This will
will be done by searching articles and papers on research data-
bases.

To achieve the second goal, on understanding the most common
OS used in WSN, the most common operating systems for
WSNs will be assessed, by searching the Internet and find out
what other people have used.

To achieve the third goal, on investigating which communica-
tion protocols these OS support, documentation about these OS
will be scrutinized and some simulations will be executed using
the supported communication protocol, in order to learn how to
use it.

To achieve the fourth goal, on implementing a communication
stack which enables communication between WSNs and IoT

36

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

applications, the documentation of the platform will be ana-
lyzed and some simulations will be run in order to discover its
features. This platform will be extended by implementing a
communication stack which connects WSNs with IoT applica-
tions.

To achieve the fifth goal, on evaluating the performances and
responsiveness of my implemented solution, tests will be exe-
cuted to measure the response time, the scalability and the over-
head introduced by this communication stack.

To achieve the sixth goal, on finding possible real-world appli-
cations for the implemented solution, various scenarios will be
investigated in order to understand which would be the best ap-
plication for the communication stack that has been developed.
Finally, a proof of concept application will be developed in or-
der to simulate the chosen application, implementing some poli-
cies to enable the collaboration between multiple WSNs.

After having achieved all the goals, the entire thesis work
process will be evaluated by investigating other possible ap-
proaches. A survey will be then performed in order to under-
stand if I would have had different results using different sys-
tems, such as a different OS and communication protocol for
the WSN. Finally, possible future work related to my thesis will
be proposed.

37

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

4 Implementation
In this chapter the implementation of the CoAP communication
stack is described. As presented in Figure 4.1 the CoAP stack
extends the SensibleThings platform and it is formed by two
main classes: CoapSensorActuator and CoapSensorGateway.
The first one allows the communication between the platform
and a WSN which supports the CoAP protocol. The second one
realizes a gateway between the CoapSensorActuator class and
sensors which do not support the CoAP protocol. In this chapter
the architecture of the WSN which has been utilized in this the-
sis is explained. Next, the structure of CoAP packets and the
extended layers of the SensibleThings platform are described.

Figure 4.1: CoAP communication stack architecture.

The architecture of the WSN used in this work consists of one
mote connected to a computer via a USB cable, which acts as a
sink, and one or more motes that communicate with the sink
through the IEEE 802.15.4 medium, which are the actual sensor
nodes. The motes that have been used in this thesis are TelosB
motes running Tiny OS as operating system. Figure 4.2 shows
an example of a WSN.

38

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Figure 4.2: TelosB motes WSN.

In order to use the CoAP protocol on the motes, the CoAPBlib
library has been installed on the sensor nodes. Moreover, to en-
able the communication between the motes and the Linux ma-
chine the PPPRouter application needs to be installed on the
sink mote. This application is IPv6 based and basically re-
ceives/forwards packets on a specified IEEE 802.15.4 channel
and forwards/receive the packets to the computer using the
Point to Point Protocol.

In appendix A some guidelines on how to install the CoapBlip
library and the PPPRouter application are reported.

Each TelosB mote is equipped with multiple sensors which are
identified by specific URI's, as represented in the following ta-
ble:

Sensor URI

Led \l

Temperature \st

Humidity \sh

Voltage \sv

Temperature + Humidity +
Voltage

\r

In order to test the system, within the CoapBlip library an ex-
ample client application is provided (at
/support/sdk/c/coap/examples). With this application, it is possi-

39

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

ble to send CoAP requests to the motes from the Linux Termi-
nal. For example, the request for getting the leds' status would
be:”./coap-client coap://[fec0::3]/l” [25]. In Figure 4.3 an output
for this request is represented.

Figure 4.3: CoAP GET request example.

4.1 SensibleThings platform
The CoAP communication stack extends the Sensor and Actua-
tor layer of the SensibleThings platform, which has already
been described in paragraph 2.5.1. This platform enables multi-
ple nodes to communicate and to exchange data over the Inter-
net. This feature then has been used to connect multiple remote
WSNs together and to build applications for managing the re-
trieved data from various nodes.

A component called SensorActuatorManager has been used in
order to bind the CoAP stack with the SensibleThings platform.
This component is included in the Sensor and Actuator layer
and his main task is to manage the requests between the plat-
form and this layer. It implements six methods:

• connectSensorActuator(): it is for connecting any
sensor/actuator in the network. Basically, after this call,

40

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

the sensor/actuator will be registered and available inside
the platform.

• disconnectSensorActuator() and disconnectAllSenso-
rActuators(): are called for disconnecting a specific sen-
sor and all the sensors from the platform, respectively.

• HandleGetEvent() and HandleSetEvent(): this method is
called from the platform, to forward a getEvent/setEvent
to the sensors.

In Figure 4.4 the sequence of methods called within a GET re-
quest between two remote nodes is shown.

Figure 4.4: GET request.

4.2 CoAP packet structure

A CoAP packet is formed by a 4 bytes binary header followed
by an option field and a payload. The length of the message
payload is implied by the datagram packet length. The structure
of a CoAP packet is shown in Figure 4.5.

41

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Figure 4.5: CoAP packet format.

The fields within the packet header are:
Ver: Version, 2 bit unsigned integer. This value indicates the
version of CoAP protocol. To set this field correctly for the
CoAPBlib library, 1 has to be set as its value. Other values are
reserved for future versions.

T: Transaction type field, 2 bit unsigned integer. This field indi-
cates if this message is Confirmable (0), Non-confirmable (1),
Acknowledgment (2) or Reset (3).

OC: Option count field, 4 bit unsigned integer. This field indi-
cates how many option headers follow the base headers. If set
to 0 the payload (if any) immediately follows the base header.

Code: 8 bit unsigned integer. It indicates the Method or the Re-
sponse Code of a message. The method codes are reported in
the following table:

The CoAPBlip library only allows get and put methods, how-
ever. The values 40-225 are used for Response Codes. The
CoAP stack developed in this thesis only uses the values 80
(HTTP code: 200 OK) and 160 (HTTP code: 400 Bad request).

Transaction ID: 16 bit unsigned integer. This value identifies
each CoAP transaction since this is a unique ID assigned by the
source. The response message for each request must contain the

42

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

same transaction ID as the request message. This value must
also be changed for each new request except when retransmit-
ting a request.

CoAP messages may also include one or more header options in
Type Length Format (TLV) and they have to appear in order of
option type. The option types used in the CoAP stack were:
URI path (for specifying the sensor URI within a sensor node,
Type number: 9),Token (for sending the data payload in a PUT
request, Type number: 11) and Content Type (which indicates
the Internet media type of the token, Type number: 1). A delta
encoding is used between each option header, with the Type
identifier for each Option calculated as the sum of its Option
Delta field and the Type identifier of the preceding Option in
the message, if any, or zero otherwise. Each option header also
includes a Length field, as represented in Figure 4.6.

Figure 4.6: Option field format.

Option delta: 4 bit unsigned integer. This field defines the dif-
ference between the option Type of this option and the previous
one (or zero for the first option). In other words, the Type iden-
tifier is calculated by simply summing the Option delta fields of
this one and previous options.

Length: 4 bit unsigned integer. This field specifies the length of
the option payload.

Figure 4.7 shows a basic request sequence. A client makes a
Confirmable GET request for the resource/temperature to the
server with a Transaction ID of 1234. The request includes one
URI-Path Option (delta 0 + 9 = 9) "temperature" of Len = 11.
The corresponding Acknowledgment is of Code 200 OK and in-
cludes a Payload of "22.3 C". The Transaction ID is 1234, thus
the transaction is successfully completed. The response Con-
tent type of 0 (text/plain) is assumed as there is no Content type
Option [26].

43

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Figure 4.7: CoAP get transaction example.

4.3 CoapSensorActuator
CoapSensorActuator is responsible for the communication be-
tween the platform and the sink of a WSN, through the CoAP
protocol. Its main task is to create CoAP packets, send them to
a mote and parse the response message.

It extends the SensorActuator abstract class and implements its
two methods getValue() and setValue(), as shown in Figure 4.8.
The constructor gets the IP address of the mote and the sensor
UCI. At the end of the IP address the URI of the sensor also
needs to be specified by the user.

44

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Figure 4.8: CoapSensorActuator UML scheme.

getValue(): this method is called by the SensibleThings plat-
form every time a CoAP GET request has to be sent to a mote.
It is a synchronized method because only one thread at a time
can send a GET request to a mote. According to the CoAP pro-
tocol standard, getValue creates a CoAP packet using the cre-
ateCoapGetMessage() method. Then it uses a DatagramSocket
to send the packet to the mote at the specific IP address set by
the user. However, the number of the port cannot be chosen by
the user, since CoAPBlip on TelosB motes always uses the de-
fault port 61616 to receive the requests. If the request has been
sent correctly, a response CoAP packet is received on the same
socket. To parse the received packet, in order to extract the
value of the sensor reading, the method readResult() is called.

Since a response message can never be received from the mote,
a timer of 4 seconds is set during the creation of the Datagram-
Socket. If after that period of time the response has not been
received, the lock on the SensorActuator object is released and
a new GET request can be sent.

createCoapGetMessage(): this method builds a CoAP GET
message, according to what has been explained in paragraph
4.3.

45

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

An example packet built by this method for a GET led request
is shown in Figure 4.9.

Figure 4.9: CoAP GET packet.

The first two bytes are constant for each packet created by the
createCoapGetMessage method. Each byte has the following
meaning:

0x41 (0100 0001): within this byte the first three fields of a
CoAP packet are set. The two initial bits represent the proto-
col version number, which must be set to 1. Then the 2 bits
Transaction Type is set to 0, which means that the current
packet is a Confirmable message. The last 4 bits represent the
number of the options that follows the packet header, which is
set to 1. Since this request has to be sent to a specific sensor
within the addressed mote, its URI has to be specified in the
packet. Then the only option used for this request is the sensor's
URI.

0x01: this byte represents the method code. For a GET request,
the value of this field has to be 1.

0xC3\0x5A: this pair of bytes represent the Transaction ID.
These values must be different every time a new packet is cre-
ated. The Random Java Object was used to generate these val-
ues.

0x91 (1001 0001): this byte is the option header. The first four
bits represent the option type, expressed in TLV format. Since
this is the only option in this packet, the TLV value corresponds
to the option type number (9 for the URI option). The length (in
bytes) of the actual option value is set on the last 4 bits.

0x6C: this is the option payload, which contains the value of
the option. Since the only option set by this method is the URI,
this value represents that address in ASCII code. (6C is the

46

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

hexadecimal ASCII code for the character 'l', which is the led
URI.)

readResult(): this method parses a CoAP message and if in the
response code field does not contain an error code, it extracts
the payload data. Since the data sent by the motes are in binary
format, in order to make them readable the binaryToHex()
method is called. However, TelosB motes sensor data need an-
other conversion to be correctly read. This conversion consists
of swapping the order of bytes and then in dividing the data by
100. However, since readResult() is meant to read data from a
general mote, this conversion needs to be implemented at appli-
cation level.

Another issue that has been faced in this method was how to
determine the end of the CoAP packet, since its size depends
only on the datagram packet length and no termination charac-
ters were set by the CoAP protocol. Thus a packet was consid-
ered terminated if a sequence of five 0x00 bytes were found.

binaryToHex(): this method converts binary data to hexadeci-
mal format. It uses the StringBuilder java object in order to for-
mat each byte to hexadecimal format.

setValue(): this method is called by the SensibleThings plat-
form every time a CoAP set request is sent to a mote. As
getValue(), this is a synchronized method which uses a Data-
gramSocket to send a set request to a mote. To create a CoapPut
packet, the method createCoapPutMessage() is called, passing
the value to set as an argument. After having sent the packet to
a mote, a response message is received. It contains a response
code which indicates the status of the PUT request.

createCoapPutMessage(): this method builds a CoAP packet
for a PUT request, setting the specified value as payload of the
packet. Since the value to set needs to be converted in binary
format, the method fromHexString() is called.

An example packet created by this method is represented in
Figure 4.10.

47

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Figure 4.10: CoAP PUT packet.

The first two bytes and the first option field have the same
value for every packet created by this method. These bytes have
the following meanings:

0x43 (0100 0011): the only difference between this field and
the first one of a GET request is that a PUT requires 3 options
instead of 1.

0x03: this value represents the method code for a CoAP PUT
request.

0xCF\0X81: Transaction ID. As for the createGetPacket
method, the Random Java Object is used in order to have differ-
ent values for each transaction.

0x11: this byte is the header of the first option in this packet.
The option type number is 1 (Content type option) and the
length of its payload is set to 1.

0x2A: it is the ASCII code for the Content type option, which
corresponds to '*' (which means 'text/plain').

0x81: this byte is the header of the second option. Since there is
another option before this field, the option type number does
not correspond to the actual type number, but this value is cal-
culated according to the TLV format. Therefore the actual type
number of the current option is calculated by summing the op-
tion delta of the previous option with this one, that is 9 (URI).
The length of the current URI is set to 1 byte.

0x6C: is the ASCII code of the 'l' character.

0x22: is the header of the third option. The option type number
is calculated by summing this option delta with the option
deltas of the two previous options, that is 11 (Token).

48

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

0x33\0x61: when a Token option is used, a constant value ('3a')
must be set before the payload. Then these 2 bytes represent
this value in ASCII code format.

0x02: is the packet payload. This value represents the led status
that the user wants to set.

fromHexString(): this method converts a hexadecimal string in
an array of bytes. It basically parses two hexadecimal values at
a time from the string and it converts them to binary format us-
ing the Integer.parseInt() function.

4.4 CoapSensorGateway
CoapSensorGateway enables the communication between the
CoapSensorActuator and sensor nodes which do not support the
CoAP protocol. It is responsible for converting a CoAP request
to the specific format used by the sensor node which is cur-
rently connected to the SensibleThings platform.

This class extends the SensorGateway abstract class and real-
izes a demon Java thread which is always listening to incoming
messages from a Datagram Socket. Once a packet is received it
checks if it is a CoAP packet and then parses all the single bytes
in order to check if it is well formed. Then the type of the re-
quest and the sensor's URI are extracted from the packet.

If it is a GET request the actual request to the sensor node is
sent with the call of the getEvent() method. This method has to
be implemented by the developer within a new class which im-
plements the SensorGatewayListener interface. This class has to
be set as the argument of the CoapSensorGateway constructor.
Then a response CoAP packet is built and, if the GET request
was correctly sent to the sensor node, the sensor data are set as
payload. Otherwise an error code is set in the response code
field.

In case the packet received from the socket was for a PUT re-
quest, the setEvent() method is called for sending the actual re-
quest to the sensor node. As the getEvent() method, it also has

49

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

to be defined by the developer within a new class which imple-
ments the SensorGatewayListener interface.

Eventually the response message is sent back to the address
from which the request was received. In Figure 4.11 a flow
chart representing the sequence of the main operations executed
by the CoapSensorGateway is represented. Due to space limi-
tations, a programming language syntax has been used:
“packet[i]” represents the i-th byte of the received packet, while
“||” and “&&” represents the conjunctions “or” and “and”, re-
spectively.

Figure 4.11: CoapSensorGateway's operations flowchart.

50

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

5 Results
This chapter explains all the tests that have been made in order
to evaluate the CoAP communication stack. The first parameter
that has been measured is the response time; which describes
how fast a CoAP transaction is completed. The second para-
graph describes measurements of the size of a CoAP packet fol-
lowed by a comparision between CoAP packet and standard
UDP packet sent over the SensibleThings platform. The third
paragraph reports a possible real-world scenario for the CoAP
stack and describes a proof of concept application which has
been implemented to test the system. The last paragraph ana-
lyses a battery-saving algorithm and reports the overhead intro-
duced by this algorithm.

5.1 Response time
The first measurement that has been made to evaluate the CoAP
stack was to measure how long a CoAP transaction takes to be
completed. The Java API System.nanoTime() was used to make
these measurements. This API returns the current value of the
most precise available system timer, in nanoseconds. The crite-
ria used in determining the response time was to sample one
hundred different response times and then to calculate the aver-
age and the standard deviation of these values.

5.1.1 CoapSensorActuator response time
First, the response time between the CoapSensorActuator com-
ponent and a TelosB sink was measured. The measurements are
related to the GET and PUT led requests and also GET tem-
perature, humidity and voltage requests. To measure the trans-
action time, two timers have been used: the first one samples
the current time just before the CoapSensorActuator sends a
CoAP request packet and the second one measures the time af-
ter the data payload has been extracted from the response
packet. The difference between these two values represents the
duration of a CoAP transaction.

51

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Within a single transaction, the time for exchanging the
request/response messages with the WSN (which also includes
the time for sensing and building the response packet) and
CoAP request/response building/parsing time were also mea-
sured. In Figure 5.1 the scenario of this test is shown, while in
Figures 5.2, 5.3 and 5.4 these measurements are reported.

Figure 5.1: CoapSensorActuator response time test scenario.

Figure 5.2: Packet building time

The values reported in Figure 5.2 show that building packets for
PUT requests takes a little bit more time than building get pack-
ets. This is because CoAP packets for PUT requests have more
fields than GET packets (as explained in paragraph 4.3) and

52

Get led Put led Get temperatureGet humidity Get volt
0

0,5

1

1,5

2

2,5

3

0,9

2,3

1,2
1,1 1,1

Average

m
s

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

then more calculations are made to build the packet. However,
building CoAP packets takes very little time, so this difference
is almost negligible.

In Figure 5.3 the measurements of the time for exchanging the
request/response messages with the WSN are reported. This
value was measured as the difference between the current time,
sampled just before the CoapSensorActuator sends a CoAP re-
quest packet, and the current time sampled just after the
CoapSensorActuator has received the response packet from the
WSN.

Figure 5.3: Messages exchange and sensing time.

The values reported in Figure 5.3, show that a GET temperature
is the request that takes more time. Since the type of communi-
cation used between the CoapSensorActuator and the WSN is
the same for all of these requests, the time that the request and
response packets take to travel between the node which is run-
ning the CoapSensorActuator and the WSN, is almost the same
for every type of request (around 70 microsec). So, what makes
this value so different from the others is the time that the mote
takes to sense the temperature and then to build the response
packet, which is included within the values represented in Fig-
ure 5.3.

53

Get led
Put led

Get temperature
Get humidity

Get volt-35

15

65

115

165

215

265

315

51 54

297

130

91

Average

m
s

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Figure 5.4 shows the time required for parsing a CoAP response
packet sent back from the sink of a WSN. The duration for all
the requests is almost equivalent, however, parsing a GET led
response packet takes a little bit less time because the data pay-
load to be extracted from the packet is smaller in size than that
one of the other kind of GET requests. Parsing a PUT led re-
quest packet takes even less time because that packet doesn't
contain any payload to be processed.

Figure 5.4: Packet parsing time measurements.

In Figure 5.5 the whole duration of a CoAP request is repre-
sented.

Figure 5.5: Transaction time measurements.

54

Get led
Put led

Get temperature
Get humidity

Get volt

0

50

100

150

200

250

300

350

58 62

305

138

99
Average

m
s

Get led
Put led

Get temperature
Get humidity

Get volt

0

1

2

3

4

5

6

7

8

9

5,9
5,1

7,4 7,1 7

Average

m
s

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

From this Figure it is clear that GET temperature is the request
that takes more time so far. Comparing Figures 5.2, 5.3 and 5.4
it is clear that most of the transaction time is related to the delay
introduced by the WSN for sensing and computing the response
packet. That means that the delay introduced from the
CoapSensorActuator to build and parse CoAP packet is almost
negligible, compared with that one introduced by the TelosB
WSN.

Another value that was measured was the overhead introduced
by the SensibleThings platform. That time was measured as the
difference between a request and a response packet within a sin-
gle CoAP transaction to travel between two remote nodes con-
nected to the platform. The first node was a computer which
was running an application for retrieving sensor data from a re-
mote node, which was a WSN connected to the SensibleThings
platform; as represented in Figure 5.6. In Figure 5.7 the related
measurements are reported. Analyzing these values it appears
that the average delay introduced by the SensibleThings plat-
form is about 150 ms.

Figure 5.6: SensibleThings overhead test scenario.

55

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Figure 5.7: Average transaction time.

5.1.2 CoapSensorGateway response time
In order to evaluate the CoAP stack, the CoapSensorGateway
was taken into consideration. To measure the overhead intro-
duced by this component a Raspberry Pi device was used.

The first step was to measure the transaction time between the
Raspberry Pi (which was directly connected to the Sensi-
bleThings platform) and a remote computer which was running
a simple application for sending GET requests through the plat-
form. To connect the Raspberry Pi to the SensibleThings plat-
form, the software of the platform was installed on the Rasp-
berry Pi and then a simple application was run on it to register
its IP address and its sensor UCI inside the platform. In this
way the Raspberry Pi could directly receive requests and send
responses from and to the platform.

The second step was to use the CoapSensorGateway to connect
the Raspberry Pi to the SensibleThings and then measure the
transaction time between this device and a remote computer. In
this scenario the requests sent by the remote application are
converted in CoAP requests by the CoapSensorActuator and
then handled by the CoapSensorGateway which is directly con-

56

Get led
Put led

Get temperature
Get humidity

Get voltage

0

50

100

150

200

250

300

350

400

450

500

58 62

305

138

76

219 225

441

304

226 Direct communication

Through SensibleThingsm
s

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

nected to the Raspberry Pi through a datagram socket. Since the
Raspberry Pi was equipped with just a temperature sensor, only
GET temperature requests were considered. In Figure 5.8 both
the scenarios are represented, while in Figure 5.9 the measure-
ments are reported.

Figure 5.8: CoapSensorGateway test scenarios.

Figure 5.9: CoapSensorGateway test results (1).

57

Scenario 1 Scenario 2
-10

40

90

140

190

240

290

340

390

212

288,7

Average GET transaction
timem

s

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

From the test results it appears that the overhead introduced by
the CoapSensorGateway is pretty low, however, the high value
of the standard deviation says that the duration of each transac-
tion is much more variable than the one in the first scenario.

Eventually, a third scenario was considered, as shown in Figure
5.10.

 Figure 5.10: CoapSensorGateway test, third scenario.

The aim of this test was to measure the transaction time be-
tween a node, running both the CoapSensorActuator and
CoapSensorGateway, and a Raspberry Pi (directly connected
via LAN to the node sending the Coap request). As previously
did for the TelosB motes in a similar test scenario (see Figure
5.1), also for the Raspberry Pi the packet building time, packet
parsing time and messages exchange-sensing time were mea-
sured. In Figure 5.11 these values are reported.

58

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Figure 5.11: CoapSensorGateway test results (2).

5.2 Packet size
The second parameter used to evaluate the CoAP stack was the
size of the packets. In order to extract packets from the network
dataflow a software named Wireshark was used. Wireshark is a
free and open source packet analyzer. It is used for network
troubleshooting, analysis, software and communications proto-
col development. This software allows the user to put network
interface controllers in order to see all traffic visible on that in-
terface.

The goal was to compare the GET packets sent over the Sensi-
bleThings platform with the CoAP GET packets sent from the
CoapSensorActuator to the WSN and then analyze their size.
Two computers and a WSN have been used in this test. The first
computer was running a simple application to send GET re-
quests to a remote WSN through the SensibleThings platform,
while the second computer was directly connected to the WSN
and had the task of managing the CoAP communication with
the WSN (as represented in Figure 5.12).

59

Packet building
Msg exchange and sensing

Packet parsing
Whole transaction-5

5

15

25

35

45

55

65

75

85

1

64

9

74

Average transaction timem
s

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Figure 5.12: Packet size test scenario.

Figure 5.13: SensibleThings GET packet.

Figure 5.14: CoAP GET packet.

Comparing the packets shown in Figures 5.13 and 5.14 it ap-
pears clear that CoAP packets are smaller in size than the pack-
ets sent over the platform. The actual size of a CoAP packet for
a GET temperature request (that is the packet from Figure 5.9)
is only 7 bytes but the whole size of the packet sent from the
CoapSensorActuator to the WSN is 71 bytes. This is because
the CoAP protocol relies on UDP as transport layer and IPv6 as
network layer (as explained in paragraph 2.4.4), so a packet
must include both IPv6 and UDP headers in order to be sent
over the network. On the other hand, packets sent over the Sen-
sibleThings platform are much bigger in size than CoAP pack-
ets because they are serialized before being sent. An increase in
the size of serialized data is one of the consequences in using
the serialization. Another difference between these two types of

60

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

packets is that SensibleThings packets rely on TCP and IPv4 as
transport protocol and network protocol, respectively.

5.3 Scalability
The third test that has been conducted was regarding the scala-
bility of the developed communication stack. The first idea was
to test the scalability of the CoapSensorActuator component in
order to measure how many motes could be connected to the
same sink before the requests coming from this WSN had
caused a drop in the performances of this component (that
means a high increase of the response time for each request).
However, since each CoapSensorActuator component can be
bound to just one mote, this kind of test was then considered
not of interest. Nevertheless, the scalability of the CoapSensor-
Gateway was considered of interest. Since this component is
implemented as a daemon thread which is continuously listen-
ing for incoming CoAP requests, a test was run to see how
many requests it could have managed before having a signifi-
cant drop in the response performance. The idea was to create a
simple application which created and then run a set of threads,
where each one created and used its own CoapSensorActuator
object for sending multiple CoAP GET requests to the
CoapSensorGateway; as shown in Figure 5.15. It was then mea-
sured how many requests coming at the same time from differ-
ent threads could have been managed by the CoapSensorGate-
way before having a significant increase in the transaction time.
To not add any further overhead, no sensor nodes were con-
nected to the CoapSensorGateway; therefore a static value was
sent as a response value for a GET request. Three measure-
ments with different number of threads have been conducted:
10 threads in the first one, 100 in the second one and 1,000 in
the last one. The transaction time was sampled after different
numbers of requests sent to the CoapSensorGateway, as the re-
sults in Figure 5.16, 5.17 and 5.18 show.

61

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Figure 5.15: Scalability test scenario.

Figure 5.16: Scalability test results with 10 running threads.

The results show an increase in the response time, related to the
number of the running threads as expected. However, in both
the scenarios with 10 and 100 running threads there is a linear
increase of the transaction time within the first 1000 requests
and afterwards this value remains almost steady. This behavior
indicates that the CoapSensorGateway was able to manage such
a number of requests without having further drop in the perfor-
mance.

62

10 requests
100 requests

1000 requests
5000 requests

10000 requests

0

50

100

150

200

250

300

350

163

249 251
271

306

Average transaction time

m
s

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Figure 5.17: Scalability test results with 100 running threads.

Figure 5.18: Scalability test results with 1000 running threads.

On the other hand, the results with 1,000 threads running at the
same time were different, since there was a huge increase of the
transaction time between the 100th and the 1000th request and
that value kept increasing afterwards; exceeding the value of
9000 ms at the 10000th request (as shown in Figure 5.18). This
is an unwanted result which suggests that this number of re-

63

10 requests
100 requests

1000 requests
5000 requests

10000 requests

0

500

1000

1500

2000

2500

3000

313

1447

2616 2711 2715

Average transaction time

m
s

10 requests
100 requests

1000 requests
5000 requests

10000 requests

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

337

1498

7599

8656
9241

Average transaction time

m
s

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

quests was too high to be managed by the CoapSensorGateway.
One of the main reasons for this behavior is caused by the syn-
chronization used in both get and set methods within the
CoapSensorActuator. When the number of requests is high as in
this last scenario, each request sent from the same CoapSenso-
rActuator object has to wait for the previous one to be termi-
nated, thus there is a huge increase in the response time for each
new request. This result could be improved by modifying the
code of both get and set methods in a way that they could man-
age multiple requests at the same time.

5.4 Proof of concept application
In order to test both the CoapSensorActuator and the CoapSen-
sorGateway, a proof of concept application has been developed.
This application simulated a real-world application that is very
common in Sweden: a fire detection system. This test was an
important part of this thesis work since it was helpful to test all
the developed components together and to discover problems
which would not surface if only testing each component indi-
vidually.

5.4.1 Potential real-world scenario
The forest is considered one of the most important and indis-
pensable resources as well as the protector of the Earth's eco-
logical balance. Forest fires are a constant threat to these eco-
logical guardians. Recently, with the effect of factors such as
climatic fluctuations, human activities, etc., a tendency of in-
tense increase of forest fires was showed. At present, traditional
forest fire prevention measures have been ground patrolling,
watch towers, aerial prevention, long distance video detection
and satellite monitoring and so on. In view of all the deficien-
cies of conventional forest fire detection, it is necessary to bring
in a new method for a more efficient ground forest fire detec-
tion system.

Compared with the traditional techniques of forest fires detec-
tion, WSNs technology is a very promising green technology
for the future in efficiently detecting forest fires; according to

64

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

the features explained in paragraph 2.2. In this case, a WSN
could be deployed to detect a forest fire in its early stages. A
number of sensor nodes would need to be pre-deployed in a for-
est. Each sensor node could then gather different types of row
data from sensors, such as temperature, humidity, pressure and
position. All sensing data would be sent wirelessly in ad-hoc
fashion to a sink station, which in turn would transmit data to
the control center via a transport network such as GSM, UMTS,
Satellite, TCP/IP networks. In Figure 5.19 a possible scenario
of a WSN deployment for fire detection is shown.

Figure 5.19: WSN fire detection scenario.

On the control center the sensor data could then be used to de-
tect forest fires. To detect fires many different techniques could
be implemented, however the two most common solutions are
the Canadian system and the South Korean system, as ex-
plained in [27].

5.4.2 Implementation and results
The scenario explained in the previous paragraph was imple-
mented in small scale in a computer lab of the university. In this
test three machines have been used, which were interconnected

65

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

by the SensibleThings platform. The first machine was con-
nected to a Raspberry Pi (equipped with a temperature sensor)
through a Local Area Network (LAN) and was running both the
CoapSensorActuator and CoapSensorGateway classes in order
to communicate with the Raspberry Pi. The second node was a
notebook which was connected through a USB cable with two
WSNs formed by 2 TelosB motes each (the first one used as a
sink and the other one as a standard WSN mote). In this node
two different instances of the CoapSensorActuator object were
created in order to enable the communication between the Sen-
sibleThings node and both the WSNs. The third machine repre-
sented the control center of the system and was running the
proof of concept application. In Figure 5.20 the before men-
tioned scenario is represented.

 Figure 5.20: Proof of concept application scenario.

This test tried to simulate a scenario where the sensors de-
ployed in a forest were developed by different manufacturers
and the CoAP protocol was not supported by all of them. For
this reason, two different kinds of devices were used: TelosB
motes and a Raspberry Pi, which is a credit card sized single
board computer. Since the Raspberry Pi did not support the
CoAP protocol, it was necessary to use the CoapSensorGate-
way in order to enable the communication between the platform
and this device. Moreover, a server application for the Rasp-

66

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

berry Pi was implemented. This application realizes a Java dae-
mon thread which is always listening for incoming requests
from the CoapSensorGateway on a datagram socket and then
uses the same socket to send its sensor data (which are periodi-
cally saved in a file on the Raspberry Pi's memory).

On the third node the actual proof of concept application has
been developed. The application uses the SensibleThings plat-
form to obtain the actual address of both the temperature sen-
sors within the Raspberry Pi and the first TelosB mote, specify-
ing their UCIs ('alessandro@miun.se/tinyos/temperature' and
'alessandro@miun.se/raspberrypi/temperature', respectively)
and then to collect temperature data from them. Once it has re-
ceived the temperature from both the sensors, the application
checks if the average of both the values is above a certain
threshold (19 °C). If it is, a Set led request is sent to the second
TelosB mote (specifically to its UCI: 'alessandro.aloisi@mi-
un.se/tinyos/led') and then a led is switched on. This action rep-
resents an alarm sent to the nearest fire station in the real world
scenario. In Figure 5.21 the output of the proof of concept ap-
plication is shown.

Figure 5.21: proof of concept application output.

5.5 A battery-saving algorithm
So far, in this thesis report, it has been considered a scenario
where the WSNs were always on. However, a WSN is com-
posed by sensor nodes which are usually small devices
equipped with an energy source (e.g. a battery). Thus, the limits
on size, energy availability and cost induce severe constraints in
terms of computing speed, memory, available bandwidth and
lifetime. By focusing on the potential real world application of
the CoAP stack, as a fire detection system, an underlying re-

67

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

quirement for WSN usability is to achieve a long network life-
time via low-power consumption. Wireless interfaces are
widely recognized to be one of the most relevant factors to
drain battery power. Therefore, a low-power listening (LPL) al-
gorithm has been implemented; which refers to the effective
and widely adopted design guideline to decrease power con-
sumption by switching off radio subsystem periodically.
Through this algorithm it has been possible to define differenti-
ated duty cycles, namely the ratio between the time interval of
radio on and the time interval between two consecutive wake-
ups. The idea was to split up the active period of the WSN in
multiple time slots and to set the duration and the duty cycles
for each time slot.

In order to evaluate the overhead introduced by this algorithm
to the CoapSensorActuator, the response time of various CoAP
transactions with different values of duty cycle were measured.
In particular, the length of each time slot was set to 10000 ms
and 100%, 50%, 10%, 5% duty cycles were considered, respec-
tively. Since the algorithm has been implemented in a way
where a user can set the value of the delay after that the WSN
would switch on, e.g. a duty cycle of 50% for a time interval of
10000 ms means that the wireless interface remains off for the
first 5000 ms and then it switches on for the remaining 5000
ms. For 10% and 5% duty cycles the wireless interface would
switch on after 9000 ms and 9500 ms, respectively. Eventually,
a 100% duty cycle means that the wireless interface remains on
for the whole active period.

In figures 5.22, 5.23, 5.24 and 5.25 the results of the measure-
ments are reported.

68

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Figure 5.22: Transaction time with 100% duty cycle.

Figure 5.23: Transaction time with 50% duty cycle.

69

Get led
Put led

Get temperature
Get humidity

Get volt

0

50

100

150

200

250

300

350

58 62

305

138

99

Average

m
s

Get led
Put led

Get temperature
Get humidity

Get volt

4900

4950

5000

5050

5100

5150

5200

5250

5300

5350

5052 5063

5302

5133
5097

Average

m
s

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Figure 5.24: Transaction time with 10% duty cycle.

Figure 5.25: Transaction time with 5% duty cycle.

The results of the tests show that the length of each transaction
increases linearly with the increase of the delay after which the
wireless interface switches on.

70

Get led
Put led

Get temperature
Get humidity

Get volt

8900

8950

9000

9050

9100

9150

9200

9250

9300

9350

9059 9067

9321

9130
9100

Average

m
s

Get led
Put led

Get temperature
Get humidity

Get volt

9400

9450

9500

9550

9600

9650

9700

9750

9800

9850

9557 9570

9810

9641

9595
Average

m
s

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

6 Conclusion
The problem treated in this thesis is perhaps one of the most
challenging for IoT developers. The thesis investigated enabling
communication between IoT and WSNs, irregardless of their
network connection and then to utilize the sensors data for con-
text aware applications. In order to solve the problem, the goals
described in chapter 3 were achieved using the following
methods:

Goal 1: evaluating three different solutions of connecting
WSNs to an IoT scenario was achieved by searching for articles
and papers in many research databases and then analyizing
three different IoT platforms: SensibleThings, ETSI M2M and
SENSEWEB.

Goal 2: understanding the most common operating systems
used in WSN, resulted in discovering TinyOS and Contiki. I
studied the documentation about these OS in order to assess
which was the best to be used in my thesis. Eventually I con-
cluded that TinyOS was the best option, since Contiki does not
work well with TelosB motes because the commands are set for
a type of sky motes that is not valid for TelosB motes new ver-
sions.

Goal 3: investigating which communication protocols these
operating systems support, was achieved analyizing the
documentation about these OSs. This research led me to choose
the CoAP protocol for its compatibility with TelosB motes and
its lightweight protocol stack.

Goal 4: to implement a communication stack which enables
communication between WSNs and IoT applications, led to the
analysis of the SensibleThings platform and running some
simulations to discover its features. The Sensor and Actuator
Layer of the platform was then extended with the CoapSenso-
rActuator and CoapSensorGateway classes.

71

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Goal 5: to evaluate the performance and responsiveness of the
implemented solution, some tests were run in order to measure
the get/set transactions response time and then compared these
values with the response time of the SensibleThings get/set
transactions to measure the overhead introduced by the CoAP
stack. Moreover, a packet sniffer software was used in order to
extract the packets from the network data flow and then, some
comparisons between the packets created by the SensibleThings
platform with the ones built by the CoAP stack, were made.
Furthermore, the scalability of the CoapSensorGateway was
tested, measuring how many requests could it manage before
having a drop in the performance. Eventually, the overhead in-
troduced by a battery-saving algorithm was measured.

Goal 6: investigating possible real-world applications for the
implemented solution, I concluded that this research could be
applied to a fire detection system, especially introduced in the
prevention of fires in forests, a prominent geographical feature
in Sweden. Eventually I developed a proof of concept applica-
tion in order to simulate this system in a small scale and to also
test the developed classes.

6.1 Discussion
Many choices regarding the tools and the methods that have
been used in this thesis work were forced by the type of motes
that I had to use, the TelosB motes. Since this type of mote sup-
ports only Tiny OS and Contiki I could not test other operating
systems, like MantisOS or Nano-RK; which would have been
interesting to install in order to compare the performances of all
these IoT OSs. I did experience some problems using Contiki
on the TelosB motes, probably due to some compatibility issues
with the new version of the motes and thus eventually I decided
to use TinyOS. Nevertheless, my choice was consistent with
that of most of the IoT developers, since TinyOS is the most
used OS in WSNs at the moment. The choice to use CoAP as
application protocol (for retrieving sensor data) was forced by
certain limitations. Indeed, the documentations of TinyOS is
quite unspecific and I was not able to figure out if this OS sup-

72

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

ported other kinds of application protocols. However, CoAP is
supported by the majority of WSN operating systems, therefore
the choice of using this protocol allowed the use of the commu-
nication stack developed in my thesis not only to communicate
with TelosB motes but also with any kind of mote which sup-
ports CoAP.

As a result of my thesis work, the Sensor and Actuator layer of
the SensibleThings platform was extended and as a conse-
quence, the communication between the platform and the
WSNs has been enabled. My work was based on the Sensi-
bleThings platform because it was the IoT platform developed
by Mid Sweden University and to connect the platform with
WSNs was one of the main features which was not imple-
mented yet. However, the CoAP stack that has been imple-
mented could be easily exported to other Java based IoT plat-
forms, since the SensibleThings APIs were not used within the
code. In the following tables the values collected during the
evaluation phase (explained in paragraphs 5.1 and 5.2) are
summarized.

Through
SensibleThings

Direct
communication to

the WSN

GET led transaction
time

219 ms 58 ms

PUT led transaction
time

225 ms 62 ms

GET temperature
transaction time

441 ms 305 ms

GET humidity
transaction time

138 ms 304 ms

GET voltage
transaction time

76 ms 226 ms

Table 1: CoapSensorActuator response time measurements.

73

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Raspberry Pi
connected to the

CoapSensorGateway

Raspberry Pi
directly connected
to SensibleThings

GET transaction
time

288,7 ms 212 ms

Table 2: CoapSensorGateway response time measurements.

SensibleThings
packet

CoAP packet

Request packet size 863 bytes 71 bytes

Response packet
size

264 bytes 70 bytes

Table 3: Packet size test measurements.

Analyzing these values it appears clear that the CoAP stack
added an overhead in terms of response time to the Sensi-
bleThings platform, since the requests coming from a remote
node have to be translated into CoAP requests before being sent
to a WSN. However, the CoAP protocol brings a decrease in the
packet size and makes the developed communication stack
'open', since it can be used to communicate with several differ-
ent types of WSN motes.

6.1.1 Ethical issues
There are many ethical issues that may arise from the IoT. The
biggest one is related to individual privacy. Many people today
wear sensors when they move through their daily lives to track
their heart rate, miles traveled, or steps taken. These activity
monitor sensors are connected wirelessly to smart phones and
to the Internet to enable users to track metrics over time. By
collecting information on people and their habits, companies
will have the ability to infringe upon consumers. Therefore,
when companies have this information readily available to
them, and they have the possibility to increase their revenue
tremendously, they are more likely to infringe upon our privacy.
Another ethical issue of the IoT is that it can discriminate
against certain groups of people that do not have access to the

74

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Internet. There are many countries where lower income families
do not have access to the Internet, so they will not be able to
reap the benefits offered by the IoT. In other words, families
that do not have the money to purchase some of these devices
will be as well off as other more affluent families. In the end
this could cost the lower socioeconomical families more, and
decrease the inefficiencies in higher socioeconomical classes.
The third ethical issue of the IoT is related to security. In this
new media, which is no longer in its infancy, the vulnerabilities
and attacks are various, caused by technological advances and
proliferated through lack of user awareness. This problem is
particularly related to the CoAP communication stack which
has been implemented in this thesis work, since no security
mechanisms were used. All the packets sent between a WSN
sink and a SensibleThings node could be intercepted and modi-
fied. For example, one threat for a real world fire detection sys-
tem could be a fake packet with a high temperature value sent
to the control center in order to simulate a fake fire.

6.2 Future work
Some improvements can be applied to the current work. In rela-
tion to the written code, firstly the system needs to implement
some security mechanism in order to be adapted to real world
applications. For instance cryptographic protocols like SSL and
RSA could be implemented in order to enable secure communi-
cation channels between WSNs and the SensibleThings plat-
form; specifically between the WSN sink and the CoapSenso-
rActuator and also between the CoapSensorGateway and the at-
tached sensor node. Another issue which needs to be solved is
how to handle multiple CoAP transactions. At the moment, both
the GET and PUT methods defined in the CoapSensorActuator
class are synchronized methods, which means that when a re-
quest comes to this component it needs to wait until the previ-
ous one has received a response from the WSN sink. In order to
improve the performance of the system it would be useful to
improve the before mentioned methods in a way where they
could manage multiple CoAP transactions at the same time.

75

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Related to the motes which have been used in this thesis work it
would be interesting to test the implemented communication
stack with other types of motes other than the TelosB mote.
Only motes which support CoAP could communicate with the
CoapSensorActuator and could then be used instead of TelosB
motes. However, if these different types of motes support
CoAP, there should not be any compatibility issues and they
should be able to receive and send CoAP packets from and to
the CoapSensorActuator, respectively.

Other future work that could be interesting would be to export
the classes implemented in this work to other IoT platforms,
like Senseweb and ETSI M2M, in order to figure out which
platform has the best performance. Therefore, both the response
time and the packet size could be measured using different
types of motes and IoT platforms. A comparison between all
these values could be made in order to investigate which would
be the best solution to implement.

76

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

References
[1] Charith Perera, Arkady Zaslavsky, Peter Christen,

Dimitrios Georgakopoulos, Context Aware Computing for
The Internet of Things: A Survey, IEEE Communications
Surveys & Tutorials, Volume xx, Issue x, Third Quarter
2013.

[2] K. Ashton, “That ’internet of things’ thing in the real
world, things matter more than ideas,” RFID Journal,
June 2009, http://www.rfidjournal.com/article/print/4986.

[3] D. L. Brock, “The electronic product code (epc) a naming
scheme for physical objects,” Auto-ID Center, White Pa-
per, January 2001,
http://www.autoidlabs.org/uploads/media/MIT-AUTOID-
WH-002.pdf

[4] M. Presser, A. Gluhak, The Internet of Things: Connect-
ing the Real World with the Digital World, EURESCOM
mess@ge – The Magazine for Telecom Insiders, vol. 2,
2009.

[5] P. Guillemin and P. Friess, “Internet of things strategic
research roadmap,” The Cluster of European Research
Projects, Tech. Rep., September 2009.

[6] European Commission, “Internet of things in 2020 road
map for the future,” Working Group RFID of the ETP
EPOSS, Tech.Rep., May 2008.

[7] B. Sterling, Shaping Things – Mediawork Pamphlets, The
MIT Press.

[8] L. Atzori, A. Iera, and G. Morabito.The Internet of
Things: A Survey.Computer Networks.Vol. 54, No. 15,
pp. 2787-2805. October 2010.

77

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

[9] A. Dey and G. Abowd, “Towards a Better Understanding
of Context and Context-Awareness,” in CHI 2000 Work-
shop on The What, Who, Where, When, and How of
Context-Awareness, 2000, pp. 304–307.

[10] M. Weiser, “The computer for the 21st century,” Scien-
tific American, vol. 265, no. 3, pp. 66–75, July 1991.

[11] Ian F.Akyildiz, Mehmet Can Vuran, Wireless Sensor
Networks, ISBN 978-0-470-03601-3, WILEY, 2010.

[12] Fundamentals of Wireless Sensor Networks , Waltenegus
Dargieand, Christian Poellabauer, Wiley, 2010.

[13] M. Johnson, P. Van De Ven, M. Healy, And M. J. Hayes,
"A Comparative Review Of Wireless Sensor Network
Mote Technologies", Proc. IEEE Sensors Conference, Pp
1695-1701, Auckland, New Zealand, November, 2009.

[14] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K.
Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh, E.
Brewer, D. Culler, “TinyOS: An Operating System for
Sensor Networks”, Ambient Intelligence 2005, pp 115-
148.

[15] Adam Dunkels, Björn Grönvall, and Thiemo Voigt. Con-
tiki-a lightweight and flexible operating system for tiny
networked sensors. In Proceedings of the First IEEE
Workshop on Embedded Networked Sensors (Emnets-I),
Tampa, Florida, USA, November 2004.

[16] Salman N; Rasool I; Kemp AH “Overview of the IEEE
802.15.4 standards family for low rate wireless personal
area networks” in:”Proceedings of the 2010 7th Interna-
tional Symposium on Wireless Communication Systems,
ISWCS'10,” pp.701-705. 2010.

[17] Prativa P. Saraswala “Survey on upcoming ZigBee tech-
nology in future communication system”, IJECSE: Inter-

78

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

national Journal of Electronics and Computer Science en-
gineering Volume 1, Number 3, 2012.

[18] Wikipedia about ZigBee standard 21-02-2014 (Retrieved
March 2014) [www] Available:
http://en.wikipedia.org/wiki/ZigBee.

[19] Zach Shelby and Carsten Bormann,”6LoWPAN: The
wireless embedded Internet-Part 1: Why 6LoWPAN?”,EE
Times, May 23, 2011.

[20] Walter Colitti, Kris Steenhaut, Niccolò De Caro, “Inte-
grating Wireless Sensor Networks with the Web”, IPSN
2011 – Extending the Internet to Low power and Lossy
Networks (IP+SN 2011), April 12-14, 2011, Chicago,
Illinois, USA.

[21] Hong, E. Suh, and S. Kim, “Context-aware systems: A lit-
erature review and classification,,” Expert Systems with
Applications, vol. 36,no. 4, 2009, pp. 8509–8522.

[22] T. Kanter, S. Forsström, V. Kardeby, J. Walters, U. Jen-
nehag, and P. Österberg, “Mediasense–an internet of
things platform for scalable and decentralized context
sharing and control,” in ICDT 2012, The Seventh Interna-
tional Conference on Digital Telecommunications, 2012,
pp. 27–32.

[23] Hersent, Olivier; Boswarthick, David; Elloumi, Omar,
“The Internet of Things: key applications and protocols”,
Chapter 14, p.237-267, 2011.

[24] Grosky, W.I. ; Kansal, A. ; Nath, S. ; Jie Liu, Jie Liu ;
Feng Zhao, Feng Zhao, “SenseWeb: An Infrastructure for
Shared Sensing”, Journal IEEE MultiMedia, Volume 14
Issue 4, October 2007.

[25] CoapBlip guide 11-07-2013 (Retrieved April 2014)
[www] Available: http://tinyos.stanford.edu/tinyos-
wiki/index.php/CoAP_-13.

79

http://en.wikipedia.org/wiki/ZigBee
http://tinyos.stanford.edu/tinyos-wiki/index.php/CoAP_-13
http://tinyos.stanford.edu/tinyos-wiki/index.php/CoAP_-13

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

[26] Coap draft 26-10-2010 (Retrieved April 2014) [www]
Available: http://tools.ietf.org/html/draft-ietf-core-coap-
03.

[27] Kechar Bouabdellah, Houache Noureddine, Sekhri Larbi,
“Using Wireless Sensor Networks for Reliable Forest
Fires Detection”, Procedia Computer Science, Volume 19,
2013, Pages 794-801, The 4th International Conference
on Ambient Systems, Networks and Technologies (ANT
2013)

80

http://tools.ietf.org/html/draft-ietf-core-coap-03
http://tools.ietf.org/html/draft-ietf-core-coap-03

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Appendix A: CoapBlip installation guide
The first step to install the CoapBlib on the motes has been to
install Tiny OS on Linux Ubuntu 12.04 LTS machine. The main
guidelines to install TinyOS are the following:

1. Add the TinyOS respository link (deb http://tinyos.stan-
ford.edu/tinyos/dists/ubuntu natty main) at the end of the
file: /etc/apt/sources.list;

2. Run the command: sudo apt-get install tinyos-2.1.2;

3. Configure permission for user: sudo chown user:user
-R /opt/tinyos-2.1.2/; sudo chown user -R /opt/tinyos-
2.1.2;

4. Add environment variables to bashrc: at the end of that
file add the following lines (export
TOSROOT=/home/user/tinyos-2.1.2; export
TOSDIR=$TOSROOT/tos; export
CLASSPATH=$TOSROOT/support/sdk/java/tinyos.jar:.
$CLASSPATH; export
MAKERULES=$TOSROOT/support/make/Makerules).

Once Tiny OS has been installed on the machine, it is possible
to compile the CoapBlib library. To compile the library, change
directory to /support/sdk/c/coap within the home directory of
Tiny OS and run the following commands: 1-autoconf, 2-./con-
figure, 3-make.

At this point is possible to install the CoapBlib via a USB con-
nection on each mote, running this command:”make telosb blip
coap install,<addr> bsl,/dev/ttyUSB0” within the following di-
rectory: /apps/CoapBlip. It is possible to set the last field of the
mote's IPv6 address, writing the selected value in the <addr>
field.

81

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Then, to enable the communication between the computer and
the motes, the PPPRouter has to be installed on the sink node.
To install this application, connect the sink to the computer with
a USB cable and then execute the following command:”make
telosb blip install bsl,/dev/ttyUSB0” within the following di-
rectory: /apps/PppRouter. Next, to enable the actual PPP con-
nection the following command needs to be run:”sudo pppd de-
bug passive noauth nodetach 115200 /dev/ttyUSB0 nocrtscts
nocdtrcts lcp-echo-interval 0 noccp noip ipv6 ::23, ::24”. Even-
tually, to make the computer reachable from the sink a IPv6 ad-
dress has to be provided to it. Then, in a new terminal run the
following command: ”sudo ifconfig ppp0 add fec0::100/64”.
Now it is possible to send CoAP requests to the motes.

82

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

Abstract in lingua italiana
La crescente presenza di sensori attorno a noi sta aumentando la
necessità di sviluppare applicazioni che consentano di accedere
a dati provenienti da sensori remoti collegati tra loro attraverso
Internet. Per rappresentare questo nuovo scenario è stato coni-
ato un neologismo, riferito all'estensione di Internet al mondo
degli oggetti e dei luogi concreti: 'Internet degli oggetti' (IoT,
acronimo dell'inglese Internet-Of-Things). In questo contesto,
un nodo può essere caratterizzato non solo da un singolo sen-
sore ma anche da reti di sensori che comunichino tra loro in
modalità wireless; in modo da poter coprire aree vaste e scon-
nesse. Questi tipi di reti sono chiamate Wireless Sensor Net-
works (WSNs). L'obiettivo su cui è stata basata questa Tesi di
Laurea è stato proprio quello di integrare la tecnologia delle
WSNs al contesto dell'Internet delle cose. Per poter raggiungere
questo obiettivo, il primo passo è stato quello di approfondire il
concetto dell'Internet delle cose, in modo tale da comprendere
se effettivamente fosse stato possibile applicarlo anche alle
WSNs. Quindi è stata analizzata l'architettura delle WSNs e
successivamente è stata fatta una ricerca per capire quali fos-
sero stati i vari tipi di sistemi operativi e protocolli di comuni-
cazione supportati da queste reti. Infine sono state studiate al-
cune IoT software platforms. Il secondo passo è stato quindi di
implementare uno stack software che abilitasse la comuni-
cazione tra WSNs e una IoT platform. Come protocollo applica-
tivo da utilizzare per la comunicazione con le WSNs è stato us-
ato CoAP. Lo sviluppo di questo stack ha consentito di esten-
dere la piattaforma SensibleThings e il linguaggio di program-
mazione utilizzato è stato Java. Come terzo passo è stata effet-
tuata una ricerca per comprendere a quale scenario di appli-
cazione reale, lo stack software progettato potesse essere appli-
cato. Successivamente, al fine di testare il corretto funziona-
mento dello stack CoAP, è stata sviluppata una proof of concept
application che simulasse un sistema per la rilevazione di in-
cendi. Questo scenario era caratterizzato da due WSNs che invi-

83

Integrating Wireless Sensor Networks and Internet-of-Things: a Coap-based
approach.
Alessandro Aloisi 2014-12-11

avano la temperatura rilevata da sensori termici ad un terzo
nodo che fungeva da control center, il cui compito era quello di
capire se i valori ricevuti erano al di sopra di una certa soglia e
quindi attivare un allarme. Infine, l'ultimo passo di questo la-
voro di tesi è stato quello di valutare le performance del sistema
sviluppato. I parametri usati per effettuare queste valutazioni
sono stati: tempi di durata delle richieste CoAP, overhead in-
trodotto dallo stack CoAP alla piattaforma Sensible Things e la
scalabilità di un particolare componente dello stack. I risultati
di questi test hanno mostrato che la soluzione sviluppata in
questa tesi ha introdotto un overheadmolto limitato alla pi-
attaforma preesistente e inoltre che non tutte le richieste hanno
la stessa durata, in quanto essa dipende dal tipo della richiesta
inviata verso una WSN. Tuttavia, le performance del sistema
potrebbero essere ulteriormente migliorate, ad esempio svilup-
pando un algoritmo che consenta la gestione concorrente di
richieste CoAP multiple inviate da uno stesso nodo. Inoltre,
poichè in questo lavoro di tesi non è stato considerato il prob-
lema della sicurezza, una possibile estensione al lavoro svolto
potrebbe essere quello di implementare delle politiche per una
comunicazione sicura tra Sensible Things e le WSNs.

84

	Abstract
	Acknowledgements
	Acronyms Table
	6LoWPAN: IPv6 over Low power Wireless Personal Area Networks
	AODV: Ad-hoc On Demand Distance Vector Routing
	ASCII: American Standard Code for Information Interchange
	CoAP: Constrained Application Protocol
	FFD: Full Function Device
	IoT: Internet of Things
	ISM: Industrial, Scientific and Medical Radio Bands
	LAN: Local Area Network
	LLN: Low Power and Lossy Network
	M2M: Machine to Machine
	MAC: Media Access Control
	NFC: Near Field Communications
	PAN: Personal Area Network
	PPP: Point to Point Protocol
	REST: Representational State Transfer
	RFD: Reduced Function Device
	RFID: Radio Frequency Identification
	TCP: Transmission Control Protocol
	TLV: Type Length Format
	UCI: Universal Context Identifiers
	UDP: User Datagram Protocol
	URI: Universal Resource Identifier
	WSAN: Wireless Sensor and Actuator Network.
	WSN: Wireless Sensor Network
	1 Introduction
	1.1 Background and problem motivation
	1.2 High-level problem statement
	1.3 Concrete and verifiable goals
	1.4 Scope
	1.5 Outline
	1.6 Contributions

	2 Theory
	2.1 Internet-of-Things
	2.1.1 Context awareness
	2.1.2 Ubiquitous computing

	2.2 WSNs overview
	2.2.1 WSN motes

	2.3 WSNs' Operating Systems
	2.3.1 TinyOS
	2.3.2 Contiki
	2.3.3 Tiny Os and Contiki evaluation

	2.4 WSNs communication standards
	2.4.1 IEEE 802.15.4
	2.4.2 ZigBee
	2.4.3 6LoWPAN
	2.4.4 REST and CoAP

	2.5 Related work
	2.5.1 SensibleThings
	2.5.2 ETSI M2M
	2.5.3 SENSEWEB

	3 Methodology
	4 Implementation
	4.1 SensibleThings platform
	4.2 CoAP packet structure
	A CoAP packet is formed by a 4 bytes binary header followed by an option field and a payload. The length of the message payload is implied by the datagram packet length. The structure of a CoAP packet is shown in Figure 4.5.
	Figure 4.5: CoAP packet format.
	The fields within the packet header are:
	4.3 CoapSensorActuator
	4.4 CoapSensorGateway

	5 Results
	5.1 Response time
	5.1.1 CoapSensorActuator response time
	5.1.2 CoapSensorGateway response time

	5.2 Packet size
	5.3 Scalability
	5.4 Proof of concept application
	5.4.1 Potential real-world scenario
	5.4.2 Implementation and results

	5.5 A battery-saving algorithm

	6 Conclusion
	6.1 Discussion
	6.1.1 Ethical issues

	6.2 Future work

	Abstract in lingua italiana
	ADPE4EB.tmp
	SCUOLA DI INGEGNERIA E ARCHITETTURA
	Dipartimento di Informatica-Scienza e Ingegneria (DISI)
	TESI DI LAUREA

