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Abstract
The growing presence of sensors around us is pushing the develop-
ment of pervasive applications which will enable access sensor data
from remote  locations  in  an Internet-of-Things  (IoT)  scenario.  A
scenario in which objects, animals or people are provided with sen-
sors and the ability to automatically transfer data over the Internet is
called IoT. Many smart sensing nodes that cooperate to sense the
environment may form a Wireless Sensor Network (WSN), provid-
ing sensing services to an ever growing application space. The the-
sis focuses on enabling the communication between WSNs and IoT
applications. In order to achieve this goal, the first step has been to
investigate the concept of the IoT and then to understand how this
scenario could be used to interconnect multiple WSNs in order to
develop context-aware applications which could handle sensor data
coming from this type of network. The architecture of WSNs was
then analyzed followed by a survey about the operating systems and
communication  standards  supported  by  these  network.  Finally,
some IoT software platforms have been studied. The second step
was to design and implement a communication stack which enabled
WSNs to communicate with an IoT platform. The Constrained Ap-
plication Protocol (CoAP) has been used as application protocol for
the communication with the WSNs. CoAP includes the HTTP func-
tionalities which have been redesigned considering the low process-
ing power and energy consumption constraints of small embedded
devices, such as the WSNs. The solution has been developed in Java
programming language and extended the sensor and actuator layer
of the Sensible Things platform. The third step of this thesis has
been to investigate in which real world applications the developed
solution could have been used. Next a proof of concept application
has been implemented in order to simulate a simple fire detection
system, where multiple WSNs collaborate to send their temperature
data to a control center. The last step was to evaluate the whole sys-
tem, specifically the responsiveness and the overhead introduced by
the developed communication stack. The results showed that the so-
lution introduced just a little overhead to the platform and also that
the value of the response time depends on the type of request sent to
the WSN. However, the performances of the system could be im-
proved further and suggested future work involves some policies to
manage multiple CoAP transactions at the same time. Also the chal-
lenge of implementing some security mechanisms for a safe com-
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munication  between  the  platform and  sensor  nodes,  requires
further work.
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1 Introduction
This report is a Master's thesis in Computer Science Engineer-
ing and it has been prepared in collaboration with Mid Sweden
University  in  Sundsvall,  Sweden.  I  am an  exchange  student
from the University of Bologna (Italy) and I worked on this the-
sis  within  the  Erasmus Exchange Program.  This  thesis  deals
with  the  challenging  question  of  how to  interconnect  WSNs
over the Internet and describes a solution that has been devel-
oped within this thesis work. 

1.1 Background and problem motivation
Historically,  humankind  has  seen  the  emergence  of  different
kinds of global data fields. The planet itself has always gener-
ated an enormous amount of data, as human systems and physi-
cal objects did too, but until  recent years we were unable to
capture it. We now can because we are able to embed sensors in
all sort of things and to use them to retrieve data, in a so called
IoT scenario. This kind of network can then be used by applica-
tions that utilize information from sensors attached to different
things  in  order  to  display  context-aware  behavior.  However,
since not all sensors may be directly connected to a device, they
could be gathered in local networks such as the WSNs, which
nowadays are the most used technology in this field. WSNs are
composed of a large number of radio equipped sensor devices
that autonomously form a network, through which sensors are
capable of sensing,  processing and communicating with each
other. These networks can operate as standalone networks or be
connected to other networks, but for many applications they do
not work efficiently in full isolation. Therefore, one of the big-
gest challenges for the IoT developers is to find resources on
how to interconnect several WSNs over the Internet. 

1.2 High-level problem statement
WSNs rely on the collaborative efforts of many small wireless
sensor nodes and on their ability to form networks which can be
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used to  gather  sensor  information.  Most  sensor  networks are
usually deployed over a wide geographical area and their appli-
cations  aim at  monitoring or  detecting phenomena.  For  such
applications, WSNs cannot operate efficiently in complete iso-
lation because there should be a way for a remote user to gain
access  to  the  data  produced  by  the  network.  By  connecting
these networks to an existing network infrastructure, remote ac-
cess to the sensor data can be achieved. Since the Internet has
the most widespread network infrastructure in the world, it is
logical  to look at  some efficient  methods for interconnecting
WSNs over the Internet; in order to make an IoT. Many IoT
software platforms have already been developed in order to en-
able remote access to sensor data, but just a small quantity of
these platforms deal with WSNs. Thus, a communication stack
is required for implementation in order to enable communica-
tion  between  IoT applications  and  WSNs.  Another  big  chal-
lenge is the high heterogeneity between WSNs, since these net-
works often are intended to run specialized communication pro-
tocols. As a consequence of this scenario, it is usually impossi-
ble to directly connect WSNs to the Internet. Therefore, there is
also the need to implement a second stack, which is able to ex-
port sensor data from these particular networks to other devices
connected to the Internet. Therefore, this thesis will attempt to
solve the following problem:

Enabling communication between IoT and WSNs, irregard-
less of their network connection and then to utilize the sen-
sor information available in WSNs for context aware appli-
cations.

1.3 Concrete and verifiable goals
In order to solve the problem of this project, the following goals
have to be accomplished:

1. Find three different solutions of connecting WSNs to an
IoT.

2. Determine the most common operating systems used in
WSNs.
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3. Investigate which communication protocols these operat-
ing systems support.

4. Implement  a  communication  stack which enables  com-
munication between WSNs and IoT platforms.

5. Evaluate the performance and responsiveness of the im-
plemented solution.

6. Find possible real world applications for the implemented
solution in order to put together several WSNs, defining
policies for system federation and coordination.

1.4 Scope
This project is focused on creating a communication stack be-
tween IoT applications and wireless sensors and actuator net-
works and then to create a proof of concept application in order
to evaluate it. However, since there are many different operat-
ing systems and communication protocols  for  WSNs,  in  this
thesis I will focus on how to enable communication only with
networks which use the most common ones. The management
of the physical layer below these systems and security issues
are out of scope for this project.

1.5 Outline
The second chapter will  present  the  general  idea  of IoT and
context awareness including the specific devices and protocols
which  have  been  developed  in  order  to  spread  its  diffusion.
Next, some of the most popular IoT platforms are presented.
The third chapter  is  about  the  methodology we used for  the
project. In this section all the goals that have been presented in
this thesis are listed. The fourth chapter explains the approach
that has been used in the project's implementation. In chapter
five the tests made and their results are reported. Finally, the
sixth chapter presents the conclusions and then discusses future
work needed for this project.
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1.6 Contributions
The SensibleThings platform and its source code was contrib-
uted by and is property of Mid Sweden University. My thesis
work has contributed by adding functionalities to the existing
framework in order to enable communication between IoT ap-
plications and WSNs. The developed communication stack is
independent of the platform itself, therefore it is possible to eas-
ily export it to any kind of implementation of the latter.
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2 Theory
A first important step is to categorize the state of art based on
current research literature. The following sections present the
background theory and related work for this thesis.  The first
section provides a short introduction about the IoT concept and
also about  context  awareness and ubiquitous computing.  The
second section gives an overview of the WSN technology and
then a list of the most common motes. In the third section, two
of the most used WSN Operating System are presented and a
comparison between them has been made. The fourth section
provides an overview of the communication standards used in
WSNs. Finally, in the fifth section, three IoT platforms are pre-
sented.

2.1 Internet-of-Things
The  Internet-of-Things  is  a  novel  paradigm  that  is  rapidly
spreading across the scenario of modern wireless telecommuni-
cations.  This  concept  is  based  on  is  the  pervasive  presence
around  us  of  a  variety  of  things  or  objects  which,  through
unique addressing schemes, are able to interact and cooperate
with each other in order to reach common goals. As the name
suggests, the purpose of this architecture is to interconnect all
kinds of objects over the Internet. It is considered a normal evo-
lution of the Internet, which at the beginning was meant just to
interconnect  computers  but  now  is  developing  into  a  world
wide network which will be able to interconnect all kinds of
devices; as represented in Figure 2.1.

However, IoT is a very broad vision, so the IoT research is still
in progress. Therefore, there are many definitions of IoT within
the research community but there are no standard definitions for
IoT as  of  yet.  The  term ‘IoT’ was  originally  introduced  by
Kevin Ashton [2] in a presentation in 1999. He noted that “The
IoT has the potential to change the world, just as the Internet
did. Maybe even more so”. 
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Figure 2.1: Evolution of the Internet [1].

The very first vision of IoT was presented by the Auto-ID Labs
[3], a world-wide network of academic research laboratories in
the field of networked RFID and emerging sensing technolo-
gies. The group perceived things as very simple items: Radio-
Frequency IDentification (RFID) tags having a unique identifier
called Electronic Product Code. Their purpose was to realize a
global system for object visibility (i.e. the traceability of an ob-
ject and the awareness of its status). 

However, according to the authors of [4], RFID still stands at
the forefront of the technologies driving the vision just because
of its maturity, low cost, and strong support from the business
community.  The group believes that  a  wide range of device,
network, and service technologies will eventually build up the
IoT. Near Field Communications (NFC) and Wireless Sensor
and Actuator Networks (WSAN) together with RFID are recog-
nized as ‘‘the atomic components that will link the real world
with the digital world”. According to this heterogeneity, the fol-
lowing definitions are essential to understand the IoT:

Definition by [5]:  “The IoT allows people and things to be
connected Anytime,  Anyplace,  with Anything and Anyone,
ideally using Any path/network and Any service.”
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Figure 2.2: Representation of the first definition of IoT.

Definition by [6]:“The semantic origin of the expression
is  composed by  two words  and concepts:  Internet  and
Thing, where Internet can be defined as the world-wide
network of interconnected computer networks, based on a
standard  communication  protocol,  the  Internet  suite
(TCP/IP), while Thing is an object not precisely identifi-
able.  Therefore,  semantically,  IoT means  a  world-wide
network of interconnected objects uniquely addressable,
based on standard communication protocols.”

Many relevant  institutions have stressed the  concept  that  the
road to full IoT deployment has to start from the augmentation
in the Things’ intelligence. This is why a concept that emerged
in parallel with IoT is the concept of Smart Items, as a refine-
ment of the general “Things” definition. Smart items are de-
fined as:

objects that can be tracked through space and time through-
out their lifetime and that will be sustainable, enhanceable,
and uniquely identifiable”[7]. “These are a sort of sensors
not  only  equipped  with  usual  wireless  communication,
memory, and elaboration capabilities, but also with new po-
tentials.  Autonomous  and  proactive  behavior,  context
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awareness,  collaborative  communications  and  elaboration
are just some required capabilities [8]. 

The IoT infrastructure allows combinations of different types of
smart  items,  using different  but  interoperable  communication
protocols and realizes a  dynamic heterogeneous network that
can  be  deployed  also  in  inaccessible,  or  remote  spaces  (oil
platforms,  mines,  forests,  tunnels,  pipes,  etc.)  or  in  cases  of
emergencies or hazardous situations (earthquakes, fire, floods,
radiation  areas,  etc.).  Giving  these  objects  the  possibility  to
communicate with each other and to elaborate the information
retrieved from the surroundings implies having different areas
where a wide range of applications can be deployed. These can
be  grouped  into  the  following  domains:  healthcare,  personal
and social, smart environment (such as at home or in the of-
fice), futuristic applications, transportation and logistics; as rep-
resented in Figure 2.3.

Figure 2.3: IoT application areas [8].

2.1.1 Context awareness
Context awareness plays an important role in the IoT to enable
services  customization  according  to  the  immediate  situation
with minimal human intervention. Acquiring, analyzing, and in-
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terpreting relevant context information regarding the user will
be a key ingredient to create a whole new range of smart appli-
cations. The concept of context is commonly understood as the
situation or surroundings of an entity. The main definition of
context has been given by Dey and Abowd [9]:”Context is any
information that can be used to characterize the situation of an
entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application,
including  the  user  and  applications  themselves.”.  Therefore,
context  awareness  is  the  result  gained from utilizing context
information, such as the ability to adapt behavior depending on
the current situation of the users in context-aware applications.
Dey  and  Abowd  [9]  gave  this  definition  of  context  aware-
ness:”A system is context-aware if it uses context to provide rel-
evant information and/or services to the user, where relevancy
depends on the users task.”

2.1.2 Ubiquitous computing
The focus on context-aware computing evolved from desktop
applications,  web applications,  mobile  computing,  ubiquitous
computing to the IoT over the last decade. However, context-
aware computing became more popular with the introduction of
the term ‘ubiquitous computing’ by Mark Weiser [10], in his pa-
per “The Computer for the 21st Century in 1991”. He described
a new era in which computer devices will be embedded in ev-
eryday objects, invisible at work in the environment around us;
in which intelligent, intuitive interfaces will make computer de-
vices simple to use and in which communication networks will
connect these devices together to facilitate anywhere, anytime,
always-on communication. Ubiquitous computing then, “is the
growing trend towards embedding microprocessors in everyday
objects and refers to how they might communicate and process
information,  creating  a  world  in  which  things  can  interact
dynamically”.

2.2 WSNs overview
WSNs became one of the most interesting and researched areas
in the field of electronics in the last decade. WSNs are com-

9
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posed of a large number of radio equipped sensor devices that
autonomously form a network, through which sensor nodes are
capable of sensing, processing and communicating among each
other. The sensor nodes are usually scattered in a sensor field as
shown in Figure 2.4. Each of these sensor nodes has the capa-
bility to collect data and route data back to the sink and the end
users. Data are routed back to the end user by a multi-hop in-
frastructureless architecture through the sink, which may com-
municate with the end user via the Internet or any type of wire-
less  network  (like  WiFi,  mesh  networks,  cellular  systems,
WiMAX, etc.), or without any of these networks where the sink
can be directly connected to the end users [11]. There may be
multiple sinks and multiple end users in the architecture shown
in Figure 2.4.

Figure 2.4: WSN architecture [11].

Typical  tasks  for  sensor  nodes  are:  obtaining  environmental
data, storing, processing and transferring obtained data, receiv-
ing data from other nodes, using and forwarding received data.
However, not every node in a sensor network has to perform all
of these tasks. The sensor nodes, which are intended to be phys-
ically small  and inexpensive,  are equipped with one or more
sensors for sensing operations, a short range radio transceiver in
order to enable communication with other nodes, a small micro
controller for computation, and a power supply in the form of a
battery; as represented in Figure 2.5.

10
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Figure 2.5: General sensor node structure.

The main characteristics and challenges of WSNs are:

Dynamic topology: in many applications it is assumed that the
topology of the network is stationary. However, in reality it is
not, because WSN topology can change frequently. The topol-
ogy of the WSNs can vary from a simple star network to a tree
network or even to an advanced multi-hop wireless mesh net-
work.

Limited data rate and short distance: the sensor nodes elec-
tromagnetic range covers short distances (from one to several
tens  of  meters).  This  determines  the  necessity  of  application
multi-hop topology in WSN.

Different traffic intensity: the highest traffic density in WSN
takes place around the central sensor nodes (that is the sink),
because it collects all data coming from other nodes located in
its  vicinity.  Quite  the  opposite,  very  little  traffic  takes  place
around sensor nodes which directly collect data and in the other
direction, from sink to these nodes.

Energy constraints: the constraint most often associated with
WSNs design is that sensor nodes operate with limited energy
budgets. Typically, they are powered through batteries, which
must be either replaced or recharged when depleted.  

11
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Self management: since many WSNs are required to operate in
remote  areas  and  harsh  environments,  without  infrastructure
and the possibility for maintenance or repair, sensor nodes must
be able to self-configure and adapt to failures.

WSNs may consist of many different types of sensors including
seismic, magnetic, thermal, visual, infrared, acoustic and radar,
which are able to monitor a wide variety of ambient conditions
that include: temperature, humidity, pressure, speed, direction,
movement, light, soil makeup, noise levels, the presence or ab-
sence of certain kinds of objects, and mechanical stress levels
on attached objects [11]. As a result, a wide range of applica-
tions are possible. However, in order to extend the applicability
of these architectures and provide useful information anytime
and anywhere, their integration with the Internet is very impor-
tant.  It  is for this reason that during recent years the IoT re-
search community has focused on WSNs as the upcoming tech-
nology for the IoT.

2.2.1 WSN motes
WSNs nodes are called “motes” and currently they range in size
from disc shaped boards having diameters less than 1cm to en-
closed systems with typical dimensions less than 5cm square.
The term “mote”  was coined by researchers  in  the  Berkeley
NEST to refer to these sensor nodes [13]. In Figure 2.6 a list of
the most common motes is reported. The values within this ta-
ble show that all the motes have approximately the same size
but the lightest one is SHIMMER, which is also one of the most
expensive.  Regarding memory and CPU power all  the motes
are almost identical except for the Sun SPOT which is currently
the most powerful but the most costly.
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Width x
Length x
Height
(cm)

Weight
(g)
(with
Battery)

Cost 
(per
node)

Processor Memory
RAM/FLASH/
EEPROM

TelosB 3.2x6.6x0.7 63.05 139 $ 4-8 MHz 10 KB/48 KB/1 MB

Crossbow
Mica2

3.2x5.7x0.6 63.82 99 $ 8 MHz 4 KB/128 KB/
512 KB

SHIMME
R

2x4.4x1.3 10.36 276 $ 4-8 MHz 10 KB/48 KB/none

Crossbow
IRIS

3.2x5.7x0.6 69.40 115 $ 8 MHz 8 KB/640 KB/4 KB

Sun
SPOT

6.4x3.8x2.5 58.08 750 $ 180 MHz 512 KB/4 MB/none

Figure 2.6: WSNs motes characteristics [13].

Each of these WSNs motes is equipped with a different set of
sensors:

TelosB: it has a set of on-board sensors such as humidity, tem-
perature and light intensity. In addition to the on-board sensors,
the Tmote Sky provides access to 6 ADC inputs, a UART and
I2C bus and several general purpose ports.

Mica2:  it  is  not  equipped  with  on-board  sensors.  However,
Crossbow offers an extensive set of sensor boards that connect
directly to the Mica mote, and are capable of measuring light,
temperature,  relative  humidity,  barometric  pressure,  accelera-
tion/seismic activity, acoustics, magnetic fields and GPS posi-
tion.

Shimmer: it has been designed for mobile health sensing appli-
cations. It incorporates a 3 axis accelerometer and allows con-
nection of other sensors through its expansion board.

Iris: like the other mote from the Crossbow technology (Mica2
mote), it is not equipped with on-board sensors but it can be ex-
tended with  the  same sensor  boards  provided for  the  Mica2
mote.
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Sun  SPOT:  it  offers  expansion  boards  with  tri-axial  ac-
celerometer,  temperature  sensor  and  light  sensors.  Moreover,
custom made sensors can be connected via five analogue inputs
and five general purpose digital ports.

2.3 WSNs' Operating Systems
An operating system (OS) in a WSN is a thin software layer
that logically resides between the node’s hardware and the ap-
plication and provides basic programming abstractions to appli-
cation developers. Its main task is to enable applications to in-
teract with hardware resources, to schedule and prioritize tasks,
and to arbitrate between contending applications and services
that try to seize resources. Other features of a WSNs OS are:
memory and file management, power management, networking,
providing programming environments. The choice of a particu-
lar operating system depends on several factors such as: data
types,  scheduling,  stacks,  system  calls,  handling  interrupts,
multithreading  and  memory  allocation  [12].  OS  for  WSNs
nodes are typically less complex than general purpose operating
systems. They more strongly resemble embedded systems, for
two reasons. First, WSNs are typically deployed with a particu-
lar application in mind, rather than as a general platform. Sec-
ond, a need for low costs and low power leads most wireless
sensor nodes to have low power microcontrollers ensuring that
mechanisms such as virtual memory are either unnecessary or
too expensive to implement.

2.3.1 TinyOS
TinyOS is the most widely used runtime environment in WSNs
and its  compact  architecture  makes it  suitable for  supporting
many applications.  TinyOS has a  component-based program-
ming model, codified by the NesC language, a dialect of C and
it is also based on an event driven programming model instead
of multithreading. That means that when an external event oc-
curs,  such  as  an  incoming  data  packet  or  a  sensor  reading,
TinyOS  signals  the  appropriate  event  handler  to  handle  the
event. 
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The architecture consists of a scheduler and a set  of compo-
nents each of which encapsulate a specific set of services, spec-
ified by interfaces. An application connects components using a
wiring specification that is independent of component  imple-
mentations. This wiring specification defines the complete set
of  components  that  the  application  uses.  Components  have
three computational abstractions:  commands,  events and  tasks.
Commands and  events are  mechanisms  for  inter-component
communication, while  tasks are used to express intra-compo-
nent concurrency. A command is typically a request to a compo-
nent to perform some service, such as initiating a sensor read-
ing,  while  an  event signals  the  completion  of  that  service.
Rather than performing a computation immediately, commands
and event handlers may post a task, a function executed by the
TinyOS scheduler  at  a  later  time.  The  standard TinyOS task
scheduler uses a non-preemptive FIFO scheduling policy [14].

TinyOS abstracts all hardware resources as components and it
provides a large number of components to application devel-
opers,  including abstractions for sensors,  single-hop network-
ing,  ad  hoc  routing,  power  management,  timers,  and  non
volatile storage. A developer can then compose an application
by writing components and wiring them to TinyOS components
that provide implementations of the required services [14].

A component has two classes of  interfaces:  those it  provides
and those it uses. These interfaces define how the component
directly interacts with other components. An interface generally
models some service (e.g., sending a message) and is specified
by  an  interface  type.  Interfaces  contain  both  commands and
events  and they are  bidirectional  which means that  the com-
mands  have to  be  implemented  by  the  interface's  provider
whereas the events have to be implemented by the interface's
user. The provided interfaces are intended to represent the func-
tionality that the component provides to its user in its specifi-
cation; the used interfaces represent the functionality the com-
ponent needs to perform its job in its implementation. 
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NesC has two types of components:  modules and  configura-
tions. Modules provide code for defining Tiny OS components.
Configurations are  used  to  wire  other  components  together,
connecting  interfaces  used  by  components  to  interfaces  pro-
vided by others. They allow multiple components to be aggre-
gated together into a single “supercomponent” that exposes a
single set of interfaces.

Figure 2.7 shows a simplified form of the TimerM component,
a part of the TinyOS timer service, that provides the StdControl
and Timer interfaces and uses a Clock interface.

Figure 2.7: Specification and graphical depiction of the TimerM
component [14].

Figure 2.8 illustrates the TinyOS timer service, which is a con-
figuration (TimerC) that wires the timer module (TimerM) to
the hardware clock component (HWClock).

Figure 2.8: Example of TinyOS configuration [14].
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2.3.2 Contiki
Contiki is a lightweight operating system with support for dy-
namic loading and replacement of individual programs and ser-
vices. Contiki is built around an event driven kernel but pro-
vides optional preemptive multithreading that can be applied to
individual processes. Contiki is implemented in the C language
and has been ported to a number of microcontroller architec-
tures.

A running Contiki system consists of the kernel, libraries, the
program loader, and a set of processes. A process may be either
an application program or a service. A service implements func-
tionalities used by more than one application process. All pro-
cesses, both application programs and services, can be dynami-
cally replaced at run time. 

Communication  between  processes  always  goes  through  the
kernel.  The  kernel  does  not  provide  a  hardware  abstraction
layer, but lets device drivers and applications communicate di-
rectly with the hardware. A process is defined by an event han-
dler function and an optional poll handler function; interprocess
communication is done by posting events [15].

A Contiki system is partitioned into two parts: the core and the
loaded programs as shown in Figure 2.9. The core is made up of
the  Contiki  kernel,  the  program loader,  the  most  commonly
used parts of the language run time and support libraries, and a
communication stack with device drivers for the communica-
tion hardware. This part of the operating system cannot be mod-
ified dynamically.
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Figure 2.9: Contiki system partitioning[15].

The partitioning is made at compile time and is specific to the
deployment in which Contiki is used. 

The kernel is the central element of the OS. Its basic assign-
ment is to dispatch events and to periodically call polling han-
dlers. Subsequently, a program execution in Contiki is triggered
by either events that are dispatched by the kernel or through the
polling mechanism. Event handlers process an event to com-
pletion, unless they are preempted by interrupts or other mech-
anisms, such as thread preemption in a multithreading scenario.
The  kernel  supports  synchronous  and  asynchronous  events.
Synchronous events are dispatched to the target process as soon
as possible and control is returned to the posting process once
the event is processed to the end. Asynchronous events, on the
other hand, are dispatched at a convenient time. In addition to
these events, the kernel provides a polling mechanism, in which
the status of hardware components is sampled periodically [12].

One of the interesting features of the Contiki OS is its support
of  dynamic  loading  and  reconfiguration  of  services.  This  is
achieved by defining services, service interfaces, service stubs,
and a service layer. Services are to Contiki what modules are to
TinyOS, that is a process that implements functionality that can
be used by other processes. A Contiki service consists of a ser-
vice  interface and its  implementation,  which is  also called a
process. The service interface consists of a version number and
the list of functions with pointers to the functions that imple-
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ment the interface. A service stub enables an application pro-
gram to dynamically communicate with a service through its
service interface. A service layer is similar to a lookup service
or a registry service. Active services register by providing the
description of their  service interface and ID and version num-
ber. This way, the  service layer keeps track of all active ser-
vices. Figure 2.10 illustrates how application programs interact
with Contiki services [12].

Figure 2.10: Contiki service interaction architecture [12].

When a service is called, the service interface stub queries the
service  layer  and  obtains  a  pointer  to  the  service  interface.
Upon obtaining a service whose interface description as well as
version number matches with the service stub, the interface stub
calls the implementation of the requested function.

2.3.3 Tiny Os and Contiki evaluation
Ranking the strength of an operating system, like all ranking
assignments, is a difficult assignment. However, in WSNs, there
are  several  contexts  pertaining  to  development,  deployment,
runtime performance, and code evolution. In view of these as-
pects, TinyOS is compact in size and efficient in its use of re-
sources, since the cost of managing separate entities (operation
system and  application)  is  related  to  a  single  assignment  of
managing a single file. But replacement or reprogramming cost
is high. 
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Contiki provides a flexible support for dynamic reprogramming
and hence is well suited to applications which require intensive
updating and upgrading processes; but this does not come with-
out any costs.

Figure 2.11 and 2.12 provide summaries of the functional and
nonfunctional aspects of both the OSs.

Figure 2.11: Comparision of functional aspects of the OS [12].

Figure 2.12: Comparision of non-functional aspects of the OS
[12].

2.4 WSNs communication standards
In  order  to  achieve  interoperability  between  manufacturer
components, a number of standards have been established in the
WSN field. These standards can be mapped to the ISO-OSI lay-
ers.  However,  some  standards  cover  only  the  bottom layers,
others cover the full stack. No single standard has been estab-
lished as the market winner. The most common standards used
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in WSN are: WiFi, Bluetooth, IEEE 802.15.4, ZigBee, 6LoW-
PAN. However, WiFi and Bluetooth are losing ground within
the WSNs research community since they were not developed
for low power devices such as WSNs nodes. On the other hand,
IEEE 802.15.4 was created just for these kinds of devices and is
thus becoming the most important communication standard for
WSNs. Moreover, the ZigBee and 6LoWPAN standards have
been  developed  in  order  to  extend  the  features  of  IEEE
802.15.4.

2.4.1 IEEE 802.15.4
The key requirements for Low Rata Personal Area Networks (as
the WSNs) are low complexity, very low power consumption
and low cost. The IEEE 802.15.4 standard considers these re-
quirements and provides a framework for the lowest two layers
of the OSI mode. The standard defines two types of devices: a
Full  Function Device (FFD) and a Reduced Function Device
(RFD). The FFD is capable of all network functionalities and
can operate in three different modes: it can operate as a PAN
coordinator, a coordinator or it can serve simply as a device. An
RFD device is low on resources and memory capacity and is ca-
pable only of very simple applications such as sensing light or
temperature [16]. There are two different topologies in which
the PAN can operate: star or peer to peer, as represented in Fig-
ure  2.13.  In  the  star  topology  communication  can  only  take
place between the devices and the PAN coordinator, which has
to be a FFD. The PAN coordinator is responsible for inaugurat-
ing or terminating communications in the network and is often
mains powered. In the peer to peer topology all FFD devices in
the network can communicate with each other while the RFD
devices can only communicate with the PAN coordinator [16].

The physical layer is responsible for the transmission and re-
ception of data. It defines the radio bands to be used and type of
spreading  and  modulation  techniques.  The  standard  provide
three different operational frequencies: 16 channels in the 2.4
GHz band, 10 channels in the 915 MHz band and 1 channel in
the 868 MHz band.
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Figure 2.13 IEEE 802.15.4 network topology [16].

The MAC layer which appears just above the physical layer in
the OSI model, is responsible for managing beacon transmis-
sion, access to channel and association/disassociation to the net-
work. 

The  IEEE  802.15.4  standard  defines  four  basic  frame  types
which are beacon, used by a coordinator to transmit beacons, a
data frame, used for all transfers of data, an acknowledgment
frame,  used for confirming successful frame reception and a
MAC command frame, used for handling all MAC peer entity
control transfers.

2.4.2 ZigBee
ZigBee is a specification for a suite of high level communica-
tion protocols used to create personal area networks; built for
small,  low power  digital  radios  based on the  IEEE 802.15.4
standard. ZigBee is used in applications that require a low data
rate, long battery life, and secure networking. This standard has
a defined rate of 250 kbit/s, best suited for periodic or intermit-
tent data or a single signal transmission from a sensor or input
device. The transmission distances range from 10 to 100 meters
line  of  sight,  depending on power  output  and environmental
characteristics. The technology defined by the ZigBee specifi-
cation is intended to be simpler and less expensive than other
WPANs, such as Bluetooth or Wi-Fi.

The  ZigBee  standard  defines  a  stack  shown  in  Figure  2.14
which has a layered structure with four distinct layers, the phys-
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ical layer, the MAC layer, the network layer and the application
layer. The two bottom layers are defined by the IEEE 802.15.4
standard. The network layer is the bottom layer defined by the
ZigBee  standard  which  provides  network  configuration,  ma-
nipulation, and message routing. The routing protocol used by
the network layer is the  Ad-hoc On-Demand Distance Vector
Routing Protocol (AODV). In order to find the destination de-
vice, it broadcasts out a route request to all of its neighbors. The
neighbors then broadcast  the request to their  neighbors,  until
the destination is reached. Once the destination is reached, it
sends its route reply via unicast transmission following the low-
est cost path back to the source. Once the source receives the
reply, it will update its routing table for the destination address
with the next hop in the path and the path cost. An application
layer then provides the intended function of the device [17].

Figure 2.14: ZigBee stack architecture.

ZigBee operates in the industrial, scientific and medical (ISM)
radio bands: 868 MHz in Europe, 915 MHz in the USA and
Australia and 2.4 GHz in most jurisdictions worldwide. Data
transmission rates vary from 20 kilobits/second in the 868 MHz
frequency band to 250 kilobits/second in the 2.4 GHz frequency
band. The ZigBee network layer natively supports both star and
tree typical networks, and generic mesh networks; as reported
in Figure 2.15. Every network must have one coordinator de-
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vice, tasked with its creation, the control of its parameters and
basic maintenance. Within star networks, the coordinator must
be the central node. Both trees and meshes allow the use of Zig-
Bee routers to extend communication at the network level [18].

Figure 2.15 ZigBee network topologies.

2.4.3 6LoWPAN
6LoWPAN is an acronym of IPv6 over Low power Wireless
Personal Area Networks (WPAN). 6LoWPAN is the name of a
working group in the Internet area of the Internet Engineering
Task Force (IETF). The 6LoWPAN concept originated from the
idea that “the Internet Protocol (IP) could and should be applied
even to the smallest devices" and that low power devices with
limited processing capabilities should be able to participate in
the IoT [19]. 6LoWPAN enables the use of IPv6 in Low Power
and Lossy Networks (LLNs), such as those based on the IEEE
802.15.4 standard. Given the limited packet size and other con-
straints of this kind of devices,  they cannot use the standard
IPv6 directly. Therefore, an adaptation layer to perform header
compression, fragmentation and address auto configuration is
needed to use IPv6. The 6LoWPAN group thereby has encapsu-
lation  and  header  compression  mechanisms  that  allow  IPv6
packets  to be sent  to and received from over IEEE 802.15.4
based networks. 

The 6LoWPAN architecture is made up of low-power wireless
area  networks  (LoWPANs),  which are  connected  to  other  IP
networks through edge routers,  as is shown in Figure 2.16. The
edge router plays an important role as it routes traffic in and out
of the LoWPAN, while handling 6LoWPAN compression and
NeighborDiscovery for the LoWPAN [19].
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Each LoWPAN node is identified by a unique IPv6 address, and
is  capable  of  sending  and  receiving  IPv6  packets.  Typically
LoWPAN nodes support ICMPv6 traffic and use the User Data-
gram Protocol (UDP) as a transport protocol. The whole 6LoW-
PAN protocol stack is shown in Figure 2.17.

  Figure 2.16 6LoWPAN architecture.
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Figure 2.17 6LoWPAN protocol stack.

2.4.4 REST and CoAP
One of the major benefits of IP based networking in LLNs is to
enable the use of standard web service architectures without us-
ing application gateways. As a consequence, smart objects will
not only be integrated with the Internet but also with the web.
This integration allows smart object applications to be built on
top of Representational State Transfer (REST) architectures and
it is defined as the Web of Things (WoT) [20].

In a REST architecture a resource is an abstraction controlled
by the server and identified by a Universal Resource Identifier
(URI). The resources are accessed and manipulated by an appli-
cation protocol based on client/server request/responses. REST
is not tied to a particular application protocol,   however,  the
vast  majority  of  REST architectures  currently  use  Hypertext
Transfer  Protocol  (HTTP).  HTTP manipulates  resources  by
means of its methods GET, POST, PUT, DELETE [20].

REST architectures allow IoT applications to be developed on
top of web services. However, the standard HTTP protocol can-
not be used in LLNs since this protocol is relatively expensive
for them, both in implementation code space and network re-
source  usage.  Therefore,  the  Constrained  RESTful  environ-
ments (CoRE) working group has defined a REST-based web
transfer  protocol  called  Constrained  Application  Protocol
(CoAP). CoAP includes the HTTP functionalities which have
been redesigned considering the low processing power and en-
ergy consumption constraints of small embedded devices [20].
CoAP is based on a REST architecture in which resources are
server controlled abstractions made available by an application
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process and identified by Universal Resource Identifiers (URIs)
and they can be manipulated by means of the same methods as
the ones used by HTTP. 

The first significant difference between HTTP and CoAP is the
transport layer. HTTP relies on the Transmission Control Proto-
col (TCP). TCP’ flow control mechanism is not appropriate for
LLNs and its overhead is considered too high. Therefore CoAP
has been built on top of the User Datagram Protocol (UDP),
which has significantly lower overhead. As represented in Fig-
ure 2.18, CoAP is organized in two layers. The transaction layer
handles  the  single  message  exchange  between  end  points,
which  can  be  of  four  types:  Confirmable  (it  requires  an  ac-
knowledgment),  Non-confirmable (it  does not  need to be ac-
knowledged),  Acknowledgment  (it  acknowledges  a  Con-
firmable message) and Reset (it  indicates that a Confirmable
message has been received but context is  missing to be pro-
cessed). It also provides support for multicast and congestion
control.

Figure 2.18 CoAP protocol stack [20].

The Request/Response layer is responsible for the transmission
of  requests  and responses  for  the  resource  manipulation  and
transmission. A REST request is piggybacked on a Confirmable
or Non-confirmable message, while a REST response is piggy-
backed on the related Acknowledgment message. Figure 2.19
shows an example of a typical REST request-response transac-
tion. 
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Figure 2.19 CoAP request-response example, using a con-
firmable message.

The  dual  layer  approach  allows  CoAP to  provide  reliability
mechanisms even without the use of TCP as transport protocol.
In fact, a Confirmable message is retransmitted using a default
timeout and exponential back off between retransmissions, until
the recipient sends the Acknowledgement message. In addition,
it enables asynchronous communication, because when a CoAP
server receives a request which is not able to handle immedi-
ately,  it  first  acknowledges the reception of the message and
sends back the response in an off-line fashion [20].

One of the major design goals of CoAP has been to keep the
message overhead as small as possible and limit the use of frag-
mentation.  CoAP uses  a  short  fixed  length  compact  binary
header of 4 bytes followed by compact binary options. A typical
request has a total header of about 10-20 bytes.

Since a resource on a CoAP server likely changes over time, the
protocol allows a client to constantly observe the resources. In a
GET request, a client can indicate its interest in further updates
from  a  resource  by  specifying  the  “Observe”  option.  If  the
server accepts this option, whenever the state of the resource
changes it notifies each client having an observation relation-
ship with the resource. The duration of the observation relation-
ship is negotiated during the registration procedure.

Although CoAP is a work in progress, various open source im-
plementations are already available. The two most known oper-
ating systems for WSNs, Contiki and Tiny OS, have already re-
leased  CoAP  implementation  libraries,  named  Erbium  and
CoapBlib respectively.
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2.5 Related work
Applications that utilize information from sensors attached to
different things in order to provide more personalized, automa-
tized, or even intelligent behavior are commonly referred to as
IoT applications [8]. The prediction is that these kinds of appli-
cations will be able to interact with an IoT, a worldwide net-
work of interconnected everyday objects, and thereby be able to
display context-aware behavior [21]. There is also an interest-
ing relationship between the IoT and big data, since all of the
connected things will produce and consume large amounts of
data. In order to enable a widespread proliferation of IoT ser-
vices there must be a common platform for dissemination of
sensor  and actuator  information on a  global  scale.  However,
there  is  a  large  number  of  practical  difficulties  that  must  be
solved to achieve this goal. The main requirements that an IoT
platform should satisfy are the following:

Scalable:  logarithmic or better scaling of communication load
in end points;

No central point of failure: fully distributed platform;

Bidirectional: enabling communication between sensors/actua-
tors and the IoT applications in both ways;

Fast: capable of signaling in real time between end points;

Lightweight: able to run on devices with limited resources;

Seamless:  capable  of  handling  heterogeneous  infrastructures
and different end user devices;

Stable: all queries into the platform should return an answer;

Extensible: capable of adding new features and modules with-
out complete redistribution.

2.5.1 SensibleThings
The SensibleThings platform is an open source architecture for
enabling  IoT based  applications,  developed  by  Mid  Sweden
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University. An overview of the platform and its components is
presented in Figure 2.20. It shows how the platform is distrib-
uted over a number of entities connected to the Internet. The
Figure shows how an application which is running a client of
the SensibleThings platform (SensibleThinghs instance) com-
municates with other entities running the platform. A client can
acquire  sensor  and  actuator  information  of  the  other  partici-
pants. Furthermore, the platform can act as both a producer and
consumer of sensor and actuator information at the same time,
enabling bidirectional exchange of context information [22].

Figure 2.20: Overview on the function of the SensibleThings
platform.

The SensibleThing platform is a realization and implementation
of the MediaSense architecture explained in [22]. The code is
based on a fork of the MediaSense platform, but with signifi-
cant improvement. The focus has been on the open source as-
pect and maintaining the commercialization possibilities of ap-
plications that are utilizing the platform. The platform is orga-
nized in several levels, as represented in Figure 2.21.
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Figure 2.21: SensibleThings platform architecture.

Interface Layer:  the public interface through which applica-
tions interact with the SensibleThings platform, using its API's.

Add in Layer: enables developers to add optional functionality
and  optimization  algorithms  to  the  platform,  which  can  be
loaded and unloaded in runtime when needed.

Dissemination Layer:  it enables dissemination of information
between all entities that participate in the system and are con-
nected to the platform. Therefore, it enables registration of sen-
sors in the platform, resolving the location of a sensor in order
to find it, and the communication to retrieve the actual sensor
values.

Networking Layer: it manages connection of different entities
over current Internet Protocol (IP) based infrastructure.

Sensor and Actuator Layer: it enables different sensors and
actuators to connect into the platform into two different ways. If
they are accessible from the application code, they can be con-
nected directly. Otherwise,  the sensors and actuators can con-
nect through the sensor and actuator abstraction, which enables
connectivity either directly to WSNs or via more powerful gate-
ways.
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2.5.2 ETSI M2M
The  ETSI  Machine  to  Machine  (M2M)  technical  committee
was created in January 2009 at the request of many telecom op-
erators to create a standard system-level architecture for mass
scale  M2M applications.  The  ETSI  M2M architecture  is  re-
source centric and adopts the RESTful style. It aims at integrat-
ing all of the existing standard or proprietary automation proto-
cols into a common architecture. The ETSI M2M system archi-
tecture, represented in Figure 2.22, separates the M2M device
domain and the network and applications domain.

Figure 2.22 ETSI M2M architecture [23].

M2M Device: this kind of device can connect to the M2M net-
work domain directly or via M2M gateways acting as a network
proxy. A M2M Device is a device capable of replying to request
for data contained within those devices or capable of transmit-
ting data autonomously.

M2M Gateway: a gateway module  runs a  M2M application
which  offers  M2M capabilities  and  act  as  a  bridge  between
M2M devices and the M2M Access Network. Devices without
M2M capabilities built-in can go through M2M gateway to in-
terconnect and interwork with the M2M access network. M2M
gateways can be cascaded or operate in parallel mode. 
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M2M Area Network: a wired or wireless access network pro-
vides  connectivity  and  transport  of  M2M  data/messages  be-
tween M2M devices, M2M gateways and M2M servers. Some
M2M  area  network  technologies  include:  PWLAN,  ZWave,
Zigbee, Bluetooth. 

M2M  Access  Network:  it  manages  the  communication  be-
tween the M2M Gateways and M2M Applications. This layer is
also responsible for defining the transport protocol used for net-
work communication, such as IP transport networks.

Core network layer:  it provides service and network control
functions,  network to network interconnect and roaming sup-
port.  This is the central part of the M2M communication net-
work that provides various services to service providers con-
nected via the access network such as WiMAX, DSL, WLAN.

M2M service capabilities layer: this is an abstraction layer of
the  M2M software  where  common functionalities  are  imple-
mented to serve the M2M application. It provides a set of APIs
to expose the M2M service capabilities closest to the applica-
tion using them. 

M2M Application:  this is a software running in the middle-
ware layer designed to perform specific business processes over
the M2M Core network [23]. 

2.5.3 SENSEWEB
SenseWeb is a IoT platform developed by Microsoft, through
which  IoT  applications  can  initiate  and  access  sensor  data
streams  from  shared  sensors  across  the  entire  Internet.  The
SenseWeb infrastructure helps ensure optimal sensor selection
for  each  application  and  efficient  sharing  of  sensor  streams
among multiple applications. The SenseWeb layer architecture
is shown in Figure 2.23.
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Figure 2.23: SenseWeb architecture [24].

Coordinator layer: is the central point of access into the sys-
tem for all applications and sensor contributors. The functions
of the coordinator are internally divided between two compo-
nents: the tasking module and senseDB. The tasking module ac-
cepts the application's sensing queries and tries to satisfy these
from available sensing resources considering their capabilities.
The senseDB manages the overlap among multiple application
needs. Specifically, when multiple applications need data from
overlapping space time windows,  senseDB attempts to  mini-
mize the load on the sensors or the respective sensor gateways
by combining the requests for common data and using a cache
for recently accessed data. SenseDB is also responsible for in-
dexing the sensor characteristics and other shared resources in
the system to enable applications to discover what is available
for their use.

Sensor gateways: its main task is to hide the complexity re-
garding the heterogeneity of communications interfaces used by
sensor nodes. The gateway might also implement sharing poli-
cies defined by the contributor of the sensors which are using it.
For instance, the gateway might maintain all raw data in its lo-
cal database, possibly for local applications the sensor owner
runs,  but  only make certain nonprivate sensitive parts of  the
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data  or  data  at  lower  sampling rates  available  to  the  rest  of
SenseWeb.

Mobile proxy:  is a special  gateway built  for mobile sensors,
which makes the mobility of sensing devices transparent to the
applications providing location-based access to sensor readings.
Applications simply express their sensing needs and the mobile
proxy  returns  data  from  any  devices  that  can  satisfy  those
needs.

Data  transformer:  a transformer  converts  data  semantics
through processing. Data transformers can also  fuse data and
provide data visualization services. Transformers are indexed at
the coordinator and applications might discover and use them as
needed [24].
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3 Methodology
In order to reach the goals described in Chapter 1.3, this project
will be divided into three different phases: a study phase, an im-
plementation phase and an evaluation phase.  During the first
phase a survey about different possibilities of connecting WSN
to an IoT will be made; then the most common operating sys-
tems and communication protocols used in WSN will be ana-
lyzed. After these surveys, a solution for the problem statement
explained  in  chapter  1.2  will  be  designed  and  then  imple-
mented. In the last phase the performance of the developed so-
lution will be evaluated and finally a proof of concept applica-
tion will be created. During the whole work process, I will have
weekly meetings with the Professor in order to show my own
progress through PowerPoint presentations. To achieve all the
goals the following methods are to be used:

To achieve the first goal, on finding three different solutions of
connecting WSNs to an IoT scenario, documents will be col-
lected regarding existing software platforms which enable the
communication between WSN and IoT applications. This will
will be done by searching articles and papers on research data-
bases.

To achieve the second goal, on understanding the most common
OS  used  in  WSN,  the  most  common  operating  systems  for
WSNs will be assessed, by searching the Internet and find out
what other people have used. 

To achieve the third goal, on investigating which communica-
tion protocols these OS support, documentation about these OS
will be scrutinized and some simulations will be executed using
the supported communication protocol, in order to learn how to
use it. 

To achieve the fourth goal, on implementing a communication
stack which enables communication between WSNs and IoT
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applications,  the  documentation  of  the  platform will  be  ana-
lyzed and some simulations will be run in order to discover its
features.  This  platform will  be  extended  by  implementing  a
communication stack which connects WSNs with IoT applica-
tions.

To achieve the fifth goal, on evaluating the performances and
responsiveness of  my implemented solution,  tests will be exe-
cuted to measure the response time, the scalability and the over-
head introduced by this communication stack. 

To achieve the sixth goal, on finding possible real-world appli-
cations for the implemented solution, various scenarios will be
investigated in order to understand which would be the best ap-
plication for the communication stack that has been developed.
Finally, a proof of concept application will be developed in or-
der to simulate the chosen application, implementing some poli-
cies to enable the collaboration between multiple WSNs.

After  having  achieved  all  the  goals,  the  entire  thesis  work
process  will  be  evaluated by investigating other  possible  ap-
proaches. A survey will be then performed in order to under-
stand if I would have had different results using different sys-
tems, such as a different OS and communication protocol for
the WSN. Finally, possible future work related to my thesis will
be proposed.
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4 Implementation
In this chapter the implementation of the CoAP communication
stack is described. As presented in Figure 4.1 the CoAP stack
extends the SensibleThings platform and it is formed by two
main  classes:  CoapSensorActuator  and  CoapSensorGateway.
The first one allows the communication between the platform
and a WSN which supports the CoAP protocol. The second one
realizes a gateway between the CoapSensorActuator class and
sensors which do not support the CoAP protocol. In this chapter
the architecture of the WSN which has been utilized in this the-
sis is explained. Next, the structure of CoAP packets and the
extended layers of the SensibleThings platform are described.

Figure 4.1: CoAP communication stack architecture.

The architecture of the WSN used in this work consists of one
mote connected to a computer via a USB cable, which acts as a
sink, and one or more motes that communicate with the sink
through the IEEE 802.15.4 medium, which are the actual sensor
nodes. The motes that have been used in this thesis are TelosB
motes running Tiny OS as operating system. Figure 4.2 shows
an example of a WSN.
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Figure 4.2: TelosB motes WSN.

In order to use the CoAP protocol on the motes, the CoAPBlib
library has been installed on the sensor nodes. Moreover, to en-
able the communication between the motes and the Linux ma-
chine the PPPRouter application needs to be installed on the
sink  mote.  This  application  is  IPv6  based  and  basically  re-
ceives/forwards packets on a specified IEEE 802.15.4 channel
and  forwards/receive  the  packets  to  the  computer  using  the
Point to Point Protocol.  

In appendix A some guidelines on how to install the CoapBlip
library and the PPPRouter application are reported.

Each TelosB mote is equipped with multiple sensors which are
identified by specific URI's, as represented in the following ta-
ble:

Sensor URI

Led \l

Temperature \st

Humidity \sh

Voltage \sv

Temperature + Humidity +
Voltage 

\r

In order to test the system, within the CoapBlip library an ex-
ample  client  application  is  provided  (at
/support/sdk/c/coap/examples). With this application, it is possi-
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ble to send CoAP requests to the motes from the Linux Termi-
nal. For example, the request for getting the leds' status would
be:”./coap-client coap://[fec0::3]/l” [25]. In Figure 4.3 an output
for this request is represented.

Figure 4.3: CoAP GET request example.

4.1 SensibleThings platform
The CoAP communication stack extends the Sensor and Actua-
tor  layer  of  the  SensibleThings  platform,  which  has  already
been described in paragraph 2.5.1. This platform enables multi-
ple nodes to communicate and to exchange data over the Inter-
net. This feature then has been used to connect multiple remote
WSNs together and to build applications for managing the re-
trieved data from various nodes. 

A component called SensorActuatorManager has been used in
order to bind the CoAP stack with the SensibleThings platform.
This component is included in the Sensor and Actuator layer
and his main task is to manage the requests between the plat-
form and this layer. It implements six methods:

• connectSensorActuator():  it  is  for  connecting  any
sensor/actuator in the network. Basically, after this call,
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the sensor/actuator will be registered and available inside
the platform.

• disconnectSensorActuator()  and  disconnectAllSenso-
rActuators():  are called for disconnecting a specific sen-
sor and all the sensors from the platform, respectively.

• HandleGetEvent()  and  HandleSetEvent(): this method is
called from the platform, to forward a getEvent/setEvent
to the sensors.

In Figure 4.4 the sequence of methods called within a GET re-
quest between two remote nodes is shown.

Figure 4.4: GET request.

4.2 CoAP packet structure

A CoAP packet is formed by a 4 bytes binary header followed 
by an option field and a payload. The length of the message 
payload is implied by the datagram packet length. The structure
of a CoAP packet is shown in Figure 4.5.
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Figure 4.5: CoAP packet format.

The fields within the packet header are:
Ver:  Version, 2 bit unsigned integer. This value indicates the
version of  CoAP protocol.  To set  this  field  correctly  for  the
CoAPBlib library, 1 has to be set as its value.  Other values are
reserved for future versions.

T: Transaction type field, 2 bit unsigned integer. This field indi-
cates if this message is Confirmable (0), Non-confirmable (1),
Acknowledgment (2) or Reset (3).

OC: Option count field, 4 bit unsigned integer. This field indi-
cates how many option headers follow the base headers. If set
to 0 the payload (if any) immediately follows the base header.

Code: 8 bit unsigned integer. It indicates the Method or the Re-
sponse Code of a message. The method codes are reported in
the following table:

The CoAPBlip library only allows get and put methods, how-
ever.  The  values  40-225  are  used  for  Response  Codes.  The
CoAP stack developed in this thesis only uses the values 80
(HTTP code: 200 OK) and 160 (HTTP code: 400 Bad request).

Transaction ID: 16 bit unsigned integer. This value identifies
each CoAP transaction since this is a unique ID assigned by the
source. The response message for each request must contain the
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same transaction ID as the request message. This value must
also be changed for each new request except when retransmit-
ting a request.

CoAP messages may also include one or more header options in
Type Length Format (TLV) and they have to appear in order of
option type.  The option types used in the CoAP stack were:
URI path (for specifying the sensor URI within a sensor node,
Type number: 9),Token (for sending the data payload in a PUT
request, Type number: 11) and Content Type (which indicates
the Internet media type of the token, Type number: 1).  A delta
encoding is used between each option header,  with the Type
identifier for each Option calculated as the sum of its Option
Delta field and the Type identifier of the preceding Option in
the message, if any, or zero otherwise. Each option header also
includes a Length field, as represented in Figure 4.6.

Figure 4.6: Option field format.

Option delta: 4 bit unsigned integer. This field defines the dif-
ference between the option Type of this option and the previous
one (or zero for the first option). In other words, the Type iden-
tifier is calculated by simply summing the Option delta fields of
this one and previous options.

Length: 4 bit unsigned integer. This field specifies the length of
the option payload.

Figure 4.7 shows a basic request sequence. A client makes a
Confirmable GET request for the resource/temperature to the
server with a Transaction ID of 1234.  The request includes one
URI-Path Option (delta 0 + 9 = 9) "temperature" of Len = 11.
The corresponding Acknowledgment is of Code 200 OK and in-
cludes a Payload of "22.3 C".  The Transaction ID is 1234, thus
the transaction is successfully completed.  The response Con-
tent type of 0 (text/plain) is assumed as there is no Content type
Option [26].
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Figure 4.7: CoAP get transaction example.

4.3 CoapSensorActuator
CoapSensorActuator is responsible for the communication be-
tween the platform and the sink of a WSN, through the CoAP
protocol. Its main task is to create CoAP packets, send them to
a mote and parse the response message.

It extends the SensorActuator abstract class and implements its
two methods getValue() and setValue(), as shown in Figure 4.8.
The constructor gets the IP address of the mote and the sensor
UCI. At the end of the IP address the URI of the sensor also
needs to be specified by the user.
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Figure 4.8: CoapSensorActuator UML scheme.

getValue():  this method is called by the SensibleThings plat-
form every time a CoAP GET request has to be sent to a mote.
It is a synchronized method because only one thread at a time
can send a GET request to a mote. According to the CoAP pro-
tocol standard, getValue creates a CoAP packet using the  cre-
ateCoapGetMessage() method. Then it uses a DatagramSocket
to send the packet to the mote at the specific IP address set by
the user. However, the number of the port cannot be chosen by
the user, since CoAPBlip on TelosB motes always uses the de-
fault port 61616 to receive the requests. If the request has been
sent correctly, a response CoAP packet is received on the same
socket.  To parse  the  received packet,  in  order  to  extract  the
value of the sensor reading, the method readResult() is called. 

Since a response message can never be received from the mote,
a timer of 4 seconds is set during the creation of the Datagram-
Socket. If after that period of time the response has not been
received, the lock on the SensorActuator object is released and
a new GET request can be sent.

createCoapGetMessage():  this  method  builds  a  CoAP GET
message,  according to what  has been explained in paragraph
4.3. 
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An example packet built by this method for a GET led request
is shown in Figure 4.9.

Figure 4.9: CoAP GET packet.

The first two bytes are constant for each packet created by the
createCoapGetMessage  method.  Each byte  has  the  following
meaning: 

0x41 (0100 0001): within this byte the first  three fields of a
CoAP packet are set.    The two initial bits represent the proto-
col version number,  which must be set  to 1.  Then the 2 bits
Transaction  Type  is  set  to  0,  which  means  that  the  current
packet is a Confirmable message. The last 4 bits represent the
number of the options that follows the packet header, which is
set to 1. Since this request has to be sent to a specific sensor
within the addressed mote, its URI has to be specified in the
packet. Then the only option used for this request is the sensor's
URI.

0x01: this byte represents the method code. For a GET request,
the value of this field has to be 1.

0xC3\0x5A:  this  pair  of  bytes  represent  the  Transaction  ID.
These values must be different every time a new packet is cre-
ated. The Random Java Object was used to generate these val-
ues. 

0x91 (1001 0001): this byte is the option header. The first four
bits represent the option type, expressed in TLV format. Since
this is the only option in this packet, the TLV value corresponds
to the option type number (9 for the URI option). The length (in
bytes) of the actual option value is set on the last 4 bits. 

0x6C: this is the option payload, which contains the value of
the option. Since the only option set by this method is the URI,
this  value  represents  that  address  in  ASCII  code.  (6C is  the
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hexadecimal ASCII code for the character 'l', which is the led
URI.)

readResult(): this method parses a CoAP message and if in the
response code field does not contain an error code, it extracts
the payload data. Since the data sent by the motes are in binary
format,  in  order  to  make  them  readable  the  binaryToHex()
method is called. However, TelosB motes sensor data need an-
other conversion to be correctly read. This conversion consists
of swapping the order of bytes and then in dividing the data by
100. However, since readResult() is meant to read data from a
general mote, this conversion needs to be implemented at appli-
cation level.

Another issue that has been faced in this method was how to
determine the end of the CoAP packet, since its size depends
only on the datagram packet length and no termination charac-
ters were set by the CoAP protocol. Thus a packet was consid-
ered terminated if a sequence of five 0x00 bytes were found.

binaryToHex(): this method converts binary data to hexadeci-
mal format. It uses the StringBuilder java object in order to for-
mat each byte to hexadecimal format. 

setValue():  this method is called by the SensibleThings plat-
form every  time  a  CoAP set  request  is  sent  to  a  mote.  As
getValue(),  this is a synchronized method which uses a Data-
gramSocket to send a set request to a mote. To create a CoapPut
packet, the method createCoapPutMessage()  is called, passing
the value to set as an argument. After having sent the packet to
a mote, a response message is received. It contains a response
code which indicates the status of the PUT request.

createCoapPutMessage(): this method builds a CoAP packet
for a PUT request, setting the specified value as payload of the
packet. Since the value to set needs to be converted in binary
format, the method fromHexString() is called.

An example  packet  created by this  method is  represented in
Figure 4.10. 
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Figure 4.10: CoAP PUT packet.

The  first  two bytes  and the  first  option  field  have  the  same
value for every packet created by this method. These bytes have
the following meanings:

0x43 (0100 0011): the only difference between this field and
the first one of a GET request is that a PUT requires 3 options
instead of 1.

0x03: this value represents the method code for a CoAP PUT
request.

0xCF\0X81:  Transaction  ID.  As  for  the  createGetPacket
method, the Random Java Object is used in order to have differ-
ent values for each transaction.

0x11: this byte is the header of the first option in this packet.
The  option  type  number  is  1  (Content  type  option)  and  the
length of its payload is set to 1. 

0x2A: it is the ASCII code for the Content type option, which
corresponds to '*'  (which means 'text/plain').

0x81: this byte is the header of the second option. Since there is
another option before this field, the option type number does
not correspond to the actual type number, but this value is cal-
culated according to the TLV format. Therefore the actual type
number of the current option is calculated by summing the op-
tion delta of the previous option with this one, that is 9 (URI).
The length of the current URI is set to 1 byte.

0x6C: is the ASCII code of the 'l' character.

0x22: is the header of the third option. The option type number
is  calculated  by  summing  this  option  delta  with  the  option
deltas of the two previous options, that is 11 (Token).
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0x33\0x61: when a Token option is used, a constant value ('3a')
must be set before the payload. Then these 2 bytes represent
this value in ASCII code format. 

0x02: is the packet payload. This value represents the led status
that the user wants to set.

fromHexString(): this method converts a hexadecimal string in
an array of bytes. It basically parses two hexadecimal values at
a time from the string and it converts them to binary format us-
ing the Integer.parseInt() function. 

4.4 CoapSensorGateway
CoapSensorGateway enables  the  communication  between the
CoapSensorActuator and sensor nodes which do not support the
CoAP protocol. It is responsible for converting a CoAP request
to the specific format used by the sensor node which is cur-
rently connected to the SensibleThings platform.

This class extends the SensorGateway abstract class and real-
izes a demon Java thread which is always listening to incoming
messages from a Datagram Socket. Once a packet is received it
checks if it is a CoAP packet and then parses all the single bytes
in order to check if it is well formed. Then the type of the re-
quest and the sensor's URI are extracted from the packet.

If it is a GET request the actual request to the sensor node is
sent with the call of the getEvent() method. This method has to
be implemented by the developer within a new class which im-
plements the SensorGatewayListener interface. This class has to
be set as the argument of the CoapSensorGateway constructor.
Then a response CoAP packet is built and, if the GET request
was correctly sent to the sensor node, the sensor data are set as
payload. Otherwise an error code is set  in the response code
field.

In case the packet received from the socket was for a PUT re-
quest, the setEvent() method is called for sending the actual re-
quest to the sensor node. As the getEvent() method, it also has
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to be defined by the developer within a new class which imple-
ments the SensorGatewayListener interface.

Eventually  the  response message is  sent  back to  the  address
from which the  request  was  received.  In  Figure  4.11 a  flow
chart representing the sequence of the main operations executed
by the CoapSensorGateway is represented. Due to space limi-
tations,  a  programming  language  syntax  has  been  used:
“packet[i]” represents the i-th byte of the received packet, while
“||” and “&&” represents the conjunctions “or” and “and”, re-
spectively.  

Figure 4.11: CoapSensorGateway's operations flowchart.
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5 Results
This chapter explains all the tests that have been made in order
to evaluate the CoAP communication stack. The first parameter
that has been measured is the response time; which describes
how fast  a CoAP transaction is completed. The second para-
graph describes measurements of the size of a CoAP packet fol-
lowed by  a  comparision  between CoAP packet  and standard
UDP packet sent over the SensibleThings platform. The third
paragraph reports a possible real-world scenario for the CoAP
stack and describes a proof of concept application which has
been implemented to test the system. The last paragraph ana-
lyses a battery-saving algorithm and reports the overhead intro-
duced by this algorithm.

5.1 Response time
The first measurement that has been made to evaluate the CoAP
stack was to measure how long a CoAP transaction takes to be
completed. The Java API System.nanoTime() was used to make
these measurements. This API  returns the current value of the
most precise available system timer, in nanoseconds. The crite-
ria used in determining the response time was to sample one
hundred different response times and then to calculate the aver-
age and the standard deviation of these values.

5.1.1 CoapSensorActuator response time
First, the response time between the CoapSensorActuator com-
ponent and a TelosB sink was measured. The measurements are
related to the GET and PUT led requests and also GET tem-
perature, humidity and voltage requests. To measure the trans-
action time, two timers have been used: the first one samples
the  current  time just  before  the  CoapSensorActuator  sends  a
CoAP request packet and the second one measures the time af-
ter  the  data  payload  has  been  extracted  from  the  response
packet. The difference between these two values represents the
duration of a CoAP transaction.
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Within  a  single  transaction,  the  time  for  exchanging  the
request/response messages with the WSN (which also includes
the  time  for  sensing  and  building  the  response  packet)  and
CoAP request/response  building/parsing time were  also mea-
sured. In Figure 5.1 the scenario of this test is shown, while in
Figures 5.2, 5.3 and 5.4 these measurements are reported.

Figure 5.1: CoapSensorActuator response time test scenario.

Figure 5.2: Packet building time

The values reported in Figure 5.2 show that building packets for
PUT requests takes a little bit more time than building get pack-
ets. This is because CoAP packets for PUT requests have more
fields than GET packets (as  explained in paragraph 4.3) and
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then more calculations are made to build the packet. However,
building CoAP packets takes very little time, so this difference
is almost negligible.

In Figure 5.3 the measurements of the time for exchanging the
request/response  messages  with  the  WSN are  reported.  This
value was measured as the difference between the current time,
sampled just before the CoapSensorActuator sends a CoAP re-
quest  packet,  and  the  current  time  sampled  just  after  the
CoapSensorActuator has received the response packet from the
WSN.

Figure 5.3: Messages exchange and sensing time.

The values reported in Figure 5.3, show that a GET temperature
is the request that takes more time. Since the type of communi-
cation used between the CoapSensorActuator and the WSN is
the same for all of these requests, the time that the request and
response packets take to travel between the node which is run-
ning the CoapSensorActuator and the WSN, is almost the same
for every type of request (around 70 microsec). So, what makes
this value so different from the others is the time that the mote
takes to sense the temperature and then to build the response
packet, which is included within the values represented in Fig-
ure 5.3.
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Figure 5.4 shows the time required for parsing a CoAP response
packet sent back from the sink of a WSN. The duration for all
the requests is almost equivalent, however, parsing a GET led
response packet takes a little bit less time because the data pay-
load to be extracted from the packet is smaller in size than that
one of the other kind of GET requests. Parsing a PUT led re-
quest packet takes even less time because that packet doesn't
contain any payload to be processed.

Figure 5.4: Packet parsing time measurements.

In Figure 5.5 the whole duration of a CoAP request is repre-
sented.

Figure 5.5: Transaction time measurements.
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From this Figure it is clear that GET temperature is the request
that takes more time so far. Comparing Figures 5.2, 5.3 and 5.4
it is clear that most of the transaction time is related to the delay
introduced by the WSN for sensing and computing the response
packet.  That  means  that  the  delay  introduced  from  the
CoapSensorActuator to build and parse CoAP packet is almost
negligible,  compared with that  one introduced by the TelosB
WSN.

Another value that was measured was the overhead introduced
by the SensibleThings platform. That time was measured as the
difference between a request and a response packet within a sin-
gle CoAP transaction to travel between two remote nodes con-
nected to the platform. The first node was a computer which
was running an application for retrieving sensor data from a re-
mote node, which was a WSN connected to the SensibleThings
platform; as represented in Figure 5.6. In Figure 5.7 the related
measurements are reported. Analyzing these values it  appears
that the average delay introduced by the SensibleThings plat-
form is about 150 ms.

Figure 5.6: SensibleThings overhead test scenario.
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Figure 5.7: Average transaction time.

5.1.2 CoapSensorGateway response time
In order to evaluate the CoAP stack, the CoapSensorGateway
was taken into consideration. To measure the overhead intro-
duced by this component a Raspberry Pi device was used. 

The first step was to measure the transaction time between the
Raspberry  Pi  (which  was  directly  connected  to  the  Sensi-
bleThings platform) and a remote computer which was running
a simple application for sending GET requests through the plat-
form. To connect the Raspberry Pi to the SensibleThings plat-
form, the software of the platform was installed on the Rasp-
berry Pi and then a simple application was run on it to register
its IP address and its sensor UCI inside the platform. In this
way the Raspberry Pi could directly receive requests and send
responses from and to the platform.

The second step was to use the CoapSensorGateway to connect
the Raspberry Pi to the SensibleThings and then measure the
transaction time between this device and a remote computer. In
this  scenario  the  requests  sent  by  the  remote  application  are
converted  in  CoAP requests  by  the  CoapSensorActuator  and
then handled by the CoapSensorGateway which is directly con-
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nected to the Raspberry Pi through a datagram socket. Since the
Raspberry Pi was equipped with just a temperature sensor, only
GET temperature requests were considered. In Figure 5.8 both
the scenarios are represented, while in Figure 5.9 the measure-
ments are reported.

Figure 5.8: CoapSensorGateway test scenarios.

Figure 5.9: CoapSensorGateway test results (1).
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From the test results it appears that the overhead introduced by
the CoapSensorGateway is pretty low, however, the high value
of the standard deviation says that the duration of each transac-
tion is much more variable than the one in the first scenario.

Eventually, a third scenario was considered, as shown in Figure
5.10. 

 Figure 5.10: CoapSensorGateway test, third scenario.

The aim of this test  was to measure the transaction time be-
tween  a  node,  running  both  the  CoapSensorActuator  and
CoapSensorGateway,  and  a  Raspberry  Pi  (directly  connected
via LAN to the node sending the Coap request). As previously
did for the TelosB motes in a similar test scenario (see Figure
5.1), also for the Raspberry Pi the packet building time, packet
parsing time and messages exchange-sensing time were mea-
sured. In Figure 5.11 these values are reported.
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Figure 5.11: CoapSensorGateway test results (2).

5.2 Packet size
The second parameter used to evaluate the CoAP stack was the
size of the packets. In order to extract packets from the network
dataflow a software named Wireshark was used. Wireshark is a
free and open source packet  analyzer.  It  is  used for network
troubleshooting, analysis, software and communications proto-
col development. This software allows the user to put network
interface controllers in order to see all traffic visible on that in-
terface.

The goal was to compare the GET packets sent over the Sensi-
bleThings platform with the CoAP GET packets sent from the
CoapSensorActuator to the WSN and then analyze their size.
Two computers and a WSN have been used in this test. The first
computer  was running a simple  application to  send GET re-
quests to a remote WSN through the SensibleThings platform,
while the second computer was directly connected to the WSN
and had the task of managing the CoAP communication with
the WSN (as represented in Figure 5.12). 
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Figure 5.12: Packet size test scenario.

Figure 5.13: SensibleThings GET packet.

Figure 5.14: CoAP GET packet.

Comparing the packets shown in Figures 5.13 and 5.14 it ap-
pears clear that CoAP packets are smaller in size than the pack-
ets sent over the platform. The actual size of a CoAP packet for
a GET temperature request (that is the packet from Figure 5.9)
is only 7 bytes but the whole size of the packet sent from the
CoapSensorActuator to the WSN is 71 bytes. This is because
the CoAP protocol relies on UDP as transport layer and IPv6 as
network layer  (as  explained in  paragraph 2.4.4),  so a  packet
must include both IPv6 and UDP headers in order to be sent
over the network. On the other hand, packets sent over the Sen-
sibleThings platform are much bigger in size than CoAP pack-
ets because they are serialized before being sent. An increase in
the size of serialized data is one of the consequences in using
the serialization. Another difference between these two types of
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packets is that SensibleThings packets rely on TCP and IPv4 as
transport protocol and network protocol, respectively. 

5.3 Scalability
The third test that has been conducted was regarding the scala-
bility of the developed communication stack. The first idea was
to test the scalability of the CoapSensorActuator component in
order to measure how many motes could be connected to the
same  sink  before  the  requests  coming  from  this  WSN  had
caused  a  drop  in  the  performances  of  this  component  (that
means a high increase of the response time for each request).
However,  since  each CoapSensorActuator  component  can  be
bound to just one mote, this kind of test was then considered
not of interest. Nevertheless, the scalability of the CoapSensor-
Gateway was considered of interest.  Since this component is
implemented as a daemon thread which is continuously listen-
ing for  incoming CoAP requests,  a  test  was  run to  see  how
many requests it could have managed before having a signifi-
cant drop in the response performance. The idea was to create a
simple application which created and then run a set of threads,
where each one created and used its own CoapSensorActuator
object  for  sending  multiple  CoAP  GET  requests  to  the
CoapSensorGateway; as shown in Figure 5.15. It was then mea-
sured how many requests coming at the same time from differ-
ent threads could have been managed by the CoapSensorGate-
way before having a significant increase in the transaction time.
To not add any further overhead, no sensor nodes were con-
nected to the CoapSensorGateway; therefore a static value was
sent  as  a  response value  for  a  GET request.  Three  measure-
ments with different number of threads have been conducted:
10 threads in the first one, 100 in the second one and 1,000 in
the last one. The transaction time was sampled after different
numbers of requests sent to the CoapSensorGateway, as the re-
sults in Figure 5.16, 5.17 and 5.18 show.
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Figure 5.15: Scalability test scenario.

Figure 5.16: Scalability test results with 10 running threads.

The results show an increase in the response time, related to the
number of the running threads as expected. However, in both
the scenarios with 10 and 100 running threads there is a linear
increase of the transaction time within the first 1000 requests
and afterwards this value remains almost steady. This behavior
indicates that the CoapSensorGateway was able to manage such
a number of requests without having further drop in the perfor-
mance.
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Figure 5.17: Scalability test results with 100 running threads.

Figure 5.18: Scalability test results with 1000 running threads.

On the other hand, the results with 1,000 threads running at the
same time were different, since there was a huge increase of the
transaction time between the 100th and the 1000th request and
that value kept increasing afterwards; exceeding the value of
9000 ms at the 10000th request (as shown in Figure 5.18). This
is an unwanted result which suggests that this number of re-
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quests was too high to be managed by the CoapSensorGateway.
One of the main reasons for this behavior is caused by the syn-
chronization  used  in  both  get  and  set  methods  within  the
CoapSensorActuator. When the number of requests is high as in
this last scenario, each request sent from the same CoapSenso-
rActuator object has to wait for the previous one to be termi-
nated, thus there is a huge increase in the response time for each
new request. This result could be improved by modifying the
code of both get and set methods in a way that they could man-
age multiple requests at the same time.

5.4 Proof of concept application
In order to test both the CoapSensorActuator and the CoapSen-
sorGateway, a proof of concept application has been developed.
This application simulated a real-world application that is very
common in Sweden: a fire detection system.  This test was an
important part of this thesis work since it was helpful to test all
the developed components together and to discover problems
which would not surface if only testing each component indi-
vidually.

5.4.1 Potential real-world scenario
The forest is considered one of the most important and indis-
pensable resources as well as the protector of the Earth's eco-
logical balance. Forest fires are a constant threat to these eco-
logical guardians. Recently, with the effect of factors such as
climatic fluctuations, human activities, etc., a tendency of in-
tense increase of forest fires was showed. At present, traditional
forest  fire  prevention  measures  have  been ground patrolling,
watch towers, aerial prevention, long distance video detection
and satellite monitoring and so on. In view of all the deficien-
cies of conventional forest fire detection, it is necessary to bring
in a new method for a more efficient ground forest fire detec-
tion system.

Compared with the traditional techniques of forest fires detec-
tion, WSNs technology is a very promising green technology
for the future in efficiently detecting forest fires; according to
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the features explained in paragraph 2.2.  In this case,  a WSN
could be deployed to detect a forest fire in its early stages. A
number of sensor nodes would need to be pre-deployed in a for-
est. Each sensor node could then gather different types of row
data from sensors, such as temperature, humidity, pressure and
position. All sensing data would be sent wirelessly in ad-hoc
fashion to a sink station, which in turn would transmit data to
the control center via a transport network such as GSM, UMTS,
Satellite, TCP/IP networks. In Figure 5.19 a possible scenario
of a WSN deployment for fire detection is shown.

Figure 5.19: WSN fire detection scenario.

On the control center the sensor data could then be used to de-
tect forest fires. To detect fires many different techniques could
be implemented, however the two most common solutions are
the  Canadian  system  and  the  South  Korean  system,  as  ex-
plained in [27].

5.4.2 Implementation and results
The scenario explained in the previous paragraph was imple-
mented in small scale in a computer lab of the university. In this
test three machines have been used, which were interconnected
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by the  SensibleThings  platform.  The  first  machine  was con-
nected to a Raspberry Pi (equipped with a temperature sensor)
through a Local Area Network (LAN) and was running both the
CoapSensorActuator and CoapSensorGateway classes in order
to communicate with the Raspberry Pi. The second node was a
notebook which was connected through a USB cable with two
WSNs formed by 2 TelosB motes each (the first one used as a
sink and the other one as a standard WSN mote). In this node
two different instances of the CoapSensorActuator object were
created in order to enable the communication between the Sen-
sibleThings node and both the WSNs. The third machine repre-
sented the  control  center  of  the system and was running the
proof of concept application.  In Figure 5.20 the before men-
tioned scenario is represented.

 Figure 5.20: Proof of concept application scenario.

This  test  tried  to  simulate  a  scenario  where  the  sensors  de-
ployed in a forest were developed by different manufacturers
and the CoAP protocol was not supported by all of them. For
this reason, two different kinds of devices were used: TelosB
motes and a Raspberry Pi, which is a credit card sized single
board  computer.  Since  the  Raspberry  Pi  did  not  support  the
CoAP protocol, it  was necessary to use the CoapSensorGate-
way in order to enable the communication between the platform
and this device. Moreover,  a server application for the Rasp-
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berry Pi was implemented. This application realizes a Java dae-
mon  thread  which  is  always  listening  for  incoming  requests
from the CoapSensorGateway on a datagram socket and then
uses the same socket to send its sensor data (which are periodi-
cally saved in a file on the Raspberry Pi's memory). 

On the third node the actual proof of concept application has
been developed. The application uses the SensibleThings plat-
form to obtain the actual address of both the temperature sen-
sors within the Raspberry Pi and the first TelosB mote, specify-
ing  their  UCIs  ('alessandro@miun.se/tinyos/temperature'  and
'alessandro@miun.se/raspberrypi/temperature',  respectively)
and then to collect temperature data from them. Once it has re-
ceived the temperature from both the sensors, the application
checks  if  the  average  of  both  the  values  is  above  a  certain
threshold (19 °C). If it is, a Set led request is sent to the second
TelosB  mote  (specifically  to  its  UCI:  'alessandro.aloisi@mi-
un.se/tinyos/led') and then a led is switched on. This action rep-
resents an alarm sent to the nearest fire station in the real world
scenario. In Figure 5.21 the output of the proof of concept ap-
plication is shown.

Figure 5.21: proof of concept application output.

5.5 A battery-saving algorithm
So far, in this thesis report, it has been considered a scenario
where the WSNs were always on. However,  a WSN is com-
posed  by  sensor  nodes  which  are  usually  small  devices
equipped with an energy source (e.g. a battery). Thus, the limits
on size, energy availability and cost induce severe constraints in
terms of computing speed,  memory, available bandwidth and
lifetime. By focusing on the potential real world application of
the CoAP stack, as a fire detection system, an underlying re-
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quirement for WSN usability is to achieve a long network life-
time  via  low-power  consumption.  Wireless  interfaces  are
widely  recognized  to  be  one  of  the  most  relevant  factors  to
drain battery power. Therefore, a low-power listening (LPL) al-
gorithm has been implemented;  which refers  to  the  effective
and widely  adopted design guideline  to  decrease  power con-
sumption  by  switching  off  radio  subsystem  periodically.
Through this algorithm it has been possible to define differenti-
ated duty cycles, namely the ratio between the time interval of
radio on and the time interval between two consecutive wake-
ups. The idea was to split up the active period of the WSN in
multiple time slots and to set the duration and the duty cycles
for each time slot. 

In order to evaluate the overhead introduced by this algorithm
to the CoapSensorActuator, the response time of various CoAP
transactions with different values of duty cycle were measured.
In particular, the length of each time slot was set to 10000 ms
and 100%, 50%, 10%, 5% duty cycles were considered, respec-
tively.  Since  the  algorithm  has  been  implemented  in  a  way
where a user can set the value of the delay after that the WSN
would switch on, e.g. a duty cycle of 50% for a time interval of
10000 ms means that the wireless interface remains off for the
first 5000 ms and then it switches on for the remaining 5000
ms. For 10% and 5% duty cycles the wireless interface would
switch on after 9000 ms and 9500 ms, respectively. Eventually,
a 100% duty cycle means that the wireless interface remains on
for the whole active period.

In figures 5.22, 5.23, 5.24 and 5.25 the results of the measure-
ments are reported. 
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Figure 5.22: Transaction time with 100% duty cycle.

Figure 5.23: Transaction time with 50% duty cycle.
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Figure 5.24: Transaction time with 10% duty cycle.

Figure 5.25: Transaction time with 5% duty cycle. 

The results of the tests show that the length of each transaction
increases linearly with the increase of the delay after which the
wireless interface switches on.
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6 Conclusion
The problem treated in this thesis is perhaps one of the most
challenging for IoT developers. The thesis investigated enabling
communication between IoT and WSNs,  irregardless  of their
network connection and then to utilize the sensors data for con-
text aware applications. In order to solve the problem, the goals
described  in  chapter  3  were  achieved  using  the  following
methods:

Goal  1:  evaluating  three  different  solutions  of  connecting
WSNs to an IoT scenario was achieved by searching for articles
and  papers  in  many  research  databases  and  then  analyizing
three different IoT platforms: SensibleThings, ETSI M2M and
SENSEWEB.

Goal  2:  understanding  the  most  common  operating  systems
used in WSN, resulted in discovering TinyOS and Contiki.  I
studied the documentation about  these OS in order to assess
which was the best to be used in my thesis. Eventually I con-
cluded that TinyOS was the best option, since Contiki does not
work well with TelosB motes because the commands are set for
a type of sky motes that is not valid for TelosB motes new ver-
sions.

Goal  3:  investigating  which  communication  protocols  these
operating  systems support,  was  achieved  analyizing  the
documentation about these OSs. This research led me to choose
the CoAP protocol for its compatibility with TelosB motes and
its lightweight protocol stack. 

Goal  4:  to  implement  a  communication  stack  which  enables
communication between WSNs and IoT applications, led to the
analysis  of  the  SensibleThings  platform  and  running  some
simulations to discover its features. The Sensor and Actuator
Layer of the platform was then extended with the CoapSenso-
rActuator and CoapSensorGateway classes.

71



Integrating  Wireless  Sensor  Networks  and  Internet-of-Things:  a  Coap-based
approach.
Alessandro Aloisi 2014-12-11

Goal 5: to evaluate the performance and responsiveness of the
implemented solution, some tests were run in order to measure
the get/set transactions response time and then compared these
values  with  the  response  time  of  the  SensibleThings  get/set
transactions to measure the overhead introduced by the CoAP
stack. Moreover, a packet sniffer software was used in order to
extract the packets from the network data flow and then, some
comparisons between the packets created by the SensibleThings
platform with the ones built  by the CoAP stack,  were made.
Furthermore,  the  scalability  of  the  CoapSensorGateway  was
tested, measuring how many requests could it manage before
having a drop in the performance. Eventually, the overhead in-
troduced by a battery-saving algorithm was measured.

Goal  6:  investigating possible  real-world applications for  the
implemented solution, I concluded that this research could be
applied to a fire detection system, especially introduced in the
prevention of fires in forests, a prominent geographical feature
in Sweden. Eventually I developed a proof of concept applica-
tion in order to simulate this system in a small scale and to also
test the developed classes.

6.1 Discussion
Many choices regarding the tools and the methods that  have
been used in this thesis work were forced by the type of motes
that I had to use, the TelosB motes. Since this type of mote sup-
ports only Tiny OS and Contiki I could not test other operating
systems, like MantisOS or Nano-RK; which would have been
interesting to install in order to compare the performances of all
these IoT OSs. I did experience some problems using Contiki
on the TelosB motes, probably due to some compatibility issues
with the new version of the motes and thus eventually I decided
to use  TinyOS. Nevertheless,  my choice  was consistent  with
that of most of the IoT developers, since TinyOS is the most
used OS in WSNs at the moment. The choice to use CoAP as
application protocol (for retrieving sensor data) was forced by
certain  limitations.  Indeed,  the  documentations  of  TinyOS is
quite unspecific and I was not able to figure out if this OS sup-
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ported other kinds of application protocols. However, CoAP is
supported by the majority of WSN operating systems, therefore
the choice of using this protocol allowed the use of the commu-
nication stack developed in my thesis not only to communicate
with TelosB motes but also with any kind of mote which sup-
ports CoAP. 

As a result of my thesis work, the Sensor and Actuator layer of
the  SensibleThings  platform  was  extended  and  as  a  conse-
quence,  the  communication  between  the  platform  and  the
WSNs has been enabled.  My work was based on the  Sensi-
bleThings platform because it was the IoT platform developed
by Mid Sweden University  and to connect the platform with
WSNs  was  one  of  the  main  features  which  was  not  imple-
mented  yet.  However,  the  CoAP stack  that  has  been  imple-
mented could be easily exported to other Java based IoT plat-
forms, since the SensibleThings APIs were not used within the
code.  In  the  following tables  the  values collected during the
evaluation  phase  (explained  in  paragraphs  5.1  and  5.2)   are
summarized.

Through
SensibleThings

Direct
communication to

the WSN

GET led transaction
time

219 ms 58 ms

PUT led transaction
time

225 ms 62 ms

GET temperature
transaction time

441 ms 305 ms

GET humidity
transaction time

138 ms 304 ms

GET voltage
transaction time

76 ms 226 ms

Table 1: CoapSensorActuator response time measurements.
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Raspberry Pi
connected to the

CoapSensorGateway

Raspberry Pi
directly connected
to SensibleThings

GET transaction
time

288,7 ms 212 ms

Table 2: CoapSensorGateway response time measurements.

SensibleThings
packet

CoAP packet

Request packet size 863 bytes 71 bytes

Response packet
size

264 bytes 70 bytes

Table 3: Packet size test measurements.

Analyzing these  values  it  appears  clear  that  the  CoAP stack
added  an  overhead  in  terms  of  response  time  to  the  Sensi-
bleThings platform, since the requests coming from a remote
node have to be translated into CoAP requests before being sent
to a WSN. However, the CoAP protocol brings a decrease in the
packet  size  and  makes  the  developed  communication  stack
'open', since it can be used to communicate with several differ-
ent types of WSN motes.

6.1.1 Ethical issues
There are many ethical issues that may arise from the IoT. The
biggest one is related to individual privacy. Many people today
wear sensors when they move through their daily lives to track
their heart  rate,  miles traveled,  or  steps taken. These activity
monitor sensors are connected wirelessly to smart phones and
to the Internet to enable users to track metrics over time. By
collecting information on people  and their  habits,  companies
will  have the ability to infringe upon consumers.   Therefore,
when  companies  have  this  information  readily  available  to
them, and they have the possibility  to increase their  revenue
tremendously, they are more likely to infringe upon our privacy.
Another  ethical  issue  of  the  IoT  is  that  it  can  discriminate
against certain groups of people that do not have access to the
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Internet. There are many countries where lower income families
do not have access to the Internet, so they will not be able to
reap the benefits offered by the IoT. In other words, families
that do not have the money to purchase some of these devices
will be as well off as other more affluent families. In the end
this could cost the lower socioeconomical families more, and
decrease the inefficiencies in higher socioeconomical  classes.
The third ethical issue of the IoT is related to security.  In this
new media, which is no longer in its infancy, the vulnerabilities
and attacks are various, caused by technological advances and
proliferated through lack of  user  awareness.  This  problem is
particularly  related  to  the  CoAP communication  stack  which
has  been  implemented in  this  thesis  work,  since no  security
mechanisms were used. All the packets sent between a WSN
sink and a SensibleThings node could be intercepted and modi-
fied. For example, one threat for a real world fire detection sys-
tem could be a fake packet with a high temperature value sent
to the control center in order to simulate a fake fire.

6.2 Future work
Some improvements can be applied to the current work. In rela-
tion to the written code, firstly the system needs to implement
some security mechanism in order to be adapted to real world
applications. For instance cryptographic protocols like SSL and
RSA could be implemented in order to enable secure communi-
cation channels  between WSNs and the  SensibleThings plat-
form; specifically between the WSN sink and the CoapSenso-
rActuator and also between the CoapSensorGateway and the at-
tached sensor node. Another issue which needs to be solved is
how to handle multiple CoAP transactions. At the moment, both
the GET and PUT methods defined in the CoapSensorActuator
class are synchronized methods, which means that when a re-
quest comes to this component it needs to wait until the previ-
ous one has received a response from the WSN sink. In order to
improve the performance of the system it would be useful to
improve the before mentioned methods in a  way where they
could manage multiple CoAP transactions at the same time. 
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Related to the motes which have been used in this thesis work it
would be  interesting  to  test  the  implemented communication
stack with other types of  motes other than the  TelosB mote.
Only motes which support CoAP could communicate with the
CoapSensorActuator and could then be used instead of TelosB
motes.  However,  if  these  different  types  of  motes  support
CoAP, there should not be any compatibility issues and they
should be able to receive and send CoAP packets from and to
the CoapSensorActuator, respectively.

Other future work that could be interesting would be to export
the classes implemented in this work to other IoT platforms,
like Senseweb and ETSI M2M, in order to figure out  which
platform has the best performance. Therefore, both the response
time  and  the  packet  size  could  be  measured  using  different
types of motes and IoT platforms. A comparison between all
these values could be made in order to investigate which would
be the best solution to implement.
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Appendix A: CoapBlip installation guide
The first step to install the CoapBlib on the motes has been to
install Tiny OS on Linux Ubuntu 12.04 LTS machine. The main
guidelines to install TinyOS are the following:

1. Add the TinyOS respository link (deb http://tinyos.stan-
ford.edu/tinyos/dists/ubuntu natty main) at the end of the
file: /etc/apt/sources.list;

2. Run the command: sudo apt-get install tinyos-2.1.2;

3. Configure  permission  for  user: sudo  chown  user:user
-R  /opt/tinyos-2.1.2/;  sudo  chown  user  -R  /opt/tinyos-
2.1.2;

4. Add environment variables to bashrc: at the end of that
file  add  the  following  lines  (export
TOSROOT=/home/user/tinyos-2.1.2; export
TOSDIR=$TOSROOT/tos;  export
CLASSPATH=$TOSROOT/support/sdk/java/tinyos.jar:.
$CLASSPATH;   export
MAKERULES=$TOSROOT/support/make/Makerules).

Once Tiny OS has been installed on the machine, it is possible
to compile the CoapBlib library. To compile the library, change
directory to  /support/sdk/c/coap within the home directory of
Tiny OS and run the following commands: 1-autoconf, 2-./con-
figure, 3-make.

At this point is possible to install the CoapBlib via a USB con-
nection on each mote, running this command:”make telosb blip
coap install,<addr> bsl,/dev/ttyUSB0” within the following di-
rectory: /apps/CoapBlip. It is possible to set the last field of the
mote's IPv6 address, writing the selected value in the <addr>
field.
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Then, to enable the communication between the computer and
the motes, the PPPRouter has to be installed on the sink node.
To install this application, connect the sink to the computer with
a USB cable and then execute the following command:”make
telosb blip  install  bsl,/dev/ttyUSB0” within the  following di-
rectory: /apps/PppRouter. Next, to enable the actual PPP con-
nection the following command needs to be run:”sudo pppd de-
bug  passive  noauth  nodetach  115200  /dev/ttyUSB0 nocrtscts
nocdtrcts lcp-echo-interval 0 noccp noip ipv6 ::23, ::24”. Even-
tually, to make the computer reachable from the sink a IPv6 ad-
dress has to be provided to it. Then, in a new terminal run the
following  command:  ”sudo  ifconfig  ppp0  add  fec0::100/64”.
Now it is possible to send CoAP requests to the motes.
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Abstract in lingua italiana
La crescente presenza di sensori attorno a noi sta aumentando la
necessità di sviluppare applicazioni che consentano di accedere
a dati provenienti da sensori remoti collegati tra loro attraverso
Internet. Per rappresentare questo nuovo scenario è stato coni-
ato un neologismo, riferito all'estensione di Internet al mondo
degli oggetti e dei luogi concreti: 'Internet degli oggetti' (IoT,
acronimo dell'inglese Internet-Of-Things).  In questo contesto,
un nodo può essere caratterizzato non solo da un singolo sen-
sore ma anche da reti di sensori che comunichino tra loro in
modalità wireless; in modo da poter coprire aree vaste e scon-
nesse.  Questi tipi di  reti  sono chiamate Wireless Sensor Net-
works (WSNs). L'obiettivo su cui è stata basata questa Tesi di
Laurea  è stato proprio quello di  integrare la  tecnologia delle
WSNs al contesto dell'Internet delle cose. Per poter raggiungere
questo obiettivo, il primo passo è stato quello di approfondire il
concetto dell'Internet delle cose, in modo tale da comprendere
se  effettivamente  fosse  stato  possibile  applicarlo  anche  alle
WSNs.  Quindi  è  stata  analizzata  l'architettura  delle  WSNs e
successivamente è stata fatta una ricerca per capire quali fos-
sero stati i vari tipi di sistemi operativi e protocolli di comuni-
cazione supportati da queste reti. Infine sono state studiate al-
cune IoT software platforms. Il secondo passo è stato quindi di
implementare  uno  stack  software  che  abilitasse  la  comuni-
cazione tra WSNs e una IoT platform. Come protocollo applica-
tivo da utilizzare per la comunicazione con le WSNs è stato us-
ato CoAP. Lo sviluppo di questo stack ha consentito di esten-
dere la piattaforma SensibleThings e il linguaggio di program-
mazione utilizzato è stato Java. Come terzo passo è stata effet-
tuata  una ricerca  per  comprendere  a  quale  scenario di  appli-
cazione reale, lo stack software progettato potesse essere appli-
cato.  Successivamente,  al  fine  di  testare  il  corretto funziona-
mento dello stack CoAP, è stata sviluppata una proof of concept
application che simulasse un sistema per la rilevazione di in-
cendi. Questo scenario era caratterizzato da due WSNs che invi-

83



Integrating  Wireless  Sensor  Networks  and  Internet-of-Things:  a  Coap-based
approach.
Alessandro Aloisi 2014-12-11

avano la  temperatura  rilevata  da  sensori  termici  ad  un terzo
nodo che fungeva da control center, il cui compito era quello di
capire se i valori ricevuti erano al di sopra di una certa soglia e
quindi attivare un allarme. Infine, l'ultimo passo di questo la-
voro di tesi è stato quello di valutare le performance del sistema
sviluppato.  I  parametri  usati  per  effettuare  queste  valutazioni
sono stati: tempi di durata delle richieste CoAP, overhead in-
trodotto dallo stack CoAP alla piattaforma Sensible Things e la
scalabilità di un particolare componente dello stack. I risultati
di  questi  test  hanno  mostrato  che  la  soluzione  sviluppata  in
questa  tesi  ha  introdotto  un  overheadmolto  limitato  alla  pi-
attaforma preesistente e inoltre che non tutte le richieste hanno
la stessa durata, in quanto essa dipende dal tipo della richiesta
inviata verso una WSN. Tuttavia,  le performance del sistema
potrebbero essere ulteriormente migliorate, ad esempio svilup-
pando  un  algoritmo  che  consenta  la  gestione  concorrente  di
richieste  CoAP multiple  inviate  da  uno  stesso  nodo.  Inoltre,
poichè in questo lavoro di tesi non è stato considerato il prob-
lema della sicurezza, una possibile estensione al lavoro svolto
potrebbe essere quello di implementare delle politiche per una
comunicazione sicura tra Sensible Things e le WSNs.
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