
ALMA MATER STUDIORUM
UNIVERSITÀ DI BOLOGNA

SCUOLA DI INGEGNERIA E ARCHITETTURA

DIPARTIMENTO DI
INFORMATICA – SCIENZA E INGEGNERIA

TESI DI LAUREA

in
Sistemi Mobili

Connectivity management and dynamic context grouping in

mobile heterogenous systems

CANDIDATO: RELATORE:
Denis Billi Chiar.mo Prof. Paolo Bellavista

 CORRELATORI:
 Prof. Theo Kanter

Prof. Ing. Antonio Corradi

Anno Accademico 2014/2015
Sessione II

M.Sc. Thesis of Denis Billi

Abstract

Negli ultimi 10 anni il numero di dispositivi mobili è cresciuto rapidamente.
Ogni persona porta quotidianamente con se almeno due dispositivi ed i ricer-
catori sono convinti che in un futuro non troppo lontano questo numero
crescerà almeno �no a dieci. Inoltre, tutti questi dispositivi stanno diven-
tando via via sempre più integrati nella nostra vita rispetto al passato, per-
tanto la quantità di dati scambiati crescerà con il miglioramento dello stile
di vita delle persone apportato da questi dispositivi. Questo è quanto i ricer-
catori chiamano l'Internet delle cose. In futuro vi saranno oltre 60 miliardi
di nodi mobili e l'infrastruttura corrente non è pronta per ospitare un tale
scambio di pacchetti. Sono stati proposti miglioramenti ai protocolli, come
MobileIP e HIP, in modo da facilitare lo scambio dei pacchetti in mobilità,
tuttavia nessuno di questi ha ancora raggiunto quel grado di ottimizzazione
tale da permettere un cambio di rotta. Negli ultimi anni, i ricercatori della
Mid Sweden University hanno creato a tal scopo il MediaSense Framework.
Inizialmente, il framework si basava su Chord per il routing dei pacchetti e
su DHT per la persistenza. Con l'introduzione di P-Grid, le performance di
lookup nel trie sono migliorate �no ad arrivare a 0.5 ∗ log(N), dove N è il
numero di nodi nella rete. Tale risultato può essere ulteriormente migliorato
con delle ottimizzazioni sulla gestione dei dati dei nodi, ad esempio tramite
raggruppamenti logici. Inoltre, siccome lo scopo è l'utilizzo in mobilità, è
necessario provvedere ad un substrato che permetta la gestione di più con-
nessioni diverse. A tal scopo, è stato scelto SCTP in quanto si tratta di uno
dei protocolli più promettenti per il futuro.

3

M.Sc. Thesis of Denis Billi

Abstract

In the last 10 years the number of mobile devices has grown rapidly. Each
person usually brings at least two personal devices and researchers says
that in a near future this number could raise up to ten devices per person.
Moreover, all the devices are becoming more integrated to our life than in
the past, therefore the amount of data exchanged increases accordingly to
the improvement of people's lifestyle. This is what researchers call Internet
of Things. Thus, in the future there will be more than 60 billions of nodes
and the current infrastructure is not ready to keep track of all the exchanges
of data between them. Therefore, infrastructure improvements have been
proposed in the last years, like MobileIP and HIP in order to facilitate the
exchange of packets in mobility, however none of them have been optimized
for the purpose. In the last years, researchers from Mid Sweden University
created The MediaSense Framework. Initially, this framework was based on
the Chord protocol in order to route packets in a big network, but the most
important change has been the introduction of PGrids in order to create
the Overlay and the persistence. Thanks to this technology, a lookup in
the trie takes up to 0.5 ∗ log(N), where N is the total number of nodes
in the network. This result could be improved by further optimizations
on the management of the nodes, for example by the dynamic creation of
groups of nodes. Moreover, since the nodes move, an underlaying support for
connectivity management is needed. SCTP has been selected as one of the
most promising upcoming standards for simultaneous multiple connection's
management.

5

M.Sc. Thesis of Denis Billi

Contents

List of Figures 9

1 Problem statement and system model 17

1.1 Mobile computing problems 18

1.2 High-level problem statement 19

1.2.1 Scope . 20

1.2.2 Veri�able goals . 22

1.2.3 Contributions . 23

1.3 Context-awareness . 23

1.4 Context-based dynamic grouping 24

1.5 The problem of mobility . 24

1.6 Multi-homing . 26

2 Related technologies 27

2.1 Hando� management on GSM networks 28

2.2 MobileIP . 28

2.2.1 Hierarchical MobileIP 31

2.3 HIP . 31

2.4 SCTP . 33

2.5 The MediaSense Framework 35

2.5.1 DCXP Layer . 37

2.5.2 P-Grids . 39

2.5.3 Mobility models . 42

2.6 Related works . 43

2.6.1 Gossip Algorithm . 43

2.6.2 Flow-sensor Mobility 44

2.6.3 MANET . 44

2.6.4 MANET Clustering 45

3 DDC Algorithm's design guidelines 49

3.1 Grouping design's methodology 50

3.2 Handover design's level methodology 55

3.3 Simulation scenarios . 57

3.4 Evaluation of software design transparency and usability . . 57

3.5 Test driven development . 58

3.6 Analysis of requirements upon session management 59

3.7 System behavior . 62

3.8 Handover system's architecture 64

3.9 Mobile Naming System . 66

3.10 DCXP integration . 67

3.10.1 Group creation and management 68

3.10.2 Peers and centroids 68

3.10.3 The grouping algorithm 71

7

M.Sc. Thesis of Denis Billi

4 Implementation insights and experimental results 73

4.1 Grouping system . 73
4.1.1 GroupLayer . 73
4.1.2 GroupCore . 75
4.1.3 Context Updater . 77

4.2 Sensor Sockets . 78
4.2.1 Sensor Data Stream 78
4.2.2 Peer . 79
4.2.3 Sensor Socket Xml 81
4.2.4 Policy Manager . 81
4.2.5 Network Manager . 82
4.2.6 Connection Manager 83

4.3 Model's behavior . 83
4.3.1 Simulations in OMNeT++ and Oversim 84
4.3.2 Di�erences between CHORD/DHT and MediaSense's

P-Grid . 85
4.3.3 Tests goal . 86
4.3.4 Results with nodes inserted into a uniform-distributed

space . 87
4.4 Running the MediaSense Framework 90
4.5 Grouping . 92

4.5.1 Simulator View . 93
4.5.2 Grouping algorithm 93
4.5.3 Multiple node lookup 95
4.5.4 Centroid repositioning 95

4.6 Testing problems . 95
4.7 Mobility management . 96

4.7.1 SCTP over �rewall test 96

5 Conclusions 99

References 121

8

LIST OF FIGURES

1.1 A typical association with multi-homed endpoints 26

2.1 Typical real-working scenario of GSM handover 28
2.2 This graph shows the typical trends of the measured values

in GSM networks during handover 29
2.3 Working scheme of MobileIP's �rst draft 30
2.4 Architecture of Multi-level HMIP 32
2.5 HIP stack . 33
2.6 TheMediaSense Framework 36
2.7 Current MediaSense Framework Architecture 37
2.8 Example P-Grid . 40
2.9 Example of a 1024 nodes binary tree 41
2.10 Reduction e�orts of a binary tree 41
2.11 The MediaSense single node platform 42
2.12 Static view of the infantry on a map 43
2.13 General model of hierarchy MANET [36] 46
2.14 Example of P2P overlay network topology [20] 47

3.1 Working schema of the handover system 49
3.2 Where is positioned the middleware in the communication . 50
3.3 Centroid examples . 51
3.4 First solution . 52
3.5 Second solution . 54
3.6 Third solution . 55
3.7 Test driven software development process 59
3.7 Typical use cases for the handover manager 61
3.8 Sequence diagram of the connection process 63
3.9 Connection's swap noti�cations between peers 63
3.10 Communication between peers 65
3.11 Handover system's architecture 66
3.12 DCXP Integration Architecture 67
3.13 Ranged queries for context distance returns the nodes that

are inside the quadrangle . 69
3.14 Algorithm's �rst stage - Nearby node lookup 70

4.1 GroupLayer UML Scheme 74
4.2 GroupCore UML Scheme . 75

9

M.Sc. Thesis of Denis Billi

4.3 GroupLayer UML Scheme 77
4.4 Sensor Socket UML scheme 78
4.5 Sensor Data Stream UML scheme 79
4.6 Peer UML scheme . 80
4.7 Transmission protocol used with the Sensor Sockets 80
4.8 Sensor Socket XML UML Scheme 81
4.9 PolicyManager UML Scheme 82
4.10 Network Manager UML Scheme 83
4.11 Connection Manager UML Scheme 83
4.12 Single node . 85
4.13 Oversim with 50 nodes simulating 86
4.14 Relationship chart between density and iterations 88
4.15 Area 1000 - 10 nodes . 88
4.16 Area 1000 - 20 nodes . 89
4.17 Area 1000 - 50 nodes . 89
4.18 Area 1000 - 100 nodes . 90
4.19 Area 10000 - 1000 nodes . 90
4.20 Our realistic environment 91
4.21 Relationship between the nodes and the groups 91
4.22 Simulator View . 92
4.23 Algorithm's �rst stage - Nearby node lookup 94
4.24 Node selection . 94
4.25 Group joining . 94
4.26 Multiple node resolution example 95
4.27 First Client/Server test over the Internet 97

10

ACRONYMS

AR Access Router is the main router of the HMIP network.

ASCONF Address Con�guration Change Chunk is used in SCTP to
communicate to the remote endpoint one of the con�guration
change requests.

BS Base Station is the unit of the mobile communication system.

BU Binding Update packet is a packet sent from the mobile node
to his Home Agent (HA) with its mobility informations in
MobileIP protocol.

CoA Care-of Address is the current mobile address of a mobile node
in a MobileIP network. It's usually associated with its HA
address to correctly deliver the packets.

DAR Dynamic Address Recon�guration is an extension to SCTP
that will allow an SCTP stack to dynamically add an IP address
to an SCTP association, dynamically delete an IP address from
an SCTP association, and to request to set the primary address
the peer will use when sending to an endpoint.

DCXP Distributed Context eXchange Protocol is an XML-based
application level P2P protocol which o�ers reliable
communication among nodes that have joined the P2P network.

DDCA Distributed Dynamic Clustering Algorithm is the algorithm
designed in this study and is capable of dynamically grouping
mobile nodes inside an heterogeneous P2P network.

DHT Distributed Hash Table is a class of a decentralized distributed
system that provides a lookup service similar to a hash table.

FA Foreign Agent is the last deliverer of packets for a mobile node
in MobileIP networks. It also takes care of current mobile node
location.

GSM Global System for Mobile Communications is the most
popular mobile phones' technology in the world.

HA Home Agent is the main packets' router for a mobile node in
MobileIP networks.

11

M.Sc. Thesis of Denis Billi

HI Host Identi�er is a name in the Host Identity namespace.

HIP Host Identity Protocol is an evolution of the MobileIP
protocol that simplify the network management thanks to the
use of some hierarchical network layers of MobileIP routers.

HIT Host Identi�er Tag is a 128-bit static globally unique
cryptographic SHA-1 hash over the HI.

HMIP Hierarchical MobileIP is an evolution of the MobileIP protocol
that simplify the network management thanks to the use of
some hierarchical network layers of MobileIP routers.

HMIPv6 Hierarchical MobileIPv6 is an evolution of the Hierarchical
MobileIP (HMIP) for the IPv6 protocol.

IETF Internet Engineering Task Force develops and promotes
Internet standards, cooperating closely with the W3C and
ISO/IEC standards bodies and dealing in particular with
standards of the TCP/IP and Internet protocol suite.

LSI Local Scope Identi�er is a 32-bit or a 128-bit local
representation of HI.

MAP Mobile Access Point has the same role of Mobile Switching
Center (MSC) on GSM networks. Look at MSC for more.

MH Mobile Host is the mobile device that moves with the user.

MNS Mobile Naming System is the naming system that resolves a
resource's identi�er in its network addresses.

MS Mobile Station is the same as Mobile Host (MH).

MSC Mobile Switching Center is the center of management for
devices' hando�.

SCTP Stream Control Transmission Protocol is a Transport Layer
protocol, serving in a similar role to the popular protocols TCP
and UDP. It provides some of the same service features of both:
it is message-oriented like UDP and ensures reliable, in-sequence
transport of messages with congestion control like TCP.

TDD Test driven development is a software development process
that relies on the repetition of a very short development cycle:
�rst the developer writes a failing automated test case that
de�nes a desired improvement or new function, then produces
code to pass that test and �nally refactors the new code to
acceptable standards.

UCI Universal Context Identi�er is the identi�er used in DCXP to
identify resources like URI does in WWW.

URI Uniform Resource Identi�er is a string of characters used to
identify a name or a resource on the Internet.

12

M.Sc. Thesis of Denis Billi

UMTS Universal Mobile Telecommunications System is a third
generation mobile cellular technology for networks based on the
GSM standard.

WMN Wireless Mesh Network is a communications network made up
of radio nodes organized in a mesh topology.

WSN Wireless Sensor Networks are the networks based on spatially
distributed autonomous sensors to monitor physical or
environmental conditions, such as temperature, sound,
vibration, pressure, motion or pollutants and to cooperatively
pass their data through the network to a main location.

13

M.Sc. Thesis of Denis Billi

14

INTRODUCTION

The �rst aim of this thesis work is related to the mobility problem. In fact,

mobility is one of the most fascinating subjects that the modern research

is trying to handle. Our life is increasingly becoming a life related to the

mobility, where all our operations in the world are subordinated to the fact

that we move. Let explain this assumption with some examples: �rstly, in

the last twenty years the portability (that means both size reduction and the

battery life's growth) of devices has determined a massive di�usion of mobile

systems like smartphones and tablets, nevertheless sensors of any type and

size that can help us in a more e�cient management of our life. The scenario

in which we live is where we have the e�ciency and the performance above

all, in which a lesser use of bandwidth signi�cantly improves battery use, and

that means a numerically increase of the communications that we can have

during a day. Secondly, it's now clear that the really next future networks

will be populated by a large amount of devices: if we think that reasonably

in the near future everyone will own ten devices (both wearables and simple

devices) and that in the world there are 6 billions of people, then there will

be 50 billions of total devices in the world, all of these potentially able to

move and to change their current connectivity. Thirdly, another problem

that is related to the mobility, is due to the fact that a person continually

moves during a day, and that means that he cannot use always the same

connection to access his personal resources. Fourthly, these devices and

sensors are related in some way, and the relations between them are what

the researchers call context. Everything that can be potentially helpful to

me in this particular moment is part of my current context. Fifthly, it's

now clear that the current infrastructure is unable to sustain a such growing

network of relationships, so the researchers have studied some solutions that

can both improve the existing networks.

The aim of the thesis is to study the P2P networks in order to let the

devices to organize themselves only using their relations' information. Fol-

15

M.Sc. Thesis of Denis Billi

lowing this purpose, the evidence that a node (that can be a device, a sensor

or whatelse) can belong to one or more persons, moves the focus of the

work to a new level of abstraction, in which the nodes are clustered in sev-

eral groups depending only on their context information rather than their

phisical location.

In the �rst chapter is explained the beginning point of our study, and

especially what are the major problems in the mobile connectivity research,

what researchers are trying to focus and to solve. The second chapter ex-

plains what is the current state of art about network protocols that re-

searchers have developed in the last 20 years in order to solve the problem

of mobility and how is organized the MediaSense Framework. The third

chapter gives a deep explanation of the Distributed Dynamic Clustering Al-

gorithm (DDCA) algorithm, the methodology we followed and the design's

guidelines we used in order to develop our solution. All the possible viable

ways that we found and which one of them we will pursue in the next sections

will be discussed in this chapter. In the fourth chapter, is �nally explained

the approach we pursued about the project's design, the technical analysis

and requirements in order to obtain a good �nal working solution. Here we

focus on the project's implementation, especially in the technical parts that

needs further explanations. Lastly, in this chapter will ber reported the tests

made and the results obtained.

16

CHAPTER

ONE

PROBLEM STATEMENT AND SYSTEM MODEL

People's life is increasingly becoming related to mobility, where all the oper-

ations in the world are subordinated to the fact that people move. The �rst

aim of this thesis work is to �nd a way to manage a large amount of mobile

devices basing on the available context information. Through the grouping

of the entities, it is possible to manage them in an easier way. However, cur-

rent infrastructure is not ready to manage such situations of high mobility,

both in number and in connection changes.

This can be explained by the following assumptions: �rstly, in the last

twenty years, the portability (that means both size reduction and the bat-

tery life's growth) of devices has determined a massive di�usion of mobile

systems. Smartphones, tablets, nevertheless sensors of any type and size can

help people in a more e�cient management of their life.

Moreover, e�ciency and performance of all the internal components

(both hardware and software) can highly determine a lesser use of band-

width and a signi�cantly improved battery life. This means a numerically

increase of the communications that we can have during a day.

Secondly, future Internet will be populated by a large amounts of devices:

reasonably, in the future everyone will own approximately ten devices and

knowing that in the world there are 6 billions people, then there will be more

than 60 billions of total devices in the world, all of these potentially able to

move and to change their current connectivity.

Thirdly, another problem that is related to mobility, is due to the fact

that a person continually moves during a day, and that means that he cannot

always use the same connection to access his personal resources.

Fourthly, these devices and sensors are related in some way, and the

relations between them are what the researchers call context. Everything

17

M.Sc. Thesis of Denis Billi

that can be potentially helpful to me in this particular time is part of my

current context.

Finally, current infrastructure is unable to sustain such a growing net-

work of relationships, so the researchers have studied some solutions that can

both improve the existing networks as well as create a totally new meaning

of network that is based on the relations rather than on location.

Letting devices to self-organize in one network based on the object rela-

tions is the main idea followed by the research team in the ITM Department

at the Mid Sweden University. Whether a node of the network (that can be

a device, a sensor or whatever else) can belong to one or more people, no one

in the literature already found a solution in order to permit the subdivision

in categories of the devices currently present in the network. Speci�cally,

there are not current protocols able to organize the nodes of a network in

order to simplify the work of the intermediate nodes in packaging, routing

and delivery of the information.

1.1 Mobile computing problems

Very soon, people will need to access their own information in a easier man-

ner from everywhere. However, this is not possible with the current infras-

tructure.

Related to the movement's issue, there are several questions without

an answer. Moving from one location to another, actually needs a manual

change of the connectivity made by the user, without any kind of policy or

intelligent system that helps him. Maybe, it could be possible that in one

location there are two types of connections and the user would like to use

both of them simultaneously. Researchers call this kind of action with the

name of multi-homing.

Moreover, actual technologies permit people to access their data always

and anywhere: such as cloud-storage solutions like Google Docs, Dropbox

and iCloud. This kind of actions could be improved with the introduction

of real-time interaction and context-sensitive technologies.

This can be exempli�ed by the following situation: a man is returning

home after a long trip and when he takes the taxi from the airport, his home's

heating reacts by turning on the radiators if the house is too cold. Another

example could be the direct interaction with a car navigator that chooses the

best way to the destination using the information given by the other nearby

cars in transit. All these kind of interactions are being part of the so called

18

M.Sc. Thesis of Denis Billi

context-aware mobile-computing. Researchers have been really interested in

these studies since the late 80's, but today there are no protocols that works

well.

1.2 High-level problem statement

Being able to access data from the move is an interesting research �eld.

However, without any kind of organization of the resources, it could be a

really di�cult and time consuming task. Moreover, this can be impossible

when the infrastructure doesn't give a proper help.

This can be exempli�ed with the following scenario: Jason wants to

access his own home computer and wants to stream a video to his mobile

device. Currently he is connected to his home's access point and when he

will leave, he will disconnect from the access point and afterward reconnect

to the 3G connection that is available outside to continue the conversation.

This operation will create an interruption in the stream service for Ja-

son, and this happens because there is no concept of maintaining the session

on connectivity change. The chronological history of the conversation be-

tween two entities (like two network's endpoints), known as the connection's

state, is called session. As well known, the most used transport protocols

are TCP and UDP. The former takes packet loss as network congestion and

transmission gracefully degrades, so if there is a disconnection in a wireless

mobile environment all the connection information is lost [9]. The latter in-

stead doesn't provide a packet retransmission mechanism, so it's impossible

to understand if a packet correctly arrived to destination [7]. Thus, unless

there isn't something that takes care of keeping on the session's information,

it is impossible to grant a high-standard connection's quality. When we face

this problem in wireless environments, it is clear that all depends on our

current location, because in every place there can be more or less types of

connectivities. In the next chapter we will focus our attention on the current

solutions for this issue.

To allow a �ner explanation of the problem, researchers has de�ned two

kind of location management : in case of location registration is up to the

mobile node to inform the infrastructure that it is moving to another carrier

and only then the infrastructure acts accordingly. On the contrary, in case if

location search is up to the whole infrastructure to locate, instant by instant,

the mobile node's movements [33].

Clearly, in our scenario the �rst solution is the less expensive of the two,

19

M.Sc. Thesis of Denis Billi

because without any kind of infrastructure improvements it is unthinkable to

keep track of 50 billions of devices' movements at the same time. So, the �rst

but summarily intuitive solution for the mobility problem is based on the

location registration approach, but we will discuss this later in section 1.2.2

on page 22.

The second aim of this work is to help people on �nding their personal

things in the big pot that the Internet of Things is. When we say Internet

of Things we are talking about of the near future of the Internet, where all

our personal devices and also all our home's appliances, will be connected

to the Internet and we can access and interact with them.

Current infrastructure is not suitable for this kind of operations, because

every single network have its own addressing routes and parameters, with all

problems derived by NAT networks that hides underlaying resources from

the outside. What we need is something that allows us to make an ontological

research in the Internet of Things within a determined time bound, maybe

in which we can subdivide resources and services in groups like "Personal"

or "Friends" and so on, and in which we can share personal resources with

friends or colleagues.

This can be exempli�ed by the following scenario: Jason is at home and

he is enjoying his ultrafast Internet connection and his friend wants to con-

nect to the Internet too. Today we should give him the network credentials,

but in the Internet of Things with the addition of context's information,

these credentials can be automatically sent to the Jason's friend's device

because the system knows that he is a friend and he can access his friend's

Internet connection.

1.2.1 Scope

Today's connectivity has become really easy, we can go everywhere and with

our smartphones we are able to access our personal �les. However, current

infrastructure was thought and created more than forty years ago, so it is not

reliable for these kind of operations. What most IT researchers studied in

the last twenty years is the possibility to enhance network performance with

external information that comes from the user's locations and habits. This

information is called context. With such this information, we can simplify

how the resources are organized in a really big network, because it is up to

the resources themselves to understand which context they belong to, that

means less work for the infrastructure. Thus, the more context information

we have, the better it is for the �nal computation in terms of speed and

20

M.Sc. Thesis of Denis Billi

quality.

Dynamic grouping Regarding the problem of the relationships between

resources, we will focus this problem better in the next chapter, but it is

important to understand which is its role in this study. In the last section

there is an a example in which Jason and his friend are at Jason's home

and the second decides to connect to the Internet. As stated before, having

some context information about Jason friends and with the possibility to

have some policy system, it would be really simple to handle the network

credential so that every Jason's friend can access to his home's connection.

Moreover, context information are useful also in the case we need to change

our underlaying connectivity.

Security In the last example, Jason wants to share his network credentials

with his friend. This is important to ful�ll some security considerations:

1 Jason doesn't want that his friends do something illegal with his

Internet connection;

2 Jason should tune up the system in a way that only when he is

at home a friend could access the Internet;

3 A Jason's friend could be able to access the connection during

the night because Jason he is actually at home, sleeping;

4 Jason would need a system to keep all the information about his

friends.

Mobile connectivity MobileIP (section 2.2 on page 28) is one of the

solution that researchers have found to manage the connectivity handover

between various location. It relies only on the decisions taken by the device

itself, and it takes too much time to do that. In the Internet of Things, this

is not robust. With some context information (like the user's location or

the signal strength, for example), infrastructure would take a great bene�t,

because it could use these information to �gure out the exact moment when

to switch the connections.

Lastly, to make it possible to access resources from everywhere and in

a robust way, devices should continuously bene�t of the connection. Obvi-

ously, this is possible unless there are no connection available in the place

the user is, but that is only an extremely case that lies outside our stud-

ies. A typical scenario for this problem, is the case in which we have both

21

M.Sc. Thesis of Denis Billi

wireless and 3G connections available. Jason is moving from his home (that

has got a WiFi connection) to outside (where is available a 3G connection).

He wants to continuously watch a movie, or have a nice conversation with a

friend on Skype. There are four possible scenarios:

1 He manually switches o� the wireless network and switches on

the 3G antenna;

2 He uses an automatic switcher like the Locale application for

Android;

3 The infrastructure helps him with a low level transport protocol,

like MobileIP;

4 He uses a middleware that in an automatically and graceful way

switches between one connection to the other, like in �gure 3.2

on page 50.

What we can say, is that all these things are completely right, but all of

them lies outside our competences and therefor they will not be mentioned

in this study.

1.2.2 Veri�able goals

The main goal of this work is to ful�ll the requirements about the manage-

ment of a large amount of mobile nodes. The algorithm should be scalable

for groups of moderate sizes. Moreover, the handover between connections

should be faster (or within the same time range) than current solutions,

and for the purposes of this thesis, all the work will be focused on the last

two points of the previous section. This is really important, because in the

future Internet of Things, connection maintenance should be done without

user interaction.

Summarizing, these are the main purposes of the study:

1 Having a grouping algorithm that scales linearly or logarithmi-

cally for multiple participants;

2 Ful�ll connectivity handover requirements for the resources;

3 Understand if it is possible to handle the switching faster or at

least in the same times of current solutions, that take in the

worst case 400 milliseconds;

22

M.Sc. Thesis of Denis Billi

1.2.3 Contributions

The MediaSense Framework with PGrids and its source code was con-

tributed by and is property of Mid Sweden University. This project has

contributed by adding functionality to the existing framework in order to

create groups dynamically on a real network basing on context information.

The grouping layer is independent from the framework itself, therefore is

possible to use it with any kind of implementation of the latter. Functional-

ities and calculations for the simulations have been provided by the Context

Cluster Simulator, created by Victor Kardeby.

In the next sections, we provided a short introduction about the mobility

issue and his speci�c de�nitions like terminal mobility, user mobility and

logical mobility. This is important in order to understand what is the context-

awareness, of which we'll talk about in the next chapter. Lastly, we will try

to give a fast explanation of multi-homing and how to handle it and why it

could be useful for managing the handover.

1.3 Context-awareness

Context is the set of environmental states and settings that either

determines an application's behavior or in which an application

event occurs and is interesting to the user.

This explanation of context awareness written by researchers of the De-

partment of Computer Science of the Dartmouth College (reference [6]) clar-

i�es that in the future networks will be crucial the adaptability based on such

information. In the future Internet of Things, everything will be a potential

important information for devices. As well-explained in [27], context can

be subdivided into three categories: computing context, user context and

physical context. Also, using each of them across a time span, it's possible

to obtain a context history, that could be used in various situations like, for

example, the ones mentioned in the �rst chapter. Thus, [6] divides context

into two di�erent parts: the �rst is the active context, the one that "in�u-

ences the behaviors of an application"; the second is the passive context, the

one that is "relevant but not critical to an application". In this particular

scenario, in the �rst caseis the application itself that adapts to the situation

discovering new information and acting as consequence. In the second case

it makes persistent the new context to an interested entity.

Moreover, more speci�cally in mobile networks, will be fundamental the

location where the information are stored: both locally and remotely are

23

M.Sc. Thesis of Denis Billi

practicable ways; the substantial di�erence is who will manage such infor-

mation in order to decide what actions to take in order to give a service

to the user. These strategies are typically related to complex systems like

power grids, in which the complexities and the di�culties in controlling the

systems forced the researchers to formulate new solutions. We will examine

further this topic in the next chapter.

1.4 Context-based dynamic grouping

Managing a large number of mobile devices could be really hard. The aim

of this thesis work is to understand whether exists a way to programmat-

ically di�erentiate di�erent nodes basing on their context information in a

distributed environment. Such operation can be also viewed as a distributed

clustering option.

In the last years, several solution have been proposed in the literature in

order to solve both the problem of the grouping and the handover between

di�erent networks. In 2011, some researchers from several universities have

suggested to combine the concept of network virtualization with Wireless

Mesh Network (WMN) technology [18]. This can be done using context

information to autonomously build logical, virtual networks overlays on top

of physical networks. In this scheme, is possible to model networking rele-

vant user contextlike QoS, security etc., and let the users to connect to the

Virtual Network that best �ts their context requirements. Moreover, they

decided to select mobility out of the set of available characteristics. They

also concluded that a better predictive algorithm for the handover between

di�erent networks could enhance signi�cantly their work.

1.5 The problem of mobility

Mobility related issues can be divided into three di�erent groups: terminal

mobility is when wireless devices are able to physically move along more con-

nections and this requires both infrastructure and terminal enhancements.

Another form of mobility is called user mobility, and it happens when a

user relocates and switches devices. In this case, the user should be able

to use the same services independently of the device itself. Moreover, the

notion of mobility can be seen at an higher abstraction's level, where all the

computation's information like user interests, context and other attributes

does not corresponds exactly to the physical world. This kind of mobility is

24

M.Sc. Thesis of Denis Billi

known as logical mobility [33].

Terminal mobility Wireless networking permits mobile users to bene�t

of the Internet connectivity and all the services related. Obviously, user

moves must be managed from one connectivity covered area to another one,

and the user should be able to switch at the same (for example from WiFi

to 3G or from WiFi to Bluetooth). Moreover, active connections should

be left active independently of the user's moves: it's what in GSM/UMTS

connections is called hando�. On IP-based networks would be �ne if it was

possible to maintain the same IP address over more di�erent networks, but

in this section we'll understand that it's not possible because an IP address

is dependent on the network itself, and so it tends to change on di�erent

networks and in case of hando�, new packets should be delivered to the new

address.

User mobility With the massive beginning of devices's spreading, could

be useful that all the user's information are being maintained by the infras-

tructure itself rather than by devices. In fact, many users would manage

their data (and their work) independently by the device that they are us-

ing, both on smartphones, tablet, PC's and so on [35]. There are a lot of

openstudies about this kind of mobility that are based both on individual

model and group model, let's think about all the fashionable applications

like Dropbox, iCloud and so on that try to solve this problem in an easiest

manner.

Logical mobility When we talk about logical mobility (also know as ses-

sion/resource mobility) we should think about what are the relevant infor-

mation that don't directly relies on the physical world. In fact, current

mobile applications are developed as monolithic architectures that are not

suitable for the context in which they work and is up to developers to decide

at design time the possible uses of their applications. It would be useful for

these applications to perform intelligent decisions based on the current con-

text information, personal preferences or local sensors' values (that would

necessarily being constantly updated). In thisscenario, a mobile application

should be a self-organising system adaptable on the requirements' changes

[40].

In this work, we'll try to take the best of all these aspects of mobil-

ity to make the system suitable for all scenarios that we explained in the

introduction.

25

M.Sc. Thesis of Denis Billi

Figure 1.1: A typical association with multi-homed endpoints

1.6 Multi-homing

Today, this action is possible only with the use of middlewares, that creates a

layer between the network and the application, and then is the middleware

itself that manages all the underlaying networks. However, this kind of

operations, done at the ISO application's layer is very expensive in terms of

network performance because the throughput between the physical layer and

the application layer is to high, would be necessary a low level management

of this kind of operations.

In fact, the current studies that will bring all the world to the adoption

of the new IPv6 standard had being conducted with the intent of permit

multi-homing operations. The reasons that stands behind the multi-homing

are reasonably two:

1. To contemporary handle more connections at the same time

2. To help with operations like connectivity handover

The second reason is why we would need this technology available for our

purposes. Without multihoming is it too expensive to handle connectivity

handovers. However, until it won't be possible to have this technology at

lower layers, we must use high level solutionsat the best of their potentials.

26

CHAPTER

TWO

RELATED TECHNOLOGIES

A �rst important step is to know the state of art of the current research

literature. The following sections will try to explain howthe current mobile

infrastructure works.

Global System for Mobile Communications (GSM) technology is one of

the most reliable technologies that makes use of the handover. In order to

obtain some additional information that can be useful for the development

of our studies, in the fourth section we will try to understand what there is

behind the GSM handover algorithm. Even though GSM has been developed

thirty years ago, inside it there are some interesting notions about handover's

management, even if in this case we talk about homogeneous networks that

are di�erent to heterogeneous ones of which we are dealing. After that,

we'll give an overview of some technologies that tried to manage the hando�

on heterogeneous networks like MobileIP, HMIP and Host Identity Protocol

(HIP), which respectively give the complete management of the handover

to the device itself and then is the infrastructure that implements some

features in order to provide the correct deliveries of the packets directed

to the device from the correspondent hosts. Next to these, section 2.4 will

talk about the Stream Control Transmission Protocol (SCTP) protocol, one

of the �rst protocols proposed by Internet Engineering Task Force (IETF)

capable of managing multiple streams at once. Finally, we'll have a look

on the MediaSense Framework, developed by the IT department of the Mid

Sweden University.

27

M.Sc. Thesis of Denis Billi

Figure 2.1: Typical real-working scenario of GSM handover

2.1 Hando� management on GSM networks

GSM communications's spread has become much popular in the last twenty

years, during which they reached a level of maturity and versatility that

permit us to bene�t a lot of di�erent services like mobile telephony, SMS,

Internet and so on. What often stays behind the scenes in this technology

is the whole infrastructure, but it's what allows to the communication to

work and that is represented on �gure 2.1. The base idea of the GSM infras-

tructure is related to the geographical subdivisionin hundreds of subareas,

all adjacent each others and called cells. All these cells are served by a ra-

dio base, called Base Station (BS), each one with his own radio frequency

for not interfere with the other near cells. In the GSM system, the in-

frastructure continuously checks some variables like received �eld strength,

the signal quality and the distance between the mobile station (MS, that

is the GSM device) and the base station (BS, that is the signal repeater).

All this measurements serve as a basis for correct handover decisions. The

basic algorithm processes the measured samples in the base station system,

wherethe recent 32 measured values are stored and with the results obtained

is the infrastructure itself (in this case, the base station) that decides if a

handover is required.

In �gure 2.2 on the facing page is possible to see the typical signal trends

during a GSM handover and we can understand how the infrastructure can

decide when the handover is required [19].

2.2 MobileIP

In section 1.2 on page 19 we talked about how to manage the locationof the

nodes belonging to an heterogeneous connectivity network. We summarily

concluded that the only manner to know the location of one node of the

28

M.Sc. Thesis of Denis Billi

Figure 2.2: This graph shows the typical trends of the measured values in
GSM networks during handover

network should rely on a direct feedback by the node itself. Just to under-

stand how it works, let's think about our home's address. If we move to

another address, we can tell our old doorkeeper to forward all our new mail

to the new doorkeeper who will delivers it directly to us. This is exactly

what MobileIP does.

MobileIP is a standard proposed by a working group within the

IETF in 2002 and was designed to solve this problem allowing the

mobile node to use two IP addresses: a �xed home address and

a care-of address that changes at each new point of attachment.

The �rst is static and is used to identify TCP connections. The

second changes at each new point of attachment and can be

thought of as the mobile node's topologically signi�cant address;

it indicates the network number and thus identi�es themobile

node's point of attachment with respect to the network topology.

The HA makes it appear that the mobile node is continually able

to receive data on its home network, where MobileIP requires

the existence of a network node known as the HA. Whenever the

mobile node is not attached to its home network (and is therefore

attached to what is termed a foreign agent), the home agent

gets all the packets destined for the mobile node and arranges to

deliver them to the mobile node's current point of attachment.

Whenever the mobile node moves, it registers its new care-of

address with its home agent [24].

In this way, the home agent delivers the packet from the home network

to the care-of address using the mechanism known as redirection. Once

29

M.Sc. Thesis of Denis Billi

arrived at care-of address, the reverse transformation is applied so that the

packet appears to have the mobile node's home address as the destination IP

address, which will be processed properly by TCP layer (or whatever higher

level that logically receives it from the mobile node's IP).

Figure 2.3: Working scheme of MobileIP's �rst draft

It has been proved that one of the biggest problem related to MobileIP

is the potential retransmission timeout. For example, the MobileIP hando�

latency can be up to to 3 seconds, which can easily force the TCP to timeout

[29]. Even though this latency can be reduced using link-layer enhancements,

some experiments show that TCP can still timeout during a link-layer hand-

o� [41]. This handover latency is caused by standard MobileIPv6 procedures,

such as movement detection, new Care-of Address (CoA) con�guration and

Binding Update packet (BU). It's usually unacceptable to real-time tra�c,

such as VoIP, and it may cause critical packet loss. Over the years, in order

to reduce the hando� latency of a Mobile Host, have been proposed numer-

ous solutions that can be classi�ed intotwo groups: the �rst aims to reduce

the network registration time by using a hierarchical network management

structure, whilethe second attempts to reduce the address resolution time

through address pre-con�guration [28].

Secondly, MobileIP is architecturally based on re-using a single name

space, that is the IP address space, for both the HA address and the CoA.

This creates two potentially drawbacks: the �rst is an unwanted and un-

desirable dependency on the constantreachability of the home address. In

other words, the mobile host reachability depends on the home agent. The

second is the aliasing of multiple IP addresses caused by the weak depen-

30

M.Sc. Thesis of Denis Billi

dency between the home address and the CoA. It's confusing to understand

if oneis merely an alias for the other or a completely di�erent host's identi�er

[21].

2.2.1 Hierarchical MobileIP

The HMIP concept is introduced mainly in order to minimize the signaling

latency for a BU that's sent from the MH to the Home Agent. Just to explain

quickly the mechanism, in HMIP packets destined to the MH are routed to

the MH via the HA and a MAP. The MH has only to inform the Mobile

Access Point (MAP) of the new CoA after hando�s within a MAP domain.

This kind of architecture can reduce BU signaling latency since it will take

less time to update the MAP than it does the distant HA. Moreover, to

prevent packet loss during the disconnection, some extensions of HMIP like

HMIP-B [23], FHMIPv6 [28], [15], [26] have been proposed. However, these

solutions takes in the worst case up to 400 milliseconds delay in the discon-

nection. Just to understand what's behind this protocol, it's necessary to

talk about the infrastructure behind MobileIP that allows its operation and

why researchers are trying to focus on this extension rather than optimize

MobileIP directly. In fact, MobileIP exhibits several problems regarding the

duration of hando� and the scalability of the registration procedure. As said

in the �rst chapter, our scenario foresee more than �fty billions of devices

that change networks quite frequently, and it would mean an high amount

of signaling overhead on the HA as well as on the networks. So, there is

no e�cient support to micro-mobility. The principle of Hierarchical Mo-

bileIPv6 (HMIPv6) is the MH that connects for the �rst time to the domain

registers only one time to its HA with the address to the MAP as CoA.

This is called Home Registration. Any further movement of the MH inside

the domain will be transparent to the HA. Each time the MH changes the

Foreign Agent (FA), it will perform a Regional Registration containing the

new local CoA. Moreover, HMIP supports amultilevels hierarchy of MAPs

where each MAP must maintain an entry in its visitor's list for each MH

connectedto an Access Router (AR) of the hierarchy [26].

2.3 HIP

Today's Internet is based almost on two main namespaces: DNS names and

IP addresses. The �rst has the responsibility of converting a logical name

given by users to a physical IP address, helping all the infrastructure to

31

M.Sc. Thesis of Denis Billi

Figure 2.4: Architecture of Multi-level HMIP

correctly deliver all packages. However, IP address namespace describes both

the host topological location in the network, and the host identity. As said

before, this cause problems when the host has to change its IP address due

to e.g. mobility. The location information changes, but it should not a�ect

the identity information of the host. HIP introduces a separation between

the host identity and location identity, where the IP address remains the

locator, while a new namespace is introduced for host identi�ers. This can

be possible introducing a new layer between the Transport Layer and the

Networking Layer of the TCP/IP stack, as shown in �gure 2.5 on the facing

page. Applications may use both Host Identi�er Tag (HIT) addresses and

Local Scope Identi�er (LSI) addresses, that are respectively an SHA-1 hash

of Host Identi�er (HI) and a 32-bit or 128-bit local representation of HI

meant for IPv4 or IPv6 basedapplications.

The newly introduced layer hides IP addresses from the layers above, that

means that applications are bound to sockets that consists of the HIT/LSI

and port pair regardless of any IP address the host is using in the Networking

layer.

HIP Multi-homing The indirection layer implemented in HIP provides

the functionality of multi-homing due to the factthat this layer adds a new

namespace (HI) to which the upper layer protocols (TCP, UDP, ...) are

bounded. The IP still have the functionality of being the host's locator, and

in order to be reached again by its peers, they have to be noti�ed of the

address' change [2].

32

M.Sc. Thesis of Denis Billi

Figure 2.5: HIP stack

2.4 SCTP

SCTP is a general purpose transport layer protocol and had been released

by IETF for standard in 2000. There are many features which make SCTP

powerful. As said before, nowadays there are several wireless technologies

like 802.11, Bluetooth, 3G and so on. Every single technology has got its

own speci�cations and its working environmentbut no one supports the pos-

sibility of passing the state of a communication to the others. If we think to

mobility, we know that WLANo�ers high data rate but low mobility support,

while Universal Mobile Telecommunications System (UMTS) o�ers higher

mobility but with lower data rate. It's the same with Bluetooth, today at

version 4 of the standard, that o�ers high data rate but in very limited space

and it's perfect for small spacesand Wireless Sensor Networks (WSN), and

the same is with Zigbee. In the future, a combination of these technologies

will permit the user not to concern about which connection use in one spe-

ci�c location and how to connect to another user or resource, because the

typical use of a device is about what task to do and not the way to com-

municate to the network. However, concurrent transmission using multiple-

paths between multi-homed hosts has started to be studied almost recently

in the literature, especially issues related to congestion control mechanism

when striping data at the transport layer. It's important to know that a

transport layer protocol that supports multi-homing usually consists of two

components: a data-striping algorithm and a data delivery mechanism. The

former isresponsible for distributing data to di�erent paths according to cer-

33

M.Sc. Thesis of Denis Billi

tain QoS requirements, and the latter is responsible for data transmission

and reception plus congestion control mechanism [39]. In such this way,

SCTP can really help in the creation of this future. In fact, it inherits

the congestion control and �ow control schemes from TCP, and moreover

it covers and gives a real and reliable solution to some speci�c problems

like multihoming, multistreaming, partial reliability extension, selective ac-

knowledgments and heartbeat messages. Finally, it can monitor the network

situations and maintain reliable data transmission without causing any in-

terferences to TCP. Thus, it's clear that SCTP o�ers many attractive new

characteristics.

Multistreaming The purpose of SCTP is to connect two end points (that

can be two users, or a user and a remote resource), with up to 216 di�erent

streams. Each stream is completely independent, and that means that it's

not up to the developersto manage each connection. As explained in [8], this

is really important because many TCP connections can lead to the problem

of slow start, which can be interpreted as a congestion problem.

Multihoming One of the widely discussed feature of SCTP is multihom-

ing. It enables an end user to utilize multiple IP addresses of di�erent net-

work interface cards simultaneously as shown in �gure 1.1 on page 26. The

general case in usingSCTP with multi-homing is the possibility to o�er a re-

liable connection between two hosts. In fact, generally SCTP multi-homing

uses one stream-connection as data transmission's path, and the others as

backup paths, retransmissions and heartbeat messages. In such this way,

the scheme is robust to faults of the streams.

Soft handover SCTP was developed to take full advantage of multi-

homed hosts to provide a fast failover and association survivability in the

face of hardware failures. Moreover, many modern computers allow hot-

pluggable network cards, and that means that in order to take advantage

of this new con�guration, the transport association must be restarted. For

many fault-tolerant applications this restart is considered an outage and is

undesirable. That's why researchers from Network Working Group proposed

in 2007 an extension for the SCTP protocol called Dynamic Address Recon-

�guration (DAR). This extension is nowadays a proposed standard with the

name of RFC 5061. Thus, it would mean a great innovation to SCTP to

contain an extension like DAR,that can be useful to adapt its applications

to soft handover. In fact, the DAR enables the SCTP end users to add

34

M.Sc. Thesis of Denis Billi

or deletebackup IP addresses within an existing association through a new

data-chunk called Address Con�guration Change Chunk (ASCONF). These

chunks are useful to communicate to the remote endpoint one of the change

requests that must be acknowledged.

Assuming that gE s are the end-points and that Addr(gE) represents the

list of all network interface addresses of gE, below are reported the rules for

address manipulation as described in RFC 5061.

1. An address can be added to a generalized endpoint

gE only if this address is not an addressof a

different generalized endpoint with the same port

number.

2. An address can be added to an association A with

generalized endpoint gE if it has been added

to the generalized endpoint gE first. This

means that the address must be an element of

Addr(gE) first and then it can become an element

of Addr(A, gE). But this isnot necessary. If the

association does not allow there configuration of

the addresses only Addr(gE) can be modified.

3. An address can be deleted from an association A

with generalized endpoint gE as long as Addr(A,

gE) stays non-empty.

4. An address can be deleted from an generalized

endpoint gE only if it has been removed from all

associations having gE as a generalized endpoint.

These rules simply make sure that the rules for the endpoints and asso-

ciations given above are always ful�lled [30].

2.5 The MediaSense Framework

In the future Internet of Things, applications and services will needto make

decisions about service deliveries based on the context information that will

be collected from the environment like sensor values (that means physical

data that needs to be interpreted in some ways), user preferences and habits

and much more. All nodes of the future Internet infrastructure can freely

participate in the decisions' process. This is possible only thanks to the useof

multiple layers of abstraction that enforce the logic independence between

them [34].

Speci�cally, the MediaSense Framework creates an abstraction layer upon

each peer currently active in the network that hides the underlaying network

35

M.Sc. Thesis of Denis Billi

Figure 2.6: TheMediaSense Framework

structure and protocols in order to give to the device the idea of being part

of a huge structured and distributed network, based on the services o�ered

by each peer. This can be achieved thanks to the modularization of the

framework, that is subdivided into seven di�erent layers. Since the Medi-

aSense Framework was born as the creation of a simple abstraction layer,

initially it was based on a unique and monolitic solution, and the current

research is trying to enhance its functionalities subdividing it into di�erent

layers completely independent each others. In Figure ?? on the facing page

it is possible to see the current architecture of the framework itself. It is

important to notice that currently it is divided into four di�erent layers: the

Sensor Layer, the Application Layer, the Add-in Layer and �nally the

DCXP Layer.

Sensor Layer Basically, the Sensor Layer is used by each type of devices

and sensors that exposes a service in the structured Overlay. Speci�cally,

every kind of information that can be given through the network, such as

sensor values, IP address,ontological information (like the context aware

services) or others, is kept and served consequently to the incoming requests,

by this layer.

Application Layer In order to give a common interface to all the devices

and sensors, the Application Layer exposes a list of public APIs.

36

M.Sc. Thesis of Denis Billi

Platform Figure.png

Figure 2.7: Current MediaSense Framework Architecture

Add-in Layer The Add-in Layer contains all the appropriate routines

for the optimization and the handling of speci�c parts of the framework.

Currently, researchers are working in order to move this layer in the position

above, to let this layer to bemore generic than now.

2.5.1 DCXP Layer

Context information in the MediaSense Framework are exchanged thanks

to the use of theDistributed Context eXchange Protocol (DCXP), that pro-

vides the real-time exchange of information between hosts that are connected

each others in a virtual P2P distributed space [12]. The DCXP has been

created to permit to every device on the Internet to share context infor-

mation joining as a node of the Overlay P2P network. DCXP is based on

the exchange of context information using XML �les. The DCXP protocol

o�ers publish/subscribe abilities which are used to enable context exchange

in real-time, but it presents also another interesting feature. Every device

should register itself in the Overlay and is identi�ed by a unique Universal

Context ID, also known as Universal Context Identi�er (UCI), that has the

same meaning of the Uniform Resource Identi�er (URI) in the World Wide

Web . Fully quali�ed UCI can be seen as the following one:

dcxp://user[:password]@domain[/path[?options]]

Mapping between UCIs and source addresses can be done utilizing both

Distributed Hash Table (DHT) and P-Grids. The advantage of the former

isthat entries can be found in O(log(n)), meanwhile it takes only O(0.5 ∗
log(n)) for the latter [12] [13] [34].

37

M.Sc. Thesis of Denis Billi

One of the most interesting extensions of DCXP, is related to the Sensor

Socket Module. These sockets are treated exactlyas normal TCP-sockets

and so are bounded to an IP address of the devices. When a node needs to

create a connection with another one, it requests the Overlay to resolve the

key's IP address (as a normal DNS system works) and then it can open an

underlying TCP connection to the resolved IP/port pair [13].

It is really important to notice that actually the DCXP layer in the form

of the MediaSense Framework itself is a completely passive system. Former

assertion logically infers that a peer is not able to directly communicate

with another one, but is the Overlay that takes care of the communication

and the only operation that is possible is based on the querying system.

Currently, DCXP provides two di�erent types of queries: direct queries and

range queries.

Direct queries Direct queries are probably the most used ones. They are

presented in the following form:

uci://user[:password]@domain/resourcekey

In fact, they directly return the value referred to a particular key in the

Overlay. If for example the peer is interested in the current temperature of

the room number 123 of the building 4, it could perform the following query:

uci://room123@building4/temperature

The returning value will be directly delivered to the interested peer from

the Overlay itself.

Range queries Instead, range queries are the most interesting feature of

the MediaSense Framework. They are presented in the same form of direct

queries but with the surplus of two more details: a lower bound value and

an upper bound value.

When the Overlay is queried by the peers, it performs a lookup in the

entire tree in order to �nd out all the values of the correspondent key that

are between the lower and the upper bound of the query. This is particularly

important in case of context searches, because thanks to P-Grid's structure

they are pretty fast and that's why they are interesting in terms of research

on this �eld.

38

M.Sc. Thesis of Denis Billi

2.5.2 P-Grids

Current applications resources on the World Wide Web are organized in

groups, and in each group are concentrateda relatively small amount of

nodes. Each node must apply sophisticated load-balancing and fault-tolerance

algorithms to provide continuous and reliable access [1]. The bandwidth

must be increased in case of a huge services, and in order to avoid node's

failures it is important to introduce caching and replication solutions. The

Client/Server paradigm has always worked since now because it is speci�cally

optimized for such networks. Many problems were exposed since the advent

of the necessity to create structured networks in which di�erent nodes were

able to see and operate on di�erent groups and sub-groups. Peer-to-peer

systems o�er an alternative to such traditional paradigms, because every

node of the system acts as both client and server and provides partof the

overall resources/information available from the system. This is possible due

to the absence of a central coordination and no peer has a global view of

the system. The P2P approach tries to achieve the goal of a global search

functionality without using a central directory. This can be obtained in two

ways:

Unstructured network The data is distributed randomlyover the peers

and the broadcasting mechanism is unconstrained (no limits on the

dimension of the network and the time of the packets);

Structured network The network is organized as a distributed and scal-

able index structure, where the search requests are supposed to be

routed directly to the owners of the respective information.

In the �rst case, peers are completely independent and they can manage their

own data since this approach is fully decentralized. Moreover, search predi-

catesare not limited in this case. However, there are relatively high costs in

search and message exchanges that consequently brings additional transmis-

sion delays. Instead, the second approach is more e�cient, but a distributed

index requires some form of centralcoordination. In order to maintain the

bene�cial characteristics of both the structured approach and the unstruc-

tured networks, P-Grid were introduced in order to provide a solution that

permits a complete decentralization and support for sub-networks. This is

possible thanks to the replacement of any form of global coordination with

randomization.

P-Grid is a peer-to-peer lookup system based on a virtual distributed

search tree. Each node of the tree can handle only part of the overall tree,

39

M.Sc. Thesis of Denis Billi

that in MediaSense creates the big system called Overlay. Searching in P-

Grid is e�cient and fast. As reported in the previous section, given n as the

number of nodes (leaves of the tree), even for unbalanced trees the lookup

time is O(0.5 ∗ log(n)) (2.10 on the next page). It is based on randomized

algorithms and local interactions, and peers are assumed to fail frequently

and to be online with a very low probability. In Figure 2.8 is shown a simple

P-Grid.

Figure 2.8: Example P-Grid

Every node knows its own position inside the tree, that is determined

by its path, that is a binary bit string representing the subset of the tree's

resource that the peer is responsible for. For each bit in its path, a peer

stores a reference to at least one other peer that is responsible for the other

side of the binary tree at that level. The lookup system is also based on the

path. Thus, when a peer receives a binary query string it cannot satisfy, it

forwards the query to the node that is "closer" to the result.The construction

of the tree is based on a purely randomized algorithm that guarantees that

each peer can always provide at least one path to one of the peers holding the

queried information. For example, if Peer 1 forwards queries starting with 1

to Peer 3 (which is in Peer 1's routing table and whose path starts with 1),

and Peer 3 can satisfy the query or forward it to another peer, depending on

the next bits of the query. Unlike other DHT-based P2P systems, another

salient feature of P-Grids is the separation of peer's identi�er and peer's

path: in fact, peer's path are determined by the tree itself, and it can change

dynamically through negotiation with other peers as part of the network

maintenance protocol. Thus, the construction of the tree is purely demanded

to the nodes themselves, and it is totally decentralized and self-organizing,

as it adapts automatically to a given distribution of data keys stored by the

40

M.Sc. Thesis of Denis Billi

peers. Basically, the self-managing process of the tree begins from the peers.

A node can locally decide whether to modify the routing infrastructure, if the

present data justi�es the modi�cation, and this action changes the routing

tables of the structure (virtually, the construction of the tree) in order to

adapt to the data key distribution.

tree.png

Figure 2.9: Example of a 1024
nodes binary tree

Figure 2.10: Reduction e�orts of a
binary tree

The P-Grid construction algorithm is based on purely random-

ized construction and guarantees that peer routing tables always

provide at least one path from any peer receiving a request to

one of the peers holding a replica so that any query can be sat-

is�ed regardless of the peer queried. Additionally, it guarantees

that a su�ciently high number of replicas exists for any path

and that the peers representing a certain path also know some of

their replicas. Similarly, the routing tables will hold also multi-

ple references for each level which the routing algorithm selects

randomly.

In Figure 2.11 on the next page is represented the current platform's

architecture of MediaSense for each node. What we call overlay, is the

abstraction of the union of all the nodes that belongs to the network.

41

M.Sc. Thesis of Denis Billi

Figure 2.11: The MediaSense single node platform

2.5.3 Mobility models

In the literature exist several mobility models suitable for our purposes.

Particularly we found the following ones interesting for the testing phase:

1. Randommobility models (Random waypoint, Random direction, Gauss-

Markov)

2. Graph model

3. Obstacle Mobility Model

4. Group mobility models

Excluding the models studied speci�cally for vehicular networks such as

the Graph model, it's interesting to analyze the pros and the cons of the

other three. Researchers studied that people tends to group following spe-

ci�c dynamic patterns, thus is quite di�cult to study their movement with a

random model. Anyway, analyzing the strength points of an advanced ver-

sion of the Group mobility model, combined with the possibility of de�ning

not-relevant areas on the map, [25] created a model called Coalition Mobil-

ity Model that provides a middle ground between Graph, Group mobility

models, and the disposition of the infantry forces (Figure 2.12 on the facing

page). Paths and movements are prede�ned, and the �leader node� simply

follow them.

Clearly, this model is particularly suitable for the study and the simu-

lation of military tactics; in facts, since their concept of groups is actually

based on several nodes that may change their disposition as a result of cer-

tain events (eg. an order of their leader), having the possibility of realizing

di�erent sub-networks of nodes, using this approach we can verify the algo-

rithm in an ad-oriented environment.

42

M.Sc. Thesis of Denis Billi

Figure 2.12: Static view of the infantry on a map

2.6 Related works

In the last 10 years, the advent of wireless sensors has necessitated the design

of asynchronous, distributed and fault-tolerant information exchange algo-

rithms. Most importantly, since the network's topologies may vary quickly

in terms of number of nodes and contexts relatives to each of them, the

dynamic and distributed creation of groups in a network of nodes is a rela-

tively old problem that still has not found a proper solution that covers all

the possible scenarios.

2.6.1 Gossip Algorithm

One of the �rst has been the Gossip Algorithm [5], a peer-to-peer, dis-

tributed, and asynchronous algorithm for the computation and the informa-

tion exchange in an arbitrarily connected network of nodes. Since the nodes

in the network operate at low energy rates, the �gossip� algorithm's scheme

distributes the computational burden communicating with a randomly cho-

sen neighbor, and afterwards the nodes computate a common task that

was, in this speci�c case, the computation of the average temperature in a

room. In 2013, a new version of the �gossip� algorithm have been proposed

[38]. This solution, maintaining the same number of nodes, reduces the con-

vergence time and also saves the energy of the sensors, thus increases the

scalability of the algorithm.

43

M.Sc. Thesis of Denis Billi

2.6.2 Flow-sensor Mobility

In 2012, researchers from the KTH of Stockholm proposed a study on com-

munication between sensors, access points and a packet transmission algo-

rithm in order to divide into several multicast domains a list of several nodes,

both stationary and mobile. The network architecture was based on Open-

Flow, that can break the tra�c path into data packets (controlled by the

underlying router) and control packets (controlled by the controller) [17].

2.6.3 MANET

This section relies predominantly on [31]. Since the future networks will be

mainly based on wireless technology, one possible evolution is strictly related

to mobile ad-hoc networks (MANET). In this scenario, all the limitations

derived by the infrastructure (base stations, routers etc.) are deleted. In

fact, the IETF is working on a standardization of routing in ad-hoc networks

, basing their goal on the scalability of the entire routers' network. As already

said, their work is based on Mobile IP and standard IP addressing, but still

their work is not reliable for network with more than a few hundred of nodes.

The main challenge in this situation is the scalability for very large net-

works, and the keys for the whole work are still a bootstrapping protocol

and an infrastructure onto which rely.

Lastly, to supply a temporary service the MANETs are created on-the-�y

and have to be highly volatile (they must be robust to failovers and sudden

topology changes).

Even if the managing of IP addresses in a MANET is not straightforward,

it presents some typical charateristics:

• Dynamic topologies

• Bandwidth-constrained and variable capacity links

• Energy-constrained operation

• Limited physical security

These routing protocols are considered as interior gateway protocols (a

set of interconnected networks under the same administration authority),

and there are two main �elds of study:

• Proactive protocols

• Reactive protocols

44

M.Sc. Thesis of Denis Billi

The formers attempt to maintain routes continously exchanging the rout-

ing tables among the neighbors: in this way, a rout is always available when

asked to a node to forward the packet/s. The latters instead use a discovery

protocol that tries to �nd a rout only when needed.

There is also a third �eld that combines both the bene�cies of the �rst

method (always up-to-date routing tables) with the bene�cies of the second

(less overhead on the infrastructure), like the ones that proactively handle

all the routes known to be more frequently used. These are called hibrid

protocols.

Such an approach could be linked to geographical information of the

nodes, reducing in this way the propagation of control messages, reduc-

ing the intermediate system functions. In fact, geographical routing allows

nodes in the network to maintain only their one-hop neighbors' information.

Another approach (always related to the maintainance of the scalability in

small networks of 10-100 nodes) is the use of clustering. Within a cluster,

a traditional MANET algorithm can be permitted throught the use of clus-

terheads and border nodes, where the clusterheads form a set that works

as backbone for the network. This last is usually called geographical routing

protocol.

2.6.4 MANET Clustering

In order to mitigate the topology changes in mobile ad-hoc networks, re-

searchers proposed several algorithms suitable for the dynamic clustering.

The main assumption made in a vast number of solutions, is that the

MANET is homogeneus, that make them to su�er of very bad scalability.

Weight Based Adaptive Clustering

[36] proposes a solution in which the nodes are semantically subdivided in

two groups: the former is for normal hosts that act as cluster members,

the latter instead is for the cluster heads, the nodes responsible for the

maintenance of the topology. They found three main issues in the realization

of the protocol: the �rst is the election of the cluster head, the second is

formation of the cluster and �nally the cluster maintanance.

Cluster head election procedure is based on an heuristic that weights

the suitability for the node to be a cluster-head. This heuristic is based on

the ideal number of nodes in a cluster, the battery power, the average link

stability and the average dependency probability.

45

M.Sc. Thesis of Denis Billi

Figure 2.13: General model of hierarchy MANET [36]

Cluster formation is the phase in which every cluster member decides

its cluster head.

Cluster maintenance is the last phase, in which a node may join the

cluster or leave it, and in this paper they proposes several solutions in order

to avoid the possible problems and to achieve a good scalability.

Location-Aware Routing Protocol

Another approach to achieve good results with MANETs is to reduce the

overhead of the employed routing algorithms, that must be independent

from the total number of nodes. [37] proposes a solution really similar to the

previous one, but in which they try to form a stable clustering of a large scale

MANET, and then to perform route discovery by using the geographical

location of mobile nodes.

Route discovery might be done using the information obtained by the

node itself: the timestamp of when the destination's location was collected)

and the velocity are usefull information because they can be used to predict

a smaller request zone which covers the possible location of the destination

in a relatively close past.

MANET based on Autonomous Clustering and P2P Overlay Net-

work

Since usually nowadays every node in the network can communicate with

its neighbors with Wi-Fi or Bluetooth and can access to the wireless infras-

46

M.Sc. Thesis of Denis Billi

tructure such as 3G or LTE, in [20] is proposed a solution where MANET

is based on a P2P network constructed by using an autonomous clustering.

The network is divided into multiple subnetworks called cluster, and a

node is automatically elected as cluster head of that cluster. Aftwerword,

this nodes joins the P2P Overlay Network and it communicates with the

other cluster heads through the 3G/LTE infrastructure (Figure 2.14).

Figure 2.14: Example of P2P overlay network topology [20]

In this paper is shown that the more the density of nodes is hight, the

higher is the success delivery rate.

47

M.Sc. Thesis of Denis Billi

48

CHAPTER

THREE

DDC ALGORITHM'S DESIGN GUIDELINES

The purpose of this chapter is to show the most important decisions taken

during the designing of the DDCA. We are going to code a program that

will run on a general purpose Linux machine, and that means that we have

got a lot of extra-power that will not really need. The general aim is to

let the program to be as lightweight as possible, to let other developers and

researchers in the future to make a porting to a real Android device if they'll

�nd it useful for their purposes, but since the core of the P2P's protocol is

still studied by other researchers, maybe it will not be true in all the project's

parts.

Figure 3.1: Working schema of the handover system

To let devices be continuously accessible from the Internet of Things, it's

important to have a reliable handover layer underlaying the entire mobile

infrastructure. In the previous chapters we understood what the problem

of mobility is and which are the current solutions that researchers have

49

M.Sc. Thesis of Denis Billi

developed to solve it. The best way to �nd out a solution is to explain why

it would be preferable to make use of one protocol rather than another and

if it would �t our purposes.

For �rst, our aim is to build a good environment in which tryout the

entire switching system. It means that we'll need a device able to connect

to two or more interfaces at once and that is able to switch from one to

another depending on a series of considerations made over physical data

like signal strength and for example the distance from the Access Point in

802.11 connections. We also need a result infrastructure whose purpose is

to continually collect data from the device that will help us to make some

�nal considerations about the time of the handover.

Then, regarding the second aim, we need to try to dynamically add and

remove groups from the Overlay to understand its response time and we will

not need to use it on a real device.

Figure 3.2: Where is positioned the middleware in the communication

3.1 Grouping design's methodology

In the network a node corresponds to a sensor or a user's device which is

attached to the Internet thanks to IP connectivity. The aim of the thesis

work is to create a support for grouping in a heterogeneous network, and P-

Grids have being created to allow the nodes to persist data in a distributed

scenario. MediaSense Framework is a P-Grid enhancement project that

can be extended with such functionalities. Both heterogeneous networking

and necessity of creating groups are the reasons why the work focused on

a distributed scenario rather than a centralized one, especially because the

second can't scale globally. Moreover, the work requires that all the nodes

participate actively to �nd out the groups. The ability of assigning one entity

to a speci�c group of elements that are more similar to each other than to

those in other groups is called by researchers as clustering. To simplify the

50

M.Sc. Thesis of Denis Billi

work, we are assuming that the grouping algorithm that makes the decision

whether a node is important for current node or not already exists.

Importance algorithm What is really important to focus is how the

algorithm should work. Actually, it would be interesting to have a mathe-

matical approach to solve this issue. In fact, is possible to create a model,

instant by instant, of what is currently happening in the network. Every

node can create its own model by its own context information. Using such

information, every node is able to understand which of the nearby nodes are

important or related to it. A node is related to another when their respec-

tive distance stays inside a speci�c range that can be calculated. To simplify

one step, we will use a simpli�ed context model that only works on latitude

and longitude and calculates the geographical distance between the nodes in

order to select if a node is important or not. Then, when all the important

node have been found, it's possible to select the most important one as the

closer to the baricenter (or centroid, Figure 3.3b) of the group. That node

will be the reference point for that speci�c group.

(a) 2D Figure Baricenter

(b) 2D Solid Baricenter

Figure 3.3: Centroid examples

The typical scenario in which groups could e�ectively work, depends on

the number of nodes that are currently active in the network. Thus, is

possible to argue that the minimum number of nodes of the network should

51

M.Sc. Thesis of Denis Billi

be not less than 3, else it would be useless to group nodes.

Grouping scenarios In order to create groups in the Overlay, we analyzed

di�erent solutions. Current DCXP architecture provides the easy-to-use

mechanism of the UCIs, as said previously in section 2.5.1 on page 37 that

follows this syntax:

dcxp://user[:password]@domain[/path[?options]]

What the group system would do, is to add a level for the groups directly

into the UCI syntax, like the following one:

dcxp://user[:password]@domain/group/[/path[?options]].

First solution The �rst solution is represented in Figure 3.4. It is based

on the assumption that each device has its own Overlay Layer, and

in this way every person will have the complete control of his own

resources. Actually, that would mean that every node is responsible to

create its own tree, within which are stored all the key/value pairs of its

resources. This solution is really easy to implement, but there are some

drawbacks about performances and scalability. In fact, implementing

such a solution would mean to loose all the potentialities that are

o�ered by P-Grids, like the fast search in big trees, that would not be

considered at all. Thus, we will not pursue this solution.

Figure 3.4: First solution

Second solution It consists on the creation of a new abstraction layer upon

the existing Media Sense Framework. The main idea behind this solu-

tion is to create one group for each di�erent context. Groups should

be dynamically created and updated upon context changes. Then, re-

sources shall be temporarily cached in the layer to override multiple

52

M.Sc. Thesis of Denis Billi

requests for the same resources. Actually, implementing this solution

would add some overhead during the group creation due to the time

that involves the nodes request by the Overlay system, and also in-

duces some overhead during node accessing because, despite the use

of a cache system, every time it will require the whole time to search

for the resource in the tree. However, this solution is really simple to

obtain because it will not add neither complexity to the Overlay Core,

nor to the APIs system. This is possible due to the fact that there will

not be any modi�cations to the undercore UCI system. In fact, what

depends on groups management will be delivered to the highest part

of the Overlay and only the underlaying part will manage to �nd the

resources (see Figure 3.5).

53

M.Sc. Thesis of Denis Billi

Figure 3.5: Second solution

Third solution Instead, the third solution, represented in Figure ??, con-

sists in the radical modi�cation of the internal core of the P-Grids.

Actually, P-Grids store the information like binary data distributed in

the whole tree and referenced by a structure based on the key/value

pair's paradigm. Adding the concept of groups inside the tree would

mean to create intermediate nodes between the parent nodes and the

resource nodes themselves. Moreover, the intermediate node is a re-

source itself, and that would mean that for every context update in the

whole tree (a continuous handling of more than 50 billions of nodes)

the tree shall be restructured to be consistent to the physical world

from where the context information come. E�ectively, this solution

would not add any kind of overhead in a static context, because the

management of the new UCIs structure is located directly into the

Overlay Core, and that means that is more �exible for future enhance-

ments (like involving other subgroups based on the ontology of the

nodes, not possible with the �rst solution). However, the system shall

guarantee to work in a fully dynamic context, and even if this solution

would be the optimal in terms of load balancing and overhead of the

system, it would permanently breaks the modularity principle upon

whom the Media Sense Framework is based.

In Table 3.1 on page 56 is possible to see all the solutions compared each

others.

Finally, our proposal is to design the grouping system upon the current

architecture as a new abstraction layer that could be used separately.

54

M.Sc. Thesis of Denis Billi

Figure 3.6: Third solution

3.2 Handover design's level methodology

In order to give the maximum �exibility to our handover system on a real

Android device, we fetched around some Internet sources like [11], [10] and

[22].

We want to use SCTP for this purposes, making a real multi-homing

environment on a mobile device where two or more connections can be used

contemporary to �nd out the best usable in a particular moment and lo-

cation. This can be done arranging a mobile real time usage statistics as

it happens in the GSM/UMTS technology. This idea is strengthened by

the fact that today's handover protocols like MobileIP or HIP doesn't take

advantage of the potentiality of the infrastructure, because they wait for an

handover request coming from the device itself when it changes its location.

This is not reliable and takes too much time to respond and it would be a

great problem for TCP connections.

SCTP is a reliable and robust transport protocol that can handle more

interfaces at once. Moreover, the latest version of the SCTP draft as pro-

posed by IETF in 2001 is already implemented in all Linux Kernel since

the �rsts 2.4 versions and now its maintenance is managed by the LKSCTP

team [16].

Linux SCTP's header �les are not available for default for developers.

Despite to the fact that this protocol has reached a good level of matu-

rity, it's not yet considered a standard. Due to this, to enable the SCTP

fruition, developers must activate the LKSCTP-tools module in the Linux

Kernel, installing that package via a common sudo apt-get install

55

M.Sc. Thesis of Denis Billi

Personal groups /
Di�erent Overlays

Context-based
groups / Grouping
layer

Context-based
groups, integrated
in the trie

Pros • Easy to imple-
ment

• Easy to imple-
ment

• No overhead

• Every person
will have the com-
plete control of his
own resources

• Groups are to-
tally dependent to
the current context

• Flexible and ro-
bust for future en-
hancements

Cons • Di�cult manage-
ment of the shared
data

• Overhead dur-
ing the group cre-
ation and manage-
ment

• Hard to imple-
ment

• No more fast
search in big trees
o�ered by P-Grid

• Too many recon-
struction of the trie
due to the mobility

Table 3.1: All the solutions compared

lksctp-tools command (for Debian/Ubuntu). Moreover, since Java

JDK 1.7.0, a Java implementation of SCTP has been made, but it can

be used only on Linux OS prior the kernel module activation.

Windows Website [14] provides a huge list of all known SCTP imple-

mentations for all the platforms. Most of them are internal implementations

created for research scopes and available under purchase. The only Windows

version available for free has been implemented by the cooperation between

Siemens, the Computer networking technology group and the University of

Essen and the Münster University of Applied Sciences [32].

Android Android, as well known, is a Linux porting for mobile envi-

ronment. However, as not so well explained in [3], to install and activate

the LKSCTP-tools module here is a little bit more di�cult. For �rst, we

should download the clean Kernel version for the device from kernel.org,

then add the module (as done on Linux via apt-get, but manually).

Secondly, we should extrapolate the Kernel's con�guration �le located in

/proc/config.gz from the Android emulator and push it into the mod-

i�ed kernel directory (in the same directory). Finally, a Kernel rebuild is

required and then we can �ash the new Kernel directly to the device. Clearly,

this methodology is not so safe, because a Kernel rebuild means to have the

root access to the phone, and a kernel miscon�guration could mean a bricked

phone. Hopefully, the SCTP will be implemented in the future Android ver-

56

M.Sc. Thesis of Denis Billi

sion, but developers have become interested in it only in the last 2 years.

Until the implementation of the protocol directly in the Android stack, it

will be quite improbable to see real applications in the next future.

Therefore, the adoptable solutions are two: the �rst is use a laptop with

a Linux distribution (like Ubuntu) and with both a Wi� and a 3G connec-

tion, where we can build a real SCTP solution. Otherwise, we can use a

real Android device, but that will mean that we cannot rely on the SCTP

protocol for the solution and we must build a middleware layer ourselves.

For the reasons explained before, we choose the �rst solution, and hope-

fully in the next years the Android Consortium will open the SCTP tools to

developers.

3.3 Simulation scenarios

For the handover experiment, we will test the application on a real environ-

ment with more than one 802.11 Access Point and a 3G connection. The

device's application will be able to directly interact with the network inter-

faces and we want to pass the following experiments:

1. Passing from Wi� to 3G without connection breaks;

2. Passing from 3G to Wi� without connection breaks;

3. Passing from Wi� to 3G to Wi� without connection breaks.

Regarding the dynamic grouping solution, to test its e�ective functioning,

we'll make the following experiments:

1. Dynamically add a group to the Overlay;

2. Dynamically add and remove nodes to the group;

3. Dynamically remove a group from the Overlay both with sub-nodes

and not.

3.4 Evaluation of software design transparency

and usability

As stated in the �rst chapter, the handover solution should be implemented

as transparently as possible to the developer. This means that during de-

velopment the user can choose whether to use our framework or not, like he

57

M.Sc. Thesis of Denis Billi

do as when deciding to use UDP or TCP. For testing purposes, the classes

will be developed as a standalone .JAR �le, but further improvement will

be discussed in the Future work chapter.

The �rst is reasonably the most useless of the three for our purposes,

because it takes too much time and doesn't help us to maintain the con-

nectivity during the switching. The second one is powerful because it isn't

so expensive from the point of view of the infrastructure, however we made

some tests and in the best case it takes from 5 to 10 seconds to make the

switch and it needs some manual con�gurations from the user to let it work

in that manner. So in our solution we will focus only on the last two points.

The results obtained will be used to understand the bottleneck of the

solution and will be reported in the Results' Chapter.

3.5 Test driven development

To be in step with the times, we considered some general software devel-

opment processes and the one that seem to be more correspondent to our

needs relate to the Test driven development (TDD). This is due to the

fact that what we want is a framework that works with to SCTP to make

some special operations like the ones speci�ed in Chapter 3. That means

that we have a starting idea of what the program should do and in which

way we wants to interact with it or not. This software development process

provides a very short development cycle that is repeated several times. As

represented in Figure 3.71, for �rst the developer writes the test cases that

de�ne the desired improvement or functionality, then he writes the new code

to succeed the test and �nally he refactors the code to be as standard as

possible 2.

It's is also known that TDD can have some problems with speci�c net-

work con�gurations, because these depend on external and unpredictable

speci�cs. Due to this reason, only the business logic of the application will

be covered by the tests.

1Original URL http://en.wikipedia.org/wiki/File:Test-driven_development.PNG
2http://en.wikipedia.org/wiki/Test-driven_development

58

M.Sc. Thesis of Denis Billi

Figure 3.7: Test driven software development process

3.6 Analysis of requirements upon session man-

agement

The �rst thing to do when approaching a new project is to understand which

is the use a common user will have working with it. This process is called

analysis of requirements, when the analyst talks with the customer and tries

to understand what are the �nal characteristics of the project. Since this

project hasn't got a customer, we should make some hypothesis about the

most common uses that a developer would have with the framework, trying

to be as general as possible de�ning some simple and useful APIs for him.

Due to this, we try to create some typical use cases that are represented

in Figure 3.7 on page 61. Let's analyze them separately.

Session management In Figure 3.8a on the following page is represented

the typical use case that will have our system. The user/developer can decide

to use SCTP for his solution. Clearly, as explained before, this protocol is

already de�ned into the Kernel of the Operating System, so we don't have to

care about all the aspects about packet handling and delivery. What we shall

do is to create an environment where the user can easily handle the switching

between two connection. As it's possible to see in the �gure, the developer

can instantiate a new peer for the machine and can both creates and handles

the active connections with other peers. Instead, the ConnectivityManager

is the system itself that can only handle the existing connections. All this

entities have been wrapped by a unique object called SctpSocket.

59

M.Sc. Thesis of Denis Billi

(a) Session management

(b) Peer management

Peer management As represented in Figure 3.8b, the developer can de-

cide both when to create and when to destroy the peer object.

Manual connection management As represented in Figure 3.7c on the

facing page, only the user/node/developer can decide when to connect to

60

M.Sc. Thesis of Denis Billi

(c) Connection handling

(d) Connectivity management

Figure 3.7: Typical use cases for the handover manager

61

M.Sc. Thesis of Denis Billi

another peer. After the connection, it can both sends and receives data,

decide to manually disconnects from the other peer and �nally to switch

between the existing connections.

Automatic connection management The use case represented in Fig-

ure 3.7d on the previous page is probably the most important, because it

represents the core of the system. After a connection, the system will use

statistical data coming from the connection to decide what to do. In case

of a connection's dropping, the system must act with a kind of Automated

decisioning system and should be able to reestablish the connection between

the two hosts. This can be really hard to do, but we'll try to insert some

bu�ering system that can prevent from the disconnection.

3.7 System behavior

It's really important to �gure out what is the behavior of the system when

facing particular circumstances. This can be done using the sequence di-

agrams, that are very useful in environments such as networks where it is

important to understand which are the high level messages that are being

exchanged between peers and also between internal software parts.

Peer connection In Figure 3.8 is represented the process that being ac-

tivated by the connection request by the user/developer. Working directly

with the API's layer, we want to have one cache system that helps us main-

taining the throughput as higher as possible. This is due to the fact, as well

explained in section 2.3 and in section 2.5, that probably we want to ask the

system to open a connection between us and our home's thermostat, that

is more user friendly rather than an address like 91.15.128.32. In case of a

cache miss, we need a kind of Mobile Naming System (MNS), that acts like

a DNS (but with all the potentiality of the Overlay) to give us the current

resource's IP/port pair. We'll talk about the MNS later. After the address

resolution, we have got all what we need to connect to the other peer.

As it is possible to see in the �gure, every single node in the system is

predisposed to accept multiple IP/port pairs from the other peer. This can

be useful in the future, where there will be an easiest way to take advantage

of multi-homing features from the peers. One important note is that the

connectionResults object is the instance of a Network Stream that can be

write directly from the user.

62

M.Sc. Thesis of Denis Billi

Figure 3.8: Sequence diagram of the connection process

Peer connection's swapping One of the biggest issue is related to the

fact that in a publish/subscribe system, the packet delivering time can be

higher than the time required to swap the connection. This can be exempli-

�ed with the scenario represented in Figure 3.9.

Figure 3.9: Connection's swap noti�cations between peers

In the �gure are represented three major situations. In the �rst, device

number 1 swaps from connection number 1 to connection number 2. After

the operation, it can correctly notify peer number 2 because it knows its

63

M.Sc. Thesis of Denis Billi

IP/port pair. The same happens in second scenario, where in this case is

peer number 2 that swaps its connections. Instead, in the third scenario,

neither the �rst nor the second device can notify the other peer, due to the

fact that they changed their IP/port pairs simultaneously.

There are two major �xes for this problem. The �rst is to monitor all

the outgoing tra�c and always bu�erize it, but it's extremely expensive in

terms of computation requisites. The second solution is to take advantage of

SCTP, that is able to manage multiple IP addresses dynamically. The idea

beneath this capability is to open the second connection before the swap

mechanism begins to work and notify other peers before the swapping. This

means that the prediction mechanism should be able to understand when

change the connection very early.

Peer data exchange The most important feature of the Sensor Sockets

is the possibility to exchange directly binary data. The ratio behind this

functionality is to to permit the exchange of both raw data and complex

�les (like media �les) through the P2P network. This can be done by using

Streams as communication medium. Four di�erent API have been designed

for the di�erent level of communication that can be established between two

peers:

1 Write Plain Text (Custom Charset);

2 Write File;

3 Write Streaming Media;

4 Write Raw Data

Each of them is designed to be optimized in its particular �eld. For

example, sending a �le through the network is di�erent than streaming a

media. In fact, the former needs complete reliability during the transfer, the

latter needs highest speed in the data transfer. Anyway, we could synthesize

the behavior of each communication between peers as shown in Figure 3.10

on the next page.

3.8 Handover system's architecture

The handover system's architecture has been studied to be as �exible as

possible for the end-user. The entire structure takes advantage of the Peer-

to-Peer paradigm, so each node of the network can be both Client and Server

for the other nodes because each operation is executed in a di�erent thread.

64

M.Sc. Thesis of Denis Billi

Figure 3.10: Communication between peers

Data Bu�ering In order to maximize the payload during heavy data

transferts (e.g. multimedia streaming), it would be necessary to optimize

the sockets with the use of IO data bu�ering, both in output and in input

routines. This can be exempli�ed by the following scenario: we are mov-

ing towards di�erent connections, so if we are streaming a large amount of

data, it would be very useful to have bu�erized streams both in input and

in output. Clearly, the faster the switching is, the better it is for the con-

nection. Thus, the dimension of the bu�er should be modeled on di�erent

circumstances: �rstly, the data rate of the streamed source. Secondly, the

worst case of time delay's switching. Taking Dr as the bit-rate of the media

source, T as the time needed to bu�er and looking for the dimension of the

Media Bu�er (Mb) in bytes, then it's easy to calculate:

Mb =
Dr×T

8

65

M.Sc. Thesis of Denis Billi

Figure 3.11: Handover system's architecture

Thus, presuming that it's easy to extrapolate the bit-rate from a media

source (Dr), we need to know only the worst case of the connection switching

(T).

3.9 Mobile Naming System

As reported in section 2.5.1, the Overlay creates an abstraction layer able

to resolve IP/port pairs from the UCI of the node whereby we want to

connect with and directly return the result of the request. The idea is to

take advantage of this behavior to resolve the IP/port pairs of the peers

involved in the communication and retrieve them in order to connect with

them. In fact, the Overlay acts as a real-time lookup service for all kinds of

resources, and treating the IP address like a resource of the node is exactly

what the system needs. Thus, we will use a public MNS that is able to

query the Overlay in order to �nd the relative IP address/port pair from the

highest-level UCI of the Peer. Taking the following UCI:

dcxp://user@domain/IP

It will return the following value:

192.168.1.123:54768

Where the �rst is the IP address of the peer, and the second is its active

listening port for the data exchange.

66

M.Sc. Thesis of Denis Billi

3.10 DCXP integration

As stated in the previous chapter, groups are not stored directly into the

Overlay, but they are maintained in a superior layer by each peer. Thus,

groups information are peer-dependent, and that means that a peer could

belongs to a particular group only if the peer is currently active in the

network. To better understand this passage, in Figure ?? on page ?? is

explained how a peer can contain groups. At the moment of the creation of

the peer itself, it belongs to one or more groups depending on the number

of di�erent context the user could be part of. If for example the user is

interested both in music and sports, he could be member both of the context

relative to his preferred band and football's team. These groups are not

named groups. This is due to the fact that the DCXP protocol is not an

active protocol, that means that peers exchanges messages only at a low

level of the protocol. In fact, the abstraction level of DCXP only permit to

have a passive communication with the Overlay and being informed when it

changes.

Platform With Groups.png

Figure 3.12: DCXP Integration Architecture

67

M.Sc. Thesis of Denis Billi

We decided to put this as the strong point of this research, because

having a passive protocol means to not take care of how the communication

happens between the peers and just being informed when we have to take

some decisions. This behavior highly increases the scalability of the system.

3.10.1 Group creation and management

When a node physically moves around the space, it shall take decisions every

time something important happens around it. For our purposes, into the real

world, this measure can be dimensioned to once every 30 seconds. In fact,

it's really di�cult that more than 1 thing can happen for context changes

in so a short time. Actually, even 1 minute has been examined as a good

solution, but the answer to the question "Which is the good threshold for

a context update?" could be postponed for future works. Thus, every 30

seconds and for each context update, the system shall be woken up by the

underlaying DCXP Layer and shall performs multiple range queries (one for

each context attribute) to �nd out which peers can be interesting in terms

of context's distance.

Context distance Context distance calculation is the most important

part of this thesis work. Once the range queries have been sent, each of the

nodes that are inside the range returns their context attribute values. The

range represents the maximum distance between two di�erent contexts. To

determine the distance between two di�erent locations is quite easy, therefore

we assumed that each node contains the attributes relative to its current

latitude, longitude and its desired range. However, every context information

could be used, like music interests and sports, but it's up to the future

workers on the system to take care of calculating these context distances.

Once the distance is calculated, all the nodes within the range are queried

from the peer to know their centroid position. After that, only the ones that

have got a centroid closer to the node are took in consideration to create a

group.

3.10.2 Peers and centroids

After the peer has found all the surroundings nodes, it queries the Overlay

to know the centroid position of each of them and the name of the node's

group. Actually, this operation is really fast because statistically only a

few groups could be realistically close to you. In fact, thinking in terms of

geographical location, if the node is close to one group's centroid then it

68

M.Sc. Thesis of Denis Billi

Figure 3.13: Ranged queries for context distance returns the nodes that are
inside the quadrangle

means that all the other nodes close to that node belongs to that particular

group. As shown in Figure 3.14a on the next page, whether the peer wants

to join an existing group, it queries the Overlay to know where is positioned

the centroid in the context's space, and calculates the distance between its

position and the group's centroid, as shown in Figure 3.14b on the following

page. Therefore, because of the fact the Overlay is a passive system (as

reported in the second chapter), is the peer itself that changes its group

name's attribute.

Moreover, with the operation of joining a group, the peer should change

its centroid attributes and range. The centroid position is calculated as the

baricenter of the previous centroid and the peer's position, and the range

is calculated as the mean value of the old range size and the peer's range.

Thus, if the old range was 500 meters and the new one is supposed to be

1000 meters, the new range will be set to 750 meters. This permits to

avoid centroid size additions that would exponentially brings centroid range

to in�nite (Figure 3.14c on the next page). Actually, this system presents a

leak that is represented by the fact that, being the Overlay a passive system,

only the last node that joined the group knows the new position (and range)

of the group's centroid. This could be avoided introducing a timestamp

attribute during the calculation of the new centroid. If a node during the

lookup �nds another peer that belongs to the same group, then it also asks

for the centroid timestamp. If it's more recent than its own, then it shall

69

M.Sc. Thesis of Denis Billi

(a) Peer queries the Overlay to know the surrounding
nodes and calculates each distance (∆X)

(b) Peer decides which of them is the best choice and
calculates the distance to the group's centroid (∆C)

(c) Peer decides which of them is the best choice and
calculates the distance to the group's centroid (∆C)

Figure 3.14: Algorithm's �rst stage - Nearby node lookup

70

M.Sc. Thesis of Denis Billi

update its attributes with the new ones.

3.10.3 The grouping algorithm

Since in the next chapter we are going to describe the tests made in order

to prove the functioning of the whole system, it's important to give a formal

de�nition of the grouping algorithm in a real scenario.

Testing Scenario

We choose to simulate an advertising service that operates thanks to the

localization information of the nodes. These nodes are positioned randomly

in a map (0 to 100 on the graphs). The paths followed by them through

the map are prede�ned). Some areas of the map are forbidden, since they

represents the buildings. Thus, these are the terms used in our study:

• M nodes represent the stores

• N nodes represent the people moving on the map

• R nodes represent the routers at which the nodes are phisically con-

nected

• T represent the topology area

• O represents the overlay

• C represents the context of the node

Each node (N and M) maintain its own context. When consulted, O

supplies an answer containing the information of the closest node in terms

of euclidean distance of the contexts; therefore, these two nodes shares their

knowledge about their respective groups and both join the same one. Finally,

after some iterations, nodes tend to dynamically group themselves.

Formal de�nition of the algorithm

Initially, N nodes are placed randomly on the map (100x100 units). They

are not logically divided, since they represents the people moving on the

map. M nodes are placed at �xed positions, since they represent the stores.

Routers' nodes are stationary, and responsible to create di�erent domains

(cellular, wi� and so on) and to reroute the packets to and from the Overlay.

We decided to use the random way-point mobility model in order to route

the nodes on the map at a random speed. The variation have been assumed

71

M.Sc. Thesis of Denis Billi

from 0 to 5 meters per seconds and 0 seconds of pause time. Way points are

uniformly distributed over the topology area.

The following are the life-steps of an alive node:

Phase I The nodes begins a lookup operation for its context information

and receives a list with the K-most closest nodes (1 in our study);

Phase II The node which started the lookup operation joins the closest

node's group and updates its timestamp.

72

CHAPTER

FOUR

IMPLEMENTATION INSIGHTS AND

EXPERIMENTAL RESULTS

In this chapter we decided to explain how DDCA was implemented, the tests

we took with the MediaSense Framework and our grouping algorithm, and

to note all the issues (and the corresponding solutions for them) encountered

during the use.

4.1 Grouping system

Grouping layer is responsible to create, manage and destroy the groups. Ac-

tually, the groups are never created or destroyed physically, because groups

are nothing more than attributes of the nodes. For this reason, joining and

leaving a group means just to change the value of the group's attribute of

the peer.

4.1.1 GroupLayer

GroupLayer, as shown in Figure 3.12 on page 67, is the external level of the

MediaSense architecture. It's responsible of the maintenance of every single

context's group whom belongs the node. So it's important to remember

that there are as many GroupLayers as many context the peer wants to

keeps track of.

As shown in Figure 4.1 on the next page, the class is abstract in order

to maintain the dependency level as lower as possible. Anyway, the basic

functionalities are described by the publicly accessible methods.

73

M.Sc. Thesis of Denis Billi

Figure 4.1: GroupLayer UML Scheme

prepareQueries method This method is called every time the context

is updated. As written in the previous chapter, we decided to opt for a 30

seconds update timing, but this parameter could be easily changed in the

con�guration �les.

executeQueries method This method simply launches the queries to the

Overlay in order to receive the results.

executeQueries method This method is called every time a new result

from the Overlay is received in order to know if the responding node could

be interesting to the peer. Being interesting would simply means that in

our particular case of geographical context, both the latitude and the lon-

gitude have been returned from the Overlay and collected in their speci�c

container (nearbyLatitudes and nearbyLongitudes). If so, the node is added

to the candidatedNearbyNodes list till the next context update. When a

new candidate node has been found, the peer can �nally query the Overlay

in order to know the node's information regarding its centroid position, its

range, group name and timestamp. As soon as all these information are

arrived to destination, if the node is inside the peer's range then the system

starts the joining routine.

74

M.Sc. Thesis of Denis Billi

Listing 4.1: Joining request

1 double distance = calculateDistance(nearbyLatitudes.get(uci), nearbyLongitudes

.get(uci), nearbyRanges.get(uci));

2 boolean areIntersectable = DCXPLocationHelper.areIntersectable(this.core.

getRange(), new String[] { nearbyLatitudes.get(uci), nearbyLongitudes.get(

uci) }, Long.parseLong(nearbyRanges.get(uci)));

3

4 if(areIntersectable && (distance < this.core.getRange())) {

5 this.core.joinGroup(this.newGroupName, nearbyCoordinates.get(mainUCI))

;

6 }

4.1.2 GroupCore

Group Core class is responsible of the context updates. It runs on its own

Thread in order to avoid synchronization's issues with the main application's

thread.

Figure 4.2: GroupCore UML Scheme

Its main task is to update the context accordingly to the time saved in

the con�guration �le and in case of joining operations.

75

M.Sc. Thesis of Denis Billi

Listing 4.2: Normal context update operation

1 LatitudeContextAttribute newLatitude = new LatitudeContextAttribute(

getCompleteUCI("latitude"), getCompleteUCI("latitude"), currentPosition

[0]);

2 LongitudeContextAttribute newLongitude = new LongitudeContextAttribute(

getCompleteUCI("longitude"), getCompleteUCI("longitude"), currentPosition

[1]);

3 RangeContextAttribute newRange = new RangeContextAttribute(getCompleteUCI("

range"), getCompleteUCI("range"), String.valueOf(getRange()));

4

5 Log.getInstance().log(Level.INFO, "Updating group’s information");

6 this.dcxpLayer.update(newLatitude, this);

7 this.dcxpLayer.update(newLongitude, this);

8 this.dcxpLayer.update(newRange, this);

Listing 4.3: Group's updated information retrieving and updating

1 CentroidLatitudeContextAttribute newCentroidLatitude = new

CentroidLatitudeContextAttribute(getCompleteUCI("centroidlatitude"),

getCompleteUCI("centroidlatitude"), centroid[0]);

2 CentroidLongitudeContextAttribute newCentroidLongitude = new

CentroidLongitudeContextAttribute(getCompleteUCI("centroidlongitude"),

getCompleteUCI("centroidlongitude"), centroid[1]);

3 TimestampContextAttribute timestampAttribute = new TimestampContextAttribute(

getCompleteUCI("timestamp"), getCompleteUCI("timestamp"), ((Long) Calendar

.getInstance().getTimeInMillis()).toString());

4

5 Log.getInstance().log(Level.INFO, "Updating group’s attributes from more

recent peer’s info.");

6 this.dcxpLayer.update(newCentroidLatitude, this);

7 this.dcxpLayer.update(newCentroidLongitude, this);

8 this.dcxpLayer.update(timestampAttribute, this);

76

M.Sc. Thesis of Denis Billi

Listing 4.4: Group's joining with consequent updating of the info

1 String[] currentPosition = dcxpContextUpdater.getNewContext();

2 String[] positionWithRange = new String[] { currentPosition[0],

currentPosition[1], String.valueOf(range) };

3 String[] calculatedPosition = DCXPLocationHelper.mergeCentroids(

positionWithRange, otherGroupPosition);

4

5 DCXPContextAttribute newGroupNameAttribute = new GroupNameContextAttribute(

this.mainUCI + "/group", this.mainUCI + "/group", groupName);

6

7 CentroidLatitudeContextAttribute newCentroidLatitude = new

CentroidLatitudeContextAttribute(getCompleteUCI("centroidlatitude"),

getCompleteUCI("centroidlatitude"), calculatedPosition[0]);

8 CentroidLongitudeContextAttribute newCentroidLongitude = new

CentroidLongitudeContextAttribute(getCompleteUCI("centroidlongitude"),

getCompleteUCI("centroidlongitude"), calculatedPosition[1]);

9 TimestampContextAttribute timestampAttribute = new TimestampContextAttribute(

getCompleteUCI("timestamp"), getCompleteUCI("timestamp"), ((Long) Calendar

.getInstance().getTimeInMillis()).toString());

10

11 Log.getInstance().log(Level.INFO, "Setting new group attributes");

12 this.dcxpLayer.update(newGroupNameAttribute, this);

13 this.dcxpLayer.update(newCentroidLatitude, this);

14 this.dcxpLayer.update(newCentroidLongitude, this);

15 this.dcxpLayer.update(timestampAttribute, this);

4.1.3 Context Updater

ContextUpdater is the interface behind which is possible to create the context

retrievers. Speci�cally, for the current project it wasn't possible to do some

tests in a real environment, therefore a mockup context creator have been

developed. Speci�cally, the DCXPLocationHelper simply simulates a person

that moves in the environment with its own speed and direction, enclosed

in the speci�ed latitude and longitude coordinates.

Figure 4.3: GroupLayer UML Scheme

77

M.Sc. Thesis of Denis Billi

4.2 Sensor Sockets

Sensor Sockets are the generic wrapping layer of the second part of this work.

How it's possible to see in Figure 4.4, they are simple objects responsible of

creation and the high level management of the underlying SCTP sockets.

Figure 4.4: Sensor Socket UML scheme

They presents the common APIs of a connectivity socket such as bind,

connect and disconnect. Particularly interesting is the second one. In fact,

at the moment of the connection to another peer, the system returns an

object of type SensorDataStream that is responsible of all the future com-

munications between the two peers.

4.2.1 Sensor Data Stream

SensorDataStream object is created when a connection is established be-

tween two peers and is responsible for the management of the communica-

tion's channel. All the information for the channel are contained in the Peer

object passed as parameter to the constructor. In the speci�c case of the

SCTP, it already provide an SctpChannel. As written in the theory chapter,

each SCTP channel is bi-directional, therefore it needs to be both read and

write simultaneously. Fortunately, a common SCTP socket already provides

a synchronization system in case of data collision.

In order to write data in the channel, four di�erent routines are provided:

write simply accept a byte array (or eventually a ByteBu�er or a single

byte) as input and directly writes data. Then it's possible to send plain text

using the writeText and �nally two more for multimedia have been created:

writeFile and writeMedia. The di�erence is that the �rst don't need any

particular optimization, this is due to the fact that �les are not streamed and

they need only reliability for the amount of data sent. Instead, writeMedia

necessitates of particular attentions for the amount of data sent in each

message and the size of the data bu�er used both for the transmission and

78

M.Sc. Thesis of Denis Billi

Figure 4.5: Sensor Data Stream UML scheme

the reception. All these streaming functionality have not been implemented

yet.

Finally, it's interesting to see how the streams are requested. In fact, all

is done asynchronously using the asynchronous method beginStreaming of

the Peer object. This method takes the transmission request in the form of

a speci�cally formatted XML document that is created by the SensorSock-

etXmlFactory.

Listing 4.5: writeText routine of the SctpDataStream object

1 ArrayList<SensorSocketXmlDataStream> streams = new ArrayList<

SensorSocketXmlDataStream>();

2 SensorSocketXmlDataStream newStream = new SensorSocketTextXmlDataStream(text.

length(), charset.displayName());

3 newStream.setIdentifier(identifier);

4 streams.add(newStream);

4.2.2 Peer

The Peer object is an abstract class that contains and manages all the

information regarding the current established connection between our peer

and another. Speci�cally, inside the SctpPeer is contained the SctpChannel

that is used for both the transmission and the reception of the data.

Particularly interesting are both the asynchronous routines for this two

operations. The beginStreaming method executes in a di�erent thread in

order to don't block the main application's thread, and simply encodes the

79

M.Sc. Thesis of Denis Billi

Figure 4.6: Peer UML scheme

data accordingly to the system Charset and then sends the transmission

request. In fact, the protocol used for the data exchange is represented in

Figure 4.7.

Figure 4.7: Transmission protocol used with the Sensor Sockets

Thus, the reception of the header acts accordingly to the protocol:

Listing 4.6: receiveStream routine of the Peer object

1 Document doc = SensorSocketXmlDataStream.getXmlFromString(result);

2

3 Map<String, String> peerInfo = SensorSocketXmlDataStream.getPeerInfo(doc);

4 for (String peerInfoKey : peerInfo.keySet()) {

5 if(peerInfoKey.equals("identifier"))

6 peerIdentifier = peerInfo.get(peerInfoKey);

7 }

8

9 for (SensorSocketXmlDataStream streamInfo : SensorSocketXmlDataStream.

getStreamInfo(doc)) {

10 OnStreamOpen(streamInfo, peerIdentifier);

11 }

80

M.Sc. Thesis of Denis Billi

4.2.3 Sensor Socket Xml

In order to correctly send data and let the other peer understand what the

current node's trying to send to it, the protocol represented in Figure 4.7 on

the facing page has been proposed. However, all the data exchanged in both

the request and acknowledgement operations is formatted in XML in order

to keep it simple the future management of the di�erent transmissions.

Figure 4.8: Sensor Socket XML UML Scheme

In Figure 4.8 is represented the UML scheme of the objects whom takes

care of the creation and the reading of the header. Speci�cally, the Factory

is responsible for the creation of the XmlDataStream object whom contains

the stream identi�er and the type of the stream. Instead, the object itself

is speci�cally implemented to generate itself accordingly to its nature, thus

four di�erent XmlDataStream sons inherit these functionalities. These are

one for each writing routine created in the Peer object: raw, �le, media and

text.

4.2.4 Policy Manager

In order to manage the switch between two or more di�erent connection,

a PolicyManager object has been created. This singleton class is queried

every prede�ned amount of time in order to know if a switch between the

connections is required. This calculation could be done in di�erent ways.

Accordingly to the GSM handover explained in the theory chapter, it's pos-

sible to understand whether the �rst connection is loosing too much strength

and the second is increasing its power and then decide to start the handover

routine. However this is not the only possible solution, because in some cases

a signal power loss do not necessarily means that an handover is required.

Then we decided to leave the PolicyManager as more general as possible,

and all the decisions are made instantiating the speci�c policies needed for

81

M.Sc. Thesis of Denis Billi

the current use-case.

Figure 4.9: PolicyManager UML Scheme

In fact, how it's possible to see in the evaluation's method, the given

result is nothing more than the connection whom received more votes from

each policy singularly queried:

Listing 4.7: getEvaluation's method of the PolicyManager

1 public int getEvaluation() {

2 try {

3 int maxId = 0;

4 int max = 0;

5 int[] evaluations = new int[NetworkManager.getInstance().

getNumberOfConnections()];

6

7 for (SensorSocketPolicy policy : policies) {

8 if(policy.isActive())

9 evaluations[policy.getEvaluationResult()]++;

10 }

11

12 for (int i = 0; i < evaluations.length; i++) {

13 if(evaluations[i] > max)

14 maxId = i;

15 }

16

17 return maxId;

18 } catch (SocketException e) {

19 Log.LogError("Impossible to evaluate a new connection", e);

20 }

21 return 0;

22 }

Assuming that the connection 1 is selected by two policies and the con-

nection 2 is selected by only one policy, then the routine simply returns the

�rst because more policies decide that it was the best connection currently

active in our environment.

4.2.5 Network Manager

Network Manager is a singleton class with the responsibility of manage the

current peer connections.

82

M.Sc. Thesis of Denis Billi

Figure 4.10: Network Manager UML Scheme

It's functionalities are limited to simply o�er a friendly view of how the

underlying network is organized.

4.2.6 Connection Manager

Connection Manager is the most important singleton class of the second

part of the project. In fact, it's responsible of the main coordination of the

data transmission and reception of the current node. It o�ers the API s used

by the overlying SensorSocket object to which is implicitly related.

Figure 4.11: Connection Manager UML Scheme

It's important to notice that the Connection Manager is not directly

connected to the SCTP protocol. In fact, it's possible to specify the typology

of connection used passing the correct value of ConnectionProtocol to the

getInstance method.

4.3 Model's behavior

In order to verify the behavior of the algorithm in a real network, we de-

cided to take some simulations in a safe environment inside the University's

laboratories. Anyway, before taking these tests in a real network, we made

some in a simulated environment and took the opportunity to simulate it

under several conditions and with some disturbing agents that changed the

83

M.Sc. Thesis of Denis Billi

balance of the system, due to the fact that we wanted to see the robustness

of the model.

4.3.1 Simulations in OMNeT++ and Oversim

Simulations were took inside the OMNeT++ simulator and Oversim [4].

The time of every simulation have been set to 500 seconds, with a TTL of

every node set to a variable number between 200 and 240 seconds for the

30% of nodes and in�nite for the remaining 70%. The discovery range have

been set to a variable number up to 50 units. All the statistics (that will

be attached to this thesis) have been calculated on a single machine with a

3GHz CPU with 8 GB of RAM.

This is the INI �le that describes how were organized the simulations:

Listing 4.8: The organization of the simulations

1 [Config MediaSenseChordDHT]

2 description = Chord DHT (SimpleUnderlayNetwork)

3 *.underlayConfigurator.churnGeneratorTypes = "oversim.common.LifetimeChurn"

4 **.lifetimeMean = 10000s

5 **.measurementTime = 500s //tempo della simulazione

6 **.transitionTime = 100s

7 **.overlayType = "oversim.overlay.chord.ChordModules"

8 **.numTiers = 2

9 **.tier1Type = "oversim.applications.dht.DHTModules"

10 **.tier2Type = "oversim.tier2.msTestApp.DHTTestAppModules"

11 **.globalObserver.globalFunctions[0].functionType = "oversim.tier2.msTestApp.

GlobalDhtTestMap"

12 **.globalObserver.numGlobalFunctions = 1

13 **.targetOverlayTerminalNum = N //variabile in base alla simulazione

14 **.initPhaseCreationInterval = 0.1s

15 **.debugOutput = true

16 **.drawOverlayTopology = true

17 **.tier1*.dht.numReplica = 4

The Overlay is based on a CHORD-DHT protocol, as shown in Fig-

ure 4.12 on the facing page.

Tier 2 uses the standard KBR (Key-based routing) API for the insertion

of all the data inside DHT and also for the discovery of the Top nearest-

neighbour.

In fact, the dataset of every node (that is distributed and replicated

inside the Overlay) is composed by a Rn, where n is the number of data

saved inside the Overlay for every node. In our speci�c case we �nd:

• 2D coordinates of the centroid

• Group of the node

• 2D position of the node

84

M.Sc. Thesis of Denis Billi

Figure 4.12: Single node

Is easy to notice that there could be a variable number of information

(emphasized in bold) that depend only by the scenario of the simulation/use,

and others that instead maintain their persistance since they are part of

the model. We used the 2D coordinates of the node to simplify the e�ect,

but nothing prevents the use of several context information, such as music

preferences, user data, age and so on; thus, what could be changed only the

quantity of data.

4.3.2 Di�erences between CHORD/DHT andMediaSense's

P-Grid

MediaSense was born as a framework for the structured insertion of data

inside a P2P network based on Chord and DHT protocols. The necessity

of using the Range Queries brought the researchers to the use of P-Grid

instead, that permits also the absence of a load-balancing algorithm and a

bootstrap node (P-Grid trie is self-balanced and bootstrap-less).

Owever, OMNeT++ and Oversim don't provide the use of P-Grid in the

simulations, so we decided to use a modi�ed versione of Chord and DHT

protocols in order to use the Range Queries during the whole test session.

We underline the fact that the test environment is basically di�erent

to the ideal MediaSense Framework, anyway there is a speci�c relation be-

tween the two, and is explained in the following lines: every node collects its

context-related data and insert it inside the Overlay using a unique key for

the DHT protocol. These information are not responsible for the increasing

of the overhead since they would be there anyway. The only packets that

could in�ciate the scalability of the P2P network are those related to the

discovery session, in which each node sends a lookup packet to the Overlay

85

M.Sc. Thesis of Denis Billi

Figure 4.13: Oversim with 50 nodes simulating

and it expects an answer with the K-most nearest neighbor. We know the

performance of this discovery, because it has been tested in previous works,

and it is

0.5 ∗ log(N)

where N is the number of nodes inside the tree.

Thus, taking our simulations as an example, the only information that

exceed this "normal" situation, is the data related to the centroid and the

group identi�er. However, the size of this data is relatively small, since we

expect only some more bytes to what is normally exchanged between the

nodes. Our goal is to see if this data is responsible to any change in the

scalability of the P2P network.

4.3.3 Tests goal

As already written, the goal of these tests is to �nd a relationship between

the density of the nodes in the context-space and the number of iterations

needed to have a stable situation (no more group aggregation). Moreover,

we calculated also the number of exchanged discovery packets (to and from

the Overlay) in every test.

To avoid any error related to the duration of the tests, this has been

maintained to a very long constant time (500 seconds), the number of nodes

have been parameterized and a disturbing agent has been inserted to verify

the robustness of the model in case of the failure of some nodes; this element

can clearly be seen from the time 200 sec.

86

M.Sc. Thesis of Denis Billi

Nodes density Avg It/Nodes Groups
0.1 6.87 43
0.1 10.18 6
0.05 7,04 4
0.02 18,94 1
0.01 22,67 2

Table 4.1: Relationship between density and iterations

Every 10 seconds we calculated the number of groups inside the Overlay.

4.3.4 Results with nodes inserted into a uniform-distributed

space

We made 5 similar tests and a one more at the end:

• AREA 1000 - 10 nodes = low density

• AREA 1000 - 20 nodes = mid-low density

• AREA 1000 - 50 nodes = mid density

• AREA 1000 - 100 nodes = high density

• AREA 10000 - 1000 nodes = high density

These tests helped us to verify the algorithm in a simulated environment,

con�rming the results we obtained with the MATLAB simulations, that is a

progressive gain of e�ciency in terms of number of iterations the more the

density of the nodes. In fact, the more high the density is, the less number

of packets are exchanged to group the nodes. Results are in Table 4.1 and

in Figure 4.14 on the following page.

In Figure 4.15 on the next page, 4.16 on page 89, 4.17 on page 89, 4.18

on page 90, and 4.19 on page 90 is possible to see all the results.

It's possible to notice that the algorithm is e�ective from the beginning

of the simulation. In fact, in the �rst 10 seconds there is a big selection

of the predominant groups up to an half of the initial number (every node

belongs to a di�erent group at the beginning).

At the introduction of the disturbing element (at 200seconds), every node

starts a new discovery session and changes its group to the one closer until

a new stable situation.

87

M.Sc. Thesis of Denis Billi

Figure 4.14: Relationship chart between density and iterations

Figure 4.15: Area 1000 - 10 nodes

A typical-use environment's test

After the results obtained we decided to test the model in a more realistic

context as could be a typical sitting room: the nodes (appliances) in this

situation are in a more static environment, but some of them (tablets, mobile

phones, notebooks and so on) could change more often, we decided to reset

the groups every 20 seconds.

In Figure 4.20 on page 91 is possible to see a graphical representation of

the context. The room has been subdivided in a 2D plan and we assigned a

triplet of values to each appliance:

PosX, PosY,Radius

In this way, our triplets are represented in Table 4.2 on page 90.

The parameters pf this simulation are the following:

88

M.Sc. Thesis of Denis Billi

Figure 4.16: Area 1000 - 20 nodes

Figure 4.17: Area 1000 - 50 nodes

Listing 4.9: The organization of the real simulation

1 [Config MediaSenseChordDHT]

2 description = Chord DHT (SimpleUnderlayNetwork)

3 *.underlayConfigurator.churnGeneratorTypes = "oversim.common.LifetimeChurn"

4 **.lifetimeMean = 10000s

5 **.measurementTime = 15s

6 **.transitionTime = 100s

7 **.overlayType = "oversim.overlay.chord.ChordModules"

8 **.numTiers = 2

9 **.tier1Type = "oversim.applications.dht.DHTModules"

10 **.tier2Type = "oversim.tier2.msTestApp.DHTTestAppModules"

11 **.globalObserver.globalFunctions[0].functionType = "oversim.tier2.msTestApp.

GlobalDhtTestMap"

12 **.globalObserver.numGlobalFunctions = 1

13 **.targetOverlayTerminalNum = 8

14 **.initPhaseCreationInterval = 0.1s

15 **.debugOutput = true

16 **.drawOverlayTopology = true

17 **.tier1*.dht.numReplica = 4

For compatibility reasons, the coordinates have been expressed in decime-

ters, and the groups are represented in prime numbers (since the moltipli-

cation of two prime numbers is unique). The log is in the Appendix.

In Figure 4.21 on page 91 is possible to see the relationship between the

nodes and the groups.

Firstly, is possible to notice that two groups have been created since the

�rst iteration, and then they permained till the end (in this simulation, we

had no disturbing elements).

With such a behavior, is possible to dinamically create group of objects

89

M.Sc. Thesis of Denis Billi

Figure 4.18: Area 1000 - 100 nodes

Node ID X Y Radius
1 - Ceiling lamp 2.0 2.0 0.5
2 - Sound system 3.3 2.0 1.0
3 - TV 3.6 1.5 1.0
4 - Fan 3.5 0.4 1.0
5 - Tablet 2.2 0.5 0.8
6 - Notebook 1.4 0.5 0.8
7 - Mobile phone 1.2 1.6 0.8
8 - Abat-jour 3.5 3.0 0.5

Table 4.2: Appliances' triplets

not related each other (without an initial pairing), even if they belongs to

di�erent networks and that they can dinamically distribute theirselves in

self-contained areas (clusters) in such a way that it's possible to send them

some remote commands (such as to switch on and o� single appliances or

group of appliances), only thanks to their spatial localization.

4.4 Running the MediaSense Framework

I decided to write this paragraph as help for the future researchers who will

work on the MediaSense Framework's project. In fact, at a �rst run, it was

quite impossible to let the P-Grid to structure itself. Firstly, we tried using

one private node as the bootstrap and then to run all the other nodes in the

corresponding network machines. We found that even if the machines were

Figure 4.19: Area 10000 - 1000 nodes

90

M.Sc. Thesis of Denis Billi

Figure 4.20: Our realistic environment

Figure 4.21: Relationship between the nodes and the groups

all running on the same network, they didn't see each other: actually they

pinged each other, but with no answer in the protocol. Then we decided

to remove all the possible network-related barriers, like �rewalls and anti-

viruses. This didn't solve the problem. Afterward we tried to see whether

the problem was actually related to the topology of the network interfaces,

and especially with the number of currently active networks on the machines.

We found that the protocol just binds on the �rst-found interface, with no

possibilities to force the bind on a speci�c interface. So we decided to check

inside the protocol's Core Layer in order to �nd if it was possible to change

its behavior. Actually, we found that the decision was totally static and

with no chance of dynamically set the node's preferences, and we put some

changes. First of all, we integrated our SensorSocket version, that is totally

91

M.Sc. Thesis of Denis Billi

network protocol independent. In this way, none of the network related

problem should occur anymore. Moreover, thanks to the SCTP protocol, it's

totally unimportant whether the node stays on a speci�c node rather than

another. Anyway, we switched o� all the networks that were not related to

the tests. After running the Framework on the bootstrap and on the nodes,

we noticed that the nodes were currently communicate each other, but there

was no structuring in the P-Grid. Actually, this has been the hardest point

regarding the �rsts testing weeks. Anyway, at the end we decided to use a

publicly reachable bootstrap node, and that solved the problem.

4.5 Grouping

Tests for the grouping algorithm has been made inside the Network Labora-

tory of the University, and speci�cally we used 5 machines with administra-

tive accounts. The reason of having administrative credentials is linked to

the fact that current PGrid message exchange and DCXP routing protocols

don't work under limited accounts with �rewall or proxies between them.

Figure 4.22: Simulator View

On the �rst machine then PGrid's bootstrap node has been started in

order to avoid possible �rewall con�icts with an external one. On a notebook

we started a node in DEBUG mode in order to see the information's �ux

and to debug the possible errors. On two machines we ran the Media Sense

nodes, and �nally on the last machine we run both a normal MediaSense

node and the Simulator View.

92

M.Sc. Thesis of Denis Billi

4.5.1 Simulator View

The Simulator View is a simple Java executable �le that is able to listen

to the UDP port number 52600 in order to receive speci�cally formatted

packets containing the node's information. The executable shall be ran on

a publicly visible machine in order to let it receive all the packets correctly.

In fact, inside each packet are contained the current context information of

the node (speci�cally, in our case they are the geographical coordinates in

terms of X and Y position), the research range with the current centroid

coordinates and �nally the node name and belonging group's name. The

packets are sent as plain text, so there is any kind of formal format of the

data:

uci,groupname|latitude,longitude|range|

centroidLatitude,centroidLongitude|timestamp|

Clearly, to create a more sophisticated way for exchange the data would

be better but it was out of our goals.

4.5.2 Grouping algorithm

The tests regarding the grouping algorithm are based on the assumption

that the node are not moving for real and their position and speed data are

totally simulated. Times for position acquisition are set on 10 seconds for

each node: after this time, each node starts the lookup for the other nodes.

Algorithm's �rst stage - Nearby node lookup The �rst stage of the

grouping algorithm regards the lookup on the Overlay in order to �nd out

the surrounding nodes positioned inside the quadrangle �gure formed with

both the latitude and longitude coordinates and the range (see Figure 3.13

on page 69). As stated in the fourth chapter, the lookup is done using the

Range Queries provided by the Overlay.

In Figure 4.23 on the following page it's possible to see both the normal

view of the nodes in the network and the current zone of interests of node

called denisNotebook.

Algorithm's second stage - Node selection As stated before, after

the lookup the nearby nodes are sorted in order to �nd the best match. In

this case, two of the nodes are inside the ranges but only one matches with

both the latitude and the longitude, therefore it's the only one that will be

queried by the node in order to know its centroid position.

93

M.Sc. Thesis of Denis Billi

(a) Normal view (b) Overlayed view with zones of inter-
est for the node

Figure 4.23: Algorithm's �rst stage - Nearby node lookup

Figure 4.24: Node selection

Algorithm's third stage - Group joining After the selection of the

node with whom join into a group, the node queries that node asking it

some more information such as its centroid position and the name of the

group. This is done in order to minimize the quantity of message exchanged

during the �rst stage of the algorithm.

Figure 4.25: Group joining

94

M.Sc. Thesis of Denis Billi

As soon as all the information are arrived to destination, the node cor-

rectly changes its own properties and updates the Overlay with the new

values.

4.5.3 Multiple node lookup

In case of multiple node resolution for the peer, the system should correctly

understand which of the two is the closest in order to create a group with

it. In Figure 4.26 is possible to see that the algorithm correctly understand

the right node to choose.

Figure 4.26: Multiple node resolution example

4.5.4 Centroid repositioning

When a peer join a group, the centroid accordingly changes its position

basing on the position of the nodes belonging to the group. However, due to

the passive-nature of the Overlay, the right position of the centroid is saved

only in the last node that joined the group and this means that all the other

nodes would need an update of the new position. This update is done during

the lookup: whether a node �nds another node from the same group during

the lookup operation, it asks the timestamp of the centroid and if it's more

recent than the other, then updates its own value.

4.6 Testing problems

During the tests some problems have been detected on the Overlay. In fact,

in some cases the range queries have been resolved with both false positive

and false negative results. This means that some nodes have been returned

as good nearby choices even if their position and range were far to the peer

that queried the Overlay. Some hypothesis has been formulated in order to

answer this problem:

95

M.Sc. Thesis of Denis Billi

1 The problem could be related to the querying rate: querying

the system too fast from di�erent position could create some

mistakes in the data persisting and therefore on the routing of

the requests;

2 Range queries' routines contains errors;

3 Range queries' routines needs some more speci�c tests.

Accordingly to the results of the previous works, the second hypothesis

shall be excluded. Thus, we can conclude that the current work is promising

but needs further tests in order to understand its real speed capabilities

under pressure.

4.7 Mobility management

4.7.1 SCTP over �rewall test

To be completely aware of possible future improvements, �rstly we needed to

test if the SCTP protocol can be used through the Internet. For this reason,

and also for testing purposes that have been listed in the �rst chapter, we

mounted a virtual server with a public accessible IP address. A standard

Linux Ubuntu 10.10 distribution has been used on the server. The �rst test

that has been made is the possibility of SCTP to pass the packet �ltering

system of the current �rewalls.

In Figure 4.27 on the facing page is possible to see that SCTP e�ectively

works over the Internet between two distant hosts.

96

M.Sc. Thesis of Denis Billi

Figure 4.27: First Client/Server test over the Internet

97

M.Sc. Thesis of Denis Billi

98

CHAPTER

FIVE

CONCLUSIONS

MediaSense Framework is probably one of the most promising technologies

for the management of future networks. Anyway it's still young and need

further improvements in order to become a standard. What studied so far is

only a little part of the work and for sure the future students will appreciate

it's ease of use. However, regarding our particular case, in this last chapter

we will discuss about what have been done so far.

Some improvements are required by the current work. For �rst, the

system needs some �nishes in order to be adopted in the future. Particularly,

the Overlay has not been tested yet for its whole potentials, and it would be

useful to understand how many queries could be done in a crowdy network

with many concurrent queries. This kind of test are important to extrapolate

the correct values for the groups management in order to be sure to limit

the number of false positive and negative of the system.

Initially, our main goal has been to simply create groups on a large

amount of network nodes. However, this goal required further work in order

to succeed in it. Actually, the �rst problem found has been how to manage

the mobility handover between di�erent connections. The solution has been

the use of the SCTP protocol, a new promising network standard that imple-

ments both the qualities of TCP and UDP. This permits to manage di�erent

connection concurrently thanks to the low weight of the SCTP packets and

unordered data delivery (typical of the UDP protocol), mixing reliable and

best e�ort tra�c and �nally timed reliability, typical of the TCP protocol

instead. The handover system created is easy to use because it works as

a wrapper over the SCTP itself and gives to the user DataStream objects

whom contains prede�ned APIs to send di�erent types of data both in input

and output. Secondly, the second problem faced has been the creation of

99

M.Sc. Thesis of Denis Billi

groups over the MediaSense Framework. Di�erent versions of the framework

exists and some of them have been inspected in order to choose the best one.

Finally, only one contained all the characteristics needed for our job, and

particularly the possibility to create send range queries to the Overlay. The

work done so far permitted to create dynamic groups inside a small amount

of peers in the network without a big throughput, but it happened only

with a small amount of nodes. In fact, as written in the previous chapter,

we made tests with up to 5 active nodes. Therefore, more tests would be

necessary to verify completely the real scalability and thus the capabilities

of the system with a large amount of nodes.

100

APPENDIX A

Listing 1: The log of the simulation

1 $ cd C:/sim/OverSim/simulations

2 $../src/OverSim.exe -r 0 -n .;../src;../../inet/examples;../../inet/src --

tkenv-image-path=../images -l ../../inet/src/inet omnetpp.ini

3 OMNeT++ Discrete Event Simulation (C) 1992-2013 Andras Varga, OpenSim Ltd.

4 Version: 4.5, build: 140714-c6b1772, edition: Academic Public License -- NOT

FOR COMMERCIAL USE

5 See the license for distribution terms and warranty disclaimer

6 Setting up Tkenv...

7 Loading NED files from .: 0

8 Loading NED files from ../src: 114

9 Loading NED files from ../../inet/examples: 59

10 Loading NED files from ../../inet/src: 183

11 Loading NED files from C:\sim\inet\src: 183

12 Loading NED files from C:\sim\OverSim\src: 114

13 node id0 initialization:

14 node0 key => 500d81aafe637717a52f8650e54206e64da33d27

15 node1 key => f937c37e949d9efa20d2958af309235c73ec039a

16 node2 key => 2dbf44a68b77b15bfa5bc3d66c97892a57402bbe

17 node3 key => a46fe0c4dab0453f5d86bed6206040880f59393e

18 node4 key => 9da30539af3639c600c6256f7691750a581c36c2

19 node5 key => b0a69b1f9fe82d6c149179ce48e22f9c8411afe3

20 node6 key => 74e5a4bcab7355b8cab7df73d07747cd85c925e7

21 node7 key => c03e55d15602a33922858e97664ea33f368ef5de

22 Closest node entry found: 5

23 Closest node entry found: 3

24 Closest node entry found: 17

25 Closest node entry found: 11

26 Node 1 >> Received join proposal (cur groupId: 3 last: 3) posX: 36 posY: 15

group: 5

27 Node 1 now is in group 15

28 Node 2 >> Received join proposal (cur groupId: 5 last: 5) posX: 33 posY: 20

group: 3

29 Node 2 now is in group 15

30 Node 5 >> Received join proposal (cur groupId: 17 last: 17) posX: 22 posY: 5

group: 11

31 Node 5 now is in group 187

32 Node 4 >> Received join proposal (cur groupId: 11 last: 11) posX: 14 posY: 5

group: 17

33 Node 4 now is in group 187

34 Closest node entry found: 15

35 Closest node entry found: 15

101

M.Sc. Thesis of Denis Billi

36 Closest node entry found: 187

37 Closest node entry found: 187

38 Closest node entry found: 15

39 Closest node entry found: 15

40 Closest node entry found: 187

41 Closest node entry found: 187

42 Closest node entry found: 15

43 Closest node entry found: 15

44 Closest node entry found: 187

45 Closest node entry found: 187

46 Closest node entry found: 15

47 Closest node entry found: 15

48 Closest node entry found: 187

49 Closest node entry found: 187

50 Closest node entry found: 15

51 Closest node entry found: 15

52 Closest node entry found: 187

53 Closest node entry found: 187

54 Closest node entry found: 15

55 Closest node entry found: 15

56 Closest node entry found: 187

57 Closest node entry found: 187

58 Closest node entry found: 15

59 Closest node entry found: 15

60 Closest node entry found: 187

61 Closest node entry found: 187

62 Closest node entry found: 15

63 Closest node entry found: 15

64 Closest node entry found: 187

65 Closest node entry found: 187

66 Closest node entry found: 15

67 Closest node entry found: 15

68 Closest node entry found: 187

69 Closest node entry found: 187

70 Simulation time: 1.028000

102

APPENDIX B

Listing 2: MSTestApp.cc

1 //

2 // Copyright (C) 2014 Facoltà di Ingegneria Informatica, Alma Mater Studiorum

3 //

4 // This program is free software; you can redistribute it and/or

5 // modify it under the terms of the GNU General Public License

6 // as published by the Free Software Foundation; either version 2

7 // of the License, or (at your option) any later version.

8 //

9 // This program is distributed in the hope that it will be useful,

10 // but WITHOUT ANY WARRANTY; without even the implied warranty of

11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

12 // GNU General Public License for more details.

13 //

14 // You should have received a copy of the GNU General Public License

15 // along with this program; if not, write to the Free Software

16 // Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

17 //

18

19 /**
20 * @file MSTestApp.cc

21 * @author Denis Billi

22 */

23

24 #include <IPAddressResolver.h>

25 #include <GlobalNodeListAccess.h>

26 #include <GlobalStatisticsAccess.h>

27 #include <UnderlayConfiguratorAccess.h>

28 #include <RpcMacros.h>

29 #include "CommonMessages_m.h"

30

31 #include <GlobalDhtTestMap.h>

32

33 #include "MSTestApp.h"

34 #include "c_tokenizer.h"

35

36 #include<sstream>

37

38 Define_Module(MSTestApp);

39

40 using namespace std;

41

103

M.Sc. Thesis of Denis Billi

42 MSTestApp::~MSTestApp() {

43 cancelAndDelete(msLookup_timer);

44 cancelAndDelete(joinMessage);

45 cancelAndDelete(resetTimer);

46 LUT_nodesKeys.clear();

47 }

48

49 MSTestApp::MSTestApp() {

50 // MediaSense lookup Timer

51 msLookup_timer = NULL;

52 joinMessage = NULL;

53 resetTimer = NULL;

54 }

55

56 void MSTestApp::initializeApp(int stage) {

57 if (stage != MIN_STAGE_APP)

58 return;

59

60 // fetch parameters

61 debugOutput = par("debugOutput");

62 activeNetwInitPhase = par("activeNetwInitPhase");

63

64 mean = par("testInterval");

65 p2pnsTraffic = par("p2pnsTraffic");

66 deviation = mean / 10;

67

68 if (p2pnsTraffic) {

69 ttl = 3600 * 24 * 365;

70 } else {

71 ttl = par("testTtl");

72 }

73

74 globalNodeList = GlobalNodeListAccess().get();

75 underlayConfigurator = UnderlayConfiguratorAccess().get();

76 globalStatistics = GlobalStatisticsAccess().get();

77

78 globalDhtTestMap =

79 dynamic_cast<GlobalDhtTestMap*>(simulation.getModuleByPath(

80 "globalObserver.globalFunctions[0].function"));

81

82 if (globalDhtTestMap == NULL) {

83 throw cRuntimeError("MSTestApp::initializeApp(): "

84 "GlobalDhtTestMap module not found!");

85 }

86

87 // statistics

88 numSent = 0;

89 numGetSent = 0;

90 numGetError = 0;

91 numGetSuccess = 0;

92 numPutSent = 0;

93 numPutError = 0;

94 numPutSuccess = 0;

95

96 simResetTime = 20;

97 simLookupTime = par("simLookupTime");

98 numSimNodes = par("simNodes");

99 numActiveLookupReceived = 0;

100 numLookupSent = 0;

104

M.Sc. Thesis of Denis Billi

101 numLookupResponseReceived = 0;

102 numJoin = 0;

103 numIterations = 0;

104

105 nodeId = globalDhtTestMap->generateNodeId();

106 std::string nodeGroupStr("nodeGroup");

107 std::string nodeGroupId= itos(nodeGroupStr, nodeId);

108 groupId = par(nodeGroupId.c_str());

109 initialGroupId = groupId;

110

111 std::string nodeXStr("nodeX");

112 std::string nodeXId = itos(nodeXStr, nodeId);

113 posX = par(nodeXId.c_str());

114

115 std::string nodeYStr("nodeY");

116 std::string nodeYId= itos(nodeYStr, nodeId);

117 posY = par(nodeYId.c_str());

118 centroidX = posX;

119 centroidY = posY;

120

121 std::string nodeRangeStr("nodeRange");

122 std::string rangeStrId = itos(nodeRangeStr, nodeId);

123 range = par(rangeStrId.c_str());

124 initialRange = range;

125

126 // inizializzazione lookup table

127 LUT_nodesKeys.reserve(numSimNodes*2);

128

129 if (nodeId == 0)

130 std::cout << "\nnode id" << nodeId << " initialization:\n";

131

132 for (int i = 0; i < numSimNodes*2; ++i) {

133 std::stringstream ss;

134 ss << "node" << i;

135 std::string node = ss.str();

136 BinaryValue binValue(node);

137

138 LUT_nodesKeys[i] = OverlayKey::sha1(binValue);

139 }

140 std::cout << "node" << nodeId << " key => " << LUT_nodesKeys[nodeId] << ’\

n’;

141

142 //initRpcs();

143 WATCH(numSent);

144 WATCH(numGetSent);

145 WATCH(numGetError);

146 WATCH(numGetSuccess);

147 WATCH(numPutSent);

148 WATCH(numPutError);

149 WATCH(numPutSuccess);

150

151 WATCH(numSimNodes);

152 WATCH(numActiveLookupReceived);

153 WATCH(numLookupSent);

154 WATCH(numLookupResponseReceived);

155 WATCH(numJoin);

156 WATCH(numIterations);

157 WATCH(groupId);

158

105

M.Sc. Thesis of Denis Billi

159 nodeIsLeavingSoon = false;

160 closestPackage.groupId = -1;

161 lastGroupsIds.push_back(groupId);

162

163 msLookup_timer = new cMessage("ms_lookup_timer");

164 joinMessage = new cMessage("join_packet");

165 resetTimer = new cMessage("reset_timer");

166

167 scheduleAt(simTime() + simLookupTime, msLookup_timer);

168 scheduleAt(uniform(simTime() + 0.1, simTime() + 0.5), joinMessage);

169 scheduleAt(simTime() + 20, resetTimer);

170 }

171

172 void MSTestApp::handleRpcResponse(BaseResponseMessage* msg,

173 const RpcState& state, simtime_t rtt) {

174 RPC_SWITCH_START(msg)

175 RPC_ON_RESPONSE(DHTputCAPI) {

176 handlePutResponse(_DHTputCAPIResponse,

177 check_and_cast<DHTStatsContext*>(state.getContext()));

178 EV << "[MSTestApp::handleRpcResponse()]\n"

179 << " DHT Put RPC Response received: id="

180 << state.getId() << " msg=" << *_DHTputCAPIResponse

181 << " rtt=" << rtt << endl;

182 break;

183 }

184 RPC_ON_RESPONSE(DHTgetCAPI)

185 {

186 handleGetResponse(_DHTgetCAPIResponse,

187 check_and_cast<DHTStatsContext*>(state.getContext()));

188 EV << "[MSTestApp::handleRpcResponse()]\n"

189 << " DHT Get RPC Response received: id="

190 << state.getId() << " msg=" << *_DHTgetCAPIResponse

191 << " rtt=" << rtt << endl;

192 break;

193 }RPC_SWITCH_END()

194 }

195

196 void MSTestApp::handlePutResponse(DHTputCAPIResponse* msg,

197 DHTStatsContext* context) {

198 DHTEntry entry = { context->value, simTime() + ttl, simTime() };

199

200 globalDhtTestMap->insertEntry(context->key, entry);

201

202 if (context->measurementPhase == false) {

203 // don’t count response, if the request was not sent

204 // in the measurement phase

205 delete context;

206 return;

207 }

208

209 if (msg->getIsSuccess()) {

210 RECORD_STATS(numPutSuccess++);

211 RECORD_STATS(

212 globalStatistics->addStdDev("MSTestApp: PUT Latency (s)",

SIMTIME_DBL(simTime() - context->requestTime)));

213 } else {

214 RECORD_STATS(numPutError++);

215 }

216

106

M.Sc. Thesis of Denis Billi

217 delete context;

218 }

219

220 LookupPacket MSTestApp::extractLookupPckInfo(const DHTEntry* entry) {

221 LookupPacket pck;

222

223 if(entry->value == BinaryValue::UNSPECIFIED_VALUE) {

224 pck.centroidX = -1;

225 pck.centroidY = -1;

226 pck.groupId = -1;

227 pck.range = -1;

228

229 return pck;

230 }

231

232 std::ostringstream os;

233 os << entry->value;

234 std::string value = os.str();

235 vector<string> fields;

236 fields = split(value, ":", TOKENIZER_NO_EMPTIES);

237

238 pck.centroidX = to_double(fields[0]);

239 pck.centroidY = to_double(fields[1]);

240 pck.groupId = to_int(fields[2]);

241 pck.range = to_double(fields[3]);

242

243 return pck;

244 }

245

246 void MSTestApp::joinGroup(LookupPacket packet) {

247 if (packet.groupId == this->groupId) {

248 return;

249 }

250

251 if (packet.groupId == -1) {

252 return;

253 }

254

255 numJoin++;

256

257 std::cout << "Node " << nodeId

258 << " >> Received join proposal (cur groupId: " << groupId << "

last: " << lastGroupsIds.back() << ") "

259 << " posX: " << packet.centroidX << " posY: " << packet.centroidY

260 << " group: " << packet.groupId << "\n";

261

262 if(packet.groupId != lastGroupsIds.back()) {

263 numIterations++;

264 }

265

266 centroidX = (posX + packet.centroidX) / 2;

267 centroidY = (posY + packet.centroidY) / 2;

268 range = (range + packet.range) / 2;

269 groupId = groupId*packet.groupId;

270

271 lastGroupsIds.push_back(groupId);

272

273 std::cout << "Node" << nodeId << " now is in group " << groupId << "\n";

274 }

107

M.Sc. Thesis of Denis Billi

275

276 double MSTestApp::distance(double x1, double y1, double x2, double y2) {

277 return sqrt(pow(x2 - x1, 2) + pow(y2 - y1, 2));

278 }

279

280 bool MSTestApp::isInRectangle(double centerX, double centerY, double radius,

281 double x, double y) {

282 return x >= centerX - radius && x <= centerX + radius

283 && y >= centerY - radius && y <= centerY + radius;

284 }

285

286 bool MSTestApp::isPointInCircle(double centerX, double centerY, double radius,

287 double x, double y) {

288 if (isInRectangle(centerX, centerY, radius, x, y)) {

289 double dx = centerX - x;

290 double dy = centerY - y;

291 dx *= dx;

292 dy *= dy;

293 double distanceSquared = dx + dy;

294 double radiusSquared = radius * radius;

295 return distanceSquared <= radiusSquared;

296 }

297 return false;

298 }

299

300 void MSTestApp::handleGetResponse(DHTgetCAPIResponse* msg,

301 DHTStatsContext* context) {

302 if (context->measurementPhase == false) {

303 // don’t count response, if the request was not sent

304 // in the measurement phase

305 delete context;

306 return;

307 }

308

309 RECORD_STATS(

310 globalStatistics->addStdDev("MSTestApp: GET Latency (s)",

SIMTIME_DBL(simTime() - context->requestTime)));

311

312 if (!(msg->getIsSuccess())) {

313 RECORD_STATS(numGetError++);

314 delete context;

315 return;

316 }

317

318 DHTEntry* entry = const_cast<DHTEntry*>(globalDhtTestMap->findEntry(

context->key));

319

320 if (entry == NULL) {

321 //unexpected key

322 RECORD_STATS(numGetError++);

323 delete context;

324 return;

325 }

326

327 if (simTime() > entry->endtime) {

328 //this key doesn’t exist anymore in the DHT, delete it in our

hashtable

329 globalDhtTestMap->eraseEntry(context->key);

330 delete context;

108

M.Sc. Thesis of Denis Billi

331

332 if (msg->getResultArraySize() > 0) {

333 RECORD_STATS(numGetError++);

334 return;

335 } else {

336 RECORD_STATS(numGetSuccess++);

337 return;

338 }

339 } else {

340 delete context;

341 if ((msg->getResultArraySize() > 0)

342 && (msg->getResult(0).getValue() == entry->value)) {

343 RECORD_STATS(numGetSuccess++);

344 return;

345 } else {

346 RECORD_STATS(numGetError++);

347 return;

348 }

349 }

350

351 }

352

353 void MSTestApp::handleTraceMessage(cMessage* msg) {

354 char* cmd = new char[strlen(msg->getName()) + 1];

355 strcpy(cmd, msg->getName());

356

357 if (strlen(msg->getName()) < 5) {

358 delete[] cmd;

359 delete msg;

360 return;

361 }

362

363 if (strncmp(cmd, "PUT ", 4) == 0) {

364 // Generate key

365 char* buf = cmd + 4;

366

367 while (!isspace(buf[0])) {

368 if (buf[0] == ’\0’)

369 throw cRuntimeError("Error parsing PUT command");

370 buf++;

371 }

372

373 buf[0] = ’\0’;

374 BinaryValue b(cmd + 4);

375 OverlayKey destKey(OverlayKey::sha1(b));

376

377 // get value

378 buf++;

379

380 // build putMsg

381 DHTputCAPICall* dhtPutMsg = new DHTputCAPICall();

382 dhtPutMsg->setKey(destKey);

383 dhtPutMsg->setValue(buf);

384 dhtPutMsg->setTtl(ttl);

385 dhtPutMsg->setIsModifiable(true);

386 RECORD_STATS(numSent++; numPutSent++);

387 sendInternalRpcCall(TIER1_COMP, dhtPutMsg,

388 new DHTStatsContext(globalStatistics->isMeasuring(), simTime()

,

109

M.Sc. Thesis of Denis Billi

389 destKey, buf));

390 } else if (strncmp(cmd, "GET ", 4) == 0) {

391 // Get key

392 BinaryValue b(cmd + 4);

393 OverlayKey key(OverlayKey::sha1(b));

394

395 DHTgetCAPICall* dhtGetMsg = new DHTgetCAPICall();

396 dhtGetMsg->setKey(key);

397 RECORD_STATS(numSent++; numGetSent++);

398 sendInternalRpcCall(TIER1_COMP, dhtGetMsg,

399 new DHTStatsContext(globalStatistics->isMeasuring(), simTime()

,

400 key));

401 } else {

402 throw cRuntimeError("Unknown trace command; "

403 "only GET and PUT are allowed");

404 }

405

406 delete[] cmd;

407 delete msg;

408 }

409

410 void MSTestApp::handleTimerEvent(cMessage* msg) {

411 if (nodeId > numSimNodes) {

412 return;

413 }

414

415 if (msg->isName("reset_timer")) {

416 centroidX = posX;

417 centroidY = posY;

418 range = initialRange;

419

420 scheduleAt(simTime() + 20, msg);

421 }

422

423 if (msg->isName("join_packet")) {

424 try {

425 // if(closestNodeEntry != NULL)

426

427 joinGroup(closestPackage);

428

429 std::ostringstream os;

430 os << centroidX << ":" << centroidY << ":" << groupId << ":" <<

range;

431

432 DHTputCAPICall* dhtPutMsg = new DHTputCAPICall();

433 dhtPutMsg->setKey(LUT_nodesKeys[nodeId]);

434 dhtPutMsg->setValue(os.str());

435 dhtPutMsg->setTtl(ttl);

436 dhtPutMsg->setIsModifiable(true);

437 RECORD_STATS(numSent++; numPutSent++);

438 sendInternalRpcCall(TIER1_COMP, dhtPutMsg,

439 new DHTStatsContext(globalStatistics->isMeasuring(),

simTime(),

440 LUT_nodesKeys[nodeId], dhtPutMsg->getValue()));

441

442 return;

443 } catch (...) {

444 std::cout << "\n Insertion failed.";

110

M.Sc. Thesis of Denis Billi

445 return;

446 }

447 }

448

449 if (msg->isName("ms_lookup_timer")) {

450 scheduleAt(simTime() + simLookupTime, msg);

451

452 // Non fa nulla se sono ancora in fase di inizializzazione dell’

overlay

453 if (((!activeNetwInitPhase) && (underlayConfigurator->isInInitPhase())

)

454 || underlayConfigurator->isSimulationEndingSoon()

455 || nodeIsLeavingSoon) {

456 return;

457 }

458

459 double closestNodeDistance = 10000000;

460 LookupPacket closestEntryPacket;

461 closestPackage.groupId = -1;

462 int count = 0;

463

464 for (unsigned int i = 0; i < globalNodeList->getNumNodes(); ++i) {

465 //myself

466 if (i == nodeId)

467 continue;

468

469 const OverlayKey& key = LUT_nodesKeys[i];

470

471 if (key.isUnspecified()) {

472 EV << "[MSTestApp::handleTimerEvent() @ " << thisNode.getIp()

473 << " (" << thisNode.getKey().toString(16) << ")]\n"

474 << " Error: No key available in global DHT test

map!"

475 << endl;

476 return;

477 }

478

479 numLookupSent++;

480

481 DHTEntry* entry = const_cast<DHTEntry*>(globalDhtTestMap->

findEntry(key));

482

483 if (entry == NULL)

484 continue;

485

486 if (entry->value == BinaryValue::UNSPECIFIED_VALUE) {

487 continue;

488 }

489

490 LookupPacket packet = extractLookupPckInfo(entry);

491 double dblDistance = distance(posX, posY, packet.centroidX,

492 packet.centroidY);

493

494 if (isPointInCircle(posX, posY, range, packet.centroidX,

495 packet.centroidY) && dblDistance < closestNodeDistance) {

496 numLookupResponseReceived++;

497 closestEntryPacket = packet;

498 closestNodeDistance = dblDistance;

499 count++;

111

M.Sc. Thesis of Denis Billi

500 }

501 }

502

503 if(count > 0) {

504 closestPackage = closestEntryPacket;

505 std::cout << "Closest node entry found: " << closestPackage.

groupId << "\n";

506 scheduleAt(uniform(simTime() + 0.5, simTime() + 1.0), joinMessage)

;

507 }

508 }

509 }

510

511 void MSTestApp::handleNodeLeaveNotification() {

512 nodeIsLeavingSoon = true;

513 }

514

515 void MSTestApp::finishApp() {

516 simtime_t time = globalStatistics->calcMeasuredLifetime(creationTime);

517

518 if (time >= GlobalStatistics::MIN_MEASURED) {

519 // record scalar data

520 globalStatistics->addStdDev("MSTestApp: Sent Total Messages/s",

521 numSent / time);

522 globalStatistics->addStdDev("MSTestApp: Sent GET Messages/s",

523 numGetSent / time);

524 globalStatistics->addStdDev("MSTestApp: Failed GET Requests/s",

525 numGetError / time);

526 globalStatistics->addStdDev("MSTestApp: Successful GET Requests/s",

527 numGetSuccess / time);

528

529 globalStatistics->addStdDev("MSTestApp: Sent PUT Messages/s",

numPutSent / time);

530 globalStatistics->addStdDev("MSTestApp: Failed PUT Requests/s",

numPutError / time);

531 globalStatistics->addStdDev("MSTestApp: Successful PUT Requests/s",

numPutSuccess / time);

532

533 recordScalar("MSTestApp: Number of lookups", numLookupSent);

534 recordScalar("MSTestApp: Number of joins", numJoin);

535 recordScalar("MSTestApp: Number of iterations", numIterations);

536 recordScalar("MSTestApp: Final group Id", groupId);

537

538 if ((numGetSuccess + numGetError) > 0) {

539 globalStatistics->addStdDev("MSTestApp: GET Success Ratio",

540 (double) numGetSuccess

541 / (double) (numGetSuccess + numGetError));

542 }

543 }

544 }

112

M.Sc. Thesis of Denis Billi

Listing 3: MSTestApp.hh

1 //

2 // Copyright (C) 2014 Facoltà di Ingegneria Informatica, Alma Mater Studiorum

3 //

4 // This program is free software; you can redistribute it and/or

5 // modify it under the terms of the GNU General Public License

6 // as published by the Free Software Foundation; either version 2

7 // of the License, or (at your option) any later version.

8 //

9 // This program is distributed in the hope that it will be useful,

10 // but WITHOUT ANY WARRANTY; without even the implied warranty of

11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

12 // GNU General Public License for more details.

13 //

14 // You should have received a copy of the GNU General Public License

15 // along with this program; if not, write to the Free Software

16 // Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

17 //

18

19 /**
20 * @file MSTestApp.cc

21 * @author Denis Billi

22 */

23

24 #ifndef __DHTTESTAPP_H_

25 #define __DHTTESTAPP_H_

26

27 #include <omnetpp.h>

28

29 #include <GlobalNodeList.h>

30 #include <GlobalStatistics.h>

31 #include <UnderlayConfigurator.h>

32 #include <TransportAddress.h>

33 #include <OverlayKey.h>

34 #include <InitStages.h>

35 #include <BinaryValue.h>

36 #include <BaseApp.h>

37 #include <set>

38 #include <sstream>

39

40 class GlobalDhtTestMap;

41

42 struct LookupPacket {

43 LookupPacket() : centroidX(-1), centroidY(-1), groupId(-1), range(-1) {}

44 double centroidX;

45 double centroidY;

46 int groupId;

47 double range;

48 simtime_t respTime;

49 };

50

51 /**
52 * A simple test application for the DHT layer

53 *
54 * A simple test application that does random put and get calls

55 * on the DHT layer

56 *
57 * @author Denis Billi

113

M.Sc. Thesis of Denis Billi

58 */

59 class MSTestApp : public BaseApp

60 {

61 private:

62 /**
63 * A container used by the MSTestApp to

64 * store context information for statistics

65 *
66 * @author Denis Billi

67 */

68 class DHTStatsContext : public cPolymorphic

69 {

70 public:

71 bool measurementPhase;

72 simtime_t requestTime;

73 OverlayKey key;

74 BinaryValue value;

75

76 DHTStatsContext(bool measurementPhase,

77 simtime_t requestTime,

78 const OverlayKey& key,

79 const BinaryValue& value = BinaryValue::

UNSPECIFIED_VALUE) :

80 measurementPhase(measurementPhase), requestTime(requestTime),

81 key(key), value(value) {};

82 };

83

84 void initializeApp(int stage);

85

86 /**
87 * Get a random key of the hashmap

88 */

89 OverlayKey getRandomKey();

90

91 /**
92 * generate a random human readable binary value

93 */

94 BinaryValue generateRandomValue();

95

96 void finishApp();

97

98 /**
99 * processes get responses

100 *
101 * method to handle get responses

102 * should be overwritten in derived application if needed

103 * @param msg get response message

104 * @param context context object used for collecting statistics

105 */

106 virtual void handleGetResponse(DHTgetCAPIResponse* msg,

107 DHTStatsContext* context);

108

109 /**
110 * processes put responses

111 *
112 * method to handle put responses

113 * should be overwritten in derived application if needed

114 * @param msg put response message

115 * @param context context object used for collecting statistics

114

M.Sc. Thesis of Denis Billi

116 */

117 virtual void handlePutResponse(DHTputCAPIResponse* msg,

118 DHTStatsContext* context);

119

120 /**
121 * processes self-messages

122 *
123 * method to handle self-messages

124 * should be overwritten in derived application if needed

125 * @param msg self-message

126 */

127 virtual void handleTimerEvent(cMessage* msg);

128

129 /**
130 * handleTraceMessage gets called of handleMessage(cMessage* msg)

131 * if a message arrives at trace_in. The command included in this

132 * message should be parsed and handled.

133 *
134 * @param msg the command message to handle

135 */

136 virtual void handleTraceMessage(cMessage* msg);

137

138 virtual void handleNodeLeaveNotification();

139

140 // see RpcListener.h

141 void handleRpcResponse(BaseResponseMessage* msg, const RpcState& state,

142 simtime_t rtt);

143 void joinGroup(LookupPacket entry);

144

145 LookupPacket extractLookupPckInfo(const DHTEntry* entry);

146

147 UnderlayConfigurator* underlayConfigurator; /**< pointer to

UnderlayConfigurator in this node */

148

149 GlobalNodeList* globalNodeList; /**< pointer to GlobalNodeList in this

node*/

150

151 GlobalStatistics* globalStatistics; /**< pointer to GlobalStatistics

module in this node*/

152 GlobalDhtTestMap* globalDhtTestMap; /**< pointer to the GlobalDhtTestMap

module */

153

154 // parameters

155 bool debugOutput; /**< debug output yes/no?*/

156 double mean; //!< mean time interval between sending test messages

157 double deviation; //!< deviation of time interval

158 int ttl; /**< ttl for stored DHT records */

159 bool p2pnsTraffic; //!< model p2pns application traffic */

160 bool activeNetwInitPhase; //!< is app active in network init phase?

161

162 // statistics

163 int numSent; /**< number of sent packets*/

164 int numGetSent; /**< number of get sent*/

165 int numGetError; /**< number of false get responses*/

166 int numGetSuccess; /**< number of false get responses*/

167 int numPutSent; /**< number of put sent*/

168 int numPutError; /**< number of error in put responses*/

169 int numPutSuccess; /**< number of success in put responses*/

170

115

M.Sc. Thesis of Denis Billi

171 // MediaSense statistics

172 int simLookupTime;

173 int numSimNodes;

174 int numActiveLookupReceived;

175 int numLookupSent;

176 int numLookupResponseReceived;

177 int numJoin;

178 int numIterations;

179 int nodeId;

180 int groupId;

181 int initialGroupId;

182 int simResetTime;

183 std::vector<int> lastGroupsIds;

184

185 int posX;

186 int posY;

187 double centroidX;

188 double centroidY;

189 int range;

190 int initialRange;

191 simtime_t lastJoin;

192

193 LookupPacket closestPackage;

194

195 std::vector<OverlayKey> LUT_nodesKeys;

196

197 cMessage *msLookup_timer, *joinMessage, *resetTimer;

198 bool nodeIsLeavingSoon; //!< true if the node is going to be killed

shortly

199

200 static const int DHTTESTAPP_VALUE_LEN = 20;

201

202 public:

203 MSTestApp();

204

205 double distance(double x1, double y1, double x2, double y2);

206 bool isInRectangle(double centerX, double centerY, double radius, double x

, double y);

207 bool isPointInCircle(double centerX, double centerY, double radius, double

x, double y);

208

209 /**
210 * virtual destructor

211 */

212 virtual ~MSTestApp();

213

214 };

215

216 #endif

116

BIBLIOGRAPHY

[1] Karl Aberer et al. �Advanced Peer-to-Peer Networking : The P-Grid

System and its Applications *�. In: Information Systems 5005 (), pp. 1�

6.

[2] F. Al-Shraideh. �Host Identity Protocol�. In: International Confer-

ence on Networking, International Conference on Systems and Inter-

national Conference on Mobile Communications and Learning Tech-

nologies (ICNICONSMCL'06) (2006), pp. 203�203. doi: 10.1109/

ICNICONSMCL.2006.112. url: http://ieeexplore.ieee.

org/lpdocs/epic03/wrapper.htm?arnumber=1628448.

[3] Android SCTP Support. 2011. url: http://code.google.com/

p/android/issues/detail?id=3272&q=sctp&colspec=

ID%20Type%20Status%20Owner%20Summary%20Stars.

[4] Ingmar Baumgart, Bernhard Heep, and Stephan Krause. OverSim: A

Flexible Overlay Network Simulation Framework. May 2007.

[5] Stephen Boyd. �Gossip Algorithms: Design, Analysis and Applica-

tions�. In: 00.C (2005), pp. 1653�1664.

[6] Guanling Chen and David Kotz. �A Survey of Context-Aware Mobile

Computing Research�. In: Time (), pp. 1�16.

[7] Suk Kim Chin and Robin Braun. �A Survey of UDP Packet Loss Char-

acteristics�. In: America (2007), pp. 200�204.

[8] Sally Floyd, Senior Member, and Kevin Fall. �Promoting the Use

of End-to-End Congestion Control in the Internet�. In: 7.4 (1999),

pp. 458�472.

[9] Sajal K. Dasc Haitao Lin. �TCP performance analysis of CDMA sys-

tems with RLP and MAC layer retransmissions�. In: Proceedings. 10th

IEEE International Symposium on Modeling, Analysis and Simula-

tion of Computer and Telecommunications Systems (2002), pp. 313�

117

M.Sc. Thesis of Denis Billi

320. doi: 10.1109/MASCOT.2002.1167091. url: http://

ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=1167091.

[10] M. Tim Jones. Better networking with SCTP. url: http://www.

ibm.com/developerworks/linux/library/l-sctp/?ca=

dgr-lnxw07SCTP.

[11] Ivan Skytte Jörgensen. Java SCTP Library. url: http://i1.dk/

JavaSCTP/.

[12] Theo Kanter et al. �Distributed context support for ubiquitous mobile

awareness services�. In: 2009 Fourth International Conference on Com-

munications and Networking in China (Aug. 2009), pp. 1�5. doi: 10.

1109/CHINACOM.2009.5339728. url: http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5339728.

[13] Victor Kardeby and Theo Kanter. �Sensor Sockets Enabling Reliable

Communication Using a Context Based Grouping Mechanism�. In:

Context (2011), pp. 161�167.

[14] List of SCTP Implementations. url: http://www.sctp.org.

[15] Wang Lixin et al. �HMIPv6-based handover optimized solution and

performance analysis�. In: 2009 International Conference on Test and

Measurement 3 (Dec. 2009), pp. 133�136. doi: 10.1109/ICTM.

2009.5413092. url: http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=5413092.

[16] LKCSTP Project. url: http://lksctp.sourceforge.net/.

[17] Arif Mahmud, Rahim Rahmani, and Theo Kanter. �Deployment of

Flow-Sensors in Internet of Things' Virtualization via OpenFlow�. In:

2012 Third FTRA International Conference on Mobile, Ubiquitous,

and Intelligent Computing (June 2012), pp. 195�200. doi: 10.1109/

MUSIC . 2012 . 41. url: http : / / ieeexplore . ieee . org /

lpdocs/epic03/wrapper.htm?arnumber=6305848.

[18] Ricardo Matos et al. �Context-based wireless mesh networks: a case for

network virtualization�. In: Telecommunication Systems (Mar. 2011).

issn: 1018-4864. doi: 10 . 1007 / s11235 - 011 - 9434 - 3. url:

http://www.springerlink.com/index/10.1007/s11235-

011-9434-3.

118

M.Sc. Thesis of Denis Billi

[19] Wolf R Mende, Femuniversitat Hagen, and P Box. �Evaluation of a

proposed Handover algorithm for the GSM cellular system�. In: (1990),

pp. 264�269.

[20] Shoma Nakahara, Tomoyuki Ohta, and Yoshiaki Kakuda. �Experimen-

tal Evaluation of MANET Based on Autonomous Clustering and P2P

Overlay Network�. In: 2013 First International Symposium on Com-

puting and Networking (Dec. 2013), pp. 480�483. doi: 10.1109/

CANDAR.2013.85. url: http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=6726947.

[21] Pekka Nikander, Andrei Gurtov, and Thomas R Henderson. �Host

Identity Protocol (HIP): Connectivity , IPv4 and IPv6 Networks�. In:

Communications 12.2 (2010), pp. 186�204.

[22] phil-news nospam@ipal.net. Application protocols over SCTP. 2006.

url: http://www.phwinfo.com/forum/comp-protocols-

tcp - ip / 134474 - application - protocls - over - sctp .

html.

[23] K. Omae et al. �Hando� performance of mobile host and mobile router

employing HMIP extension�. In: 2003 IEEE Wireless Communications

and Networking, 2003. WCNC 2003. 2.C (2003), pp. 1218�1223. doi:

10.1109/WCNC.2003.1200546. url: http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1200546.

[24] Charles E. Perkins. �Mobile Networking through MobileIP�. In: Ieee

Internet Computing (1998), pp. 58�69.

[25] Ste�en Reidt and Stephen D. Wolthusen. �Connectivity augmenta-

tion in tactical mobile ad hoc networks�. In: MILCOM 2008 - 2008

IEEE Military Communications Conference (Nov. 2008), pp. 1�7. doi:

10.1109/MILCOM.2008.4753198. url: http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4753198.

[26] Sajal Saha. �THMIP- A Novel Mobility Management Scheme Using

Fluid Flow Model�. In: Update (2011).

[27] Bill Schilit and New York. �Context-Aware Computing Applications�.

In: System (), pp. 1�6.

[28] Dong-cheol Shin and Sung-gi Min. �Fast Handover Solution Using

Multi-tunnel in HMIPv6 (FM-HMIPv6)�. In: 2008 Second Interna-

tional Conference on Sensor Technologies and Applications (sensor-

comm 2008) 6 (2008), pp. 833�838. doi: 10.1109/SENSORCOMM.

119

M.Sc. Thesis of Denis Billi

2008.83. url: http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=4622763.

[29] K.G. Shin. �Smooth Hando� with Enhanced Packet Bu�ering-and-

Forwarding in Wireless/Mobile Networks�. In: Second International

Conference on Quality of Service in Heterogeneous Wired/Wireless

Networks (QSHINE'05) (2005), pp. 39�39. doi: 10.1109/QSHINE.

2005.56. url: http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=1551099.

[30] R. Stewart et al. Stream Control Transmission Protocol (SCTP) Dy-

namic Address Recon�guration. RFC 5061 (Proposed Standard). In-

ternet Engineering Task Force, 2007. url: http://www.ietf.

org/rfc/rfc5061.txt.

[31] I. Stojmenovic. Handbook of Wireless Networks and Mobile Comput-

ing. Wiley Series on Parallel and Distributed Computing. Wiley, 2003.

isbn: 9780471462989. url: http://books.google.it/books?

id=V5HFbsHgn_wC.

[32] Stream Control Transmission Protocol (SCTP). url: http://www.

sctp.de/sctp-download.html.

[33] S. Tarkoma. Mobile middleware: architecture, patterns and practice.

Wiley, 2009. isbn: 9780470740736. url: http://books.google.

com/books?id=wsnBA4aD2h0C.

[34] Jamie Walters, Theo Kanter, and Enrico Savioli. �A Distributed Frame-

work for Organizing an Internet of Things�. In: Context (), pp. 1�17.

[35] WeihongWang et al. �Markov-Based Hierarchical User Mobility Model�.

In: 2007 Third International Conference on Wireless and Mobile Com-

munications (ICWMC'07) (Mar. 2007), pp. 47�47. doi: 10.1109/

ICWMC . 2007 . 52. url: http : / / ieeexplore . ieee . org /

lpdocs/epic03/wrapper.htm?arnumber=4138152.

[36] Yi Wang et al. �Cluster based location-aware routing protocol for

large scale heterogeneous MANET�. In: Second International Multi-

Symposiums on Computer and Computational Sciences (IMSCCS 2007)

(Aug. 2007), pp. 366�373. doi: 10.1109/IMSCCS.2007.12. url:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=4392627.

120

M.Sc. Thesis of Denis Billi

[37] Yi Wang et al. �WACHM: Weight based adaptive clustering for large

scale heterogeneous MANET�. In: 2007 International Symposium on

Communications and Information Technologies (Oct. 2007), pp. 936�

941. doi: 10 . 1109 / ISCIT . 2007 . 4392150. url: http : / /

ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=4392150.

[38] Bo Yang, Weimin Wu, and Guangxi Zhu. �Distributed averaging in

wireless sensor networks with triplewise gossip algorithms�. In: IEEE

2013 Tencon - Spring (Apr. 2013), pp. 178�182. doi: 10.1109/

TENCONSpring.2013.6584436. url: http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6584436.

[39] Guanhua Ye and Tarek N Saadawi. �IPCC-SCTP: An Enhancement

to the Standard SCTP to Support Multi-homing E�ciently�. In: New

York (2004), pp. 523�530.

[40] Stefanos Zachariadis, Cecilia Mascolo, andWolfgang Emmerich. �SATIN

: A Component Model for Mobile Self Organisation�. In: (2004).

[41] Zhun Zhong and Sunghyun Clioi. �IEEE 802.1 1 Link-Layer Forward-

ing For Smooth Hando��. In: Communication (2003), pp. 1420�1424.

121

