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agli orizzonti possibili e

al profumo della ginestra

che fiorisce nei deserti

. . .





Introduction

Alzheimer is the most common form of dementia and it is estimated to

affect 25 million of people over 65 years of age worldwide. The effective

causes of the disease and the mechanisms of progression are not known ex-

actly and are an actual topic of scientific research. An interesting hypothesis

well-supported by several studies on neurodegeneration is that the disease

is transmitted by ” prion-like” mechanism : misfolded proteins can induce

other proteins of the same type to assume the pathological conformation.

In this sense Alzheimer is a misfolding protein disease. Recent findings on

neurodegenerative diseases allow us to extend the previous considerations to

all forms of dementia, stating the hypothesis that although dementias have

different causes and origins, they might share a common mechanism of trans-

mission. This is the point of depart of the research of A. Ray, A. Kuceyeski,

M. Weiner published in the journal Neuron (2012), that we will present in

this thesis. We thank professor A. Ray for giving the permission to use the

figures of his paper.

In this study, in order to describe the progression of dementia, a Network

Diffusion Model is built; a general ”disease factor” is identified and its pro-

gression through the ”healthy brain” according to a diffusion mechanism de-

pending on concentration gradients is analyzed. Morever the healthy brain

is approximated by a ”network” (said ”healthy brain network”) that is, in

mathematical terms, a weighted graph in which each vertex represents a

region of interest while the connections between them are described by the

edges. These considerations explain why the name ”network diffusion model”
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is given.

The ”heat equation” on the graph is derived to analyze the behaviour of the

disease factor. We have an explicit formula for the solution of this equation,

that depends on the eigenfunctions of the Laplace operator of the graph and

in this model represents how the disease factor spreads through the network.

From a macroscopic point of view the disease gives rise to a loss of neurons

and synapsis in the cerebral cortex and in some subcortical regions with the

consequent reduction of the volume and ”wasting away” of the affected areas.

This process is said ”atropy” and it is described through a function depending

on time. In Network Diffusion Model atrophy in a determined brain region is

supposed to be the accumulation of the disease factor in that area, therefore

by integration of the disease factor in the whole healthy brain network on

a certain time interval atropy patterns on brain are obtained. The core of

the model is that the function describing atrophy depends significantly on

the eigenvalues and the eigenfunctions of the Laplacian of the graph and for

times of interest only a small number of eigenfunctions contributes in the

increasing of atrophy. This suggests the possibility of a strong relationship

between this small number of eigenfunctions and atrophy.

MRI scans of 14 young subjects and 18 AD, 18 bvFTD (behavioral variant

frontotemporal dementia), 19 age-matched normal subjects are achieved in

order to provide an experimental basis for the model. The former are used

to build the healthy brain network, while the latter are achieved in order to

measure effective atrophy patterns of disease. As the eigenfunctions of the

Laplacian of a graph are fuctions on the set of the vertices of the graph, the

eigenfunctions significant for the progression of atropy are calculated and

their values on each vertex of the network are compared (through visual

corrispondence and statistical analysis) with the amount of atrophy mea-

sured for each form of dementia (considered in the dataset) in the cerebral

area corresponding to that vertex. Strong agreement is observed between

experimental analysis and theoretical results. In particular the second eigen-

function closely resembles atrophy patterns of Alzheimer disease while the
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third eigenfunction is a good representation of atrophy patterns of bvFTD.

In the rest of the thesis we describe the mathematical background and ob-

jects used in the model. An overview on finite graphs is shown. The Laplace

operator for finite graphs is presented, before for unweighted graphs and then

for weighted graphs. Eingenvalues upper and lower bounds for graphs are

derived. In order to provide a complete mathematical framework the rela-

tionship between discrete and continuos case is described. Laplace-Beltrami

operator on compact Riemannian manifolds is presented and eigenvalues up-

per bounds for manifolds are derived starting from eigenvalues upper bounds

for finite graphs.





Introduzione

La malattia di Alzheimer è la più comune forma di demenza senile e af-

fligge secondo recenti stime più di 25 milioni di persone nel mondo sopra i

65 anni di età. Le effettive cause e i meccanismi di progressione della malat-

tia non sono noti nella loro interezza e sono attualmente oggetto di ricerca

scientifica. Un’ ipotesi interessante, ampiamente supportata da ricerche sui

processi neurodegenerativi, consiste nel considerare il meccanismo di pro-

gressione della malattia come se fosse simile a un’ infezione da prioni: al-

cune specifiche proteine durante il loro processo di assemblaggio assumono

una conformazione patologica dovuta a uno scorretto ripiegamento proteico

(ovvero la fase in cui la proteina acquisisce la sua forma tridimensionale).

Tali proteine inducono altre proteine dello stesso tipo ad assumere la sud-

detta conformazione patologica.

Da quanto si evince da recenti studi sulle malattie neurodegenerative è possi-

bile estendere le precedenti considerazioni a tutte le forme di demenza, avan-

zando l’ipotesi che sebbene le varie tipologie di demenze senili abbiano differ-

enti cause e origini si possa individuare un comune meccanismo di evoluzione.

Questo è il punto di partenza della ricerca di A. Ray, A. Kuceyeski, M.

Weiner pubblicata nella rivista Neuron (2012), che presenteremo nella tesi.

Si ringrazia, a tale proposito, il professor A. Ray per la concessione dell’uso

delle immagini presenti nel suo lavoro.

In tale ricerca, la progressione della demenza senile viene descritta mediante

la costruzione del modello Network Diffusion Model ; l’identificazione di un

generale ”fattore di malattia” è seguita dall’analisi della sua progressione

v
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nelle regioni cerebrali secondo meccanismi diffusivi dipendenti dai gradienti

di concentrazione dello stesso fattore di malattia. ”L’encefalo sano” viene

approssimato con una ”rete cerebrale” ovvero con un grafo in cui ciascun

vertice rappresenta una regione cerebrale di interesse mentre le connessioni

tra queste ultime sono descritte dagli spigoli del grafo. Per tali ragioni il

modello è stato chiamato Network Diffusion Model. Al fine di analizzare il

comportamento del ”fattore di malattia” si utilizza l’equazione del calore sul

grafo. Quest’ultima è risolvibile esplicitamente e la soluzione , che rappre-

senta come il fattore di malattia si diffonda nella rete cerebrale, dipende dalle

autofunzioni dell’operatore di Laplace sul grafo.

Da un punto di vista macroscopico la malattia dà luogo a una perdita di neu-

roni e sinapsi nella corteccia cerebrale e in alcune regioni subcorticali con la

conseguente riduzione di volume e deterioramento delle aree contagiate. Tale

processo è detto atrofia e viene descritto mediante una funzione dipendente

dal tempo. Inoltre, nel modello preso in esame si suppone che l’atrofia in una

determinata regione cerebrale sia data dall’ ”accumulo” ( o dalla quantità)

del fattore di malattia in quella stessa area; dunque, integrando il fattore di

malattia sull’intera rete cerebrale in un certo intervallo di tempo, si ottiene

un’espressione per atrofia nell’intero encefalo in quell’intervallo. Si osserva

che la funzione che descrive l’atrofia dipende significativamente dagli auto-

valori e dalle autofunzioni del Laplaciano del grafo e per tempi di interesse

solo un piccolo numero di autofunzioni contribuisce all’aumento dell’atrofia.

Ciò suggerisce la possibilità di un forte legame tra questo piccolo numero di

autofunzioni e l’atrofia.

Quattordici giovani volontari, diciotto pazienti affetti da Alzheimer (AD),

diciotto pazienti affetti da variante comportamentale della demenza fron-

totemporale (bvFTD) e diciannove anziani sani vengono sottoposti alla riso-

nanza magnetica in modo da costruire una base sperimentale per il modello.

Dalla risonanza magnetica dei quattordici giovani si ottengono gli strumenti

per costruire la ”rete cerebrale sana”, mentre le restanti vengono utilizzate

per misurare l’atrofia effettiva associata alle diverse malattie. Dato che le



INTRODUZIONE vii

autofunzioni del laplaciano sono funzioni sull’insieme dei vertici del grafo,

si calcolano le autofunzioni significative per l’ aumento dell’atrofia e si con-

frontano (tramite corrispondenza visiva e analisi statistica) i loro valori su

ogni vertice della rete con la ”quantità di atrofia misurata per ogni forma di

demenza (considerata nel dataset) nell’area cerebrale corrispondente a quel

vertice.

L’analisi sperimentale concorda fortemente con i risultati teoretici. In par-

ticolare, i valori della seconda autofunzione su ogni vertice della rete rispec-

chiano la quantità di atrofia rilevata nel morbo di Alzheimer, mentre la terza

autofunzione è una buona rappresentazione per l’atrofia misurata in pazienti

affetti da bvFTD.

Nel resto della tesi vengono descritti il contesto e gli oggetti matematici utiliz-

zati nel modello: viene presentata una panoramica sui grafi finiti; in seguito

viene introdotto l’operatore di Laplace, prima per grafi non pesati e poi per

grafi pesati, e si forniscono stime dall’alto e dal basso per gli autovalori. Al

fine di costruire una cornice matematica completa si analizza la relazione

tra caso discreto e continuo: viene descritto l’operatore di Laplace-Beltrami

sulle varietà riemanniane compatte e vengono fornite stime dall’alto per gli

autovalori dell’operatore di Laplace-Beltrami associato a tali varietà a partire

dalle stime dall’alto per gli autovalori del laplaciano sui grafi finiti.
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Chapter 1

The Laplace operator for

graphs

1.1 Generalities about graphs

A finite graph is a representation of a finite set of objects where some

pairs of objects are connected by links. The objects are called vertices, while

the links are said edges. We usually depict a graph as a set of dots for the

vertices, joined by lines or curves for the edges. We will deal with undirect

graphs, that are graphs whose edges have no orientation.

In mathematical terms, we are able to give the following definition:

Definition 1.1. A graph G is an ordered pair of disjoint sets (V (G), E(G)),

where V (G) = {v1, .., vn} denotes the set of the vertex of the graph G while

E(G) is the set of the unordered pairs

{{vi, vj} such that the vertex vi is linked to the vertex vj}

and denotes the set of the edges of G

We observe that V (G) and E(G) are taken to be finite and this is the

case that we will analyze. Many of the well-known results fail in the infinite

case.

1
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Definition 1.2. The number of vertices of a graph is said order and it is

expressed by | V | , while | E | is the graph’s size and represents the number

of edges.

Definition 1.3. Let dvi denote the degree of the vertex vi that is given by

the number of edges that connect to it, while an edge that connects to the

vertex at both ends is said loop.

Definition 1.4. If dvi = 0, vi is said isolated vertex.

A graph that has at least one edge is said non trivial.

Definition 1.5. We say that G
′

= (V ′, E
′
) is a subgraph of G = (V,E) if

V
′ ⊂ V and E

′ ⊂ E. A subgraph is said maximal if for any of its vertices

the all edges that connect to it belong to the subgraph.

A basic relation in graph theory is the following:

Definition 1.6. If {vi, vj} ∈ E(G), vi, vj are said adjacent vertices of G. In

symbols: vi ∼ vj. The adjacency is a symmetric binary relation.

Definition 1.7. The following matrix:

A := ai,j =

1 if vi and vj are adjacent

0 otherwise
(1.1)

is said the adjacency matrix of the graph.

There are several graph classes. In our discussion we will treat with the

following :

Definition 1.8. A graph is said regular if each vertex has the same number

of edges that connect to it, i.e. dvi = constant ∀vi. A regular graph with

vertices of degree k is called a k-regular graph.

Definition 1.9. A graph is said complete if each pair of vertices is connected

by an edge.
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Remark 1. Complete graphs of n vertices are all isomorphic. It means that

for each pair of complete graphs D, H there exists a bijection between the

vertex sets of D and H

f : V (D)→ V (H)

such that any two vertices vi, vj are adjacent in D if and only if f(vi) and

f(vj) are adjacent in H. The graph isomorphism is an equivalence relation on

graphs and a set of graphs isomorphic to each other is said an isomorphism

class of graphs.

We denote by Kn the n-th isomorphism class for complete graphs. Each

graph that belongs to the class kn has n(n−1)
2

edges and in particular is a

n− 1 regular graph.

Figure 1.1: Example of complete graph of 5 vertices i.e. a 4-regular graph

Definition 1.10. Connected graphs have the feature that for each pair of

vertices vi, vj there is a path joining them. A connected component of a

graph is a maximal connected subgraph.

Definition 1.11. A graph is said bipartite if the vertex set can be partitioned

into two subsets X, Y with the feature that in both the subsets there is not

any pair of adjacent vertices.
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Figure 1.2: Example of connected graph

Figure 1.3: Example of bipartite graph
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1.2 Eigenvalues and Laplacian of a graph

In a finite graph G, let {v1, ..., vn} denote the set of the vertices and dvi

i = 1, .., n denote the degree of the corresponding vertex . In order to define

the Laplacian for a graph without loops or multiple edges, we consider the

n× n matrix with rows and columns indexed by the vertices of G:

L := li,j


dvi if vi = vj

−1 if vi and vj are adjacent

0 otherwise

(1.2)

Definition 1.12. The following matrix is said Laplacian of the graph G:

L := li,j =


1 if i = j

−1√
dvidvj

if vi and vj are adjacent

0 otherwise

(1.3)

with i, j = 1, .., n.

Let T denote the diagonal matrix with the (i, i)-th entry having the value

dvi . The Laplacian of G can be expressed by the formula:

L = T
−1
2 LT

−1
2

with the convention T−1
i,i = 0 for dvi = 0. The Laplacian of a k-regular graph

is:

L = li,j =


1 if i = j

−1
k

if vi and vj are adjacent

0 otherwise

(1.4)

where k is the degree of each vertex v1, ..., vn. So the following identity holds:

L = I − 1

k
A

while for a general graph without isolated vertex we have:

Li,j = I − T
−1
2 AT

−1
2
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where A is the adjacency matrix of the graph G.

If V (G) = {v1, ..., vn} denote the set of the vertex of the graph G, let C(G)

be the vector space of all functions from V (G) into R. We have that dim

C(G) = n. Each element g of C(G) is usually written in the following form

g =
∑n

i=1 giv
i. In fact, if we think vi as the function from V (G) into R such

that

vi(vj) :=

1 if i = j

0 otherwise

then (v1...vn) is a basis for C(G) and the sum above expresses an element

in term of the basis elements. Therefore, we can see the Laplacian like an

operator L = C(G)→ C(G)

Lg(vj) = g(vj) +
∑
vj∼vi

−1√
dvjdvi

g(vi) =

∑
vj∼vi

g(vj)

dvj
− g(vi)√

dvjdvi

that is equal to:

Lg(vj) =
−1

dvj

∑
vj∼vi

(
g(vj)√
dvj
− g(vi)√

dvi

)
(1.5)

Since L is symmetric with entries in R its eigenvalues are real. Therefore we

are allowed to use the variational charatherization of the eigenvalues in terms

of the Rayleigh quotient. Let g denote an arbitrary function that assigns to

each vertex vi a real value g(vi). Hence g = (g(v1), ..., g(vn))T can be viewed

like a column vector. Then:

〈g,Lg〉
〈g, g〉

=
〈g, T −1

2 LT
−1
2 g〉

〈g, g〉
=

If we put f = T
−1
2 g we have:

〈f, Lf〉
〈T 1

2f, T
1
2f〉

=

∑
vi,vji,j=1,..,n li,jf(vj)f(vi)∑

vi
f(vi)2dvi

=



1.2 Eigenvalues and Laplacian of a graph 7

∑
vi
dvif(vi)

2 −
∑

vi∼vj f(vi)f(vj)−
∑

vj∼vi f(vi)f(vj)∑
vi
f(vi)2dvi

=

∑
vi∼vj(f(vi)− f(vj))

2∑
vi
f(vi)2dvi

(1.6)

where
∑

vi∼vj denotes the sum over all the unordered pairs vi, vj for which vi

and vj are adjacent. 〈g,Lg〉, 〈g, g〉 are standard inner products in Rn. From

equation 1.6 we can see that the eigenvalues of L are all non negative.

Let 1 denote the function which value is 1 on each vertex, we have that

g = T
1
2 1 is a eigenfunction with eigenvalue 0.

Let 0 = λ0 ≤ λ1 ≤ λ2 ≤ ... ≤ λn−1 denote the eigenvalues of L.

Definition 1.13. The set {λ0, ..., λn−1} is said spectrum of the graph G.

As the eigenfunctions that refer to different eigenvalues are orthogonal,

we have that

λG = λ1 = inf
f⊥T1

∑
vi∼vj(f(vi)− f(vj))

2∑
vi
f(vi)2dvi

(1.7)

. with corrisponding eigenfunction g = T
1
2f , while the non zero function

f achieving 1.7 is said harmonic eigenfunction for L. We can express the

largest eigenvalue in terms of the Rayleigh quotient:

λn−1 = sup
f

∑
vi∼vj(f(vi)− f(vj))

2∑
vi
f(vi)2dvi

(1.8)

. For a general k we have:

λk = inf
f

sup
g∈Pk−1

∑
vi∼vj(f(vi)− f(vj))

2∑
vi
f(vi)2dvi

=

inf
f⊥TPk−1

∑
vi∼vj(f(vi)− f(vj))

2∑
vi
f(vi)2dvi

where Pk−1 is the subspace generated by the harmonic eigenfunction corre-

sponding to λi, for i = 1, .., k − 1.
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1.3 Eigenvalues upper and lower bounds for

graphs

The main problems of spectral theory consist in deriving bounds on the

distribution of eigenvalues and in analyzing the consequences and the impact

of these bounds. In this section we state some upper and lower bounds; for

example we will see that the eigenvalues of any graph lie between 0 and 2.

The problem of delimiting the range of the eigenvalues for special classes of

graphs represents an open-ended challenge in graphs theory.

Lemma 1.3.1. For a graph G of n vertex, we have:

1.
∑

i λi ≤ n. The equality holds if and only if G has not isolated verteces.

2. For n ≥ 2,

λ1 ≤
n

n− 1

. The equality holds if and only if G is the complete graph on n vertices.

For a graph G without isolated vertices we have:

λn−1 ≥
n

n− 1

3. λ1 ≤ 1, if G is not a complete graph.

4. λ1 > 0, if G is a connected graph. If λi = 0 and λi+1 6= 0, G has exactly

i+ 1 connected components.

5. For all i ≤ n − 1, λi ≤ 2, with λn−1 = 2 if and only if a connected

component of G is bipartite and non trivial.

6. The spectrum of a graph is the union of the spectra of its connected

components.

Proof. In order to prove item (i), we note that trL ≤ n, and trL = n,

if and only if the graph has not isolated vertices. As L is symmetric, the
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spectral theorem adfirms that we can decompose any symmetric matrix with

the symmetric eigenvalue decomposition(SED) that is:

L =
n∑
i=1

λiφiφ
T
i = UΛUT

Λ = diag(λ0, .., λn−1)

where the matrix of U = [φ0, .., φn−1] is orthogonal ( that is UTU = UUT =

Id) and the φi is the eigenfunction for the eigenvalue λi, i = 0, .., n− 1.

We have that:

tr(L) = tr(UΛUT ) =

= tr((UΛ)UT ) = tr(UTUΛ) = tr(Λ)

. Therefore we obtain that
∑

i λi ≤ n, with equality holding if and only if G

has not isolated vertices.

The inequalities in (ii) follow from (i) and λ0 = 0.

In order to prove item (iii) suppose G contains two non adjacent vertices a,

b and consider the function:

f(vi) =


db if vi = a

−da if vi = b

0 if vi 6= a, b

We have that f is orthogonal to T1. In fact:

〈f, T1〉 =



0
...

db

−da
0
...

0


·



dv1
...

da

db
...

dvi
...

dvn


=
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= dbda − dadb = 0

λ1 = inf
f⊥T1

∑
vi,vj∈E(G)(f(vi)− f(vj))

2∑
vi
f(vi)2dvi

= inf
dad

2
b + d2

adb
dad2

b + d2
adb

= 1

Therefore, λ1 ≤ 1 follows for a not complete graph.

If G is connected the eigenvalue 0 has multiplicity 1 since, from 1.7, any

harmonic eigenfunction with eigenvalue 0 assumes the same value at each

vertex. Thus item (iv) follows from the fact that we can see a graph as the

union of its connected components (each connected component is viewed as

a distint graph) and from the fact that the spectrum of the union of disjoint

graphs is the union of the spectra of the original graphs. In order to show

item (v), we use the fact that (f(vi)− f(vj))
2 ≤ 2(f(vi)

2 + f(vj)
2).

Moreover from the 1.8 we have that:

λi ≤ sup
f

∑
vi,vj∈E(G)(f(vi)− f(vj))

2∑
vi
f(vi)2dvi

≤

≤ sup
f

∑
vi,vj∈E(G) 2(f(vi)

2 + f(vj)
2)∑

vi
f(vi)2dvi

≤ 2 sup
f

∑
vi
f(vi)

2dvi∑
vi
f(vi)2dvi

≤ 2

for i ≤ n− 1.

If we consider a function f such that f(vi) = −f(vj) for every edge vi, vj, we

have that:

λn−1 = sup
f

∑
vi∼vj(f(vi)− f(vj))

2∑
vi
f(vi)2dvi

= 2

∑
vi
f(vi)

2dvi∑
vi
f(vi)2dvi

= 2

. Therefore, since f 6= 0 G has a bipartite connected component. On the

other hand, if G has a connected component which is bipartite, we can choose

the function f as to make λn−1 = 2. Item (vi) follows from definition.

Lemma 1.3.2. The following statements are equivalent:

1. G is bipartite

2. G has i+ 1 connected components and λn−j = 2 for 1 ≤ j ≤ i.

3. For each λi the value 2− λi is also an eigenvalue of G.
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Proof. (ii) −→ (i) follows from items (iv) and (v) of the antecedent lemma

considering a connected graph(a bipartite graph is in particular a connected

graph). (iii) −→ (ii) follows from item (iv) of the antecedent lemma con-

sidering a connected graph. In order to prove that(i) −→ (iii),we consider a

bipartite graph with vertex set consisting of two parts A and B. For any har-

monic eigenfunction f with eigenvalue λk we consider the function g defined

by

g(vi) =

f(vi) if vi ∈ A

−f(vi) if vi ∈ B

We observe that for a general i, we have:

λi = inf
g⊥TPi−1

∑
vi∼vj(g(vi)− g(vj))

2∑
vi
g(vi)2dvi

where Pi−1 is the subspace generated by the harmonic eigenfunctions corre-

sponding to λi, for i = 1, .., i− 1.

Therefore, by the expression of Rayleigh quotient we have :∑
vi∼vj(g(vi)− g(vj))

2∑
vi
g(vi)2dvi

=

∑
vi∼vj(f(vi) + f(vj))

2∑
vi
f(vi)2dvi

=

2
∑

vi
f(vi)

2dvi + 2
∑

vi∼vj(f(vi)f(vj))−
∑

vi
f(vi)

2dvi∑
vi
f(vi)2dvi

=

2
∑

vi
f(vi)

2dvi + 2
∑

vi∼vj(f(vi)f(vj))−
∑

vi
f(vi)

2dvi∑
vi
f(vi)2dvi

=

2
∑

vi
f(vi)

2dvi +
∑

vi∼vj(f(vi)− f(vj))
2∑

vi
f(vi)2dvi

=

2−
∑

vi∼vj(f(vi)− f(vj))
2∑

vi
f(vi)2dvi

= 2− λk
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as f is an harmonic eigenfunction of L achieving λk.

The statement follows by considering:

inf
g⊥TPi−1

∑
vi∼vj(g(vi)− g(vj))

2∑
vi
g(vi)2dvi

= 2− λk

In order to improve the lower bound for λ1, we will introduce two impor-

tant definitions:

Definition 1.14. For any pair of vertices vi, vj the number of edges in the

shortest path joining vi and vj is said distance between vi and vj and is

denoted by d(vi, vj).

Definition 1.15. The diameter of a graph is the maximum distance over all

pairs of vertices of G.

Lemma 1.3.3. Let G denote a connected graph with diameter D. Therefore

we have that:

λ1 ≥
1

DvolG

where vol(G) =
∑

vi
dvi.

Proof. Suppose f a harmonic eigenfunction archieving λ1 as in 1.7. Let v∗0

denote a vertex such that | f(v∗0) |= maxvi | f(vi) |. Since
∑
f(vi)dvi = 0

there exists a vertex v∗1 such that f(v∗1)f(v∗0) < 0. We call P the shortest

path that joins v∗0 and v∗1. Then we have:

λ1 = inf
f⊥T1

∑
vi,vj∈E(G)(f(vi)− f(vj))

2∑
vi
f(vi)2dvi

≥

≥
∑

vi,vj∈P (f(vi)− f(vj))
2

volGf(v∗0)2
≥

1
D

(f(v∗0)− f(v∗1)2

volGf(v∗0)2
≥ 1

DvolG

by using Cauchy-Schwartz inequality.
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Lemma 1.3.4. For any vertex vi ∈ V (G) the following equality holds:

1

vi

∑
vj∼vi

(f(vi)− f(vj)) = λGf(vi)

where f is an harmonic eigenfunction archieving λG in 1.7.

Proof. For a fixed v0 ∈ V (G) let f define the following function:

fε(vj) =

f(v0) + ε
dv0

if vj = v0

f(vj)− ε
volG−dv0

otherwise

. We have that: ∑
vi,vj∈E(G)(fε(vi)− fε(vj))2∑

vi
fε(vi)2dvi

=

=

∑
vi,vj∈E(G)(f(vi)− f(vj))

2 +
∑

vj∼v0
2ε(f(v0)−f(vj))

dv0
−
∑

vj 6=v0
∑

vj∼v
′
j

2ε(f(vj)−f(v
′
j))

volG−dv0∑
vi∈V (G) f

2(vi)dvi + 2εf(v0)− 2ε
volG−dv0

∑
vj 6=v0 f(vj)dvj

+O(ε2) =

∑
vi,vj∈E(G)(f(vi)− f(vj))

2 +
∑

vj∼v0
2ε(f(v0)−f(vj))

dv0
+
∑

vj∼v0
2ε(f(v0)−f(vj))

volG−dv0∑
vi∈V (G) f

2(vi)dvi + 2εf(v0)− 2εf(v0)dv0
volG−dv0

+O(ε2) =

since
∑

vi∈V (G) f(vi)dvi = 0 and
∑

vj

∑
v
′
j
(f(vj)− f(v

′
j) = 0. From definition

1.7, we have that:∑
vi,vj∈E(G)(fε(vi)− fε(vj))2∑

vi
fε(vi)2dvi

≥
∑

vi,vj∈E(G)(f(vi)− f(vj))
2∑

vi
f(vi)2dvi

=

. If we consider:

lim
ε−→0

∑
vi,vj∈E(G)(fε(vi)− fε(vj))2∑

vi
fε(vi)2dvi

=

∑
vi,vj∈E(G)(f(vi)− f(vj))

2∑
vi
f(vi)2dvi

= λG

as f is an harmonic eigenfunction archieving λG.

Therefore we have that:∑
vi,vj∈E(G)

(f(vi)− f(vj))
2 + 2ε(

∑
vj :vj∼v0

f(v0)− f(vj))

(
volG

dv0(volG− dv0)

)
=
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λG(
∑
vi

f 2(vi)dvi) + λG

(
2εvolGf(v0)

volG− dv0

)
=

volG

dv0(volG− dv0)
∑
vj∼v0

f(v0)− f(vj) = λG
volGf(v0)

volG− dv0

. Finally, we can conclude that:∑
vj∼v0 f(v0)− f(vj)

dv0
= λGf(v0)

.

1.4 The Laplacian of a weighted graph

Definition 1.16. Given a set of vertices V (G) = {v1, .., vn}, a weighted

graph G = {V (G), E(G)} (possibly with loops) is a graph with an associeted

weight function:

w : V (G)× V (G) −→ R

such that:

w(vi, vj) = w(vj, vi)

and

w(vi, vj) ≥ 0

∀i, j = 1, .., n

Remark 2. If {vi, vj} are not in E(G), w(vi, vj) = 0.

Remark 3. Unweighted graphs are a particular case of weighted graphs in

which all the weights are 0 or 1. Therefore all the definitions and subsequent

theorems for simple graphs can be easily extended to weighted graphs.

Definition 1.17. In a weighted graph the degree of a vertex vi is given by:

dvi =
n∑

vj=1

w(vi, vj)

and V olG =
∑

i dvi
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Figure 1.4: Example of weighted graph

Let L be the following n× n matrix:

Li,j =


∑

i,j′ :,e
i,j
′∈E(G) w(vi, vj′ ) if i = j

−w(vi, vj) if vi and vj are adjacent

0 otherwise

(1.9)

For a function f : V (G) −→ R we have:

Lf(x) =
∑

vj :vi∼vj

(f(vi)− f(vj))w(vi, vj)

The Laplacian of a weighted graph is defined to be

L = T
−1
2 LT

−1
2

where T is the diagonal matrix with the (i, i)th entry having the value dvi .

Therefore L is the following n× n matrix:

Li,j =


1− w(vi,vi)

dvi
if i = j

−w(vi,vj)√
dvidvj

if vi and vj are adjacent

0 otherwise

(1.10)
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We can use the same characterization for the eigenvalues of the generalized

version of L. In fact we have:

λG = λ1 = inf
g⊥T

1
2 1

〈g,Lg〉
〈g, g〉

=

inf
f :
∑
f(vi)dvi=0

∑
vi∈V (G)(f(vi)Lf(vi))∑

vi
f(vi)2dvi

=

inf
f :
∑
f(vi)dvi=0

∑
vi∼vj(f(vi)− f(vj))

2w(vi, vj)∑
vi
f(vi)2dvi

(1.11)

and

λn−1 = sup
f

∑
vi∼vj(f(vi)− f(vj))

2w(vi, vj)∑
vi
f(vi)2dvi

(1.12)

. For a general k the eigenvalues are given by:

λk = inf
f

sup
g∈Pk−1

∑
vi∼vj(f(vi)− f(vj))

2w(vi, vj)∑
vi
f(vi)2dvi

=

inf
f⊥TPk−1

∑
vi∼vj)(f(vi)− f(vj))

2w(vi, vj)∑
vi
f(vi)2dvi

(1.13)

where Pk−1 is the subspace generated by the harmonic eigenfunctions corre-

sponding to λi, for i = 1, .., k − 1.



Chapter 2

From graphs to manifolds:

relationship between discrete

and continuos case

There are many similiarity between the Laplace operator on compact Rie-

mannian manifold that is generated by Riemannian metric and the Laplacian

for finite graphs, that comes from the adjacency relation. Moreover it is im-

portant to underline that the discrete and the continuos cases sometimes

can be analyzed by an universal approach. In this chapter we will derive

first some eigenvalues-diameter inequalities for graphs and then we will ap-

ply these discrete methods in order to derive new eigenvalues upper bounds

for compact Riemannian manifolds.

2.1 Eigenvalues and diameter of a graph

The diameter is an important combinatorial invariant for a graph that

has a wide range of applications as for example in communication network’s

models or in performance analysis and cost optimization. There is a strict

relationship between the diameter of the graph and the eigenvalues based

on the folliwing observation: let M denote a n × n matrix in which the

17
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continuos case

rows and the columns are indexed by the vertices of G. Moreover M has

the propriety that M(vi, vj) = 0 if vi, vj are not adjacent. Suppose that we

can show that for some integer t and some polynomial pt(x) of degree t we

have pt(M)(vi, vj) 6= 0 ∀vi, vj. It means that the maximum distance over all

pairs of vertices is at most t i.e D(G) ≤ t. This allows us to derive some

diameter-eigenvalue inequalities starting from distance between two subsets

inequalies.

Theorem 2.1.1. In a graph G let X, Y be two subsets of V (G) such that

d(X, Y ) ≥ 2 and let X̄, Ȳ be the complements of respectively X, Y in V (G).

We have:

d(X, Y ) = d ln(
√
volX̄volȲ volXvolY )

ln(λn−1+λ1
λn−1−λ1 )

e (2.1)

Proof. For X ⊆ V (G) = v1, .., vn, we consider the characteristic function ψX :

ψX(vi) =

1 if vi ∈ X

0 otherwise

with i = 1, .., n. In the same way we define ψY . The previous remark

suggests that if we can show that for some integer t and some polynomial

pt(z) of degree t

〈T
1
2ψY , pt(L)(T

1
2ψX)〉 > 0

then there is a path of length at most t joining a vertex in X to a vertex in

Y .

Therefore, by definition, we have d(X, Y ) ≤ t.

We consider the fourier series of the function T
1
2ψX i.e.:

T
1
2ψX =

n−1∑
i=0

aiφi

where ai are the Fourier coefficients and φi are orthogonal eigenfunctions of

G. As φ0 = T
1
2 1 is the eigenfunction associated to the eigenvalue λ0, we
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have:

a0 =
〈T 1

2ψX , T
1
2 1〉

‖T 1
2 1‖

=


√
dvi if vi ∈ X

0 otherwise

 · ( √dv1 . . .
√
dvn

)
‖
√
dv1 . . .

√
dvn ‖

=
volX√
volG

. Let bi define the Fourier coefficients of ψY i.e.:

T
1
2ψY =

n−1∑
i=0

biφi

We choose pt(z) =
(

1− 2z
λ1+λn−1

)t
. As G is not a complete graph for the

Lemma 1.3.1 λ1 6= λn−1 and

| pt(λ) |≤ (1− λ)t

for all i = 0, .., n− 1 where λ = 2λ1
λ1+λn−1

. We have:

〈T
1
2ψY , pt(L)(T

1
2ψX)〉 = 〈

∑
i

biφi, (
∑
i

p(λi)φiφ
T
i )(
∑

aiφi)〉 =

a0b0 +
∑
i>0

pt(λi)aibi ≥ a0b0 − (1− λ)t
√∑

i>0

a2
i

∑
i>0

b2
i (2.2)

by using Cauchy-Schwarz inequality. If we consider:∑
i>0

a2
i = ‖T

1
2ψX‖2 − a2

0 = volX − volX2

volG
=
volXvolX̄

volG

Therefore the equation in 2.2 becomes:

〈T
1
2ψY , pt(L)(T

1
2ψX)〉 ≥ volXvolY

volG
− (1− λ)t

√
volXvolX̄volY volȲ

volG

If the inequality in 2.2 is strict,

〈T
1
2ψY , pt(L)(T

1
2ψX)〉 > 0⇐⇒ volXvolY

volG
−(1−λ)t

√
volXvolX̄volY volȲ

volG
≥ 0

Therefore, we have:

−(1− λ)t
√
volXvolX̄volY volȲ

volG
≥ −volXvolY

volG
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continuos case

1

(1− λ)t
≥
√
volX̄volȲ√
volXvolY

t ≥
ln
(√

volX̄volȲ√
volXvolY

)
ln
(

1
(1−λ)t

) (2.3)

Then, if we choose a t as in 2.3 we have

〈T
1
2ψY , pt(L)(T

1
2ψX)〉 > 0

and d(X, Y ) ≤ t. If in 2.2 the equality holds, we have that |bi| = |cai| for

some c and i > 0. Moreover the equality

aibipi(λi) = −|aibi||pi(λi)| = −|aibi|(1− λ)t

implies that there exists an integer k, 1 ≤ k < n − 1 such that bi = −cai,
λi = λ1 for i = 1, .., k and for i > k, bi = cai and λi = λn−1. Since

〈T
1
2ψY ,L(T

1
2ψX)〉 =

∑
i>0

aibiλi = 0

we have:

−λ1

k∑
i=1

a2
i + λn−1

∑
i>k

a2
i = 0

and
∑k

i=1 a
2
i =

λn−1
∑

i>k a
2
i

λ1
. We consider for t ≥ 2

〈T
1
2ψY ,L(T

1
2ψX)〉 ≥ c

(
−λt1

k∑
i=1

a2
i + λtn−1

∑
i>k

a2
i

)
≥ c(−λt−1

1 λn−1+λtn−1)
∑
i>k

a2
i > 0

Therefore d(X, Y ) ≤ t.

An immediate consequence is the following corollary

Corollary 2.1.2. For a regular graph which is not complete we have:

D(G) ≤ ln(n− 1)

ln
(
λn−1+λ1
λn−1−λ1

)
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2.2 Eigenvalues upper bounds for manifolds

Let (M, g) denote a connected, compact Riemannian manifold. We will

consider the Laplace-Beltrami operator, that is a linear, differential operator

of the second order:

∆ : C∞(M)→ C∞(M)∆f := −div(grad(f))

. The eigenvalues problems have the following formulation:

• Closed problem:

∆f = λf ∈M ; ∂M = ∅ (2.4)

• Dirichlet problem:

∆f = λf ∈M\∂M , f = 0in∂M ; ∂M 6= ∅ (2.5)

• Neumann problem:

∆f = λf ∈M\∂M ; (
df

dη
) p∂M= 0; ∂M 6= ∅ (2.6)

where df
dη

is the derivative of f in the direction of the outward unit

normal vector field η on ∂M .

Definition 2.1. L2(M) denotes the space of the measurable functions on M

such that ∫
M

| f |2 dvg(x) <∞

where vg is the canonic measure on M

Remark 4. L2(M) is the completion of C∞(M) with respect to the inner

product:

(f1, f2)g =

∫
M

f1(x)f2(x)dvg(x)

and | f |2L (M) = (f, f)
1
2
g is the induced norm.

A classical result holds:
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continuos case

Theorem 2.2.1. Let M be a compact manifold with boundary ∂M (eventu-

ally empty) and consider the above mentioned eigenvalue problems. Then:

1. The set of the eigenvalues consists of an infinite sequence 0 < λ1 ≤
λ2 ≤ ... −→∞ where 0 is not an eigenvalue in the Dirichlet problem.

2. Each eigenvalue has finite multiplicity and the eigenspaces correspond-

ing to distinct eigenvalues are L2(M)-orthogonal.

3. The direct sum of the eigenspaces E(λi) is dense in L2(M) for the L2-

norm. Futhermore, each eigenfunction is C∞ smooth and analytic.

In order to investigate the Laplace-Bertami equation ∆f = λf , it’s very

relevant to look at the variational charatherization of the spectrum.

Let us introduce the Rayleigh quotient:

R(f) =
‖df‖2

L2(M)

‖f‖2
L2(M)

=
(df, df)

(f, f)
(2.7)

where f lies in the Sobolev spaceH1(M) in the closed and Neumann problems

and in H1
0 in the Dirichelet problem.

In fact we have:

R(f) =
(∆f, f)

(f, f)
=

∫
M
< df, df > dvg −

∫
∂M

f ∂f
∂η
dag∫

M
| f |2 dvg

=

∫
M
| df |2 dvg∫

M
| f |2 dvg

=
(df, df)

(f, f)

by using Green formula. We observe that dag is the volume form on ∂M and

the integral
∫
∂M

f ∂f
∂η
dag = 0 in any of the three eigenvalue problems(closed

problem, Dirichlet and Neumann boundary conditions). In the case where f

is an eigenfunction with eigenvalue λk we have:

R(f) = λk

. The variational characterization of the spectrum is expressed by the fol-

lowing theorem:

Theorem 2.2.2. Let us consider one of the three eigenvalues problems. Let

fi denote an orthonormal system of eigenfunctions associated to the eigen-

values λi.
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1. We have:

λk = inf{R(f) : f 6= 0; f ⊥ f0, .., fk−1}

where f ∈ H1(M) (or H1
0 (M)) in the Dirichlet problem and R(f) = λk

if and only if f is an eigenfunction for λk.

In particular for a compact Riemannian manifold without boundary, we

have:

λ1 = inf{R(f) such that f 6= 0;

∫
M

fdvg = 0}

2. Min-Max: we have

λk = inf sup
Vk

{R(f) : f 6= 0; f ∈ Vk}

where Vk runs through k + 1 dimensional subspaces of H1(M)(K di-

mensional subspaces of H1
0 (M) for the Dirichlet problem.

In particular, the following inequality holds:

λk(M, g) ≤ supR(f) : f 6= 0; f ∈ V

for any given k + 1-dimensional vector subspace V of H1(M).

Moreover, if Vk is generated by k + 1 disjointly supported functions

f1, .., fk+1 we have:

sup{R(f) : f 6= 0; f ∈ Vk} = sup{R(fi), i = 1, .., k + 1}

Remark 5. We can osbserve that there is a natural correspondence between

equation 1.7 and the expression of the eigenvalue of the Laplace-Bertrami op-

erator for compact Riemannian manifold without boundary λM = inf
∫
M (|f |)2dvg∫
M f2dvg

where f ranges over the functions satisfying
∫
M
fdvg = 0

A parallelism between discrete and continous case can be established. In

order to show how discrete methods used in the previous section for deriving

eigenvalues-diameter inequalities can be applied to derive new eigenvalues

upper bounds for compact Riemannian manifolds, we will refer to a general

setting that consists clearly in a underlying space with a finite measure, in
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a well-definited Laplace operator L on functions on M such that L is a self-

adjoint operator with discrete spectrum, in boundary conditions that do not

dirupt the self-adjoiness of L, in a appropriate distance function on M .

Remark 6. The boundary conditions described in 2.4, 2.5, 2.6 satisfy these

assumptions.

In order to derive eigenvalues upper bounds for compact Riemannian

manifolds we will expose first some facts about graphs that will be treated

according this general setting.

Remark 7. For a finite connected graph G the metric, that we denote by µ

,is given by the degree of each vertex.

Definition 2.2. If f ∈ L2(G, µ), r ∈ R we have:

supprf = {x ∈ G such that d(x, f) ≤ r}

where d(x, y) is the distance function.

Let ps denote a polynomial of degree s, then we have

suppps(L)f ⊂ suppsf (2.8)

An analogous version of 2.8 can be given for a Riemannian compact manifold.

Definition 2.3. If f ∈ L2(M, vg), r ∈ R we have:

supprf = {x ∈M such that dist(x, suppf) ≤ r}

where dist(x, y) is a distance function on M × M which is Lipschitz and

satisfies | 5dist(x, y) |≤ 1.

There exists a non trivial family of bounded countinous fuctions Ps(λ)

defined on the spectrum specL, where s ∈ [0,∞), such that for any f ∈
L2(M, vg) we have:

suppPs(L)f ⊂ suppsf
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Definition 2.4. We consider:

p(s) = sup
λ∈specL

|Ps(λ)|

where we assume that p(s) is locally integrable.

Definition 2.5. Let us define

Φ(λ) =

∫ ∞
0

φ(s)Ps(λ)ds

where φ(s) is a measurable function on (0,∞) such that∫ ∞
0

|φ(s)|p(s)ds <∞

In particular, Φ(λ) is a bounded function on specL, and we can apply the

operator Φ(L) to any function in L2(M, vg).

Lemma 2.2.3. The following inequality holds:

‖Φ(L)‖L2(M\supprf ) ≤ ‖f‖2

∫ ∞
r

| Φ(s) | p(s)ds

where f ∈ L2(M, vg) and ‖f‖2 = ‖f‖2
L(M, vg)

Proof. We denote by

w(x) = Φ(L)f(x) =

∫ ∞
0

Φ(s)Ps(L)f(x)ds

Let us consider a point x that is not in the supprf . As suppPs(L) ⊂ suppsf ,

we have that Ps(L)f(x) = 0 whenever s ≤ r. Therefore, for those points

w(x) =

∫ ∞
r

Φ(s)Ps(L)f(x)ds

and

‖w‖L2(M\supprf ) ≤ ‖
∫ ∞
r

φ(s)Ps(L)f(x)ds‖2 ≤

≤
∫ ∞
r

(

∫
M

(φ(s)Ps(L)f(x))2dvg)
1
2ds ≤

≤ ‖f‖2

∫ ∞
r

| φ(s) | p(s)ds
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Corollary 2.2.4. If f, g ∈ L2(M, vg) and let D denote the distance between

suppf and suppg, then:

|
∫
M

fΦ(L)gdvg |≤ ‖f‖2‖g‖2

∫ ∞
D

| φ(s) | p(s)ds (2.9)

Proof. We consider :∫
M

fΦ(L)gdvg =

∫
M

(

∫ ∞
0

φ(s)Ps(L)f(x)ds)gdvg (2.10)

Then, by definition 2.10 is zero out of the suppg. Therefore 2.9 becomes∫
suppg

(

∫ ∞
0

φ(s)Ps(L)f(x)ds)gdvg

. If the point x is not in the suppDf , Ps(L)f(x) = 0 whenever s ≤ D,

because suppPs(L) ⊂ suppsf . Then, we have :

|
∫
suppg

(

∫ ∞
0

φ(s)Ps(L)f(x)ds)gdvg| ≤

|
∫
M\ ˙suppDf

(

∫ ∞
D

φ(s)Ps(L)f(x)ds)gdvg| ≤

≤ ‖f‖2‖g‖2

∫ ∞
D

|φ(s)|p(s)ds

by Holder inequality.

If we choose Ps(λ) = cos(
√
λs) and φ(s) = 1√

πt
e
−s2

4t , we have:

Φ(λ) =

∫ ∞
0

Φ(s)Ps(λ)f(x)ds = e−λt

By using the previous corollary we have proved

Corollary 2.2.5. If f, g ∈ L2(M, vg) and let D denote the distance between

suppf and suppg, then:

|
∫
M

fe−Ltgdvg| ≤ ‖f‖2‖g‖2

∫ ∞
D

1√
πt
e
−s2

4t ds (2.11)

A similar but weaker result that will be useful is the following corollary:
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Corollary 2.2.6.

|
∫
M

fe−Ltgdvg| ≤ ‖f‖2‖g‖2e
−D2

4t (2.12)

The main result of this chapter is the following theorem:

Theorem 2.2.7. For two arbitrary disjoint sets X, Y on M we have:

λ1 =
1

dist(X, Y )2

(
1 + log

(vg(M))2

vg(X)vg(Y )

)2

(2.13)

Moreover, if X0, .., Xk are k + 1 disjoint subsets such that dist(Xi, Yj) ≥ D,

∀i, j = 0, .., k and D > 0, we have for any k ≥ 1

λ1 =
1

D2
(1 + sup

i 6=j
ln

(vg(M))2

vg(Xi)vg(Xi)
)2 (2.14)

Proof. Let {φi} be an orthonormal frame of eigenfunctions in L2(M). In or-

der to proove the theorem, we consider the heat equation with Robin bound-

ary coditions:

∂

∂t
u(x, t)−∆u(x, t) = 0 (x, t) ∈M × R+

α(x)u(x, t) + β(x)
∂u(x, t)

∂η
= 0 (x, t) ∈ ∂M × R+

where α(x) and β(x) are non negative smooth functions on ∂M such that

α(x) + β(x) > 0 ∀x ∈ ∂M . The heat equation admits unique fundamental

solution that we denote by p(x, y, t). If we consider the eigenvalue expantion,

we have that:

p(x, y, t) =
+∞∑
i=0

e−λiφi(x)φi(y)

By using the previous corollary we have the following estimate:∫
X

∫
y

p(x, y, t)f(x)g(y)dvg(x)dvg(y) ≤ (

∫
X

f 2

∫
Y

g2)
1
2 e
−D2

4t

for any functions f, g ∈ L2(M) and for any two disjoint Borel set X, Y ⊂M ,

where D = dist(X, Y ). We start with the case k = 2. We integrate the

eigenvalue expansion:

I(f, g) =

∫
X

∫
y

p(x, y, t)f(x)g(y)dvg(x)dvg(y) =
∞∑
i=0

e−λit
∫
X

fφi

∫
Y

gφi



28
2. From graphs to manifolds: relationship between discrete and

continuos case

Let fi denote the Fourier coefficients of the function fψX and gi denote those

of the function gψY with respect to the frame φi, where ψX is a characteristic

function:

ψX(x) =

1 if x ∈ X

0 otherwise

We have:

I(f, g) = e−λ0tf0g0 +
∞∑
i=0

e−λitfigi (2.15)

The following inequalities hold:

| e−λitfigi |≤ e−λ1t(
∞∑
i=0

f 2
i

∞∑
i=0

g2
i )

1
2 ≤ e−λ1t‖fψX‖2‖gψY ‖2

where we use Parseval theorem. Therefore 2.15 can be estimated by:

I(f, g) ≥ e−λ0tf0g0 − e−λ1t‖fψX‖2‖gψY ‖2

By using the previous estimates and the fact that λ0 = 0, we have:

(

∫
X

(fψX)2

∫
Y

(gψY )2)
1
2 e
−D2

4t ≥ f0g0e
−λ1t‖fψX‖2‖gψY ‖2

Then:

e−λ1t‖fψX‖2‖gψY ‖2 ≥ f0g0 − ‖fψX‖2‖gψY ‖2e
−D2

4t

As the gaussian exponential has the property that can be made arbitrarily

close to 0 by taking t enough small, we will choose t such that:

f0g0 = 2‖fψX‖2‖gψY ‖2e
−D2

4t

Then:
−D2

4t
= ln f0g0‖fψX‖2‖gψY ‖2

and

t =
D2

4 ln 2‖fψX‖2‖gψY ‖2
f0g0

. For this t we have:

e−λ1t‖fψX‖2‖gψY ‖2 ≥
1

2
f0g0
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which implies:

λ1 ≤
1

t
ln

2‖fψX‖2‖gψY ‖2

f0g0

After substituting this value of t it follows that:

λ1 ≤
4

D2
(ln

2‖fψX‖2‖gψY ‖2

f0g0

)2

. It is important to underline that if either the manifold has not boundary

or the Dirichlet or Neumann boundary condition is satisfied there is one

eigenvalue λ0 = 0 with the associeted function being the constant function

φ0 = 1√
vg(M)

.

Therefore we can choose f = g = φ0 and take into account that:

f0 =

∫
X

fφ0 =

∫
Y

φ2
0

and

‖fψX‖2 = (

∫
X

φ2
0)

1
2 =

√
f0

. Similar identities hold for g. We then obtain:

λ1 ≤
1

D2
(ln

4∫
X
φ2

0

∫
Y
φ2

0

)2

Then, by substituing the value of φ0 we have:

λ1 ≤
1

D2
(ln

4∫
X
φ2

0

∫
Y
φ2

0

)2 =

1

D2
(ln

4

( 1
vg(M)

)2
∫
X
dvg
∫
Y
dvg

)2 =
1

D2
(ln

4(vg(M)2)

vg(X)vg(Y )
)2

Therefore:

λ1 ≤
1

D2
(1 + ln

(vg(M)2)

vg(X)vg(Y )
)2

. Now we consider the general case for k > 2. For a function f(x), let f ji

denote the i-th Fourier coefficent of the function f1Xj
i.e.

f ji =

∫
Xj

fφi



30
2. From graphs to manifolds: relationship between discrete and

continuos case

. Similar to the case of k = 2, we have:

Ilm(f, f) =

∫
Xl

∫
Xm

p(x, y, t)f(x)f(y)dvg(x)dvg(y)

. We have the following upper bound for Ilm(f, f):

Ilm(f, f) ≤ ‖fψXl
‖2‖gψYm‖2 exp

−D2

4t
(2.16)

and the following lower bound:

Ilm(f, f) ≥ e−λ0tf l0f
m
0 +

k−1∑
i=1

e−λitf lif
m
i − e−λkt‖fψXl

‖2‖gψYm‖2 (2.17)

The choice of appropriate l,m allows us to eliminate the term in the middle

of the right-hand side of 2.16.

In fact if we consider k+1 vectors f l = (f l1, ..., f
l
k−1) in Rk−1, with l = 0, .., k.

We endow this k − 1 dimensional space with a scalar product given by:

(v, w) =
k−1∑
i=1

viwie
−λit

.

By using the previous corollary, out of any k+1 vectors in (k−1)-dimensional

Euclidean space, we always can find two vectors with non-negative scalar

product. Hence there are different l, m such us < f l, fm >≥ 0. Then:

Ilm(f, f) ≥ e−λ0tf l0f
m
0 +

k−1∑
i=1

e−λitf lif
m
i − e−λkt‖fψXl

‖2‖gψYm‖2 ≥

Ilm(f, f) ≥ e−λ0tf l0f
m
0 − e−λkt‖fψXl

‖2‖gψYm‖2 (2.18)

Comparing 2.17 and 2.18 we have:

e−λkt‖fψXl
‖2‖gψYm‖2 ≥ f l0f

m
0 − ‖fψXl

‖2‖gψYm‖2e
−D2

4t (2.19)

The rest of the proof is similar to the case k = 2. In fact we can choose t

such that the right-hand side is at least 1
2
f l0f

m
0 . We select:

t = min
l 6=m

D2

4 ln
2‖fψXl

‖2‖fψXm‖2
f l0g

m
0
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. From 2.19, it follows:

λk ≤
1

t
ln

2‖fψXl
‖2‖fψXm‖2

f l0g
m
0

. By substituting t from above and taking f = φ0, 2.14 follows.

It is important to underline that although differential geometry and spec-

tral graph theory share a great deal in common, significant differences exist

and depend on the fact that a graph is not ”differentiable” and many geo-

metrical tecniques involving hight- order derivatives are impossible to utilize

for graphs. Moverover when it is possible to develop the discrete parallels,

we have a different viewpoint that lead to an improvement of the original

result from the continous case.





Chapter 3

The Alzheimer’s disease and

other Dementias

3.1 Generalities about Dementia

Dementia is a category of brain diseases that cause mainly memory loss,

inability to think and reason clearly and difficulties with activities of daily

living. It is estimated to affect 25 million of people worldwide. Rarely the

disease is diagnosed in people under 65 years of age, while 3 per cent of peo-

ple between the ages of 65-74 have dementia and the percentage increases

over the age of 85 with the 47 per cent of people affected.

The most common form of dementia is the Alzheimer’s disease that was de-

scribed for the first time in 1906 by a german psychiatrist and neuropathol-

ogist Aloise Alzheimer. The main symptoms concern cognitive impairment,

psychiatric or behavioural disturbances and difficulty with activities of daily

living. The course of the disease lasts more than 10 years and can be ana-

lyzed by identifying four stages: pre-dementia, early stage, moderate stage,

advanced stage. The former is characterized by problems in remembering

recent events or recently learned facts and inability to adquire new informa-

tions. This process is known as short term memory loss. These symptoms

are often confused with ”age-related” matters or manifestations of stress.

33
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Therefore at the beginning the diagnosis of the AD is not immediate. In fact

mild cognitive difficulties can be observed in patients up to eight years be-

fore they fulfil the clinical criteria for diagnosis of the disease. Other common

symptoms deal with difficulties in the executive functions of attentiveness,

planning, flexibility and abstract thinking, depression, irritability and apa-

thy. The latter is the most persistent neuro-psychiatric symptom throughout

the course of the AD.

It is important to underline that the preclinical stage of dementia is said

in medical litterature mild cognitive impairment (MCI). In fact the signs of

the disease are subtle as they do not affect the person’s daily functions. It

is estimated that 70 per cent of those diagnosed with MCI will progress to

dementia at some point.

The main feature of early stage of Alzheimer is the progressive impairment

of memory and learning that leads to the definitive diagnosis. Memories ca-

pacities are not all affected in the same way. In fact increasing difficulties

are observed in remembering recently-happened events and in learning new

things, while long term memory (that includes autobiographical events hap-

pened in the past, learned facts and implicit memory i.e. the memory of the

body on how to do things) is not seriously damaged. Language problems

consist in an impovrishment of the vocabulary and in a decreased word flu-

ency, but the person with Alzheimer’s disease is able to express basic ideas

adequately at this stage. Moreover he can perform many fine motor tasks

like writing, drawing or dressing indipendently, but he may need assistance

with the most cognitively activities, as the disease progresses.

In the moderate stage the subject affected by the disease becomes progres-

sively inable to perform the most common activities of daily living. Coordi-

nation in complex motor sequences decreases with the consequent increase

of the risk of falling. Reading and writing skills are seriously damaged until

the complete loss. The impairment of speech fluency becomes significant and

concerns tipically the capacity to recall vocabulary with consequent incor-

rect word substitutions. The loss of the memory is severe at this stage as
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also the long term memory is damaged and the person may fail to recognize

close relative. Irritability, wandering, emotional lability and outbursts of un-

premeditate aggression are often very common symptoms.

In the advanced stage the subject’s dipendence upon caregivers becomes com-

plete, as he is inable to perfom even the simplest task without any assistence.

The loss of the memory and verbal language abilities is almost total. This

leads the person to the death that is typically due to an external factor like

an infection of pressure ulcers or pneumonia. In this sense AD is a terminal

illness.

An other diffused form of dementia is Frontotemporal dementia (FTD). The

Figure 3.1: Comparison between an healty brain and a brain affected by

Alzheimer’s disease

name is due to the fact that the degeneration i.e. the loss of neurons involves

mainly the frontal and/or the temporal lobes. It affects almost equally men

and women and the first signs of the disease manifest between the ages of 55
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and 65. Symtoms are similar to those of Alzheimer’s disease, as significant

changes is social and personal behaviour, apathy, blunting of emotion and

speech difficulties are observed. The latter is the most typical symptom of

FTD and includes progressive loss of semantic understanding and difficulties

in speech production. Unlike Alzheimer’s disease memory does not appear

seriously damaged. BvFTD stands for behavioural variant frontotemporal

dementia and is characterized typically by changes in social behaviour and

conduct, with loss of social awareness and poor impulse control. Other forms

of dementia are Lewy body dementia, vascular dementia, corticobasal degen-

eration, normal pressure hydrocephalus and Creutzfeldt-Jakob disease.

The widespread of dementia leads many countries in the world to consider

the care of people affected by it a national priority; therefore investments in

cure research and in education to better inform social service workers, care-

givers etc are significant.

Finally, it is important to underline the hight social cost of dementia (espe-

cially in Europe and United States) that has been estimated to have reached

160 billion of dollars worldwide and includes direct medical cost such as nurs-

ing home care, direct non-medical cost such as in home day care and indirect

cost such as the loss of productivity of both patient and caregiver.

3.2 Overview on findings about dementias’

causes and progression mechanisms

The effective cause of Alzheimer’s disease has not been identified yet and

represents an open research challenge. Several significant hypotheses have

been stated and are object of scientific research. Between them, we will fo-

cus on amyloid hypothesis and tau hypothesis. The former was elaborated

in 1991. It is supported by the fact that amyloid precursor protein (APP)

is localizated on cromosome 21, together with the fact that people with tri-

somie 21 (Down Syndrome) who have an extra gene copy almost universally

exhibit AD by 40 years of age. Moreover transgenic mices that express a
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mutant form of human APP develop Alzheimer’s-like brain pathology with

spatial learning deficits.

Beta amyloid (Aβ or Abeta) denotes peptides from 36 to 43 amino acids and

represents the main component of the amyloid plaques found in the brains

of Alzheimer patients. Beta amyloid originates from a larger protein called

amyloid precursor protein (APP), a transmembrane protein that penetrates

through the neuron’s membrane. In Alzheimer’s disease certain enzimes cut

APP in ”smaller fragments” that give rise to Beta amyloid. Fibrils of beta-

amyloid produced by this process accumulate outside the neurons in dense

formations known as senile plaques.

Tau hypothesis involves tau proteins that are aboundant in neurons of the

central nervous system. Every neuron has a cytoskeleton, an internal sup-

port structure partly made up of structures called microtubules. The latter

act like tracks, guiding nutrients and molecules from the body of the cell

to the ends of the axon and back. Tau protein stabilises the microtubules

when phosphorylated, and is therefore called a microtubule-associated pro-

tein. In AD, as we will see later, tau undergoes chemical changes, becoming

hyperphosphorylated; it then begins to pair with other threads of tau and

create neurofibrillary tangles inside the nerve cell body. This process causes

the disintegration of the microtubules and the collapse of neuron’s transport

system with the consequent malfunctions in biochemical communication be-

tween neurons and later the death of the cells.

Findings show that the mechanism underlying the formation of the beta

amyloid plaques is based on the capacity of beta amyloid molecules to aggre-

gate in several forms of flexible soluble oligomers(that is a molecular complex

composed by a few monomers units). These oligomers can misfold, that is

can change their structure assuming a pathological conformation, and walk

throughtout local and then long-range cerebral circuits via transsynaptic

spread. Misfolded oligomers can induce other molecules of the same species

to adopt the pathological form, triggering a chain reaction in which these

misfolded proteins cascade along neuronal pathways. Tau protein shows a
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Figure 3.2: Formation of Beta-Amyloid plaques
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Figure 3.3: Disintegration of microtubules in brain cells due to misfolded tau

protein

similar behaviour as it can form misfolded oligomers that propagate from

the exterior to the interior of the cell and give rise to the misfolding of other

tau oligomers with the consequent creation of neurofibrillary tangles. These

mechanisms are also typical of other proteins like α-synuclein and TDP-43

involved in other dementias. Therefore the crucial observation is that all

dementias seem to share a common mechanism of progression that seems

similar to prions infections.

In fact, according to Prion Hypothesis, a prion is an infectious agent com-

posed of protein in a misfolded form. It is made of PrP protein, that in its

normal form (usually denoted by PrPC is found in the body of healthy people

and animals. A misfolded form of these protein, called PrP Sc is responsible

of a variety of diseases in mammals like, for example, bovine spongiform

encephalopathy (BSE, also known as ”mad cow disease”). When PrP Sc pen-

etrates an healthy cell , it acts like a template, inducing properly folded

proteins to assume the disease-associeted misfolded form.

Recent findings show that there is a relationship between Alzheimer’s disease

and PrPC proteins. The latter appears involved in impairment of memory.

More precicely, Aβ oligomers are responsible of synaptic toxicity on neurons
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with consequent damage of memory. It seems that this phenomenon is in-

duced by a receptive membrane and the noxious agent involved is the PrPC

protein. Morever prions proteins have been identified as APP-regulator,

pointing out the strong link between them. This ”prion-like” disease

Figure 3.4: Heterodimer model of prion replication mechanism: a single

PrP Sc molecule binds to a single PrPC molecule and catalyzes its conversion

into PrP Sc. The two PrP Sc molecules then come apart and can go on to

convert more PrPC

progression strongly supports the hyphotesis that the dementia’s disease is

trasmitted along neuronal pathways. The latter comes from medical findings

on neurodegeneration due to dementia.

Moreover, these studies show alterations in brain caused by neurodegenera-

tion, that in the case of bvFTD only involve the orbitofrontal cortex, while

in AD we have spatially distinct involvement of the posterior temporal het-

eromodal cortex due mainly to amyloid deposition. In conclusion, we can ob-

serve that various dementias selectively seem to affect distint intrinsic brain

areas, as these findings suggest.
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Figure 3.5: Fibril model of prion replication mechanism: it starts from the

assumption that PrP Sc exists only as fibrils. Fibril ends bind PrPC and

convert it into PrP Sc.
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Chapter 4

The Network Diffusion Model

4.1 Processing steps of the network diffusion

model

In this section we will describe a model of progression of Alzheimer’s

disease (that can be applied also to all demantias since they are supposed

to share a common progression mechanism by recent findings, as we saw in

the previous chapter) which point of depart consists in the hypothesis of

”prion-like” propagation of the disease and in its trasmission along neuronal

pathways.

In fact the misfolded proteins responsible of the disease are supposed to

”spread the pathological conformation” by inducing other proteins of the

same type to adopt it. Recently misfolded proteins in turn infect other prop-

erly folded proteins; therefore the progression mechanism is diffusive and the

number of infections at certain time increases according to the number of

infection observed previously i.e. it depends on the concentration in regions

of interest of the proteins involved in the process. In this view, in order to

represent how this ”prion-like” propagation takes place at microscopic livel,

we will introduce a ”diffusion model” i.e. a classical model of random dis-

persion of a certain factor (that, in this case, it is a ”disease factor”) driven

by concentration gradients . Moreover, each disease-causing agent (like ,for
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example, tau-protein or beta-amyloid) characterized by rate of propagation

along neuronal fibers proportional to concentration-levels differential of that

disease agent is well modeled by diffusion speed.

The first step of this research consists in analyzing how ”prion-like” prop-

agation of the disease acts on the healthy brain, restricting this diffusive

propagation to follow fiber pathways. Resulting macroscopic consequences

and dynamics of this process are then mathematically derived.

In order to build a dataset which the analysis is based on, 14 young healty

volunteers have been undergone MRI of the brain, followed by the whole

brain tractograpy of diffusion MRI scans. After that, specific areas of in-

terest in brain have been identified, underlining the connections between

them. In this way, ”healthy brain network” is built. MRI scans of 18 AD,

18 bvFTD, 19 age-matched normal subjects are analized in order to identify

patterns of disease. The ”prion-like” propagation of disease in the ”healthy

brain network” is derived by mathematical approach, and finally theoretical

results are compared with disease patterns experimentally obtained.

4.2 The network heat equation

In this section we will analyse by mathematical approach ”how” the prion-

like propagation of dementia acts on the healthy brain network. There-

fore we will describe the Network Diffusion Model whose main feature con-

sists in the approximation of the human brain with a finite weighted graph

G = {V (G), E(G)}, in which the vertices vi ∈ V (G) = {v1, .., vn} represent

the ith cortical or subcortical gray matter structure while the edges ei,j rep-

resent the connections by white-matter fiber pathways between structures i

and j.

Moreover, we introduce a coefficient ci,j that is a measure of ”how much”

the structures i and j are connected. ci,j is said ”weight” of the graph G. In

this way we build a ”brain network” in which the vertices vi comes from the

parcellation of brain MRI and ci,j is measured by fiber tractography.
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Figure 4.1: Diagram of the processing steps of the Network Diffusion Model:

(left) ”Healthy brain network” is obtained by MRI scans of 14 young vol-

unteers followed by whole brain tractograpy. Cortical and subcortical gray

matter regions are represented by nodes of the network, while the number

and the strength of fiber tracts that connect them are described by the edges

of the network. Proposed network diffusion model and its eigenmodes are

derived from this healthy network. Predicted atrophy patterns are plotted.

(right) Measurement of atrophy patterns of AD and bvFTD patients. Volume

of each cortical and subcortical grey matter region is measured. Atrophy of

each region is estimated through a statistic of interest between the diseased

and the age-matched normal groups. The results are plotted and compared

with predicted atrophy patterns.
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In order to explain the development of the network diffusion model we

consider a cerebral region R2 affected by Alzheimer’s disease and an un-

affected cerebral region R1. We observe that to simplify we will talk about

Alzheimer’s disease, but results can be extended to all dementias. Conversely

we introduce a function X2(t) that represents the concentration of the disease

factor in the region R2 at certain time t ∈ R+.

In the same way we define X1(t) for the region R1. We consider a time inter-

val [t, t+δt] and we set X2(t) = x2 and X1(τ) = 0, for τ < t. We will analyze

first the problem from microscopic point of view, describing the trasmission

of the Alzheimer disease throught a diffusive process of the disease factor.

The number of infections from region R2 to R1 at the time interval δt is

given by βc1,2x2δt, where c1,2 represents the inter-region connection strength

and β > 0 is the diffusivity constant that controls the propagation speed.

Moreover we have a reverse diffusion of a certain quantity x1 of the disease

factor that is transmited to R2 (this is equivalent to adfirm that at time t

the disease factor in R1 is given by X1(t) = x1). The number of infections

from region R1 to R2 is βc1,2x1δt.

Hence at time interval δt the concentration of the disease factor in R1 ranges

up to a quantity δX1 = X1(t+ δt)−X1(t) = βc1,2(x2− x1)δt. If we consider

the limit δt −→ 0 we have:

dX1(t)

dt
= lim

δt−→0

X1(t+ δt)−X1(t)

δt
= βc1,2(x2 − x1) (4.1)

We will generalize 4.1 to the entire brain network ( represented by the graph

G = {V (G), E(G)}) using the laplacian of a weighted graph. To this aim, we

will represent the disease factor at time t on the brain network by a vectorial

function

x : V (G)× R −→ Rn

x(t) = x(·, t) =


x1(v1, t)

...

xn(vn, t)


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in which the ith component xi(vi, t) expresses the disease factor at time t on

the vertex vi. Let H be the following n× n matrix with real entries:

Hi,j =


∑

i,j′ :e
i,j
′∈E(G) ci,j′ if i = j

−ci,j if vi and vj are adjacent

0 otherwise

(4.2)

From chapter one we know that the Laplacian of a weighted graph G is

defined to be

H = T
−1
2 HT

−1
2

where T is the diagonal matrix with the (i, i)th entry having the value dvi =∑n
j=1 ci,j. Therefore H is the following n× n matrix:

Hi,j =


1− ci,i

dvi
if i = j

−ci,j√
dvidvj

if vi and vj are adjacent

0 otherwise

(4.3)

Remark 8. As all brain region have not the same size, we normalize each row

and column of 4.2 in order to obtain 4.3.

If we consider a time interval [0, t] ⊂ R and an initial data x0 = (x1
0, . . . , x

n
0 ),

we can generalize equation 4.1 by the following homogeneous system of linear

differential equation:
dx(t)

dt
= −βHx(t) (4.4)

x(0) = x0

that is said ”network heat equation”.

Remark 9. It is important to underline that the initial data x0 represents the

initial pattern of the Alzheimer disease process.

From EDO theory we know that the solutions of 4.4 are of the form:

x(t) = exp[−βHt]x0 (4.5)
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Remark 10. The term exp[−βHt] is said ”diffusion kernel” and acts like a

spatial and temporal blurring operator. Equation 4.5 represents the ”reac-

tion” of the network in response to the propagation of the disease. Therefore

it can be interpreted as the impulse response function of the network.

In order to calculate the diffusion Kernel we consider the following general

results:

Definition 4.1. For an n× n matrix A we define exp[A] by:

exp[A] =
∞∑
h=0

Ah

h!

Lemma 4.2.1. The following statments hold:

1. (i) exp[0] = Id

2. (ii) exp[A+B] = exp[A] exp[B], if AB = BA

3. (iii) (exp[A])−1 = exp[−A]

4. (iv) exp[CAC−1] = C exp[A]C−1, if C ∈ GL(n,R) where GL(n,R) is

the set of all the invertible n× n matrices with entries in R.

Proof. Statment (ii) follows from:

exp[A+B] =
∞∑
h=0

(A+B)h

h!
=
∞∑
h=0

1

h!

h∑
k=0

(
h

k

)
AkBh−k =

=
∞∑
h=0

h∑
k=0

AkBh−k

k!(h− k)!
= exp[A] exp[B]

by using AB = BA. Statments (i) and (iii) are directly consecuencies of (ii).

In order to proove statment (iv), we consider that:

(CAC−1)h = CA(C−1C)A(C−1 . . . C)AC−1 = CAhC−1

Hence by definition of exponential we have that:

exp[CAC−1] =
∞∑
h=0

(CAC−1)h

h!
=
∞∑
h=0

CAhC−1

h!
=
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= C

(
∞∑
h=0

Ah

h!

)
C−1 = C exp[A]C−1

Lemma 4.2.2. Let A be a diagonal matrix:

A = diag{λ1, .., λn}

we have that:

exp[A] = diag{eλ1 , .., eλn}

Proof. By using the fact that Ah = diag{λh1 , .., λhn} and by definition we have

that:

exp[A] =
∞∑
h=0

Ah

h!
=
∞∑
h=0

diag{λh1 , .., λhn}
h!

=

= diag{
∞∑
h=0

λh1
h!
, ...,

∞∑
h=0

λhn
h!
} = diag{eλ1 , .., eλn}

As the adjacency is a symmetric relation we have that our matrix H

is symmetric with entries in R. This implies that its eigenvalues are real.

Moreover we can apply the spectral theorem that adfirms that we can de-

compose any symmetric matrix with real entries by using the symmetric

eigenvalue decomposition(SED). This means that there exists an orthogonal

matrix U = [u1, ..,un] such that

H = UΛUT

where Λ = diag{λ1, .., λn}. More precisely, ui is the eigenfunction for the

eigenvalue λi, i = 0, .., n. Moreover the λi are given by equations 1.11, 1.12

and 1.13. By using the previous results, equation 4.5 becomes:

x(t) = exp[−Hβt]x0 = exp[−UΛUTβt]x0 = U exp[−Λβt]UTx0 =
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=


u1

1 u1
2 . . . u1

n
...

...
...

...

un1 un2 . . . unn




e−λ1βt 0 0 0

0 e−λ2βt 0 0
... e−λiβt

...
...

0 0 0 e−λnβt




u1
1 u2

1 . . . un1
...

...
...

...

u1
n u2

n . . . unn




x1
0
...

xn0

 =


e−λ1βtu1

1 e−λ2βtu1
2 . . . e−λnβtu1

n

e−λ1βtu2
1 e−λ2βtu2

2 . . . e−λnβtu2
n

...
...

...
...

e−λ1βtun1 e−λ2βtun2 . . . e−λnβtunn




u1
1 u2

1 . . . un1
...

...
...

...

u1
n u2

n . . . unn




x1
0
...

xn0

 =


∑

j e
−λjβtu1

ju
1
j

∑
j e
−λjβtu1

ju
2
j . . .

∑
j e
−λjβtu1

ju
n
j∑

j e
−λjβtu2

ju
1
j

∑
j e
−λjβtu2

ju
2
j . . .

∑
j e
−λjβtu2

ju
n
j

...
...

...
...∑

j e
−λjβtunj u

1
j

∑
j e
−λjβtunj u

2
j . . .

∑
j e
−λjβtunj u

n
j




x1
0
...

xn0

 =


∑

i

∑
j e
−λjβtu1

ju
i
jx
i
0

...∑
i

∑
j e
−λjβtunj u

i
jx
i
0

 =


∑

j e
−λjβt(

∑
i u

i
jx
i
0)u1

j
...∑

j e
−λjβt(

∑
i u

i
jx
i
0)unj

 =

=


∑

j e
−λjβt(uTj x0)u1

j
...∑

j e
−λjβt(uTj x0)unj

 =

=
n∑
j=1

(e−βλjtuTj x0)uj (4.6)

Remark 11. In the Network Diffusion Model the eigenfunctions of the Lapla-

cian H are said eigenmodes.
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The eigenvalues of the Laplacian H are in the interval [0, 1] with a single

λ1 = 0 eigenvalue and a small number of near-zero eigenvalues. We observe

that:

lim
t−→+∞

e−βλit = 0

as β > 0, λi ≥ 0 i = 0, , n. The convergence speed depends on λi, i.e. the

bigger λi is, more quickly the function converges to zero.

This means that, considering equation 4.6, most eigenmodes ui that corre-

spond to larger eigenvalues decay quickly(that is for relatively small values of

the variable t), leaving only the eigenmodes, that correspond to the smaller

eigenvalues, to contribute.

The absolute values of the latter are said ”persistent modes” and are the

only eigenmodes significant in the progression of the Alzheimer disease.

4.3 Dynamics evolution of cortical atrophy

The main feature of the Alzheimer disease consists in the loss of neurons

and synapsis in the celebral cortex and in some subcortical regions, caused

primarly by a plaque accumulation of abnormally folded beta-amyloid or tau

amyloid proteins in the brain. Becoming structurally abnormal these proteins

reduce the capacity of the neuron to trasmit the nerve impulse and cause the

death of the neuron itself. In this sense the Alzheimer is said a misfolding

protein disease. This process of ”wasting away” of the affected regions of

the brain is called ”atrophy” and can be viewed like a measure of the livel of

progression of the Alzheimer disease. Moreover atrophy represents the most

important mascroscopic consequence of disease propagation. We will talk

about ”cortical atrophy” because the process involves the cerebral cortex.

In this view, we are interested in studying the evolution of the atrophy in the

time interval [0, t]. Therefore we make the hypothesis (on which this model

is based) that cortical atrophy in k-th region of the brain is the accumulation

of disease factor in k at time interval [0, t]. If we represent cortical atrophy

in the k-th region ( which in this model corresponds to the k-th vertex of the
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network) by a function φk, we get the following equation:

φk(t) =

∫ t

0

xk(τ)dτ (4.7)

Therefore on the whole brain we have:

φ(t) =

∫ t

0

x(τ)dτ (4.8)

From equation 4.6, we obtain:

φ(t) =

∫ t

0

x(τ)dτ =

∫ t

0

n∑
i=1

(e−βλiτuTi x0)uidτ =

=
n∑
i=1

∫ t

0

(e−βλiτuTi x0)uidτ =

=
n∑
i=1

−1

βλi
[e−βλiτ ]t0u

T
i x0ui =

=
n∑
i=1

(
1− e−βλit

βλi

)
uTi x0ui (4.9)

We observe that cortical atrophy can be seen like the sum of atrophy rela-

tive to each eigenmode. Moreover for each eigenmode ui the corresponding

atrophy increases with time and reaches its maximum in 1
βλi

uTi x0ui. The

time required to reach this quantity depends on λi and is bigger for the near

zero eigenvalues. This means that lasting and significant contribute to the

increase of atrophy i.e.to the progression of Alzheimer disease is observed

only in the persistent modes. Moreover the slower is the decay rate, the

more widespread and severe is the damage.

Remark 12. There is a significant relationship between the eigenvalues and

the prevalence rates of the Alzheimer disease. The latter are calculated by

comparing the number of people found to have the disease with the total

number of people studied.

Therefore if the eigenmodes are good models of the Alzheimer disease and if

we ignore genetic predisposition, population-wide prevalence rates should be
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reflected by the rate of progression of the eigenmodes that are given by 1
λi

.

We observe that prevalence rate are bigger for the near-zero eigenvalues. In

this view, we can adfirm that in the network diffusion model the persistent

modes play a fundamental role in the progression of Alzheimer disease.

If we introduce a time varying externally driven disease process α(t) the

dynamics of the system becomes:

x(t) =

∫ t

0

e−βHtx0α(τ)d(τ) = (e−βHtx0 ∗ α)(t) =

n∑
i=0

(e−βλit ∗ α)(t)uiu
T
i (4.10)

The meaning of equation 4.10 is that the behaviour of the disease dynamics

can be controlled by a small number of distinct eigenmodes also in the case

of an unknown external attack process.

Therefore the patho-physiological nature, location and frequency of neurode-

generative attack can be ignored in this model.

4.4 The role of the eigenmodes in Network

Diffusion Model

In the previous section we derived the ”eigenmodes” i.e. the eigenfunc-

tions of the laplacian H of the weighted graph G that represents the brain

network. We showed that the disease factor at time t, x(t) and the corre-

sponding atrophy function φ(t) can be written in terms of these eigenmodes.

Morever, we saw that only a few number of eigenvalues is significant in the

progression of disease.

Therefore its corresponding eigenfunctions, that we call ”persistent modes”

are the only one that determine atrophy patterns in this model. These con-

siderations suggest that there is a strong corrispondence between the healthy

network’s eigenmodes, that can been seen as spatial distinct patterns, and

atrophy patterns of normal aging and dementia. Moreover, this statment is
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also consistent with findings showing as various dementias selectively target

distinct intrinsic brain regions. As the eigenfunctions of the Laplacian of

a graph are fuctions on the set of the vertices of the graph, the eigenfunc-

tions significant for the progression of atropy are calculated and their values

on each vertex of the network are compared (as it is shown in figures 4.2,

4.3, 4.4) with the amount of atrophy measured for each form of dementia

(considered in the dataset) in the cerebral area corresponding to that ver-

tex. Strong corrispondence is observed between theoretical and sperimental

results. In fact, the first eigenmode that corrispond to the eigenvalue λ1 = 0

varies simply according to region size, in strong resemblance with atrophy

seen in normal aging. The second most persistent mode is a good representa-

tion of Alzheimer’s atrophy in mesial posterior cingulate, limbic structures,

lateral temporal and dorsolateral frontal cortex. The most involved areas by

this eigenmode are the medial and lateral temporal lobe and the dorsolateral

prefrontal cortex that are respectively implicated in memory and working

memory. The third eigenmode closely resembles bvFTD atrophy patterns

that typically involve orbifrontal and anterior cingulate regions, as shown by

recent findings. Brain regions where this eigenmode is particularly strong

are the lateral temporal lobe and the superior frontal, dorsolateral orbital

cortices. The latter deals with decision making, balancing risk versus reward

and ihibition. Its degeneration can cause disinhibite behaviour, that is the

main symptom of bvFTD.

We have adfirmed in several occasions that the Network Diffusion Model

is based on the hypothesis of prion-like diffusion of the disease. Therefore if

dementias share this concentration-dipendent diffusive mechanism that can

reproduce atrophy patterns, we are allowed to consider the possibility that

although etiologically distinct, the various dementias have common macro-

scopic consequences. In fact the model considers a generalized ”disease fac-

tor” without differentiate among its origins or causes. This is justified, con-

sidering that the specific biochemical properties of the prion-like agent may

be inconsequential for the macroscopic manifestation of disease. For exam-
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Figure 4.2: Visual corrispondence between theoretical prediction and mea-

sured Alzheimer’s atrophy patterns: Wire-and-ball plot represent whole brain

atrophy patterns, where each brain region of interest is depicted as a ball

whose size is proportional to the atrophy level in that area. The color of

the ball denotes the lobe of interest: blues stands for frontal lobe, purple

parietal lobe, green occipital lobe, red temporal lobe and cyan subcortical

region.(Top) Theoretical prediction of atrophy is based on the second eigen-

mode of the young healthy brain network’s Laplacian matrix H. The second

eigenmode evalueted at each region of interest is represented by the size of

the corresponding ball.(Bottom) Measured atrophy patterns obtained by 18

AD patients are represented. We observe strong correspondence between

predicted and measured atrophy.
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Figure 4.3: Visual corrispondence between theoretical prediction and mea-

sured bvFTD’s atrophy patterns:(Top) Theoretical prediction of atrophy is

based on the third eigenmode of the young healthy brain network’s Lapla-

cian matrix H. The value of the third eigenmode at each region of interest

is represented by the size of the corresponding ball.(Bottom) Atrophy pat-

terns measured in brain region of interest obtained by 18 bvFTD patients

are represented by the size of the corresponding ball. We observe strong

resemblance between predicted and measured atrophy.
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Figure 4.4: Correlations between Measured Atrophy of AD/bvFTD versus

Predicted Atrophy from the First Three Eigenmodes of the Young Healthy

Network: The x axis in each panel represents a measured level of atrophy

through a statistic of interest (bottom). The y axes are eigenmodes of the

healthy network: u1 (left column), u2 (middle column), and u3 (right col-

umn). Each dot in the plots corresponds to a single grey matter region.

Different colors of dots stand for different lobes. A line of best fit is also

shown in each panel. Correlations within diagonally located panels are high,

and correlations in off-diagonal panels are low. Most significant plots are

indicated by green boxes, and they are along the diagonal panels. High

correspondence between eigenmodes and dementia atrophy is shown.
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ple, the spatial distribution of beta amyloid pathology in AD is not well

correlated with whole brain atrophy patterns , while tau is well-correlated.

However, neither tau nor beta amyloid are specific to AD and are found in

semantic dementia or frontotemporal lobar degeneration (FTLD) subtype.

These results show that clinical presentation of dementias depends only on

the brain regions they affect and this agree with what proposed by network

diffusion model, as the macroscropic consequences of disease progression are

presented without analyzing the ”disease factor” in its specific.

The main contribution of the model is that it turns qualitative understanding

of disease’s transmission into a quantitative model and provides a plausible

alternative explanation for the apparent selective vulnerability of brain re-

gions in various dementias.

4.5 Medical and diagnostic implications of the

model

Patterns of dementia obtained by Network Diffusion Model agree with

patterns of demetia provided on analysis on affected patients. Moreover in

this model there is not any dependence on the brain region affected or in

which the disease originates, as its point of depart consists in the statement

that although the various dementias have different causes and produce differ-

ent effects due to brain degeneration, they are supposed to share a common

mechanism of progression. Conclusions of the model do not depend on inter-

subjects variability or on instruments used to build the network and finally

the model underlines the strong link existing between age and dementia.

Conseguences of these findings are significant from a medical point of view,

as thanks to the strong correspondence between atrophy and eigenvalues fu-

ture radiologists instead of analyse high dimentional and more complex whole

brain atropy, may look only at the contribution the first three eigenmodes.

Therefore they will deal with a simpler problems.

Another important consequence of this model is that it allows to predict
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decline. In fact, starting from equation 4.1 and MRI of the patient, future

patterns of atropy can be predicted. Kwoledge of what the future holds

allows prevention and informed choices regarding lifestyle.
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Chapter 5

Appendix

5.1 The calculus of the exponential matrix

Theorem 5.1.1. Let A be a n × n matrix, the exp[tA] is calculated by the

following formula

exp[tA] =
k∑
i=1

eλit[In +
n−1∑
h=1

th

h!
Nh]Pi(A) (5.1)

where λi i = 1, .., k are the distinct eigenvalues of A, N is a nilpotent ma-

trix that follows from the S-N decomposition of A and Pi(A) are projection

matrices.

Remark 13. We define the projection Pi(A) in the following way: let λi

i = 1, .., k be the distinct eigenvalues of A, mi their respective multiplicities

and pA(λ) = (λ− λ1)m1(λ− λ2)m2 ...(λ− λk)mk the characteristic polynomial

of A. We can decompose 1
pA(λ)

into partial fraction 1
pA(λ)

=
∑k

i=1
Qi(λ)

(λ−λi)mi

where for every i the quantity Qi is a non zero polynomial in λ of degree not

greater than mi−1. Therefore

1 =
k∑
i=1

Qi(λ)Πh6=i(λ− λh)mh (5.2)

. We set

Pi(λ) = Qi(λ)Πh6=i(λ− λh)mh (5.3)

61
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Hence we define the projection by:

Pi(A) = Qi(A)Πh6=i(A− λhIn)mh (5.4)

We note that from 5.2 and 5.3 it follows:

1 =
k∑
i=1

Pi(λ)

and from 5.4

In =
k∑
i=1

Pi(A)

Before proving the theorem, we enunciate an other useful result:

Theorem 5.1.2. Let A be an n×n matrix with complex entries. Then there

exist two n × n matrices S, N(where S stands for symmetric matrix ) such

that:

1. S is diagonalizable

2. N is nilpotent

3. A = S +N

4. SN = NS

Moreover the two matrices are uniquely determinated by these four conditions

and if A is real, also N and S are real.

Proof. We prove first the existence of S and N . We define S by

S = λ1P1(A) + λ2P2(A) + ...+ λkPk(A)

where where λi i = 1, .., k are the distinct eigenvalues of A, Pi(A) are pro-

jection matrices. We consider the linear map

Pi(A) : Cn → Cn

q → Pi(A)q



5.1 The calculus of the exponential matrix 63

and we denote by Vi its image. We observe that a vector p ∈ Vi if and only

if Pi(A)q = p for some q ∈ Cn. Therefore we have:

Pi(A)p = Pi(A)2q = Pi(A)q = p

by projections propriety. Let ni be the dimension of the space Vi over C and

let pi,l : l = 1, .., ni be a basis for Vi. Then there exists an ni×ni matrix such

that

(A− λiIn)[pi,1, pi,2, .., pi,ni
] = [pi,1, pi,2, .., pi,ni

]Ni

as the coordinate-wise representation relative to this basis. By the previous

observation this implies that:

(A− λiIn)lPi(A)[pi,1, pi,2, .., pi,ni
] = (A− λiIn)l[pi,1, pi,2, .., pi,ni

] =

= [pi,1, pi,2, .., pi,ni
]N l

i

for l ∈ N0. By projections propriety we have that (A − λiIn)miPi(A) = 0;

this implies [pi,1, pi,2, .., pi,ni
]Nmi

i = 0 and therefore Nmi
i = 0. Hence Ni is a

nilpotent matrix. Thus we obtain:

A[pi,1, pi,2, .., pi,ni
] = [pi,1, pi,2, .., pi,ni

](λiIn +Ni)

Let {pj,l, l = 1, .., nj} be a basis for Vj, j = 1, .., k. Set

P0 = [p1,1, ..,p1,n1
,p2,1, ...,p2,n2

, .....,pk,l, ...,pk,nk
] (5.5)

. Then P0 ∈ GL(n) and we have that:

P−1
0 AP0 = diag[λ1I1 +N1, λ2I2 +N2, ..., λkIk +Nk] (5.6)

Therefore, we define:

S = λ1P1(A) + λ2P2(A) + ...+ λkPk(A)

and N = A− S. By expression 5.5, we have that:

P−1
0 SP0 = diag[λ1I1, λ2I2, ..., λkIk]
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and

P−1
0 NP0 = diag[N1, N2, ..., Nk]

. Hence S is diagonalizable and N is nilpotent. Moreover NS = SN as N

and S are polynomials in A.

The existence of N and S satisfying items i, ii, iii, iv is shown. In order

to prove the uniqueness, we consider an other pair (N̄ , S̄) of n× n matrices

satisfying items i, ii, iii, iv. Then iii and iv imply that S̄A = AS̄ and

N̄A = AN̄ . Hence S̄S = SS̄, N̄N = NN̄ , NS̄ = S̄N and SN̄ = N̄S since

S and N are polynomials in A. This implies that S − S̄ is diagonalizable

and N − N̄ is nilpotent. Therefore, from S − S̄ = N − N̄ , it follows that

S − S̄ = N − N̄ = O.

We are ready to prove theorem 5.1.1

Proof. Let Pj(A) j = 1, .., k be the projections defined as in 5.4. By using

the previous theorem we have:

In =
k∑
i=1

Pj(A)

S =
k∑
i=1

λjPj(A)

N = A− S

and

Pj(A)Pi(A) =

Pj(A) if i = j

0 if i 6= j

Matrices N and M commutes.

Let Vj be the immage of the map Pj(A) : Cn −→ Cn. It is known that

Sp = λjp for p ∈ Vj. It follows that Slp = λljp. Therefore:

exp[tS]p =

{
1 +

∞∑
h=1

(λjt)
h

h!

}
p =

= eλjtp
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and

exp[tN ] = In +
n−1∑
h=1

Nhth

h!

since N is nilpotent. Hence:

exp[tA]p = exp[tS + tN ]p = exp[tS] exp[tN ]p =

= eλjt exp[tN ]p =

= eλjt

[
In +

n−1∑
h=1

Nhth

h!

]
p (5.7)

for p ∈ Vj.
Applying 5.7 to a general p ∈ Cn, we obtain:

exp[tA] =
k∑
j=1

eλjt

[
In +

n−1∑
h=1

Nhth

h!

]
p (5.8)

for p ∈ Cn and the proof is complete.

5.2 The structure of solutions of homogeneous

linear systems of EDO

In this section we will analyze some basic results concerning the structure

of solutions of homogeneous linear systems of linear differential equations

given by:
dy

dt
= A(t)y (5.9)

where the entries of the n × n matrix A are continuous on an interval I =

{a ≤ t ≤ b}.

Theorem 5.2.1. The solutions of 5.9 form an n-dimentional vector space

on C.

Proof. The proof is diveded in three observations:
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• Observation I:

Any linear combination of a finite number of solutions of 5.9 is a solution

of 5.9. Moreover each column vector of a solution Y of the differential

equation
dY

dt
= A(t)Y (5.10)

on an n× n unknown matrix Y is a solution of system 5.9. Therefore

constructing an invertible solution Y of 5.10 we can construct n linearly

indipendent solutions of 5.9. If an n × n matrix Y (t) is a solution of

5.10 on an interval I = {a ≤ t ≤ b} and Y (t) ∈ GL(n) ∀t ∈ I, then it is

called fundamental matrix of solutions of 5.9 on I. Moreover n columns

of a fundamental matrix of solutions of 5.10 form a fundamental set of

n linearly indipendent solutions of 5.9 on interval I.

• Obsevation II:

Let φ(t) be a solution of 5.10 on I. Also, let ψ(t) be a solution of the

adjoint equation
dZ

dt
= −A(t)Z (5.11)

on the interval I where Z is an unknown matrix. Then

d

dt
[ψ(t)φ(t)] = −ψ(t)A(t)φ(t) +−ψ(t)A(t)φ(t) = O

This implies that the matrix ψ(t)φ(t) is indipendent of t. Therefore,

ψ(t)φ(t) = ψ(τ)φ(τ) for any fixed point τ ∈ I and for all t ∈ I. In

particular in the case when φ(τ) ∈ GL(n) by choosing ψ(τ) = φ−1(τ),

we obtain ψ(t)φ(t) = In for all t ∈ I.

• Observation III:

Denote by φ(t, τ) the unique solution of the initial value problems:

dY

dt
= A(t)Y Y (τ) = In (5.12)

where τ ∈ I. Then φ(t, τ) ∈ GL(n) for all t and the general structure

of solutions is given by the following theorem, whose corollary is the

theorem that we are proving.
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Theorem 5.2.2. The Cn valueted function y(t) = φ(t, τ)η is the unique

solution of the initial value problem

dy

dt
= A(t)y y(τ) = η

where η ∈ Cn, while the n×n matrix Y = φ(t, τ)Γ is the unique solution

of the initial value problem

dY

dt
= A(t)Y Y (τ) = Γ

where Γ ∈ Mn(C)

Remark 14.

• The general form of a fundamental matrix of solutions of 5.9 is given

by Y = φ(t, τ)Γ where Γ ∈ GL(n)

• If a fundamental matrix of solutions in given by Y (t) = φ(t, τ)Γ, then

Y (τ) = Γ. Hence

φ(t, τ) = Y (t)Y (τ)−1

for any fundamental matrix solution Y (t). In particular

φ(t, τ) = φ(t, τ1)φ(t, τ1)−1

for t, τ, τ1 ∈ I

• The solutions of the differential equation

dy

dt
= Ay (5.13)

where A is a matrix with constant coefficients are given by 5.8.
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realtà è romana) e la sua ironicissima filosofia di vita, Silvia, Giulia, Giacomo,

Michela, Daniele, Enzo, Francesca, Alex, Marco, le ”belle Else” ovvero Ilaria,

Lara, Elisa, Carlotta, Federica e Annalisa per le felici serate passate insieme

e per aver reso cosi belli e indimenticabili i miei anni universitari a Bologna.

Ringrazio la gentilissima e professionalissima Alice Barbieri, per essere sem-

pre di grande aiuto e dalla parte degli studenti.

Ringrazio i miei amici erasmus ”madrileni”: Michele, Giada, Sarah, Marielle,

Tabea, la Greciana e Maria Ines per l’allegria, il confronto culturale e i bei

momenti trascorsi in terra ispanica. Ringrazio i vicoli e i portici di Bologna,

luogo di a volte solitarie e lunghe passeggiate, e le loro bellissime luci, e gli

scorci inaspettati.

Ringrazio mia mamma, mio padre e la mia piccola sorella Valeria.


