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Abstract

Nell’ultimo decennio l’avvento delle architetture multi-processore su

singolo chip (MPSoC) ha consentito ai progettisti di superare numerose bar-

riere tecnologiche. La tendenza ad integrare un numero sempre maggiore

di processori sullo stesso chip è tuttora predominante, sia in ambito general-

purpose che embedded computing, e ci ha condotti all’era dei many-cores.

Questa evoluzione ha portato a delle conseguenze non trascurabili nell’uso

di questi sistemi. Lo sfruttamento efficiente del potenziale computazionale

di queste architetture massivamente parallele ha introdotto una nuova serie

di problemi a cui la comunità scientifica cerca di rispondere con l’utilizzo

misto di tecniche hardware e software. Tra i principali problemi di scalabilità

per queste architetture troviamo l’interconnessione tra unità di calcolo e

la memoria. La gerarchizzazione della memoria e l’accoppiamento stretto

tra processori è un problema ancora aperto su cui la comunità scientifica

sta lavorando. Una tipica risposta a questi problemi è il raggruppamento in

cluster di risorse computazionali localmente vicine per sfruttare il principio

di località.



Se da un lato un sistema di interconnessione gerearchico consente

la scalabilità, dall’altro, unito ad un parallelismo di centinaia di unità com-

putazionali all’interno dello stesso chip, porta alla necessità di una profonda

modifica dei modelli di programmazione. Sviluppare software che siano

adatti a questo genere di architetture porta difficoltà nella programmazione

e nella gestione dei flussi di esecuzione di ogni singolo processore. Avere

molte unità computazionali porta anche a dei problemi di condivisione delle

risorse, come ad esempio la memoria e le varie periferiche di input/output

disponibile nella piattaforma. Per sopperire a questi problemi, i modelli di

programmazione, e i sistemi di runtime associati, che gestiscono questi

processori si sono evoluti a tal punto da diventare dei componenti essenziali

al funzionamento di queste piattaforme.

Ad esacerbare la difficoltà di utilizzo dei manycores basati su cluster

si aggiunge il problema della variability, che affligge i moderni sistemi

prodotti con tecnologia nanometrica. I difetti, o in generale la variability,

introduce eterogeneità nel sistema, perchè dei core nominalmente identici

per funzionare nella stessa maniera hanno bisogno di operare con voltaggi

e frequenze diversi. Per evitare di utilizzare dei margini troppo conservativi,

che fanno perdere in performance ed energia, si possono usare circuiti di

controllo d’errore, e tecniche di correzione degli stessi. Lo svantaggio è che

comunque la gestione puramente hardware degli errori ha un costo. Questo

costo si può ridurre se il sofware capisce quale particolare attivazione dei

datapath fa scaturire questi errori (i.e., quale flusso di istruzioni) e ne

minimizza la probabilità con la nostra tecnica.

Il primo contributo che porta questa tesi è stato l’estensione del modello

di programmazione. OpenMP 3.0, che supporta la gestione di flussi di ese-

cuzioni paralleli irregolari e dinamici (tasking). Un tipico esempio possono

essere gli algoritmi ricorsivi o la ricerca in grafi come gli alberi. Abbiamo

implementato un runtime ottimizzato per la gestione di questo modello di

programmazione per acceleratori embedded con processori strettamente

accoppiati in cluster e poi interconnessi attraverso una network on chip.

Ci siamo focalizzati sulla loro scalabilità che è il requisito fondamentale

richiesto in questo genere di acceleratori e sul supporto di task di granular-
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ità fine, come è tipico nelle applicazioni embedded. Tramite i meccanismi

proposti abbiamo raggiunto un buon livello di scalabilità. In particolare, sia

nell’architettura single cluster che in quella multi cluster abbiamo raggiunto

un speedup di 84% già con una dimensione di 5.000 operazioni ALU per

task. Entrambe le soluzioni raggiungono questo speedup a questa granu-

larità, questo significa che il runtime multi cluster ha la stessa scalabilità

del single cluster avendo però x4 volte il numero dei processori e un livello

in più di interconnessione (NoC).

Per cercare di minimizzare i problemi dati da fenomini di variability,

il secondo contributo di questa tesi è stata proporre una estensione del

runtime di OpenMP che cerca di prevedere la manifestazione di questi errori

tramite una schedulazione efficiente del carico di lavoro. I core soggetti a

questo fenomeno fisico formano quindi un sistema manycore eterogeneo.

Ogni core è affetto da variability dipendentemente dal tipo di unità funzionali

compromesse. All’interno del nostro ambiente di simulazione assumiamo

un modello di errore che rappresenta gli effetti della variability come eventi

che si manifestano con una certa probabilità sui vari path della logica (i.e.,

sul datapath). La metodologia di caratterizzazione del RTL di un core

SPARC a diversi operating points da cui abbiamo derivato le probabilità

di errore. Tramite il tasking model di OpenMP usiamo questo modello di

errore per definire unità di lavoro rappresentate come dei task che poi

vengono caratterizzati per ogni core. Lo scheduler che abbiamo integrato

in OpenMP utilizzata questi metadati per una schedulazione efficiente (i.e.,

che causi meno errori) del carico di lavoro che l’acceleratore deve eseguire

Infine tramite un esteso set di benchmark abbiamo poi valutato l’efficienza

della nostra soluzione in cui abbiamo raggiunto in media una esecuzione il

22% più veloce e del risparmio nel consumo di energia del 35%.
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Chapter 1

Introduction

1.1 Work Motivation

Before the advent of parallel architectures, processor development was

based on increasing the clock frequency and the instruction throughput

that a single core was able to perform. While the Moore’s law continues to

be valid, the power wall for which a transistor cannot increase his power

and clock frequency have determinate a deeply change how system archi-

tectures are realized. Before reaching this limit, processor manufacturing

was based on increasing these two factors to maintain the growth of perfor-

mance. Afterwards, engineers had to focus on how to increase the number

of instructions executed by employing multiple processors on the same time.

This approach opened the era of parallel computing, where roday hundres

to thousands of processing units are integrated in the same processor.

Moreover, the nanotechnology era in semiconductor circuits also brings

side effects during the manufacturing of these chips. These side effects

broadly go under the name of “variability” and the most common effect

is violation of timing specification. Nowadays, these behaviors are very

common and variability is an active field of research where approaches

are being explored for mitigating timing errors through hardware/software

solutions.



1.1.1 Heterogeneous Embedded Systems Equipped with

Many-Core Cluster-Based Accelerators

Embedded systems have been revolutionized by the emergence of new

parallel architectures with a very large number of processing units.

These embedded many-core accelerators have found a very profitable

area where they could be used to increase performance and reduce energy

consumption of computation intensive and highly-parallel code kernels.

Heterogeneous systems which combine a general-pourpese “host” pro-

cessor to an accelerator with a high parallelism compared to a traditional

single powerful processor are nowadays common on high-end embedded.

Conversely, they need a new programming model. A single-core program-

ming model is based on a two simple concepts: i) having a huge private

memory ii) and a single processing unit. Extensions required in embed-

ded many-core programming stem from their most peculiar architectural

features: the high number of parallel threads enabled and the use of an

explicitly-managed memory hierarchy with non-uniform access (NUMA).

The main difference between single core and many-core cluster-based

accelerator is the high number of processing units that they have and a

non-caching data hierarchy memory to minimize delays due to physical

distance. On the downside, these systems require traditional programming

models to be significantly revisited and extended.

1.1.2 Parallel Programming Models

Parallel architectures are complex and is not a trivial task to exploit

them in a efficient way. Moreover, modern embedded applications often

expose a high degree of parallelism.

Enclosing parallelism resources in a software abstraction that provides

an easy and coherent runtime layer is a key aspect to achieving perfor-

mance and platform usability. Consequently, several runtime systems have

been proposed to support parallel programming models. Different runtime

have been proposed for different scenario, but we can divide them in two
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large families: based on shared memory and on message passing.

For embedded system, researchers have mostly focused on shared-

memory, driven by the nature of their hardware architecture (mainly based

on a multi-level explicitly managed (i.e. non cache-based) shared mem-

ory). Runtime layers have a wide impact on performance, thus minimiz-

ing overheads is a primary challenge. Embedded systems have always

had constrained resources and typically runtime support implemented as

lightweight middleware running on bare. A good runtime must have a deep

knowledge of underlying hardware and should expose a powerful set of

APIs to abstractive parallel resources. The main challenges in designing

an efficient runtime for an embedded manycore are i) providing an interface

that is rich enough to effectively use all the underlying hardware poten-

tial and ii) considering a streamòined implementation that minimizes the

overheads.

1.1.3 Variability in Many-Core Cluster-Based Processors

While scaling of physical dimensions of CMOS in semiconductor circuit

opens the way to many-core processor chips, variability problems within

die grow as well. Variation is manifest from different physical sources and

has static and dynamic components. Static variations manifest themselves

as manufacturing problems, cores across the wafer have different working

frequency. These induce a fixed mismatch of performance. Dynamic

variation changes during run-time based on the environment where cores

are used, typical examples are dynamic voltage drops and temperature

fluctuations within die.The mainly manifestation of variability is violation

of timing specification caused of circuit-level errors. For this reason an

important aspect is having a robust system design and recovery mechanism

to ensure error-free completion of the errant instructions.

Variability problems induce asymmetric behavior in fabricated chips that

can bring unbalancing computational workloads if cores are considered

as all equal. Moreover, having a balanced workload is not a trivial task

because variation can change dynamically at run time, thus scheduling of
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parallel tasks must take into account the type of workload.

1.1.4 OpenMP Tasking Model and Variability

OpenMP is a shared memory programming model consisting of a

collection of compiler directives and library routines to allow C, C++, and

Fortran developers to write multi-threaded applications. For this reason,

OpenMP has been very successful on exploiting parallel architectures

making them easily available. Until specification version 2.5, it has been

focused on loop-level parallelism where each iteration can be independently

performed.

Given the increasing complexity of applications and their irregular and

dynamic structure, OpenMP has recently provided a set of new directives

to improve flexibility to the previously loop-centric nature. This model is

called ”tasking” and it has been embodied in OpenMP since specification

3.0. Different parallel programming models are based on tasking like CILK

[37] and Intel Threading Building Blocks [45]. Tasking allows programmers

to specify independent units of work that can be performed asynchronously,

independently of the execution flow. When a thread is ready to perform

a task, it asks the run-time library to get one. Explicit synchronization

constructs to guarantee completion of tasks have been incorporated in

the specification, plus some implicit synchronization points in the runtime

environment.

Tasking is a good candidate to characterize different workloads, this

approach allows easy integration of a new scheduling strategies to mitigate

variability based on the status of cores by nclosing a set of lines of code in

a pragma directive, is possible to define a new task and choose what is the

best core where this workload must be performed.

1.2 Overview of the Thesis

This document describes a implementation of the OpenMP specification

3.0 for an embedded cluster-based many-core processor focusing on two
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aspects: i) tasking for single and multi-cluster architectures and ii) how

to mitigate variability problems using a software approach based on the

OpenMP runtime.

In chapter 2, we analyze our main target architecture based on a many-

core cluster-based processor, moreover we describe the different simulation

environments that we used. Here, we describe the two architectures that

we use to study variability and tasking model implementation problems.

Chapter 3 takes in exam support of tasking model for OpenMP in a

embedded many-core processor. We describe the starting implementation

for single-cluster architecture on which we based our work and how we

extend the runtime to support many-cores. After that, we discuss how

we integrate our tasking framework with nested parallelism to exploit the

clustering of data. We talk about our experiments and how can vary the

efficiency of our infrastructure having a nested-aware runtime.

Chapter 4 explores our OpenMP extensions to mitigate hardware vari-

ability in a single-cluster environment, using various parallel constructs,

including task, section and for loop. We present here a complete soft-

ware solution to handle variability issues hiding the heterogeneity caused by

variability effects. We demonstrate the effectiveness of our approach with

a large set of benchmarks and a different granularity of variation-affected

cores.

The last part of the thesis concludes the work presenting final results.
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Chapter 2

Target Architecture

In this chapter we describe our architectures used for experimental. We

use a SystemC-based virtual platform, we take in exam two different archi-

tectures. First, it is a single cluster equipped with sixteen cores where we

can simulate variation behavioral changing voltage clock and temperature

degree independently for each core. We use this architecture to present

our implementation for tasking model in the first part of Chapter 3, and even

in the Chapter 3 to validate our methodology to mitigate variation effects.

Second, we have a multi-cluster architecture inspired by STMicroelec-

tronics P2012 [13] that we use to submit our tasking support for multi-cluster

processors and we deeply describe in the second part of Chapter 3.

2.1 Cluster

In this section we submit prevalent components of our target architec-

ture considered in this this work. The main use that we do with single-cluster

virtual platform is to exploit variability problems that afflict nanometric tech-

nology in modern processors.



Figure 2.1: Cluster

2.1.1 Processing Units

Each single cluster contains up to sixteen 32-bit in-order ARMv6 pro-

cessors. This processors are based on RISC LEON-3 [20] core with

technology on 45-nm. All cores have Harvard architecture, so they have a

private instruction cache with 16 KB of memory and no data cache. This

is a set-associative cache and works in coupled with a large L3 memory

where are stored all program instructions.

2.1.2 Tightly Coupled Data Memory - L1 Memory

Cores communicate with a multi-banked, multi-ported Tightly-Coupled

Data Memory (TCDM) through a logarithmic interconnection. Each bank
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has a access port and we equip with K banks, where k is a multiple number

of the cores. TCDM supports up to sixteen concurrency transaction, so all

cores can access memory in the same clock cycle if memory addresses

are in different banks. To minimize concurrence problems, banks have inter-

leaved memories at the word-level to avoid memory transaction challenge

in logically contiguous data structures. TCDM has only 256 KB size of

memory, the rest of data and instructions are typically stored in larger L2 or

L3 memory.

In this architecture, to guarantee synchronization among cores, has

been equipped with a test-and-set memory on a dedicate bank. This

memory return the content of the target memory location and updates the

value in a single clock cycle (atomically). Hence, test-and-set memory can

be accessed with standard read/write memory operations as any other

memory address.

2.1.3 Logarithmic interconnect

Cores communicate with TCDM through a low-latency high-bandwidth

logarithmic interconnection built as a parametric, fully combinational Mesh-

of-Trees (MoT) design [14]. MoT allows 1-cycle L1 access, this behavior is

compatible with pipeline depth for load/store for most processors.

9



Figure 2.2: Mesh of trees 4x8 (banking factor of 2)

If multiple cores try to read the same address memory, MoT can service

whole in 1-clock cycle through a broadcast read. But can happen that

multiple cores try to access different addresses that are present in same

bank, in this case requests are sequentialized on single bank port. This

is also valid when multiple cores try to write in the same memory bank.

Therefore, in the worst case, we can have at most N delayed memory

transactions, where N is the number of cores within cluster.

2.1.4 Cluster Components

The cluster has a L2/L3 peripheral interconnect that through a demulti-

plex stage communicate with the outer world. In the embedded processor

cluster energy saving is a key aspect to achieve, therefore to improve mem-
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ory transfer, the cluster has a DMA engine. This is a simple DMA with one

slave port on the peripheral interconnect where cores can directly program

a transfer through memory mapped register and two master ports, one on

the data interconnect and one on the system interconnect to move data.

2.2 Multi Cluster

The many-core platform is composed of a number of described above

clusters interconnected via a NoC. This work take in exam a simple 2x2

mesh as show in Figure x. For each node of NoC is linked a cluster, plus

there is a memory controller to the off-chip main memory. According with

shared memory architecture, all core can explicitly access every memory

segment because they are mapped in a global address space. Clearly,

memory transaction outside of own TCDM are subject to NUMA effects:

higher latency and smaller bandwidth. The NoC is implemented as asyn-

chronous network, this allows the clock frequency tuning separately for

each cluster. In the table below, we summarize latency effects to access

different memory levels for a local core:

Local TCDM 1 cycle
Remote TCDM 10 cycles
L3 Memory - DRAM 50 cycles

Table 2.1: Latency time between core and different memories without concurrency

2.3 Host-Accelerator Interface

In real heterogeneous architectures, host processor and accelerator can

execute in an asynchronous parallel fashion, and exchange data using non-

blocking primitives. Usually the host processor, while running an application

can offload asynchronously workloads to the accelerator to increment the

efficiently of his work. Host processor can check the status of the workload

11



only when needed and synchronizing results between accelerator memory

and host processors main memory.

In our virtual platform host processors and accelerator are simulate

to start their execution in parallel and the first operation done from host

processor is to load the job on the accelerator and starts its execution. The

simulation ends when the jobs is completed and all statistic are available to

the host processor.
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Chapter 3

Tasking support for embedded
many cores

Research work described in this Chapter is a part of my thesis that

I conducted at Microelectronic Embedded Systems Laboratory (MESL).

This work is focused on the starting implementation of the OpenMP task-

ing model suitable for embedded many-core cluster-based processors.

We focus our work on the scalability of two runtime (single-, multi-cluster

implementation) and in future works we will deeply validate these imple-

mentations with a full set of benchmarks.

3.1 Introduction

Since last decade, many-core processors has dominated the field of

embedded and general-purpose architectures. This why the Moore’s law

predictions is even valid but the shrinking of transistor has reach a wall

where powerful single core architecture has not much be able to achieves

high efficiently in Gops/watt. This evolution brought to the many-core era

where hundreds of single processing units (PU) are integrated in a single

die. Architecture with high number of cores included in the same package,

change drastically the scalability of many-core processors. To avoid these

issues, engineers have focused on improving the interconnection systems



for such large amount of PUs. At instance, Plurality’s HyperCore Archi-

tecture Line (HAL) processors [34], ST Microelectronics STHORM [35],

or massively data-parallel architectures such as NVIDIA Fermi GP-GPUs

[36]. All these architectures have a large number of PUs grouped in cluster,

each cluster has a low-latency high-bandwidth interconnection memory to

improve performance of data locality, all clusters are interconnected among

them with a medium scalable network on chip (NoC).

While similar architecture can archives high efficient, the task to exploit

all computational resources is a responsibility of programming models, com-

pilers and runtime systems. OpenMP has been a very successful runtime

library (RTL) in discharging these issues. In particularity one of the primary

goal of OpenMP 3.0 was to define a standard dialect to express and to

exploit unstructured parallelism efficiently. The tasking execution models

represent a suitable candidate to handle irregular parallelism, because

enables asynchronous dynamic creation of unit works in a simple mat-

ter. Nowadays, there are several implementation of this kind of paradigm,

notable examples are Cilk [37], Apple Grand Central Dispatch [38], Intel

Carbon [39], and OpenMP specification 3.1 [40].

In this Chapter we describe the design of our OpenMP tasking model

implementation based on specification 3.0. We explore two cases suitable

for embedded many-core cluster-based processors. In particular, we deeply

explain our design and optimizations on the runtime to minimize major

bottlenecks of the model. We validate our contribution on a cycle-accuracy

virtual platform described in Chapter 2. Moreover, we expand the runtime to

execute on a shared memory multi-cluster processors, we test our solution

and its scalability in the presence on different granularity tasks.

The rest of the Chapter is structured as follows. We discuss related

work in Section 2.2. In Section 2.3 we start to talk about the starting

implementation and our contributors, validating our results with benchmarks.

Section 2.4 is based on multi-cluster implementation, moreover we talk

about our porting from the single cluster. Finally, we conclude the Chapter

summarizing our main results.
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3.2 Related works

There have been several task programming model to handle irregular

parallelism in multi-, many-core architectures. We list a few here.

The Cilk programming language [37] is an extension of C multithread-

ing based on dynamic generation tasks. Cilk scheduler is made on the

work-first principle but also adopt an intrusive scheduling for work-stealing

technique. However, Cilks is only focused on tasking model and lacks loop

constructions that make OpenMP much complete and flexible for solving

heterogeneous parallel computational problems.

The Intel work-queuing model [41] is a proprietary extension to OpenMP

before the advent of tasking model in the specification 3.0. Intel created

a lexical extension of OpenMP for tasking model called taskq construct.

These model can have hierarchical generation of tasks and synchronization

is achieved of implicit barriers at the end of constructs. However, the imple-

mentation shows to exhibit some performance lacks [42], [43] unsuitable

for embedded processors.

The Nanos groupd at UPC proposed an extension of OpenMP sec-

tions to generate tasks [44]. The mainly problems of these model is the

recursive creation for tasks. Direct nesting of section blocks is allowed, but

hierarchical synchronization must be accomplished through nesting parallel

regions.

Intel Threading Building Blocks (TBB) [45] is a C++ RTL that allows

users to program in terms of tasks. Each task is represented as a instance

of a particular class called task. Intel TBB runtime has the entire responsi-

bility to schedule tasks to achieve locality and load balancing. Intel TBB has

also a loop construct that is built on top of the task scheduler and is respon-

sible for creation tasks. This proposal is similar to OpenMP but is not based

on the incremental parallelization and sequential consistency principles that

are the base to the success of OpenMP philosophy. Moreover, OpenMP is

not targeted to a specific language but works for different OpenMP target

languages (C, C++ and Fortran). For this reason, Intel TBB is unportable

for embedded processors often programmed through a low-level language
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as C.

Our tasking proposal aims to make OpenMP more suitable for embed-

ded many-core cluster-based processors, improving the performance, and

focusing on the shared data locality in multiple clusters. We extend OpenMP

implementation to be aware of clusters and tightly-coupled processing units.

3.3 OpenMP tasking model

Tasking model has been implemented in OpenMP since the specifi-

cation 3.0. Nowadays, irregular parallelism are common patterns where

complex program can expose in their execution flows. A typical example

can be all recursive algorithms such as a tree data structure traversal,

multiblock grid solvers, adaptive mesh refinement [47] and dense linear

algebra [48], [50], [?].

An OpenMP program start his execution with a single thread1 until

not encounters a parallel construct. At this point, execution switch to the

runtime that creates a new team of threads composed from itself and N-1

additional threads, where N is the all available cores or a number specified

with the num_threads clause. At the end of the team creation, the execution

come back to the program and until the end on parallel construction the

execution flow will be executed in parallel from multiple threads. When a

tread encounters a task construct, a new task region is generated with the

code contained within task. Programmer can specify data-sharing clauses

(shared, private, firstprivate) associated to the data environment. By default,

the execution of the task is asynchronous, when a thread encounter a

task scheduling point (TSP) can start to execute tasks. A task can be

immediately performed specifying a if clause. Within if clause there is a

expression that must be evaluated on the fly, if the expression is false, the

thread must suspend the current task region and its execution cannot be

resumed until the newly generated task is completed. When on a task

construct is specify a untied cluase, the task is not tied to any thread and

1In the rest of the document, the term “thread” and the term “core” are completely
interchangeable because a thread has a fixed bind with a core
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if the task is suspended it can later resumed by any thread in the team.

By default, all task are tied. All thread created in a parallel region are

guaranteed to be completed at the implicit barrier at the end of the parallel

region. As well as at any other explicit barrier constructs. Programmer

can force a termination of all created task with a construct called taskwait.

When a thread encounter a taskwait construct must wait all its first-level

descendant tasks to complete before proceeding. Tasks can be nested,

thus a task can contain another tasks. In this case, taskwait construct

guarantees the termination only within first level of task and not whole his

children.

3.4 Single cluster

In this section take in exam the scalability of our implementation for

single cluster. Here, we don’t want to make a deeply examination of the

runtime (we will it in future works) but we want to test its scalability in

tightly-coupled shared memory cluster.

3.4.1 Design and Implementation

We developed our extension of OpenMP tasking model runtime for

single cluster from scratch following the specification 3.0. By default, our

design relies on a centralized queue stored within team descriptor. Tasks

are marked through descriptors which identify their associated task regions

and which are stored in the work queue. This queue is built on top of

a double linked list and synchronization is achieved with a dedicate lock.

There are three basic operations to access on the queue: push, pop, and

remove. Respectively, push insert a task in the tail of work-queue, pop try

to remove a task from the head and if there are not present task return false.

Differently from pop, remove operation remove a task in whatever position

is placed. Every time that a task is inserted o removed from work queue a

counter is updated to maintain the task number stored in the queue.
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Each task is always a child of another task (except the implicit tasks).

Implicit tasks are created during the team instantiation, each thread has

always an implicit task which lives for all thread duration (until the end of

parallel construct). Implicit tasks represent the current execution task of

parallel construct. Every time that a thread encounter a task construct, this

construct has three effects: i) instance a new task descriptor, ii) push the

task within work queue, and iii) push the task within parent queue. For

undeferred task (if clause false) the task must be performed on the fly. Task

parent contain the current execution task, if the current execution task is at

first level, the task parent is the implicit task. Nested tasks form a tree which

can have different level (at least one with root the implicit task) related of the

number of nested tasks. For example, recursive algorithms can have several

nested task levels. Therefore, a task descriptor belongs to two queues in

the same moment, the work queue and the parent queue. For the access

on the parent queue we implement other three basic operation. Likewise

for the work queue, we create push, pop, and remove tasks. They exactly

work as work queue operations but they have effects on different memory

pointers and counters to maintain the updated status of the parent task.

We must maintain also a parent queue because all threads in taskwait can

perform only tasks contained in the parent queue of the current execution

task [51].

When a thread encounter a task scheduling point start to execute tasks.

First of all, thread try to pop a task from the work queue, if this operation

fails, thread put himself in sleep mode. Every time that a thread push a task

in the work queue, wake up another thread which pop the task and start

its execution. When pop operation on the work queue is performed, the

thread must even remove the task from parent queue and vice versa. In

this way, we guarantees that a task cannot be consume from two threads.

Both pop and remove operations must be atomically executed (under lock

synchronization).
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3.4.2 Experimental Results

To validate our design we performed a synthetic experiment using a

SystemC-based virtual platform modeling the tightly-coupled cluster de-

scribed in Chapter 2. Table ?? summarizes the main architectural parame-

ters.

Table 3.1: Architectural parameters for single cluster.

ARM v6 core 16 TCDM banks 16
I$ size 16KB per core TCDM latency 2 cycles
I$ line 4 words TCDM size 256KB
Latency hit 1 cycle L2 latency 60 cycles
Latency miss 59 cycles L2 size 256MB

We implement the tasking support on top of a OpenMP runtime op-

timized for the target platform. We focus our attention on a scalability

experiment to handle the speedup with different task granularity. In Fig. 3.1

shows how different task granularity affect speedup of the target platform.

In this case, we consider a synthetic benchmark consisting of a loop with a

fixed number of iterations (600), each iteration creates a task. The task body

contains a loop with a parameterizable number of ALU (ADD) instructions,

hence this workload is not affected from critical memory access outside

of cluster. Thanks to workload we can distinguish the runtime limitations

due to high latency accesses. The creation task loop is performed from the

master thread while the remaining 15 threads can immediately start the

execution (the producer thread can also join task execution after creating all

tasks). We perform experiments for task granularities varying in the range

between 1 and 20K. The time of parallel execution is divide by the time of a

sequential experimental performed with the same workload to find out the

speedup.
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Figure 3.1: Single cluster scalability varying task granularities.

The figure 3.1 shows that high speedup is reached with 5.000 ALU

operations for each task, because with this granularity the producer thread

is enough fast to maintain all threads busy. Before of this granularity there

is always at least one thread that try to pop a task but fails in his attempt

because tasks are not large enough to keep busy all threads. When

producer thread start to accumulate task in the work queue means that

processor can reach an high speedup. Having a optimized implementation

of task construct increase the progress for smaller task granularity, moreover

having a large task granularity greatly increase the speedup of processor

because it make tiny the runtime cost. These two parameters make the

difference in an efficiently implementation.

Fig. fig:single_cluster shows two similar progress, the baseline progress

and Ideal L2 memory. The different between these two benchmarks are the

architectural parameters of the platform. The baseline progress represent

the platform parameters in the table ?? without changes. In the Ideal L2
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memory we decrease the time access for the L2 memory with a 1 clock

cycle. This experiment demonstrates that our runtime execute always within

TCDM without accessing outside of cluster avoiding NUMA effects. This is

validate by a good progress overlapping.

3.5 Multi Cluster

In this section we port the single cluster implementation for multi-cluster

architectures. We first introduce the basic nested parallelism support

for OpenMP runtime in tightly-coupled shared memory clusters, then we

demonstrate our approach with a synthetic benchmarks focusing on the

scalability of our implementation.

Nested Parallelism and Design Implementation

Nowadays many-core architectures have hundreds of simple process-

ing units (PU) integrated on a single chip. Several embedded accelerators

grouped into tightly-coupled processor clusters such a large amount of

PUs to overcome scalability bottlenecks. These clusters sharing high-

performance local interconnection and memory, they usually are intercon-

nected with a scalable medium like a NoC. These system often are based

as a shared memory model, where each PU can access to a different levels

of memory (L1, L2, L3 memories). However, hierarchies architecture for

their nature are subject to non-uniform accesses (NUMA) depending on

the physical path.

Nested parallelism represents a powerful programming model for these

architectures, it is particularly suitable for accelerations with a large num-

ber of processors and a NUMA memory hierarchy. Nested parallelism is

typically used to split workload among all processing units avoiding NUMA

effects through data locality but can be implemented in different ways [52],

[53], [55], [?].

We use nested parallelism described in [56] to avoid NUMA effects.

A central design choice in this nested parallelism implementation, is the
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adoption of a fixed thread pool approach. In straightforward manner, nested

parallelism in the runtime is enabled with a API called before the first parallel

construct. In this parallel construct, all team threads will be chosen from

different clusters. By default in the nested parallel, threads are chosen

sequentially (starting from the master thread ID). In this way, in the first

parallel we can fit the exactly number of threads related to the number of

clusters. This team is composed to threads from different clusters. When

these thread encounter the nested parallelism construct, they form a team

for each cluster. Every cluster team is only composed from threads that

belong to the cluster.

The implementation of tasking model for multi cluster is exactly equal to

the single cluster but thanks to nested parallelism each task is confined only

in the local team avoiding NUMA effects. This design allows to partition the

workload with the usual nested parallelism and supports tasking model in a

scalability manner.

3.5.1 Experimental Results

In this subsection we validate our support for tasking model with nested

parallelism using a synthetic benchmark to exploit the scalability of our

implementation and we compare the results with single cluster runtime. We

performed the synthetic experiment with a extensive set of parameters and

we use a SystemC-based virtual platform described in Chapter 2 to model

an embedded many-core multi-cluster accelerator. We summarize the main

architectural parameters in the table below.

Table 3.2: Architectural parameters for multi cluster.

CLUSTER MULTI-CLUSTER
ARM v6 core 16 Clusters 4
I$ size 16KB per core NoC topology 2x2 mesh
TCDM size 256KB L3 size 256 MB
TCDM access time 1 cycles L3 access time 50 cycles
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Figure 3.2: Multi cluster scalability varying task granularities.

Fig. 3.2 shows our experiments for multi-cluster architecture. Synthetic

benchmarks that we use to validate our architecture are structured as single-

cluster benchmarks, they are similarly compose in task parametrization

and for the type of workload. The workload is not affected from high latency

memory accesses because the workload is composed only from ALU

operations leaving memory transactions only for the runtime.

The two main trends show an important factor that extremely penal the

runtime, the absence of nested parallelism. We can see that without nested

parallelism benchmark speedup collapse, arriving in the best case around

6x for huge coarse-grain tasks. This result is very important of our point of

view because the runtime penalty without nested parallelism has a huge

scalability bottleneck independent on the running applications.

Figure shows that until the benchmarks not reach the 1.000 ALU opera-

tions for task their speedup trends are similar, after this threshold progress

change with wide differences. Another valid result to underline is the dif-

ferent between pragma master and for. The latter has a major penalty due

synchronization locks that have a large impact on the performance such to
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completely discard the benift brought to parallel task pushing, this penalty

can reach 30% of difference in the worst case.

The last import different is between the warm-up cache and non-warm-

up cache. We can see in Figure that a non-warm-up cache can reach up to

45% speedup different between the two benchmarks. Non-warm-up cache

can be fixed with a pre-fetch instruction strategy mitigating the difference.
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Chapter 4

Variability-aware OpenMP

Research work describe in this Chapter, was conducted as part of joint

group between the Microelectronic Embedded Systems Laboratory (MESL)

of University of California, San Diego and Microelectronics Research Labo-

ratory (MICREL) of University of Bologna. I developed this part of the thesis

during my visiting trip at MESL and it has been presented to the research

community as a special issue on “Emerging and Selected Topics in Circuits

and Systems”, IEEE Journal [21].

4.1 Introduction

In the nanotechnology era circuit level components are increasingly

affected on variability that induce high timing errors. To correct these effects,

are used recovery mechanisms in the circuit level with significant energy

penalty. The energy cost of timing errors can be reduce by bringing this

knowledge on the software task where workload schedulers can take in

exam processor heterogeneity within schedulers decreasing errors and

overhead. In this chapter we present a variability-aware OpenMP (VOMP)

runtime suitable for embedded shared memory processor clusters. The

runtime system monitors software workload units that are executed on

various cores and their impacts on timing errors, transparently associates

different descriptive metadata for each type of workload to every cores. By



utilizing this characterized information, we realize smart schedulers that

prevent high timing errors taking countermeasures against bad affiliations

between tasks and cores. VOMP is a extension of OpenMP v3.0 and it is

strongly based on tasking model to handle variability effects, but we also

covers others parallel constructions including sections and for loop.

We define work-unit vulnerability (WUV) that we use to capture meta-

data on timing errors caused by circuit-level variability bringing these in-

formations on high-level software stack. WUV is a metadata to classify

variability for a given core, each workload has a different WUV that is up-

dated every time which is performed on the selected core. The hardware

provide support to allows access WUV metadata within core.

4.2 Related Works

Nowadays have been proposed various solutions to mitigate hardware

variability.

Circuit level techniques [1], [2], [3] monitor the pach delay variation and

when find out timing errors raise up a warning signal. The integer resilient

core [2] use a EDS [1] circuit in the pipeline stages when there are critical

paths. When EDS detect a timing error, raises the warning signal to prevent

conclusion of the errant instruction. Error control unit (ECU) receive the

warning signal propagated from EDS, for this operation is requested an

extra recovery penalty. ECU flushes the entire pipeline stages, and then

replays the errant instruction multiple times (N+1). The first N instructions

are just replica instructions, while the N+1th instruction is a valid instruction

that changes the state of the machine. Moreover, this mechanism has a

lower impact on the occupied area in the die and a scalable timing error

recovery without changing the clock frequency. If the pipeline stages of

the processor are a high number this mechanism impose an huge timing

penalty and power consumption [4], [4].

Various software level approaches are presented to expose variability

avoiding expensive hardware mechanism to guarantees correct program

26



execution. From fine-grained abstraction to capture characterize vulnera-

bility of instructions set [12], to the coarser-grained abstraction focus on

threads [6], procedure [7], and tasks [8], [9], [10], [26], [11]. However, these

mechanism have the following lacks: i) limited applicability in different pro-

cessors and environment because are tied for a determinate technology [6],

[7], [10]. ii) no support for runtime characterization and dynamic mapping

[7], [10]. iii) high penalty in recovering and scheduling [8], [9], [26], [11], [6].

4.3 Architectural support for variation-affected

processors

We demonstrate our approach on a SystemC-based virtual platform de-

scribed in Chapter 2, but to emulate variation effects we integrate variation

models at level instruction using a characterization methodology presented

in [19]. We re-synthesized the processors described in Chapter 2 - Section

I, with the 45nm TSMC technology library, general-purpose process. The

front-end flow with normal VTH cells has been performed using Synopsys

DesignCompiler and for the back-end we have been used Synopsys IC

Compiler, the core is optimized for performance. We analyze effects of dy-

namic and temperature variation analyzing the power and delay variabilities

on the individual instructions. Moreover, we use the features of Synopsys

PrimeTime to scale voltage and temperature. We use the same flow to

extract the power models for other cluster components. We apply these

models on the virtual platform where it dynamically maps on instructions

for the corresponding instruction variability models.

To detect and correct variability effects induced from the models, we

equipped all cores with two circuit-level resiliency techniques. First, each

cores is based on EDS [16] circuit sensors that allows to detect timing

errors as consequent of dynamic delay variation. This mechanism can

recover errant instructions without changing the clock frequency because

the core employs multiple-issue instruction replay mechanism [17] in its

ECU, or error recovery unit.
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Figure 4.1: EDS e VDD-Hopping.

All cores within cluster is essentials that they have all the same clock

frequency to avoid latency of synchronization [15], so the second technique

is vDD-hopping [18], this mechanism change the voltage of slow cores that

are affected by static process variation. This enables all cores to work

on the same frequency avoiding inter-core synchronization that increases

TCDM latecy.

4.4 Work-unit vulnerability and VOMP work-sharing

OpenMP [40] specification is based on a particularity construct called

#pragma omp parallel. A parallel directive has the effect of lunching multiple

instance on the enclosed code on all processors (or a specified number

of them). Within the parallel directive, we can find a shared data structure

called work share (WS) that is the base of the OpenMP specification. WS is

used to deploy jobs to all thread that compose a parallel, all thread involved

in the parallel pragma compose a Team. Each WS contains within one or

more jobs called work-unit (WU), each WU is deployed on a thread and

executed.
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There are different OpenMP costructs that use WS to deploy their jobs:

#pragma omp for, #pragma omp sections, #pragma omp task, #pragma

omp master, #pragma omp single. We focus our work on tree directives,

respectively sections, task and for because others constructs are based on

a WS with only one WU. Single directive is performed from the first thread

that encounters directive, instead master directive can be only performed

to the master thread (team creator).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

#pragma omp parallel 

{ 
#pragma omp for 

for (i=0; i<N; i++) 

loop_A(); 

 

#pragma omp sections 

{ 

#pragma omp section 

section_A(); 

#pragma omp section 

section_B(); 

} 

 

for (i=0; i<N; i++) 
#pragma omp task 

loop_B(); 

} 

WU type 1 

WU type 2 

WU type 3 

WU type 4 

Figure 4.2: Outlined WU types in a OpenMP program: task, section, for.

Therefore, this work take in exam for, sections and task directive be-

cause they have different WUs. In particular, sections directives contains

multiple section blocks that are executed only one time from the first avail-

able thread. For instance, it easy to describe software pipeline parallelism

with sections, by just adding point of synchronizations among parallel di-

rectives to maintain dependency between states. Task directive is the only

construct not based on the WS, each task can be considerate a indepen-

dently WU with a asynchrony execution and deployed from a dedicate

29



infrastructural built on the top of a queue data structure. Task has been

made to exploit irregular parallelism in the presence of complicated control

structures [?]. However, task implies significant overheads and a efficient

implementation is a key aspect. Intuitively, for directive execute always the

same code associated to the loop nest and distributes loop iterations over

available cores.

Enclosing portions of code using above directives allows us to have

different WU types in the program, as a direct consequence our runtime can

characterized them. Therefore, we create a new metric: parallel work-unit

vulnerability (WUV). WUV is used to estimate execution time of each WU

type for each core under variability. This metric is brought on the software

stack and used from VOMP runtime in the scheduler. WU types can be

done statically (i.e., at compile time), moreover WUV characterization has

to be done online due two main reasons. First, dynamic instances of the

same WU can have different effects in different cores, because WU may

exercise the processor pipeline in a non-identical manner due to the class of

instructions that compose the WU. Second, WU can have different behavior

due to data-dependent control flow. WUV is defined as follows:

WUV(i,j) =
∑

I +
∑

RI | ∀corei, ∀WUtypej (4.1)

where ΣI is the number of error-free executed instructions; ΣRI is the

number of replayed instructions1 during execution of WU type j on core i,

as reported by the ECU. Intuitively, for a given WU type if all the instructions

run without any timing error, the corresponding WUV is equal to ΣI. In

the event of timing errors, WUV also accounts for the additional replica

instructions. If WUV is low means there are few (or nothing) recovery cycles,

consequently instruction count is low and we have a higher throughput and

energy efficiency. WUV dynamically characterizes both vulnerability and

execution time of WU types.

1proportional to the number of errant instructions
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4.4.1 WUV corner cases

WUV is a representative metadata of the total number of instructions

executed to a core, this total number is the sum of the assembler instruction

and all replay instruction caused by timing errors. WUV is not uniform

across different cores, which can cause different timing errors related on

the type of variability. To demonstrate how WUV change in present of

different level of variability and how these metadata reaches the software

level, we build four stress test, which iterate several times over an identical

instruction, as show in Fig. 4.3.

These synthetic benchmarks exploit variation among the cores for the

same WU thus we can exploit behaviors at the software level. Fig. 4.4

illustrates the synthetic benchmarks with #pragma omp task construct,

while in Fig. 4.7 we have the synthetic benchmark with #pragma omp

sections construct. We organize the presentation of these experiment in

following three consecutive subsections, one per each OpenMP construct.

 

 

#define OP_MUL  1 
#define OP_ADD  2 
#define OP_DIV  3 
#define OP_SHIFT 4 
int A[][][], B[][][], C[][][]; 
void WU_run (int z, int OP) 
{ 
for (int y = 0; y < N; y++) 

  for (int x = 0; x < N; x++) 
  { 
   switch(OP) 
   { 
    case OP_MUL:   C[x][y][z] =  

A[x][y][z] *  B[x][y][z]; 
break; 
 

    case OP_ADD:   C[x][y][z] =  

A[x][y][z] +  B[x][y][z]; 
break; 

 
    case OP_DIV:   C[x][y][z] =  

A[x][y][z] /  B[x][y][z]; 
break; 

 
    case OP_SHIFT: C[x][y][z] =  

A[x][y][z] (� B[x][y][z]; 
break; 

   }  
  } 
} 

Figure 4.3: WU types each stressing a different class of instructions.
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1) task-Level WUV

We measure WUV for different WU type (here, task) when executing on

fixed and variable operating corners (current voltage and temperature). We

change temperature in a range of 0◦C - 140◦C and a voltage range of 0.88 -

1.1V. In this section we illustrate a normalized WUV (NWUV) dividing WUV

value to its ΣI. Therefor this normalized value will have a value equal or

grater to 1. For example, if NWUV has a value of 1 means that there is no

replica instructions (ΣRI = 0).

 

 

#pragma omp parallel  
{ 
 #pragma omp master  
{ 

  for (int z = 0; z < N; z++) 
   #pragma omp task  
    WU_run (z, OP_MUL); 
   
  for (int z = 0; z < N; z++) 
   #pragma omp task  
    WU_run (z, OP_ADD); 
 
  for (int z = 0; z < N; z++) 
   #pragma omp task  
    WU_run (z, OP_DIV); 
 
  for (int z = 0; z < N; z++) 
   #pragma omp task  
    WU_run (z, OP_SHIFT); 
 } 
}  

Figure 4.4: Synthetic benchmark using OpenMP task.
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Figure 4.5: Normalized WUV (NWUV) to temperature variations for task types.
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Figure 4.6: Normalized WUV to voltage variations for task types.

Fig. 4.5 shows the task-level WUV for a core with a fixed voltage of 1.1V

while chip temperature is dynamically varied. We can see that task-level

vulnerability change related in function of temperature, for example for the

task1 at temperature of 0◦C result in a NWUV value of 1.0017, increasing

the temperature to 140◦C we have a NWUV of 1.09 with a different of 9%
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between the states. With these corner cases we can prove that variability

is a direct manifestation of temperature variation. In the fig. 4.5 at the

fixed temperature of 0◦C, we can see that there is a considerable variation

across task types. WUV for each task type is different even with in absence

of environmental variation, different class of instructions have different

behaviors within the same operating conditions.

Fig. 4.6 shows the task-level WUV for a core with a fixed temperature

of 10◦C while chip voltage frequency is dynamically varied. As show in

the graph, higher voltage reduce timing errors because NWUV is tends to

reach ideal value (1). Likewise in the Fig. 4.6 different class of instructions

have different NWUV penalty changing operating voltage. This behaviors

show us that vulnerability of instructions is not uniform [23] in different level

of vulnerability for task types.

2) sections-Level WUV

Fig. 4.7 shows the synthetic benchmark used for sections profiling. This

benchmarks represent a software pipeline widely used in processor virtual

platforms or image processing kernels where a set of filter is applied in

sequence on the image blocks. Each WU identify as a section is performed

on a different core. In the beginning and at the end of sections there

are synchronization points to maintain coherence among stage pipelines

that we implement on top of test-and-set semaphores. In this way, we

can guarantees that once computation of previous pipeline is finished

can start the next one. Inside of each block section there is a loop that

simulate a computational cost for a class of instruction. Note however

that dependency is only between a section and its subsequent, this allows

paralleling execution of sections.
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#pragma omp parallel 
{ 
 for (int z = 0; z < N; z++)  
{ 

  #pragma omp sections nowait  
{ 

   #pragma omp section 
{ 

    WU_run(z, OP_MUL); 
    synch(); 
   } 
   #pragma omp section { 
    synch(); 
    WU_run(z, OP_ADD); 
    synch(); 
   } 
   #pragma omp section { 
    synch(); 
    WU_run(z, OP_DIV); 
    synch(); 
   } 
   #pragma omp section { 
    synch(); 
    WU_run(z, OP_SHIFT); 
   }  
  } 
 } 
}  

Figure 4.7: Software pipelined synthetic benchmark using OpenMP sections.

1.00 

1.02 

1.04 

1.06 

1.08 

1.10 

0 20 40 60 80 100 120 140 

N
W

U
V

 

Temperature (�C) 

section 1 section 2 section 3 section 4 

Figure 4.8: Normalized WUV to temperature variations for sections types.
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Figure 4.9: Normalized WUV to voltage variations for sections types.

In this benchmark, there are Nsec stages, such that Nsec < Ncore, where

Ncore is the number of available cores2. Normally, at the end on each

sections there is a wait construct for synchronization, to avoid this constraint,

we specify nowait clause and allow idle cores to start execution of the next

section.

Fig. 4.8 shows NWUV values for a core with a fix supply voltage

of 1,1 V and variable temperature range of 0◦C–140◦C, while Fig. 4.9

shows NWUV values for a fixed temperature of 10◦C with a supply voltage

variation range of 0.22V. Likewise for task-Level WUV, this plot describes

behaviors increasing function of temperature in a range of 0◦C - 140◦C and

decreasing function of voltage in a range of 0.88 V - 1.10 V respectively.

We can observe that at temperature of 140◦C we have an WUV average

penalty around 9%, in the plot of voltage variation penalty increase up to

50% when we have 0.22V. Among the section types we have a maximum

different of 16% observed at (10◦C,1.09V).

216 cores in our platform
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3) for-Level WUV

Parallel applications accelerated trough many-core platforms are often

focused on splitting work on each available core. Afterwards, synchroniza-

tion is typically done with barriers for waiting the termination of all WUs.

Usual mechanisms are used on parallel loops, whose all iterations are

spread and assigned on different cores to be processed. Equally, all loop

iterations can be spread on different clusters and afterwards scheduled to

the available cores to exploit distribute workload in tingly-couple cluster-

base processors. OpenMP provides a well-defined directive to distribute

loop iterations among the cores, #pragma omp for. This directive create a

number of WUs related on the number of iterations that compose the for

loop. Each WU is assigned on a core and performed. In our case, every

WU is dynamically instantiated but it uniquely identifies as the same type

from our characterization point of view. The program code that compose

all loop iterations is always the same for all WUs created. In other words,

for directive build a homogeneous work-load across all cores. In this case,

our VOMP runtime has a limit capability of scheduling due of this behavior,

therefore for-Level WUV will not be handle for variation effects.

Conclusion for WUV

Exploiting all corner cases in the presented experiments we can con-

clude that WUV varies significantly: 1) among WU types; and 2) among the

operating conditions. We have conduced all these corner cases to exploit

how much variability affects different class of instructions and how they

varies in the presence of temperature and voltage range. This confirms

the observation that executing different stream of instructions my result in

different error rates [24]. We observe that in any operating condition the

WUV os simple arithmetic instructions (e. g., addition/shift) is always lower

than WUV of complex arithmetic operations (e. g., MUL/DIV). A deeply

study of variability for class of instructions in different operating conditions in

voltage and temperature are provided in [25]. Moreover, even the behavior

of identical instructions on different cores is not equal because voltage and
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temperature can change dynamically at run time. This is much evident

for the #pragma omp for construct, which always distribute the same WU

among the cores. Yet, WUV can have significantly variation caused by the

different variability that each core can be affected. All these motivations are

collected to describe how much is important having WUV characterization

for different WU types and for different cores.

4.4.2 Run-time WUV Characterization

At the end on a WU execution, VOMP can have access to the metadata

related on the WU performed. To quantify WUV, VOMP collects ΣI and ΣRI

through a set of available counters in the ECU. Each core is responsible for

executing and monitoring his characterization related at performed task.
 

 

When taskj is scheduled on corei: 
begin 

EXTRACT_TASK (taskj) 
WUVold = LUT_rd (taskj, corei) 
reset_WUV (corei) 
EXECUTE_TASK (taskj) 
WUVnew = read_WUV (corei) 

WUVwrite = (WUVnew-(WUVnew(3))+(WUVold(3) 
LUT_wr (taskj, corei, WUVwrite) 

end 

 

Figure 4.10: Pseudo-code for task-level WUV characterization.

After the execution, core read WUV represented as a a two-dimensional

lookup table (LUT) where each row contain a core and each column contain

a WU type. This lookup table is distribute on the TCDM for having a fast

and parallel access from every core. Each entry of the LUT contain a 32-bit

integer data with with the sum of ΣI and ΣRI (WUV). Hence, LUT has a

memory footprint of NWU×4×Ncore Bytes, where NWU being the number of

total task types that can be indexed in VOMP and Ncore is the number of

the cores in the cluster. We provide two simple APIs to access the LUT,

respectively for reading and writing:
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int LUT_rd (int WUtype, int coreID);

void LUT_wr (int WUtype, int coreID, int WUV);

They have two parameter to indicate WU type (row), core ID (column).

The write function even have a thirst parameter that indicates the new

value of WUV. In addition, we implement two functions to access and reset

metadata within core.

int read_WUV (int coreID);

void reset_WUV (int coreID);

In Fig. 4.10 we demonstrate how scheduling has been modified to

support runtime WUV characterization (our additions in bold font). These

instance shows the case for task scheduler, we modify the sections sched-

uler in an equivalent manner.

In the startup phase of the program, the LUT has all value initialized to

zero and in principle we need to characterize a couple <WUtype, coreID>

only once. Afterwards, we have a value in the LUT that shows metadata

for a WU related on a core thus we can use in the scheduler. However,

we rather keep the characterization active for all the time of program, for

each task performed WUV is updated and re-written in the LUT. Updating

procedure not replace entire metadata value but the scheduler calculate

the average between old and new value with a factor K applied to one of the

value to balance the imprinting of the parameter (usual K is 0.5 that means

both parameter have the same impact on the average). This is used to

better captures the effects of dynamic variations on the cores and having a

better scheduling. On the other hand, we have a fixed negligible overhead

given to the computational cost of the characterization APIs.

4.5 VOMP schedulers

4.5.1 Variation-Aware Task Scheduling (VATS)

In this subsection we present our specific of variation-aware scheduling

policy and how we implement it following the standard OpenMP specifica-

tion. OpenMP tasking has been implemented from the specification 3.0 and
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has been considered a convenient programming model to handle irregular

parallelism in multi- and many core systems [26], [27], [28], [29]. In the

OpenMP specification there is not defined a implemented strategy to realize

the task scheduler, but usually it is build on a centralized queue contenting

all task descriptors. This queue is realized as a FIFO data structure where

all cores can access to insert and remove tasks if they are producers or

consumers respectively. A centralize data structure has a very simple and

efficient implementation, which can reduce relevant computational over-

head and decries energy - and resource constrain system. This design

choice work very well for homogeneous shared memory processors with

uniform memory access (UMA) but places limitations in variability-affect pro-

cessors because have important consequences on the task management

accomplished by schedulers.
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Figure 4.11: Distributed queues for OpenMP tasking.
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Our OpenMP implementation is based on a set of distribute queues

that are private per each core and where all thread can push and pop task

descriptors. Fig. 4.11 shows a schema of our OpenMP tasking implemen-

tation based on multiple private queues. Every core has a dedicate queue

where are stored all assigned task for the core. The queues have two

basic operations: insert and extract, which are synchronized using multiple

locks (one lock per each queue). All task descriptors and the queue data

structures are allocate in TCDM for minimal access time. The queue data

structure are instantiated during the startup phase of the runtime to avoid

the time overhead for dynamic memory management. All cores presenting

in our platform can transit in low-power IDLE mode. When a producer core

inserts a new task in a private queue if the queue core is in IDLE mode,

producer have the responsibility to wake up the consumer. Producer core

can exploit the state of a core inspecting an additional flag placed in the

queue descriptor3. Each queue has a own lock to synchronize all access

on data structure, every time that a core try to insert o remove a task

descriptor from a queue the first operation is to take the ownership of the

lock associated on the queue. As long as a thread holds a lock no one can

access on the queue, every lock are implemented through a busy waiting

on the test-and-set memory address associate to the queue descriptor.

Extraction operation is only possible from the head of the queue, while

insertion occurs from the head and the tail. Insertion from head are widely

used to prioritize the execution of non-characterized tasks, in this way the

characterization try to be as fast as possible reducing wrong scheduling

in the early stages of execution. Stealing tasks as equal to a normal pop

operation occurs from the head of the queue.

As a baseline policy we implement a simple round-robin scheduler

(RRS). This policy deploy all tasks in equal manner to all queues, it start to

distribute tasks from the first queue to the last queue starting again when it

finish the round until the tasks are not all assigned. Runtime has a minimal

overhead when use this scheduler due to a very lightweight implementation.

To avoid unbalanced issues, RRS is enhanced with a steal scheduling

3it can have only two value: executing and sleeping
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policy. Steal policy work in a round-robin fashion among all queues.

Here, we propose a policy for variability-aware task scheduling (VATS)

shown in Algorithm 4.5.1. This algorithm allows to use WUV metadata to

assign tasks to cores for minimizing both number of instruction replays and

unbalanced loads. VATS try to avoid that tasks are executed on unreliable

cores but this is impossible in the startup-phase of algorithm even when

there are no WUV metadata available. In this particular case the scheduler

operates in round-robin mode. Every time that scheduler find out a new

task type not initialized in the LUT, push directly the task in the head of the

core queue (out-of-order task characterization). This will give higher priority

to the non-characterized task types speeding up the “system warm-up”.

Algorithm 4.5.1: VATS (taskj)

for i← 1 to Ncore

do

{
loadi ← loadQueuei + WUV (corei, taskj)

min← findMinimum(loadi)

Queuemin ← insert(taskj)

return (min)

VATS scheduler take into account also the load on each queue, to avoid

unbalanced situation. The load of the queue is formed from the sum of all

WUV task metadata contained. The queue with the lower load plus the

metadata value of the current task is the chosen queue. This metric is

better than counting only the number of tasks present within queue because

different task may have various computational weight.

To avoid imbalance effects due to non-homogeneous task duration

and other system-level issues, VATS also has a most loaded queue-first

stealing algorithm. This policy checks the load of all queues and choose the

queue with higher load. In the meantime of execution of stealing policy the

scheduler checks if some tasks have been inserted in the local queue. In

this case the core stop the execution of stealing policy and start to execute

the own tasks, otherwise it continues executing the stealing algorithm until
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all task in the system are executed.

4.5.2 Variation-Aware Section Scheduling (VASS)

The default of OpenMP runtime is to allocate a section to the first

available thread, in a first-come fist-server policy (FCFS). Usually sections

have not dependency among them and there is not a distribute algorithm.

However, when sections are used to model a parallel pipeline software

we have constraint among the sections. Variability effects have a great

impact on the performance, because timing errors for a section causing

bottlenecks in the entire pipeline execution. This effect dominates the

overall pipeline duration. Variability effects have a double impact on these

type of software caused by standard variability issues and low performance

due to the variation-affected synchronization constraints.

For these cases, we propose a variation-aware section scheduling

(VASS) policy shown in Algorithm 4.5.2. Similarly to VATS, VASS has a

warm-up phase where assign different section to different cores until all

cores performs all section types at least once. After the execution of each

section, the characterization process update the WUV metadata in the LUT

using the same mechanism described for tasks in the previous Section.

After the warm-up phase, the scheduler can start to assign each section to

a set of suitable cores avoiding the major problems given by variability.

Algorithm 4.5.2: VASS (sec0 : secNsec)

sortedSecList← SortSectionsWUV (sec0 : secNsec)

while sortedSecList 6= EMPTY

do


secID ← extractTopList(sortedSecList)

{coreIDs} ← findBestSetCores(secID)

tag[{coreIDs}]← tag[{coreIDs}]
⋃
secID

return (tag[core0 : coreNcore ])

The first operation of VASS is to sort all sections based on their average

WUV. This means that first section after the sorting has the higher average
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WUV metadata and the last has the lower. Hence, a section can be

executed only on a set of suitable cores that display fewer error rate during

its execution. For this reason, each core has a vector tag to maintain a

list of sections that can execute. This constraint avoid that worse cores

execute long or high vulnerable types of sections. In other word, a good

core can execute all types of sections and an worse core can execute only

few type of sections. Worse core can execute only short sections and with

minor degree of variation effects. VASS performs a one-to-many mapping

between the section types (i.e., stages) and the core such that the overall

execution time is reduced.

After the execution of the scheduler, each core has a fulled vector that

use to choose whose section can execute. Every time that a core encounter

a section can independently discern if the current section can be executed

from him.

4.6 Experimental results

We demonstrate our approach on an virtual platform describes in the

Chapter 2 with updates describes in the section “Architectural support for

variation-effected processors” on this Chapter. We use a configuration

listed in the table below.

Table 4.1: Architectural parameters of the cluster.

ARM v6 core 16 TCDM banks 16
I$ size 16KB per core TCDM latency 2 cycles
I$ line 4 words TCDM size 256KB
Latency hit 1 cycle L2 latency 60 cycles
Latency miss 59 cycles L2 size 256MB

4.6.1 Results for Tasking

We demonstrate our VOMP task implementation with a set of largely

adopted kernels used in the field of image processing, cryptography and

mathematical matrix operations. These kernels include RGB-to-HSV and
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XYZ-to-RGB for colormap conversions, Integral image and Sobel for filter

operations, FAST for corner detection, Color Tracking , Strassen matrix

multiplication, and Blowfish for encryption/decryption. Each kernel has on

task type and there is not task dependency during the execution. We collect

information regard two fundamental parameters for embedded systems, to-

tal execution time and energy consumption. All values that we will show are

normalized values. We compare VATS policy normalized on the baseline

RRS policy to demonstrate the effects of our solution.
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Figure 4.12: Execution time for VATS normalized to RRS under temperature vari-
ation.
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Figure 4.13: Energy consumption for VATS normalized to RRS under temperature
variation.
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Fig. 4.12 shows the execution time for all the kernels for three operating

corners with temperature of 0◦C, 40◦C, and 80◦C. As shows, at an operating

temperature of 0◦C, VATS achieves up to 30% better performance than RRS,

and 13% on average. Entire our scheduler and characterization APIs are

paid off from the gain of avoiding timing errors. Moreover, VATS displays a

robust behavior across temperature variations thanks to the reflection by the

always-on characterizations. At higher temperature, VATS reaches better

results because in RRS policy increase replayed instructions, conversely

VATS can save more instructions from timing errors. VATS achieves average

performance gain of 17% (at 40◦C) and 21% (80◦C).

Fig. 4.13 shows the energy consumption of the kernel. Likewise on

execution time, VATS achieves on average 21% and up to 38% better

energy efficiency than RRS at temperature of 0◦C. Further, VATS increases

his gap from RRS in higher temperature penalty saving 31% at the 80◦C.

We also compares the TLV technique with the centralized queue pro-

posed in [30]. TLC has a variation-agnostic task insertion operations with a

penalty of 75% respect of RRS. Moreover, TLV has 100% penalty in energy

consumption from RRS. This huge gap between RRS and TLV is because

TLV characterization does not consider the overall system workload. TLV

is based on a single tasking queue which has limits of potentials for task

scheduling policies: a core can pop a task from the head of the queue and

choose if to proceed to the execution or leave it in the queue for other cores.

Every time that a core execute this algorithm all available cores must wait

the completion of operation. Can happen that a core try to pop always the

same task if also other core decide to leave it, in this case the current core

can discard the task at most three time. All these constraints describe the

lack of efficient utilization of resources under variability.

4.6.2 Results for Sections

We demonstrate our VOMP section implementation with a set of pipeline

software typically used from a different field of research. We have Pitch

extractor algorithm (PEA), and FFT with covariance matrix factorization
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(DFT-COV) are embedded signal processing kernels extracted from [31],

[32]. Sobel and Prewitt are filter operations useful in the edge detection

algorithms. N-body is a simulation of a large number of particles under the

influence of physical forces. Mersenne twister is a pseudorandom number

generator. Synthetic is a microkernel implementing a fourstage parallel

pipeline (see Fig. 4.7), representative of streaming applications [33]. We

evaluate the effectiveness and robustness of our approach with the same

corner cases used in tasking benchmarks.
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Figure 4.14: Execution time for VASS normalized to FCFS under temperature
variation.
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Figure 4.15: Energy consumption forVASS normalized to FCFS under tempera-
ture variation.

Fig. 4.14 shows the normalized execution time of VASS to FCFS

for the same operating conditions of task. At the temperature 0◦C, VASS

achieves an average gain of 31% reach up to 40% in the best case. This is

accomplished avoiding the worst core from the long and variation-effected

section type that leads to the highest WUV. At the operating temperature of

80◦C, VASS increase on average 39% performance, thanks to runtime WUV

metadata characterization which reflects the latest temperature variations.

Further, as show in Fig. 4.15 VASS reduce the energy consumption

for an average of 28% (up to 35%) at the operating condition of 0◦C. A

similar pattern for energy saving is observed under the other conditions.

VASS reduce in the highest gain an average by 37% at 80◦C degree of

temperature.
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Chapter 5

Conclusion

5.1 Tasking Conclusions

Scalability in the recent embedded many-core cluster-based acceler-

ators is considered an important goal to achieve. Future architecture will

host thousand of processing units, for this reason clustering and scalable

interconnecting systems will become key aspects. Runtime system for

these architectures are extremely fundamental to abstract all available re-

sources in a scalability manner. We presented two software approaches

to handle scalability in many-core cluster-based processors. In particular,

we proposed two runtime to implement the tasking model suitable for both

single and multi cluster architectures. We implemented our tasking model

from scratch following the specification of OpenMP 3.0.

To valid the scalability of our runtime, we tested both implementations

on two different architectures. In both architecture we reached a good

scalability with a granularity with a workload of 5.000 ALU operations for

task. We demonstrated that locality of data is maintained within cluster

thus we can avoid side effects typically of NUMA architecture. In multi

cluster architecture result that applying nested parallelism to the many-core

cluster-based processors (in our case 64 PUs) have the same scalability of

single cluster processors (in our case 16 PUs). Moreover, we demonstrated

that NUMA effects on multi cluster architectures can have a huge impact

on the platform bringing the speedup even for coarse-grain task.



5.2 Variability Conclusions

Timing errors caused by circuit failures are considered an important

issues where all nanotechnologies architecture will be called to confront

in the present and future works. In this thesis we presented our software

runtime to mitigate hardware variability in many-core processor cluster.

Our runtime archived good results using metadata informations (WUV) to

capture vulnerability in work-unit via the software stack. We used WUV to re-

alize a variation-aware OpenMP run-time (VOMP) adding variability-tolerant

schedulers to minimize timing errors. In particular, we proposed scheduler

algorithms for tasks and sections constructs that use WUV metadata to

reduce timing errors. WUV metada is characterized at runtime for each

individual core, and is used from the scheduler to distribute new instances

of work-unit types for having efficiently scheduler. We implemented our

approach extending default OpenMP runtime enables to execute efficiently

in variability-affected environment. Our scheduling algorithms took in exam

two fundamental constructs to determinate work-unit instances, tasks and

sections that use WUV metadata to take countermeasures against timing

errors. Algorithms match characteristics of different variability-affected

cores and the different work-unit types in the program, minimizing the total

execution cost affiliating best WUV type instances to the suitable cores even

taking into account the balancing of the total workload for a determinate

processor.

Afterwards, we tested our approaches on different operative conditions

on fluctuation of voltage and temperature. VOMP results reduce timing

errors recovery in the 16-core cluster in a wide operating temperature of

80◦C, resulting in average 17% and 36% faster execution for task and

sections, respectively. Moreover, VOMP reaches an average of 27% for

task and 33% for sections energy saving.
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