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ABBREVIATIONS

POM: Polyoxometalate

TM: Transition Metal

TMSP: Transition Metal Substituted POM

FG: Functional Group

TBA: Tetrabutylammonium

DDA:  Didodecyldimethylammonium

CV: Cyclic Voltammetry

DMF: Dimethylformamide

TEA: Triethylamine

[TBA]Br: Tetrabutylammonium bromide

[DDA]Br:  Didodecyldimethylammonium bromide

[TBA]OH:  Tetrabutylammonium hydroxide

TFA: Trifluoroacetic acid

DCM: Dichloromethane

BMIM: 1-butyl-3-methylimidazolium

ACN: Acetonitrile

DMSO: Dimethylsulphoxide

ROH: 3-methylbut-2-en-1-ol

TBHP: tert-butylhydroperoxide

MMCT transition: Metal to Metal Charge Transfer transition
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ABSTRACT

This  thesis  work  has  been  carried  out  during  the  Erasmus  exchange  period  at  the

“Université  Paris  6  –  Pierre  et  Marie  Curie”,  in  the “Edifices  PolyMétalliques  –

EPOM”  team,  leaded  by Prof.  Anna  Proust,  belonging  to  the  “Institut  Parisien  de

Chimie Moléculaire”,  under the supervision of Dr. Guillaume Izzet and Dr. Geoffroy

Guillemot.

The redox properties of functionalized Keggin and Dawson POMs have been exploited in

photochemical, catalytic and reactivity tests. 

For  the photochemical  purposes,  the selected  POMs have been functionalized

with different photoactive FGs, and the resulting products have been characterized by CV

analyses,  luminescence  tests  and  UV-Vis  analyses.  In  future,  these  materials  will  be

tested for hydrogen photoproduction and polymerization of photoactive films..

For the catalytic purposes, POMs have been firstly functionalized with silanol

moieties, to obtain original coordination sites,  and then post-functionalized with TMs

such as V, Ti and Zr in their highest oxidation states. In this way, the catalytic properties

of TMs were coupled to the redox properties of POM frameworks. The redox behavior of

some of these hybrids has been studied by spectro-electrochemical and EPR methods.

Catalytic  epoxidation  tests  have  been  carried  out  on  allylic  alcohols  and  n-olefins,

employing different catalysts and variable amounts of them. The performances of POM-

V hybrids have been compared to those of VO(iPrO)3.

Finally, reactivity of POM-VIII hybrids has been studied, using styrene oxide and

ethyl-2-diazoacetate as substrates.

All  the  obtained  products  have  been  analyzed  via NMR  techniques.

Cyclovoltammetric  analyses  have  been  carried  out  in  order  to  determine  the  redox

behavior of selected hybrids.
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1. INTRODUCTION

1.1 POLYOXOMETALATES: WHAT THEY ARE

1.1.1 Polyoxometalates a  s polyoxoanions

Polyoxometalates (POMs) are polyatomic ions, that consist of three or more transition

metal  oxoanions,  linked  together  by sharing  oxygen  atoms.  They are  also  known as

“inorganic metal oxygen cluster anions”. Metal atoms concerned, also called “Addenda

Atoms”, are these of Groups 5 and 6 of the Periodic Table, especially V, Mo and W in

their highest oxidation states. Polyoxoanions are known also for metals such as Nb or Ta.

The reasons why they form easily polyoxoanions are a favorable combination of ionic

radius and charge, and the accessibility of empty d-orbitals for the M-O linkage.1 These

structures are considered as molecular oxide, and can incorporate several other elements

of the p block or even the d block of the Periodic Table, e.g., P, Si, B, Al, Ge or Co. We

can divide POMs into two main categories:  isopolyoxometalates,  which contain only

high  valent  transition  metals  of  group  5  or  6  (V,  Nb,  Mo,  W),  and

heteropolyoxometalates,  that  contain  at  least  one  other  element of  the  block  p  or  d.

General formulas are:

 [MxOy]n- for the isopolyanions

 [XzMxOy]m- for the heteropolyanions2

Transition metal (TM) atoms occupy MO6 octahedra, which can link together by

sharing verteces, edges or faces. In the octahedral cavity, not all of the oxygen atoms are

shared  with  another  TM,  indeed  one  or  two  atoms  are  unshared  and  form terminal

oxygen atoms. Their presence is fundamental to avoid complete condensation, as in bulk

metal oxides, due to their lower basicity. Depending on the case, we can find mono-oxo

species, cis-di-oxo and so on (Figure 1).

5



Fig. 1: a) mono-oxo species; b) cis-di-oxo species

The heteroatom of heteropolyanions can be found in a 4, 6, 8, 12 coordination

environment, depending on its coordination requirements.

Fig. 2: POMs structures in literature: a) Lindqvist [M6O19]2- (M = Mo, W); b) α-Keggin [XM12O40]n-

(X = P, Si, B, Al, Ge; M = Mo, W); c)  α-Well-Dawson [X2M18O82]n- (X = P, Si; M = Mo, W); d)

Anderson-Evans [XMo6O24] (X = P, As); e) Dexter [XM12O42]n-i

In  these  structures,  the  heteroatom is  contained  in  a  central  cavity,  with  the

oxygen  atoms  shared  with  the  surrounding  MO6 octahedra.  The  type  of  heteroatom

depends on the size of the internal  cavity,  and will  influence the final  charge of  the

polyanion.3 Among the different structures, the "α-Keggin” is one of the most studied. It

is  composed  of  four  triads  ({Mo3O13}  moieties)  of  octahedra,  around  a  central

tetrahedron, that contains the heteroatom. The octahedra in the triads are joined by edges,

and the triads between them trough verteces. If we formally rotate one triad of 60°, we
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can obtain up to four types of isomers. They are the isomer β, from the rotation of only

one triad, γ from the rotation of two triads, δ from the rotation of three and ε from the

rotation of four of them.4

1.1.2 Synthesis of Polyoxoanions of Cr, Mo and W

With  a  careful  control  of  the  experimental  conditions  (pH,  concentration,  solvent),

polyoxoanions can be obtained starting from compounds of TMs.

Acidifying solutions of cromate ion, CrO4
2-, yellow and tetrahedral, bicromate ion

(Cr2O7
2-), red-orange, can be obtained. At extremely acid pH, polymeric species such as

Cr3O10
2- and Cr4O13

2- can be obtained. These anions are formed by condensation of  CrO4

tetrahedra through verteces. The atomic dimensions of Cr do not allow formation of CrO6

octahedra and thus no larger structures can be obtained. 

Acidic  solutions  of  MoVI and WVI lead,  on the  contrary,  to  more  complicated

systems of polyoxoanions. 

For Mo, equilibrium between the species can be reached in a few minutes, and

several isopolyanions can be obtained in an acidic environment. As example:

7[MoO4]2- + 8H+ → [Mo7O24]6- + 4H2O (Eq. 1)

8[MoO4]2- + 12H+ → [Mo8O26]4- + 4H2O (Eq. 2)

36[MoO4]2- + 64H+ → [Mo36O112]8- + 32H2O (Eq. 3)

The basic units of these structures are MoO6 octahedra and MoO4 tetrahedra. Notable

quantities of strong acid are required for the condensation, because the oxygen atoms that

exceed are eliminated as water molecules. 

In the case of tungstate polyanions, a longer time is required in order to reach the

equilibrium of condensation. From acid solutions of WO4
2-, the first species obtained are

paratungstates A, [HW6O21]5-. In more acidic media, pseudo-metatungstates [HW6O20
3-]n

are obtained. After days or weeks, aqueous solutions of these polyanions can give more

complex  structures,  such  as  [H2W12O42]10-  (paratungstate  B) from  [HW6O21]5-,  or

[H2W12O40]6- (metatungstate, Figure 3) from [HW6O20
3-]. The metatungstate structure is

the basis for the formation of Keggin type POMs.
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Fig. 3: Metatungstate, [H2W12O40]6-ii

Stop of condensation is due to electrostatic repulsion originated from metal ions

at the center of condensing octahedra.

Heteropolyanions  can  also  be  obtained,  derived  from  the  condensation  of

polyanions with heteroatoms such as P, As, Si and Ti. The heteroatom is located in the

internal cavities created by the oxygen atoms. These compounds are known mostly for

Mo and W. We can find a Keggin type [XM12O40]3-, suitable for small atoms such as PV or

AsV,  where  the  heteroatom is  contained  in  the  tetrahedral  central  cavity  formed  by

oxygen atoms and the final structure is analogue to that of metatungstate. As an example:

12MoO4
2- + H3PO4 + 21H+ → [PMo12O40]3- + 12H2O (Eq. 4)

From these structures we can originate Dawson type POMs. They are obtained

from condensation of two Keggin type POM, with the loss of two triades of MO6. The

formula is [X2M18O62]6-.5

Structural  properties,  chemical  behavior  and compounds stability  are  different

among metals, and it is extremely difficult to give a general description for the synthesis

of POMs.6
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1.1.3 Redox properties

The first systematic electrochemical studies on Keggin and Dawson POMs of Mo and W

have been done in the 1960's. It was established with polarographic and voltammetric

experiments, that POMs undergo a series of reversible and quasi-reversible reductions.

Moreover, it  was concluded that their redox properties strongly depended on pH. For

example, reduction under acidic conditions occurs at less negative potentials, and two

electrons  are  exchanged.  Conversely,  after  addition of  bases,  the reduction  potentials

move to more negative values and the reduction steps become monoelectronic.7

POMs are  chunks  of  metal  oxides,  that  contain  fully  oxidized  d0  metal  ions.

Therefore, they can stabilize metals in their highest oxidation state, such as VV, WVI or

MoVI.  They  are  extremely  difficult  to  oxidize,  but  they  undergo  reduction,  yielding

different colored compounds, e.g., mixed valence heteropoly “blue” and “brown”. The

presence of terminal  oxygen atoms produces a strong axial  ligand field on the metal

atoms and generates a nonbonding "dxy” orbital.  This orbital can be occupied by new

electrons,  generating  colored  compounds.  Heteropoly  “blues”  come  from  the  first

reduction, and ESR studies show the paramagnetic nature of these ions. In this way we

can generate several MoV or WV for each polyanionic compound. The blue color arises

from enhanced d-d transitions and inter-valence charge transfer bands, or rather metal to

metal charge transfer bands (MMTC) between the reduced MV and oxidized MVI centers.

Intra-ionic disproportion under acidic conditions of “blues” generates further reduction

and consequently heteropoly “brown” species. These species contain metal-metal bonded

triangular clusters of WIVO6 octahedra. To keep the anion charge low, each WIV bears a

terminal H2O ligand, and the WIV(H2O) group may be oxidized back to WVI via atom-

transfer with, for instance, Me2SO:

[(SiO4)W9O33{WIV(H2O)}3]4- + 3Me2SO → [(SiO4)W12O36]4- + 3Me2S + 3H2O (Eq.5)3

1.1.4 Applications

Special properties of POMs (protons and electron storage, size, high molecular weight

and so on) lead to many application fields. The first kind of application was in analitical

chemistry,  for example in  phosphate and silicate  determination via  “heteropoly blue”

formation.  Nowadays,  the  largest  application  field  of  POMs  is  catalysis,  e.g. in  the
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oxidation of methacrolein to methacrylic acid, methane oxidation or Wacker chemistry

processes. Other applications are as stain for electron microscopy, as phasing agents for

structural  cristallography  of  large  molecules,  for  the  selective  inhibition  of  enzyme

function or utilization of their potent antitumoral and antiviral activity.8

The application field related to our work,  is  the utilization of POMs in redox

catalysis and for artificial photosynthesis studies, thanks to their property of electrons

storage and transfer.

1.2 POLYOXOMETALATES FUNCTIONALIZATION

1.2.1 Polyoxometalates functionalization via electrostatic interactions

POMs functionalization represents an important step to allow their use and integration in

functional architectures and devices. It also affords new chemical properties and widens

the application fields of these compounds.

Since  POMs  are  negatively  charged  molecules,  the  first  strategy  of

functionalization  was the  exchange of  the  counter-ion.  It  allows,  first,  to  change the

solubility of the compound, depending on the polarity and the organic/inorganic nature of

the  cation.  Examples  are  their  immobilization  on  many  surfaces  such  as  positively

charged polyelectrolytes, surfactant-encapsulated POMs as optical or catalytic materials

or electrostatic embedding of POMs into polymers. Other ways of functionalisation via

non-covalent linkages are represented by the immobilization of POMs on graphite and

metal  surfaces,  for  microscopy  imaging,  or  immobilization  of  POMs  on  carbon

nanotubes.8

1.2.2 Polyoxometalates functionalization via covalent interactions

Another possibility of functionalization of POMs consists in covalent linkage. It offers

many advantages: better control of interactions between components, rational design of

molecular assemblies, better dispersion of POMs in matrices and improvement in long-

term stability of the assembly.
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Figure 4: Different ways of functionalization of POMs: Physical trapping, Electrostatic and Covalent

Bondingiii

In order  to  functionalize  the  starting POM, it  is  necessary,  first,  to  obtain  an

intermediate lacunary species, which is, successively, functionalized. A lacunary POM is

a chemical species deprived of one or more MO6 octahedral units. This species can be

obtained by treatment of the starting POM with a mild base such as bicarbonate.

Figure 5: Example of monovacant "Keggin" and "Dawson" POMsiv

The so obtained lacunary POMs contain terminal oxygen atoms with enhanced

nucleophilic  character.  These,  in  turn,  may  react  with  elctrophilic  species  such  as

organosilanes, organotin, transition metal complexes or organometallic compounds. After

this step, a post-functionalization is possible, leading to compounds with new properties,

allowing  for  example  the  immobilization  of  POMs on  a  surface  or  developing  new

utilizations in many fields, such as nanosciences or catalysis.
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Figure 6: Different routes for the synthesis of POM organic-inorgnic hybrids. Path (i):

direct functionalization, paths (ii, iii): post-functionalization. Lacunary POM is

represented in blue, the anchoring tether is lilac and the added functional moiety is

beige.iv

The  lacunary  POMs  can  be  reacted  with  TM  complexes  in  order  to  obtain

functionalized species. To date, there are examples of all the first raw TM which have

been included into POMs. The resulting TMSPs displays a variety of new properties,

such as magnetic properties and catalytic activities. In a similar way, it is also possible to

functionalize POMs with organometallic compounds.9

1.3  PHOTOSENSIBILIZED  POMs  FOR  APPLICATIONS  IN  ARTIFICIAL

PHOTOSYNTESIS 

1.3.1 Natural and artificial photosynthesis

Photosynthesis  is  the  natural  process  with  which plants  produce  glucose  and oxygen

starting from carbon dioxide and water. The general equation of photosynthesis is:

6CO2 + 6H2O → C6H12O6 + 6O2  (Eq. 6)

It  involves  water  oxidation,  with  oxygen  production,  and  simultaneously  the

reduction  of  carbon  dioxide,  to  produce  glucose.  The  process  is  divided  in  “light

reaction”  and  “light-independent  reaction”.  In  the  former  phase,  photons  excite  the
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“photosystem II”,  that  takes  electrons  coming from water  oxidation  and passes  them

through different proteins with decreasing potentials, up to “photosystem I”, to produce

finally ATP and NADPH. The latter molecules will be used, in the “light-independent

reaction”, to reduce CO2  and produce glucose and other bio-molecules, according to the

Calvin Cycle (Figure 7).10

Figure7: Photosynthetical cyclesv

The  reproduction  in  laboratory  of  photosynthesis  is  called  artificial

photosynthesis. Artificial photosynthesis research projects generally try to convert solar

energy  into  fuels,  with  greater  efficiency  than  photovoltaic  systems  or  biomass

combustion.11

Several research lines are conducted, for example in photoelectrochemical cell or

photocatalytic water splitting. Among them, the photoproduction of hydrogen is a field of

extreme interest. The considered reaction is the water splitting, where the reduction of

CO2 that occurs in photosynthesis is replaced by the reduction of H+:

H2O → H2 +  1/2O2 (Eq. 7)

Pure water absorbs light only in the infrared region, where the energies are too

low to allow water splitting. Thus a molecule able to absorb in the UV-Vis region, such as

a TM complex or an organic dye, must be employed. Since a photon is able to stimulate
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the release of only one electron, while the oxidation process requires two electrons for

each oxygen atom, a chemical species able to store electrons is also needed. Totally, the

system will be composed by an “antenna”,  able to convert  the absorbed photons into

emitted electrons, a reduction catalyst  and an oxidation catalyst.  Either the full  redox

reaction or the two half-reactions separately are studied, the latter by utilizing a sacrificial

electron donor or acceptor.12 POMs may be used as reduction catalysts, thanks to their

electron storage properties and the ability of their reduced forms to produce hydrogen

from protons. Hydrogen evolution has already been observed from photo-activation of

“Transition Metal Substituted Polyoxometalates” (TMSPs), in the presence of protons

and  a  sacrificial  reductant,  such  as  water.  Since  POMs  have  empty  d-orbitals,  the

photochemical process is an LMCT transfer, lying in the UV-Vis part of spectrum.9 

1.4 GENERATION OF COORDINATION SITES FOR POMs APPLICATIONS IN

CATALYSIS

1.4.1 POMs and TMs for catalytic applications

Another field of great interest in POMs applications is catalysis, both homogeneous and

heterogeneous.  Molybdophosphates  have  been  already  used  in  the  oxidation  of

methacrolein to methacrylic acid, and in methane oxidation. Molybdovanadophosphates

are used in the Wacker process, in the oxidation of alkenes and coupling of aromatics.8

Doping with TMs is  a  good strategy to  improve catalytic  properties.  An electrostatic

coordination is possible, and there are several examples. However, the best way is the

covalent  bonding  on  lacunary  polyanions,  to  obtain  TMSPs.  In  this  way,  the  redox

properties of POMs are coupled to the catalytic properties of TMs. Lacunary polyanions

derive  from  the  corresponding  saturated  POM,  after  the  removal  of  one  or  more

octahedral MO6 unit, under basic conditions. This treatment affords terminal nucleophilic

oxygen atoms and creates a polydentate site, able to coordinate one or more TMs, such as

Fe, Mn, Zr or V. There are two modes of coordination: the first is called “in-pocket”, and

consists of substitution of one addenda atom with another TM atom; the second is called

“out-of-pocket”,  with  the  new  TM  atom  that  occupies  a  vacancy  without  being

completely embedded. This second way allows to obtain “sandwich” structures, where

the  TM bridges  two  vacant  POMs sub-units,  or  other  larger  molecular  architectures

14



stabilized by two or more vacant sub-units. The nucleophilicity of terminal oxygen atoms

can be also exploited for reactions with electrophilic organic molecules in order to obtain

organic-inorganic hybrid complexes.13

1.4.2 POMs functionalization with silanol moieties

POMs functionalization with sterically bulky silanol moieties can afford new and original

coordination sites for catalytic applications. Sterically protected well defined single metal

sites can be obtained, opening new perspectives in organometallic chemistry. Indeed, if

silanol  GFs,  for  example,  with  -OH  functions  are  used,  a  post-functionalization  is

possible. As the POM is composed of d0 metals, it can allow for example metal-ligand

multiple  bond  formation  (metal-oxo,  metal-nitrene,  metal-carbene).14 As  an  example,

reaction of the dilacunary γ-[PW10O36]7- with tert-butylsilane affords a hybrid POM that

presents a rigid bis-silanol coordination environment (Figure 8). 15 

Fig. 8: Silanol functionalization

Moreover, the silanol groups of modified POMs may mimic the silanol groups

present  on  silica  surfaces,  largely applied  in  organometallic  catalysis.  Then,  once  an

organometallic  compound  is  coupled  to  such  silanol  modified  POMs,  the  resulting

compound  may  be  viewed  as  a  molecular  analogous  of  an  organometallic  complex

bonded to a silica surface. It is noteworthy that molecular species can be separated and

characterized more easily than surface complexes. As an example, studies have already

been done on catalytic olefin epoxidation on alkoxi-titanium surface complexes. Mono,

bis and tripodal alkoxide titanium complexes have been analyzed, and the best activity

was  found  in  tripodal  titanium,  where  there  is  the  best  compromise  between  the

accessibility  of  metal  center  and  its  increase  in  electrophilicity.16 Metal  oxides
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substitution with POMs can represent, in this field, an interesting development, thanks to

electron storage properties of these compounds.

16



2. OBJECTIVE

2.1 POMs FUNCTIONALIZATION FOR PHOTOCATALYTIC APPLICATIONS

Due  to  their  electron  storage  properties,  POMs  have  been  studied  for  hydrogen

photoproduction.

Keggin and Dawson type POMs covalently grafted to heteroleptic cyclometalated

IrIII complexes have been already prepared, by postfunctionalization of organosylil and

organotin POM derivatives. Combined transient absorption and spectroelectrochemical

measurements provided evidence of photoinduced electron transfer from the cromophore

GF to the POM.17

Redox properties of covalent IrIII-photosynthesized polyoxotungstates have been

already tested.  The system was found to  be able  to  perform photocatalytic  hydrogen

production  under  visible  light,  thank  to  the  decisive  effect  of  the  covalent  bonding

between the POM and the photosensitizer.18

However, Ir complexes already selected and developed present a weak hydrolysis

resistance,  and  our  aim  is  to  carry  out  new  functionalization  with  other  kinds  of

complexes and to accomplish new photochemical and photocatalytic studies.

Another  field  developed  is  POM  covalent  post-functionalization  with  pyridyl

groups, in order to obtain photoactive films via polymerization with metal porphyrins.

They have been already obtained by the electro-oxidation of zinc octaethylporphyrinin

the  presence  of  a  Dawson  type  polyoxophosphovanadotungstate  bearing  two  pyridyl

groups, and their electrochemical properties studied.19 In this Thesis, new kinds of POM

were employed in the post-functionalization with pyridyl groups, with the aim to obtain

new photocatalytic films.

2.2 SYNTHESIS OF NEW PHOTOSENSITIZED POM-BASED HYBRIDS FOR

HYDROGEN PHOTOPRODUCTION

In this work, new photosensitized POM-based hybrids were obtained, trough Sonogashira

coupling  reaction,  carried  out  on  iodo-aril  derivatives  of  Keggin and Dawson POMs

hybrids20. The new compounds were obtained by post-functionalization with photoactive

FGs, such as IrIII complexes and pyridyl groups, and the electrochemical properties of

products were analyzed. The four selected hybrids are:
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 [TBA]4[PW11O39Sn(pC6H4I)] (KSn
W[I])

 [TBA]4[PMo11O39Sn(pC6H4I)] (Ksn
Mo[I])

 [TBA]6[P2W17O62(Si(pC6H4I))2] (DSi
W[I])

 [TBA]3[PW11O40(Si(pC6H4I))2] (Ksi
W[I])

where D and K mean Dawson and Keggin type; Si, Sn and I indicate the kind of first

functionalization (the atoms present in the FG); and W and Mo indicate the metal of the

POM backbone. The counter-ion of starting POMs is tetrabutylammonium (TBA). The

two selected FGs are 1-ethynylpyrydine (Pyr) and ethynyl-IrOxazole (IrOxa) (Figure 9):

Fig. 9: In the order: [TBA]6[P2W17O62(Si(pC6H4I))2] or Dsi
W[I], [TBA]4[PMo11O39Sn(pC6H4I)] or

Ksn
Mo[I] and [TBA]4[PW11O39Sn(pC6H4I)] or KSn

W [I], [TBA]3[PW11O40(Si(pC6H4I))2] or Ksi
W[I],

[IrOxa] complex and [Pyr] group

The Sonogashira cross-coupling reaction allowed to bond photoactive complexes on the

organic-inorganic hybrids obtained. Four reactions were carried out:

 KSn
W [I]+ [IrOxa]

 KSn
Mo[I] + [IrOxa]
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 DSi
W[I] + [Pyr]

 KSi
W[I] + [Pyr]

Post-functionalization with pyridyl  moieties  afforded bifunctional  species,  that

then  will  be  employed  for  the  polimerization  of  photoactive  POM  films;  post-

functionalization with Ir complex afforded monofunctional species, that will be tested in

photocatalytic hydrogen production.

Focus: Sonogashira cross-coupling reaction

The Sonogashira cross-coupling reaction is the coupling of terminal alkynes with aryl or

vinyl halides, under palladium catalysis. The catalyst is a Pd (0) species, and the co-

catalyst  is copper (I) iodide, in the presence of a base. According to the mechanism,

deprotonation of alkynes takes place, followed by substitution of proton with a Cu atom.

On the Pd (0) centre, an oxydative addition of the aryl alide occurs, to obtain a Pd (II)

species; the subsequent step is a terminal coordination of alkynyl copper to the metal

center (transmetallation). Finally, a reductive elimination takes place on the metal centre,

generating Pd (0) and coupling of the organic ligands to obtain the final organic product

(Figure 10).21

Fig. 10: General mechanism of Sonogashira coupling reactionvi

The Sonogashira  cross-coupling reaction was first  reported by Kenkichi  Sonogashira,

Yasuo  Tohda,  and  Nobue  Hagihara  in  their  1975  publication.22 It  was  a  remarkable

discovery because it is a coupling that can be carried out at room temperature and it

allows to couple organic moieties to obtain bigger  and more complex molecules and

products.
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2.4 SYNTHESIS OF POMS FOR CATALYTIC OXIDATION PROCESSES AND

REACTIVITY TESTS

In this part of the work, redox properties of POMs were studied and exploited to manage

some reactivity and catalytic tests, and these properties were coupled with those of early

transition metals. Studied TMs were VIII,  VV,  ZrIV and TiIV.  As an example, vanadium

oxide is  already employed in catalytic oxidation processes,  such as SO2 oxidation or

allylic  alcohol  epoxidation.23 Vanadium phosphor oxides  are  also used  in  C4 fraction

oxidation to maleic anhydride.24

Coupling  of  catalytic  properties  of  TM  and  redox  properties  of  POM  were

analyzed, in an original sterically protected coordination environment due to bis- and

tris-silanol  first  functionalization.  Catalytic  and  reactivity  tests  with  small  molecules

were carried out; for the former, metals in their highest oxidation states were used, while

for the latter metals in intermediate oxidation states were employed.

Electrochemical  tests  were  also  performed,  such  as  CV  and  UV-Vis-

spectroelectrochemistry  coupled  analyses.  1H,  31P  and  51V  NMR  techniques  were

employed, and EPR analyses were also accomplished.
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Fig. 11: Example of reaction with redox-active TM



3. RESULTS AND DISCUSSION

3.1  POMs  POST-FUNCTIONALIZATION  FOR  HYDROGEN

PHOTOPRODUCTION

Among  other  possibilities,  POMs  were  selected  for  the  synthesis  of  photoactive

molecules because of their properties of electron reservoir and redox behavior. Keggin

and  Dawson  heteropolytungstates  (derived  from [PW12O40]3- and  [P2W18O62]6- POMs,

respectively)  and  Keggin  heteropolymolybdates  (derived  from  [PMo12O40]3-)  were

chosen,  since the obtained hybrids show substantial hydrolytic and thermal resistance.

Complete POMs are not suitable for this kind of functionalization, since terminal oxygen

atoms are rather weak nucleophiles.  However,  lacunary polyanions react  readily with

several species such as metal  complexes or electrophilic  organic moieties,  since they

have unsatured oxygen atoms.  In a  previous  work,  lacunary polyanions  (Keggin and

Dawson types) were firstly functionalizated with organosilyl and organotin groups (see

2.OBJECTIVE).

A covalent-type of functionalization was chosen, instead of a non-covalent one.

The latter solution is more developed and exploited, but the former one presents several

advantages:  among  others,  it  allows,  to  enhance  directionality  and  the  interaction

between the organic and inorganic components. 

All the syntheses were conducted in a Schlenk tube under argon atmosphere, to

avoid oxidation and contamination of starting products. The utilization of a microwave

reactor allowed to reduce the reaction time up to one hour, at 80°C.

The Sonoghashira cross-coupling reaction was used in the post-functionalization

step, with Pd(0) as catalyst and CuI as co-catalyst. A base was necessary to deprotonate

the terminal alkyne, and freshly distilled Et3N was used (Figure 12).

21



Fig. 12: Example of post-functionalization pathvii

The purification of the reaction products was obtained by selective precipitation on the

basis of their differential solubility on miscellaneous solvents. The nature of the counter-

ion has a strong influence on the solubility properties of POMs: an organic counter-ion,

like TBA, makes the POM soluble in organic and polar solvents, like DMSO and ACN.

To allow purification, less polar solvents were progressively used to dissolve the reaction

product and separate impurities. In this way it is hard to obtain very high yields, but, on

the other hand, the obtained products are rather pure. The scale of solvents used, in order

of decreasing solubility, is

DMSO > CH3CN > EtOH > Et2O

 

The products were characterized via 1H and 31P NMR.

Photochemical tests were carried out on post-functionalized POMs. CV analyses

were  performed  in  order  to  study  the  redox  properties  of  the  products.  The  redox

properties  were investigated in  the  presence or  not  of  a  source of  acids,  in  order  to

determine the effect of the presence of protons on the reduction potentials and the nature

of  the reduction steps.  After  that,  the products  were  submitted to  other  tests  at  Jena

University, by the team of Prof. B. Dietzek. In particular, UV-Vis spectra were recorded

and luminescence tests were accomplished. Photolysis studies in the presence of protons
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and sacrificial electron donors, for hydrogen photoproduction, will be tested in the future,

at CEA of Grenoble. Polymerization of POM-pyridyl hybrids will be also tested in the

future, to obtain photoactive POM films.

 Synthesis and characterization of [BMIM]3[PW11O39Sn(p-C6H4-ethynyl-

IrOxazole)] (KSn
W [IrOxa])

Ksn
W[IrOxa] is a post-functionalized Keggin type POM, obtained from the coupling of

[TBA]4[PW11O39Sn(pC6H4I)] (KSn
W[I]) with an Ir Oxazole complex (Figure 13).

 

 

Fig. 13 Synthesis of KSn
W [IrOxa]. On the left, Ksn

W[I], on the right  KSn
W [IrOxa]                     

After  the  reaction,  the  TBA  counter-ion  was  exchanged  with  1-butyl-3-

methylimidazolium  (BMIM).  The  reaction  product  was  characterized  via 1H  NMR

spectroscopy (Figure 14).
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Fig. 14: 1H NMR spectrum of KSn
W [IrOxa]
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The BMIM cation displays its typical resonances at δ 1.0, 1.4, 1.8 and 4.2 ppm,

whereas the aromatic protons of the FG resonate at 6-9 ppm. Integration of the aromatic

protons of FG vs. the protons of BMIM results in a 31.4:9 ratio, in good agreement with

the 3- charge of KSn
W [IrOxa].

The CV analysis  was carried out with different concentrations of acid or base

(Figure 15).  The blue line was obtained with Ksn
W[IrOxa] 1 mM, the red one with the

addition of 1 equivalent of TBAOH and the yellow one with 250 equivalents of TFA.

Ksn
W[Iroxa] (blue line) displays a reversible process at -1.05 V vs SCE attributable

to the first monoelectronic reduction of the tungstic framework followed by several broad

waves between -1.2 V and -1.5 V vs SCE corresponding to the further reduction of the

POM  and  the  protonated  Iridium  complex.  Upon  addition  of  1  equiv.  of  TBAOH,

KSn
W[Iroxa] displays three reversible waves at  ca. -1.07 V, -1.40 V and -1.55 V vs SCE

attributed to the two first mono-electronic reductions of the tungstic framework and the

reduction of the deprotonated iridium complex respectively. Progressive addition of TFA

(up to 250 equiv.) results in a continuous shift of the reduction potentials towards less
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Fig. 15: CV of KSn
W [IrOxa]. Blue: POM 1 mM, Red: 1 eq TBAOH, Yellow: 250 eq TFA.  DMF containing

0.1 M of TBAPF6. Working electrode, glassy carbon; reference electrode, SCE; counter-electrode, Pt wire.
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negative values. Moreover, in the presence of an excess of TFA the reduction processes

become  bi-electronic  as  indicated  by  the  gradual  increase  of  the  intensity  of  the

voltammetric waves. The presence of protons modifies the redox behavior of the POM as

a consequence of a counter-cation exchange. In the case of acid environment, a better

definition of redox waves and their shift at higher potentials can be noted.

The formal electrode potentials (E°' vs. SCE) (for 250 eq. of TFA) are:

1. E°'(3-/5-) = -0.600 V

2. E°'(5-/7-) = -0.754 V

UV-Vis analysis and luminescence tests were carried out at Jena University. 

The  UV-vis  spectra  of  KSn
W[Iroxa] have  been  performed  in  DMF  at  a

concentration of 0.1 mM. The visible absorptions features of the iridium chromophore

[Iroxa] are  located  in  the  400-500 nm region  and are  assigned to  singlet–singlet  and

formally  spin  forbidden  singlet–triplet  metal  to  ligand  transitions.  These  bands  are

drastically affected by the presence of protons (TFA) and bases (triethylamine) (Figures

16 and 18).
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Fig 17: Absorpition spectra of KSn
W[Iroxa] in DMF solution (black),

with TFA (red) and with TEA (blue)

Fig. 16: Absorption spectra of [Iroxa] in DMF solutions (black), with
TFA (red) and with TEA (blue)



The presence of isobestic points in the iridium reference [IrOxa] indicates that it

is partially protoned on the oxazole linker.  The presence of traces of protons, coming

from traces of water, in DMF is however not excluded. A special care to remove the

possible traces of protons in the DMF solutions has to be taken in the future. The visible

absorption spectra of reported POM–Ir dyad are dominated by the carbocyclometalated

Ir(III) chromophore units, since the POM itself does not contribute to the spectral profile

in the visible region. The addition of trifluoroacetic acid mostly does not affect the UV-

vis spectrum of the hybrids, which indicates that they are fully protonated after their

synthesis.

The iridium reference [Iroxa] in DMF solutions displays emission spectra centred

at 589 nm following its excitation at 410 nm. Upon the addition of few equiv. of TFA, the

emission  of  the  reference  complex  is  drastically  enhanced,  while  the  shape  of  the

emission spectrum is barely unaffected. This suggests that the emission of the Ir complex

arises from its protonated form, the unprotonated form being not luminescent.
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Fig. 18: Absorption spectra of KSn
W[Iroxa] in DMF solutions (black),

with TFA (red) and with TEA (blue)



The  tungstic  POM-based  hybrid KSn
W[Iroxa] displays  similar  luminescence

following its excitation at 410 nm ( = 589 nm) with approximately the same intensity

than that of the free iridium complex. This suggests that, the charge injection on the POM

is negligible or slow. Considering the oxidation potential of the iridium complex, it seems

likely that the photoexcited iridium complex is not sufficiently reductive to perform a

photo-induced electron transfer to the POM. Upon the addition of a very large excess of

TFA (>100000 equiv.), we observed a decay of 50 to 75 % of the initial luminescence

that may be attributed to a partial charge injection on the POM (note that the emission of

the Ir reference complex is also partially quenched upon addition of such quantity of

TFA).

 Synthesis and characterization of [BMIM]3[PMo11O39Sn(p-C6H4-ethynyl-

IrOxazole)] KSn
Mo [IrOxa]

KSn
Mo[IrOxa] is  a  mono-functional  Keggin  type  POM,  and  was  obtained  from  the

coupling of [TBA]4[PMo11O39Sn(pC6H4I)] (KSn
Mo[I]) with an Ir Oxazole complex (Figure

19).

Fig. 19 Synthesis of KSn
Mo [IrOxa]. On the left, Ksn

Mo[I], on the right KSn
Mo [IrOxa] 

The reaction product was identified  via 1H and  31P NMR.  The  1H spectrum is

similar to that of KSn
W [IrOxa]. The 31P spectrum displays a singlet for the inner P of the

POM framework, at  δ -2.9 ppm. The presence of a single resonance in the  31P NMR

spectrum indicates that the product has been obtained rather pure.
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The CV analysis was carried out with different concentrations of acid or base.

(figure 20). The blue line was obtained with KSn
Mo [IrOxa] 1 mM, the red one with the

addition of 1 equivalent of TBAOH and the black one with 250 equivalents of TFA.

The electrochemical behavior of KSn
Mo[Iroxa] follows the same trend as that of its

tungstic POM-based hybrid analog  KSn
W[Iroxa].  Initially the hybrid displays a first ill-

defined reduction process at -0.51 V vs SCE, due to the presence of protons coming from

impurities. After the addition of TFA (from 8 to 250 equiv.), three reversible reduction

waves,  assigned  to  two-electron  reduction  processes  of  the  molybdic  framework,

continuously shift towards positive potentials.

The formal electrode potentials (E°' vs. SCE) (for 250 eq. of TFA) are:

1. E'°(-3/-5) = 0.170 V

2. E'°(-5/-7) = 0.050 V

3. E'°(-7/-9) = -0.200 V
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Fig. 20: CV of KSn
Mo[IrOxa]. Blue: POM 1 mM, Red: 1 eq TBAOH, Black: 250 eq TFA. DMF containing

0.1 M of TBAPF6. Working electrode, glassy carbon; reference electrode, SCE; counter-electrode, Pt wire.
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Luminescence tests were carried out at Jena University.

The molybdic hybrid  KSn
Mo[Iroxa] displays  a poor emission centred at  590 nm

after excitation at 410 nm (ca. 20 times less intense than that of [Iroxa]). This emission is

further quenched upon the progressive addition of TFA (Figure X). After the addition of

50 eq. of TFA, a residual emission is still observed and does not decay significantly upon

the further addition of TFA.  The quenching process in this  case is likely an electron

transfer from the iridium chromophore to the POM (Figure 21).

Charge photoaccumulation and hydrogen photoproduction of Ksn
Mo[IrOxa] are currently

under investigation.

 Synthesis  and  characterization  of  [TBA]6[P2W17O62(Si-C6H4-ethynylPyr)2]

(Dsi
W[Pyr]2)

Dsi
W[Pyr]2 is  a  bi-functional  Dawson  type  POM,  and  was  obtained  from the

coupling  of  [TBA]6[P2W17O62(Si(pC6H4I))2]  (Dsi
W[I])  with  two  ethynyl-pyridine  FGs

(figure 22).
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Fig. 21: Evolution of the luminescence (λ exc = 410
nm) of a solution of KSn

Mo[Iroxa] in DMF upon the
addition of TFA: a) 3 equiv., b) 6 equiv., c) 10 equiv.,

d) 25 equiv.,,e) 50 equiv., f) 100 equiv..



The reaction product was characterized via 1H NMR (figure 23).

In  the  1H spectrum,  we  can  observe  at  δ 1.00,  1.50,  1.70  and  3.15  ppm the

resonances of TBA, and between 7.5 and 8.6 ppm the aromatic resonances of the FG.
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Fig. 22: Synthesis of Dsi
W[Pyr]2.  On the left Dsi

W[I], on the right Dsi
W[Pyr]2 

1.01.01.51.52.02.02.52.53.03.03.53.54.04.04.54.55.05.05.55.56.06.06.56.57.07.07.57.58.08.08.58.5

Fig. 23: 1H NMR spectrum of Dsi
W[Pyr]2



Four monoelectronic redox processes, with features of chemical reversibility, are

present in the cathodic part of the cyclic voltammogramm (Figure 24).
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Fig. 24: CV of Dsi
W[Pyr]2.  DMF containing 0.1 M of TBAPF6. Working electrode, glassy carbon;

reference electrode, SCE; counter-electrode, Pt wire.

This corresponds to the sequential monoelectronic reduction of the hexa-anion down to

the deca-anion. 

The formal electrode potentials (E° vs. SCE) are:

1. E°'(6-/7-) = -0.586 V

2. E°'(7-/8-) = -0.965 V

3. E°'(8-/9-) = -1.498 V

4. E°'(9-/10-) = -1.857 V

According to the literature, the reduction processes are centered on the POM.25

• Synthesis  and  characterization  of  [TBA]3[PW11O40(Si-C6H4-ethynylPyr)2]

(Ksn
W[Pyr]2)

Ksn
W[Pyr]2 is a bi-functional Keggin type POM, and was obtained from the coupling of

[TBA]3[PW11O40(Si(pC6H4I))2] (Ksn
W[I]) with two ethynyl-pyridine FGs (Figure 25).
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Fig. 25 Synthesis of KSi
W [Pyr]2

The reaction product was characterized via 1H and 31P NMR. The 1H spectrum is

similar to that of DSi
W [Pyr]2, and the 31P spectrum gave one main singlet for the inner P

of the POM framework, at δ -13.30 ppm.

From the CV analysis,  three monoelectronic reversible redox processes can be

recognized in the cathodic region (figure 26).

The formal electrode potentials (E° vs. SCE) are:

1. E°'(4-/5-) = -0.325 V
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Fig. 26: CV of KSn
W[Pyr]2.  DMF containing 0.1 M of TBAPF6. Working electrode, glassy carbon; reference

electrode, SCE; counter-electrode, Pt wire.
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2. E°'(5-/6-) = -0.880 V

3. E°'(6-/7-) = -1.510 V

According to the literature, the reduction processes are POM centered.26

3.2 POMs FUNCTIONALIZATION FOR CATALYTICAL APPLICATIONS AND

REACTIVITY STUDIES

Catalysis is one of the most known application field of POMs. To carry out catalytic and

reactivity studies, redox active Keggin type POMs have been coupled to catalytic active

early TMs.

3.2.1 Generation of organosilanol coordination sites on lacunary POMs 

Two main coordination environments were used, bis-silanol and tris-silanol. These FGs

were  introduced  by  reacting  POMs  with  tBuSiCl3.  In  this  way,  rigid  and  stable

coordination sites with new redox and structural properties were obtained, as reported in

the literature.26

The  lacunary  POMs  employed  were  Cs7[PW10O36] (PW10)  and  K9[PW9O34]

(PW9),  resulting  after  reaction  with  tBuSiCl3 in  their  functionalized  forms

[TBA]3[PW10O36(tBuSiOH)2]  (PW10Si2)  and  [TBA]3[PW9O34(tBuSiOH)3]  (PW9Si3),

respectively (Figure 27).

At the end of the reaction, the Cs+ cation was exchanged with TBA+, in order to

increase solubility in polar organic solvents.
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Fig. 27: [TBA3][PW10O36(tBuSiOH)2] and [TBA3][PW9O34(tBuSiOH)3]



The products have been characterized  via  1H and  31P NMR, on the basis of the

singlet of  tBu at  δ 1.1 ppm (for  PW10Si2, Figure 28) and 1.0 ppm (for  PW9Si3). The

latter  signal  partially  overlaps  with  the  triplet  of  TBA.  Nevertheless,  its  presence

indicates that the reaction occurred successfully.

31P NMR spectra of both products gave a singlet, respectively at δ  -14.9 ppm and

-17 ppm, due to the unique phosphorus presents in the framework.

A  further  exchange  of  counter-ion  was  attempted,  between  Cs+ and

didodecyldimethylammonium bromide ([DDA]Br), in order to obtain a species soluble in

less polar solvents. Indeed, its TBA salt is only soluble in ACN, wich can react with

hydrogen peroxide, under basic conditions, according to the following equation:

Thus,  the  exchange  of  counter-ion  would  have  allowed  the  use  of  a  less  polar  and

unreactive solvent, such as toluene. However, impurities were found in the final product,

and such strategy was discarded.
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Fig.28: 1H NMR spectrum of PW10Si2
1.01.01.21.21.41.41.61.61.81.82.02.02.22.22.42.42.62.62.82.83.03.03.23.2



Subsequent POMs functionalization was carried out in order to obtain chemical

species that can be used in catalytic and reactivity tests. For this purpose, early TMs,

such as VV, VIII, TiIV and ZrIV, have been employed. POMs are “redox-active ligands”, and

the aim of this part of the work was to couple the redox properties of POMs with the

catalytic properties of TMs.

3.2.2 POM(silanol) with early TMs   for catalytic oxidation tests

The first synthesized species were those containing VV-oxo group. Vanadium oxide is

already known to be an active catalyst for oxidation reactions. For example, V2O5 is used

in the oxidation of n-butanol to maleic anhydride.

Before each reaction with TMs, the POM was dried at 215°C under vacuum for 2

h. These conditions have been selected on the basis of previous TGA and NMR tests,

which demonstrated that, in this way, H2O was completely removed and the structure of

the ligand preserved (Figure 29). It is very important to remove H2O before the reaction

in order to avoid hydrolysis  of metal precursor and, subsequently,  of silanol moieties

grafted on the POM.

Following  this  procedure,  PW10Si2 was  reacted  with  VVO(iPrO)3,  resulting

[TBA]3[PW10O36(tBuSiO)2VO(iPrO)] (PW10Si2VOPr) (Figure 30).
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Fig. 29: NMR evolution of PW10Si2 after drying process



The compound was identified by 1H NMR spectra, on the basis of the resonances

of its tBu (1.12 ppm) and iPrO (doublet at 1.50 ppm for the two equivalent methyl groups

and multiplet at 5.66 ppm for the central C-H) groups (Figure 31):
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Fig. 30: Synthesis of PW10Si2VOPr

Fig. 31: 1H NMR spectra of  PW10Si2VOPr
1.01.01.51.52.02.02.52.53.03.03.53.54.04.04.54.55.05.05.55.5



Both 31P and 51V NMR spectra of PW10Si2VOPr display a singlet, at  δP -14.50

ppm, and at δV -692 ppm. The presence of a minor impurity is also indicatedby a singlet

at δV -722 ppm in the 51V spectra.

Similarly,  PW9Si3  reacts  with  VOCl3,  to  give  [TBA]3[PW9O34(tBuSiO)3VO]

(PW9Si3VO)(Figure 32).

This  hybrid,  which  synthesis  is  already  known  and  studied27,  displays  a

completely saturated V, without possibility of further coordination. This fact is due in

particular to the structural rigidity and the steric effects of the silanol groups This hybrids

will be used as reference for the subsequent electrochemical analysis.

The complete  conversion of  PW9Si3 into  PW9Si3VO was determined by  1H

NMR, on the basis of the shift of the singlet of tBu from 1.00 to 1.20 ppm (Figure 33).
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Fig. 32: Synthesis of PW9Si3VO



The 31P NMR spectra of PW9Si3VO shows a singlet at δ -15.60 ppm.

The utilization of oxygen donor molecules in the catalytic cycles could lead to

detachment of vanadium centre from the POM, due to big oxofilicity of vanadium. This

fact  induced  us  to  attempt  the  functionalization  with  metal  atoms  with  a  smaller

oxofilicity.  POM post-functionalization with Zr  and Ti  was carried out  following the

same procedure as above.

Thus, the reaction of PW9Si3 with ZrCl4 afforded [TBA]3[PW9O34(tBuSiO)3ZrCl]

(PW9Si3Zr) (Figure 34).
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Fig. 33: 1H NMR spectra of PW9Si3VO (above) and PW9Si3 (below)
0.20.40.60.81.01.21.41.61.82.02.22.42.62.83.03.23.43.63.8

Fig. 34: Synthesis of  PW9Si3Zr



Freshly  distilled  TEA was  added  in  the  reaction  environment,  to  help  the

elimination of HCl, formed by the partial hydrolysis of ZrCl4. The reaction evolution was

monitored, on the 1H NMR spectra, by the shift of the singlet of tBu, from 1 to 1.2 ppm.

However, the presence of several resonances between -10 and -20 ppm in the 31P NMR

spectrum  (Figure  35)  suggests  the  presence  of  impurities.  Thus,  purification  was

attempted by means of crystallization via diffusion of acetone on the ACN solution. The

characterization of the product is now undergoing.

Finally, the reaction of PW10Si2 with Ti(iPrO)4 resulted in a complex mixture of

products, not yet identified.

3.2.3 Spectro-electrochemical analyses on POM-TM hybrids

In situ UV-Vis spectroelectrochemical analyses were carried out on POM-TM hybrids in

order  to  study  their  redox  behavior.  In  particular,  the  reduction  of  PW9Si3 and

PW9Si3VO was studied under Ar atmosphere. To individuate the reduction potentials of

chosen  hybrids,  a  CV test  was  carried  out  in  advance.  For  the  ligand  PW9Si3  the
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Fig. 35: 31P NMR spectra of PW9Si3Zr
-23-23-22-22-21-21-20-20-19-19-18-18-17-17-16-16-15-15-14-14-13-13-12-12-11-11-10-10-9-9-8-8-7-7



potentials of -0.9 V and -1.3 V (vs. SCE) were measured; for the hybrid PW9Si3VO the

potentials of -0.9 V and -1.7 V (vs. SCE) were measured. 

A DFT modelization,  carried  out  by Dr.  Etienne Derat's  team at  the  “Institut

Parisien de Chimie Moléculaire” suggests that, for the compound PW9Si3VO, LUMO

and  LUMO+1,  +2,  +3 and +4 orbitals  are  centered  on  the  tungstic  framework.  The

spectro-electrochemical  tests  carried  out  in  this  Thesis  have  the  aim  to  verify  this

analysis.

The test  on  PW9Si3 was conducted in freshly distilled ACN containing POM

2x10-4 M, and every five minutes an UV-Vis spectrum was registered. The first electron

reduction  at  -0.9  V (vs.  SCE)  was  carried  out  for  65  minutes,  until  no  change  was

identified in the UV-Vis spectra. The theoretical quantity of exchanged current was 0.59

C, while the effective exchanged current was 0.40 C. The second electron reduction was

carried out at -1.3 V (vs. SCE), until no change was identified in the UV-Vis spectra. The

first spectrum of the second series shows a fast increase at absorbance, perhaps due to the

first residual reduction process. The second electrolysis took 45 minutes, for a theoretical

exchange of 0.59 C and an effective exchange of 0.55 C. After that, a further electrolysis

at -1.5 V (vs. SCE) was carried out, in order to terminate the second electron reduction.

0.25 C were exchanged, in 40 minutes. The total effective charge exchanged was 1.19 C,

vs. a theoretical exchange of 1.20 C.

The test on PW9Si3VO was conducted in freshly distilled ACN, and every five

minutes an UV-Vis spectrum was registered.  The first electron reduction at -0.9 V (vs.

SCE)  was  carried  out  for  90 minutes,  until  no  change was identified  in  the  UV-Vis

spectra.  The  second  electron  reduction  was  carried  out  at  -1.7  V (vs.  SCE),  for  90

minutes long.

The instrumentation assembling is here reported (figure 36):
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Fig. 36: Assembling of the spectro-electrochemical test on PW9Si3 and PW9Si3VO

The UV-Vis spectra recorded during the electrolysis of PW9Si3 and PW9Si3VO

are reported (Figure 37).

41

  

Fig. 37: Electro-UV analyses on PW9Si3 (top) and PW9Si3VO (down).
Black profiles, first reduction; blue profiles, second reduction. ACN

containing 0.1 M of TBAPF6. Working electrode, Hg bed with Pt wire;
reference electrode, SCE; counter-electrode, glassy carbon.



In both cases, the two reductions are mono-electronic. A strong blue color was

observed after  the  first  reduction,  and the  coloration  persists  also  during  the  second

reduction process.

The  UV-Vis  spectra  of  PW9Si3VO suggest  a  first  reduction  (black  profiles)

operated on the vanadium center (VV → VIV). The second reduction (blue profiles) was

centered on the POM framework (WVI → WV) according to previous experiments and

literature data.

EPR spectra were registered ex situ on the mono-reduced species (black line) and

on the  bi-reduced  species  after  air  reoxidation  (red  line)  (Figure  38),  in  the  case  of

PW9Si3VO.

EPR spectra seem to agree with the presence of a paramagnetic VIV species in

both cases.
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Fig. 38: EPR spectra on PW9Si3VO. Black line: monoreduction. Red line:
bireduction after air reoxidation.



3.2.4 Catalytic oxidation tests on POM hybrids

Several catalytic oxidation tests were carried out, using the hybrids of POMs as catalysts.

The oxidant agent was always tert-butylhydroperoxide (TBHP), whereas 3-methylbut-2-

en-1-ol  (ROH),  an  allylic  alcohol,  and  1-hexene  have  been  employed  as  substrates

(Figure 39). Vanadium species are already known to be active in olefins oxidation, such

as cyclohexene.28 An allylic alcohol was chosen because of the high affinity of vanadium

for the alcohols in general; moreover, vanadium is known to be active in the oxidation of

allylic alcohols.29 The oxidation process concerns the epoxidation of the double bond of

the substrate, and all the tests were carried out under Ar atmosphere.

The first test was carried out with 3% mol (as molar ratio)  PW10Si2VOPr as

catalyst, and the reaction monitored by 1H, 31P and 51V NMR spectroscopy.

POM (9.14x10-3 M) and the olefin (0.3 M, 33 eq.) were added in the order to 0.5

mL of deuterated ACN. Through NMR analysis, the complete substitution of the  iPrO

ligand by the olefin was verified, thanks to the higher concentration of the latter. The

olefin is supposed to bond the vanadium center with the terminal oxygen atom, thank to

the  high  oxophilicity  of  vanadium.  After  that,  TBHP  was  added,  and  the  epoxide

formation was monitored by 1H NMR (Figure 40).
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Fig. 39: The two selected substrates



Observed resonances were those at 3.6 and 4 ppm, relative to the aliphatic CH2 of

respectively the final epoxide and the starting olefin. The conversion for the substitution

of  iPrO with ROH at the V centre is 95%, as calculated by integration of the  1H NMR

spectra.  Therefore,  the  equilibrium constant  for  the  substitution  is  0.56.  The iPrO (a

secondary alcohol) group has a greater  electron withdrawing effect than the olefine (a

primary  alcohol),  and  to  move  the  equilibrium,  a  greater  concentration  of  substrate

respect to the catalyst was used.

Finally, the 51V NMR spectrum of the final product shows a change in chemical

shift  compared  to  the  starting  material,  which  can  be  assigned  to  the  expected

predominant species, the tBuO-V.

Two  other  catalytic  tests  were  carried  out  with  PW10Si2VOPr  as  catalyst,

varying its concentration respect to the previous one. POM was added at 0.1% mol and
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Fig. 40: 1H NMR spectra recorded at different times during the oxidation of ROH with TBHP and
3% mol PW10Si2VOPr, in CD3CN: top, after 6 min; centre, after 2h30; bottom, after 3 days

12345678910



0.01% mol (as molar ratio), to test its catalytic properties at different concentrations. The

procedure was the same as above.

In the case of POM 0.1% mol, a catalytic activity was observed, while for the

POM 0.01% mol an extremely few activity was observed after 7 hours.

In Table 1 and Table 2 the conversion vs. time results of the tests at 3% and 0.1%

are reported:

Table 1:Test Catalyst 3% mol

t (min) 0 6 30 145 260 4320

Conv (%) 0 5 35 68 77 94

TON after 6 minutes: 1.7

TOF after 6 minutes: 0.3 min-1

TON at 77% of conversion: 26

TOF at 77% of conversion: 0.1 min-1

Final TON: 31

Final TOF: 7.25x10  -3   min-1

Table 2: Test Catalyst 0.1% mol

t (min) 0 60 195 240 330 405

Conv (%) 0 0 28 35 47 67

TON after 195 minutes: 278

TOF after 195 minutes: 1.42 min-1

Average TON over 400 min: 670

Average TOF over 400 min: 1.65 min-1

In the first test, TON and TOF were also calculated at 77% of conversion because

of the long period elapsed between the beginning and the stop of the test. The calculated

values of TOF indicate that the process with 0.1% mol of catalyst seems to be the most

efficient.  These  results  could  indicate  a  possible  deactivation  or  an  interaction

phenomena occurred to the catalyst at 3% of molar ratio, that can decrease its activity.

Further studies have to be carried out, to confirm this supposition.
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In Figure 41 the trends of conversion vs. time are reported:

The limited number of data collected did not allow us to carry out kinetic studies,

for which a larger number of data is needed.

 

A further  test  was  carried  out  with  3% mol  (as  molar  ratio)  PW9Si3VO as

catalyst.  The  reaction  was  monitored  by  1H,  31P and  51V NMR  spectroscopy.  POM

(9.14x10-3 M) and the olefin (0.3 M) were added in 0.5 mL of deuterated ACN. No

reaction occurred at this stage, as shown by NMR analyses. This is due to the fact that the

V-centre is fully saturated and not available for olefin coordination. Subsequently, TBHP

was added to the reaction mixture, and, unexpectedly, epoxide formation was noticed,

even if the conversion (determined by NMR) is not complete.

The unexpected catalytic effect may be due to catalysis operated by the POM

framework, to a temporary detachment of the vanadium ion or to the presence of some

impurities in the reaction environment. The study of this phenomenon will be the subject

of the following tests. 

The subsequent catalytic test was composed of two reactions, carried out at the

same  time.  The  two  catalysts  tested  were  PW10Si2  and  PW9Si3,  which  are  not
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Fig. 41: Graphic Conv. vs time for the oxidation of ROH with TBHP, 3% and 0.1%  mol catalyst
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functionalized POMs, and the tests were carried out to observe if they are able to catalyze

the oxidation.

POMs (3% mol), 3 ml of freshly distilled ACN, the olefin (0.15 M) and TBHP

(0.15 M) were added in this order in two separate Schlenk tubes, and the reaction was

monitored by 1H and 31P NMR spectroscopy.

After approximately 20 h no formation of epoxide was observed, and the test was

stopped. After this test, it was clear that POMs hybrids whitout vanadium centre are not

able to catalyze the oxidation process.

To  study  the  possible  coordination  of  TBHP to  different  POMs,  two  further

catalytic tests were carried out.

The first test was made on PW10Si2VOPr, (POM 3% mol, 0.5 ml of deuterated

ACN  and  TBHP  0.3  M).  The  reaction  was  monitored  by  1H,  31P  and  51V  NMR

spectroscopy.  Formation  of  different  products  was  observed.  Three  products  were

identified on the basis of 1H and 51V spectra: POM-V-iPrO, POM-V-OOtBu and POM-V-

OtBu. The presence of tBuOH was observed already in the starting product (tBuOOH, 5.5

M in decane) used for the reaction, as evidenced by 1H NMR analysis. This  tBuOH is

probably a result of the slow decomposition of the hydroperoxide.

 

Then, the olefin (0.30 M) was added to the reaction mixture, and the reaction

followed through NMR analyses. A unique  tBuO(H) is coordinated to the V-centre and

the formation of the epoxide is quantitative. In this way, it was possible to conclude that

the catalytic process works also by inverting the order of addition of the reagents.
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Fig. 42: 51V NMR spectrum of the coordination of TBHP to PW10Si2VOPr. -690 ppm V-OiPr, -720
ppm V-OtBu and -620 ppm V-OOtBu
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Another test, using only tBuOOH, was carried out with PW9Si3VO as catalyst.

POM (3% mol as molar ratio) in 0.5 mL of deuterated ACN and tBuOOH (0.30 M) were

added in the order in an NMR tube. The NMR analyses, carried out after 1 h 30 min, did

not show any change in the solution composition. In this way, it was possible to conclude

that  the  vanadium does  not  separate  from the  POM framework  during  the  reaction.

Therefore, unexpected catalytic activity of PW9Si3VO is therefore probably due to the

presence of impurities in the starting material.

The catalytic properties of VO(iPrO)3 were also tested. VO(iPrO)3 (3% mol), 0.5

mL of deuterated ACN and the olefin (0.3 M) were added in an NMR tube. 1H and 51V

NMR analyses were performed, and then TBHP 0.3 M was finally added.  1H and  51V

NMR analyses were carried out after 25 minutes (87% of conversion), after 1 hour and

25  minutes  (96%  of  conversion)  and  after  2  hours  and  50  minutes  (ca.  100%  of

conversion). It can be concluded that VO(iPrO)3 results in a greater reaction rate than

POM-V. Neverthless, as indicated by NMR, several V-containing species are present at

the end of the reaction (Figure 43).
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Fig. 43: 51V NMR spectra at the end of the oxidation of ROH with TBHP, with VO(iPrO)3 as catalyst.
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Finally,  we  performed  some  catalytic  tests  using  1-hexene,  instead  of  3-

methylbut-2-en-1-ol. PW10Si2OPr (3% mol), 3 mL of freshly distilled ACN, 1-hexene

0.15 M and TBHP (0.15 M) were added in a Schlenk tube.

The  reaction  was  monitored  via 1H  NMR.  After  6  h  of  reaction,  epoxide

formation  was  not  observed,  and  the  reaction  was  discarded.  The  unsuccessful

coordination is due to the lack of terminal oxygen atoms on the hexene molecule. This

fact does not allow the coordination to the vanadium center, preventing the subsequent

oxidation of the double bond.

The proposed mechanism for the epoxidation is the one reported in literature, for

the epoxidation operated by VV species (Figure 44). In our case, the OR groups bonded to

the vanadium center are represented by the POM-Si framework. 

Fig. 44: Mechanism of epoxidation operated by VV speciesviii

3.2.5 POM(silanol) with V  III     for reactivity tests

The  functionalization  attempted  with  VIII is  the  reaction  between  VCl3(THF)3 and

PW9Si3, to give [TBA]3[PW9O34(tBuSiO)3V] (PW9Si3V) (Figure 45).

49



Freshly  distilled  TEA was  added  in  the  reaction  environment,  to  help  the

elimination of HCl, formed by the partial hydrolysis of VCl3. As soon as VCl3 was added

to the reaction mixture, in the presence of TEA, formation of a dark blue solution was

observed. This indicates the presence of reduced forms of POM, as a result of an inner

sphere electron transfer from the metal to the POM framework of at least one electron,

resulting  in  the  formation  of  a  VIV species,  or  two electrons  along  the  oxidation  of

vanadium to +5 oxidation state. The nature of the occurred process will be investigated

with spectro-electrochemical analyses. This reaction allowed obtaining a hybrid where

vanadium is in an intermediate oxidation state. The presence of d electrons on the metal

center allows to carry out reactivity studies with small molecules.

The reaction was monitored by 1H NMR, following the shift of the singlet of -tBu

from  1.04  to  0.97  ppm.  The  presence  of  broad  signals  suggests  the  formation  of

paramagnetic species.

Two UV-Vis analyses were also carried out on the reaction product. A spectrum

was registered directly on the crude product (Figure 46), and it shows the features of a

mono-electronic  oxidation  occurred  on  vanadium (VIII→VIV)  (λmax =  400  nm) and  a

mono-electronic reduction occurred on tungsten (WVI→WV) (λmax = 900 nm) of the POM

framework  (see  paragraph  3.2.3  “Spectro-electrochemical  analyses  on  POM-TM

hybrids”).
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Fig. 45: Synthesis of PW9Si3V



The second UV-Vis spectrum was registered on the dried and purified product (Figure

47), and shows a weak absorbance, that probably indicates the presence of a VIV  centre.

This can indicate the reoxidation of the W centre of POM, occurred during the drying

processes, and the instability of the reduced state of the W. 
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Fig. 46: UV-Vis spectra of crude PW9Si3V

Fig. 47: UV-Vis spectra of dried PW9Si3V
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The first reactivity test was carried out between PW9Si3V and styrene oxide. The

reaction was supposed to yield styrene and POM-VO, as indicated by  1H,  31P and  51V

NMR spectroscopy.

The conversion was calculated by integration of the 1H NMR spectra (Figure 48),

observing multiplets at 2.8 ppm and at 5.3 ppm, relative respectively to one methylenic

proton of the oxyrane ring of styrene oxide and to the same proton of styrene. The result

was a conversion of styrene oxide into styrene of 40%.

In the  51V NMR spectrum, the resonance of VVO was recognized, at -800 ppm,

with several other resonances, attributable to the starting product and other by-products.

This means that the desired reaction took place, but the conversion was not complete.

The second test  carried  out  was the  reaction  between  PW9Si3V and  ethyl-2-

diazoacetate (diazo). The analyses carried out for the moment on the crude product did

not  allow  to  understand  the  products  evolution.  The  1H  NMR  spectrum  shows  the
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Fig. 48: 1H NMR spectra of the reaction between PW9Si3V and styrene oxide. Final rate betwwen
styrene (0.4) and styrene oxide (0.6) is calculated.
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resonances of the starting products, and IR analysis will be necessary in the future to

establish the eventual bond between the vanadium and the diazo FG. It can be observed

with the shift of the absorption band of the diazo double bond N=N.
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4. CONCLUSIONS

During this Thesis, several reactions and tests have been carried out, in order to

couple the redox properties of POMs with the chemical properties of several FGs.

In the field of photochemical processes, several hybrids were obtained and their

redox properties investigated. After that, other electrochemical tests were carried out on

the compounds at Jena University. Luminescence tests carried out on KSn
W[IrOxa] and

KSn
Mo[IrOxa] revealed, for the former, a strong luminescence phenomenon, while for the

latter  a  weak  luminescence  phenomenon.  For  Ksn
Mo[IrOxa],  the  luminescence  is

quenched by an electron transfer from the iridium chromophore to the POM, and this

effect can be used in the future for hydrogen photoproduction. Charge photoaccumulation

and hydrogen photoproduction on Ksn
Mo[IrOxa] are at the moment under investigation.

On the other hand, also pyridinic photoactive POMs were synthesized. DSi
W[Pyr]2

and KSn
W[Pyr] were obtained and their redox properties analyzed. These compounds will

be used, in the future, for the polymerization of photoactive films.

For POM applications in catalysis and reactivity tests, firstly a functionalization

with silanol moieties was carried out. This strategy allowed to obtain POM hybrids that

mimic  the  silica  surfaces  already  developed  in  heterogeneous  catalysis,  but  on  a

homogeneous catalyst. Metal complexes were prepared with early TMs such as VV, TiIV,

ZrIV and VIII.

The  redox  properties  of  POM-VV hybrids  were  studied  by  spectro-

electrochemical  and  EPR  techniques.  The  electrolysis  process  revealed  two

monoelectronic reductions, UV-Vis analyses suggest that the first reduction is probably

centered on the vanadium atom (VV→VIV) and the second reduction is centered on the

tungstic  POM  framework  (WVI→WV).  The  EPR  spectrum  registered  on  the

monoreducted species suggests the probable presence of a VIV centre.

The  subsequent  epoxidation  tests  were  carried  out  with  POM-VV hybrids  as

catalysts, TBHP as oxidant and 3-methylbut-2-en-1-ol as substrate. The best TOF value

was obtained with 0.1% mol  PW10Si2OPr  as catalyst.  It was also observed that the

reagent addition order does not affect the outcome of the test. A test was also carried out
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with 1-hexene as substrate, but it did not undergo epoxidation, because of the lack of

reactivity of such systems for unfunctionalized olefins. A final test was carried out with

VO(iPrO)3 as  catalyst.  As  expected,  it  led  to  the  epoxidate  allylic  alcohol,  but  the

catalyst turned out to be not recoverable from the reaction environment. Conversely, the

coordination of vanadium to the POM framework allows the recovery of the catalyst,

because of the formation of only one or two main species that can be reconverted back to

the  starting  product.  Furthermore,  the  POM-V  hybrid  can  stabilize  the  precatalytic

species.

A POM-VIII hybrid  was  used  in  reactivity  tests  with  small  molecules.  It  is

supposed  to  accomplish  an  electron  donation,  thanks  to  the  d-electrons  present  on

vanadium center, and in this way to activate small molecules. Reactivity of  PW9Si3V

was tested with styrene oxide and  ethyl-2-diazoacetate (diazo).  In the case of styrene

oxide  the  formation  of  styrene  and  a  POM-VV species  was  observed,  while  for  the

reaction with the diazo compound further spectrochemical analyses will be necessary. 
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5. EXPERIMENTAL SECTION 

General methods

Microwawe assisted syntheses were performed at ambient pressure in a Milestone Start

S. reactor, equipped with a temperature control unit (operating conditions around 40 W).

The 1H, 31P and 51V NMR spectra were recorded at room temperature in 5 mm. o.d. tubes,

with an Advance Bruker 300 and Advance Bruker 400 MHz. The UV-Vis spectra were

recorded with a Jasco V530 spectrometer, without Peltier Module. The electrochemical

analyses  were recorded with an  Autolab  PGSTAT 100 instrument.  The X-Band EPR

spectra were recorded with a Bruker Elexsys 500 with Oxford Instrument continuous-

flow liquid-helium cryostat  and a temperature control  system.  The cyclovoltammetric

analysis  of  the  products  for  photochemical  applications  were  conducted  in  DMF

containing  0.1 M of  TBAPF6.  Working electrode,  glassy carbon;  reference  electrode,

SCE;  counter-electrode,  Pt  wire.  The  cyclovoltammetric  analysis  of  the  products  for

catalytic applications were conducted in ACN containing 0.1 M of TBAPF6.  Working

electrode,  Pt  wire;  reference  electrode,  SCE;  counter-electrode,  glassy  carbon.  The

electrolysis  tests  were  conducted  in  ACN  containing  0.1  M  of  TBAPF6.  Working

electrode,  Hg  bed  with  Pt  wire;  reference  electrode,  SCE;  counter-electrode,  glassy

carbon. The scan rate of all cyclovoltammetric analysis was 0.1 V/s.

5.1  POST-FUNCTIONALIZATION  OF   POMs  FOR  PHOTOCHEMICAL

APPLICATIONS

5.1.1 Synthesis of [TBA]6[P2W17O62(Si-C6H4-ethynylPyr)2] (Dsi
W  [Pyr]2)

A mixture of Dsi
W[I] (400 mg, 6.56x10-5 mol), 1-ethynylpyrydine (Pyr) (50 mg, 3.51x10-4

mol), CuI (1.6 mg, 8.40x10-6 mol) and Pd(PPh3)2Cl2 (8 mg, 1.14x10-5 mol) was prepared

in a Schlenk tube under Ar atmosphere. 6 mL of pure and fresh DMF were then added,

under Ar atmosphere. After careful degassing with argon for 5 minutes, 280 mg (2.77x10-

3 mol) of freshly distilled TEA were added. The mixture was stirred at 80°C for 1h, under

microwawe irradiation.  After  cooling at  room temperature,  the obtained solution was

precipitated with diethyl ether, centrifuged and filtered. The solid was extracted with a

solution  of  [TBA]Br  in  DCM, washed twice  with  water  and the  organic  phase  was

collected and concentrated up to ca. 10 mL. Three drops of TEA were added in order to
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eliminate acidity and the product precipitated by addition of diethyl ether. A white-grey

solid  was  obtained  after  filtration.  To  eliminate  the  excess  of  TEA,  the  solid  was

collected and a mixture of [TBA]Br and DCM was added. The solution was washed four

times with distilled water,  and the organic phase was collected and precipitated with

diethyl ether. The solid was filtered and collected. Yield: 177 mg, 45%.
1H NMR (CD3CN): δ 1.00 (t, 72H), 1.41 (m, 48H), 1.63 (m, 48H), 3.15 (m, 48H), 7.48

(m, 4H), 7.63 (d, 4H), 7.92 (d, 4H), 8.61 (m, 4H)

5.1.2 Synthesis of [BMIM]3[PW11O39Sn(p-C6H4-ethynyl-IrOxazole)] (KSn
W   [IrOxa])

A mixture of  KSn
W[I] (100 mg, 2.52x10-5 mol),  ethynyl-IrOxazole (IrOxa)  (42.5 mg,

4.41x10-5 mol, 1.75 eq.), CuI (0.4 mg, 2.10x10-6 mol) and Pd(PPh3)2Cl2 (1.6 mg, 2.29x10-6

mol) was prepared in a Schlenk tube under Ar atmosphere. 4 mL of pure and fresh DMF

were added, under Ar atmosphere. After careful degassing with argon for 5 minutes, 100

mg (9.90x10-4 mol) of freshly distilled TEA were added, and the solution changed its

colour, from orange to red. The mixture was stirred at 80°C for 1h, under microwawe

irradiation.  After  cooling at  room temperature,  the obtained solution was precipitated

with diethyl  ether,  and the precipitate  filtered.  The obtained solid  wash washed with

ethanol, to remove the excess of Ir complex. The solid was filtered and dissolved in the

minimal amount of DMSO. BMIM+Cl- (ionic liquid) was added, to exchange the counter-

ion, and ethanol was added to allow precipitation of the product. The solid was filtered.

To remove the excess of BMIM and impurities,  the solid was dissolved again in the

minimal  DMSO  necessary,  and  a  double  volume  of  ACN  was  added  to  allow  the

impurities to precipitate. The obtained solution was precipitated with diethyl ether, and

the solid was collected and filtered. Yield: 72 mg, 65%.
1H NMR (D6-DMSO): δ 0.90 (t, 9H), 1.28 (m, 6H), 1.78 (m, 6H), 3.86 (s, 9H), 4.16 (t,

6H), 6.25-9.25 (m, 26H)

5.1.3 Synthesis of [BMIM]3[PMo11O39Sn(p-C6H4-ethynyl-IrOxazole)] (KSn
Mo  [IrOxa])

A mixture of  KSn
Mo[I] (100 mg, 3.33x10-5 mol), ethynyl-IrOxazole (IrOxa) (56.3 mg,

5.83x10-5 mol, 1.75 eq.), CuI (0.5 mg, 2.78x10-6 mol) and Pd(PPh3)2Cl2 (2.2 mg, 3.03x10-

6 mol) was prepared in a Schlenk tube under Ar atmosphere. 4 mL of pure and fresh DMF

were added, under Ar atmosphere. After careful degassing with argon for 5 minutes, 100

mg (9.90x10-4 mol) of freshly distilled TEA were added, and the solution changed its
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colour, from orange to red. The mixture was stirred at 80°C for 1h, under microwawe

irradiation.  After  cooling at  room temperature,  the obtained solution was precipitated

with diethyl ether, and the precipitate filtered. The solid was dissolved in the minimal

quantity of DMSO, and the insoluble part was filtered.  A quantity of BMIM+Cl- (ionic

liquid)  was  added,  to  exchange  the  counter-ion,  and  ethanol  was  added  to  allow

precipitation of the product. The solid was filtered. To eliminate the impurities, the solid

was dissolved in the double of the minimal quantity of ACN needed, and stirred for four

hours. The product, present in the solution, was precipitated with diethyl ether, and the

solid obtained was filtered. Yield: 42 mg, 37%.1H NMR (CD3CN):  δ 0.90 (t, 9H), 1.28

(m, 6H), 1.78 (m, 6H), 3.86 (s, 9H), 4.16 (t, 6H), 6.25-9.25 (m, 26H)
31P NMR (CD3CN): δ -2.93 (s, 1P)

5.1.4 Synthesis of [TBA]3[PW11O40(Si-C6H4-ethynylPyr)2] (KSi
W  [Pyr]2)

A mixture of KSi
W[I] (400 mg, 1.03x10-4 mol), 1-ethynylpyrydine (Pyr) (86 mg, 6.18x10-

4  mol),  CuI  (1.6  mg,  8.24x10-6 mol)  and  Pd(PPh3)2Cl2  (11  mg,  1.55x10-5 mol)  was

prepared in a Schlenk tube under Ar atmosphere. 9 mL of pure and fresh DMF were

added, under Ar atmosphere. After careful degassing with argon for 5 minutes, 280 mg

(2.77x10-3 mol) of freshly distilled TEA were added. The mixture was stirred at 80°C for

1h, under microwawe irradiation. After cooling at room temperature, 0.7 g of TBABr

were added, the obtained solution was precipitated with diethyl ether, and the precipitate

filtered. A dark green gel was obtained. The compound was dissolved in the minimal

amount of ACN, and 0.5 g of TBABr and 0.5 g of EDTA were added to increase the

solubility of  the product.  The insoluble  residue  was filtered  off  and the  dark  orange

solution containing the final product was precipitated by addition of absolute ethanol.

The  solid  was  filtered  and  collected,  and  then  dissolved  with  10  ml  of  ACN.  The

insoluble part was filtered, and the liquid part was concentrated up to few drops. The

product,  still  dissolved in ACN, was precipitated with diethyl  ether, and the obtained

solid was filtered and collected. Yield: 131.20 g, 33%.
1H NMR (CD3CN): δ 1.00 (t, 36H), 1.41 (m, 24H), 1.63 (m, 24H), 3.15 (m, 24H), 7.48

(m, 4H), 7.70 (d, 4H), 7.92 (d, 4H), 8.61 (m, 4H)
31P NMR (CD3CN): δ -13.25 (s, 1P)
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5.2  FUNCTIONALIZATION  OF  POMs  FOR  REACTIVITY  TESTS  AND

CATALYTIC APPLICATIONS

5.2.1 Synthesis of [TBA]3[PW10O36(  t  BuSiOH)2] (PW10Si2)

5 g (1.48x10-3 mol) of Cs7[PW10O36] were introduced in a Schlenk tube,  under argon

atmosphere. 50 mL of freshly distilled ACN were added, under argon atmosphere, and

the Schlenk tube was cooled at 0°C for 10 min.  tBuSiCl3 (0.851 g, 4.44x10-3 mol) and

[TBA]Br (1.910 g, 5.92x10-3 mol) were added and the solution stirred at 0°C overnight,

under argon atmosphere. The day after, the withe solid formed was filtered (essentially

CsBr + CsCl) and the product was then crystallized at room temperature, in an open

vessel.  After  three  hour,  the  first  crystals  formed  were  eliminated,  and the  resulting

solution  again  crystallized  for  one day.  The latter  crystals  formed were  washed with

diethyl ether and collected. Yield: 2.985 g, 60%
1H NMR (CD3CN): δ 1.00 (t, 36 H), 1.10 (s, 18 H), 1.41 (m, 24 H), 1.65 (m, 24 H), 3.15

(m, 24 H) 
31P NMR (CD3CN): δ -14.90 (s, 1 P)

5.2.2 Synthesis of [TBA]3[PW9O34(  t  BuSiOH)3] (PW9Si3)

3  g  (1.05x10-3 mol)  of  K9[PW9O34]  were  introduced  in  a  Schlenk  tube  under  argon

atmosphere. 30 mL of freshly distilled ACN were added, under argon atmosphere, and

the Schlenk tube was cooled at 0°C for 10 min.  tBuSiCl3 (0.601 g, 3.14x10-3 mol) and

[TBA]Br (1.350 g, 4.20x10-3 mol) were added and the solution stirred at 0°C overnight,

under argon atmosphere. The day after, the withe solid formed was filtered (essentially

CsBr + CsCl) and the product was then crystallized at room temperature, in an open

vessel.  After  three hours,  the first  crystals  formed were eliminated,  and the resulting

solution  again  crystallized  for  one day.  The latter  crystals  formed were  washed with

diethyl ether and collected. Yield: 0.464 g, 12%
1H NMR (CD3CN): δ 1.00 (t, 36 H), 1.03 (s, 27 H), 1.41 (m, 24 H), 1.65 (m, 24 H), 3.15

(m, 24 H) 
31P NMR (CD3CN): δ -16.95 (s, 1 P)
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5.2.3 Synthesis of [TBA]3[PW10O36(  t  BuSiO  )2VO(  i  PrO)](PW10Si2VOPr)

0.402 g (1.19x10-4 mol) of PW10Si2 were placed in a Schlenk tube and heated at 215°C

for 3 hours under vacuum. 4 mL of freshly distilled ACN and then 30 μL (1.39x10-4 mol)

of VO(iPrO)3  (the latter very slowly) were added, under argon atmosphere. The solution

was stirred at room temperature overnight. The day after, 11 mL of fresh distilled and

anhydrous diethyl  ether were added extremely slowly,  to  allow the formation of two

layers  in the Schlenk tube and the crystallization of the product.  After four days  the

formation of crystals was observed, and the solution was transferred in another Schlenk,

under argon atmosphere. The crystals were collected under argon. Yield: 0.153 g, 37%
1H NMR (CD3CN): δ 1.00 (t, 36 H), 1.12 (s, 27 H), 1.41 (m, 24 H), 1.50 (d, 6 H), 1.65

(m, 24 H), 3.15 (m, 24 H), 5.65 (sept, 1 H) 
31P NMR (CD3CN): δ -14.50 (s, 1 P)
51V NMR (CD3CN): δ -692 (s, 1 V)

5.2.4 Synthesis of [TBA]3[PW9O34(  t  BuSiO)3V] (PW9Si3V)

0.500 g (1.53x10-4 mol) of PW9Si3 were placed in a Schlenk tube, and heated at 215°C

for 2 hours and 30 min under vacuum. 4 mL of freshly distilled ACN were added under

argon atmosphere, and the resulting suspension was slowly heated to enhance solubility.

Et3N (0.074 mL, 5.36x10-4 mol) freshly distilled and then VCl3*3THF (0.039 g, 1.68x10-4

mol) were added to the solution, ever under argon atmosphere. A dark blue solution was

immediately obtained. The presence of some white solid on the bottom of Schlenk was

eliminated by slowly heating at 60°C over night the reaction moisture. The day after, the

product was precipitated with fresh distilled and anhydrous diethyl ether. The obtained

solid was dried and then collected, under argon atmosphere.
1H NMR (CD3CN): δ 0.95 (s, 27 H), 1.00 (t, 36 H), 1.40 (m, 24 H), 1.65 (m, 24 H), 3.15

(m, 24 H)

5.2.5 Synthesis of [TBA]3[PW9O34(  t  BuSiO)3VO] (PW9Si3VO)

1 g (3.06x10-4 mol) of PW9Si3 was placed in a Schlenk tube, and heated at 215°C for 2

hours and 30 min under vacuum. 20 ml of freshly distilled ACN were added, and the

Schlenk was placed at 0°C for 10 minutes.  VOCl3 (0.047 mL, 4.95x10-4 mol) was added,

and the resulting limpid red/orange solution was stirred for 1 hour at 0°C under argon

atmosphere. After that, the solution was left at room temperature over week-end. After
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the week-end, the solution was concentrated up to few drops and crystallized with ether

diffusion technique. The obtained crystals were grounded and dried at 40°C. Yield: 0.880

g, 86%
1H NMR (CD3CN): δ 1.00 (t, 36 H), 1.17 (s, 27 H), 1.40 (m, 24 H), 1.65 (m, 24 H), 3.15

(m, 24 H)

5.2.6 Synthesis of [TBA]3[PW9O34(  t  BuSiO)3ZrCl] (PW9Si3Zr)

1 g (3.06x10-4 mol) of PW9Si3 was placed in a Schlenk tube, and was heated at 215°C

for  4  hours  under  vacuum.  5  mL of  freshly distilled  ACN were  added  under  argon

atmosphere,  and  the  resulting  suspension  was  slowly  heated  to  enhance  solubility.

Freshly distilled Et3N (0.140 ml, 1.01x10-3 mol) was added. TiCl4 was dissolved in 3 mL

of ACN under argon atmosphere in another Schlenk tube, and then the former solution

was  added  drop-wise  to  the  latter,  ever  under  argon  atmosphere.  Formation  of  a

heterogeneous white suspension was observed. The Schlenk was placed at 0°C for 15

minutes,  and  then  stirred  at  room temperature  over  the  week-end.  The  product  was

crystallized by means of acetone diffusion in ACN.
1H NMR (CD3CN): δ 1.00 (t, 36 H), 1.17 (s, 27 H), 1.40 (m, 24 H), 1.65 (m, 24 H), 3.15

(m, 24 H)
31P NMR (CD3CN): δ -15.60 (s, 1 P)

5.2.7 Reactivity of PW9Si3V with ethyl-2-diazoacetate

Ethyl-2-diazoacetate  (diazo)  (0.018  mL,  1.53x10-4 mol)  was  added  to  a  solution  of

PW9Si3V (0.550 g, 1.53x10-4 mol) dissolved in 4 mL of freshly distilled ACN, under

argon atmosphere. The solution colour changed from dark blue to brown. The solution

was stirred at  room temperature for one day.  At the end, a  dark brown solution was

obtained. After NMR analysis, the product was dried and 10 mL of freshly distilled and

anhydrous diethyl ether were added, to eliminate organic impurities.
1H NMR (CD3CN): δ 0.95 (s, 27 H), 1.00 (t, 36 H), 1.24 (t, 3 H), 1.40 (m, 24 H), 1.65

(m, 24 H), 3.15 (m, 24 H), 4.18 (q, 2 H), 4.98 (s, 1 H)
31P NMR (CD3CN): δ -14.78 (s, 1 P)
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5.2.8 Reactivity of PW9Si3V with Styrene oxide

Styrene oxide (0.037 g, 3.06x10-4 mol) was added to a solution of  PW9Si3V (1.10 g,

3.06x10-4 mol) dissolved in 4 mL of freshly distilled ACN, under argon atmosphere. No

change of colour was observed. The solution was stirred at room temperature for one day,

and after that it  was heated at  60°C for three hours. The obtained solution was dark

brown coloured.

The conversion of styrene oxide into styrene was determined by integration of the

characteristic NMR resonances of the two products.

5.2.9 Catalytic oxidation tests

PW10Si2VOPr  (0.016 g,  4.5x10-6 mol,  3% mol) was placed in  an NMR tube under

argon  atmosphere,  and  dissolved  with  0.5  mL of  CD3CN.  After  NMR  analysis,  3-

methylbut-2-en-1-ol (0.017 mL, 1.5x10-4 mol) was added. After NMR analysis, tBuOOH

was  added  in  the  tube  (0.027  mL,  1.5x10-4 mol,  5.5  M  in  decane)  under  argon

atmosphere. The reaction evolution was monitored by 1H, 31P and 51V NMR analyses.

Several other tests were carried out, varying the type of catalyst (PW9Si3VO,

PW9Si3, PW10Si2, VO(iPrO)3), its concentration (3% mol, 1% mol, 0.1% mol, 0.01%

mol), the volume of ACN (0.5 mL or 3 mL) and the organic substrate (3-methylbut-2-en-

1-ol or 1-hexene) (see below). All the tests were monitored by  1H,  31P and  51V NMR

analyses.

N. Test Catalyst
Catalyst

Concentration (% mol)
ACN
(mL)

Organic substrate

1 PW10Si2VOPr 3% 0.5 3-methylbut-2-en-1-ol

2 PW9Si3VO 3% 0.5 3-methylbut-2-en-1-ol

3 PW9Si3 3% 3 3-methylbut-2-en-1-ol

4 PW10Si2 3% 3 3-methylbut-2-en-1-ol

5 PW10Si2VOPr 0.1% 3 3-methylbut-2-en-1-ol

6 PW10Si2VOPr 0.01% 3 3-methylbut-2-en-1-ol

7 PW10Si2VOPr 1% 3 1-hexene

8 VO(iPrO)3 3% 0.5 3-methylbut-2-en-1-ol
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5.2.10 Reactivity tests of POMs with hydroperoxyde

POM, 0.5 ml of CD3CN and  tBuOOH (0.027 ml, 1.5x10-4 mol, 5.5 M in decane) were

added in the order in an NMR tube, under argon atmosphere. 

Two different kinds of POM were utilized,  PW10Si2VOPr  (0.016 g, 4.6x10-6

mol, 3% mol), and PW9Si3VO (0.015 g, 4.6x10-6 mol, 3% mol). The evolution of the

reaction was monitored by 1H, 31P and 51V NMR analyses.
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