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Sommario

In questo lavoro di tesi è stato svolto uno studio analitico sul modello di
Hubbard esteso unidimensionale al �ne di osservare la presenza di eventuali
risonanze che possano dare origine alla formazione di stati legati di due par-
ticelle. L'esistenza di uno stato legato stabile ha suscitato grande interesse
negli ultimi anni, sia in ambito teorico che sperimentale, poichè è alla base di
molti fenomeni che vengono osservati nei sistemi a molti corpi a basse tem-
perature, come il BCS-BEC crossover. Pertanto si è ritenuto utile studiare
il problema a due corpi nel modello di Hubbard esteso, che in generale non
è integrabile. Il modello considerato contiene interazioni a primi e secondi
vicini, in aggiunta all'interazione di contatto presente nel modello di Hub-
bard.
Il problema è stato indagato analiticamente attraverso il Bethe ansatz, che
consente di trovare tutti gli autovalori e le autofunzioni dell'Hamiltoniana.
L'ansatz di Bethe sulla funzione d'onda è stato generalizzato per poter tener
conto dei termini di interazione a più lungo raggio rispetto all'interazione di
contatto.
Si trova che, in questo modello, nel limite termodinamico, possono avvenire
delle risonanze (o quasi -risonanze) in cui la lunghezza di scattering diverge,
contrariamente a quanto avviene nel modello di Hubbard. Tale fenomeno si
veri�ca quando il livello energetico discreto degli stati legati �tocca� la banda
di scattering. Inoltre, con l'aggiunta di nuovi termini di interazione emergono
nuovi stati legati. Nel caso in esame, si osservano due famiglie di stati legati,
se lo spin totale delle due particelle è 1, e tre famiglie di stati legati, se lo
spin totale è 0.
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Introduction

Both the development of techniques for cooling atoms to very low temper-
atures and the realization of optical lattices have opened a thriving �eld of
research in condensed matter physics. The great impact of ultracold gases on
current physics is linked to the extraordinary degree of control on physical
parameters that is obtained in such systems. This has opened the way to
the investigation of phases of matter previously inaccessible - such as the
super�uid one - and related quantum phase transitions [1, 2, 3].
In recent times a crossover between a Bardeen-Cooper-Schrie�er (BCS) su-
per�uid of Cooper pairs, with spatially overlapping wave functions, to a
Bose-Einstein Condensate (BEC) of molecules of two tightly bound fermions
has been realized [4].
Many interesting results have been obtained also in low dimensions. Indeed
optical lattices not only allow to tune the interaction strength, but also pro-
vide a waveguide which makes possible to con�ne the system along one or
two spatial directions.
Parallel to the experimental results, many works have been made in the theo-
retical �eld to search for models capable of predicting the behaviour of atomic
and molecular systems in these new regimes.
Among them, the Hubbard model [5, 6] is one of the most studied. In fact,
despite its simplicity, it has a very rich phenomenology. In particular, the
one-dimensional Hubbard model is integrable [7], thus o�ering the possibility
to get much information through exact analytical calculations. A powerful
technique usually used to solve this model is the Bethe ansatz which allows
to reduce the solution of the stationary Schrödinger equation to a set of al-
gebraic equations.
The Hubbard Hamiltonian depicts the hopping of particles from one site
to neighbouring one and takes into account for the two-body interactions
through an e�ective contact potential.
In this work a more general model which retains also the �rst- and second-
neighbour interactions has been considered. Extensions of the Hubbard
model are in general not integrable and the many-body problem is di�cult
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to solve. Several approximate or numerical techniques (e.g. density matrix
renormalization group) exist for one-dimensional systems. However, having
an exact analytical solution in a simpler case - such as a few-body problem
- is useful to get some hint about the N -particle case. Thus, here the focus
is on underlying two-body physics.
In particular, the Bethe ansatz is generalized to solve the two-particle prob-
lem in the extended Hubbard model with interactions truncated at second
neighbors. The method allows to obtain all eigenvalues and eigenfunctions of
the Hamiltonian. Particular attention is devoted to the bound states and the
resonances that produce them. Indeed the formation of a stable two-particle
bound state is of great interest in both experimental and theoretical physics
for two fundamental reasons. The �rst is the crucial role it plays in the many
N -particle problems, such as the BCS-BEC crossover previously mentioned.
The second is the possibility to study its expansion dynamics (see, for exam-
ple, [8]).

The thesis is organized as follows.
Chapter 1 is devoted to the Hubbard model. Its main properties are de-
scribed and some interesting results are brie�y reported.
In Chapter 2 the Bethe ansatz method for the Hubbard model is introduced.
The two-body problem is explicitly solved and an overview on the N -particle
case is given.
In Chapter 3 the method is generalized to solve the extended Hubbard model
and new results are shown. A fermionic model has been studied. Hence the
spin degrees of freedom must have been taken into account. The whole study
has been conducted separating the problem into one for the triplet state and
one for the singlet state.
In Chapter 4 some basic concepts about scattering theory are recalled, such
as the scattering length and the scattering resonances. Then the same pa-
rameters are de�ned for a one-dimensional scattering problem on a lattice.
An accurate analysis of our results is made in Chapter 5, in which the ex-
istence of resonances that give rise to the bound states is underlying. This
is a fundamental question that emerges when a non-zero range interaction is
introduced.
Finally, Chapter 6 is a description of the role of resonances in current exper-
imental physics and an interpretation of our results in the context of cold
atomic gases.



Chapter 1

The Hubbard Model

1.1 Introduction to the Hubbard model

The Hubbard model [5, 9] is one of the most successful models in describ-
ing the physics of the microscopic world. It is of great use in theoretical
condensed matter physics thanks to its capability of accounting for many
phenomena, despite its simplicity. It was introduced in 1963 by John Hub-
bard [10, 11, 12, 13, 14, 15] to model electronic correlations in narrow energy
bands. It provides an approximate description of the electrons in a solid:
the model depicts the hopping of the electrons in a lattice from one site to
neighboring one and takes into account for the Coulomb interaction through
an e�ective short range potential that acts only if two electrons are on the
same site. Nowadays it is applied to many cases, in particular it is used
to model fermionic and also bosonic particles in optical lattices where the
interaction can be both repulsive or attractive. It is very useful since, in its
standard form or in some derived forms, allows to account for many experi-
mental results.
Here we derive the Hubbard Hamiltonian from an approximate description
of interacting electrons in a solid following Hubbard's original work.
A solid consists of ions and electrons in a three-dimensional crystalline struc-
ture. Since our aim is to study the dynamics of the electrons in the solid, we
can regard the ions as forming a static lattice. Thus they have the only e�ect
of producing a periodic potential. This assumption is justi�ed because the
ions are much heavier than the electrons. In this approximation, the electron
gas can be described by the following Hamiltonian

1



2 1. The Hubbard Model

H =
N∑
i=1

h(xi,pi)︸ ︷︷ ︸
H0

+
∑

1≤i<j≤N

VC(xi − xj)︸ ︷︷ ︸
V

(1.1)

where

h(xi,pi) =
p2
i

2m
+ VI(xi) (1.2)

is the one-particle Hamiltonian, N is the number of electrons, VI is the peri-
odic potential of the ions and

VC(x) =
e2

‖x‖
(1.3)

is the Coulomb repulsion among the electrons. In spite of the approximation
we made neglecting the motion of positive ions, Hamiltonian (1.1) is still too
complicated to be solved exactly. A possible simpli�cation may be the mean-
�eld approximation. The �rst step in doing it is to add an auxiliary potential
Va(x) to one-particle piece H0 of the Hamiltonian and subtracting it in the
two-body part V . We de�ne the new one-body and two-body potentials

V (x) = VI(x) + Va(x) (1.4)

U(x,y) = VC(x− y)− 1

N − 1
(Va(x)− Va(y)) (1.5)

and the new one-particle Hamiltonian

h̃(x,p) =
p2

2m
+ V (x) (1.6)

so that Hamiltonian (1.1) becomes

H =
N∑
i=1

h̃(xi,pi) +
∑

1≤i<j≤N

U(xi,xj). (1.7)

The mean-�eld approximation is just setting U(xi,xj) = 0 for each pair of
electrons i and j. This means a single electron does not interact with each
of the others by a two-body repulsion but feels only an average interaction
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strength Va(x), generated by them, that screens the attractive interaction of
the ions. Thus the auxiliary potential Va(x) must be chosen in such a way
that the matrix elements of the e�ective two-body potential U(x,y) between
the eigenstates of the one-particle Hamiltonian h̃ are negligibly small. In
some cases (e.g. systems that exhibit magnetism or superconductivity) this
cannot be achieved since the residual two-body interactions U(x,y) are cru-
cial. However we can obtain a two-body potential U(x,y) reduced in range
and magnitude compared to the full Coulomb interaction VC(x−y) because
much of the Coulomb interaction e�ects are incorporated into the single par-
ticle part of H.
In the many-body Hilbert space it is convenient to use second quantized op-
erators. Thus we write Hamiltonian (1.7) in second quantization. To do this
we need a suitable basis of states. We may construct it starting from the
eigenstates of the one-particle Hamiltonian h̃; these are the wave functions
ψαk that obey eigenvalue equation

h̃(x,p)ψαk(x) = εαkψαk(x) (1.8)

where α is the band index and k the quasi-momentum, which runs over the
�rst Brillouin zone. Since h̃ contains only a kinetic term and a periodic po-
tential, its eigenfunctions are Bloch states [16]; so they have the following
form

ψαk(x) = eik·xuαk(x) (1.9)

with uαk(x+R) = uαk(x) if R is a lattice vector; hence u is a periodic func-
tion with the same periodicity of the lattice. Bloch functions are localized
in k-space. A complementary one-particle basis is formed by the Wannier
states φαi which are localized in real space. This two bases relate to each
other through the following transformations

φαi(x) =
1√
L

∑
k

ψαk(x−Ri) =
1√
L

∑
k

e−ik·Riψαk(x)

ψαk =
1√
L

∑
i

eik·Riφαi(x)

(1.10)

where L design the number of lattice sites.
Let us introduce creation operators c†αkσ of electrons of spin σ in Bloch states
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ψαk and their Fourier transforms

c†αiσ =
1√
L

∑
k

e−ik·Ri c̃†αkσ (1.11)

which create electrons of spin σ in Wannier states. Finally we de�ne the �eld
operator

Ψ†σ(x) =
∑
αk

ψ∗αk(x)c̃†αkσ =
∑
αi

φ∗αi(x)c†αiσ (1.12)

which creates an electron of spin σ at position x. Hence Hamiltonian (1.7)
can be written as

H =
∑
σ=↑↓

∫
dx3Ψ†σ(x)h̃(x,p)Ψσ(x)

+
1

2

∑
σ,σ′=↑↓

∫
dx3Ψ†σ(x)Ψ†σ′(y)U(x,y)Ψσ′(y)Ψσ(x)

(1.13)

and, substituting the expressions for the �eld operators, this is equivalent to
the following second-quantized form in the Wannier basis

H = −
∑
α

∑
i,j

∑
σ

tαijc
†
αiσcαjσ+

1

2

∑
α,β,γ,δ

∑
i,j,k,l

∑
σ,σ′

Uαβγδ
ijkl c

†
αiσc

†
βjσ′cγkσ′cδlσ (1.14)

with the hopping matrix elements given by

tαij = −〈i|h̃|j〉 = −
∫
dx3φ∗α(x−Ri)h̃(x,p)φα(x−Rj) =

1

L

∑
k

eik·(Ri−Rj)εαk

(1.15)

and the interaction parameters given by

Uαβγδ
ijkl = 〈ij|U |kl〉 =

∫
dx3dy3φ∗α(x−Ri)φ

∗
β(y−Rj)U(x,y)φγ(y−Rk)φδ(x−Rl).

(1.16)

An optimal choice of Wannier states (through an optimal choice of the auxil-
iary potential Va) minimizes the in�uence of the mutual Coulomb interaction
that means the range and magnitude of Uαβγδ

ijkl . When these terms are small
compared to the hopping matrix elements, they can be set equal to zero in
a �rst approximation, and can later be taken into account by perturbation
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theory (band theory). The Hubbard model takes the interaction parame-
ters no longer negligible but their range is still very small: in the sum only
the largest terms are retained and the others are omitted. In particular,
it takes the intra-atomic Coulomb interaction Uαβγδ

iiii large compared to the
inter-atomic interaction terms and this is the only term that cannot be ne-
glected compared to the hopping matrix elements.
A further simpli�cation occurs when the Fermi surface lies within a single
conduction band, say α = 1, so that we can ignore matrix elements that
couple to other bands, if they are away from the Fermi level. We set tαij = tij
and Uαβγδ

iiii = U . This is the so-called one-band Hubbard model and the cor-
responding Hamiltonian is

H =
∑
ij

∑
σ

tijc
†
iσcjσ +

U

2

∑
i

c†iσc
†
iσ′ciσ′ciσ. (1.17)

Finally we assume the tight-binding approximation, which consist in retain-
ing only hopping matrix elements between nearest neighbours. Thus, intro-
ducing the particle number operator niσ = c†iσciσ, Hamiltonian (1.17) reduces
to

H = −t
∑
<ij>

∑
σ

c†iσcjσ + U
∑
i

ni↑ni↓ (1.18)

where the symbol < ij > denotes summation over ordered pairs of nearest
neighbours. We have assumed isotropic hopping of strength t between near-
est neighbours and have suppressed the terms tii, since they may be absorbed
into chemical potential in a grand canonical description of the model.

1.1.1 Some particular cases

Despite its apparent simplicity, the Hubbard model is not exactly soluble
in general. Two particular and useful cases are the limits U/t = 0 and
U/t >> 1, respectively.
In the �rst case, the Hamiltonian is that of a non-interacting system, so it
can be diagonalized choosing a suitable basis. This basis is the Bloch basis.
Using transformation (1.11), we get

HU=0 =
∑
kσ

ε(k)c̃†kσ c̃kσ (1.19)

with
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ε(k) = −t
∑
j

e−ik·aj . (1.20)

Here index j denotes the �rst neighbours of a given site and aj is the dis-
tance vector. So, for example, in three dimension the coordination number
of a simple cubic cell is 6 and the sum in equation (1.20) consists of six
exponentials: ε(k) = −2t(cos (kxa) + cos (kya) + cos (kza)); whereas in one
dimension the lattice is a chain of length L and ε(k) = −2t cos ka = −2t cos k
if we set a = 1.
In the large-U limit, the hopping term can be neglected in a zeroth-order
approximation, that means we may set t = 0. This is called the atomic limit
because the Hamiltonian is diagonal in the so-called Wannier basis which
describes electrons localized at the lattice sites, identi�ed with the atomic
orbitals. We will see the speci�c case of one dimensional Hamiltonian in
the following section. In a higher order approximation the hopping term is
considered as a perturbation. In this way we get an e�ective Hamiltonian
that can be mapped in an antiferromagnetic Heisenberg Hamiltonian if the
system is near half-�lling (N ' L). [9]

These special cases may be useful to study some particular features of elec-
tron systems, like magnetic behaviour. Going back to the full Hamiltonian
(1.18), this can be exactly solved in two particular cases, namely the ex-
tremes of lattice coordination numbers two and in�nity. In the following we
will concentrate on the �rst case, which corresponds to a one dimensional
lattice. In fact the 1D Hubbard model has the particular feature of being
integrable.

1.2 Symmetries of the Hubbard model

The Hubbard model has many symmetries. Here we show them explicitly in
the one dimensional case; however the results generalize to bipartite lattices
of arbitrary dimension. The Hamiltonian we consider is (1.18) that in 1D
can be written as

H = −t
L∑
j=1

∑
σ=↑↓

(
c†jσcj+1σ + c†j+1σcjσ

)
+ U

L∑
j=1

nj↑nj↓. (1.21)
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We are dealing with a chain of �nite size, so we have to consider the problem
of the boundary conditions. We choose to impose periodic boundary condi-
tions on the operators, cL+1σ = c1σ. In this way the Hamiltonian is invariant
under cyclic permutations of the lattice sites, or, equivalently, under lattice
translations of a ring of L sites.
Creation and annihilation operators c†jσ and cjσ are canonical Fermi opera-
tors. They satisfy the following anticommutation rules

{cjσ, ciσ′} =
{
c†jσ, c

†
iσ′

}
= 0

{
cjσ, c

†
iσ′

}
= δjiδσσ′

(1.22)

for i, j = 1, ..., L and σ, σ′ =↑, ↓.
We have to de�ne the Hilbert space H(L) of the Hubbard model through a
suitable basis of states. We begin by de�ning the vacuum state |0〉, which
corresponds to the empty lattice, as that annihilated by operators cjσ:

cjσ|0〉 = 0, j = 1, ..., L, σ =↑, ↓ . (1.23)

The space of states H(L) of the Hubbard model is spanned by all linear com-
binations of the so-called Wannier states

|x, σ〉 = c†xNσN ...c
†
x1σ1
|0〉 (1.24)

where we have introduced row vectors of electron and spin coordinates,
x = (x1, ..., xN) and σ = (σ1, ..., σN), with xj ∈ {1, ..., L} and σj =↑, ↓.
Hence we regard the state (1.24) as a state of N electrons where electron
j-th has spin σj and is located at lattice site xj. In the Hubbard model the
electrons can hop from one site to another, that is to say, each variable xj
can change its value in the range 1, ..., L under the action of Hamiltonian
(1.21) due to the kinetic term; whereas the spin coordinate vector σ doesn't
change since the Hamiltonian doesn't incorporate spin �ip operators.
According to (1.22), creation operators at di�erent sites or with di�erent spin
indices anticommute, hence (c†jσ)2 = 0. This makes the number of linearly
independent Wannier states necessarily �nite. A basis of the Hilbert space
H(L) is obtained by ordering the Fermi operators in (1.24). We may choose
for instance
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B =
{
|x, σ〉 ∈ H(L)|N = 0, ..., 2L & xj+1 ≥ xj, σj+1 > σj if xj+1 = xj

}
(1.25)

where by convention ↑>↓. The number of all linearly independent vectors of

the form (1.24) for a �xed number of particle N is equal to

(
2L
N

)
. Thus

the dimension of the Hilbert space is

dimH(L) =
2L∑
N=0

(
2L
N

)
= 4L. (1.26)

The same result can be obtained from the following considerations. A site
can be empty, singly occupied by one electron with up or down spin, doubly
occupied by two electrons of opposite spins. Thus there are four possible
states associated with every lattice site

|0〉, c†j↑|0〉, c†j↓|0〉, c†j↑c
†
j↓
|0〉 (1.27)

and, since the chain has L sites, the dimension of the space of states is 4L.
We have shown the properties of operators c†jσ and their Hermitian conju-
gate cjσ which are included in the hopping term of the Hamiltonian. Now we

focus our attention on the local particle number operators njσ = c†jσcjσ that
appear in the interaction term. From relations (1.22) we get the following
commutation rule

[njσ, c
†
iσ′ ] = δjiδσσ′c

†
iσ′ with njσ|0〉 = 0 (1.28)

and therefore

njσ|x, σ〉 =
N∑
i=1

δjxiδσσi |x, σ〉. (1.29)

Thus, njσ|x, σ〉 = |x, σ〉 if site j is occupied by an electron of spin σ, and zero
otherwise. So it counts the number of electron of spin σ on site j. Another
important operator is the total number particle operator

N̂ =
L∑
j=1

(nj↑ + nj↓) = N̂↑ + N̂↓ (1.30)
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where N̂↑ and N̂↓ are the particle number operators for up- and down-spin
electrons, respectively. Each of them commutes with the Hubbard Hamilto-
nian:

[H, N̂↑] = [H, N̂↓] = [H, N̂ ] = 0. (1.31)

Thus this Hamiltonian preserves the total number of particles and the num-
ber of up and down spins.
As mentioned in the preceding section, some information about the Hub-
bard model can be obtained by considering separately the two contributions
that make up the Hamiltonian (1.21), that are obtained for U/t = 0 and
U/t → ∞, respectively. In fact, in these simple cases the Hamiltonian can
be diagonalized and understood by elementary means.
We have already seen that for U/t = 0 the Hamiltonian is diagonal in the
Bloch states, de�ned by transformation (1.11) with α = 1. In the one di-
mensional case, imposing periodic boundary conditions, the possible values
of the momentum k are a set of discrete values parameterized by the integer n:

k =
2πn

L
, n = 1, 2, ..., L or, equivalently n = 0, 1, ..., L− 1. (1.32)

The Fourier transformation (1.11) is a canonical transformation, since oper-
ators c̃†kσ and c̃kσ also satisfy the canonical anticommutation relations (1.22).
For t = 0 the Hamiltonian reduces to

Ht=0 ≡ HU=∞ = UD̂ = U
L∑
j=1

nj↑nj↓ (1.33)

where D̂ counts the number of doubly occupied sites. As mentioned before,
this Hamiltonian is diagonal in the Wannier basis:

D̂|x, σ〉 =
N∑
k,l

δxk,xlδσk,↑δσl,↓|x, σ〉∑
1≤k<l≤N

δxk,xl(δσk,↑δσl,↓ + δσk,↓δσl,↑)|x, σ〉∑
1≤k<l≤N

δxk,xl(δσk,↑ + δσk,↓)(δσl,↑ + δσl,↓)|x, σ〉∑
1≤k<l≤N

δxk,xl |x, σ〉.

(1.34)
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HU=0 and D̂ do not commute. Hence the Hubbard Hamiltonian can neither
be diagonal in the Bloch basis nor in the Wannier basis. In the next chapter
we will construct eigenfunctions of the full Hamiltonian (1.21) through not
a trivial method, the so-called Bethe ansatz. The physics of the Hubbard
model depends on the competition between the two contribution HU=0 and
Ht=0 (or D̂) to the Hamiltonian. The �rst prefers to delocalize the electrons,
whereas the latter favours localization. The ratio U/t is a measure for the
relative contribution of both terms and is the intrinsic, dimensionless cou-
pling constant of the Hubbard model.
In order to study the symmetries of the Hamiltonian it is useful to add a
chemical potential term (U/t)(−N̂/2 + L) which, because of the particle
number conservation, does not a�ect the eigenstates. Dividing the Hamilto-
nian by t, the resulting expression is

H = −
L∑
j=1

∑
σ=↑↓

(c†jσcj+1σ + c†j+1σcjσ) +
U

t

L∑
j=1

(
1

2
− nj↑)(

1

2
− nj↓). (1.35)

Symmetries play a fundamental role in theoretical physics since they are
related to conservation laws and have some important consequences. For
example, the symmetry properties under the exchange of identical particles
lead to a classi�cation of all elementary particles as either bosons or fermions,
whose quantum statistics is di�erent, with profound implications for their be-
haviour.
Thus, here we illustrate some important symmetries of the model under ex-
amination [5, 17]. Apart from the obvious symmetries, like the translational
symmetry or the symmetry under spin �ip, there are many others. Some
of them depend on the coupling constant U/t and are related to the fact
that the one-dimensional Hubbard model is integrable. We concentrate on
the U/t-independent symmetries, which can be extended to arbitrary dimen-
sions. All the symmetry operators will be written in terms of creation and
annihilation operators and will turn out to have relatively simple representa-
tions in this notation. Since the Hubbard model is de�ned on a lattice, there
are symmetries related to the lattice in addition to those connected to the
spin.
Thus we introduce the symmetric group GL formed by all permutations of
site indices. In order to construct a representation of GL, we construct the
elementary permutation operator in terms of Fermi operators:
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Πiσ,jσ′

` = 1− (c†iσ − c
†
jσ′)(ciσ − cjσ′) (1.36)

This is the operator that interchanges fermions at sites i and j (in both coor-
dinate and spin variables). It should not be confused with an operator that
interchanges electrons i and j. Subscript ` indicate that it is an operator
acting on lattice sites and not on electrons; hence i and j refer to lattice sites
and not to electrons.
The following relations hold on

Πiσ,jσ′

` = (Πiσ,jσ′

` )†, Πiσ,jσ′

` = Πjσ′,iσ
` (1.37)

Πiσ,jσ′

` cjσ′ = ciσΠiσ,jσ′

` , Πiσ,jσ′

` c†iσ = c†jσ′Π
iσ,jσ′

` , Πiσ,jσ′

` c†jσ′ = c†iσΠiσ,jσ′

`

(1.38)

Πiσ,jσ′

` Πjσ′kσ′′

` = Πiσ,kσ′′

` Π`iσ, jσ
′ = Πjσ′,kσ′′

` Πiσ,kσ′′

` , i 6= j 6= k 6= i (1.39)

Πiσ,jσ′

` Πiσ,jσ′

` = 1 (1.40)

[Πiσ,jσ′

` ,Πkσ′′lσ′′′

` ] = 0 if i, j 6= k, l (1.41)

and operators Πiσ,jσ′

` generate a representation of the symmetric group.
Operators related to the spacial symmetries of the Hubbard model can be
obtained by imagining the L sites as forming a regular polygon with L edges
and corners and considering the symmetries of this polygon. They are gener-
ated by a rotation through 2π/L and by an arbitrary re�ection which maps
the polygon onto itself. The corresponding symmetry operators are the shift
operator and the parity operator. They are de�ned as

ÔS = ÔL↑ÔL↓, Ônσ = Πn−1σ,nσ
` ...Π2σ,3σ

` Π1σ,2σ
` (1.42)

and

R̂ = R̂L↑R̂L↓, R̂Lσ =

L/2∏
j=1

Πjσ,L−j+1σ
` (1.43)

respectively. Here ÔS is the left shift operator, that makes a cyclic permuta-
tion over the electrons on the L sites of the chain and generates a shift to the
left by one lattice site. Its Hermitian conjugate Ô†S is the right shift operator.

Two more important symmetries are the spin �ip and the Shiba transfor-
mation, which are useful to restrict the ranges of the number of electrons N
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and down spinsM . The Hubbard Hamiltonian is invariant under the reversal
of all spin, obtained through the operator

Ĵ =
L∏
j=1

Πj↑,j↓
` =

L∏
j=1

(1− nj + S+
j + S−j ) (1.44)

where nj = nj↑+nj↓ counts the particle number on site j, whereas S
+
j = c†j↑cj↓

and S−j = c†j↓cj↑ are the spin-�ip operators on site j.
This transformation maps the eigenstates with M down-spin electrons and
N − M up-spin electrons one-to-one onto the eigenstates with M up-spin
electrons and N −M down-spin electrons. Thus the z-component Sz of the
total spin changes its sign. This allow to restrict to non-negative values of
Sz when we diagonalize the Hamiltonian.
The other useful transformation that allow to simplify the diagonalization of
the Hamiltonian is the Shiba transformation, which is obtained by applying
the operators

ĴShiba
σ = (c†Lσ ∓ cLσ)(c†L−1σ ± cL−1σ)...(c†2σ − c2σ)(c†1σ + c1σ) (1.45)

with σ =↑, ↓. Here the upper sign in the right hand side applies to a chain
with an even number of sites L, while the lower sign applies to an odd L.
We have [ĴShiba

σ , cjσ] = 0 and

ĴShiba
σ cjσ

(
ĴShiba
σ

)†
= (−1)jc†jσ. (1.46)

Hence the Shiba transformation on bipartite lattices acts in the following
manner

cjσ −→ (−1)jc†jσ cjσ̄ −→ cjσ̄

c†jσ −→ (−1)jcjσ c†jσ̄ −→ c†jσ̄

(1.47)

where σ̄ =↑ if σ =↓ and vice versa. Clearly, for an even number of lattice
sites, the tight-binding part of the Hubbard Hamiltonian (1.35) is invariant
under this transformation, while the interaction part changes its sign:

HU −→ H−U . (1.48)

The empty lattice is mapped to
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ĴShiba
σ |0〉 = c†Lσ...c

†
1σ|0〉 (1.49)

which is the fully spin polarized half-�lled band state.
Of course, we can also apply the Shiba transformation to a lattice with an
odd number of sites; in that case, however, the cinetic term of the Habbard
Hamiltonian is not invariant.
Let us consider an even number of lattice site L. If we perform Shiba trans-
formations for both up and down spins, the Hamiltonian is not altered, since
the sign of U is switched twice, but the empty lattice state is mapped onto
a state with all sites doubly occupied. Thus, all eigenstates of the Hub-
bard Hamiltonian (1.35) with N electrons are mapped onto eigenstates with
2L − N electrons. Hence we may restrict ourselves to N ≤ L (below half
�lling) when we diagonalize the Hamiltonian, since we can extend the result
to the case above half �lling through a Shiba transformation.

An important symmetry related to the Shiba transformation is the so-called
η-pairing symmetry. This is an SU(2) symmetry. An other SU(2) symmetry
is that of rotations in spin space. The full symmetry realized for the Hubbard
Hamiltonian (1.35) is

SO(4) = SU(2)× SU(2)/Z2. (1.50)

We present some details. Let us de�ne the spin operators:

Sα =
L∑
j=1

Sαi =
1

2

L∑
j=1

∑
σ,σ′

c†jσ(σα)σσ′cjσ′ (1.51)

where α = x, y, z indicates a component and the matrices σα are the Pauli
matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (1.52)

Hence, for each site j, we have a total spin Sj with components
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Sxj = 1
2
[c†j↑cj↓ + cj↓cj↑]

Syj = 1
2i

[c†j↑cj↓ − cj↓cj↑]

Szj = 1
2
[c†j↑cj↑ − c

†
j↓cj↓] = 1

2
[nj↑ − nj↓].

(1.53)

In general the Hubbard Hamiltonian doesn't commute with a spin compo-
nent at a site j

[H,Sαj ] 6= 0 (1.54)

but it commutes with each component of the total spin:

[H,Sα] ≡
∑
j

[H,Sαj ] = 0 (1.55)

and thus is fully rotationally invariant.
The Pauli matrices form a basis of the fundamental representation of the
SU(2) algebra and satisfy the commutation relations

[σα, σβ] = 2iεαβγσ
γ (1.56)

where εαβγ is the totally antisymmetric tensor. Hence, as was claimed above,
the spin operators generate a representation of SU(2):

[Sα, Sβ] = iεαβγS
γ. (1.57)

We shall usually use the ladder operators

S± = Sx ± iSy (1.58)

instead of Sx and Sy. They have the explicit form

S+ =
∑L

j=1 c
†
j↑cj↓

S− =
∑L

j=1 c
†
j↓cj↑

(1.59)

and obey the commutation relations
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[Sz, S±] = ±S±

[S+, S−] = 2Sz.
(1.60)

Let us now consider the η-pairing symmetry. It has its origin in the behaviour
of the Hubbard Hamiltonian under the Shiba transformation.
If we apply the Shiba transformation to the spin operators S±, Sz, we get

ĴShiba↓ S+
(
ĴShiba↓

)†
=
∑L

j=1(−1)jc†j↑c
†
j↓ = η+

ĴShiba↓ S−
(
ĴShiba↓

)†
=
∑L

j=1(−1)jc†j↓c
†
j↑ = η−

ĴShiba↓ Sz
(
ĴShiba↓

)†
= 1

2

∑L
j=1(−1)j(nj↑ + nj↓ − 1) = 1

2
(N̂ − L) = ηz.

(1.61)

Hence
S+ −→ η+

S− −→ η−

Sz −→ ηz.
(1.62)

The η operators are called the pairing operators or the pseudo-spin operators
and satisfy the following commutation relations

[η±, ηz] = ±η±

[η+, η−] = 2ηz.
(1.63)

This can easily veri�ed by applying the Shiba transformation to (1.60). Hence
they also obey an SU(2) algebra. We may de�ne the analogues of Sx and Sy:

ηx = 1
2
(η+ + η−)

ηy = − i
2
(η+ − η−)

(1.64)

which satisfy

[ηα, ηβ] = iεαβγη
γ (1.65)

with α, β = x, y, z.
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The invariance of the Hubbard Hamiltonian (1.35) under the η-pairing sym-
metry follows from the application of the Shiba transformation to [H−U , S

α] =
0:

[H, ηα] = 0. (1.66)

In conclusion, Hamiltonian (1.35) commutes with two SU(2) algebras, that
of spin and that of pseudo-spin. Thus we may be tempted to claim that it
obeys an SU(2)×SU(2) algebra. It is not true. In fact equation (1.66) holds
only for an even number of lattice sites L. This fact imposes restrictions on
joint irreducible representations of spin and η-spin realised on eigenstates of
the Hubbard Hamiltonian. We can easily verify that

Sz + ηz = N̂↑ −
L

2
. (1.67)

For an even L, this quantity is an integer and the symmetry is that expressed
in (1.50)

SU(2) + SU(2)/Z2 = SO(4). (1.68)

1.3 On the physics of the model

Before continuing with our discussion and showing some explicit results in
the one-dimensional case, we try to give an overview on the phenomena that
the model is able to account for. It was introduced as a simple e�ective
model for the study of correlation e�ects of d−electrons in transition metals
[18, 10]. It is believed to provide a qualitative description of the magnetic
properties of these materials and the Mott metal-insulator transition [19].
As mentioned before, the dimension of the lattice underling the system is
a crucial parameter and, despite its simplicity, the model is exactly soluble
only in one-dimension. However it has long been studied and a variety of
approximate analytical and numerical results are known also in higher di-
mensions. Here we illustrate some general properties of the Hubbard model
in two and three dimensions.
A �rst step toward understanding a quantum Hamiltonian is to search for
its ground state. In absence of an exact solution, a variational approach can
be tempted. It consists of two fundamental steps. The �rst consists in mak-
ing a judicial choice of a family of states (the so-called variational states)
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to describe the model. These states depend on some variational parameters
γ. Hence the second step consists in calculating the energy as the expecta-
tion value of the Hamiltonian on the variational states Ψγ and minimizing it
respect to the γ parameters, since the variational theorem states that

〈Ψγ|H|Ψγ〉
〈Ψγ|Ψγ〉

= Eγ ≥ E0 (1.69)

where E0 is the exact ground state energy.
A possible choice for the variational states is that of the so-called magnetic
states, which allow to observe the emergence of a magnetic behaviour in the
Hubbard model. In the Hartree-Fock approximation the two-body operator
in Hamiltonian (1.18) factorizes in a sum of one-body operators as

〈Ψγ|nj↑nj↓|Ψγ〉 = 〈nj↑nj↓〉 = 〈nj↑〉〈nj↓〉 − 〈S+
j 〉〈S−j 〉. (1.70)

Thus we can easily make a Fourier transform and write the Hamiltonian
in K space. Then we de�ne the magnetic states through the creation and
annihilation operators a†kσ, akσ, which are related to the c-operators through
the following linear transformation(

a†k↑
a†k↓

)
=

(
cos θk sin θk
− sin θk cos θk

)(
c†k↑
c†k+q↓

)
(1.71)

where q and θk are the variational parameters. Thus the variational magnetic
states are

|Ψq,θk〉 =
∏

σ=↑↓,k

a†kσ|0〉. (1.72)

With this ansatz we get the following results

〈Sxi 〉 = cos (qRi)mq

〈Syi 〉 = − sin (qRi)mq

}
−→ 〈S+

i 〉 = e−iqRimq (1.73)

〈Szi 〉 = mz (1.74)

with mq and mz some parameters. For explicit calculation we remand to
reference [9, chap 4]. Here we are interested only on the results. From the
preceding equations we can see that there are spin density waves in the xy
plane and a constant magnetisation along the z-axis.
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Another important result that can be derived is the Stoner's criterion for a
ferromagnetic instability

2Uχ(0) = 1 (1.75)

where χ(0) is the uniform magnetic susceptibility for noninteracting electrons

χ(0) =
1

2

∑
k

dn(εk)

dεk
=

1

2
ρ↑(0) (1.76)

with

n(ε) =
1

eε/T + 1
(1.77)

the Fermi function and ρ↑(0) the noninteracting, single spin density of states
at the Fermi energy. We may also obtain a Stoner's criterion for the spin
density wave instability at wave vector q:

2Uχ(q) = 1 (1.78)

where

χ(q) =
1

2

∑
k

n(εk+q)− n(εk)

εk − εk+q

. (1.79)

Maximizing χ(q) therefore determines the ordering wave vector at which the
magnetic instability �rst occurs as we increase the magnitude of U . We see
that while χ(0) is determined only by the Fermi surface density of states,
χ(q) is sensitive to the Fermi surface geometry. In particular it depends on
the existence of parallel sections on the Fermi surface which are separated
by the wave vector qnest. Here the label nest stays for nesting which is how
this phenomenon is called. The nesting yields a large number of small en-
ergy denominators |ε(k) − ε(k + q)| in the sum (1.79). The divergence of
χ(qnest) may produce a magnetic ground state also for small values of U/t.
The nesting is most relevant in one dimension and for the two-dimensional
square lattice near half-�lling (N ≈ L) (see �gure 1.1).
The Stoner's criterion is known to overestimate the magnetic ordering and
underestimate quantum disordering e�ect due to spin �uctuations. However
we can assert that in the Hubbard model there is at least short-range mag-
netic ordering when the Stoner criterion is satis�ed.
We have seen that the Hubbard model allows to observe the emergence of
spin density waves and ferromagnetic behaviour. Thus, with the variational
magnetic states (1.72), it may be used to describe spin density wave sys-
tems (e.g. chromium) and metallic ferromagnets (e.g. iron). The model
admits other orderings, such as charge density waves and superconductivity.
These can be observed with di�erent variational Fock states, obtained by
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Figure 1.1: The �gure shows Fermi surfaces for electrons on a two-dimensional square lattice with nearest-
neighbor hopping only. Di�erent curves refer to di�erent band �lling, which enhances from
the inner surface to the outer surface. The red surface is that for half-�lling N/L = 1 and is
nested. (Figure from [20])

performing other canonical transformations on the electron creation opera-
tors, similar to (1.71).

Therefore in the Hubbard Hamiltonian interactions between electrons can
lead to �uctuation in charge density and �uctuations in spin density. Several
studies have been made that take into account only the latter, in order to
describe the Mott transition. This is a metal-insulator transition in which
the insulator phase is due to electron correlation and presents a magnetic
behaviour. The Hubbard model present a very rich physics also at zero tem-
perature, since we observe a transition phase from a non magnetic metal to
an antiferromagnetic metal and then from this one to an antiferromagnetic
insulator, as the ratio U/W is enhanced (where W is the band width). At
�nite temperature, the ground state remains antiferromagnetic for large val-
ues of U/W and only at high temperature it becomes paramagnetic. These
results are summarized in the phase diagram in �gure 1.2 [21]. Even in the
two-dimensional case, the Hubbard model shows magnetic ordering. The
phase diagram at zero temperature according to the Hartree-Fock mean �eld
theory is shown in �gure 1.3. Hence the ground state can have a param-
agnetic phase, a ferromagnetic phase or an antiferromagnetic phase as the
interaction parameter U/t and the band �lling N/L are varied. However the
mean �eld theory works better and better as the dimension of the lattice in-
creases and in D = 2 its results are not accurate. Hirsch [20] showed through
numerical Monte Carlo simulation that the ground state is antiferromagnetic
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Figure 1.2: Schematic phase diagram for the 3D Hubbard model. Figure from [21]

at half �lling for each value of the interaction and paramagnetic for N/L 6= 1.
The phase diagram is shown in �gure 1.4.

Figure 1.3: Schematic Hartree-Fock phase diagram for the 2D Hubbard model. Figure from [20].

1.3.1 Some more recent results

Even though the Hubbard model is a rather simple model, it continues to at-
tract attention and to yield surprise such as new phases and quantum phase
transitions.
In particular, study of the Hubbard model and its extensions has intensi�ed
with the experimental investigation on cold bosonic and fermionic atoms sub-
ject to an optical lattice. In fact, the remarkable controllability of cold atom
systems has opened the possibility of studying strongly correlated systems in
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Figure 1.4: Schematic phase diagram for the 2D Hubbard model from numerical calculations. Figure
from [20].

regimes inaccessible to solid state materials.
A good synergy between experimental e�orts and theoretical investigations
is crucial. Among all model Hamiltonians, the Hubbard model and its exten-
sions - in one, two and three dimensions - are the simplest models with highly
tunable parameters and in many cases them provide concrete Hamiltonians
in which the physics can be examined with powerful numerical methods.
Several works have been made in this direction since some important ex-
perimental results have been reached, such as the realization of the Mott
metal-insulator transition in ultracold atoms con�ned in an optical lattice
[22].
It is also believed that the Hubbard model physics is relevant to high-
temperature superconductivity, a phenomenon related to the Mott insulating
phase and still not understood.
Theoretical models use the simple Hubbard or Bose-Hubbard Hamiltonian
with contact interaction (U) only or with the extension to near neighbor
interactions (V ). Some interesting results for the one-dimensional extended
Bose-Hubbard model have been achieved in [23], where di�erent phases have
been observed as U and V are varied, among them Mott insulating, Haldane
insulating and super�uid.
Some more realistic models, which take into account the trapping potential,
have also been studied. In the temperature regime that is of interest for
current experiments, di�erent phases are observed as the on-site interaction
U and the particle number N are varied (see �gure 1.5) [24]. For low interac-
tion strength the system is a Fermi liquid everywhere in the trap. However,
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Figure 1.5: State diagram of the gas in a 3D optical lattice with parabolic trapping potential. Figure
from [24]

as the particle number is increased to very large values, a band insulator
with double occupancy (n = 2) forms in the center of the trap. For larger
interaction strength a Mott insulating region appears, in which the density is
pinned to one particle per site (n = 1). This region is surrounded by a liquid
region close to the boundary of the trap. Increasing the number of atoms in
the trap at large U/t can increase the pressure on the atoms and can cause
the occurrence of a liquid region with �lling larger than one in the center,
surrounded by a shell of Mott insulator with n = 1.
At lower temperatures an antiferromagnetic transition is observed [25].
For further information about Hubbard model investigation, refer to [6].



Chapter 2

Bethe Ansatz

The Bethe ansatz is an exact method for obtaining eigenvalues and eigen-
vectors of certain one-dimensional quantum many-body models. It was
introduced by Hans Bethe in 1931 to �nd the exact solutions of the one-
dimensional spin-1/2 Heisenberg model, a linear chain of electrons with uni-
form exchange interaction between nearest neighbors. Bethe constructed the
many-body wave functions and reduced the problem of calculating the spec-
trum of the Hamiltonian to solving a set of N coupled algebraic equations,
where N is the number of overturned spins. The Bethe ansatz is a power-
ful tool because it reduces a problem of exponential complexity to one of
polynomial complexity. Bethe's work marked the beginning of the theory of
exactly solvable quantum systems: since then the method has been extended
to other models in one dimension and has become in�uential to an extent
not imagined at the time. During the 1960's E. H. Lieb and W. Liniger ap-
plied the Bethe ansatz on the Bose gas with delta-function potential [26] and
then E. H. Lieb extended it to problems in statistical mechanics solving three
archetypal cases of the six-vertex model [27, 28, 29]. The generalization of
Bethe's ansatz to models with internal degrees of freedom like spin proved
to be very hard, because scattering involves changes of the internal states of
the scatterers. The solution of this problem was found by C. N. Yang [30]
and M. Gaudin [31] with the so-called nested Bethe ansatz. Today, a lot of
quantum many-body systems are known to be solvable by some variant of
the Bethe ansatz. The Hubbard model is included here. If the system is
�nite, the eigenvalues and eigenvectors can be obtained by a brute force nu-
merical diagonalization with not too much e�ort. However the Bethe ansatz
is advantageous because it provides a set of quantum numbers associated to
the eigenstates which allow to distinguish them according to speci�c physi-
cal properties. Moreover in many cases the results can be extended to the
thermodynamic limit.

23
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We are interested in studying the Hubbard model, so we will not discuss the
Heisenberg chain in full detail. However we give a brief overview on this topic
to introduce the basic idea of the Bethe ansatz [32, 33, 34].

2.1 The basic idea of the Bethe ansatz:
a brief overview on the Heisenberg chain

The Hamiltonian of the 1D-Heisenberg model is

H = −J
L∑
j=1

Sj · Sj+1 =

= −J
L∑
j=1

{1

2

(
S+
j S
−
j+1 + S−j S

+
j+1

)
+ SzjS

z
j+1

} (2.1)

where L is the chain length, Sj the spin operator (with periodic boundary
condition SL+1 = S1) and S

±
j = Sxj ± iSyj are spin �ip operators introduced

in the preceding chapter We want to solve the eigenvalue problem

H|ψ〉 = E|ψ〉. (2.2)

H acts on a Hilbert space of dimension 2L spanned by the orthogonal basis
vectors |σ1...σL〉, where σj =↑, ↓ represents an up or down spin at site j. The
spin operators act on this vector in the following way

S+
j |... ↑ ...〉 = 0 S+

j |... ↓ ...〉 = |... ↑ ...〉

S−j |... ↑ ...〉 = |... ↓ ...〉 S−j |... ↓ ...〉 = 0

Szj |... ↑ ...〉 = 1
2
|... ↑ ...〉 Szj |... ↓ ...〉 = −1

2
|... ↓ ...〉

(2.3)

so that the application of H on |σ1...σL〉 yelds a linear combination of basis
vectors, each of them has the same number of down spins. In order to solve
the problem, we can �x the number N of down spins, because [H,Sz]=0,
where Sz is the total spin along the z-axis. If N = 0, we have all up spins
and the only eigenvector is | ↑ ... ↑〉, with eigenvalue E0 = −JL/4. In the
subspace with one down spin (N = 1), any eigenvector is a superposition of
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the basis vectors and can be written as

|Ψ〉 =
L∑
x=1

ψ(x)|x〉 (2.4)

with |x〉 = S−x | ↑ ... ↑〉. The eigenvector |Ψ〉 is a solution of the eigenvalue
equation H|Ψ〉 = E|Ψ〉 if the coe�cients ψ(x) satisfy the linear equations

2[E − E0]ψ(x) = J [2ψ(x)− ψ(x− 1)− ψ(x+ 1)] (2.5)

for x = 1, 2, ..., L and with ψ(x + L) = ψ(x). So we have passed from a
second-quatized form to a �rst-quantized form of the eigenvalue equation,
which has L linearly independent solutions. These solutions are plane waves

ψ(x) = eikx, k =
2π

L
n, n = 1, ..., L (2.6)

and the corresponding eigenvalues are

E − E0 = J(1− cos k). (2.7)

The peculiarity of the Bethe ansatz begin to emerge when we consider the
case N = 2. Now we can write the state as

|Ψ〉 =
∑

1≤x1<x2≤L

ψ(x1, x2)|x1, x2〉 (2.8)

where |x1, x2〉 = S−x1S
−
x2
| ↑ ... ↑〉 are the basis vectors of this subspace. The

problem is always to determine the coe�cients ψ(x1, x2) and the eigenval-
ues. Bethe's basic idea was to suppose that the wave functions ψ(x1, x2) are
superpositions of plane waves of the form

ψ(x1, x2) = A1e
i(k1x1+k2x2) + A2e

i(k1x2+k2x1). (2.9)

Now this expression has to be inserted into eigenvalue equation. For x2 6=
x1 + 1 this gives the energy eigenvalues, which are the sum of the energy of
the two single-particle states: E−E0 = J

∑
j=1,2(1−cos kj). If we substitute

this expression into eigenvalue equation for x2 = x1 +1, we get the amplitude
ratio A1/A2. Finally we determine the possible values of the momenta k1, k2

from the requirement that the wave function be translationally invariant:
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ψ(x1, x2) = ψ(x2, x1 + L). The equations for k1 and k2 are known as the
Bethe equations. Hence the problem has been reduced to a set of algebraic
equations that can be solved by analytical or numerical methods.

2.2 Bethe Ansatz solutions for the Hubbard

model

We now discuss the Bethe ansatz solutions for the one-dimensional Hubbard
model:

H = −t
L∑
i=1

∑
σ=↑,↓

(c†iσci+1σ + c†i+1σciσ) + U
L∑
i=1

(ni↑ni↓). (2.10)

As for the Heisenberg chain, the stationary Schrödinger equation (2.2) for
the Hamiltonian (2.10) can be reduced to a set of algebraic equations, which
is tractable in the thermodynamic limit. These equations are known as the
Lieb-Wu equations to honour E. H. Lieb and F. Y. Wu, who �rst obtained
them [35]. The roots of the Lieb-Wu equations parameterize the eigenvalues
and eigenstates of the Hamiltonian (2.10). They encode all information about
the model but are not explicitly known in the general N -particle case. So we
begin with the exact solution of the two-particle problem. This can be done
because Hamiltonian (2.10) preserve the number of particles: [H, N̂ ] = 0,
with N̂ =

∑
i c
†
ici. Hence we may consider the eigenvalue problem (2.2) in

the sectors of �xed numbers of particles N = 0, 1, .., 2L, where L is the num-
ber of sites. This corresponds to switching from second to �rst quantization.

2.2.1 The two-particle case

In order to pass from the second quantization to the �rst quantization rep-
resentation, we write the two-particle state |Ψ〉 as

|Ψ〉 =
1

2

L∑
x1,x2=1

∑
σ1,σ2=↑,↓

ψσ1σ2(x1, x2)|x1σ1, x2σ2〉 (2.11)

where

|x1σ1, x2σ2〉 = c†x2σ2c
†
x1σ1
|0〉 (2.12)
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so that

〈x′1σ′1, x′2σ′2|x1σ1, x2σ2〉 = δx′1,x1δx′2,x2δσ′1,σ1δσ′2,σ2 − δx′1,x2δx′2,x1δσ′1,σ2δσ′2,σ1
(2.13)

and
〈x′1σ′1, x′2σ′2|Ψ〉 = ψσ′1σ′2(x

′
1, x
′
2). (2.14)

We notice that these formulae allow us to easily switch from second to �rst
quantization and vice versa. If we insert expression (2.11) into eigenvalue
equation (2.2), this reduces to

− t[ψσ1σ2(x1 + 1, x2) + ψσ1σ2(x1 − 1, x2) + ψσ1σ2(x1, x2 + 1)

+ ψσ1σ2(x1, x2 − 1)] + Uδx1,x2ψσ1σ2(x1, x2) = Eψσ1σ2(x1, x2)
(2.15)

which indeed is an eigenvalue equation for the wave function ψσ1σ2 in �rst
quantization. The problem we want to solve is to �nd this wave function and
the corresponding energy eigenvalue E. In order to achieve this purpose we
make an ansatz on the wave function (the so called Bethe ansatz ), in which
some unknown coe�cients appear, and insert it into the preceding equation.
This gives the energies E and the conditions that determine the coe�cients
of the wave functions. The problem is similar to that of a system with a
delta-function potential [36, Chap. 2] in the continuum. We need four func-
tion to represent an eigenstate of the two S = 1/2 particles system:

ψ↑↑(x1, x2), ψ↑↓(x1, x2), ψ↓↑(x1, x2), ψ↓↓(x1, x2). (2.16)

In order to �nd the explicit form of the wave function, we distinguish be-
tween two di�erent cases: the �rst in which σ1 = σ2 and the second in which
σ1 = σ̄2 and we make two di�erent ansatz for the corresponding wave func-
tions.
We begin by remembering that the fermion's wave function must be anti-
symmetric so that the following relations must be true:

ψ↑↑(x1, x2) = −ψ↑↑(x2, x1) (2.17)

ψ↑↓(x1, x2) = −ψ↓↑(x2, x1) (2.18)

ψ↓↓(x1, x2) = −ψ↓↓(x2, x1) (2.19)

Thus we obtain ψ↑↑(x1, x1) = 0 and ψ↓↓(x1, x1) = 0. This means in this
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case the Hubbard interaction has no physical e�ect. The wave function is
represented by a determinant:

ψ↑↑(x1, x2) = Cdet

(
eik1x1 eik1x2

eik2x1 eik2x2

)
= C[ei(k1x1+k2x2) − ei(k1x2+k2x1)]

= CeiKR · 2i sin

(
k

2
r

) (2.20)

where we have introduced the centre of mass R = x1+x2
2

and relative r =
x1−x2 coordinates and the momenta K = k1 +k2, k = k1−k2, k1 and k2 be-
ing the momenta of the two particles; while C is a normalization coe�cient.
In the case in which the two particles have opposite spin, we make the fol-
lowing ansatz

ψ↓↑(x1, x2) =
∑
P

[P,Q]ei(kP1
xQ1

+kP2
xQ2

) with xQ1 ≤ xQ2

=
(
[12, 12]ei(k1x1+k2x2) + [21, 12]ei(k2x1+k1x2)

)
Θ(x2 − x1)+

+
(
[12, 21]ei(k1x2+k2x1) + [21, 21]ei(k2x2+k1x1)

)
Θ(x1 − x2) =

= eiKR
{(

[12, 12]eikr/2 + [21, 12]e−ikr/2
)

Θ(−r)+

+
(
[12, 21]e−ikr/2 + [21, 21]eikr/2

)
Θ(r)

}
(2.21)

where Θ(r) is the Heaviside function, de�ned as

Θ(r) =


0 if r < 0

1

2
if r = 0

1 if r > 0

(2.22)

and [P,Q] is the notation we use to indicate the coe�cients. We substitute
the expression for the wave function into the eigenvalue equation (2.15), with

E = −2t(cos k1 + cos k2) = −4t cos (K/2) cos (k/2). (2.23)

This energy is the sum of the two free-particle energies and can be obtained
from equation (2.15) with r 6= 0. After a short calculation we obtain



2.2 Bethe Ansatz solutions for the Hubbard model 29

−2t cos
K

2
·
{

[12, 12]eikr/2
(
eik/2[Θ(−r − 1)−Θ(−r)] + e−ik/2[Θ(−r + 1)−Θ(−r)]

)
+[21, 12]e−ikr/2

(
e−ik/2[Θ(−r − 1)−Θ(−r)] + eik/2[Θ(−r + 1)−Θ(−r)]

)
+[12, 21]e−ikr/2

(
e−ik/2[Θ(r + 1)−Θ(r)] + eik/2[Θ(r − 1)−Θ(r)]

)
+[21, 21]eikr/2

(
eik/2[Θ(r + 1)−Θ(r)] + e−ik/2[Θ(r − 1)−Θ(r)]

)}
+

+Uδr,0 ·
{(

[12, 12]eikr/2 + [21, 12]e−ikr/2
)

Θ(−r)+

+
(
[12, 21]e−ikr/2 + [21, 12]eikr/2

)
Θ(r)

}
= 0.

(2.24)

As we expected for construction, this equation is always true when x1 6= x2.
In order to �nd the relations between the coe�cients [P,Q], we apply the
continuity condition of the wave function at the boundary r = 0 and require
that equation (2.24) be satis�ed at r = 0. From (2.21) we get

[12, 12] + [21, 12] = [12, 21] + [21, 21] (2.25)

and from (2.24) we get

2it cos

(
K

2

)
sin

(
k

2

)
{[12, 12]− [21, 12] + [12, 21]− [21, 21]}+

+
U

2
{[12, 12] + [21, 12] + [12, 21] + [21, 21]} = 0.

(2.26)

Using these two equations, we have(
[12, 12]
[12, 21]

)
=

(
(u− − 1) u−

u− (u− − 1)

)(
[21, 12]
[21, 21]

)
(2.27)

and (
[21, 12]
[21, 21]

)
=

(
(u+ − 1) u+

u+ (u+ − 1)

)(
[12, 12]
[12, 21]

)
(2.28)

with

u± =
2 cos (K/2) sin (k/2)

2 cos (K/2) sin (k/2)± iU/(2t)
. (2.29)

If we de�ne the vector
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ξ(P ) =

(
[P,Q]
[P,Q′]

)
(2.30)

indicate with Πx the permutation operator that interchanges the coordinates
of the two particles and introduce the operator

Y ± = (u± − 1)I + u±Πx (2.31)

we can write equation (2.27) and (2.28) as

ξ(12) = Y −ξ(21) (2.32)

ξ(21) = Y +ξ(12). (2.33)

We see by the Yang-Baxter relation Y +Y − = I that these two equations are
mutually consistent. Using the latter and considering that Πx[P,Q] = [P,Q′],
we can express all amplitudes [P,Q] in (2.21) in terms of [12, 12] and the wave
function Ψ↓↑(x1, x2) takes the following form

Ψ↓↑(R, r) = eiKR
{(

[12, 12]eikr/2 + Y +[12, 12]e−ikr/2
)

Θ(−r)+

+
(
Y +Πx[12, 12]eikr/2 + Πx[12, 12]e−ikr/2

)
Θ(r)

}
.

(2.34)

2.2.1.1 Singlet and triplet wave functions

The wave function (2.34) has been obtained in the ipothesys that Sz = 0,
hence the two-particle state could be both a singlet or a triplet state.

Singlet state

A singlet state has total spin S = 0 and Sz = 0. It has an antisymmetric
wave function φa = (δσ1↑δσ2↓ − δσ1↓δσ2↑)/

√
2:

Πσφa = −φa (2.35)

where the permutation operator Πσ interchanges the spin variables. Thus
the spatial wave function must be symmetric:

ΠxΨ↓↑(R, r) = Ψ↓↑(R,−r) = Ψ↓↑(R, r). (2.36)
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This implies that Πx[12, 12] = [12, 12] and the singlet wave function has the
following form

Ψ↓↑(R, r) = [12, 12]eiKR

{
eikr/2 + (2u+ − 1)e−ikr/2 r ≤ 0

(2u+ − 1)eikr/2 + e−ikr/2 r ≥ 0
(2.37)

This can be also rearranged in the following manner

Ψ↓↑(R, r) = [12, 12]eiKR
{

(2u+ − 1)eik|r|/2 + e−ik|r|/2
}

=

= [12, 12]eiKR
{

(2u+ − 1)eik|r|/2 + e−ik|r|/2
}

=

= [12, 12]eiKR
{

2u+ cos

(
k

2
r

)
+ 2(u+ − 1)i sin

(
k

2
|r|
)}

=

= [12, 12]eiKR2u+︸ ︷︷ ︸
C

{
cos

(
k

2
r

)
+

(u+ − 1)

u+
i sin

(
k

2
|r|
)}

=

= C
{

cos

(
k

2
r

)
+
U csc (k/2)

2JK
sin

(
k

2
|r|
)}

(2.38)

with JK = 2t cos (K/2).
This wave function is the same obtained by Valiente and Petrosyan in [37]
for a state of two bosonic particles in the Hubbard model. Indeed we observe
a singlet-state is composed of two fermions with opposite spin and has a
symmetric spacial wave function, thus we expect it to behave like a two-
boson state.

Triplet state

A triplet state has total spin S = 1 and Sz = 0,±1. Its wave function φs has
the form

φs =


δσ1↑δσ2↑

(δσ1↑δσ2↓ + δσ1↓δσ2↑)/
√

2

δσ1↓δσ2↓

(2.39)

and is symmetric:
Πσφs = φs. (2.40)

Thus the spatial wave function must be antisymmetric. Considering the
special case of two electron with opposite spin, we have

ΠxΨ↓↑(R, r) = Ψ↓↑(R,−r) = −Ψ↓↑(R, r) (2.41)

This yields Πx[12, 12] = −[12, 12] and inserting it into (2.34) we get

Ψ↓↑(R, r) = [12, 12]eiKR
{
eikr/2 − e−ikr/2

}
(2.42)
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and recover the form (2.20). Since the triplet state is antisymmetric in the
electron coordinates, two electrons (and in general two fermions) never sit
at the same site and therefore never feel the local interaction. This makes
the triplet wave function look like the wave functions of free spinless fermions.

2.2.1.2 Periodic boundary conditions

We are interested in studying a �nite system. In particular, we consider
a closed chain. Hence we apply periodic boundary conditions to the wave
function Ψσ1σ2(R, r):

Ψσ1σ2(x2/2,−x2) = Ψσ1σ2((L+ x2)/2, L− x2) (2.43)

Ψσ1σ2(x1/2, x1) = Ψσ1σ2((x1 + L)/2, x1 − L) (2.44)

Because of the antisymmetry it is su�cient to consider the �rst condition.
Applied to (2.34) it gives

eiK+k
2

L
(
Y +Πx − e−iK+k

2
L
)

[12, 12]eiK−k
2

x2−

eiK−k
2

LY +
(
Y −Πx − e−iK−k

2
L
)

[12, 12]eiK+k
2

x2 = 0
(2.45)

which is satis�ed by the condition

Y +Πx[12, 12] = eik1L[12, 12] (2.46)

Y −Πx[12, 12] = e−ik2L[12, 12] (2.47)

If we are dealing with the singlet state, for which Πx[12, 12] = [12, 12], the
previous equations provide the following quantization conditions for the mo-
menta k1 and k2

eik1L = (2u+ − 1)−1 =
2 cos (K/2) sin (k/2) + iU/2t

2 cos (K/2) sin (k/2)− iU/(2t)
(2.48)

eik2L = 2u+ − 1 = (2u− − 1)−1 =
2 cos (K/2) sin (k/2)− iU/(2t)

2 cos (K/2) sin (k/2) + iU/(2t))
. (2.49)

Similarly, in the spin-triplet state, for which Πx[12, 12] = −[12, 12], we obtain
the quantization conditions

eik1L = eik2L = 1. (2.50)

Obviously the same results can be achieved by the application of boundary
conditions (2.43) directly to (2.37) and (2.42) for the singlet state and the
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triplet state, respectively.

For further calculations, it is useful to introduce a new quantum number,
that we call λ. In general we need a second set of quantum numbers that
characterize the spin degrees of freedom. This set is composed of M ele-
ments, if M is the number of down spins. Hence, in this case we have only
one element. We rewrite equations (2.48) and (2.49) in terms of k1 and k2,
substituting the expressions for K = k1 + k2 and k = k1 − k2:

eik1L = (2u12 − 1)−1 =
sin k1 − sin k2 + iU/(2t)

sin k1 − sin k2 − iU/(2t)
(2.51)

eik2L = 2u12 − 1 = (2u21 − 1)−1 =
sin k2 − sin k1 + iU/(2t)

sin k2 − sin k1 − iU/(2t)
. (2.52)

Introducing λ = (sin k1 + sin k2)/2 these become

eik1L =
λ− sin k1 − iU/(4t)

λ− sin k1 + iU/(4t)
(2.53)

eik2L =
λ− sin k2 − iU/(4t)

λ− sin k2 + iU/(4t)
(2.54)

and their product satis�es

λ− sin k1 − iU/(4t)

λ− sin k1 + iU/(4t)
· λ− sin k2 − iU/(4t)

λ− sin k2 + iU/(4t)
= 1. (2.55)

2.2.2 Bound states in the thermodynamic limit

Here we want to study the bound solutions in the thermodynamic limit, that
is to say L → ∞. Indeed, in this case we may obtain some simpli�ed and
more intuitive expressions for the wave functions and the energies.

For the triplet state, the on-site interaction has no physical e�ect, since
the Pauli principle prevents the two particle from occupying the same site.
Hence the wave function (2.20) is similar to that of two free fermions. Hence
a bound state may not exist. We can easily see this result from the boundary
condition (2.50)

eik1L = eik2L = 1. (2.56)

A bound state has a relative momentum k with a not-null imaginary part. In
particular, for this model, the real part of k is 0 or ±π when the imaginary
part is not zero. Thus we may identify the scattering solutions as having a
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real momentum k and the bound solutions as having an imaginary momen-
tum k = −i2α or k = ±π − i2α, with α ∈ R. Substituting this value into
equation (2.56), we get an equation with no possible solutions.

For the singlet state, the wave function is the (2.37) and can be written
as

χS(R, r) = eiKRA1

{
e−ik|r|/2 +

A2

A1

eik|r|/2
}

(2.57)

with

A2

A1

= 2u+ − 1 =
2JK sin (k/2)− iU

2JK sin (k/2) + iU
, JK = 2t cos (K/2). (2.58)

From the periodic boundary condition (2.49), we get

JK(eik/2 − e−ik/2) + U

JK(eik/2 − e−ik/2)− U
= eiπne−ikL/2. (2.59)

Since we are searching for the bound solutions, we set k/2 = −iα or k/2 =
±π− iα, with α ∈ R+ (it is the same if we take α ∈ R−). Hence the previous
equation becomes

±JK(eα − e−α) + U

±JK(eα − e−α)− U
= ±eiπne−αL −→

L→∞
0. (2.60)

Thus, imposing that the numerator vanishes, we found a quadratic equation
for αK = ±e−α

α2
K −

U

JK
αK − 1 = 0 (2.61)

which yields

αK =
U

2JK
±

√(
U

2JK

)2

+ 1. (2.62)

Since we are assuming α ∈ R+, we should have e−α < 1 and we should
exclude the case U = 0. Hence the plus sign in equation (2.62) applies for
an attractive interaction U < 0 and the minus sign applies for a repulsive
interaction U > 0.
We may also found the explicit expression for the wave function. Since
k/2 = −iα or k/2 = ±π − iα and A2/A1 → 0 in the thermodynamic limit,
the (2.57) reduces to a decaying exponential

χSr = ±Ce−α|r| = Cα
|r|
K (2.63)
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(b) Scattering band for L = 85.

Figure 2.1: Lower energy band for the triplet state in a lattice with L = 15 and L = 85 sites, respectively.
For the triplet state a bound state doesn't exist, since the contact interaction has no physical
e�ect, and only the scattering states appear. The energy is plotted as a function of the integer
n that quantizes the centre-of-mass momentum K = 2πn/L. For each value of n, there are L
scattering states, which correspond to di�erent values of the relative momentum k/2. In the
�rst Brillouin zone K ∈ [−π, π], depicted in the �gure, the lower band edge corresponds to
k/2 = 0 and the upper band edge corresponds to k/2 = π; in the adjacent region K ∈ [π, 3π]
it is the opposite.

where C is a normalization constant. We �nally calculate the energy

E = −2JK cos (k/2) = −JK
(
αK +

1

αK

)
= sgn (U)

√
U2 + (2JK)2. (2.64)

In �gure 2.1 the lower energy band is plotted for the triplet state in a lat-
tice with L = 15 and L = 85 sites, respectively. We notice that, obviously,
these are all scattering states. In �gure 2.2 the energies for a singlet state
in the same lattice is plotted, with a contact interaction strength U/t = 2.
In this case, L bound states appear, one for each permitted value of the
centre-of-mass momentum. As L is increased, these dots form a continuum
curve, which is that expressed by (2.64). We notice that the bound states
exist for a repulsive interaction and that they lie above the scattering band.
These states exist for each value of the interaction strength and lie under the
scattering band if the interaction is attractive. We �nally observe that the
density of states is higher at the edges of the band, when k/2 approaches 0
or π and at the edges of the �rst Brillouin zone, when K approaches ±π.

2.2.3 The many-particle case

In this section we generalize the previous results to an arbitrary number
of fermions. As mentioned before, the �rst who found the one-dimensional
Hubbard model is solvable by the Bethe-ansatz method were Lieb and Wu
[35], just after the discovery for spin 1/2 delta-function fermions by Gaudin
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Figure 2.2: Lower energy band for the singlet state in a lattice with L = 15 and L = 85 sites, respectively,
and with a contact interaction strength U/t = 2. The blue dots forms the scattering states,
as in the triplet case; the red dots represent the bound states.

[31] and Yang [30]. Their work is based on the nested Bethe ansatz which
requires a consistent factorization of multi-particle scattering processes into
two-particle ones.
The eigenstates of the Hubbard Hamiltonian (2.10) for a N -particle system
can be written as

|Ψ〉 =
1

N !

L∑
x1,...xN=1

∑
σ1,...σN=↑,↓

ψσ(x1, ..., xN)|x1σ1, ...xNσN〉 (2.65)

and eigenvalue equation (2.15) in the �rst quantization representation gen-
eralizes to

−t
N∑
j=1

∑
n=±1

ψσ(x1, x2, ..., xj + s, ..., xN) + (U
∑
j<l

δjl −E)ψσ(x1, x2, ...xN) = 0.

(2.66)
where σ = (σ1, σ2, ..., σN) indicates the wave function depends on the fermions'
spins. If N is the total number of electrons and M is the number of down-
spin electrons, we assume 2M ≤ N ≤ L (the other cases are obtained
from symmetry arguments). We also assume that the 1, 2, ...,M -th elec-
trons have down spins and that the others have up spins. In the sector
xQ1 ≤ xQ2 ≤ ... ≤ xQN

, the Bethe ansatz imposes the following expression
for the wave function

ψσ(x1, x2, ..., xN) =
∑
P

[P,Q]ei
∑N

j=1 kPj
xQj (2.67)

where P = (P1, ..., PN)s and Q = (Q1, ..., QN)s are permutations of the
integers 1, 2, ..., N . As for the two-particle case, the energy eigenvalue is the
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sum of the energies of the N free particles

E = −2t
N∑
j=1

cos kj (2.68)

and so the total momentum

K =
N∑
j=1

kj. (2.69)

As we treat spin 1/2 fermions on the lattice we only consider two-body scat-
tering by these particles. The procedure is the same as the previous case;
the only di�erence is that we can't de�ne a relative coordinate. From the
continuity condition on the boundary of the regions we get some relations
between coe�cients:

[P,Q] = (uPj+1Pj
− 1)[P ′, Q] + uPj+1Pj

[P ′, Q′] (2.70)

for j = 1, 2, ..., N − 1, where Q′ = (Q1, ..., Qj+1, Qj, ..., QN) and P ′ =
(P1, ..., Pj+1, Pj, ..., PN) are permutations of the coordinate indices Qj, Qj+1

and momentum indices Pj, Pj+1, respectively; while

unm =
sin kn − sin km

sin kn − sin km + iU/(2t)
(2.71)

that is the same as (2.29), if we substitute the expressions for K and k:
K = k1 + k2 and k = k1 − k2. We can regard the coe�cients [Q,P ] as an
elements of an N !×N ! matrix. Then equation (2.70) can be rewritten as

ξP = Y j,j+1
Pj+1Pj

ξP ′ , Y ab
kl = (ukl − 1)I + uklΠ

ab
x (2.72)

where ξP is a column vector for a �xed permutation P of momenta and its
elements di�er from each other by a permutation Q of coordinates; while Πab

x

is a permutation operator that exchanges elements a and b of the array on
which it acts. The label x indicates that it acts only on the coordinates of the
particles. For example, if Q̃ = (Q̃1, Q̃2, ..., Q̃N) = (5, 7, ..., N), the operator
Π12
x acts on [P̃ , Q̃] in the following way

Π12
x [P̃ , Q̃] = [P̃ , Q̃′], with Q̃′ = (Q̃2, Q̃1, ...Q̃N) = (7, 5, ..., N) (2.73)

and we can write the permutation Q̃′ as Q̃′ = Q̃Π12 where we have omitted
the label x because there isn't ambiguity. Between Y -operators there exist
the so-called Yang-Baxter relations:

Y ab
ij Y

ab
ji = I, Y ab

jk Y
bc
ik Y

ab
ij = Y bc

ij Y
ab
ik Y

bc
jk . (2.74)
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Fermionic symmetry requirements imply that the coe�cients [P,Q] must be
antisymmetric for the exchange of two electrons with the same spin. This
reduces the number of coe�cients we have to determine. Following the same
procedure of the two-particle case, one �nally founds the so-called Lieb-Wu
equations from the periodic boundary conditions

eikjL =
M∏
`=1

λ` − sin kj − iU/(4t)

λ` − sin kj + iU/(4t)

N∏
j=1

λ` − sin kj − iU/(4t)

λ` − sin kj + iU/(4t)
=

M∏
m=1,m6=`

λ` − λm − 2iU/(2t)

λ` − λm + iU/(2t)

(2.75)

with j = 1, ..., N and ` = 1, ...,M .
Solving these equations give the possible values of the quantum numbers kj
and λ`. For more details see ref. [5, 36, 7].
The reason for which the N -particle problem in the one-dimensional Hub-
bard model can be exactly solved is that it is an integrable model. De�nition
of integrability for quantum systems of �nite dimensionality with no classical
limit, such as a spin chain, is not trivial. For a system that support scatter-
ing, such as the Hubbard model, we can identify the concept of integrability
with that of non-di�ractivity. This means that the true N -body scattering,
which makes the asymptotic wave function deviate from a plane wave, van-
ishes. Hence, if a system supports scattering and is integrable, the N -body
scattering is just a succession of two-body scattering, which is built into the
asymptotic Bethe ansatz [7].



Chapter 3

Two-body solutions for the

extended Hubbard model

Here we want to �nd two-body solutions for the extended Hubbard model
involving longer range interactions between the particles on the neighbour-
ing lattice sites. In general, this model cannot be handled with the Bethe
ansatz in its standard form. However the same procedure can be followed if
we adjust the ansatz for the wave function to suit this case. The problem has
been solved by Valiente and Petrosyan [38] for two bosonic particles with the
�rst nearest-neighbor interaction, in the thermodynamic limit. We consider
the fermionic case in which the problem is made more complicated by the
presence of the spin. Moreover we also calculate the solutions of the model
with an additional interaction term between the second neighbors. In the
next chapter we will show explicit results also for a lattice of �nite size.
We start by adding to the Hubbard Hamiltonian (2.10) an interaction term
between the �rst nearest-neighbors. Then we also consider the interaction
between the second nearest-neighbors.

3.1 First-neighbor interaction

We consider two fermions in a one-dimensional lattice of size L and assume
particles can move from one site to �rst nearest-neighbors and interact with
each other only if they are on the same site or on adjacent sites. The Hamil-
tonian is

H = −t
∑
i

∑
σ

(c†iσci+1σ + c†i+1σciσ) + U
∑
i

(ni↑ni↓) + V
∑
i

nini+1 (3.1)

39



40 3. Two-body solutions for the extended Hubbard model

and we want to solve the eigenvalue equation

H|Ψ〉 = E|Ψ〉. (3.2)

The two-particle state is again of the form (2.11):

|Ψ〉 =
1

2

L∑
x1,x2=1

∑
σ1,σ2=↑,↓

ψσ1σ2(x1, x2)|x1σ1, x2σ2〉 =

=
1

2

L∑
x1,x2=1

∑
σ1,σ2=↑,↓

ψσ1σ2(x1, x2)|σ1, σ2〉|x1, x2〉 =

=
1

2

L∑
x1,x2=1

∑
S,Sz

χssz(x1, x2)|S, Sz〉|x1, x2〉

(3.3)

where, passing from the �rst line to the second we have expressed the same
thing in an equivalent notation; while from the second line to the third we
have made use of the following change of basis in spin space:

|S, Sz〉 =
∑
σ1,σ2

φss
z

(σ1, σ2)|σ1, σ2〉 (3.4)

so that

ψσ1,σ2(x1, x2) =
∑
S,Sz

χssz(x1, x2)φss
z

(σ1, σ2) = χ(x1, x2)φ(σ1, σ2). (3.5)

Here S is the total spin of the two-particle system and Sz is its projection
onto the z-axis. φss

z
(σ1, σ2) is the spin wave function:

triplet state: φs =


φ11(σ1, σ2) = δσ1,↑δσ2,↑

φ10(σ1, σ2) = 1√
2
(δσ1,↑δσ2,↓ + δσ1,↓δσ2,↑)

φ1−1(σ1, σ2) = δσ1,↓δσ2,↓

singlet state: φa =φ00(σ1, σ2) =
1√
2

(δσ1,↑δσ2,↓ − δσ1,↓δσ2, ↑).

(3.6)

Transformation (3.5) will be useful when we make the ansatz on the wave
function. Now we can proceed in two equivalent ways:
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1. we write the Hamiltonian (3.1) in terms of projection operators |x σ, x′σ′〉〈x σ, x′σ′|

H = −t
∑
x′1

∑
σ′1

(|x′1σ′1〉〈x′1 + 1 σ′1|+ |x′1 + 1 σ′1〉〈x′1σ′1|) +

− t
∑
x′2

∑
σ′2

(|x′2σ′2〉〈x′2 + 1 σ′2|+ |x′2 + 1 σ′2〉〈x′2σ′2|) +

+
U

2

∑
x′1,x

′
2

∑
σ′1,σ

′
2

δx′1,x′2δσ′1,σ̄′2|x
′
1σ
′
1, x
′
2σ
′
2〉〈x′1σ′1, x′2σ′2|+

+
V

2

∑
x′1,x

′
2

∑
σ′1,σ

′
2

(δx′2,x′1+1 + δx′2,x′1−1)|x′1σ′1, x′2σ′2〉〈x′1σ′1, x′2σ′2|

(3.7)

where

〈x′1σ′1, x′2σ′2|x1σ1, x2, σ2〉 = δx′1,x1δx′2,x2δσ′1,σ1δσ
′
2, σ2−δx′1,x2δx′2,x1δσ′2,σ1δσ

′
1, σ2;

(3.8)

2. we write the state (3.3) in terms of creation operators c†xσ

|Ψ〉 =
1

2

L∑
x1,x2=1

∑
σ1,σ2=↑,↓

ψσ1σ2(x1, x2)c†x2σ2c
†
x1σ1
|0〉. (3.9)

Then we apply Hamiltonian (3.7) to the state (3.3) or Hamiltonian (3.1) to
the state (3.9). In both cases we obtain the following eigenvalue equation

− t[ψσ1σ2(x1 + 1, x2) + ψσ1σ2(x1 − 1, x2) + ψσ1σ2(x1, x2 + 1) + ψσ1σ2(x1, x2 − 1)]

+ [Uδx1,x2 + V (δx2,x1+1 + δx2,x1−1)− E]ψσ1σ2(x1, x2) = 0.

(3.10)

Introducing the centre of mass R = x1+x2
2

and relative r = x1−x2 coordinates
and the momenta K = k1 + k2 and k = k1 − k2, it becomes

− t[ψσ1σ2
(
R +

1

2
, r + 1

)
+ ψσ1σ2

(
R− 1

2
, r − 1

)
+ ψσ1σ2

(
R +

1

2
, r − 1

)
+

ψσ1σ2

(
R− 1

2
, r + 1

)
] + [Uδr,0 + V (δr,−1 + δr,1)− E]ψσ1σ2 (R, r) = 0.

(3.11)

As in the previous case, we need four function to represent an eigenstate of
the two S = 1/2 particles system:

ψ↑↑(R, r), ψ↑↓(R, r), ψ↓↑(R, r), ψ↓↓(R, r). (3.12)
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Each of them must satisfy an equation of the form (3.11). In order to �nd
the explicit form of the state (3.3), we pass from ψσ1σ2(R, r) functions to
χssz(R, r) functions through transformation (3.5). Eigenvalue equation for
χ11 and χ1−1 are the same as that for ψ↑↑ and ψ↓↓, respectively. Summing
the eigenvalue equation for ψ↑↓ and that for ψ↓↑, we get an equation for χ10;
while subtracting them we get an equation for χ00. Each equation is of the
form (3.11).
We now distinguish between two di�erent cases: the triplet state and the
singlet state. This means that we are working with two di�erent sectors,
in which the total spin is S = 1 and S = 0, respectively. So we make two
di�erent ansatz for the wave functions.
We begin by remembering that the fermion's wave function must be antisym-
metric. So the spacial wave function must be antisymmetric for the triplet
state and symmetric for the singlet state; the following relations must be
true:

χ11(R, r) = χ1−1(R, r) = χ10(R, r) = χA(R, r) (3.13)

χ00(R, r) = χS(R, r) (3.14)

with

χA(R,−r) = −χA(R, r) (3.15)

χS(R,−r) = χS(R, r) (3.16)

Thus we obtain χA(R, r) = 0. This means in this case the on-site interaction
has no physical e�ect.
We make the following ansatz on the wave function:

χA(R, r) =
∑
P

[P,Q]ei(kP1
xQ1

+kP2
xQ2

) with xQ1 ≤ xQ2

=
(
[12, 12]ei(k1x1+k2x2) + [21, 12]ei(k2x1+k1x2)

)
Θ(x2 − x1)+

+
(
[12, 21]ei(k1x2+k2x1) + [21, 21]ei(k2x2+k1x1)

)
Θ(x1 − x2) =

= eiKR
{(

[12, 12]eikr/2 + [21, 12]e−ikr/2
)

Θ(−r)+

+
(
[12, 21]e−ikr/2 + [21, 21]eikr/2

)
Θ(r)

}
(3.17)

that, because of the antisymmetry, becomes

χA(R, r) = eiKR
{
−
(
[12, 21]eikr/2 + [21, 21]e−ikr/2

)
Θ(−r)+

+
(
[21, 21]eikr/2 + [12, 21]e−ikr/2

)
Θ(r)

}
=

= sgn (r)eiKR
(
[21, 21]eik|r|/2 + [12, 21]e−ik|r|/2) .

(3.18)
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where Θ(r) is the Heaviside function, with Θ(r) = 1/2 at r = 0. Inserting it
into eigenvalue equation (3.11) and after a little algebra, we get

−4t cos

(
K

2

)
cos

(
k

2

){
−
(
[12, 21]eikr/2 + [21, 21]e−ikr/2

)
Θ(−r)+

+
(
[21, 21]eikr/2 + [12, 21]e−ikr/2

)
Θ(r)

}
+

−E
{
−
(
[12, 21]eikr/2 + [21, 21]e−ikr/2

)
Θ(−r)+

+
(
[21, 21]eikr/2 + [12, 21]e−ikr/2

)
Θ(r)

}
+

−2t cos

(
K

2

){
− ([12, 21]eik(r+1)/2 + [21, 21]e−ik(r+1)/2)[Θ(−r − 1)−Θ(−r)]+

+([21, 21]eik(r+1)/2 + [12, 21]e−ik(r+1)/2)[Θ(r + 1)−Θ(r)]+

−([12, 21]eik(r−1)/2 + [21, 21]e−ik(r−1)/2)[Θ(−r + 1)−Θ(−r)]+

+([21, 21]eik(r−1)/2 + [12, 21]e−ik(r−1)/2)[Θ(r − 1)−Θ(r)]
}

+

+V (δr,−1 + δr,1)
{
−
(
[12, 21]eikr/2 + [21, 21]e−ikr/2

)
Θ(−r)+

+
(
[21, 21]eikr/2 + [12, 21]e−ikr/2

)
Θ(r)

}
= 0.

(3.19)
Inserting the expression for the energy E = −4t cos (K/2) cos (k/2), the �rst
four lines cancel each other out. The remaining equation is always satis�ed at
r 6= ±1 and, calculated at r = ±1, gives a relation between the coe�cients:

[21, 21]

[12, 21]
= −2t cos (K/2) + V e−ik/2

2t cos (K/2) + V eik/2
. (3.20)

In the case in which the two particles have opposite spin, we can't make the
same ansatz (3.17) on the wave function because there would be too many
restrictions on the coe�cients, provided by the symmetry condition and by
the requirement for eigenvalue equation (3.11) to be satis�ed at r = 0 and
at r = ±1. So we use the following form

χS(R, r) = eiKR


[12, 12]eikr/2 + [21, 12]e−ikr/2 if r ≤ −1

A0 if r = 0

[12, 21]e−ikr/2 + [21, 21]eikr/2 if r ≥ 1

(3.21)

If we require that the wave function be symmetric, we get [12, 21] = [12, 12]
and [21, 21] = [21, 12]. In order to simplify the notation, we de�ne [12, 12] =
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A1 and [21, 12] = A2. Thus the wave function is

χS(R, r) = eiKR

{
A1e

−ik|r|/2 + A2e
ik|r|/2 if r 6= 0

A0 if r = 0
(3.22)

When r 6= 0,±1, eigenvalue equation (3.11) is satis�ed if

E = −4t cos (K/2) cos (k/2). (3.23)

We require that the equation be satis�ed also at r = 0 and at r = ±1. We
get the following system of equations
− 4t cos

(
K

2

)(
A1e

−ik/2 + A2e
ik/2
)

+ (U − E)A0 = 0

− 2t cos

(
K

2

)(
A1e

−ik + A2e
ik + A0

)
+ (V − E)

{
A1e

−ik/2 + A2e
ik/2
}

= 0

(3.24)
From the �rst equation we get

A0 =
2JK

(
A1e

−ik/2 + A2e
ik/2
)

U + 2JK cos (k/2)
(3.25)

where JK = 2t cos (K/2). Inserting it into the second equation, we get

e−ik/2

(
eik/2 − 2JK

U + 2JK cos (k/2)
+

V

JK

)
A1+

eik/2

(
e−ik/2 − 2JK

U + 2JK cos (k/2)
+

V

JK

)
A2 = 0.

(3.26)

Separating real part and imaginary part in the factors that multiply A1 and
A2, we get

A2

A1

= −x− iy
x+ iy

= ei2δ (3.27)

with

x = 1− 2JK cos (k/2)

U + 2JK cos (k/2)
+
V cos (k/2)

JK
(3.28)

y =

(
− 2JK
U + 2JK cos (k/2)

+
V

JK

)
sin (k/2). (3.29)

We observe that A2/A1 is a phase factor, since it is the ratio between a
number and its complex conjugate. We can de�ne the phase shift δ through

tan δ =

√
1− cos (2δ)

1 + cos (2δ)
=
x

y
=

JKU + (2JK cos (k/2) + U)V cos (k/2)

[UV − 2JK(JK − V cos (k/2))] sin (k/2)

(3.30)
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If we also de�ne the phase shift δ0 for V = 0

tan δ0 = − U

2JK sin (k/2)
, (3.31)

we can write

A0 = cos δ0
cos (k + δ)

cos (k + δ0)
. (3.32)

So the wave function is

χS(R, r) = CeiKR


cos

(
kr

2
+ δ

)
if r 6= 0

cos δ0

cos (k/2 + δ)
cos

(
k

2
+ δ0

)
if r = 0

(3.33)

We observe that this result is the same obtained by Valiente and Petrosyan
for the bosonic case [38], while the wave function of the triplet state is the
same obtained for spinless fermions.

3.1.1 Periodic boundary conditions

We impose periodic boundary conditions on the wave function:

χ
(x2
2
,−x2

)
= χ

(
L+ x2

2
, L− x2

)
; χ

(
x2 + 1

2
, 1− x2

)
= χ

(
L+ 1 + x2

2
, L+ 1− x2

)
(3.34)

χ
(x1
2
, x1

)
= χ

(
L+ x1

2
, x1 − L

)
; χ

(
x1 + 1

2
, x1 − 1

)
= χ

(
x1 + L+ 1

2
, x2 − L− 1

)
(3.35)

Because of the symmetry or the antisymmetry it is su�cient to consider one
pair of equations. We consider equations (3.34). Both of them give the same
result. So we apply only the �rst condition.

Triplet state In the case of the triplet state, the �rst equation (3.34) gives

eiKx2/2

{(
[21, 21] + ei(K−k)L/2[12, 21]

)
eikx2/2+

(
[12, 21] + ei(K+k)L/2[21, 21]

)
e−ikx2/2

}
= 0

(3.36)

from which we get

−[12, 21] = ei(K+k)L/2[21, 21] (3.37)

−[21, 21] = ei(K−k)L/2[12, 21] (3.38)
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and hence

[21, 21]

[12, 21]
= −e−i(K+k)L/2 = −ei(K−k)L/2 = −2t cos (K/2) + V e−ik/2

2t cos (K/2) + V eik/2
. (3.39)

The second equivalence gives a quantization condition on the centre of mass
momentum: K = 2πn

L
. For each value of K, the third equivalence is an

equation whose solutions give all possible values of the relative momentum
k.

Singlet state In this case we have

eiKx2/2
{(

A2 − ei(K−k)L/2A1

)
eikx2/2 +

(
A1 − ei(K+k)L/2A2

)
e−ikx2/2

}
= 0

(3.40)
from which we get

A2

A1

= e−i(K+k)L/2 = ei(K−k)L/2 = ei2δ. (3.41)

So the quantization rule on K is the same as in triplet state. We can verify
that this is also the required condition when the two particles are on the
same site at the edge of the chain.

3.2 Second-neighbor interaction

We generalize further the problem with the addition of a second-neighbor
interaction term to Hamiltonian (3.1). So it takes the form

H = −t
∑
i

∑
σ

(c†iσci+1σ+c
†
i+1σciσ)+U

∑
i

(ni↑ni↓)+V1

∑
i

nini+1+V2

∑
i

nini+2.

(3.42)

The procedure we apply is the same as before, but we need an ansatz with
a great number of coe�cients, because now we have an additional condition
to be satis�ed. It is the eigenvalue equation at r = ±2.
The two-particle state is the (3.3). Applying the Hamiltonian (3.42) to it, we
get the eigenvalue equation (3.11), with an extra term. For the symmetric
χS and antisymmetric χA wave functions, it is

− t[χα
(
R+

1

2
, r + 1

)
+ χα

(
R− 1

2
, r − 1

)
+ χα

(
R+

1

2
, r − 1

)
+

χα
(
R− 1

2
, r + 1

)
] + [Uδr,0 + V1(δr,−1 + δr,1) + V2(δr,−2 + δr,2)− E]χα (R, r) = 0

(3.43)
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with α = S,A.
Let us consider the antisymmetric wave function, that is to say the triplet
state. We need to add a coe�cient to the ansatz (3.18). So we make the
following ansatz

χA(R, r) = eiKR sgn (r)
{
A1e

−ik|r|/2 + A2e
ik|r|/2 + C(|r|)

}︸ ︷︷ ︸
χA(r)

(3.44)

with

C(|r|) =

{
A3 for |r| = 1
0 otherwise

(3.45)

Inserting it into eigenvalue equation, it reduces to

−JK [χA(r+ 1) +χA(r−1)] + [V1(δr,1 + δr,−1) +V2(δr,2 + δr,−2)−E]χA(r) = 0.
(3.46)

This equation, calculated at r = ±1,±2, is veri�ed with E = −2JK cos (k/2).
The request that it is satis�ed at r = ±1 and r = ±2, gives the following
system of equations{ (

JK + V1e
−ik/2

)
A1 +

(
JK + V1e

ik/2
)
A2 + (2JK cos (k/2) + V1)A3 = 0

− JKA3 + V2

(
A1e

−ik + A2e
ik
)

= 0

(3.47)
from which we get

A2

A1

= −
JK + V1e

−ik/2 + V2e
−ik/2

(
1 + e−ik

)
+ V1V2

JK
e−ik

JK + V1eik/2 + V2eik/2 (1 + eik) + V1V2
JK

eik
(3.48)

and

A3

A1

=
V2

JK
e−ik

{
1− JKe

ik + V1e
ik/2 + 2V2 cos (k/2) + V1V2/JK

JKe−ik + V1e−ik/2 + 2V2 cos (k/2) + V1V2/JK

}
(3.49)

We observe that A2/A1 is the ratio between a complex number and its con-
jugate. Thus it is a phase factor. We can verify that for V2 = 0 we recover
the form (3.20).
For the singlet state we add a coe�cient to the ansatz (3.22):

χS(R, r) = eiKR
{
A1e

−ik|r|/2 + A2e
ik|r|/2 + C(|r|)

}︸ ︷︷ ︸
χS(r)

(3.50)



48 3. Two-body solutions for the extended Hubbard model

with

C(|r|) =


A3 for |r| = 1
A0 − A1 − A2 for r = 0
0 otherwise

(3.51)

Thus eigenvalue equation is

−JK [χA(r+1)+χA(r−1)]+[Uδr,0+V1(δr,1+δr,−1)+V2(δr,2+δr,−2)−E]χA(r) = 0
(3.52)

and is always veri�ed if |r| 6= 0, 1, 2 and E = −2JK cos (k/2). Requiring the
equation to be satis�ed at r = 0,±1,±2, we get the following system

− 2JK
(
A1e

−ik/2 + A2e
ik/2 + A3

)
+ (U + 2JK cos (k/2))A0 = 0

V1

(
A1e

−ik/2 + A2e
ik/2 + A3

)
+ JK (A1 + A2 − A0 + 2A3 cos (k/2)) = 0

− JKA3 + V2

(
A1e

−ik + A2e
ik
)

= 0
(3.53)

from which we get the relations between the coe�cients. Once again, the
ratio A2/A1 is a phase factor:

A2

A1

= − f(k)

f(−k)
(3.54)

with

f(k) = JK+V1e
−ik/2+V2e

−ik/2
(
1 + e−ik

)
+
V1V2

JK
e−ik− 2J2

Ke
−ik/2 + 2V2JKe

−ik

U + 2JK cos (k/2)
(3.55)

and it reduces to (3.27) if V2 = 0. It can be easily veri�ed from equation
(3.26).
If we impose the periodic boundary conditions (3.34) and (3.35) on the wave
function, we get the usual equation:

∓A2

A1

= e−i(K+k)L/2 = ei(K−k)L/2 (3.56)

where the minus sign is valid for the triplet state and the plus sign is valid
for the singlet state. In both cases they give the following quantization rule
on the center of mass momentum

K =
2πn

L
n = 1, 2, ..., L (3.57)
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whereas the equation for the relative momentum k are explicitly written as

ei(πn+kL/2)
Jn + V1e

−ik/2 + V2e
−ik/2

(
1 + e−ik

)
+ V1V2

Jn
e−ik

Jn + V1eik/2 + V2eik/2 (1 + eik) + V1V2
Jn
eik

− 1 = 0 (3.58)

and

ei(πn+kL/2)
Jn + V1e

−ik/2 + V2e
−ik/2(1 + e−ik) + V1V2

Jn
e−ik − 2J2

ne
−ik/2+2V2Jne−ik

U+2Jn cos (k/2)

Jn + V1eik/2 + V2eik/2(1 + eik) + V1V2
Jn

eik − 2J2
ne

ik/2+2V2Jneik

U+2Jn cos (k/2)

+1 = 0

(3.59)

respectively, with Jn = 2t cos (πn/L) and n = 1, 2, ..., L.

3.3 Bound states in the thermodynamic limit

Now we discuss the thermodynamic limit for the extended Hubbard model.
We examine directly the case with the second-neighbour interaction, since
the case with the �rst-neighbour interaction only can be obtained from it
setting V2 = 0.
For the triplet state, the boundary condition on the wave functions yields
equation (3.58) which, for a bound state, is

JK ± V1e
−α ± V2e

−α(1 + e−2α) + V1V2e
−2α/JK

JK ± V1eα ± V2eα(1 + e2α) + V1V2e2α/JK
= ±eiπne−αL −→

L→∞
0. (3.60)

Hence, in the thermodynamic limit we �nd a cubic equation

±V2e
−3α +

V1V2

JK
e−2α ± (V1 + V2)e−α + JK = 0 (3.61)

whose roots give us the expression for ±e−α. If V2 = 0, it is

±e−α = −JK
V1

(3.62)

and the corresponding wave function is

χA(r) = C sgn (r)

(
−JK
V1

)|r|
. (3.63)

If |V1| > |JK |, it represent a bound state with energy

E = −JK(±eα ± e−α) = V1 +
J2
K

V1

. (3.64)



50 3. Two-body solutions for the extended Hubbard model

The third coe�cient is given by

A3

A1

=
V2

JK
e−2α. (3.65)

For the singlet state, we must consider equation (3.59). For imaginary k/2 =
−iα or k/2 = ±π − iα and L→∞, it takes the form

JK±V1e
−α±V2e

−α±V2e
−3α+

V1V2

JK
e−2α−±2J2

Ke
−α + 2V2JKe

−2α

U ± JK(e−α + eα)
= 0. (3.66)

It is a �fth degree equation

V2JKα
5
K + (U + V1)V2α

4
K + V1

(
JK +

UV2

JK

)
α3
K + (UV1 + UV2 + V1V2 − J2

K)α
2
K

+ (U + V1 + V2)JKαK + J2
K = 0, αK = ±e−α

(3.67)

that reduces to a cubic equation for V2 = 0

V1JKα
3
K + (UV1 − J2

K)α2
K + (U + V1)JKαK + J2

K = 0. (3.68)

We observe that for V1 = 0 we recover equation (2.61), as expected; while
for V1 6= 0 and |U | → ∞ we get (3.62) and the energy is the same as into
(3.64). This is indeed the result for the triplet state and is the same that
we would obtain for spinless fermions or hard-core bosons [39]. Hence the
in�nitely on-site interaction makes the behaviour of two fermions in a singlet
state similar to that of spinless fermions, by preventing them from staying
on the same site. In fact

A0 = 0 =⇒ χ(r = 0) = 0. (3.69)

However, there is another solution of equation (3.68), αK = 0, which repre-
sents an in�nitely bound pair with energy E = U .



Chapter 4

Scattering resonances

In this chapter we describe the resonance phenomenon that occurs in our
model when the energy of a bound state matches the energy of a state in the
scattering band.
The idea of resonance scattering in atomic and molecular systems has been
around since the earliest days of quantum physics. A conventional resonance
occurs when the phase shift changes rapidly by ≈ π over a relatively narrow
range of energy, due to the presence of a bound level of the system that is
coupled to the scattering state of the colliding atoms.
Before illustrate our results for the extended Hubbard model (next chapter),
we recall some basic concept of the scattering theory [40] and introduce some
important parameter such as the scattering length which characterizes low-
energy interactions between a pair of particles [41, Chap. 5].

4.1 Basic scattering theory

The problem of an elastic collision, like any two-body problem, amounts to a
problem of the scattering of a single particle, with the reduced mass, in the
�eld U(r) of a �xed centre of force. This simpli�cation is e�ected by changing
to a system of coordinates in which the centre of mass of two particles is at
rest. Let us consider the scattering of two-particles with no internal degrees
of freedom, and masses m1 and m2. The reduced mass is

µ =
m1m2

m1 +m2

. (4.1)

The wave function for the centre-of-mass motion is a plane wave, while that
for the relative motion satis�es a Schrödinger equation with the mass equal
to µ. We assume the centre of mass is at rest. Hence we consider the wave
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52 4. Scattering resonances

function for the relative motion only. It is the sum of an incoming plane
wave and a scattered wave, which at great distance is an outgoing spherical
wave. If the relative velocity in the incoming wave is in the z-direction, the
wave function for large r is thus

ψ ≈ eikz + f(θ, k)
eikr

r
(4.2)

where θ is the scattering angle, k = (k1−k2)/2 is the scaled relative momen-
tum and f(θ, k) is the scattering amplitude, which is related to the scattering
cross section σ(k) by

σ(k) = 2π

∫ π

0

|f(θ, k)|2 sin θdθ. (4.3)

We notice that in the previous chapters the relative momentum didn't contain
the 1/2 factor. Here we use the scaled relative momentum to be consistent
with the notation in literature.
Since we are assuming the potential to be spherically symmetric, the solution
of the Schrödinger equation has axial symmetry with respect to the direction
of the incident particle. Consequently, the wave function and the amplitude
scattering can be expanded in terms of Legendre polynomials P`(cos θ)

f(θ, k) =
1

2ik

∞∑
`=0

(2`+ 1)(ei2δ` − 1)P`(cos θ) (4.4)

where δ` are the phase shifts, which in general depend on k.
At low energies, the s-wave scattering dominates and only the term for ` = 0
survives in the preceding sum. Thus we have

f(k) =
1

2ik
(e2iδ0(k) − 1) =

1

k cot δ0(k)− ik
(4.5)

and

σ(k) = 4π|f(k)|2 =
4π

k2
sin2 δ0(k). (4.6)

We can �nally de�ne the scattering length as through the scattering ampli-
tude in the limit k → 0

f(k) ≈ −1

1/as + ik
. (4.7)

From the comparison between this relation and the (4.5), we get

δ0(k → 0) = − arctan (kas) (4.8)
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from which we infer that the behaviour of the s-wave scattering phase shift
is completely determined by the scattering length. From equation (4.8) we
can also derive an alternative de�nition for the scattering length, which will
be useful in the following

as = − lim
k→0

∂δ0(k)

∂k
. (4.9)

Finally we give the expression for the cross section in this limit

σ(k) =
4π

(1/as)2 + k2
(4.10)

from which we deduce that the cross section diverges when the scattering
length as → ∞, for k → 0. This large increase of the cross section oc-
curs when a resonance appears, due to the energy of the scattering particle
matching that of a discrete level.

4.1.1 Identical particles

When two identical particles collide, the wave function that describes the
scattering must be symmetrised or antisymmetrised with respect to the par-
ticle permutations in order to account for the exchange interaction between
them.
An interchange of the particles is equivalent to reversing the direction of the
radius vector joining them. In the coordinate system in which the centre of
mass is at rest, this means that r remains unchanged, while the angle θ is
replaced by π − θ (and so z = r cos θ becomes −z). Hence , instead of the
asymptotic expression (4.2) for the wave function, we have

ψ = eikz ± e−ikz + [f(θ, k)± f(π − θ, k)]
eikr

r
. (4.11)

At low energies, where the scattering is dominated by s-waves (` = 0), the
scattering amplitude does not depend on the angle θ and so the wave func-
tion. Thus the antisymmetric scattered wave function is zero and the scat-
tering wave function is simply the sum of two equal incident plane waves
propagating in opposite directions

ψ = eikz − e−ikz (4.12)

while the symmetric wave function is

ψ = eikz + e−ikz + 2f(k)
eikr

r
. (4.13)
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If we are dealing with a one-dimensional scattering, the antisymmetric scat-
tering wave function can be written as (4.12), while the symmetric one takes
the form

ψ = eikz + e−ikz + 2f(k)eikz (4.14)

with

f(k) =
1

2
(eikδ0(k) − 1). (4.15)

Thus it is
ψ = e−ikz + e2iδ0(k)eikz. (4.16)

4.2 Scattering process on a lattice

Our problem of two particle on a one-dimensional lattice with a contact in-
teraction can be regarded as a scattering problem.
Concepts illustrated before, such as phase shift and scattering length can
be generalized to describe two particle scattering in an optical lattice repre-
sented by the Hubbard Hamiltonian or its extensions.
In this case, the periodic potential leads to a structured continuum with
scattering states grouped in energy bands separated by band gaps. In the
previous chapters we have concentrated on the lowest band and we will con-
tinue to ignore the upper bands in the following. The band structure implies
that the continuum band has both a lower and an upper edge. As we will
see, this has fundamental implications for both the bound states and the
scattering states of the system. A counter-intuitive e�ect of the lattice is the
existence of repulsively bound pairs of atoms, which are stable if the repulsive
interaction is strong enough to lift the two-particle bound state out of the
continuum and into the band gap, thereby preventing the pair from dissoci-
ating [42]. In one dimension repulsively bound pairs exist for an arbitrary
small repulsion.
We can easily generalize the concept of scattering amplitude and scattering
length to suit this case. From the comparison between equations (2.57) and
(4.16), making attention to the scaling k/2 → k and taking |r| = z, we
identify the ratio A2/A1 in our previous calculations with the phase factor
e2iδ0 . Hence, using equations (2.58) and (4.15) and the scaled form for the
momentum k = (k1 − k2)/2, we get

f(k) =
−1

1− ik2|JK |/U
, with k → 0 (4.17)
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Analogously, we can de�ne an amplitude scattering at the other edge of
the band k = π. Thus, we can write the following form for the amplitude
scattering which incorporate either the two limiting cases

f(k) =
−1

1− iκ2|JK |/U
, with κ→ 0 (4.18)

where, if we refer to the �rst Brillouin zone (K ∈ [−π, π]), κ = k at the
bottom of the band (k = 0) and κ = π − k at the top of the band (k = π).
Finally, from the comparison with equation (4.7), we get a natural de�nition
of a generalized one-dimensional scattering length [43] in the lattice

alattices = −2|JK |
U

. (4.19)

An equivalent de�nition is obtained from the generalization of de�nition (4.9)
[44, 45]

alattices = − lim
κ→0

∂δ0(k,K)

∂κ
. (4.20)

We notice that in the lattice the phase shift depends on K in addition to k.
This implies that the scattering length depends on the centre-of-mass motion
of the pair, which is a crucial feature in the lattice.
For an attractive interaction (U < 0) a bound state is situated below the
continuum, making alattices positive. In this case, the pole of (4.18) lies along
the positive imaginary axis

k =
iU

2|JK |
. (4.21)

When k approaches this value the plane wave becomes a dying exponential
which represents the bound state. Conversely, for a repulsive interaction
(U > 0), the bound state lies above the continuum and the scattering length
is negative. The pole of the scattering amplitude is then at

k = π +
iU

2|JK |
. (4.22)

Hence in this case the wave function is a dying exponential with the addition
of a phase factor eiπ|z| which alternates between 1 and −1 from one lattice
site to the next.
As |U | → 0 the scattering length diverges and the bound state approaches the
edge of the continuum. This is the only case in which alattices diverges; hence
only for vanishing U we observe a scattering resonance in the one-dimensional
Hubbard model. As we will see in the following, when an adding non-contact
interaction is present in the model, a scattering resonance appears also for
�nite interaction strength.





Chapter 5

Our results

In this chapter we illustrate some explicit results of our calculations, showing
the emergence of scattering resonances in our model.
In this discussion we take into account the more general model with second-
neighbor interaction. Hence we consider the Hamiltonian (3.42)

H = −t
∑
i

∑
σ

(c†iσci+1σ+c†i+1σciσ)+U
∑
i

(ni↑ni↓)+V1

∑
i

nini+1+V2

∑
i

nini+2

(5.1)
and equations obtained for it in section 3.2. Then we consider the particular
cases of V2 = 0 and V1 = 0.

5.1 Scattering states and bound states

Solving equations (3.58) and (3.59) gives the permitted values of the relative
momentum k for the triplet state and the singlet state, respectively. From
now on to the end of this study we will refer to the scaled relative momentum
q = k/2 rather than k = k1 − k2. We study the energy band structure in
order to have some information about the physical behaviour of the particle
pair on the lattice. For each permitted (q,K) couple there is a state of energy
E = −2JK cos q. All relative momenta qs can be grouped into two families

1. Im(q) = 0

2. |Im(q)| > 0 & |Re(q)| = 0, π

The �rst family corresponds to the scattering states, which have a real rel-
ative momentum ; the second one corresponds to the bound states, which
have a relative momentum with a non-vanishing imaginary part. However
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58 5. Our results

their real part is always 0 or π, so that the energy remains a real number.
We start the analysis of results from the simpler cases. If V1 = V2 = 0,
our model reduces to the Hubbard model , in which the triplet state has no
bound states, while the singlet state has them, as mentioned in chapter 2
(see �gure 2.2). In �gure 5.1 a similar graph is plotted, in which the discrete
energy levels are depicted for both an attractive and a repulsive interaction.
The graph includes only the �rst Brillouin zone K ∈ [−π, π]. In this region,
the upper band edge corresponds to q = ±π and the lower band edge cor-
responds to q = 0. The red dots represent the bound states that appear
for a repulsive interaction with strength U/t = 2.5, while the brown dots
represent the bound states that appear for an attractive interaction with the
same strength. Blue and green dots are the scattering states for the �rst
and the second case, respectively. We observe that the band scattering is
not the same if U is reversed or, in general, if U is varied. This is a lattice
e�ect, which disappears in the thermodynamic limit, when the band becomes
a continuum and the graphic is perfectly symmetric. We observe that if the
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Figure 5.1: Energy band structure for a singlet state in the Hubbard model, with U/t = 2.5 (blue and red
points) and U/t = −2.5 (green and brown points). The number of lattice sites is L = 45.

interaction strength is su�ciently low, as in this case, there are some bound
states with the same energy of some states in the scattering band. However
states with the same energy never have the same centre-of-mass momentum.
Hence, two particles cannot bound together as a result of a scattering process,
since the conservation of the centre-of-mass momentum would be violated.
As the interaction strength |U | is enhanced, the discrete levels repel from the
scattering band. In the opposite limit, when |U | → 0, the bound state level
collapses onto the band.
Let us consider the case V2 = 0, V1 6= 0. We analyse �rst the triplet state,
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which is less complicated, since the contact interaction U has no physical
e�ect. Thus the only tunable parameter in addition to the number of lattice
sites is V1 ≡ V . The band structure is similar to that of the singlet state
in the Hubbard model with the on-site interaction only but the form of the
curve produced by the bound states is di�erent, as we can easily seen by com-
paring equations (2.64) and (3.64). In both cases the number of bound states
in an interval of width 2π in K equals the number of lattice size. However
these bound states don't appear for each value of the interaction strength,
depending on the chain length. Thus this is an e�ect of the �nite size of
lattice and the consequently discreteness of the energy levels. The number
of bound states grows from 0 to L as the potential |V | is enhanced. Once
L bound states have appeared, their number doesn't grow anymore: there is
at most a bound state for a �xed centre-of-mass momentum. In �gure 5.2
the number of bound states versus V is indicated, for lattice size 7 and 15,
respectively. We notice that the number of bound states grows more rapidly
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(a) Lattice with L = 7.
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(b) Lattice with L = 15.

Figure 5.2: Number of bound states as a function of V/t, for lattices with L = 7 and L = 15 sites,
respectively.

for a longer chain. Another counter-intuitive feature is that the appearance
of bound states is not symmetric as the potential is reversed. However the
asymmetry is weak and it reduces as the lattice size approaches the thermo-
dynamic limit. Finally we observe that the energy is symmetric with respect
to the centre of the Brillouin zone. Hence, the bound states appear always
in pairs (obviously except that for K = 0). These two bound states have
relative momenta with the same imaginary part and real part that is 0 and
π, respectively1.
In �gure 5.3 the energy band structure has been plotted for a lattice length
L = 15 and for a lattice length approaching the thermodynamic limit. We ob-

1We notice that in each case the total number of states is �xed (if a bound state appears,
a scattering state disappears) and the Bethe ansatz allows to �nd all of them. We refer
the reader to appendix A for their counting.
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serve that in the �rst case only 8 bound states appear at the edge of the Bril-
louin zone if the repulsive potential V/t is reduced from 3 to 1.5; in the second
case 52 bound states appear. In �gure 5.4 wave functions for both attractive
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(a) Energy band on a lattice with L = 15
and V/t = 1.5.
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(b) Energy band on a lattice with L = 95
and V/t = 1.5.
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(c) Energy band on a lattice with L = 15
and V/t = 3.
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(d) Energy band on a lattice with L = 95
and V/t = 3.

Figure 5.3: Energy band for the triplet state in the extended Hubbard model with the (repulsive) �rst-
nearest-neighbor interaction only.

and repulsive potentials have been plotted. The form of the wave function
depends on the centre-of-mass momentum K. Let us consider, for example,
an odd lattice. If we refer to the range K ∈ [2π/L, 2π], the wave function
for a repulsive potential in the �rst semi-band (K ∈ [2π/L, π(1 − 1/L)]) is
always positive or always negative when r > 0 and reverses its sign when
r < 0; whereas in the other semi-band (K ∈ [π(1 − 1/L), 2π]), it alternates
its sign. For an attractive potential it is the opposite. We also notice that
in both cases the wave function reaches its maximum value at r = 1 and
decreases with increasing r. This means that the two bound particles are
more probably located at nearest-neighbor sites. Obviously the wave func-
tion vanishes at r = 0, since the Pauli principle prevents double occupancy.
Finally, one can easily verify that the wave functions with alternating sign
corresponds to the bound states with Re(q) = ±π, while the wave functions
that reverse their sign only with a change in the sign of r correspond to the
bound states with Re(q) = 0.
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(a) Wave function for a repulsively bound pair
with K = 2π/L in the triplet state.
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(b) Wave function for a repulsively bound pair
with K = 2π in the triplet state.
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(c) Wave function for an attractively bound pair
with K = 2π/L in the triplet state.

-10 -5 5 10
r

- 15 000

- 10 000

- 5000

5000

10 000

15 000

ΧHrL

(d) Wave function for an attractively bound pair
with K = 2π in the triplet state.

Figure 5.4: Wave functions for a bound pair in the triplet state on a lattice with L = 25 sites. Red �gures
have been obtained for a repulsive potential with strength V = 3, whereas blue �gures have
been obtained for an attractive potential with strength V = −3.
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When V2 6= 0 and V1 = 0, the energy band is similar to that in the pre-
ceding case: there is at most one bound state for each permitted value of K
and it is located above or below the scattering band depending on whether
V2 is positive or negative. When both V1 and V2 have non-vanishing values, a
second bound state could appear for a �xed K. Let us examine some special
cases. Consider �st V1 = V2 ≡ V (referring to a chain with 15 sites). In
this case all bound states lie above the scattering band if V > 0 and below
if V < 0. When |V/t| is su�ciently small (. 0.5), there exists at most one
bound state for each K. As increasing |V |, a second bound state appears
at some points of the Brillouin zone, also if the �rst bound state has not
appeared everywhere. As |V | is enhanced, both the two family of bound
states repel from the scattering band and new bound states appear where
the discrete levels separate from the continnum band. When |V/t| ∼ 1 the
�rst set of bound state is complete and when |V/t| reaches the value ∼ 6,
also the second set is. In �gure 5.5, the energy is plotted for three di�erent
values of V , for a chain with L = 45 sites.
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(a) V/t = 0.5.
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(b) V/t = 2.
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(c) V/t = 6.

Figure 5.5: Energy band for the triplet state on a lattice with L = 45 sites and V1 = V2 ≡ V for increasing
potentials.

As one of the two interaction is varied respect to the other, the two discrete
levels separate (�g. 5.6).
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Figure 5.6: Energy band structure for a triplet state in the extended Hubbard model, with V1/t = 5 and
V2/t = 3. The number of lattice sites is L = 45.

When the two interactions have di�erent signs, the set of bound states as-
sociated with the positive interaction is located above the band and that
associated with the negative interaction is located below it (�g. 5.7).
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(a) V1/t = 3;V2/t = −5.
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(b) V1/t = −3;V2/t = 5.

Figure 5.7: Energy band for the triplet state on a lattice with L = 45 sites and V1 and V2 having opposite
signs.

In the thermodynamic limit, the number of bound states is the number of
roots of equation (3.61). In �gures 5.8 and 5.9 this cubic function has been
plotted for di�erent values of the interaction parameters. The bound states
are given by the zeros of the function, in the range |αK | < 1 (because we
have chosen α > 0). Thus, we can see that one or two solutions are possible.

A similar scenario arises for the singlet state when one of the three interac-
tions is zero.
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(a) Cubic function for the triplet state with V2/t = −2 and V1/t varying from 1 to 9.
Di�erent curves refer to di�erent values of V1 (setting t = 1).. In the range αK < 0,
the curve is lowered as the potential is enhanced.
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(b) Cubic function for the triplet state with V2/t = 2 and V1/t varying in a positive range. Di�erent
curves refer to di�erent values of V1. In the range αK > 0, the curve is lowered as the potential
decreases.

Figure 5.8: Cubic function for the triplet state in the thermodynamic limit, which determines the bound
state solutions. The function has been evaluated at the centre of the �rst Brillouin zone
(K = 0), with t = 1.
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Figure 5.9: Cubic function for the triplet state in the thermodynamic limit, which determines the bound
state solutions. The function has been evaluated at K = 2.5, with t = 1 and V2 = ±2.
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If all interactions are non-vanishing, a third set of bound states could appear.
When they are all positive, all bound states lie above the scattering band;
if they are all negative, all bound states lie below the scattering band. If
an interaction reverses its sign, a set of bound states is overturned. In �g-
ure 5.10 some examples are given. An interesting outcome is the scattering
states thickening aroung the ideal prosecution of bound state levels.
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(a) U/t = 3;V1/t = 2.5;V2/t = 2.
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(b) U/t = −2.5;V1/t = −1.8;V2/t = 2.5.
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(c) U/t = 2.5;V1/t = −1.8;V2/t = 2.5.
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(d) U/t = 2.5;V1/t = 4;V2/t = −4.

Figure 5.10: Energy band for the singlet state on a lattice with L = 65. Di�erent picture refer to di�erent
values of the interaction parameters U , V1, V2.

The number of bound states for the singlet state is equal to the number of
roots of equation (3.67). In �gure 5.11 the function has been plotted for a
case in which the maximum number of bound states appear.

5.2 Resonances

From our preceding results we observe that both in the triplet and in the
singlet state, the bound state level can merge into the scattering band. In
the thermodynamic limit, the two closest bound states to the scattering
band become degenerate with the scattering states and a resonance occurs.
As in Chapter 4, we can de�ne a generalized scattering phase shift δ and
a generalized scattering length alattices . As in the Hubbard model, the phase
shift depend on both the centre-of-mass and relative momenta and can be
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Figure 5.11: Function (3.67) for U = −3, V1 = 4, V2 = 1, K = 2.5. The zeros of the function in the range
αK ∈ [−1, 1] give the bound states solutions.

de�ned through the phase factor ei2δ, which is given by the ratio between the
coe�cients of the (generalized) Bethe ansatz

ei2δ(K,q) =
A2

A1

. (5.2)

Since A2/A1 is the ratio between two complex conjugate numbers, it can be
written as

A2

A1

= −x− iy

x+ iy
(5.3)

from which we get the phase shift

δ(K, q) = arctan
x

y
. (5.4)

Then we de�ne the scattering length at the edges of the continuum band in
the usual way

as = − lim
q→0,π

∂δ(K, q)

∂q
. (5.5)

Using equations (3.48) and (3.54) for the triplet state and the singlet state,
respectively, we get the following expressions

aAs =
2V1V2 ± JK(V1 + 4V2)

V1V2 ± JK(V1 + 2V2 ± JK)
(5.6)

aSs =
2V1V2 ± JK(V1 + 4V2)− 2J2

K
2V2±JK
U±2JK

V1V2 ± JK(V1 + 2V2 ± JK)− 2J2
K
V2±JK
U±2JK

(5.7)
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where we have labelled the triplet state with A (antisymmetric) and the sin-
glet state with S (symmetric), since we are referring to spatial wave functions.
The upper sign corresponds to the limit q → 0 and the lower sign to q → π.
A resonance occurs when the scattering length diverges. Hence, imposing the
denominator in (5.6) or in (5.7) to vanish, we get an equation whose solution
determines the centre-of-mass momentum at which the bound state crosses
the scattering band. For the triplet state it is a quadratic equation

J2
K ± (V1 + 2V2)JK + V1V2 = 0 (5.8)

which reduces to
JK = ∓gVg, g = 1, 2 (5.9)

if one of the two interactions is zero. This yields

KR = 2 arccos

(
∓gVg

2t

)
. (5.10)

Also for the singlet state we have a quadratic equation

[U + 2(V1 + V2)]J2
K ± (V1U + 2V2U + 2V1V2)JK + V1V2U = 0 (5.11)

which reduces to

JK = ∓gWg with Wg =
UVg

U + 2Vg
, g = 1, 2 (5.12)

if V1 or V2 vanishes; and the resonance occurs at

KR = 2 arccos

(
∓gWg

2t

)
; (5.13)

whereas, if U = 0, we have

JK = ∓W0 with W0 =
V1V2

V1 + V2

(5.14)

and

KR = 2 arccos

(
∓W0

2t

)
. (5.15)

We observe that in the discrete case, the resonant bound state is not degener-
ate with a scattering state. Instead, since the number of states is unchanged,
we could suggest that a scattering state transforms into a bound one which
has an energy close to the edge scattering band but not equal.
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In the thermodynamic limit, the energy of the bound state approaches that
of a scattering state and the scattering length diverges. However, from equa-
tions (3.63) and (5.9) we see that the wave function for a resonant bound
state - in the simpler case of a triplet state with V2 = 0 - has the following
form

χA(r)res = C sgn (r)(±1)|r|. (5.16)

It is no longer a decaying function, indicating that the pair is actually un-
bound.
Thus we have an ambiguity, since this phenomenon can be regarded as a
resonance because the scattering length diverges, but indeed it is not a reso-
nance because there aren't two degenerate energy levels.Hence we could more
appropriately de�ne it as a quasi -resonance.





Chapter 6

The role of resonances and future

perspectives

In this chapter we want to investigate the role of bound states and scattering
resonances in our model and their possible implications for both theoretical
and experimental physics. Thus, we provide an overview on recent activi-
ties about ultra-cold atoms [1] and discuss the fundamental role that bound
states and resonances play in this �eld. Then we try to give our work the
right collocation into this context.
In recent times the search for the existence of a bound state not only for
attractive interactions but also for repulsive interactions has drawn a lot of
attention in both theoretical and experimental �elds. The Hubbard model
admits repulsively bound pairs of particles also in one dimension. Current
studied in low dimensions are focusing on expansion dynamics of dimers of
two bosons [46, 8], which are simpler to deal with both theoretically (since
they don't obey the Pauli exclusion principle) and experimentally (since they
are generally easier to cool than fermions). However much progress is be-
ing made in handing fermionic atoms and the existence of stable fermionic
bound states [47] is really interesting since it is at the origin of the BCS-
BEC crossover [41, 48]. In particular, in one and also in two dimensions, the
existence of a s-wave bound state in the two-particle problem is a necessary
and su�cient condition for the instability of the non-interacting ground state
(�lled Fermi sea) in the many-particle problem [49], [48, Chap. 14]. Hence,
the study of the two-particle case, which is analytically soluble, allows to get
some hint about the non-integrable many-particle case.
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6.1 3D Feshbach resonance and BCS-BEC

crossover

An important feature of cold atomic vapour is that they can reach very low
densities. Consequently, the two-body interaction between atoms dominates,
and three- and higher-body interaction are negligible. Moreover, since the
atoms have low velocities, the scattering in these systems can be described
in terms of s-waves, as in our preceding discussion, and the only relevant
parameter is the scattering length.
In typical experiments with fermionic atoms, two species of fermions are
used. They are actually two hyper�ne states, but are often identi�ed as up
spin and down spin. One of the most important goal achieved with ultracold
atomic gases is the possibility to tune the interaction between the two species
of fermions. This can be obtained through the so-called Feshbach resonances
[50]. This phenomenon is based on the existence of internal states for the
scattering particles, described by a set of quantum numbers which generally
changes after the collision. A possible choice of quantum numbers is usually
referred to as a channel. At the temperature of interest for Bose-Einstein
condensation or super�uidity, the only relevant internal states are the hy-
per�ne states, since atoms are in their electronic ground states. Feshbach
resonances arise from coupling between channels: elastic scattering in one
channel can be altered dramatically if there is a low-energy bound state in a
second channel which is forbidden by some conservation rules and is called
�closed�. Feshbach resonances occur when the total energy of the two scat-
tering particle in an open channel matches the energy of a bound state in a
closed channel, causing a dramatic increase in the collision cross-section. In
the closed channel there are, by de�nition, no continuum states. However,
the two colliding particles can scatter to an intermediate state in a closed
channel, which subsequently decays in another open channel.
Feshbach resonances have become an important tool in investigations that
use cold atoms, because they can be controlled by an external magnetic �eld
B thanks to the di�erence in the magnetic moments in the closed and open
channels. In fact the scattering length depends on the energy E of the two
particles and on the magnetic �eld in the following way [41]

a3D
s ∼

C

E − Eres
∼ 1− ∆B

B −B0

(6.1)

where Eres is the energy of the bound state in the closed channel. Hence, since
the e�ective potential is proportional to the scattering length, one �nds that
coupling between channel gives rise to a repulsive interaction if E > Eres and
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an attractive one if E < Eres. The condition E = Eres, which determines
the scattering length divergence, can be obtained by setting the external
magnetic �eld B to B0. This is the threshold for bound state formation.
Then it exists in whole range a3D

s > 0, which means B < B0 (see �gure 6.1),
where the scattering length has the simple physical interpretation as the size
of the bound state, whose energy is given by

Eb = − 1

m(a3D
s )2

. (6.2)

E
r

Energy

(a) Feshbach resonance.

Eb
B0

as<0

BSC side

as>0

BEC side

B

as

(b) Scattering length.

Figure 6.1: In the left panel Feschbach resonance mechanism is described: when the energy E of the two
scattering particles in the open channel (violet line) matches that of a bound state in a closed
channel (blue line), a resonance occurs. The distance between the two curves can be altered
by a change in the external �eld B. In right panel the scattering length versus the magnetic
�eld is plotted (blue line); the violet curve represents the energy of the bound state.

This scattering length is related to scattering amplitude and to phase shift
through equations of the form (4.7) and (4.8), with as ≡ a3D

s .
At the threshold for bound state formation |a3D

s | → ∞, the phase shift
δ0(k = 0) = π/2 and the scattering amplitude f(k) ≈ −1/ik takes its maxi-
mum value.

An important implication of Feshbach resonance is that it can be used to
produce molecules consisting of two bound fermions and observe a crossover
between BCS and BEC states of the system. In the experiments to produce
molecules, one starts with a mixture of two species of fermions, in a magnetic
�eld of such a strength that the molecular state has an energy higher than
that of two atoms at rest in the open channel. Under these conditions, the
e�ective low-energy interaction between atoms is attractive and, away from
the resonance (Eres >> E), the attraction is weak. At su�ciently low tem-
peratures, this system undergo a transition to the BCS paired state, in which
pairs of atoms are correlated in space over distances large compared with the
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interatomic spacing. As the strength of the magnetic �eld is enhanced, the
energy of the molecular state is lowered and the interaction becomes more
attractive until a bound state forms. Then the scattering length changes its
sign and the interaction becomes repulsive. Hence the system behaves like a
gas of weakly interacting bosonic molecules that can undergo a Bose-Einstein
condensation [41, 4].

6.2 Two-particle scattering and con�nement-

induced resonances in quasi -1D systems

One dimensional systems can be experimentally realized by introducing tight
con�nement via optical lattices that remove two spatial degrees of freedom
[2]. Free-space scattering theory is no longer valid in such systems. This
led to the development of quantum scattering theory in low dimensions, in
which one assumes that atoms occupy only the ground state of the trans-
verse con�ning potential and the result is a one-dimensional free motion.
This assumption is justi�ed by the fact that for a su�ciently dilute gas
under strong con�nement, both the chemical potential and the thermal en-
ergy are less than the transverse level spacing. However the presence of the
additional structure of discrete levels provided by the con�ning waveguide
modi�es scattering processes via a mechanism similar to the 3D Feshbach
resonance. Indeed the direction of the free motion (say the z-axis) plays
the role of the open channel; whereas the transverse excited states can be
considered as the closed channels. When the total energy of two scattering
particles along the z-direction equals that of a transverse discrete level, a
resonance occurs - the so-called CIR (con�nement-induced resonance) - and
a bound state is formed.
Typically, to describe this phenomenon, the waveguide is modelled through
an axially symmetric 2D harmonic potential of a frequency ω⊥ in the x − y
plane and interaction between atoms is chosen to be the Huang's pseudopo-
tential [51, 52]

V (r) = gδ(r)
∂

δr
(r·), g =

2π~2a3D
s

µ
, (6.3)

with µ the reduces mass, but also other choices among �nite-range interaction
potentials are possible, such as the screened Coulomb potential [53], Lennard-
Jones potential or spherical square well [52]. Thus the Hamiltonian for the
two-body problem is

H = Hz +H⊥ + V (6.4)
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where

Hz = − ~2

2µ

∂2

∂z

H⊥ = − ~2

2µ

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ

)
+
µ

2
ω2
⊥ρ

2

(6.5)

with ρ2 = x2 + y2.
Using the pseudopotential, one can see that the 3D two-body scattering
problem in such a waveguide always exhibits one and only one bound state
[51]. Apart from it, all the scattering properties can be described by an
e�ective 1D delta potential g1Dδ(z), with

g1D =
2~2a3D

s

µa2
⊥

1

1− Ca3D
s /a⊥

= − ~2

µa1D
s

(6.6)

where a⊥ =
√

~/µω⊥ is the waveguide parameter and a1D
s is a generalized

one-dimensional scattering length

a1D
s = − a2

⊥
2a3D

s

(
1− Ca

3D
s

a⊥

)
(6.7)

de�ned through equation (4.9) [51]. Hence the condition for a CIR to appear
is a⊥ ≈ Ca3D

s , with C = 1.4603... (see also [54, 55, 56, 57]).
If Hg is the projection of the total 3D Hamiltonian on the ground state of
H⊥ and He is the projection on the excited states, the CIR condition can be
expressed as Eb,e = Ec,g, where Ec,g = ~ω⊥ is the threshold energy for Hg to
have a continuum spectrum and Eb,e is the energy of the bound state of He,
which exists for all values of a3D

s (see �gure 6.2). In conclusion, by changing
the waveguide parameter a⊥, experimentalists can lead the system through
a resonance and observe the appearance of a two-particle bound state.
In a many-body picture, the system can be modelled by the Gaudin-Yang
Hamiltonian

H = − ~2

2m

N∑
i=1

∂2

∂z2
i

+ g1D

∑
i<j

δ(zi − zj) (6.8)

remembering to take into account the existence of a bound state which in�u-
ences the scattering. This Hamiltonian contains all information one needs to
describe the BCS-BEC crossover in one dimension [58]. However, we under-
line that the presence of the con�ning potential is crucial to observe a bound
state with a repulsive interaction g1D > 0, since the two-body delta potential
g1Dδ(z) supports a bound state only if g1D < 0.
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Figure 6.2: CIR: a resonance occurs when the energy Eb,e (blue curve) of the transversally excited molecu-
lar bound state becomes degenerate with the energy Ec,g of particles in the incoming scattering
channel. The red curve is the bound state energy of the full Hamiltonian.

6.3 One-channel and two-channel Feshbach

physics on a 1D lattice

The Hubbard model can be viewed as the lattice version of the continuum
Gaudin-Yang model. As we have already seen, here a bound state appears
for both positive and negative interactions and its existence can be directly
attributed to the discreteness of the lattice. Quite generally, lattice models
have a richer physics than the continuum model they contains as limiting
case [5]. So the Hubbard Hamiltonian (1.21) reduces to the Gaudin-Yang
Hamiltonian (6.8) when the distance a between adjacent sites approaches
zero, for a �xed particle number N and system length L, i.e. n = Na/L� 1.
In this limit, we have the following relations between the parameters of the
two models [59]

m =
~2

2ta2
, g1D = Ua, γ = − U

2tn
. (6.9)

Thus the one-dimensional Hubbard model may be a possible candidate to
better understand the physics of the BCS-BEC crossover. Indeed its param-
eter U/t includes the periodic potential of the optical lattice. Consequently
it can be directly tuned by varying, for example, the intensity of the �eld
generated by the counter-propagating laser beams that produce the lattice
[3, 60, 61].
In our work, the �rst- and the second-neighbor interactions have been added
to the contact potential, providing a more complete description of the atom-
atom scattering.
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Figure 6.3: Scattering length of the triplet state with V2 = 0 versus V1/t. A resonance occurs when
V1 = ±JK and a bound state forms. For the plot, K = 0 has been set, so that JK = 2t.

Hence, our model is suitable to depict scattering processes and bound state
formation in optical lattices.
In the 3D Feshbach resonance one tunes the external magnetic �eld to bring
the system through a resonance. In the CIR, one tunes the waveguide pa-
rameter a⊥. In our model, one directly tunes the interaction parameters U/t,
V1/t and V2/t, by manipulating intensity and frequency of the laser beams.
In �gure (6.3) the scattering length is plotted in the simpler case of a triplet
state with V2 = 0 (see equation (5.6)). In the range V/t < 0 a resonance
occurs when the relative momentum q approaches the lower edge of the scat-
tering band in the K �rst Brillouin zone, i.e. q → 0; in the range V/t > 0 a
resonance occurs when q approaches the upper edge of the band, i.e. q → ±π.
Thus, a bound state doesn't exist for small |V/t|. When |V/t| > 2 cos (K/2),
a bound state appears. If the potential is further enhanced, the bound state
repels from the band and becomes stable since it lies in the energy gap be-
tween two bands and is prevented from dissociation.
But, how are these phenomena related to Feshbach resonance and CIR?
To answer this question, consider atoms with massm in a cubic optical lattice
potential

V (x) = V ⊥0 ER

(
sin2 (

πx

a
) + sin2 (

πy

a
)
)

+ V
‖

0 ER sin2 (
πz

a
) (6.10)

created by o�-resonant laser light. If we indicate with λL the laser wave-
length, the lattice period is a = λL/2 and ER = h2/2mλ2

L. For cubic lattices
the motion separates along the three spatial directions and the single-particle
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Hamiltonian

h = − ~2

2m
∇2 + V (x) (6.11)

can be identi�ed with that of equation (1.8). It is diagonalized by prod-
ucts of three Bloch functions. The energy eigenstates form a band structure,
with band gaps growing and band widths decreasing as the laser intensity
is increased. If the Fermi surface lies within a single conduction band, we
can ignore the coupling with the others. Moreover, if the lattice depth along
the transverse directions, V ⊥0 , is much larger than the depth along the lon-

gitudinal direction, V
‖

0 , we can assume that particles don't have enough en-
ergy to exceed the transverse level splitting and the motion is indeed one-
dimensional. If we use a second-quantized representation, the lattice poten-
tial is included into the one-body operator. Hence the parameter of the laser
enters the hopping parameter t. A two-body operator is needed to describe
atom-atom interaction. Usually a contact interaction is chosen and the sys-
tem is described by the Hubbard model. In our work we have taken into
account also longer range interactions. Since we use a discrete lattice model,
a bound state always exists and we don't need a CIR. However, since the
one-dimensional system is obtained through a con�nement, a CIR occurs if
a⊥/a

3D
s = 1.4603..., where a⊥ is related to transverse lattice depth through

the following relation

a⊥ =

√
2a

π(V ⊥0 )1/4
. (6.12)

Nevertheless this resonance may be avoided by not choosing the transverse
con�nement too tight.
In a Feshbach resonance scheme, our model can be considered as a one-
channel model, in which only the entrance open channel is considered. But
a two channel picture is also possible. In this case, the Feshbach resonance
can be included by adding a coupling Ṽ between the open channel and an
energetically closed channel. Thus we obtain two coupled equations for the
relative motion of an atom pair

Hop|Ψop〉+ Ṽ |Ψcl〉 = E|Ψop〉
Hcl|Ψcl〉+ Ṽ |Ψop〉 = E|Ψcl〉

(6.13)

where Hop is the Hamiltonian in the open channel, which coincides with the
Hamiltonian of our model, and Hcl is the Hamiltonian in the closed channel
[43].



Conclusions and outlooks

In this work, the one dimensional extended Hubbard model, with �rst- and
second-neighbor interactions has been studied, concentrating on the two-
particle problem, for which an exact analytical solution is possible. The
analysis has been conducted through the Bethe ansatz, which allows to ob-
tain all the eigenvalues and eigenfunctions of the Hamiltonian. This is of fun-
damental importance for the study of expansion dynamics of bound states,
which is of great interest in current physics. In our model, much attention
has been devoted to bound states and to resonances from which they arise.
Indeed the existence of stable two-body bound states plays a key role in a
many-body picture, such as in the BCS-BEC crossover. Since we have dealt
with fermionic particles, the spin internal degrees of freedom must have been
taken into account. Triplet state, with total spin S = 1, and singlet state,
with S = 0, have been decoupled and the problem has been studied sepa-
rately for the two cases. In the �rst case, two families of bound states have
been observed, for both attractive and repulsive interaction. In the second
case, also a third family of bound states appears. For some particular values
of the interactions parameters, these bound states can merge into the scat-
tering band. When this happens, a resonance occurs.
Our results could be experimentally veri�ed in optical lattices, where the
interaction parameters can be tuned.
Finally we would propose a further extent of this work. We observe that the
exact solution of the Hubbard model shows that fermions can bind in pairs,
but N -body bound state with N > 2 are generally forbidden [62]. However,
it has recently been shown that, if the two species of fermions have unequal
masses (and consequently unequal hopping parameters tσ), three-body bound
states exist and can have considerable e�ects on the many-body picture [48,
Chap. 14], [63, 64]. Hence, an interesting extent of this work may be the
introduction of a third particle in the extended Hubbard model to see under
what conditions a three-body bound state appears.
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Appendix A

Number of states

In each of the studied cases, the Bethe ansatz (or the modi�ed Bethe ansatz)
allows to �nd all the solutions of the problem. To calculate this number, we
consider all possible con�gurations for two particles on L sites. Two particles
can be sorted on L distinct sites in(

L
2

)
=

L!

(L− 2)!2!
=
L(L− 1)

2
(A.1)

di�erent combinations. Each particle has two spin degrees of freedom. Hence
each pair has four possible spin states, which are

(↑, ↑) (↑, ↓) (↓, ↑) (↓, ↓) (A.2)

or, equivalently, in terms of (S, Sz)

(0, 0) (1,−1) (1, 0) (1, 1). (A.3)

Consequently, the total number of states is

4

(
L
2

)
+ L = 2L2 − L (A.4)

where the adding L states take into account for the possibility that particles
lie on the same site with opposite spins. Among all states,

3

(
L
2

)
=
L(L− 1)

2
(A.5)

are triplet states (S = 1) and(
L
2

)
+ L =

L(L+ 1)

2
(A.6)

are singlet states (S = 0).
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