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Abstract

La catena XXZ di spin 1/2 con campo magnetico esterno alternato, nel caso
di campi abbastanza piccoli, può essere mappata in un modello di sine-Gordon
quantistico tramite bosonizzazione: ciò assicura la presenza di eccitazioni di
tipo solitone, antisolitone e breather. In particolare, l’azione del campo al-
ternato apre un gap, cos̀ı da rendere questi oggetti stabili contro fluttuazioni
energetiche. Nel presente lavoro, questo modello è studiato sia analiticamente
che numericamente. Inizialmente si svolgono calcoli analitici al fine di risol-
vere esattamente il modello tramite la tecnica di Bethe ansatz: si trova la
soluzione per il modello XX + h alternato prima mediante trasformazione di
Jordan-Wigner e poi con Bethe ansatz; si tenta successivamente di estendere
quest’ultimo approccio al modello XXZ + h alternato, senza però trovare una
soluzione esatta. Oltre a ciò, si calcolano le energie delle eccitazioni solitoniche
elementari tramite DMRG (Gruppo di Rinormalizzazione della Matrice Den-
sità) statico per diversi valori dei parametri nell’hamiltoniana. Si trova che i
breathers compaiono nella regione antiferromagnetica, mentre solitoni ed an-
tisolitoni sono presenti sia nella regione ferromagnetica che in quella antiferro-
magnetica. Si calcolano poi i loro valori di aspettazione della magnetizzazione
di singolo sito lungo l’asse z, per vedere come appaiano in spazio reale. Si
utilizza DMRG dipendente dal tempo per realizzare quenches sui parametri
dell’hamiltoniana, al fine di monitorare l’evoluzione temporale di queste ec-
citazioni. I risultati ottenuti rivelano la natura quantistica di questi oggetti
e forniscono informazioni riguardo le loro caratteristiche. Ulteriori studi sulle
loro proprietà potrebbero portare alla realizzazione di stati a due livelli tramite
una coppia solitone-antisolitone, al fine di implementare un bit quantistico.
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Introduction

The investigation of the behaviour of quantum many-body systems is a very
intriguing field of research: interactions in the quantum framework give rise
to new peculiar phenomena and pave the way for new technological applica-
tions. In particular, quantum effects become more relevant when the system is
confined in low dimensions: correlations between bodies are stronger and the
behaviour of the system may show interesting features. Technological research
is also moving in this direction: nanowires and nanodots, for example, promise
to bring great further advancements, thanks to their peculiar properties due
to quantum confinement.
However, this need for understanding quantum many-body systems has to face
the problem of their great complexity. For the study of certain problems, clas-
sical computers seem to be no more adequate, since they are not able to store
the huge amount of information these systems require. A possible solution
to this problem could be the quantum computer, that is thought to be able
to simulate quantum systems in a much more efficient way; in the last years,
quantum information and computation, based on quantum bits (or qubits),
have become two very hot fields of research.

This thesis work aims at localizing soliton excitations in a particular 1D
magnetic model, to investigate the possibility of a new very intriguing way to
realize a qubit on a solid-state environment through a soliton-antisoliton pair.
Because of the soliton features, it would experience a weak coupling with the
environment and hence would be less vulnerable to decoherence. This is an
excellent quality for quantum information conveyance.
Besides, the model considered in this thesis might be realized experimentally
by means of ultracold atoms. The spatial behaviour of quantum solitons has
not been studied in depth yet, so observing it in condensed matter-like systems
would be very interesting. The high-level of control and monitoring permitted
by ultracold atoms technologies would make this objective possible.

This thesis provides an analytical and a numerical study of the 1D 1/2-spin
XXZ model with staggered external magnetic field.
In the first chapter, an overview on classical solitons is given, with particular
emphasis on the classical 1D sine-Gordon model and its solutions.
The second chapter introduces the magnetic model and, then, presents how it
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may be mapped into the sine-Gordon model through the employment of the
bosonization technique. This approach assures the presence of solitons in the
magnetic model, but it is not particularly transparent in making contact with
the lattice model.
Thus, in the third chapter, efforts to solve the model analytically through
Bethe ansatz are explained. An interesting solution to the XX + h staggered
model is given, while the same method applied to the XXZ + h staggered one
fails.
Finally, the fourth chapter deals with the numerical study of the system
through the Density Matrix Renormalization Group (DMRG) technique. The
soliton excitation energies in the lowest part of the spectrum are pinpointed
within numerical precision. Then, the behaviour of their magnetization is
studied both in static and out of equilibrium conditions (by means of time-
dependent DMRG).
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Chapter 1

Solitary waves and solitons

Solitary waves and solitons are very peculiar physical phenomena that occur
when dealing with non linear dispersive models. They are of particular interest
both in pure and applied research and are employed in several fields such as
quantum optics and condensed matter physics for example.
For the present work, two different kinds of solitons of the sine-Gordon model
(namely the soliton and the antisoliton) will be used as the two states of a
qubit. The aim is to convey information along an atomic chain with very little
modification of the state of the qubit. Solitonic features are suitable for this
purpose, since these objects can travel without changes for long distances.

In this chapter, an overview on solitary waves and solitons will be pre-
sented.
The first paragraph summarizes shortly the history of the soliton’s discovery,
from its first observation in nature by J. S. Russell to the early attempts to
make it fit in the physical framework of the time.
The second paragraph is dedicated to the explanation of the concepts of soli-
tary wave and soliton in classical physics. Moreover, some important models
solved by solitons are presented.
The third paragraph presents in more detail the sine-Gordon model. It is of
great importance in this work because, as we will see in the next chapter, the
1-D XXZ model with staggered external magnetic field can be mapped into a
sine-Gordon model through bosonization.
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1.1 Brief history of the soliton

The soliton is a physical phenomenon that was first observed in nature but
was not previously predicted by any theory. Its first observation dates back
to August 1834, when a naval engineer, Sir J. Scott Russell, saw by chance a
strange kind of water wave travelling along a narrow channel: it was generated
by the movement of boats docked in the channel and, as far as a human eye can
tell, propagated without loosing its shape and with constant velocity. Russell
followed that wave down the channel for a couple of miles on horseback and
finally stopped and watched it go on without any appreciable energy dissipa-
tion. Here is what he wrote on his ”Report on waves”, a general review about
waves, where he first discussed what he had called the ”wave of translation”:

I was observing the motion of a boat which was rapidly drawn along a nar-
row channel by a pair of horses, when the boat suddenly stopped - not so the
mass of water in the channel which it had put in motion; it accumulated round
the prow of the vessel in a state of violent agitation, then suddenly leaving it
behind, rolled forward with great velocity, assuming the form of a large solitary
elevation, a rounded, smooth and well-defined heap of water, which continued
its course along the channel apparently without change of form or diminution
of speed. I followed it on horseback, and overtook it still rolling on at a rate
of some eight or nine miles an hour, preserving its original figure some thirty
feet long and a foot to a foot and a half in height. Its height gradually dimin-
ished, and after a chase of one or two miles I lost it in the windings of the
channel. Such, in the month of August 1834, was my first chance interview
with that singular and beautiful phenomenon which I have called the Wave of
Translation.

After this experience, Russell realized an experimental apparatus to repro-
duce the physical conditions for the generation of ”waves of translation”. He
studied their features, finally determining that:

• The waves are stable and can travel over very large distances

• Their speed and width are respectively function of the size of the wave
and the depth of the water

• Two or more different waves never merge

• If a wave is too big for the depth of the water, it splits into two of different
size

However, Russell’s wave of translation could not be described in terms of
Newton’s and Bernoulli’s theories of hydrodynamics; only in the last decades of
the 19th century a first mathematical description of the phenomenon appeared
in a paper published on ”Philosophical Magazine” by Lord Rayleigh (inspired
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by a previous work of J. Boussinesq).
Then, in 1895 D. Korteweg and G. de Vries published a paper where they wrote
down a non linear partial differential equation that was solved by a wave of
translation; this is the so-called KdV equation

du

dt
+
d3u

dx3
− 6u

du

dx
= 0 (1.1)

This is one of the most famous equations as regards soliton solutions.
In 1939 J. Frenkel and T. Kontorova found that another interesting model
showed soliton solutions: it was the so-called sine-Gordon model, whose equa-
tion is:

d2u

dt2
− d2u

dx2
+ sinu = 0 (1.2)

As we will see in one spatial dimension, this model has a rich variety of so-
lutions: one of them, the breather, is a bound state of two different solitons
and has a different behaviour in respect to the wave of translation observed
by Russell.

1.1.1 A curious example: solitons in the Sulu Sea

Before we start to study the mathematical aspects of the subject, it is inter-
esting to talk shortly about one manifestation of this peculiar phenomenon in
nature.
In the early 80’s travelling solitons have been individuated along the surface
of the Sulu Sea, between Philippines and Borneo. They propagated over 400
km at a speed of 9 km/h, spreading radially from their place of formation. It
is surprising to find them in such a huge environment, since Russell’s waves of
translation grew up in a narrow channel.
These waves tend to form near large submarine structures like a deep ocean
sill or a continental shelf, because in these zones there are disruptions to the
current flow. Some scholars believe a possible cause of this could be the tidal
current.

A snapshot of the initial phase of formation of these waves is given in Fig.
1.1: the island of Pearl Bank is visible in the bottom of the image and, from
this place, three different packets of solitons begin to move. Instead, Fig. 1.2
shows the propagation of one packet of solitons at a later stage, in a region of
60 km x 120 km.
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Figure 1.1: Early stage of formation of three different packets of solitons gen-
erated from Pearl Bank island (visible on the bottom right)

Figure 1.2: Solitons propagating over long distances from the islands of Banko-
ran and San Migel (on the bottom right): the image shows a portion of 60 km
x 120 km of the Sulu Sea.
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1.2 Definition of solitary wave and soliton

Progress in the mathematics and physics of waves of translation during the
20th century showed that Russell’s wave of translation is only a kind of a
more general class of phenomena called solitons. In particular, two different
but related classes of solutions of some specific non linear partial differential
equations have been identified: the solitary wave and the soliton.
To define them, we will move in a classical physical framework and employ
the energy density of the wave fields (solutions of differential field equations),
following Rajaraman’s dissertation in [5]. We are restricting ourselves to those
field equations that have an energy density which is some function of the fields:
ε(φ1, ..., φi, ..., φN , ~x, t).
Therefore, a solitary wave is a field solution that has the following features:

ε(~x, t) localized in space (1.3)

ε(~x, t) = ε(~x− ~vt) (1.4)

Condition 1.3 requires that the energy density should be finite in some finite
region of space and that it should go to zero at infinity fast enough to be
integrable. Its integral on the whole space yields the total energy of the system.
Condition 1.4 means that the wave should propagate undistorted in shape and
with constant speed. Note that any static localised solution is also a solitary
wave, since this condition becomes an identity at any time.
Instead, a soliton is a solitary wave that shows an additional very peculiar
feature: if two or more solitons start far apart and then collide in some region
of space and time, after collision at t → +∞ they will have energy densities
with same shapes and velocities as at t→ −∞; the only things that could be
changed by their interaction are their trajectories. In more formal terms, this
implies the following conditions for the total energy density of a system of N
solitons:

ε(~x, t)→
N∑
i=1

ε0(~x− ~ai − ~vit) for t → −∞

ε(~x, t)→
N∑
i=1

ε0(~x− ~ai − ~vit+ ~δi) for t → +∞

(1.5)

This is an amazing property, especially when it comes from non linear differ-
ential equations. The process of recreation of shape and velocity of the energy
density profile is quite complex, and it is related to compensation effects be-
tween dispersion and non-linearity of the field equations.
To clarify this point (at least qualitatively), we start from a particular case of
study: the model for a relativistic free wave field(

1

c2

∂2

∂t2
− ∂2

∂x2

)
φ(x, t) = 0 (1.6)
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which is both linear and dispersionless. Any solution of this model can be
written in the form

f(x− vt) =

∫
dk[a1(k) cos(kx− ωt) + a2(k) sin(kx− ωt)] (1.7)

So, all the plane wave components of any solution have the same velocity
ω/k = v, and there are no dispersion effects. Moreover, wave packets expe-
rience no distortion in shape while travelling, hence they are solitary waves.
Besides this, the wave equation is linear, therefore any linear combination of
solutions is also a solution. We can then prepare the system as a linear combi-
nation of separate solitary waves and let them collide at a certain time; after
scattering they will asymptotically tend to regain their original shapes and
speeds.
This model, being dispersionless and linear, offers the simplest example of soli-
tons. Nonetheless, as stated before, solitons usually emerge from non linear
dispersive wave equations, where the situation is not so simple. We will try to
explain qualitatively the mechanism of compensation through some consider-
ations on the KdV equation.
Let’s study first the dispersion effects getting rid of the non linear term

du

dt
+
d3u

dx3
= 0 (1.8)

Solutions to this equation are waves with a cubic dispersion relation ω = k3.
Their phase velocities (vp = ω/k) and their group velocities (vg = ∂ω/∂k) will
be different, so their plain wave components will travel with different speeds
and the shape of the wave packet will tend to change.
Let’s turn on the non-linear effects; omitting the dispersive term we have

du

dt
+ u

du

dx
= 0 (1.9)

Here all the solutions are fo the form u(x, t) = f(x − vt). Such a function is
characterized by the fact that the velocity of a point of constant displacement
v is equal to that displacement. So, portions of the wave undergoing greater
displacements move faster than those undergoing smaller displacements, and
the shape of the wave changes while travelling.
When these two effects exactly cancel each other, solitary waves and solitons
may appear, as shown in Fig. 1.3. However, note that the above discussion
refers to the existence of solitary waves, but says nothing about solitons and
what happens during collision.

As the mechanism behind the formation of solitary waves and solitons is
complex, it is hard to identify them: only a few equations are known to be
solved by these objects.
In any case, a soliton is much harder to find than a solitary wave. In fact,
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Figure 1.3: Qualitative representation of the compensation mechanism. Si-
multaneous modification of the wave packet due both to dispersion (top) and
non-linearity (bottom) can leave the packet unchanged, forming a solitary wave
or a soliton.
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to verify that a solitary wave is also a soliton one has to take infinitely many
time-dependent solutions consisting of an arbitrary number of solitons and
check that condition 1.5 is satisfied.

Despite these two physical objects are clearly different, in the scientific
literature they are often confused, and solitary waves are often called solitons
even if condition 1.5 has not been verified.

We stress that this discussion deals with classical field equations: in the
”quantum world” the definitions above have no meaning at all, so new argu-
ments would be necessary.

1.3 Solitons in the 1D sine-Gordon model

Among the known wave field equations that exhibit soliton solutions, the sine-
Gordon model is one of the most important and useful. It has been used in
the study of a wide range of phenomena: propagation of crystal dislocations,
of splay waves in membranes, of magnetic flux in Josephson lines, Bloch wall
motion in magnetic crystals and two-dimensional models of elementary parti-
cles.
For this work’s purposes, it assures the presence of soliton excitations in the
XXZ model with staggered external magnetic field. In fact, as we will see in
the next chapter, the latter model can be mapped into the sine-Gordon one
through bosonization.
As we are interested in one-dimensional systems, we will study the 1-D sine-
Gordon model; its Lagrangian density is

L(x, t) =
1

2
(∂µφ)(∂µφ) +

m4

λ

{
cos

[√
λ

m
φ

]
− 1

}
(1.10)

where the relativistic notation is employed (∂µ stands for space-time deriva-
tives ∂/∂xµ; xµ is the space-time coordinate vector).
It is interesting to note that, in the limit of very small coupling constant λ→ 0,
the Klein-Gordon equation is recovered.
The equation of motion can be obtained through the variational action prin-
ciple applied to the Lagrangian. It turns out to be

∂µ∂µφ+
m3

√
λ

sin

[√
λ

m
φ

]
= 0 (1.11)

The reason why this model is so-called is now clear: its Lagrangian’s form is
similar to the Klein-Gordon model’s one (they are equal in the limit of very
small interaction), but a sine function appears in the equation of motion from
the potential term.
The model can be brought in a clearer form by the substitutions x̃ = mx,
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t̃ = mt and φ̃ =
√
λ
m
φ; a simpler equation of motion appears:

∂2φ̃

∂t̃2
− ∂2φ̃

∂x̃2
+ sin φ̃ = 0 (1.12)

Two discrete symmetries can be easily found from the Lagrangian and equation
of motion’s invariances:

φ̃(x̃, t̃)→ −φ̃(x̃, t̃) (1.13)

φ̃(x̃, t̃)→ φ̃(x̃, t̃) + 2nπ, n ∈ Z (1.14)

We can start analysing this model looking for static localised solutions, the
simplest form of solitary waves. The integration of the equation of motion
yields two different solutions, which we call the soliton and the antisoliton
waves:

φ̃sol(x) = 4 arctan [exp(x̃− x̃0)] (1.15)

φ̃antisol(x) = −4 arctan [exp(x̃− x̃0)] = −φ̃sol(x) (1.16)

From Fig. 1.4 we can see that these fields are localised and their energy
densities are localised too, so they are solitary waves. Their masses are the
same and have the simple expression Msol = 8m3/λ.
If we are dealing with Galilean (or, in general, relativistic) invariance, a clever
trick can be used to put them into motion to verify whether they are solitons
or not: we transform the coordinate frame into a moving one, so that the
previous static wave becomes time-dependent (with u = v/c):

x̃− x̃0 →
x̃− x̃0 − ut̃√

1− u2
(1.17)

As stated in the previous paragraph, to prove they are solitons it is necessary
to find exact time-dependent solutions of the field equations, comprising an
arbitrary number of these objects under collision. It is not easy, and several
techniques have been developed in order to reach this purpose, such as the
inverse scattering method and the Backlund transformations for example. Here
we did not mention the way to obtain these solutions, but we limit to show
the results only. Two remarkable time-dependent solutions are the soliton-
antisoliton, soliton-soliton and antisoliton-antisoliton wave fields

φ̃SA(x̃, t̃) = 4 arctan

(
sinh(ut̃/

√
1− u2

u cosh(x̃/
√

1− u2

)
(1.18)

φ̃SS(x̃, t̃) = 4 arctan

(
u sinh(x̃/

√
1− u2

cosh(ut̃/
√

1− u2

)
(1.19)

and, for the symmetry 1.13

φ̃AA(x̃, t̃) = −φ̃SS(x̃, t̃) (1.20)
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Figure 1.4: a) the static soliton (eq. 1.15 in real space; b) the soliton-antisoliton
wave (eq. 1.18) at t → −∞, t = 0 and t → +∞; c) the soliton-soliton wave
(eq. 1.19) at t = 0

It is interesting to see what happens to one of these solutions, say the soliton-
antisoliton, in the limit of asymptotic behaviour

φ̃SA(x̃, t̃)→ φ̃sol

(
x̃+ u(t̃+ ∆/2)√

1− u2

)
+ φ̃antisol

(
x̃− u(t̃+ ∆/2)√

1− u2

)
t→ −∞

φ̃SA(x̃, t̃)→ φ̃sol

(
x̃+ u(t̃−∆/2)√

1− u2

)
+ φ̃antisol

(
x̃− u(t̃−∆/2)√

1− u2

)
t→ +∞

(1.21)

with

∆ ≡ 1− u2

u
lnu (1.22)

This gives a concrete example of what was said before on the nature of solitons:
initially φ̃SA is made up of a soliton and an antisoliton moving towards each
other; much after the collision, the scattering solution shows the same soliton-
antisoliton pair, with the same shapes and speeds. The only residual effect
due to the interaction appears as a time delay ∆. It is important to underline
that, as we took c = 1 and u = v/c, then u < 1 and, consequently

∆ < 0 (1.23)

It means that a soliton and an antisoliton in collision proceed faster than u,
the velocity they would have if they were not scattering. Hence, it seems like
they experience an attractive force and speed up in each other’s vicinity!
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This is a remarkable result, linked to the existence of another different kind
of soliton of the sine-Gordon model, namely the breather wave field. It is a
particular bound state of a soliton and an antisoliton, and it can be obtained
by putting a purely imaginary velocity u = iv into eq. 1.18; what comes out
is another real solution that has the form

φ̃breather(x̃, t̃) = 4 arctan

[
sin(vt̃/

√
1 + v2)

v cosh(x̃/
√

1 + v2)

]
(1.24)

Its form is very similar to the soliton-antisoliton one, but represents a com-
pletely different physical object. First of all, this is a periodic function with
period τ = (2π

√
1 + v2)/v. This means that the soliton and the antisoliton

oscillate about each other, remaining always close. It’s a totally different pic-
ture from that of a soliton and an antisoliton getting farther and farther from
each other after collision. Therefore, it is clear why this solution is called
”breather”: the shape of this wave stretches and shrinks periodically, remem-
bering the two phases of a breathe.
Note that this is a time-dependent solution even if we have not Lorentz-
transformed the reference frame yet. The two components move around the
point x̃ = 0 for every t̃. Hence, conditions for being a solitary wave are not
automatically satisfied. It is possible to prove that this solution has localized
and finite energy and that it is non-dispersive, but condition 1.4 does not hold
in this case. However, in the rest frame the field remains confined within a
definite static envelope, so we can think it as a soliton, although it does not
satisfy all the conditions established before. This fact underlines the difficulty
to find a definition that comprises all the possible cases of interest.

Let’s turn our attention on the other two solutions φSS and φAA. It is
possible to follow the same calculations as before and see that these wave
fields simplify into two solitons (or two antisolitons) far apart, just as happens
for φSA. However, what comes out is that the two solitons (or two antisolitons)
colliding are subjected to a sort of repulsive force, hence they cannot form a
bound state. If we put a purely imaginary speed in the expression for φ̃SS (or
φAA), the outcome is a complex function that cannot be admissible for a real
scalar field system (like the one we are considering). So, a breather cannot be
composed by two solitons or two antisolitons bound together.

Remembering definition 1.5, to prove that all these solitary waves are soli-
tons we have to consider the scattering of an arbitrary number of solitons, anti-
solitons and breathers: after collision, they all have to asymptotically maintain
their shapes and speeds. This demonstration can be carried out through the
inverse scattering method, as in the works of Ablowitz et al. (1973) and Fad-
deev and collaborators (1974 and 1975). For our purposes, it suffices to know
that this proof exists and that all the above wave fields behave as solitons.
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Chapter 2

Bosonization of the 1D 1/2-spin
XXZ + h staggered into the
quantum sine-Gordon model

Bosonization is a powerful technique that can be applied to any 1D fermionic
system with local hopping hamiltonian to map its particles into bosonic ones in
the limit of small interactions. Its first formulation worked well in one spatial
dimension only, but at a later stage efforts have been done to generalize it to
higher dimensions [7].
As we will see, the XXZ model can be mapped into a fermionic hamiltonian
through Jordan-Wigner transformation; so bosonization may be employed to
investigate the lowest part of the energy spectrum. After calculations, one
finds that the Jordan-Wigner spinless fermions of the XXZ model are con-
verted into bosonic particles obeying a sine-Gordon hamiltonian. Since this
latter model has soliton solutions, in some way the XXZ model would show
the same kind of excitations too.
This is an interesting result but, if we want to realize stable excitations, it
will not suffice. In fact, the XXZ model can be bosonized for values of the
anisotropy between the ferromagnetic and antiferromagnetic points; however,
in this region it is critical (i.e. gapless). Nonetheless, the addition of a stag-
gered field opens a finite gap between the ground state and all the excita-
tions. It can be shown that this model too can be mapped into a sine-Gordon
one through bosonization: it will exhibit the soliton, the antisoliton and the
breather in some region of space; this is exactly what we will be looking for in
the following.

In the first paragraph of this chapter the Jordan-Wigner transformation is
introduced and it is used to map the XXZ + h staggered model hamiltonian
into the corresponding fermionic one.
The second paragraph presents the foundations of bosonization, from the lat-
tice fermionic hamiltonian to the bosonic one and its continuum limit.

13



In the third paragraph bosonization is finally applied to the XXZ + h staggered
hamiltonian, to show how the connection to the sine-Gordon model emerges.
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2.1 From the spin to the fermionic picture:

the Jordan-Wigner transformation

The model this work deals with is the 1-D 1/2-spin XXZ with the addition of
a staggered external magnetic field. The hamiltonian is rather simple and has
the form

H = −J
N∑
i=1

{
Sxi S

x
i+1 + Syi S

y
i+1 + ∆Szi S

z
i+1

}
+ h

N∑
i=1

(−1)iSzi (2.1)

It is limited to nearest-neighbour interactions and the sums are over the N
sites of the chain. It is important to note that the field and the anisotropy
have the same direction along the z-axis: this is different from other more
studied models where the staggered field is orthogonal to the anisotropy, for
example the ones with Dzyaloshinskii-Moriya interaction.
An important feature of this hamiltonian is that it commutes with the total
z-spin operator

[H,Sztot] = 0 (2.2)

so that the total z-axis magnetization is a good conserved quantum number.
When the field is turned off, the 1/2-spin 1-D XXZ model is recovered. It has
been well studied, and it is known to have three different phases as a function
of J and ∆. When J∆ > 0 and |∆| > 1, all the spins tend to arrange on the
same direction and the phase is called ferromagnetic. On the contrary, when
J∆ < 0 and |∆| > 1 nearest-neighbour spins tend to have opposite direction
in order to minimize the total energy; this is the antiferromagnetic phase. In
both these regions excitations are gapped.
When J∆ 6= 0 and −1 < ∆ < 1 configurations in the x-y plane energetically
dominate those in the z-direction: this is the so-called critical region, since
here the model is gapless (excitations take place in a continuum of energies
without a gap). It is usually divided into two subregions: where J∆ > 0 the
phase is called ferromagnetic, while for J∆ < 0 it is antiferromagnetic. These
names mean that the spins tend to arrange more in one than in the other
configuration, but this preferable configuration can be achieved in the limit of
very strong coupling only. The distinction between these two subregions will
be very important later, because the quantum breather will be found only in
one of them.
Haldane’s conjecture assures the validity of bosonization on this model only
for parameter values within the critical region: hence, to obtain a gap it is
necessary to introduce a staggered external field.

Eq. 2.1 can be rewritten in a more convenient form using the ladder spin
operators

S+ = Sx + iSy

S− = Sx − iSy
(2.3)
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so that the hamiltonian becomes

H = −J
N∑
i=1

{1

2
[S+
i S
−
i+1 + S−i S

+
i+1] + ∆Szi S

z
i+1

}
+ h

N∑
i=1

(−1)iSzi (2.4)

Operators 2.3 simply flip the z-spin up (S+) or down (S−), giving zero if the
spin is already in the direction they want to bring it. Hence they correspond
to a sort of kinetic term, because they tend to move the spins along the chain.
The third is instead an interaction term, with the anisotropy quantifying the
coupling between the bodies in the system.
Finally, the field acts as a one-body operator, contrasting the movement of
spins and promoting their static behaviour.

It is now time to introduce the so-called Jordan-Wigner transformation, a
clever trick that works with 1/2-spin chains only and maps the spin operators
into spinless fermionic ones

S+
j =

[∏j−1
i=1 (1− 2ni)

]
cj

S−j =
[∏j−1

i=1 (1− 2ni)
]
c†j

Szj = 1
2

(1− 2nj)

(2.5)

The effect of this transformation is to map a spin up into an empty state and
a spin down into a particle. The operator in front of cj takes into account
the number of particles in the chain before the one to destroy (or create): it
simply adds a minus sign when the number of particles is odd, but gives the
identity operator in the even case. This is because spin operators commute,
while fermionic ones anticommute.
Applying eq.s 2.5 into the hamiltonian 2.4 we obtain

HJW =
N∑
j=1

{
− J

2

(
c†jcj+1 + c†j+1cj

)
− J∆

(
nj −

1

2

)(
nj+1 −

1

2

)
+

− h(−1)jnj

} (2.6)

This is a 1-D fermionic hamiltonian and so it can be bosonized. Note that the
conserved quantity has now become the number of particles, as [H,

∑
i ni] = 0.

To obtain the following form, however, we chose different boundary conditions
depending on the number of particles in the model: when N is odd, we have
periodic boundary conditions (c1 = cN+1), while when N is even we consider
antiperiodic boundary conditions (c1 = −cN+1).
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Figure 2.1: Dispersion relation for the XX model.

The choice of varying the boundary conditions depending on the number of
particles permits to use always the same hamiltonian form; however, as a
counterpart, it yields different quantization conditions (Fourier transforming
the operators in the boundary condition equation)

k =
2n+ 1

Na
π, n ∈ Z

k =
2n

Na
π, n ∈ Z

(2.7)

where a is the lattice constant. This choice is preferable since it is very useful
to keep the same hamiltonian form in the following calculations.

2.2 Overview of bosonization

Let’s consider first a free fermionic model, such the one obtained through
eq. 2.6 putting ∆, h = 0 (XX model). Particles do not interact and the
energy spectrum can be very easily computed, after Fourier transforming the
spinless fermionic operators. We avoid the straightforward calculations and
show directly the result for the energies

εk = −J cos k (2.8)

This dispersion relation is plotted in Fig. 2.1. When N particles are present,
the ground state is populated by objects with momenta |k| ≤ kF , with kF
Fermi momentum. This is the so-called non-interacting Fermi sea, from which
excitations may be stimulated.
Looking at Fig. 2.1 it is easy to see that, close to the Fermi momentum, there
are two nearly linear regions. In the very weak coupling limit (∆ << J),
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Figure 2.2: Dispersion relation for the linear dispersion model.

only the lowest energy states will be excited, so that particles will not move
much further from the Fermi momentum. It is thus reasonable to linearise the
spectrum around the two Fermi points (see Fig. 2.2), if interactions are low
enough. Moreover, it is possible to mimic the continuum limit by extending
the dispersion relation to infinity: this is the linear dispersion model and will
be useful to explain bosonization.
The linear dispersion model presents two branches, named ”left” and ”right”
because they refer to left and right-moving particles along the chain. We will
analyse first what happens in one of them, namely the right one; then, we will
extend the results to the other.

The first thing to define is how to span the Hilbert space of one branch of
the linear dispersion model. The vacuum state is, by definition, the Fermi sea:
it has all filled states for k ≤ kF (Fig. 2.3a).
The hamiltonian conserves the number of particles, so it is useful to partition
the Hilbert space with respect to it. However, because of the continuum limit,
the number of particles is always infinite. Thus it is helpful to take into account
the difference between the number of particles in a generic state and that in
the vacuum state by defining a new operator

N̂ =
∑
k

[
c†kck − 〈c

†
kck〉0

]
=
∑
k

: c†kck : (2.9)

where : − : is the normal-ordering operation, that moves all the annihilation
operators to the right and all the creation operators to the left.
Then, a sector of the Hilbert space is spanned by all the possible particle-hole
excitations on the corresponding N-particle ground state. This is illustrated
in Fig. 2.3b.
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Figure 2.3: Schematic representation of the right branch of the dispersion
relation a) in its vacuum state (Fermi sea) and b) for some particle-hole exci-
tations.

We now want to find a way to express these fermionic operators in terms
of other bosonic ones. The first step to do is the introduction of the density
fluctuation operator

ρq ≡
∑
k

c†k+qck (2.10)

that creates a particular kind of particle-hole excitations: it enhances each
particle momentum of q. The importance of this operator becomes evident
when its commutator is calculated; it yields

[ρ(p), ρ(q)] =
Lp

2π
δp,−q (2.11)

It resembles a bosonic commutation relation and leads us to define a bosonic
operator with the form

bq =

√
2π

Lq
ρ(−q), q > 0

b†q =

√
2π

Lq
ρ(q), q > 0

(2.12)

They both commute with the operator in eq. 2.9 and so conserve the number
of fermions. Moreover, it can easily be seen that

bq|N〉0 = 0, ∀ q, N (2.13)

and this proves that the N-particle ground state contains no bosonic particle-
hole excitations.
A relevant result, due to Haldane, proves that these bosonic operators span
completely every subspace of the Hilbert space with fixed number of particles.
So, a generic state with N fermions can be expressed as a function of b†q

|N〉 = f [{b†q}]|N〉0 (2.14)
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However, this does not suffice to substitute the action of the fermionic opera-
tors. bq and b†q cannot change the number of fermions of a state, while cq and
c†q can. Therefore, new operators have to be introduced: the so-called Klein
factors. Their action is to change the number of fermions by 1, leaving the
particle-hole excitations unchanged

F †|N〉 = f [{b†q}]|N + 1〉0
F |N〉 = f [{b†q}]|N − 1〉0

(2.15)

With both bosonic operators and Klein factors, it is finally possible to span
the whole Hilbert space as if we were using the previous fermionic operators.

The next step is then to employ these results in the continuum limit. Let’s
introduce new field operators associated to the fermionic ones

ψ(x) ≡ 1√
L

+∞∑
k=−∞

eikxck

ψ†(x) ≡ 1√
L

+∞∑
k=−∞

e−ikxc†k

(2.16)

The aim now is to find an expression of ψ(x) in terms of bosons, N̂ and Klein
factors.
Firstly, an interesting information comes from calculating the commutator
between the bosonic annihilation operator and fermionic field operator. In
fact, this result can be used to derive the following relation

[bq, ψ(x)] |N〉0 = bqψ(x)|N〉0 = αqψ(x)|N〉0 (2.17)

Therefore, ψ(x)|N〉0 is an eigenstate of bq, with eigenvalue αq (a function of
q and x both). This means that this state is a coherent state, so it can be
expressed in the usual form with an exponential operator acting on a vacuum
state. Since ψ(x)|N〉0 ∈ HN−1, after some calculations this state may be
expressed as

ψ(x)|N〉0 =
F√
L
ei

2πN̂x
L exp

{∑
q>0

αq(x)b†q

}
|N〉0 (2.18)

where the Klein lowering operator is introduced.
To generalize this result to an excited state |N〉, eq. 2.14 can be utilized.
Going on with the calculus, the expression of the fermionic field as a function
of bosons, N̂ and Klein factors is found

ψ(x)|N〉 =
F√
L
ei

2πN̂x
L exp

{∑
q>0

αq(x)b†q

}
exp

{
−
∑
q>0

α∗q(x)bq

}
|N〉 (2.19)
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Finally, bosonic field operators can also be introduced

ϕR(x) =
i√
L

∑
q>0

eiqx
√
q
e−

αq
2 bq

ϕ†R(x) = − i√
L

∑
q>0

e−iqx
√
q
e−

αq
2 b†q

(2.20)

and a combination of them turns out to be particularly useful

φR(x) = ϕR(x) + ϕ†R(x) =
i√
L

∑
q>0

1
√
q
e−

αq
2

[
eiqxbq − e−iqxb†q

]
(2.21)

Through this latter definition, a direct relation between fermionic and bosonic
fields can be found

ψR(x) =
F√
2πα

ei
2πN̂x
L exp

[
−i
√

2πφR(x)
]

(2.22)

We recall that all these results hold for the right-moving branch only. How-
ever, they can be easily extended to the left-moving one, taking into account
the fact that all the completely filled states correspond to k ≥ −kF , while the
empty ones to k < −kF . By doing this, one finally obtains a fermionic field
operator that is a combination of left and right-movers field operators

ψ(x) = eikF xψR(x) + e−ikF xψL(x) (2.23)

The same thing can be done for the bosonic fields; in particular, it is useful to
define even and odd combinations of φR and φL

φ(x) =
1√
2

(φL(x)− φR(x))

θ(x) =
1√
2

(φL(x) + φR(x))
(2.24)

and a canonical momentum field conjugate to φ

Π(x) = ∂xθ(x) (2.25)

Now that all the most relevant bosonization relations have been shown,
it is possible to apply them to the XXZ + h staggered model. This is next
paragraph’s issue.

2.3 Bosonization of the XXZ + h staggered

model

The magnetic hamiltonian in eq. 2.4 is made of three terms: one kinetic, an-
other of interactions between spins and the third of interaction of each spin
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with the external field. We will examine them separately and eventually re-
combine the results.

Let’s start with the free hamiltonian. Since there is no interaction, we will
consider the linear dispersion model and take into account the right-moving
branch only; the extension to the left one will be done at the end. In this model,
energies are linearly proportional to the momenta, so that the hamiltonian can
be written

HJ = vF
∑
k

k : c†kck : (2.26)

Calculating the commutator between HJ and b†q, one then finds

HJb
†
q|N,EN〉 = (EN + vF q)b

†
q|N,EN〉 (2.27)

It is easy to see that the action of b†q on a generic state simply adds a bosonic
quantum vF q to the total energy. Therefore, the only possible form for the
hamiltonian in terms of bosonic operators may be

HJ = vF
∑
q>0

qb†qbq + E0 (2.28)

As can be seen making all the calculations, E0 is inversely proportional to N ,
hence it goes to zero in the thermodynamic limit. Using the relations 2.16
one finally obtains an expression in terms of the fermionic fields. Adding the
left-moving branch contribution, it is

HJ = vF

∫ +∞

−∞
dx
[
: ψ†R(x)(−i∂x)ψR(x) : + : ψ†L(x)(i∂x)ψL(x) :

]
(2.29)

It turns out to be useful to express this hamiltonian through the boson fields
in eq.s 2.24 and 2.25

HJ =
vF
2

∫
dx
[
Π2 + (∂xφ)2

]
(2.30)

As regards the interaction with the external field, recalling the third equa-
tion in 2.5 we can write

Szj ≈: ψ†(x)ψ(x) : (2.31)

Using eq. 2.23 one can thus calculate an expression in terms of the right and
left-field operators

Szj ≈: ψ†RψR : + : ψ†LψL : +e−2ikF xψ†RψL + e2ikF xψ†LψR == ρ(x) + (−1)
x
aM(x)

(2.32)
Low-energy excitations happen close to the Fermi points, so it follows that
e−2ikF x = e−iπx = (−1)j. Moreover, two new operators have been introduced in
the second equation: the uniform and the staggered single-site magnetization
components

ρ(x) =: ψ†RψR : + : ψ†LψL : (2.33)
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M(x) =: ψ†RψL : + : ψ†LψR : (2.34)

Therefore the single-site magnetization operator has a smooth and a rapidly
oscillating part; the latter yields the so-called Umklapp terms, important for
the generation of the periodic potential typical of the sine-Gordon hamiltonian.
We now want to express the spin-spin interaction as a function of the fermionic
fields. Thus, using eq.s 2.32, 2.33 and 2.34 we find

SzjS
z
j+1 ≈: ρ(x)ρ(x+ a) : −M(x)M(x+ a) (2.35)

where the second term creates some Umklapp interactions. The density op-
erator play the role of a uniform single-site magnetization, while the other
corresponds to a staggered magnetization (it exists independently from the
external field). They can be expressed in terms of bosonic operators as

ρ(x) =
1√
π
∂xφ(x) (2.36)

M(x) ≈ − 1

πa
: sin

(√
4πφ(x)

)
: (2.37)

TheM(x)M(x+a) term in eq. 2.35 can be rewritten by expanding the operator
product, so that one finally finds

M(x)M(x+ a) ≈ − 1

(πa)2
cos
(√

16πφ(x)
)
− 1

π
(∂xφ)2 + const (2.38)

As we said before, for this model bosonization holds for |∆| < 1 only. In
this range of anisotropy, it turns out from renormalization group arguments
that the cosine term is irrelevant. This means that, to describe the low-energy
physics, we can neglect it and obtain a free bosonic hamiltonian (the so-called
Luttinger liquid).
The remaining hamiltonian can then be rewritten as

H =
u

2

∫
dx

[
KΠ2 +

1

K
(∂xφ)2

]
(2.39)

where K is the Luttinger parameter and u is the effective velocity. These two
quantities can be exactly predicted for the XXZ model using the Bethe ansatz
technique; they correspond to

K =
π

2 arccos(∆)
(2.40)

u = Ja
π

2

√
1−∆2

arccos(−∆)
(2.41)

The hamiltonian in eq. 2.39 can be led to the canonical form by the scaling
transformation

φ(x)→
√
Kφ(x), Π(x)→ 1√

K
Π(x) (2.42)
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All this work provides the bosonized hamiltonian for the XXZ model. The
staggered external field term can be elaborated in the same way as before
(calculations are simpler because it is a one-body operator); however, note
that the uniform and staggered components in 2.32 are exchanged in this case,
because of the effect of the staggered external field.
Working calculations out, one finally obtains

Hh ≈
h

πa
sin(
√

4πφ(x)) (2.43)

This term is relevant, on the contrary of the previous one due to spin-spin
interaction. Therefore, it provides a potential term of the sine-Gordon kind,
even in the critical region.

In conclusion, bosonization for the XXZ + h staggered model yields the
following hamiltonian

HB =

∫
dx

{
u

2

[
Π2 + (∂xφ)2

]
− h

πa
sin(
√

4πKφ)

}
(2.44)

It recalls the 1-D classical sine-Gordon model discussed in the previous chap-
ter, even if here it is intended in a quantum framework. Therefore, we have
just proved that there is a direct correspondence between this and the mag-
netic XXZ + h staggered model.
This means that, since there are soliton excitations in the quantum sine-
Gordon model (as confirmed by the exact solution in the field-theoretic frame-
work of the S-matrix), they will somehow have to be present in this magnetic
model too.

The aim of this work is then firstly to pinpoint the energies of these excita-
tions and then to understand how they behave in a condensed matter system.
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Chapter 3

Analytical study of the XXZ +
h staggered model

The XXZ model with staggered external magnetic field is in principle solvable
through Bethe Ansatz techniques, although it is not straightforward to under-
stand which ansatz should be adopted. However, such a solution would be of
great interest for this work’s purposes, since it would give information about
all the possible excitations and would tell whether they are bound states or
not. Thus, locating the breather would become very easy. Moreover, these
exact results would assist the numerical ones, helping in their interpretation.
All these reasons motivate the efforts done to solve the model through the
Bethe ansatz technique; unfortunately, as we will see, a complete solution is
found for the XX + h staggered model only. Despite we do not get the exact
solution in presence of z-spin interactions, the results obtained are useful any-
way to understand the basic physics behind the model.
The strategy adopted is the following: firstly, calculate the solution of the XX
+ h staggered model through a different technique (the Jordan-Wigner trans-
formation); using this result as a clue, find the correct ansatz that solves the
same model; finally, use an identical ansatz to solve the model in presence of
z-spin interactions. The idea that the ansatz should be the same for the XXZ
+ h staggered model comes from the fact that the same ansatz (the Bethe
ansatz) solves both the XX and the XXZ model, even in presence of a uniform
magnetic field. However, this initial assumption is probably wrong.

In this chapter, the first section is dedicated to the study of the XX +
h staggered model by means of Jordan-Wigner transformation. Energies and
eigenvalues are exactly calculated. Unfortunately, this technique cannot pro-
vide the solution of the XXZ model, but can help giving indications on the
form of its eigenstates.
In the second paragraph the same model is analysed through a Bethe ansatz
approach, obtaining the same results as before. Here we understand how to
use this technique in presence of a staggered field.
Finally, in the third section the XXZ + h staggered model is studied using the
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same ansatz as in the previous paragraph. Results and problems encountered
are illustrated.
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3.1 XX + h staggered model: Jordan-Wigner

transformation

The Jordan-Wigner transformation is a useful and clever mathematical tool
that maps a spin hamiltonian into a spinless fermionic one. We have already
used it when dealing with bosonization, hence we refer to that section for its
introduction and explanation.
Here the simplified XX + h staggered model is taken into account; its model
hamiltonian in the spin picture is

H = −J
2

N∑
i=1

[
S+
i S
−
i+1 + S−i S

+
i+1

]
+ h

N∑
i=1

(−1)iSzi (3.1)

where the upper S+ and ladder S− spin operators are introduced

S+ = Sx + iSy

S− = Sx − iSy
(3.2)

In this study we take into consideration only an even number of sites for
simplicity. To extend the calculations to the odd case, only slight changes
should appear.
As said before, this spin-hamiltonian can be mapped into a spinless fermionic
one through transformation 2.5. Neglecting constant energy terms, it looks

H = −J
2

N∑
i=1

[
c†ici+1 + c†i+1ci

]
− h

N∑
i=1

(−1)ic†ici (3.3)

where, in order to obtain the following expression, we have chosen periodic
boundary conditions when the number M of particles is odd (c1 = cN+1), an-
tiperiodic boundary conditions when M is even (c1 = −cN+1). This is because
we have to take into account the fact that fermion operators anticommute,
while spin operators commute. We stress the fact that the hamiltonian com-
mutes with the Sztot operator, hence the total spin along the z-axis (i.e. the
total particles number) is conserved.
Remembering the previous discussion in paragraph 2.1, this particular choice
of boundary conditions yields different quantization conditions for M even and
odd

k =
2n+ 1

Na
π, n ∈ Z

k =
2n

Na
π, n ∈ Z

(3.4)

where a is the lattice constant.
Eq. 3.3 is a free hamiltonian, so the spinless fermions do not interact with each
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other. The addition of the z-spin operators, instead, would bring a two-body
operator in the fermionic picture, so that interactions emerge. This fact makes
the process of diagonalization much harder, because a term with four different
operators appears; this is why we do not solve the XXZ + h staggered model
with this technique.
At this point, it is useful to move into the momentum space to underline
better the features of the model; therefore, the coordinate space operators can
be Fourier transformed as follows

cj =
1√
N

∑
k

eikjack

c†j =
1√
N

∑
k

e−ikjac†k

(3.5)

to get the hamiltonian

H =
∑

k∈[0, 2π
a

]

{
− J cos(ka)c†kck − h c†k+π

a
ck

}
(3.6)

The sum is over the first Brillouin zone and is of course restricted only to the
discrete values allowed by the quantization condition. Note that the action
of the staggered field is to introduce two operators that act on different mo-
menta. It is thus convenient to split the first Brillouin zone in half, so that the
hamiltonian can be written in the following form

H =
∑

k∈[0,π
a

]

{
− J cos(ka)[c†kck − c

†
k+π

a
ck+π

a
]− h[c†k+π

a
ck + c†kck+π

a
]
}

︸ ︷︷ ︸
Hk

(3.7)

The total hamiltonian is now divided into a sum of fixed-momentum hamilto-
nians; each of them can be written in a bilinear form, and the resulting matrix
hamiltonian Hk can be easily diagonalized. Its eigenvalues are the possible
energies of a particle with momentum k

E± = ±
√
J2 cos2(ka) + h2 (3.8)

There are two different energy bands in the split first Brillouin zone. They
are specular and the opening of a gap of the order of h can be seen. It is
important to note that the bands will not be filled by the spinless fermions
directly, but by a linear combination of them generated by new operators that
will be constructed in the following. Another important thing to note is that
the ground state of the model do not correspond to its vacuum state: the
lowest total energy is reached when the whole lower band is filled (it brings
always negative energy) and the upper band is completely empty.
Now let’s find the eigenstates related to the energies found above. To do this, a
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rotation on the spinless fermionic operators can be made so that new operators
appear

ηk = cos θkck + sin θkck+π
a

ηk+π
a

= − sin θkck + cos θkck+π
a

(3.9)

The expressions of the fermionic operators as a function of these new opera-
tors can now be put into the hamiltonian. Exact diagonalization is imposed
by choosing the correct value of the angle θk (so that non-diagonal elements
cancel); the result, without constant terms, is finally

H =
∑

k∈[0,π
a

]

[
E−η†kηk + E+η†k+π

a
ηk+π

a

]
(3.10)

with the angle

θk =
1

2
arctan

h

J cos(ka)
(3.11)

Therefore, the first of these operators creates a quasi-particle with energy in
the lower band; the other instead refers to the upper energy band.
All the eigenstates can in principle be built through these quasi-particle cre-
ation operators from the vacuum state (i.e. the state with all spin up). How-
ever, they do not give yet an explicit and clear expression in terms of fermionic
operators in the real space. So, we now look for a general form for the eigen-
states with fermionic operators in the lattice space.
We start with the ground state: as stated before, it corresponds to the state
with all the possible particles in the lower band and the completely empty
upper band

|GS〉 =
∏

k∈[0,π
a

]

η†k |0〉 (3.12)

When N is even, there will be M = N/2 particles; hence, the product is over
all the N/2 values of the momenta in the first split Brillouin zone. To shift
to the real space fermionic operators, we first substitute the operators in eq.
3.9 with the spinless fermionic ones in the momentum space and then Fourier
antitransform; the result is

|GS〉 =
M−1∏
n=0

 1√
N

N∑
jn=1

(cos θkn + (−1)jn−1 sin θkn
)
eikn(jn−1)a︸ ︷︷ ︸

α(jn,kn)

c†jn


 |0〉 =

=

(
1

N

)M
2
M−1∏
n=0

[
α(1, kn) c†1 + α(2, kn) c†2 + ... + α(N, kn) c†N

]
|0〉

(3.13)
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This is a linear combination of NM states, but many of them bring zero con-
tribution: in fact, any time a fermionic operator is repeated at least twice, it
gives zero because

(c†j)
2 = 0 (3.14)

Deleting these elements, N !
(N−M)!

states remain; however, they are not all or-
thogonal to all the others: there are several terms with the same fermionic op-
erators that are arranged in a different order (for example, c†jc

†
l c
†
k and c†l c

†
kc
†
j).

Hence, they refer to the same state and can be brought to normal form simply
by flipping the operators in agreement with the anticommutation relations. In
doing this, particular attention has to be paid to the eventual minus sign due
to an odd number of flips.
Finally, the number of independent states the ground state can be expressed
with is

N !

(N −M)!M !
=

(
N

M

)
(3.15)

that is the actual dimension of the basis used. Each of its states can be univo-
cally labelled by a ordered vector containing all the sites numbers the fermionic
operators refer to; it is then convenient to define the ensemble ζ containing all
the possible

(
N
M

)
combinations of these vectors, so that the ground state can

now be written as

|GS〉 =

(
1

N

)M
2 ∑
~x∈ζ

{ ∑
P (M)

α(~x(P (1)), k0) α(~x(P (2)), k1) ...

... α(~x(P (M)), kM−1) sgn(P )
}
c†~x(1)c

†
~x(2)...c

†
~x(M) |0〉

(3.16)

In this form, sgn(P ) takes into account the number of flips done.
The ground state may now be excited (by annihilating some quasi-particles in
the lower band and/or creating other quasi-particles in the upper one) and it
is interesting to ask how such a state looks like.
Say that there are in general m quasi-particles in the upper band and M −m
quasi-particles in the lower band. In this case, we do not have to choose all
the momenta in the first split Brillouin zone as for the ground state, but have
some arbitrariness. It is thus convenient to introduce two ensembles A and
B, containing all the momenta related respectively to the lower and the upper
band

A =
{
all the particles momenta k | k ≤ π

a

}
B =

{
all the particles momenta k | π

a
≤ K ≤ 2π

a

} (3.17)
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Therefore, a generic eigenstate is

|m,M −m〉 =
∏
K∈B

η†K
∏
k∈A

η†k |0〉 =

=

(
1

N

)m
2 ∏
K∈B

[ N∑
j=1

(
− sin θK + (−1)j−1 cos θK

)
eiK(j−1)a︸ ︷︷ ︸

β(j,K)

c†j

]
·

·
(

1

N

)M−m
2 ∏

k∈A

[ N∑
j=1

(
cos θk + (−1)j−1 sin θk

)
eik(j−1)a︸ ︷︷ ︸

α(j,k)

c†j

]
|0〉

(3.18)

Hence, for each excitation in the upper (lower) band a β (α) coefficient con-
tributes. Following the same reasoning as before, we then arrive to the general
form of an eigenstate in the XX + h staggered model

|m,M −m〉 =
( 1

N

)M
2
∑
~x∈ζ

{ ∑
P (M)

β(~x(P (1), B(1))) . . . β(~x(P (m), B(m)))

α(~x(P (m+ 1), A(1))) . . . α(~x(P (M), A(M −m)))

sgn(P )
}
c†~x(1)c

†
~x(2) . . . c

†
~x(M)|0〉

(3.19)

What remains to do is to return to the spin picture, so that we will be able to
compare these results with the ones deriving from the Bethe ansatz approach.
For this purpose we use the Jordan-Wigner anti-transformation

cj =
[∏j−1

i=1 (2S+
i S
−
i − 1)

]
S+
j

c†j =
[∏j−1

i=1 (2S+
i S
−
i − 1)

]
S−j

(3.20)

The fermionic vacuum corresponds to the ferromagnetic state with all spins
up-aligned. The effect of the operator c†~x(M) on this state consists in lowering

the ~x(M)-th spin and to leave all the others up; the operators before S−~x(M)

simply account of the number of spin down before the ~x(M)-th site, which
are all up, so it brings a 1. The same thing holds for the operators on the
other sites, since they are decreasingly ordered. From this follows that we can
express the eigenstates simply substituting the fermionic operators with the
spin ones

|m,M −m〉 =
( 1

N

)M
2
∑
~x∈ζ

{ ∑
P (M)

β(~x(P (1), B(1))) . . . β(~x(P (m), B(m)))

α(~x(P (m+ 1), A(1))) . . . α(~x(P (M), A(M −m)))

sgn(P )
}
S−~x(1)S

−
~x(2) . . . S

−
~x(M)|0〉

(3.21)
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All this analysis, as said before, is valid for the XX+h staggered model
only. However, it gives the taste of what happens when a staggered field is
applied: a gap opens up, the energy band is split into two different ones and
the first Brillouin zone can also be divided in two. The eigenvalues are built
as a linear combination of all possible states with a fixed number of spinless
fermions; coefficients depend not only on the momentum of each particle, but
also on the parity of the site under consideration.
These conclusions lead us to the calculation of the exact solution of the same
model investigated above through the Bethe ansatz method. In fact, the ansatz
will have to assume a form similar to the one in eq. 3.21. As we will see in the
next paragraph, this is true and the solution we arrive to with M = {0, 1, 2}
is the same as the one just calculated.

3.2 XX + h staggered model: Bethe Ansatz

approach

In this paragraph, the aim is to find a way to solve the XX + h staggered
model through the Bethe ansatz approach. As stated before, the usual Bethe
ansatz does not work and we will search a new form for the ansatz, taking
inspiration from eq. 3.21.
It is important to underline that this hamiltonian conserves the total spin
momentum along the z-axis, which is therefore a good quantum number and
the hamiltonian can be divided into blocks. Hence, we can study separately
sectors with fixed number of spin up and spin down. Here the number of spin
down will be labelled by M , while the number of spin up will be N −M , in
correspondence to what done before with the Jordan-Wigner transformation.

The sector M = 0 corresponds to the ferromagnetic state | ↑↑ . . . ↑〉, which
is evidently an eigenstate. It gives no kinetic contributions to the energy
and the effect of the staggered field brings zero energy, so the total energy is
E(M = 0) = 0.

As for the sector M = 1, it is easy to see that we cannot proceed with the
expansion in the plane waves basis (the usual Bethe ansatz) because of the
effect of the staggered field. In fact, the second part of the hamiltonian acts
in different ways on even and odd sites, so states with a spin down on an even
or an odd site will have different energies. This issue suggests to formulate a
more general form for the eigenstates, taking parity into account

|ψ〉 =
N∑
j=1
j odd

[
fD(j)S−j + fP (j + 1)S−j+1

]
| ↑↑ . . . ↑〉 (3.22)

Practically we are dividing the chain in subunits, each containing two neigh-
bouring sites. fD and fP are two different functions to be determined later;
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their form is defined by the usual Bethe Ansatz

fD(j) = AD e
ikj

fP (j + 1) = AP e
ik(j+1)

(3.23)

where we have now two different coefficients instead of a unique constant as
in the case of absent or uniform magnetic field.
The condition to be satisfied by |ψ〉 in order to be an eigenstate of H is

H|ψ〉 = E|ψ〉 (3.24)

Calculating the equation, projecting separately on states where the spin is
lowered respectively in a odd and in a even site and then using the ansatz
3.23, we finally obtain the system−

J
2
AP

[
1 + e−i2k

]
− AD(E − h)e−ik = 0

−J
2
AD

[
e−ik + eik

]
− AP (E + h) = 0

(3.25)

From the second equation in 3.25 follows

AD = −AP
E + h

J cos k
, cos k 6= 0 (3.26)

Thus, substituting it into the first equation in 3.25, we arrive to the equation
for the energies (valid for cos k = 0 also)

E = ±
√
J2 cos2 k + h2 (3.27)

These are the same two bands found with Jordan-Wigner calculations, but we
have no indication about the eigenstates they refer to; we expect however to
find something similar to what obtained through operators of eq. 3.9.
Therefore, next step is to determine the ansatz coefficients: from eq. 3.26 two
different equations can be obtained substituting the two values of energy in
eq. 3.27

AD
AP

= ±
√

1 +
h2

J2 cos2 k
− h

J cos k
(3.28)

where the upper sign refers to the lower energy band, the lower sign to the
upper energy band. Remembering definition 3.11 in the previous paragraph,
this equation can be written as follows

AD
AP

= − E + h

J cos k
=

= ±
√

1 + tan2 2θk − tan 2θk =

= ± | 1

cos 2θk
| − tan 2θk =

= ±cos θk ∓ sin θk
cos θk ± sin θk

(3.29)
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to express the relation between the coefficients of odd and even sites. These
two values refer to the two different energies, so there will be two different
types of eigenstates, corresponding to the states created by operators η†k and

η†k+π from Jordan-Wigner approach. Note that cos k > 0 −→ 2θk ∈ [0, π
2
[

and so cos 2θk > 0, while cos k < 0 −→ 2θk ∈] − π
2
, 0] and so cos 2θk < 0:

this justifies the elimination of the absolute value during calculations. The
remaining case, cos k = 0, can be evaluated separately from the system 3.25
and brings E = −h,AD = 0 for k = π

2
and E = +h,AP = 0 for k = 3

2
π,

coherently with the results obtained above.
Using this result, we can express the eigenstates leaving only one coefficient,
which can be computed imposing the normalization condition 〈ψ|ψ〉 = 1

|ψ−〉 =
AP

cos θk + sin θk

N∑
j=1
j odd

[
(cos θk − sin θk)e

ikjS−j +

+ (cos θk + sin θk)e
ik(j+1)S−j+1

]
| ↑↑ . . . ↑〉 =

=
1√
N

N∑
j=1

[
(cos θk + (−1)j sin θk)e

ikjS−j

]
| ↑↑ . . . ↑〉

(3.30)

|ψ+〉 =
AP

cos θk − sin θk

N∑
j=1
j odd

[
− (cos θk + sin θk)e

ikjS−j +

+ (cos θk − sin θk)e
ik(j+1)S−j+1

]
| ↑↑ . . . ↑〉 =

=
1√
N

N∑
j=1

[
(− sin θk + (−1)j cos θk)e

ikjS−j

]
| ↑↑ . . . ↑〉

(3.31)

Eq 3.30 expresses an eigenstate with energy in the lower band, while eq 3.31
refers to the upper band. The coefficients in front of the states are exactly
the same found with Jordan-Wigner calculations, although here we followed a
very different path.

Flipping two spins down, the sector M = 2 is reached. In this case the
situation is more complex, because we have to consider separately states with
both spins in odd sites, both in even sites or a spin in a odd and the other in
a even site; in fact, the hamiltonian acts differently in each of these states. A
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sufficiently general expression for the eigenstates is

|ψ〉 =
∑

1≤n1<n2<N
n1,n2 odd

{
fDD(n1, n2)|n1, n2〉 +

+ fPP (n1 + 1, n2 + 1)|n1 + 1, n2 + 1〉 +

+ fDP (n1, n2 + 1)|n1, n2 + 1〉
}

+

+
∑

1≤n1<n2<N−1
n1,n2 odd

{
fPD(n1 + 1, n2 + 2)|n1 + 1, n2 + 2〉

}
+

+
∑

1≤n<N
n odd

[
fDP (n, n+ 1)|n, n+ 1〉

]
+

+
∑

1≤n<N−1
n odd

[
fPD(n+ 1, n+ 2)|n+ 1, n+ 2〉

]

(3.32)

The last line contains states where down spins are on neighbouring sites, the
other two show all other possibilities. Note also that the second (fourth) sum
differs from the first (third) by only the fact that n2 6= N −1 (n 6= N −1); this
is necessary to avoid repetition of states due to periodic boundary conditions.
This form for the eigenstates permits an easier evaluation of the hamiltonian
operator effect, as we want the relation 3.24 to be valid. After calculations,
there are six different states to project on (let n1 and n2 be two odd values in
the ranges specified by the sums in 3.32):

1. |n1, n2〉 n2 > n1 + 2

2. |n1 + 1, n2 + 1〉 n2 > n1 + 2

3. |n1, n2 + 1〉 n2 > n1

4. |n1 + 1, n2 + 2〉 n2 > n1

5. |n1, n1 + 1〉

6. |n1 + 1, n1 + 2〉

Hence there are six different equations, from which energies and eigenstates can
be drawn. Now we use a modified Bethe Ansatz to express the four functions
multiplying the states in 3.32: we recall the results in 3.30 and 3.31 for M = 1
and write

fDD = 1
N
A12(1−)(2−)ei(k1n1+k2n2) + 1

N
A21(1−)(2−)ei(k1n2+k2n1)

fPP = 1
N
A12(1+)(2+)ei(k1n1+k2n2) + 1

N
A21(1+)(2+)ei(k1n2+k2n1)

fDP = 1
N
A12(1−)(2+)ei(k1n1+k2n2) + 1

N
A21(1+)(2−)ei(k1n2+k2n1)

fPD = 1
N
A12(1+)(2−)ei(k1n1+k2n2) + 1

N
A21(1−)(2+)ei(k1n2+k2n1)

(3.33)
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where (1−) stands for (cos θk1 − sin θk1), (2+) for (cos θk2 + sin θk2) and so on.
A12 and A21 are two complex numbers to be determined.
Energies can be computed by substituting these ansatzs into the equations
obtained projecting on the first four states showed above; the result is a set of
four equations, each of which can be split into two parts, multiplying respec-
tively ei(k1n1+k2n2) and ei(k1n2+k2n1). A general solution has to be valid for all n1

and n2, so the two parts are effectively two distinct (but equivalent) equations.
Finally a system of four equations emerges

−J
[
(1−)(2+) cos k2 + (1+)(2−) cos k1

]
− (E − 2h)(1−)(2−) = 0

−J
[
(1−)(2+) cos k1 + (1+)(2−) cos k2

]
− (E + 2h)(1+)(2+) = 0

−J
[
(1−)(2−) cos k2 + (1+)(2+) cos k1

]
− E(1−)(2+) = 0

−J
[
(1−)(2−) cos k1 + (1+)(2+) cos k2

]
− E(1+)(2−) = 0

(3.34)

There are four variables in four equations, so a relation for the energies can be
extracted

E4 − 2
(

2h2 + J2(cos2 k1 + cos2 k2)
)
E2 + J4(cos2 k1 − cos2 k2)2 = 0 (3.35)

Let’s define E2 = Ẽ so that, after some algebra

Ẽ1,2 = (J2 cos2 k1 + h2)︸ ︷︷ ︸
E2
k1

+ (J2 cos2 k2 + h2)︸ ︷︷ ︸
E2
k2

+

± 2
√
J2 cos2 k1 + h2

√
J2 cos2 k2 + h2︸ ︷︷ ︸

Ek1
Ek2

=

= (Ek1 ± Ek2)2

(3.36)

In conclusion, there are four energies for the system in the M = 2 sector:

E =

{
−(Ek1 ± Ek2)

+(Ek1 ± Ek2)
(3.37)

There are still two equations to be satisfied and they determine the ratio
between A12 and A21.
Subtracting the fifth equation from the third and the sixth equation from the
fourth (both for n2 = n1):{

fDD(n1, n1) + fPP (n1 + 1, n1 + 1) = 0

fDD(n1 + 1, n1 + 1) + fPP (n1, n1) = 0
(3.38)

Using the ansatzs 3.33 we finally reach the relation between the coefficients:

(A12 + A21) (1+)(2+)
[
1− ei2(k1+k2)

]
︸ ︷︷ ︸

6= 0 in general

= 0 =⇒ A12

A21

= −1 = eiπ (3.39)
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We do not proceed any further with the XX model. However, it is easy to
see that these results are in perfect agreement with the ones drawn through
Jordan-Wigner transformation for M = {0, 1, 2}. The next step is the study
of the XXZ model with the same technique used until now; in that case, the
presence of z-spin interactions will complicate the problem, so that a solution
cannot be found.

3.3 XXZ + h staggered model: Bethe Ansatz

approach

After all the work done before, it is now time to extend the analysis to the
XXZ + h staggered model; the anisotropy constant is defined as ∆, so that
the hamiltonian has the form

H = −J
N∑
i=1

{1

2
[S+
i S
−
i+1 + S−i S

+
i+1] + ∆Szi S

z
i+1

}
+ h

N∑
i=1

(−1)iSzi (3.40)

The addition of the z-spin interaction term does not change the commutation
relation [H,Sztot] = 0, hence the hamiltonian can still be divided into sec-
tors labelled by the number of down spins. However it adds another nearest-
neighbour interaction that supports parallel or antiparallel alignment of spins,
depending on the sign of ∆.

In the sectorM = 0 | ↑↑ . . . ↑〉 and | ↓↓↓ . . . ↓〉 are still eigenstates, but their
eigenvalues change because of the effect of interaction: E(M = 0) = −J∆N

4
.

In M = 1 we build an eigenstate as in 3.22, distinguishing between even
and odd. Calculations are identical to the ones for the XX model, except for
an adding contribution from

−J∆
N∑
i=1

Szi S
z
i+1|ψ〉 = −J∆

4
(N − 4)|ψ〉 (3.41)

So we compute eq 3.24 and then project on the two different states with the
down spin respectively on a odd or a even site. Using the modified Bethe
Ansatz of eq. 3.23 we obtain−

J
2
AP

[
1 + e−i2k

]
− AD

(
E − h+ J∆

4
(N − 4)

)
e−ik = 0

−J
2
AD

[
e−ik + eik

]
− AP

(
E + h+ J∆

4
(N − 4)

)
= 0

(3.42)

So the effect of anisotropy on the energy is a simple shift (dependent from
∆). Note that these equations become identical to 3.25 after defining E ′ =
E + J∆

4
(N − 4); therefore, energies are

E± = −J∆

4
(N − 4)±

√
J2 cos2 k + h2 = E∆ ± EXX (3.43)
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In the coefficients calculus, we use eq 3.26 with E ′ instead of E; however
E ′ = ±EXX so we obtain the same results of the XX model, which are recalled
here for clarity:

AD
AP

= ±cos θk ∓ sin θk
cos θk ± sin θk

(3.44)

|ψ−〉 =
1√
N

N∑
j=1

[
(cos θk + (−1)j sin θk)e

ikjS−j

]
| ↑↑ . . . ↑〉 (3.45)

|ψ+〉 =
1√
N

N∑
j=1

[
(− sin θk + (−1)j cos θk)e

ikjS−j

]
| ↑↑ . . . ↑〉 (3.46)

Let’s go on analysing the M = 2 sector. Evaluating H|ψ〉 = E|ψ〉 and then
projecting on all the possible states brings equations just slightly different from
the XX model ones: the only differences are energy renormalizations (as in
M = 1). In particular, the first four equations (for energies) can be recovered
by substituting E ′ = E + J∆

4
(N − 8), while the last two (for coefficients)

acquire the same form of the XX model ones through a little change E ′′ =
E + J∆

4
(N − 4).

So the energies of the XXZ + h staggered model are found to be

E =


−J∆

4
(N − 8)− (Ek1 ± Ek2)

−J∆
4

(N − 8) + (Ek1 ± Ek2)

(3.47)

As for the coefficients calculus, the same passages used before are applied; the
result is a set of two equations more complicated than for the XX model{

fDD(n1, n1) + fPP (n1 + 1, n1 + 1)− 2∆fDP (n1, n1 + 1) = 0

fDD(n1 + 2, n1 + 2) + fPP (n1 + 1, n1 + 1)− 2∆fPD(n1 + 1, n1 + 2) = 0

(3.48)
Applying the ansatz 3.33 and bringing the calculations further, we however
find no solution to this system. The problem is hidden in the modification
of the usual Bethe ansatz: in this study, it is necessary to use coefficients
depending on the momenta and the sites parity, instead of constants. So, the
two equations in 3.48 cannot be led neither to the same equation, nor to a
system with a solution.
Probably the initial idea of using the same ansatz on the XX +h staggered and
on the XXZ + h staggered models was wrong. The solution should perhaps
be found adopting a different ansatz, but it is hard to tell what its form has
to be like.
Therefore, no analytical solution is found for the XXZ + h staggered model: it
would have been very helpful in the continue of the study, but it is not strictly
necessary anyway. For the numerical study, there are some results from the
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investigation of the quantum sine-Gordon model through quantum field theory
arguments that provide enough information to locate where the lowest-energy
solitons and breathers are. These are the topics the next sections will deal
with.
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Chapter 4

Numerical simulations

Despite no useful information has come from the Bethe ansatz approach for
generic ∆, some interesting clues can be taken from previous studies of the
quantum sine-Gordon model through quantum field theories. For example,
Zamolodchikov and Lukyanov have been deeply studying this system and some
papers of theirs provide enough information to carry on this study numerically
[16] [17]. In particular, they found that the quantum sine-Gordon model has
only three kinds of elementary excitations: the quantum soliton, antisoliton
and breather. As a consequence, these objects should correspond to the lowest-
energy states in their spin sectors respectively.
The DMRG (Density Matrix Renormalization Group) numerical technique is
excellent in order to pinpoint the energies of these excitations, since it is a
variational method and gives quite accurate information about the lowest part
of the spectrum of a system. It is very suitable to simulate the behaviour
of spin chains and it has been broadly employed to achieve all the results in
the following: in the first part it is used in its static form to determine the
energies of the soliton excitations; in the final part of the work, instead, its
time-dependent form is exploited to realize quenches, to observe the out-of-
equilibrium behaviour of soliton and breather in different conditions.

The first paragraph gives an overview of some useful results from quantum
field theories about the sine-Gordon model.
The second paragraph deals with the DMRG test: in this stage the aim is
to find good working conditions (i.e. efficient compromise between maximum
number of states in the basis, amount of memory used, etc.); moreover, a study
on how to avoid finite-size effects is worked out.
The third paragraph illustrates the main results from static DMRG simula-
tions, such as the soliton energies for different values of the external field and
the study of their single-site magnetization along the z-axis.
In the fourth and final paragraph the out-of-equilibrium dynamics of the soliton
and the breather after a quench on the hamiltonian parameters is discussed.
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4.1 Results from quantum field theories

In the scientific literature there are some works on the quantum sine-Gordon
model: it is studied from the quantum field theory point of view, and provide
general information about energy spectrum, scaling exponents and correlators
in the model. The solutions are quantum fields, abstract objects that it is hard
to visualize physically at first glance.
In particular, A. Zamolodchikov has been able to predict theoretically some
of this system features, giving information about the solitons in the model
[16]. He found that the only elementary excitations in the model are particles
associated to the soliton, the antisoliton and the breather (a bound state of
the soliton and the antisoliton, as in the classical case). When these particles
collide, they should in principle maintain some of their properties after their
interaction, in correspondence with their classical counterparts.
These excitations are associated to a particular spin sector, and following the
cited works one finds that

• the soliton is in Sztot = 1

• the antisoliton is in Sztot = −1

• the breather is in Sztot = 0

As they are elementary excitations, they should be located in the lowest part
of the energy spectrum, with respect to the spin sector they refer to. Thus,
DMRG is a very efficient tool for this purpose: it is variational, so very suit-
able to explore the lowest part of excitation spectra; moreover, it gives the
possibility to investigate different spin sectors separately.
Therefore, recalling that in the critical region the ground state is always in
Sztot = 0, the breather will be the first excited state in this spin sector; instead,
the soliton and the antisoliton will be the lowest-energetic states respectively
in Sztot = 1 and Sztot = −1.

S. Lukyanov and A. Zamolodchikov found also how the elementary soliton
mass changes as a function of the external parameter in the sine-Gordon po-
tential [17] (the external field magnitude, in the case of the XXZ + h staggered
model). Translating their result into our magnetic model, we find

Msol ∝ h
1

2−K (4.1)

where K is the Luttinger parameter in eq. 2.40.
This law will be studied in the following sections, to test whether these pre-
dictions actually hold in our magnetic model or not. In fact, they are a good
way to verify if bosonization holds for the hamiltonian parameters chosen.
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4.2 DMRG test

Before starting to simulate a new hamiltonian, it is usually worthwhile to
spend some time upon a more well known system, similar to the new one,
that could provide useful information about how to perform efficiently the
numerical study. In this case, it is convenient to recover some results from the
XXZ model without staggered external field, so that suitable values for the
maximum number of states of the Hilbert space basis and for the amount of
memory needed could be found; some options to improve the results, such as
symmetries and block reflections, could also be tested.
The main source of approximation in the DMRG algorithm is the finiteness of
the number of basis states that can be considered: if only a restricted number
of eigenstates plays an important role in the physics of the system, than the
approximation will be excellent; on the other hand, if there are too many states
relevant, the truncation of some important basis states might bring to more
imprecise results and partial symmetry break. The XXZ model is critical in the
parameter range −1 < ∆ < 1 that interests this study, while the addition of
the staggered field makes the model gapped. The former is harder to simulate
than the latter, since its eigenvalues spectrum decays in a slower way; hence,
to have a faithful outcome, a larger number of basis states is necessary. If we
find a good number of states for the gapless model, it would probably work
for the gapped model too.

Above all of this, another crucial issue that must be taken into account is
the effect of the finiteness of the system. In fact, all the results from quantum
field theories are extracted in the thermodynamic limit (i.e. infinite number of
sites in the chain), so that the system behaviour is not affected by edge sites
and boundary conditions. It is important to sufficiently avoid finite-size effects
in order to compare the numerical outcomes to the analytical ones.
Moreover, the choice of the boundary condition for the hamiltonian deeply
influences what can be seen from the simulation: only the right one will show
the soliton solutions we are looking for in real space.

4.2.1 Test on the XXZ model

The XXZ model with periodic boundary conditions and in its critical region
is known to be described by a c = 1 conformal field theory (CFT), where c
is the so-called central charge and characterizes the universality class of the
model. From these theories, some relations between the energies and the size
of the system are exactly calculated; the aim of this section is to confirm these
predictions.

The first relation from CFT arguments involves the entropy and the size
of the system

S(N) ≈ c

3
log2N (4.2)
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(a) J = 1; ∆ = 0.5

(b) J = 1; ∆ = −0.5

Figure 4.1: Plot of the entropy as a function of the size of the system for a) the
ferromagnetic phase (J∆ > 0) and b) the antiferromagnetic phase (J∆ < 0).
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Simulations for chain length N ranging from 8 to 100 have been performed,
choosing to evaluate the first five excited states. The outcomes are plotted in
Fig. 4.1 for J = 1 and the two anisotropy values ∆ = ±0.5. The linear fit of
the outcomes gives quite exactly c = 1, confirming that the system simulated
is like the one described by the CFT.

Then, another relation from CFT quantifies how much the ground state
energy at finite size differs from the ground state energy in the thermodynamic
limit

eGS(N)− eLTGS = −π
6

cu

N2
(4.3)

where ”LT” stands for ”Thermodynamic limit”, the e functions are single-site
energies (E(N)

N
) and u is the so-called effective velocity, the parameter that can

be found in the quantum sine-Gordon model in eq. 2.44 and that is concerned
with the kinetic energy.
Recalling the results explained in the second chapter, eq. 2.41 provides theo-
retical values for the effective velocities from exact Bethe ansatz calculations.
Our numerical simulations are in great agreement with them, as can be seen
in Fig. 4.2; in both the cases under study, setting c = 1 the effective velocity
coincides within some units of 10−2

J∆ Numerical Analytical Difference

0.5 0,656 0,649 7 x 10−3

-0.5 1,328 1,299 2.9 x 10−2

The last equation taken from CFT involves the so-called scaling dimen-
sions : they are labelled as dnm, where m is linked to a conserved quantity
(the total z-spin in our magnetic model) and n is a positive integer number.
The scaling dimensions permit to divide the Hilbert space into sectors and to
classify the excited states within each of them; this is clearer looking at the
form these quantities are usually written in

dnm = n2K +
m2

4K
+ j + j′ (4.4)

where K is the Luttinger parameter expressed in eq. 2.40, j and j′ are positive
integer numbers.
When j = j′ = 0, the scaling dimension refers to the lowest-energetic state
within the nm sector. Then, successive excitations can be built by simply
adding positive integer values.
These quantities influence the gap between the ground state energies and their
respective excited state energies. In fact, the following relation holds

En − EGS =
2π

N
dnmv (4.5)

Scaling dimensions have been computed for J = 1, ∆ = ±0.5 for the first
four excited states in the sectors Sztot = m = 0, 1, 2. These results have been
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(a) J = 1; ∆ = 0.5

(b) J = 1; ∆ = −0.5

Figure 4.2: Plot of the single-site ground state energy as a function of the size
of the system for a) the ferromagnetic phase (J∆ > 0) and b) the antiferro-
magnetic phase (J∆ < 0).
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∆ = −0.5, ground state for m = 0, n = 1

∆ = −0.5, ground state for m = 1, n = 1

Figure 4.3: Plots of the excitation gaps vs squared reciprocal of the size, used
to calculate some of the results shown in tables 4.1 and 4.2.

obtained from linear fits of the data, as illustrated for some cases in Fig.s 4.3.
All the outcomes are summarized in tables 4.1 and 4.2, next to their respec-

tive theoretical values and the differences between them. They all agree with
the expected figures within 10−2: it is a proof of quite accurate simulations.
Probably, the error comes in part from finite-size effects, since the thermody-
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Sz = m classification (n-j-j’) Analytical Numerical Difference

0 1 - 0 - 0 0,75 0,73678 -0,01322
0 -1 - 0 - 0 0,75 0,76156 0,01156
0 0 - 1 - 0 1 0,99879 -0,00121
0 0 - 0 - 1 1 0,99792 -0,00208
1 0 - 0 - 0 0,33333 0,33330 -0,00003
1 -1 - 0 - 0 1,08333 1,08169 -0,00164
1 -1 - 0 - 0 1,08333 1,08167 -0,00166
1 0 - 1 - 0 1,33333 1,32946 -0,00387
1 0 - 0 - 1 1,33333 1,32850 -0,00483
2 0 - 0 - 0 1,33333 1,33021 -0,00312
2 1 - 0 - 0 2,08333 2,07603 -0,00729
2 -1 - 0 - 0 2,08333 2,07603 -0,00731
2 0 - 1 - 0 2,33333 2,31850 -0,01483
2 0 - 0 - 1 2,33333 2,31776 -0,01557

Table 4.1: Scaling dimensions for J = 1 and ∆ = −0.5.

Sz = m classification (n-j-j’) Analytical Numerical Difference

0 0 - 1 - 0 1 1,00187 0,00187
0 0 - 0 - 1 1 1,00119 0,00119
0 1 - 0 - 0 1,5 1,49984 -0,00016
0 -1 - 0 - 0 1,5 1,49984 -0,00016
1 0 - 0 - 0 0,16667 0,16668 0,00001
1 0 - 1 - 0 1,16667 1,16554 -0,00112
1 0 - 0 - 1 1,16667 1,16583 -0,00084
1 1 - 0 - 0 1,66667 1,66325 -0,00342
1 -1 - 0 - 0 1,66667 1,66218 -0,00448
2 0 - 0 - 0 0,66667 0,66534 -0,00132
2 0 - 1 - 0 1,66667 1,66031 -0,00635
2 0 - 0 - 1 1,66667 1,66045 -0,00621
2 1 - 0 - 0 2,16667 2,15503 -0,01163
2 -1 - 0 - 0 2,16667 2,15495 -0,01171

Table 4.2: Scaling dimensions for J = 1 and ∆ = 0.5.

namic limit may never be reached. These first simulations helped in finding
good working conditions: 400 maximum states for the Hilbert space basis, a
number of sites between 70 and 100 and an amount of memory of some Giga-
Bytes provide accurate simulations in a reasonable lapse of time (a few hours).
After having set these basic DMRG parameters, the study of the XXZ + h
staggered model was started.

49



4.2.2 Study of finite-size effects

Another issue that must be faced before starting the soliton research concerns
how the finiteness of the chain influences the results. As we are based on the-
oretical results taken at the thermodynamic limit, it is important to mimic
the same regime in the numerical simulations too. However, for different val-
ues of the parameters in the hamiltonian, finite-size effects may change from
negligible to relevant: the aim of this section is to show how to distinguish
these different situations and to explain the final choice of parameters for the
simulations done in the following.
For gapped models, it is known that the excitation energies e(N) depend on
the number of sites N : they grow up for increasing N , but finally stabilize
close to their thermodynamic limit values. What causes this dependence is of
course the finiteness of the system. However, if we get very close to the ther-
modynamic limit value (when N exceeds some units of the so-called correlation
length), we can think that finite-size effects are negligible and the behaviour
of the system is very similar to an infinite one.
Therefore, simulations have been worked out on the XXZ + h staggered model
to pinpoint the soliton masses for different sizes, fixing field and anisotropy val-
ues.
Firstly, J = 1 and ∆ = 0.3 were fixed; this corresponds to the ferromagnetic
region. The single-site energy vs the reciprocal of the system size was plotted
for different field magnitudes, namely h = {0.005, 0.01, 0.1} (see Fig.s 4.4
and 4.5). For the first two field values no stabilization around an asymptotic
figure is observed; hence, finite-size effects would not be negligible in these
regimes. Instead, for h = 0.1 the trend is found to stabilize starting from
around N = 50, as can be seen in Fig. 4.5. Thus, this field value is suitable
for future simulations when J = 1, ∆ = 0.3 and N ≥ 50 are taken.
Let’s see now if the same holds for the other phase region in J = 1 and
∆ = −0.3. Simulations have been worked out for h = 0.1 and the result
is shown in Fig. 4.6. For these parameter values also finite-size effects are
negligible, and the limitation on the size seems also less stringent then before
(N ≥ 30).
Therefore, the following parameters have been chosen to correctly look for
solitons in the model

J = 1 ∆ = ±0.3
N = 70 h = 0.1
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(a) h = 0.005

(b) h = 0.01

Figure 4.4: Plot of the soliton mass as a function of the size of the system for
J = 1, ∆ = 0.3 and a) h = 0.005 and b) h = 0.01. These field values are
too low to avoid finite-size effects, as no stabilization is seen for the highest
investigated values of N .
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Figure 4.5: Plot of the soliton mass as a function of the reciprocal of the size for
h = 0.1: a clear stabilization is found. Note that the trend is not monotonic,
but after the minimum the thermodynamic limit energy is expected to increase
very slightly.

Figure 4.6: For J = 1 and ∆ = −0.3 the trend is the same as in Fig. 4.5; here
stabilization begins even for smaller size values.
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4.3 Static DMRG simulations

Having found a set of parameter values so that finite-size effects are negligible,
we can carry out static simulations to locate the soliton energies and their
dependence on the magnitude of the staggered field; the outcomes would then
be comparable to the thermodynamic limit ones.
Static simulation means that, given the hamiltonian, eigenvalues and observ-
ables on the eigenstates are computed. Hence, the system is studied on the
equilibrium. This is different from what will be shown in the next section,
when the out-of-equilibrium behaviour of the system will be investigated.

4.3.1 Scaling exponents for the soliton mass

As stated before, arguments from CPT give a precise exponential relation
between the soliton mass and the magnitude of the field. For a low enough
value of h, the scaling exponent depends uniquely on the Luttinger parameter
K, which in turn depends uniquely on the anisotropy ∆.
If we put eq. 2.40 into eq. 4.1, we obtain the trend of the soliton mass as a
function of ∆

Msol ∝ h
1

2−K = h
2 arccos(∆)

4 arccos(∆)−π (4.6)

For ∆ ≈ 0.7 there is a singularity and the scaling exponent behaviour around
this value is hard to predict. We will stay away from that point, exploring
regions with ∆ = ±0.3. The reason for this choice is, beside the motivation
just shown, that for anisotropy values in module greater than 0.5 the theory
predicts the existence of more than one breather in the lowest part of the
excitation spectrum. Thus, to avoid complications, it is convenient to sit in
regions where there is only one bound state to characterize.

In this part of the work, it is proved that the predicted scaling exponents
are in very good agreement with DMRG numerical simulations for our previ-
ous choice of parameters in the hamiltonian. This means that arguments from
CPT on the quantum sine-Gordon model hold for this magnetic model too
(at least for the parameters considered here). This confirmation is important
because we will highly ground on these theoretical predictions in the following.
Simulations to compute the mass of the lowest-energetic soliton as a function
of the external field have been carried out. Quantum field theories applied to
the quantum sine-Gordon model tell that the soliton is the first excitation in
the spin sector Sz = 1; so, its mass is calculated as the difference between the
lowest-energy state in Sz = 1 and the ground state energy (in Sz = 0).
In order to avoid finite-size effects, only field values greater than or equal to
0.1 have been considered; of course, they have also to be low enough to be felt
as a perturbation on the system. Hence, field values in the range [0.1, 0.3] have
been chosen.
For ∆ = ±0.3, the relation between the soliton mass and the magnitude of the
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field is plotted in Fig 4.7. Non-linear fits have been realized through the GNU-
plot software: the results are in good agreement with the theory, showing a
scaling exponent minor (greater) than one in the antiferromagnetic (ferromag-
netic) region. The results are shown in table 4.3: they are in good agreement
with the ones predicted by the theory. Hence, we can consider the theoretical
analysis of the sine-Gordon model done by means of quantum field theory trust-
worthy. Basing on them, we can now start the study of the excitation masses.

∆ Theoretical Numerical Difference

-0,3 0,86024 0,82943 0,03081
0,3 1,31692 1,19279 0,12413

Table 4.3: Results for scaling exponents.

4.3.2 Soliton excitation energies and properties

In this part, the masses of the lowest-energetic soliton, antisoliton and breather
are computed for the choice of parameters specified before. These energy gaps
are calculated with respect to the ground state energy, that is always in the
Sz = 0 spin sector. Then, the lowest-energetic breather is the first excitation
in the same sector. Instead, the lowest-energetic soliton and antisoliton are the
lowest-energetic states respectively in Sz = 1 and Sz = −1; they are expected
to have the same mass, and to be put one into the other through an inversion
transformation of both the z-spins and the external field directions.
Moreover, the breather is expected to sit only in one of the two subregions of
the critical phase of the model.

Chains with N = 70 sites have been studied with J = 1, ∆ = ±0.3 and
external field values in the range h = [0.05, 0.2]. The DMRG technique is
able to divide the hamiltonian eigenvalue spectrum into sectors defined by a
conserved additive quantum number (such as the total z-spin): this is very
useful to search into separate sectors and discriminate between the soliton, the
antisoliton and the breather.
All the masses found are listed in tables 4.4 and 4.5. In particular, the exis-
tence of the breather can be evaluated by checking whether its energy is lower
than twice the soliton mass. In fact, since the breather is a sort of bound
state of a soliton and an antisoliton, it will have to lower the total energy of
its components.
This estimation is given in Fig.s 4.8 and 4.9 for the two anisotropy values
considered. As expected, it is found that only one of the two points exhibits
a breather excitation, namely the one corresponding to the antiferromagnetic
region. In the other one, the supposed breather has energy higher than twice
the soliton mass, so it cannot be the expected bound state; it simply is another
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(a) ∆ = −0.3

(b) ∆ = 0.3

Figure 4.7: Trend of the soliton mass as a function of the external field mag-
nitude for points in a) the antiferromagnetic region and b) the ferromagnetic
region. Non-linear fitting proves that this behaviour differs slightly from the
linear one, with exponents for the field expressed in table 4.3.
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h (Supposed) Breather mass Soliton mass 2 x soliton mass

0,05 0,0865895796 0,0237018598 0,0474037197
0,08 0,1027779887 0,0341455737 0,0682911474
0,1 0,1165264102 0,0434362661 0,0868725322
0,15 0,161532279 0,070656957 0,141313914
0,2 0,2156242996 0,0990512847 0,1981025694

Table 4.4: Lowest-energetic soliton excitation masses for different field magni-
tudes at ∆ = 0.3.

h Breather mass Soliton mass 2 x soliton mass

0,05 0,1937240109 0,1016224222 0,2032448443
0,08 0,2773075485 0,1507700998 0,3015401995
0,1 0,3326459197 0,1807372401 0,3614744802
0,15 0,4676354734 0,2563462611 0,5126925222
0,2 0,5961000915 0,326191106 0,652382212

Table 4.5: Lowest-energetic soliton excitation masses for different field magni-
tudes at ∆ = −0.3.

kind of excited state not interesting for this thesis purposes.
In Fig. 4.9, however, the breather mass is only slightly lower than the sum
of its components masses, so that one could object that there could be uncer-
tainty due to errors. As for numerical errors, DMRG provides a truncation
error, calculated as the sum of all the eigenvalues thrown away during the
approximation process; it is usually of the order of 10−8. Then, it is hard to
predict an error on the energies, but it is usually considered that this error is
proportional to the truncation one. Since, the truncation error is very much
lower than the difference between the masses under consideration, we can re-
tain that the numerical error is negligible.
On the other hand, however, finite-size effects affect the calculation when the
field is too low. Probably, this is why the two calculated masses are very close
together for h = 0.05. Nonetheless, if we take a high enough field magnitude
(such as h = 0.1), there are no problems in identifying the breather existence.
These results give a very interesting possibility to realize an entangled state of

a soliton and an antisoliton: one can prepare a stable breather in the antiferro-
magnetic region and then realize a quench to shift into the ferromagnetic one.
In the latter region, the breather is no more an eigenstate and then should
split into a soliton-antisoliton pair. They would probably be entangled and
this system might be a suitable candidate for a two-qubit state realization.

In this case, however, it is necessary to check whether the breather mass
in the antiferromagnetic region is greater than twice the soliton mass in the
ferromagnetic region. This is important because, after the quench, we would
like the soliton and the antisoliton to have non-zero kinetic energy, so that
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Figure 4.8: Supposed breather mass vs twice the soliton mass for J = 1 and
∆ = 0.3 (ferromagnetic region). In this case the breather is not present, as its
mass should be higher than the sum of its components masses.

Figure 4.9: Breather mass vs twice the soliton mass for ∆ = −0.3. Here the
breather exists for all the field values examined, at least higher than 0.05.
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Figure 4.10: Breather mass in the AFM region vs twice the soliton mass in
the FM region. .

they could move along the chain.
This condition widely holds for all the field values considered, as can be seen in
Fig. 4.10. Note that it is a necessary but not sufficient condition, since before
and after the quench the total system energy changes. These results however
keep the door open to this opportunity, to be exploited after the breather and
soliton spatial behaviours will be understood better.

Before investigating the time-evolution of the system after a quench, it is
fundamental to determine how to monitor and characterize the soliton and the
breather through observables.
One and two-point operators are usually employed for this purpose. In this
case, they are the single-site magnetization along the z-axis (Ŝzj ) and the cor-

relators for the magnetization along the z-axis (Ŝzj Ŝ
z
k) and for the x-y plane

(Ŝ+
j Ŝ
−
k ).

When translational invariance is present, the application of one-point opera-
tors on each site gives a flat response: in fact, a measure on one site must yield
the same result as a measure taken after translating of an arbitrary multiple
of twice the lattice constant.
As a consequence, the use of periodic boundary conditions on the chain gives
no direct information about the behaviour in space of soliton excitations. A
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Figure 4.11: Single-site z-magnetization on each site for the soliton with peri-
odic boundary conditions. The two curves are almost flat because of transla-
tional invariance of two lattice constants.

plot of the single-site z-magnetization for the soliton is shown in Fig. 4.11: as
expected, the trend is nearly flat. Moreover, the presence of the two ”bands”
derives from the fact that there is translational invariance of two lattice con-
stants (and not only one).

Two-point correlators with periodic boundary conditions may still bring
information, but it is convenient to change the point of view and employ open
boundary conditions. This choice involves no translational symmetry and high-
lights in some way the structure of the soliton excitations in space.
The soliton properties have been studied for ∆ = 0.3 (since it is the value
after the quench, when the soliton and the antisoliton should propagate). The
single-site z-magnetization behaves as plotted in Fig. 4.12 for N = 70 sites. It
can be immediately seen that the two ”bands” are different in shape; however,
it is not straightforward how to extrapolate information from them.
In order to do this, recall eq. 2.32 derived while dealing with bosonization of
the magnetic model into the sine-Gordon one. The single-site magnetization
has two components: one uniform and slowly varying, the other staggered, i.e.
rapidly oscillating.
In particular, from eq. 2.36 the uniform component is proportional to the spa-
tial derivative of the field solution, so it is expected to bring information about
the soliton shape. In fact, the latter is classically a bump on a flat background,
and if the quantum soliton is linked to the classical one, it is interesting to ob-
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Figure 4.12: Single-site z-magnetization on each site for the soliton with open
boundary conditions for ∆ = 0.3 and h = 0.1. In this case, the two plots are
not trivial and contain some interesting physical information.

serve whether this feature already holds or not.
The staggered component is also interesting: from eq. 2.37 it is proportional
to the function sin(βφ), so it depends from the field solution too.
These two components are computed through a simple trick: the z-magnetization
on the j-th site and on its nearest-neighbour can be written

Szj ≈ ρ(x) + (−1)
x
aM(x)

Szj+1 ≈ ρ(x+ dx)− (−1)
x
aM(x+ dx) ≈ ρ(x)− (−1)

x
aM(x)

(4.7)

where, in the last equation, we have expanded in series and then truncated
both ρ(x) and M(x), supposing they are smooth functions.
Expressions for the uniform and the staggered components can be easily cal-
culated by inverting eq. 4.7. One finally obtains

ρ(x) ≈
Szj + Szj+1

2

M(x) ≈ (−1)j
Szj − Szj+1

2

(4.8)

These two components are plotted in Fig. 4.13 for the soliton with ∆ = 0.3
and h = 0.1. The uniform part is a sort of bump, but it is all the chain broad;
its shape is peculiar and has an orientation towards the right.
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It is interesting to see how the bump modifies as the hamiltonian parameters
are changed. Simulations have been carried out for the opposite field value
h = −0.1 and for a longer chain (N = 120); the outcomes are respectively
shown in Fig.s 4.14 and 4.15. As for the former case, the bump seems the
one in Fig. 4.13a after a reflection along an axis orthogonal to the chain. This
is due to the staggered field, that gives a preferred orientation on the right or
the left, depending on the field direction on even and odd sites. Instead, as
for the longer chain case, the bump is seen to reduce in height and broaden to
the whole spatial length.
Since the bump changes orientation depending on the sign of the external field,
the h = 0 has been studied also (Fig. 4.16) to see a sort of transition point
from the two different situations. As expected, the plot is symmetric.
However it seems that, for a very high external field value, the bump should
be squashed to one edge of the chain. The result of the simulation for h = 10
is plotted in Fig. 4.17 and rejects this expected behaviour: it suggests that the
physics behind this phenomenon is less intuitive than it may seem at a first
glance.
Simulations for the antisoliton have been also realized: they all confirm that
it behaves exactly as the soliton with z-spin and field directions inverted, as
can be seen from the uniform magnetization plot in Fig. 4.18.

Instead, a different behaviour belongs to the breather. This state shows
a peculiar pattern for the uniform magnetization: there are two different and
separated curves in the plot, one corresponding to j odd and the other to j
even, if we consider eq. 4.8.
This state has been studied for h = 0.1 and h = 0.2 to see how the shapes
modify. The outcomes are illustrated in Fig. 4.19: as a result, increasing the
field magnitude yields more linearized curves, but this is hard to interpret.
Simulations with much more basis states have been also carried out, to check
whether numerical error might have affected the outcomes; z-magnetization
plots are exactly the same as before, assuring their numerical correctness.
However, in deriving eq.s 4.8, it was assumed that ρ(x) and M(x) were smooth
functions. As can be seen from the plots, this hypothesis is valid for the soli-
ton, but it is not straightforward that it holds for the breather too. In this
case, in fact, they do not vary so slowly as for the soliton.
In any case, the plot in Fig. 4.19 shows interesting features and may have a
physical meaning. The two curves seem to mimic one soliton and one anti-
soliton bump partially overlapping. However, these are only qualitative con-
siderations, and only further studies will bring better understanding of these
results.
To shed more light on these problems, the soliton and breather time-evolutions
have been monitored after quenches on the hamiltonian parameters. As we will
see, this takes all the final part of this work.

61



Uniform component

Staggered component

Figure 4.13: Uniform (a) and staggered (b) components of the single-site z-
magnetization of the soliton represented in Fig. 4.12.
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Figure 4.14: Uniform magnetization for an external field with opposite direc-
tion than in Fig. 4.13a (h = −0.1).

Figure 4.15: Uniform magnetization for a much longer chain (N = 120).
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Figure 4.16: Uniform magnetization for the soliton in absence of external field.
As expected, the plot is symmetric.

Figure 4.17: Uniform magnetization for the soliton for a very high field magni-
tude. On the contrary to what expected, the bump becomes nearly symmetric.
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Figure 4.18: Uniform magnetization for the antisoliton with h = 0.1. The
shape is the same as the soliton one after symmetry transformation.
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Figure 4.19: Uniform z-magnetization of the breather for a) h = 0.1 and b)
h = 0.2. In both cases, two different curves are evident: one belongs to sites
where j in eq. 4.8 is odd, the other to j even.
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4.4 Time-evolution after a quench

In contrast to the early plans, it is not straightforward to predict how the
breather might behave after a quench on the anisotropy; it is also hard to
understand the structure of a quantum soliton: since it is a quantum object,
it could be spread in the real space and not easy to see in its single-site mag-
netization or two-points correlators. The aim of this final section is to shed
more light upon the quantum soliton behaviour and its aspect in real space.

The study is here carried out through time-dependent DMRG, a means
that permits to prepare the system in one of its eigenstates and, then, make it
evolve in time for a short lapse. The time-evolution of an eigenstate is trivial,
but this tool gives the possibility to put the system out of equilibrium changing
one or more parameters in the hamiltonian and then make it evolve following
the laws of quantum mechanics.

Realizing a soliton state and then quenching the hamiltonian is a useful
method to investigate in more detail the properties of this physical object. Two
different kind of quenches have been realised, changing the external field mag-
nitude or the anisotropy value. As for the first, the single-site z-magnetization
behaviour has been observed for a sudden shift from h = 0.2 to h = −0.1 and
vice versa (for ∆ = 0.3). The magnetization plot oscillates in time, as can be
observed in Fig. 4.20. Moreover, the displacement between the magnetization
at different sites remains constant during the time-evolution (Fig. 4.21).
Despite this, the uniform component always retains its shape and do not move
(Fig. 4.22, while it should be reasonable to think that it should shift towards
the other side of the chain, because of the change in sign of the field. As a
consequence, it is the staggered part that moves: it substantially do not change
its shape, but only shifts up or down (Fig. 4.23).
A quench from h = 0.1 to h = 0.15 has been also done (maintaining the field
sign), and the physics is qualitatively the same.

As for the quench on the anisotropy, the behaviour of the soliton magneti-
zation has been monitored after the change from ∆ = −0.3 to ∆ = 0.3 (with
h = 0.1). The z-magnetization plot oscillates in time as before; in this case,
however, the uniform magnetization shows a bump squashed on the right edge
of the chain (Fig. 4.24). The reason is that, in this simulation, the starting
point was the antiferromagnetic region, instead of the ferromagnetic one as
before. Thus, in the antiferromagnetic region it seems that the bump feels
more strongly the effect of the field. However, in this case too the bump never
modifies in time.
The staggered magnetization shows a slightly different behaviour too. It shifts
vertically, but also changes its shape (Fig. 4.25).
No other properties have been observed in depth, but the study should be
continued considering two-points correlators. In this way, information about
the extension of these excitations could be detected.
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Figure 4.20: Single-site z-magnetization of the soliton after a quench from
h = 0.2 to h = −0.1 (with ∆ = 0.3). The legend refers to the time after the
quench: the magnetization oscillates in time.

Figure 4.21: Single-site z-magnetization observed for sites number 20 (blue)
and 50 (orange) fixed, as a function of time. A constant displacement can be
noted.
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Figure 4.22: Uniform component referring to Fig. 4.20: it remains clearly
stationary.

Figure 4.23: Staggered magnetization referring to Fig. 4.20: it shifts down
and up, causing the oscillatory changes in the total magnetization.
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Figure 4.24: Uniform z-magnetization of the soliton after a quench on the
anisotropy from ∆ = −0.3 to ∆ = 0.3.

Figure 4.25: Staggered z-magnetization of the soliton after a quench on the
anisotropy from ∆ = −0.3 to ∆ = 0.3.
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Figure 4.26: Uniform z-magnetization for the breather after a quench from
∆ = −0.3 to ∆ = 0.3 at different moments. Unlike the soliton case, it changes
its shape with time.

In conclusion, it seems that the uniform component shape depends only on the
chain length and the hamiltonian parameters; moreover, it never modifies after
a quench. This suggests a sort of conservation law, due to a certain symmetry
in the system. This symmetry might be the combination of both spin and field
direction inversion: it is easy to see that it holds in the XXZ + h staggered
hamiltonian. However, no evidence of this has been proved yet.

The breather properties have also been studied by means of quenches. In
this case, the simulation has been done changing the anisotropy value from
∆ = −0.3 (where the breather exists and is stable) to ∆ = 0.3 (where it exists
no more and is supposed to be described by solitons and antisolitons only).
As before the z-magnetization and its staggered component change with time;
however, unlike the soliton case, also the uniform component modifies with
time. This behaviour can be observed in Fig. 4.26. This is very peculiar but
hard to interpret: it is better to understand in depth the soliton behaviour
and, only then, try to explain the breather structure.
No further properties are evident from the single-site z-magnetization: the
study should be continued considering two-points correlators also. They could
bring further information about how correlations in the model change depend-
ing on different hamiltonian parameters.
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Conclusions

The introduction of a staggered external magnetic field to the XXZ model
strongly modifies its characteristics: as highlighted by the analytical analysis
(even if exact for the XX + h staggered model only), the dispersion relation
and the eigenstates have a much more complex form than without the field.
From the numerical study, it has been seen that this magnetic model follows
the laws of the quantum sine-Gordon model predicted by the quantum field
theory approach. First of all, this means that these predictions are valid; be-
sides this, it confirms that the bosonization of the XXZ + h staggered model
holds for the particular choice of hamiltonian parameters done.
Thus, the lowest soliton, antisoliton and breather energies have been pin-
pointed. Moreover, for J = 1 and ∆ = ±0.3, the breather has been found
to exist in the antiferromagnetic point only.
Finally, the study of the soliton features has been started. Single-site z-
magnetization yields interesting information, in particular from its uniform
component. The bump never changes shape nor shifts after a quench. It does
not move as for its classical counterpart, but this is not very surprising: these
solitons are quantum objects, so they behave in a completely different way
and cannot be thought in classical terms. Moreover, the fact that the bump
depends only on the initial hamiltonian parameters and on the chain length
suggests that there could be a sort of conservation law; the latter might derive
from a symmetry in the model, such as the one obtained combining spin and
field direction inversion.

This study helps in shining light upon the quantum solitons behaviour, but
it is not conclusive. Instead, it is a starting point and there are several paths
to follow to carry on with this research.
First of all, single-site z-magnetization is only the simplest observable one can
use to determine soliton properties: a natural continuation of the study con-
cerns the evaluation of two-points correlators, such as SzjS

z
k and S+

j S
−
k ; they

could provide further information about correlations in the system and how
they change depending on different hamiltonian parameters.
On the other hand, solitons exist in principle even in the XX + h staggered
model. As the latter has been solved exactly, all its energies and eigenstates
are known. Starting from the assumption that the lowest-energetic solitons
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are the first excited states in their own spin sectors, one can write the soliton
and antisoliton eigenfunctions and study them.
This is harder than what may seem at first glance: Sz = 0 and Sz = ±1 corre-
spond respectively to N/2 and N/2− 1 spinless fermions in the energy bands
of eq. 3.8. As a result, the eigenstate form will have N/2 and N/2−1 different
coefficients in front of the states written in eq.s 3.19 and 3.21. Despite this is
hard to write, it would probably brings helpful information about the soliton
properties.

In conclusion, quantum solitons are really intriguing physical objects, and
their behaviour has not been studied in depth yet. Their comprehension would
probably bring to a better understanding of quantum mechanics itself and,
perhaps, to the possibility of their employment in technology as quantum bits.
However, there are several things to study yet: the hope is that this work
might suggest further research in this topic.

74



Bibliography

[1] J. S. Russell, ”Report on waves”, ”Fourteenth meeting of the British As-
sociation for the Advancement of Science”, 1834

[2] J. Bundgaard, ”A survey on the history and properties of solitons”, lecture
notes, 2011

[3] A.K. Liu, J.R. Holbrook, J.R. Apel, ”Nonlinear internal wave evolution in
the Sulu Sea”, J. Phys. Oceanogr., 15, 1613-1624, (1985)

[4] P. S. Lomdahl, ”What is a soliton?”, Los Alamos Science, Spring 1984,
pag. 27-31

[5] R. Rajaraman, ”Solitons and Istantons”, North-Holland, 1982

[6] J. E. Allen, ”The Early History of Solitons (Solitary Waves)”, IOPScience

[7] C. P. Burgess et al., ”Bosonization in higher dimensions”, Phys. Lett. B
336, 18-24 (1994)

[8] A.O. Gogolin et al., ”Bosonization and strongly correlated systems”, Cam-
bridge University Press, 1998

[9] E. Fradkin, ”Field theories of condensed matter systems”, Cambridge Uni-
versity Press, 1991

[10] E. Miranda, ”Introduction to bosonization”, Braz. Jour. of Phys., vol. 33,
no. 1, March, 2003

[11] J. von Delft, H. Schoeller, ”Bosonization for Beginners — Refermioniza-
tion for Experts” Annalen Phys. 7 225-305 (1998)

[12] H. Bethe ”On the theory of metals. Eigenvalues and eigenfunctions of the
linear atom chain”, Zeitschrift fr Physik, 71:205226 (1931)

[13] M. Takahashi, ”Thermodynamics of One-Dimensional Solvable Models”,
Cambridge University Press, 1999

[14] M. Karbach and G. Muller, ”Introduction to the Bethe ansatz I”,
arXiv:cond-mat/9809162 v1 10 Sep 1998

75



[15] F. Franchini, ”Notes on Bethe ansatz techniques”, 2011

[16] A. Zamolodchikov, Int. J. Mod. Phys. A 10 (1995) 1125

[17] S. Lukyanov and A. Zamolodchikov, Nuclear Physics B 493 (3), 571-587

[18] M. Henkel, ”Conformal Invariance and Critical Phenomena”, Springer,
1999

[19] F. Ravanini, ”Finite size Effects in Integrable Quantum Field Theories”,
2001

[20] U. Schollwock, ”The density-matrix renormalization group”, Rev. Mod.
Phys., vol. 77, January 2005

[21] U. Schollwock, S. R. White, ”Methods for Time Dependence in DMRG”,
arXiv, May 2006

76


