
Alma Mater Studiorum · Università di
Bologna

Scuola di Scienze

Corso di Laurea Magistrale in Fisica

A two-body study of dynamical
expansion in the XXZ spin chain and
equivalent interacting fermion model

Relatore:

Prof.ssa Elisa Ercolessi

Correlatore:

Dott. Piero Naldesi

Presentata da:

Claudio D'Elia

Sessione II

Anno Accademico 2013/2014





"Do not read so much, look about you and think of what you see there."

R.P. Feynman
[letter to Ashok Arora, 4 January 1967, published in Perfectly Reasonable

Deviations from the Beaten Track (2005) p. 230]





Abstract

Lo scopo di questa tesi è studiare l'espansione dinamica di due fermioni in-
teragenti in una catena unidimensionale cercando di de�nire il ruolo degli
stati legati durante l'evoluzione temporale del sistema.
Lo studio di questo modello viene e�ettuato a livello analitico tramite la tec-
nica del Bethe ansatz, che ci fornisce autovalori ed autovettori dell'hamiltoniana,
e se ne valutano le proprietà statiche. Particolare attenzione è stata dedicata
alle caratteristiche dello spettro al variare dell'interazione tra le due parti-
celle e alle caratteristiche degli autostati. Dalla risoluzione dell'equazione di
Bethe vengono ricercate le soluzioni che danno luogo a stati legati delle due
particelle e se ne valuta lo spettro energetico in funzione del momento del
centro di massa. Si è studiato inoltre l'andamento del numero delle soluzioni,
in particolare delle soluzioni che danno luogo ad uno stato legato, al variare
della lunghezza della catena e del parametro di interazione.
La valutazione delle proprietà dinamiche del modello è stata e�ettuata tramite
l'utilizzo dell'algoritmo t-DMRG (time dependent - Density Matrix Renor-
malization Group). Questo metodo numerico, che si basa sulla decimazione
dello spazio di Hilbert, ci permette di avere accesso a quantità che caratteriz-
zano la dinamica quali la densità e la velocità di espansione. Da queste sono
stati estratti i pro�li dinamici della densità e della velocità di espansione al
variare del valore del parametro di interazione .
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Chapter 1

Introduction

A poet once said, 'The whole universe is in a glass of wine.' We will probably never know

in what sense he meant it, for poets do not write to be understood. But it is true that if

we look at a glass of wine closely enough we see the entire universe. There are the things

of physics: the twisting liquid which evaporates depending on the wind and weather, the

re�ection in the glass; and our imagination adds atoms. The glass is a distillation of the

earth's rocks, and in its composition we see the secrets of the universe's age, and the

evolution of stars. What strange array of chemicals are in the wine? How did they come

to be? There are the ferments, the enzymes, the substrates, and the products. There in

wine is found the great generalization; all life is fermentation. Nobody can discover the

chemistry of wine without discovering, as did Louis Pasteur, the cause of much disease.

How vivid is the claret, pressing its existence into the consciousness that watches it! If

our small minds, for some convenience, divide this glass of wine, this universe, into parts �

physics, biology, geology, astronomy, psychology, and so on � remember that nature does

not know it! So let us put it all back together, not forgetting ultimately what it is for.

Let it give us one more �nal pleasure; drink it and forget it all! [8]

Since ancient times man has always tried to give an explanation for nat-
ural phenomena. From thunders to �re passing throught the gravity, every
single event has always stimulated the intellect of our ancestors so that they
could explain in a more-or-less logic way the causes and the mechanics of
that event.
With the upcoming of the scienti�c method, they started to �x the ground-
work of modern science: the study of natural phenomena must be performed
with reproducible experiments and the results must have universal validity.
From here begins the study and the understading of the mechanics of celestial
bodies, universal gravitation, electromagnetic waves propagation and this let
the world be as we know it today.
Doubtless, this wouldn't been possible if in the meantime they didn't de-

1



2 1. Introduction

velop a very powerful tool which is mathematics. This shortly become the
common language of scientists which, over the century, enriched its "lexicon"
with algebra, calculus, complex analysis, di�erential geometry, etc...
However, at the dawn of XX century, something imperilled further scienti�c
development. An unimmaginable limit was reached, scientists started to in-
vestigate the micro-universe of the elementary consituent of matter.
With all the di�culties that could arise, an handful of men were able to
cross the enemy lines and to understand the encryption key of this micro-
scopic enigma.
Quantum mechanics was taking its �rst steps.

Even if its understanding weren't within everyone's means, quantum me-
chanics is the perfect equipment for the scientist who wants to explore the
unknown terrain of the microscopic matter. He will be going to deal with
something that he probably can only imagine.
Here arise a new problem, what are the limits of applicability of this new
theory?
In principle quantum mechanics can be applied to almost all the problem
which involve particles, atoms, molecules, etc... Its limit are of practical na-
ture.

Let us consider now to have at our disposal 50 g of pure iron. These are
made up by about 1023 atoms and every atom is made up by 26 electrons
and as many protons and neutrons inside nucleus. Besides, electrons and
protons have an electrical charge, so they will interact mutually. Thus, try-
ing to describe the electronic motion in a conductor, we're going to deal with
an overwhelming number of interactions between particles and this give rise
to a many body problem which is nearly impossible to solve.

Nevertheless, there is a way to go. If we quit "something" it is possible
to describe an alternative problem which still has the same properties or at
least the most interesting of the original one.
For example, we could imagine that the atoms of a conductor are arranged
on a regular lattice with a �xed interspace within atoms and that the elec-
trons are faster than the nuclei so that we can assume the nuclei �xed at
their lattice positions. Moreover, taking account of the screening e�ect of
the electrons in an atom, we can assume that the ionic potential is felt only
from electrons on the same atom or from electrons on the nearest neighbours.
With all these "reasonable" assumptions we can reduce the initial problem
to a simpler one but on the other hand it still preserve all the key features
of the original.
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So, we've shaped what is called a model!

In last century many electronic and magnetic models has been developed.
The study of these models has provided results more and more accurate and
close to the experimental results.

The simplest electronic model of a conductor is the free electron gas. In
this model we don't take account of the interacting potential due to the
presence of the underlying cristalline structure and we consider only the va-
lence electrons which are con�ned in the conductor.
Despite the extreme exempli�cation, Sommerfeld in 1927 managed to obtain
a good theorical prediction for the electrical conductivity, the temperature
dependence of the electronic speci�c heat and the mean free path of elec-
trons.
From this starting point one can re�ne the model making it closer to reality.
Considering that the ions are �xed to their lattice positions and they possess
an electric charge, one could introduce a periodic potential into the model.
That was done by Bloch in 1928, his theorem ensures that a solution to this
problem can exist and, moreover, the resolution of the model via the Bloch
functions has revealed the existence of the energy bands.

Proceeding one could arrive to what is the state of art of electronic mod-
els, or rather, the Hubbard[12] model and all of its "derivates".

The Hubbard model is of great relevance in the modern theoretical physics,
in fact many theorists[20][7][1] have devoted a considerable part of their ca-
reers to the Hubbard model.
Altought it is the simplest many-particle model one can write down, it can-
not be reduced to a single-particle theory.
The ground state is known to be complicated (i.e., a superposition of many
Fock states). In most cases its analytic form is unknown, except in one di-
mension.
The Bethe ansatz is one of the methods that can be used to resolve the 1D
Hubbard model[11]. Results in two or three dimensions are not yet known.

In an analogous way we can follow the evolution of the models developed
to explain the magnetic phenomena of the matter.

The starting point for the study of the magnetic properties has been the
study of the molecule of hydrogen. In fact, this brought to recognize the ef-
fects of the exchange interaction (independently W.Heisenberg and P.Dirac
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in 1926) which is a direct e�ect of the spin property of electrons.
Among other consequences, the exchange interaction is responsible for ferro-
magnetism and of the volume of matter. It has no classical analogue.
The Heisenberg hamiltonian, for a system of two electrons, is:

HHeis = −2J(ŝ1 · ŝ2) (1.1)

where J is the exchange integral and ŝ1, ŝ2 are the spin operators of the two
electrons.
Generalizing this hamiltonian to a chain of spins one can obtain the XXX
spin chain model which describes the magnetic systems taking account of
the interaction between the magnetic momenta of the electrons which lies on
nearest neighbour atoms.
At a �rst sight it might seem an oversimpli�ed model, instead it can predict
accurately the magnetic properties of some metals.
The most general case in the XYZ model, it considers that the value of the
exchange integral can be dependent on the axis along which the magnetic
interaction takes place.
This mean to consider the internal anisotropy of the materials.

One step behind in complexity but not in interest, we �nd the XXZ model
which considers the anisotropy only along the z-direction.
Although this could appear a more simplistic model, it actually is of great
practical importance in the physics of magnetic materials. In fact, the need of
mass memory devices more and more capacious, has been ful�lled thanks to
the properties of "perpendicular anisotropy" of some layered materials[6][13].

The XXZ Model describes a spin chain with next-neighbour interaction,
anisotropy on the z-axis and an external applied magnetic �eld along the
z-axis.
The spin at each site is described in terms of the operators Sx,Sy and Sz.
These operators must satisfy to the right commutation relations for spin 1

2

particles

[Sαi , S
β
j ] = −iδi,jεαβγSγi (1.2)

One possibility is to de�ne S operators via the Pauli matrices σx, σy, σz:
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−∞ < ∆ ≤ −1 Antiferromagnetic ∆ = −1 XXX AFM Model
−1 < ∆ < 1 Paramagnetic ∆ = 0 XY Model
1 ≤ ∆ <∞ Ferromagnetic ∆ = 1 XXX FM Model

Table 1.1: Variety of magnetic behaviours described by the XXZ model varying ∆.

Sx =
1

2
σx =

1

2

(
0 1
1 0

)
Sy =

1

2
σy =

1

2

(
0 −i
i 0

)
Sz =

1

2
σz =

1

2

(
1 0
0 −1

)

The interaction terms are of the kind Sαi S
α
i+1 where α = x, y, z, so the Hamil-

tonian of the system for a chain of lenght L is

H = −J
L∑
i=1

(Sxi S
x
i+1 + Syi S

y
i+1 + ∆Szi S

z
i+1) + h

L∑
i=1

Szi (1.3)

where J is the strenght of the interaction and J > 0, ∆ is the anisotropy
parameter and h is the external applied �eld.
Varying the value of ∆ in this Hamiltonian, one can describe a wide range
of magnetic behaviours as show in the following table

This model has been investigated by many authors[30],[31],[32],[33],[3],Orbach[21]and
Walker[26] generalized the Bethe ansatz method for ∆ 6= 1 in order to resolve
that model.
Analytical results of this model are known also when a magnetic �eld along
the z-direction is applied

The subject of this thesis will be the 1D spinless fermions chain which is
a direct descendant of the Hubbard model.

The spinless fermion model is a particular case of the Hubbard model.
In the spinless fermion model (from here SF model) only singular site occu-
pations are possible, so the interaction is considered between adjacent sites.
Thereby, considering a 1D chain of lenght L, the Hamiltonian for this model
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is:

H = − t
2

L∑
i=1

(c+
i+1ci+c

+
i ci+1)+U

L∑
i=1

nini+1−(U−µ)
L∑
i=1

ni+
(U − 2µ)

4
(1.4)

Where t is the hopping parameter, U the strenght of the interaction and µ
is the chemical potential.

In the following we will see that the 1D SF model is equivalent to the XXZ
1
2
spin chain model by mean of the Jordan-Wigner transformation.

1.1 Recent development in the study of inter-

acting systems

In last few years condensed matter physics gained an incredible input from
the simulation of quantum systems via cold atoms trapped into optical lat-
tices.
It is possible to load ultra-cold atoms into an optical lattice in order to per-
form an experimental "real-time" simulation of a bosonic of fermionic system.
The ability to control various system parameters in real time has not only
allowed quantum simulations of equilibrium properties of interacting many-
body systems, but has also enabled experimental studies of quantum quenches
and particle transport in clean, well-controlled, and isolated systems.

As example we could consider the experiment of Kinoshita, Weiss andWenger[16],
they prepared a quantum 1D bose gas into an optical lattice using ultracold
atoms of 87Rb.
An array of 1D bose gases is obtained from a Bose-Einstein condensate loaded
into a 2D optical lattice with tight transverse con�nement.
At t=0 the atoms are trapped with an anharmonic potential into a super-
position of states with opposite momentum, at later times this anharmonic
potential is removed and atoms starts their evolution traveling along the 1D
chain.
Kinoshita, Weiss and Wenger observed that after a long time (27 ms which
are equivalent to thousand of collisions) the system does not show any sign
of equilibrium.
Their conclusions are related to the problem of �nding a relation between
the integrability and the thermalization of a system. As they conclude in
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their paper[16], these "results are probably explainable by the well-known
fact that a homogeneous 1D Bose gas with point-like collisional interactions
is integrable".

So, cold atoms trapped in optical lattices open the way to a broad variety
of experiments which could conferm theorical predictions or, on the other
hand, the experimental results could be the starting spark of a theoretical
work aimed to explain these results.

As already said, in this work we will study two strongly interacting mod-
els, the SF chain model and the spin 1

2
XXZ model.

It is well known that the models we choose can be mapped one into another
by means of a Jordan-Wigner transformation. So all of our results can be
straightforwardly translated from spins to particles and it is possible to make
predictions over a wide range of 1D models: Luttinger liquid, Hubbard with
a nearest-neighbor density-density attractive or repulsive interaction, FM,
AFM or paramagnet.

In chapter 2 we will apply the Coordinate Bethe Ansatz (CBA) method
to these models and obtain the exact eigenfunctions for the two body case
(two particles for the SF model two down-spins for the XXZ model). More-
over, we show explicitily that the two considered models can be translated
one into the other by means of the Jordan-Wigner transformation and we
calculate the termodynamic limit prediction for the energy.
In chapter 3 the solutions of the Bethe equation are analyzed, we will see
that the value of the interaction parameter plays a key role in determining
the eigenfunctions and the ground state. Moreover, we will see that solving
numerically the Bethe equation one needs particular care when dealing with
an even value of the chain lenght L, in this case, in fact, there are some
numerical issues which could bring to the loss of solutions.
In chapter 4 we give an outlook on other works which deal with the time
evolution of an interacting system and there are some general comments on
the time evolution of a system.
In chapter 5 there is a general review about the DMRG technique used to sim-
ulate numerically the time evolution of this system after a quantum quench
of the interacting parameter. Quenching the interaction parameter i.e. to
change suddenly its value, this allows to study the evolution of the system
which starts from a condition of non-equilibrium.We will investigate the ex-
pansion dynamics of the two particles SF model starting from a chain in
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which a large chemical potential bind the particles in the middle sites of the
chain, the system is then "released" removing the chemical potential and
activating the interaction parameter U .
In the end results from time evolution are shown for various values of U
ranging from −4 ≤ U ≤ 4. We will evaluate the density pro�le during the
expansion �nding that the group spreading velocitiy is strongly in�uenced
by the value of the interaction parameter U .



Chapter 2

Coordinate Bethe ansatz and

Bethe equations

In 1931, Hans Bethe[2] presented a method, which is nowadays called the
�Coordinate Bethe ansatz� (CBA), for calculating the exact eigenvalues and
eigenvectors of the one-dimensional spin 1

2
XXX Heisenberg model.

The term �Bethe ansatz�, refers to the wave function Bethe had used for the
eigenvectors. Since then, many other quantum many body systems have been
solved by some variant of the Bethe ansatz. One problem especially worth
mentioning is the repulsive interaction quantum gas problem which has been
solved by C. N. Yang in the late sixties[34],[9]. For this he used the Bethe
ansatz twice; the second time in a generalized form which is often called the
�Bethe-Yang� ansatz. Following this result, the repulsive interaction prob-
lem with an arbitrary irreducible representation of the permutation group
was solved by B. Sutherland by repeated use of the Bethe-Yang ansatz[24].
The Bethe ansatz in some variant of its original formulation is now used to
solve many other 1D quantum many body systems.
The Bethe ansatz is an exact method for the calculation of eigenvalues and
eigenvectors of a certain class of quantum many-body model systems. Also
if the eigenvalues and eigenvectors for a �nite system may be obtained with
other methods, as for example a brute force numerical diagonalization, the
Bethe ansatz o�ers two important advantages:

1. all eigenstates are characterized by a set of quantum numbers which can
be used to distinguish them according to speci�c physical properties;

2. in many cases the eigenvalues and the physical properties derived from
them can be evaluated in the thermodynamic limit.

9
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2.1 Coordinate Bethe Ansatz on Spinless Fermion

Chain

In this thesis this method is going to be applied to two particular models:
the XXZ spin chain and the Spinless Fermions chain.
Let us consider �rst the Hamiltonian of a 1D spinless fermion chain:

HSF = − t
2

L∑
i=1

(
c+
i ci+1 + c+

i+1ci
)

+ U
L∑
i=1

(ni −
1

2
)(ni+1 −

1

2
) + µ

L∑
i=1

(ni −
1

2
)

(2.1)

where t is the hopping parameter, U is the interaction strenght and µ the
chemical potential.
The operators c+

i and ci are the creation and annihilation operators for the
femionic particles. These operators can be applied to Fock's state e.g. the
vacuum |0〉, their e�ect is to change the occupation number of a given site:

c+
i |0〉 = |i〉 ci|i〉 = |0〉 ci|0〉 = 0 c+

i |i〉 = 0 (2.2)

These operators act on fermionic states, so their anti-commutation rules are:{
c+
i , cj

}
= δi,j {ci, cj} = 0

{
c+
i , c

+
j

}
= 0 (2.3)

The hamiltonian commutes with the number operator ni, this gives in turn
that the total number of particles is a conserved quantity.
Thus we can block diagonalize this hamiltonian de�ning the number of par-
ticles r. Applying the Bethe ansatz for every value of r = 0, 1, 2, . . . , L we
can obtain the exact eigenvectors and eigenvalues.

For r = 0 it is almost trivial: the eigenvector is the fermionic vacuum |0〉
and its eigenvalue is

E0 =
UL

4
− µL

2
. (2.4)
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For r = 1 there is only one particle in the chain and we have to consider
eigenvectors of the form:

|φ(1)〉 =
L∑
j=1

φjc
+
j |0〉 (2.5)

here φj is the single particle wave function.
We can use a plane wave for the ansatz:

φj = Aeijp (2.6)

From the normalization we get that the coe�cient A = 1√
L
.

The energy resulting from the Schroedinger equation will be:

E = −t cos(p) + (µ− U) + E0 (2.7)

We want to study the model under periodic boundary conditions.
Our chain is de�ned to start from 1 so applying PBC means to require that
the site L+ 1 is equivalent to the site 1.
So:

φ1 =
1√
L
eip =

1√
L
eiLpeip = φL+1 (2.8)

This position gives us a quantization rule for the momentum of the particle:

p =
2πn

L
(2.9)

where n is an integer from 0 to L− 1.
This complete the study for the case r = 1.

2.1.1 Coordinate Bethe ansatz for the spinless fermion
chain when r=2

Now we concentrate our study to the case of 2 particles on a chain of lenght
L.
It's quite di�erent from the previous we just considered, but it is the key to
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understand how to work out the Bethe ansatz in the general case when r ≥ 2.

Applying the Bethe ansatz, we request that eigenvectors are of the form:

|φ(2)〉 =
L∑

j,k=1

φj,kc
+
j c

+
k |0〉 (2.10)

with φj,k de�ned in the following way:

φj,k = [Aei(p1j+p2k) +Bei(p1k+p2j)]θ(j−k)− [Aei(p1k+p2j) +Bei(p1j+p2k)]θ(k− j)
(2.11)

Here p1 and p2 are the momenta of the particles, j and k their coordinates.
A and B are two coe�cients, in the most general case they are c-number.
Pauli's exclusion principle and wave function antisimmetry are automatically
implemented in this ansatz.
Applying the hamiltonian to |φ(2)〉 one gets:

L∑
j=1

L∑
k=1

[− t
2

(φj+1,k + φj,k+1 + φj−1,k + φj,k−1)+

+φj,k(Uδj,k+1 + Uδk,j+1 − 2U + 2µ+
UL

4
− µL

2
− E)]|j, k〉 = 0 (2.12)

Where the energy takes the free form:

E = −2t (cos(p1) + cos(p2)) + 2(µ− U) + E0 (2.13)

Considering eq. (12) when j−k = 1 - or equivalently j−k = −1- and substi-
tuing the expression for the energy, we obtain a condition for the amplitude
ratio:

A

B
= −

1 + ei(p1+p2) + 2U
t
eip1

1 + ei(p1+p2) + 2U
t
eip2

(2.14)

Eq.(2.14) is called Bethe equation.
Furthermore, it can be shown that the quantity A

B
is equivalent to a phase, so:

A

B
= eiθ (2.15)
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The details of the derivation of the Bethe equation are in Appendix 1.

2.1.2 Boundary condition and quantization rules for r=2

We remember that our chain is de�ned to start from 1 so applying PBC
means to require that the site L+ 1 is equivalent to the site 1.
In terms of the Bethe ansatz, for two particles, this is achieved with the po-
sition:

φj,k = φk,j+L

⇓
[Aei(p1j+p2k) +Bei(p1k+p2j)] = [Aei(p1k+p2j)eip2L +Bei(p1j+p2k)eip1L](2.16)

whenever p1 6= p2, with some algebra and considering that ei(p1j+p2k) and
ei(p1k+p2j) are linearly independent vectors, we obtain the following equation
for the quantities p1 and p2:

A

B
= eip1L (2.17a)

B

A
= eip2L (2.17b)

with:

p1 =
2πλ1

L
+
θ

L
(2.18a)

p2 =
2πλ2

L
− θ

L
(2.18b)

λ1 and λ2 are integers from 0 to L − 1 and they are called Bethe quantum
number.

Considering θ = α+ iβ and the relations obtained from the PBC, eq. (2.17a)
can be rewritten as:

−
1 + ei(

2π(λ1+λ2)
L

) + 2U
t
e−

β
L ei(

2πλ1+α
L

)

1 + ei(
2π(λ1+λ2)

L
) + 2U

t
e
β
L ei(

2πλ2−α
L

)
= eiαe−β (2.19)
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Varying the value of λ1 and λ2 one can solve this equation and �nd all the
allowed value for α and β - subsequently for θ and so for p1 and p2.
What we are going to see in next chapter is that the solutions are strongly
correlated to the value of U .

Considering that we are dealing with 2 particles, it could be useful to use the
center of mass coordinates. So we can de�ne:

X =
j + k

2
x = j − k P = p1 + p2 p =

p1 − p2

2
(2.20)

The ansatz takes the form:

φj,k = sgn(x)eiPX [Aeip|x| +Be−ip|x|] (2.21)

The Bethe equation and PBC become:

−
1 + eiP + 2U

t
ei(

P
2

+p)

1 + eiP + 2U
t
ei(

P
2
−p)

= (−1)(λ1+λ2)e−ipL (2.22)

p =
π(λ1 − λ2)

L
+
θ

L
(2.23a)

P =
2π(λ1 + λ2)

L
(2.23b)

2.1.3 Coordinate Bethe ansatz for r > 2

The 1D SF chain and the 1D XXZ spin chain belongs to the class of inte-
grable models.
Integrable, or equivalently exactly solvable, models are very important in
physics. Their importance is due both to theoretical points of view and ex-
perimental ones, because in such cases theoretical results and experimental
results can be compared without ambiguity.
In condensed matter theory, the fundamental problem is that of solving
many-body interacting systems and it is quite rare to encounter exactly solv-
able cases.
In fact, to solve the N body problem is an almost simple task for N = 2, but
in most cases it could became not soluble for N ≥ 3.
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However, considering one dimensional systems, there are some solvable mod-
els. The SF model and the spin 1

2
XXZ chain are examples of solvable models

for a generic value of N .
In these cases we can write down many-body eigenfunctions using the method
of the Bethe-ansatz. In this environment the N -body wave function is rep-
resented as a linear combination of N ! plane waves with N quasi-momenta.
Many people focused their studies on the spin 1

2
XXZ chain, Orbach in [21]

and Walker in [26] have applied Bethe ansatz method to the case ∆ 6= 1,
Yang and Yang in [30]-[33] worked out a fully investigation of the ground
state of this model, Bonner and Fisher in [3] studied this model using the
exact diagonalization method up to N = 12.
The study of the spin 1

2
XXZ chain with N > 2 with a generic value of ∆

has been done by Takahashi in [25].

Here we apply the results of Takahashi for the spin 1
2
XXZ chain with

M > 2 translating them in the language and the notation of the SF model
with r > 2.
In this case the eigenstate is written as:

|φ(r)〉 =
L∑

j1,j2···jr=1

φj1,j2···jrc
+
j1
c+
j2
· · · c+

jr
|0〉 (2.24)

Note that the notation is slightly di�erent from the one used in eq. (2.10)
but the meaning is unchanged.
In this case the wave function φj1,j2···jr is de�ned as:

φj1,j2···jr =
r!∑
Q

A(Q) exp(i
r∑

k=1

pQkjk) (2.25)

As in the previous case the p's are the momenta and the j's are the position
on the chain. A(Q)'s are the coe�cients (just as A and B in the case r = 2),
Q is a permutation of the indeces k 1, 2, . . . , r:

Q =

(
1 2 · · · r
Q1 Q2 · · · Qr

)
(2.26)

The energy is again the sum of single particle's energy, so:

E = −t
r∑
j=1

cos(pj) + (µ− U)r + E0 (2.27)
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The periodic boundary conditions set the equation:

(−1)r−1
∏
l 6=k

1 + ei(pl+pk) + 2U
t
eipk

1 + ei(pl+pk) + 2U
t
eipl

= eipkL (2.28)

Solving this equation will give us the allowed value for momenta of all par-
ticles, from these value we can write explicitly eigenvectors and their eigen-
values.

2.1.4 Thermodynamic limit

Recalling eqs.(2.22),(2.23a),(2.23b) we have the following system:

A(1 + eiP +
2U

t
eiP/2eip) +B(1 + eiP +

2U

t
eiP/2e−ip) = 0 (2.29a)

A

B
= −eiPL/2eipL (2.29b)

P =
2πn

L
(2.29c)

with some substitutions:

A

B
(1 + ei

2πn
L +

2U

t
ei
πn
L eip) + (1 + ei

2πn
L +

2U

t
ei
πn
L e−ip) = 0 (2.30a)

A

B
= −eiπneipL (2.30b)

So, from eqs. (2.30a) and (2.30b), requesting that p = iα:

−eiπne−αL(1 + ei
2πn
L +

2U

t
ei
πn
L e−α)+

+(1 + ei
2πn
L +

2U

t
ei
πn
L eα) = 0 (2.31a)

A

B
= −eiπne−αL (2.31b)

In the TD limit L→∞ these eqs. gives:
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1 + eiP +
2U

t
ei
P
2 eα = 0 (2.32a)

A

B
= 0 (2.32b)

where P ∈ [0, 2π].

Resolving the 1st order equation:

2 cos(
P

2
) +

2U

t
eα = 0 (2.33)

αTD = ln

(
−
t cos(P

2
)

U

)
(2.34)

Thus, we have a prediction for the energy of a bound state in the thermody-
namic limit:

ETD
P = −2t cos(

P

2
) cos

(
i ln

(
−
t cos(P

2
)

U

))
(2.35)

or in a more simple form:

ETD
P =

t2 cos2(P
2

)

U
+ tU (2.36)

2.2 Coordinate Bethe ansatz on XXZ Spin chain

The Hamiltonian of the XXZ model on a L-lenght spin chain is:

HXXZ = −J
2

L∑
i=1

(
Sxi S

x
i+1 + Syi S

y
i+1

)
− J∆

L∑
i=1

Szi S
z
i+1 − h

L∑
i=1

Szi (2.37)

Here J is the hopping parameter, ∆ is the anisotropy strenght and h is the
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external applied �eld.

The operators Sxi , S
y
i and Szi are spin operators, their de�nition is based

on the Pauli's matrices:

Sxi =
1

2
σx Syi =

1

2
σy Szi =

1

2
σz (2.38)

The commutation rules for these operators are:[
Sαi , S

β
j

]
= iδi,jεα,β,γS

γ
i with α, β, γ = x, y, z (2.39)

In absence of external applied �eld the ground state for this hamiltonian can
be either a chain with every spin pointing the "down" direction or a chain
with every spin pointing the "up" direction.
The presence of the external �eld break the degeneracy. From here we will
consider h > 0 so the ground state will be a chain of "up" pointing spin, we
can represent this state in this way:

|ΨGS〉 = | ↑↑ · · · ↑↑〉 (2.40)

The energy E0 of the ground state is:

E0 = −J∆L

4
− hL

2
(2.41)

For the sake of clarity hereafter we will denote the Fock states for this model
with the same notation used for the spinless fermion chain. So the ground
state will be noted as |0〉 and the state in which there is a rotated spin, for
example in the i-th site, will be written as |i〉.
The XXZ model has the major property to conserve the total magnetization
along the z-axis, SzTOT =

∑L
j=1 S

z
j . So the maximum magnetization is when

all spins are oriented in the same direction and its value is SzMAX = N
2
.

Considering that
[
HXXZ , SzTOT

]
= 0 so the Hilbert space can be divided

into sector with a given magnetization. This give us the possibility to study
the model with a �xed number (M) of rotated spins.

A further simpli�cation of the work cames from the possibility to de�ne
two operators which act by rotating spin in a given site. These operators are
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de�ned as follow:

S+
i =

Sxi + iSyi
2

S−i =
Sxi − iS

y
i

2
(2.42)

They are called respectively raising and lowering operators, in fact they act
on the states in the following way:

S+
i |0〉 = |i〉S+

i |i〉 = 0 S−i |0〉 = 0S−i |i〉 = |0〉 (2.43)

Rewriting the hamiltonian with these new operators we obtain:

H̃XXZ = −J
2

L∑
i=1

(
S+
i S
−
i+1 + S+

i+1S
−
i

)
− J∆

L∑
i=1

Szi S
z
i+1 − h

L∑
i=1

Szi (2.44)

The derivation of the Bethe equations for the spin 1
2
XXZ Spin chain model

is analogous to the spinless fermion model.
To keep contact with the spinless fermion model, we will consider the case in
which there are two down pointing spins in the chain, so M = 2. Following
the Bethe ansatz prescription the eigenstates of this hamiltonian must be of
the form:

|φ〉 =
L∑

j,k=1

φj,kS
−
j S
−
k |0〉 (2.45)

φj,k is de�ned in the same way of eq. (2.11):

φj,k = [Aei(p1j+p2k) +Bei(p1k+p2j)]θ(j−k)− [Aei(p1k+p2j) +Bei(p1j+p2k)]θ(k− j)
(2.46)

As in the case of the spinless fermion p1 and p2 are the momenta of the par-
ticles, j and k their coordinates. A and B are two coe�cients, in the most
general case they are c-number.

Again, we can use the center of mass coordinates to describe the problem (as
de�ned in eq. (2.20)).
What is slightly di�erent from the previous case is the expression for the
energy, in this case we have:

E = E0 + J

(
∆− 2 cos(

P

2
) cos(p)

)
+ h (2.47)
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But the equation for the amplitude ratio still have the same form of eq. (2.14):

A

B
= −1 + ei(p1+p2) − 2∆eip2

1 + ei(p1+p2) − 2∆eip1
(2.48)

The only di�erence is the coe�cient −2∆ instead of 2U
t
.

What remain to do is to impose the periodic boundary conditions. It is
easy to see that we would obtain the same Bethe equation of the spinless
fermion model.
Imposing PBC will give us exactly eqs. (2.17a) and (2.17b), what is di�erent
in this case is the amplitude ratio that we just obtained.
So the equation to be solved for the spin 1

2
XXZ spin chain model is:

− 1 + ei(p1+p2) − 2∆eip2

1 + ei(p1+p2) − 2∆eip1
= eip1L (2.49a)

The analogy with the spinless fermion model is evident.

2.3 Equivalence of two models: Jordan-Wigner

transformation

The Jordan-Wigner transformation[14] (hereafter JWT) allow us to switch
between the SF and the XXZ model.

The JWT are de�ned as:

ci = e−iπ
∑i−1
j=1 S

+
j S
−
j S+

i (2.50)

c+
i = S−i e

iπ
∑i−1
j=1 S

+
j S
−
j (2.51)

The operators S±k satisfy to locally anti-commutation fermionic rules but
when de�ned on di�erent sites they commute:

{S+
j , S

−
j } = 1

[S+
j , S

−
k ] = 0
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The term e−iπ
∑i−1
j=1 S

−
j S

+
j gives to the fermionic operators c+

i and ci a global
anti-commutation property which is what needed.
The transformations can be inverted to:

S+
i = eiπ

∑i−1
j=1 c

+
j cjci (2.52)

S−i = c+
i e
−iπ

∑i−1
j=1 c

+
j cj (2.53)

It can be easily veri�ed that c+
j cj = S+

j S
−
j .

As last tool let us see that

S+
k S
−
k = SxkS

x
k + i(SykS

x
k − SxkS

y
k) + SykS

y
k (2.54)

So considering that[
Sαi , S

β
j

]
= iδi,jεα,β,γS

γ
i with α, β, γ = x, y, z (2.55)

we can write

Szk = S+
k S
−
k −

1

2
(2.56)

Consider now the spin 1
2
XXZ model hamiltonian de�ned with the raising

and lowering operators:

H̃XXZ = −J
2

L∑
i=1

(
S+
i S
−
i+1 + S+

i+1S
−
i

)
− J∆

L∑
i=1

Szi S
z
i+1 − h

L∑
i=1

Szi (2.57)

Note that the PBC's are an important feature to be considered. In fact, let

us consider what happen applying the JWT to the term
L∑
i=1

S+
i S
−
i+1:

L∑
i=1

S+
i S
−
i+1 = eiπ

∑i−1
j=1 c

+
j cjcic

+
i+1e

−iπ
∑i
j=1 c

+
j cj =

=
L∑
i=1

e−iπc
+
i cicic

+
i+1 =

=
L−1∑
i=1

e−iπc
+
i cicic

+
i+1 + e−iπc

+
LcLcLc

+
L+1 (2.58)
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Now, e−iπc
+
i ci can be written as:

e−iπc
+
i ci =

∞∑
j=0

(
−iπc+

i ci
)j

j!
=

=
∞∑
j=1

(−iπ)j

j!
c+
i ci + 1 =

=

[(
−1 +

∞∑
j=1

(−iπ)j

j!

)
c+
i ci + 1

]
=

=
[
(−1 + cos(π) + i sin(π)) c+

i ci + 1
]

=

= 1− 2c+
i ci

So the term for i = L in eq. (2.58) is not well-de�ned since it would be
(1− 2c+

LcL)cLc
+
L+1 and the L+ 1-th site isn't in the chain.

However, considering the PBC, the L + 1-th site will coincide with the �rst
site and, from eq. (2.58):

=
L−1∑
i=1

(1− 2c+
i ci)cic

+
i+1 + (1− 2c+

LcL)cLc
+
1 =

=
L∑
i=1

(1− 2c+
i ci)cic

+
i+1 =

L∑
i=1

cic
+
i+1

Applying the JWT to the entire hamiltonian one gets in a some straightfor-
ward way to:

H̃XXZ = −J
2

L∑
i=1

(
c+
i ci+1 + c+

i+1ci
)
−J∆

L∑
i=1

nini+1+J∆
L∑
i=1

ni−h
L∑
i=1

ni−
J∆L

4
+
hL

2

(2.59)

which have to be confronted with the hamiltonian of the Spinless Fermion
model:

HSF = − t
2

L∑
i=1

(
c+
i ci+1 + c+

i+1ci
)
+U

L∑
i=1

nini+1−U
L∑
i=1

ni+µ
L∑
i=1

ni+
UL

4
−µL

2

(2.60)
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The corrispondence between the coe�cient is evident:

J = t

U = −J∆ = −t∆
µ = −h

With these relations on mind we can verify that the Bethe equation obtained
for the SF model can be switched directly into the one obtained for the XXZ
model simply substituting U = −J∆.





Chapter 3

Results from Bethe equation

In the following we will discuss the solutions of the Bethe equation when
r = 2 for the SF model and M = 2 for the XXZ model.
Since the only di�erence between eq. (2.14) and (2.48) is given by the coef-
�cient 2U

t
or −∆, we can solve one of them and take the solution for both.

Let us consider eq. (2.19) and rewrite it in the following way:

−
2 cos

(
π
L

(λ1 + λ2)
)

+ 2U
t
e−

β
L ei

π(λ1−λ2)+α
L

2 cos
(
π
L

(λ1 + λ2)
)

+ 2U
t
e
β
L e−i

π(λ1−λ2)+α
L

= e−βei(2πλ1+α) (3.1)

Fixing the values of L and U and requiring that

−π ≤ α ≤ π if β 6= 0

−π < α < π if β = 0 (3.2)

this equation gives one solution for every possible choose of the couple λ1, λ2.
There are L possible values for λ1 and λ2 so the solutions are L2.
Anyway, all the solutions for which λ1 and λ2 are exchanged results to be
dependent solutions. So, in order to obtain only the L(L−1)

2
independent so-

lutions, we must require that 0 ≤ λ2 ≤ λ1 ≤ L− 1.
Also with this requirement one must be very carefull to do not take dependent
solutions of the kind θλ1,λ2 = −θλ1,λ2 . Moreover when λ1 = λ2 the solution
θ = 0 must be eliminated cause it would give p1 = p2, as already said in this
case ei(p1j+p2k) and ei(p1k+p2j) do not represent a set of independent vectors
and the PBC fails.

25
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As done by Karbach and Muller[15] studying the Heisenberg model, the
eq. (3.1) can be solved numerically, it could be convenient to classify the
couples (λ1, λ2) into three classes:

1. Class C1 - couples with λ2 = 0 and λ1 = 0, 1, . . . , L− 1

2. Class C2 - couples with λ1 − λ2 ≥ 2 but λ1, λ2 6= 0

3. Class C3 - couples with λ1 = λ2 or λ1 = λ2 + 1 but λ1, λ2 6= 0

Following this scheme, together with the prescription 0 ≤ λ2 ≤ λ1 ≤ L−1,
we have L couples of class C1, L

2
(L− 5) + 3 couples of class C2 and 2L− 3

couples of class C3.
One could expect that every single couple yields a solution, but summing
the number of C1, C2 and C3 couples we obtain a total number of L

2
(L+ 1)

couples.
So not every couple (λ1, λ2) can produce a solution.
Actually, there are some "missed" solutions for some values of λ1 and λ2, it
depends strongly on the value of U and L.

In �gs (3.1,3.2,3.3,3.4), are shown the solutions for every couple (λ1, λ2).
It turns out that all the C2 couples produces always a solutions (light blue
circles), so we have at least L

2
(L−5)+3 solutions and they are always scatter-

ing solutions. The solutions from C1 and C3 couples , instead, can produce
either scattering (blue squares for C3 and green squares for C1) or bound
state (red squares for C3 and black stars for C1) solutions.
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Figure 3.1: Couples of (λ1, λ2) for which there is a solution to the Bethe equation for L = 23 and U < 0.
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Figure 3.2: Couples of (λ1, λ2) for which there is a solution to the Bethe equation for L = 23 and U > 0.
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Figure 3.3: Couples of (λ1, λ2) for which there is a solution to the Bethe equation for L = 24 and U < 0.
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Figure 3.4: Couples of (λ1, λ2) for which there is a solution to the Bethe equation for L = 24 and U > 0.

The number of solutions from C1 and C3 couples is strongly dependent
on the values of U . For example, considering the C3 class solutions, we found
that their presence is dependent from U and from and (λ1 + λ2): if U > 0
there will be solutions only from couples (λ1, λ2) for which held (λ1 +λ2) < L

2

or (λ1 + λ2) > 3L
2
; if U < 0 there will be solutions only from couples (λ1, λ2)

for which held L
2
< (λ1 + λ2) < 3L

2
. Note that the inequalities are strict.

The dependence of the number of solution from L and U is explained in the
following table:
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L even L odd
U < 0 U > 0 U < 0 U > 0

C1 sols L L− 3 L L− 3
C3 sols L− 4 L− 1 L− 3 L
C2 sols L

2
(L− 5) L

2
(L− 5) L

2
(L− 5) L

2
(L− 5)

Total L
2
(L− 1)− 1 L

2
(L− 1)− 1 L

2
(L− 1) L

2
(L− 1)

Table 3.1: Number of solutions obtained for class C1, C2 and C3.

This table put a spotlight on the number of solutions, note that the num-
ber of total solutions found via numerical evaluation is di�erent between the
L odd and the L even case, if L is even there is one less solution than ex-
pected.
This is due to a lack of the numerical evaluation, the "missed" C3 solution
can be found in the following way.

Consider eq. (3.1) with λ1 − λ2 = 0, λ1 + λ2 = L
2
so λ1 = L

4
:

−
U
t
e−

β
L ei

α
L

U
t
e
β
L e−i

α
L

= e−βei(
πL
2

+α) (3.3)

which become:

U

t
(e−

β
L ei

α
L + e−β(1− 1

L
)ei

πL
2 eiα(1− 1

L
)) = 0 (3.4)

taking real and immaginary part separately and considering that L is even:

e−
β
L cos(

α

L
) + e−β(1− 1

L
) cos(

πL

2
) cos(α(1− 1

L
)) = 0 (3.5)

e−
β
L sin(

α

L
) = 0 (3.6)

so:

α = 0 (3.7)

β =
L

L− 2
ln

(
− cos(

πL

2
)

)
(3.8)

The eq.(3.8) tells us that for L = 4m with m ∈ N the logarithm would have
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a negative argument so the solutions doesn't exist, for L = 2m with m ∈ N
and m odd the solution exist but with β = 0.

Actually, there is another way to �nd a solution for eq.(3.3), one could set
β = 0 and search for a scattering solution.
So:

U

t
(ei

α
L + ei

πL
2 eiα(1− 1

L
)) = 0 (3.9)

which gives:

α = − πL2

2(L− 2)
+ π

L

(L− 2)
(3.10)

but this solution is not allowed because of eq.(3.2).

3.1 Bound state solutions

A bound state is represented by a solution with a purely immaginary relative
momentum p = iβ. These are also known as string solutions.
Within a spin picture, the bound state of two �ipped spins (or magnons) can
be reviewed as a spin wave excitation.
In absence of external applied �eld (or equivalently for a null chemical poten-
tial), for U 6= 0 there could be some bound state solutions. As |U | increases,
the number of bound state solutions increases too.
The maximum number of bound state solutions is reached for a certain value
of U (UMAX) which depend on L. UMAX tends to the unity for L→∞.

Note that the value of UMAX is di�erent if U < 0 or U > 0. Denoting
with UMAX

<0 the value of U for which the maximum number of bound state
solutions is obtained if U < 0 and with UMAX

>0 the value of U for which
the maximum number of bound state solutions is obtained if U > 0, so∣∣UMAX

>0

∣∣ > ∣∣UMAX
<0

∣∣.
In other words, the maximum number of bound state solutions is reached
with a "weaker" value of interaction in the case of attractive interaction
than the repulsive one.
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The number of solutions vs U is reported in �g. (3.5).

Figure 3.5: Number of solutions obtained vs U. Note that the blue dots (total number of solutions) is
always under the blue line (expected number of total solutions).

The energy spectrum is obtained via eq. (2.13).
The energy spectrum, calculated for values of the momentum of the center of
mass from 0 to 2π, exhibit the characteristic scattering band. The energies
related to the bound states form a new band of energy which is located under
the scattering band for U < 0 and above the scattering band for U > 0.
Moreover, if the parameter U is su�ciently negative, the ground state of the
system is represented by a bound state with center of mass momentum P = 0
and all the bound state solutions for a given value of P , possesses an energy
lower than the scattering solutions for the same P .
In �gs (3.6,3.7,3.8,3.9) is reported the energy spectrum vs P (total momen-
tum) and there is the prediction for the energy of the bound states in the
thermodynamic limit calculated by eq. (2.36).
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Figure 3.6: Energy spectrum for negative values of U for L = 24 with the prediction in the thermodynamic
limit for the energy of bound states.
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Figure 3.7: Energy spectrum for negative values of U for L = 24 with the prediction in the thermodynamic
limit for the energy of bound states.
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Figure 3.8: Energy spectrum for positive values of U for L = 24 with the prediction in the thermodynamic
limit for the energy of bound states.
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Figure 3.9: Energy spectrum for positive values of U for L = 24 with the prediction in the thermodynamic
limit for the energy of bound states.

One can also evaluate the di�erence between the value of the energy of
the bound states predicted from the thermodynamic limit in eq. (2.36) and
the value obtained substituting in eq (2.13) the momenta of a bound state
solution.
Thus we runned di�erent simulation at �xed U (U = 1.8) but at di�erent L
evaluating the di�erence |EBound

P=0 −ETDLim| for the bound state given from the
solution with null center of mass momentum (P = 0), plotting this quantity
in funciont of L one obtain which shows that for an intermediate value of L
as for example L = 22 the di�erence EBound

P=0 and ETDLim is beyond the 4th
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Figure 3.10: Di�erence between EBoundP=0 and ETDLim vs L. It is evident that for big L the Bethe ansatz
prediction for the enrgy of the bound states approaches to the thermodynamic prediction

decimal digit.



Chapter 4

Dynamical evolution and

numerical simulation

The study of the time evolution of a model brings to understand the dynam-
ics of the model and one can in turn obtain a prediction for some features of
the model.
The recent possibility of trapping ultra-cold atoms in optical lattices gives
the possibility to simulate fermionic or bosonic interacting systems by chang-
ing the interaction parameter.
This stimulated a great theoretical interest toward the study of the dynamics
of such systems to compare theoretical or numerical predictions with exper-
imental data.
A recent work from Bonnes et al. studied the dynamics of a spin 1

2
XXZ

chain after a quantum quench[4]. They prepare the system in an initial state
which is an eigenstate of the hamiltonian:

HXXZ(∆i) = −J
L∑
j=1

(Sxj S
x
j+1 + Syj S

y
j+1 + ∆iS

z
jS

z
j+1) (4.1)

with ∆i being the value of the anisotropy before the quench.
Then they let the system evolve with a new value of the anisotropy (∆f ), all
of their quenching protocols imply ∆f < ∆i.
They study the longitudinal spin correlation Szj (t) given by:

Szj (t) = 〈SzL/2(t)Szj (t)〉 − 〈SzL/2(t)〉〈Szj (t)〉 (4.2)

where L/2 is the position of the middle site of the chain.
What turns out from the study is that Szj (t) exhibit the tipycal "light-cone"

39
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e�ect with a spreading speed being dependent from both the value of ∆i and
∆f .
This result means that it is not only the quenched evolving hamiltonian that
determines the dynamics of the system but the initial state matter too.

In the same direction there is a work from Degli Esposti Boschi et al[5].
for the study of expansion dynamics of bosons on a 1D lattice.
The hamiltonian is the following

HB = −J
L∑
j=1

(b+
j bj+1 + b+

j+1bj) +
U

2

L∑
j=1

nj(nj − 1) (4.3)

with bj being the bosonic annihilation operator and nj = b+
j bj.

In this study, considering the case of two particles, the authors are able to
obtain the exact eigenvalues with a Bethe ansatz approach with scattering
and bound states solutions.
This allows to identify the e�ects of the presence of the bound states on the
dynamics of the system.
The study is focused on the evolution of the density (ρj(t)), the single occu-
pation (sj(t)) and the double occupation (dj(t)) on the lattice given by:

ρj(t) = 〈Ψ(t)|nj
2
|Ψ(t)〉 (4.4)

sj(t) = 〈Ψ(t)|nj(2− nj)|Ψ(t)〉 (4.5)

dj(t) = 〈Ψ(t)|nj(nj − 1)

2
|Ψ(t)〉 (4.6)

What turns out is that the spreading velocity is strongly in�uenced by the
presence of bound states, as one could intuitively expect the larger the pro-
jection of the initial state on bound state the smaller the spreading velocity.
Another curious feature is the behaviour of the bosons with the di�erent val-
ues of U , as shown in the paper for U = 0 the density pro�le follows a free
expansion, it changes as the U is changed and tends to become again a free
expansion pro�le for large U .
This is explained by authors with the fact that bosons with a large interac-
tion parameter tend to become hard-core bosons and in this case they are
equivalent to free (fermionic) particles.

In our study we would try to extend these results to the fermionic case
which is represented from the spinless fermion 1D chain, �nding the role of
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the bound states during the time evolution of the system.
Obviously, by mean of the Wigner-Jordan transformation, the results can be
translated directly in the language of spin on a 1D chain.

4.1 DMRG

The description of the physical properties of low-dimensional strongly cor-
related quantum systems is one of the major tasks in theoretical condensed
matter physics.
Due to the large size of the Hilbert space it is in many cases impossible to
�nd an exact solution of the quantum systems. Take as example the problem
of two spinless fermions on a 1D chain of lenght L.
For this very simple model, we have only two possible states for every site:
absence of particles (|0〉) and presence of one particle (|1〉), so the total di-
mension of the Hilbert space will be 2L. Even for a short chain with L = 10
the system will be described by 1024 states and the problem cannot be easily
solved.
So one can try to use a numerical method to diagonalize the hamiltonian
and take the exact eigenstate and eigenvalues, actually this could be a very
di�cult task considering the enormous dimension of the Hilbert space.

In 1992 S. White developed[27][28] the density-matrix renormalization-group
method (DMRG) which allowed decisive progress in the description of the
low-energy equilibrium properties of 1D strongly correlated quantum sys-
tems.
The DMRG method, di�erently from other renormalization techniques such
as the Real-Space Renormalization Group (RSRG), performs an iterative
decimation of the Hilbert space based on the evaluation of the density ma-
trix.
In fact, the DMRG at every step of iteration retain only the states which
have the highest-weight eigenvalues and so its consider a reduced Hilbert
space. We will see in following paragraphs this and the others approxima-
tion methods in details.
This approximation allows to solve numerically the system with a good de-
gree of �delity and using a reasonable amount of time and computational
resources.
The DMRG method has yielded an enormous wealth of information on the
static and dynamic equilibrium properties of one-dimensional systems[23] and
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is one of the most powerful computational methods.

4.2 DMRG method

The density-matrix renormalization group (DMRG) is a numerical method
to study low-dimensional strongly correlated systems.
The DMRG algorithm belongs to the family of the "renormalization meth-
ods". Starting from some microscopic Hamiltonian it iteratively integrates
out degrees of freedom, such that an e�ective description of the system is
obtained.
The di�culty is to obtain an e�ective description without loose any physical
feature.
The "renormalization method" works as follows: start from a chain (also
called "block") of length l su�ciently small to be represented numerically on
a computer.
Then the chain is enlarged until the desidered lenght L is reached. The en-
larging procedure is performed step by step adding one (in some rare cases
more than one) site per time, the dimension of the Hilbert space is reduced
taking only the portion of the Hilbert space in which there are the most
"relevant" states.
The problem is to de�ne which are the "relevant" states.
For example, in the Real-Space Renormalization Group method (RSRG), the
decimation procedure of the Hilbert space is to take the lowest-lying eigen-
states of the compound block AA (Fig. 4.1). This bring to a description of
the ground state of the entire chain essentially with the energetically low-
lying states of smaller blocks. This RSRG procedure gives very poor results,
its failure can be explained in that way (Fig. 4.1): assuming a rather large
block size, where discretization can be neglected, the lowest-lying states of
A will have their nodes at the lattice ends, such that all product states of
AA will have nodes at the compound block center. The true ground state
of AA will have its maximum amplitude right in the block center, such that
the properly approximation cannot be obtained with a restricted number of
block states.

So, considering isolated blocks imposes wrong boundary conditions. White
and Noack in 1992 realized that one could obtain excellent results by consid-
ering that the presence of the "environment".
In the DMRG method there are two growing blocks, one representing the
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Figure 4.1: Two blocks A are connected to form the compound block AA. The dashed lines are the
lowest energy eigenstates of the separate blocks A, the solid line represents the lowest energy
eigenstate of the compound block AA. Fig. from [23]

system (S) and one representing the environment (E).
These block start from an initial lenght l and are enlarged both of one site,
so at every enlargment step the total system is composed by the block S,
two sites and the block E. We thus arrive to what is called a "superblock" of
length 2l + 2 (Fig. 4.2)
The last step of the enlargment procedure is when a superblock of lenght L
is obtained.

Assuming that for a block of length l we have an MS-dimensional Hilbert
space with states

{
|mS

l 〉
}
. The Hamiltonian Ĥl is given by matrix elements

〈mS
l |Ĥl|mS

l 〉 Similarly we know the matrix representations of local operators
such as 〈mS

l |ôi|mS
l 〉.

For linear growth, we can now write Ĥl+1 in the product basis{
|mS

l σ〉
}

=
{
|mS

l 〉|σS〉
}

(4.7)

where |σS〉 are the Nsite local states of a new site added.
At this point, one can obtain the ground state of the superblock by a numer-
ical diagonalization:

|ψ〉 =
MS∑
mS=1

Nsite∑
σS=1

Nsite∑
σE=1

MS∑
mE=1

ψmSσSσEmE |mS〉|σS〉|mE〉|σE〉 (4.8)

=⇒ |Ψ〉 ≡
NS∑
i

NE∑
j

ψij|i〉|j〉 〈ψ|ψ〉 = 1
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where ψmSσSσEmE = 〈mSσS;σEmE|ψ〉.{
|mSσS〉

}
= {|i〉} and

{
|mEσE〉

}
= {|j〉} are the orthonormal product bases

of system and environment (subscripts have been dropped) with dimensions
NS = MSNsite and N

E = MENsite respectively. In general NS 6= NE.

Figure 4.2: DMRG construction of a superblock from two blocks and two single sites. Fig. from [23]

Some truncation procedure from NS to MS < NS states must now be im-
plemented.
The �rst way to obtain a good truncation is to perform an optimization of
expectation values.
If the superblock is in a pure state |ψ〉 given by eq. (4.8), the physical state
of the system can be described through a reduced density-matrix ρ̂

ρ̂ = TrE|ψ〉〈ψ| (4.9)

where the states of the environment have been traced out.
So

〈i|ρ̂|k〉 =
∑
j

ψijψ
∗
kj (4.10)

ρ̂ has NS eigenvalues wα and orthonormal eigenstates so that

ρ̂|wα〉 = wα|wα〉 (4.11)
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with
∑

αwα = 1 and wα ≥ 0.
We assume the states are ordered such that w1 ≥ w2 ≥ w3 ≥ . . .
Now we can approximate the ground state of the system retaining only those
states of MS with largest weight wα.
It can be shown[23] that the error ερ for local quantities, such as energy,
magnetization or density, are of the order of the truncated weight

ερ = 1−
MS∑
α=1

wα (4.12)

Hence, a fast decay of density matrix eigenvalues wα will bring to better
performance of this truncation procedure.

Another method implemented in the DMRG for truncation of the Hilbert
space is the optimization[27][28][23] of the wave function.
This, starting from the only requirement that quantum mechanical objects
are completely described by their wave function, require that the approxi-
mate wave function |ψ̃〉 where the system space has been truncated to be
spanned by only MS orthonormal states |α〉 =

∑
i uiα|i〉

|ψ̃〉 =
MS∑
α=1

NE∑
j=1

ajα|α〉|j〉 (4.13)

minimizes the distance in the quadratic norm∣∣∣∣∣∣|ψ〉 − |ψ̃〉∣∣∣∣∣∣ (4.14)

White[27] found that choosing |α〉 to be the MS eigenvectors |wα〉 with the
largest eigenvalues wα of the density matrix, the minimal distance squared is:

∣∣∣∣∣∣|ψ〉 − |ψ̃〉∣∣∣∣∣∣2 = 1−
MS∑
α=1

wα (4.15)

which is equal to ερ.

The last method used for the truncation of the Hilbert space is the opti-
mization of entanglement.
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It has been found[10][18][22] that the truncation procedure described above
ensures the maximum entanglement system-environment.
Using the von Neumann entropy for the measure of the entanglment one can
obtain

SvN = −Trρ̂ ln2 ρ̂ = −
NSch∑
α=1

wα ln2wα (4.16)

where NSch is the number of states used to describe the system |ψ〉 after a
Schmidt decomposition for which the reduced density matrices for system
and environment are given by

ρ̂S =

NSch∑
α=1

wα|wSα〉〈wSα| (4.17)

ρ̂E =

NSch∑
α=1

wα|wEα 〉〈wEα | (4.18)

Note that generally NSch ≤ min(NS, NE)

Using DMRG one can obtain a good estimation for the energy of the
system and for the expectation values for n-point correlations.
As a method working in a subspace of the full Hilbert space, the DMRG
results to be variational in energy. The value obtained for energies E(M)
improves monotonically with M , the number of basis states in the reduced
Hilbert space.
Rerunning the calculation of a system of size L for various M , one observes
for su�ciently large values of M that to a good approximation the error in
energy per site scales linearly with the truncated weight[23],

E(M)− Eexact
L

∝ ερ (4.19)

with a non-universal proportionality factor typically of order 1 to 10, some-
times more[29][19].
As ερ is often of order 10−10 or less, DMRG energies can thus be extrapolated
using Eq. (4.19) quite reliably to the exact M = ∞ result, often almost at
machine precision. The precision desired imposes the size of M , which for
spin problems is typically in the lower hundreds, for electronic problems in
the upper hundreds, for two-dimensional and momentum-space problems in



4.2 DMRG method 47

the lower thousands.

For what concern the evaluation of properties, the DMRG is able to cal-
culate the expectation value of a n-point correlation operator[23]

Ô
(n)
i1...in

= Ô
(1)
i1
. . . Ô

(1)
in

(4.20)

for most pratical purpose the interesting cases are n = 1 and n = 2.
With n = 1 one can measure properties like density or local magnetization.
The growth strategy of DMRG bring to a three-step procedure of initializing,
updating and evaluating correlators.
During the inizialization Ôi acts on site i, when this site is added to a block
of length l − 1 the quantity 〈σ|Ôi|σ̃〉 is evaluated.
With {|ml〉} being the reduced basis of the new block enlarged with site i
and {|ml−1〉} the basis of the old block, one has

〈ml|Ôi|m̃l〉 =
∑

ml−1σσ̃

〈ml|ml−1σ〉〈σ|Ôi|σ̃〉〈m̃l−1σ̃|m̃l〉 (4.21)

where 〈ml|ml−1σ〉 is already known from the density-matrix eigenstates.
Hence start the update phase, a basis transformation for the block containing
the site where Ôi is carried. As Ôi does not act on the new site, the operator
transforms as

〈ml+1|Ôi|m̃l+1〉 =
∑
mlm̃lσ

〈ml+1|mlσ〉〈ml|Ôi|m̃l〉〈m̃lσ̃|m̃l+1〉 (4.22)

After the last DMRG step starts the evaluation, 〈mSσSσEmE|ψ〉 is known
and

〈
Ôi

〉
reads, assuming Ôi to act on some site in the system block,

〈ψ|Ôi|ψ〉 =
∑

mSm̃SσSσEmE

〈ψ|mSσSσEmE〉〈mS|Ôi|m̃S〉〈m̃SσSσEmE|ψ〉 (4.23)

If we are interested into measuring 2-point correlation which could mean
e.g. a measure of density-density correlations or spin-spin correlation, so we
have to deal with the case n = 2.
Now two subcases have to be distinguished, whether the locations i and j
of the contributing 1-point operators act on di�erent blocks or on the same
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block at the last step.
If they act on di�erent blocks, one follows through the procedure for 1-point
operators, yielding 〈mS|Ôi|m̃S〉 and 〈mE|Ôj|m̃E〉. The evaluation is done by
the following modi�cation of eq. (4.23)

〈ψ|ÔiÔj|ψ〉 =
∑

mSm̃SσSσEmEm̃E

〈ψ|mSσSσEmE〉〈mS|Ôi|m̃S〉〈mE|Ôi|m̃E〉〈m̃SσSσEm̃E|ψ〉

(4.24)

Instead, if they act on the same block, the di�erence is in the inizialization.
Such operators have to be built as a compound object at the step in which
they belong to a product Hilbert space, namely when one of the operators
acts on a block of length l − 1, the other on a single site, that is being at-
tached to the block. Then we know 〈ml−1|Ôi|m̃l−1〉 and 〈σ|Ôj|σ̃〉 and within
the reduced bases of the block of length l the eq.(4.21) became

〈ml|ÔiÔj|m̃l〉 =
∑

ml−1m̃l−1σσ̃

〈ml|ml−1σ〉〈ml−1|Ôi|m̃l−1〉

〈σ|Ôj|σ̃〉〈m̃l−1σ̃|m̃l〉
(4.25)

The updating and �nal evaluation stages for �compound� operators proceed
as for a one-point operator.

4.3 DMRG Algorithm

Generally speaking the algorithm for the DMRG has been developed for the
simulation of an in�nite system.
Here we report the general idea of this algorithm, which is fully explained in
[17][23]:

1. Inizialization of the system (S) with a starting lattice of lenght l. The
initial states form a basis given by

{
|mS

l 〉
}
, at this level the Hamiltonian

and the operator acting on the system are assumed to be known. The
same is done for the environment (E).

2. Form the new system S ′ adding a lattice point to S. The Hilbert space
dimension of S ′ is now NS = MSNsite, the new basis is

{
|mS

l 〉|σ〉
}
.

The new environment E ′ is build in the same way from E.

3. Build the superblock of length 2l + 2 from S ′ and E ′. The Hilbert
space is of size NSNE, and the matrix elements of the Hamiltonian
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H2l+2 could in principle be constructed explicitly, but this is avoided
for e�ciency reasons.

4. Find by large sparse-matrix diagonalization of H2l+2 the ground state
|ψ〉. This is the most timeconsuming part of the algorithm.

5. Form the reduced density matrix and determine its eigenbasis and
eigenvalues. form the reduced basis for S ′ taking the MS eigenstates
with the largest weights. Proceed in the same way for the environment.

6. Find the new Hamiltonian Hl+1 for the system and for the environ-
ment. Repeat from step 2 until the desired lenght is reached. Update
operator representation.

7. Calculate desired ground state properties (energies and correlators)
from |ψ〉. This step can also be carried out at each intermediate length.

However, for many problems in�nite-system DMRG does not yield sat-
isfactory answers. DMRG is usually used with �xed particle numbers and
�nite system size.

The �nite system algorithm is based on the idea to stop the in�nite-
system algorithm at a prede�ned superblock length L.
So, once the lenght L is reached (Fig. 4.3), the growth is stopped but in�nite-
system algorithm steps are applied too. Instead of simultaneous growth of
both blocks, only one block is allowed to grow at the expenses of the other
block. The calculations for the reduced basis transformations are carried out
only for the growing block.
For example let us consider this stage: the system block grow from l to l+ 1
at the expense of the environment block which shrink to k − 1;
to describe it, environment blocks of all sizes and operators acting on this
block, expressed in its basis, must have been stored previously.
Once the environment block reaches the minimum size and its description
becomes exact, the growth direction is reversed, and the enviroment block
grows at the expense of the system. If the system is symmetric under re-
�ection, blocks can be mirrored at equal size, otherwise the shrinking block
is reduced until a minumum size is reached and then regrown. A complete
shrinkage and growth sequence for both blocks is called a sweep.
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Figure 4.3: Sweep steps of the �nite-system DMRG algorithm. Fig. from [23]

4.4 Time evolution of the system and the work-

frame of the adaptive time dependent DMRG

(a-DMRG)

Consider the spinless fermion 1D chain model, in chapter 2 we have obtained
the explicit form of the eigenstates in the case of two particles and we know
exactly the behaviour of the solutions on U .
The initial state is of the form

|φ(t = 0)〉 =
L∑

j,k=1

φj,kc
+
j c

+
k |0〉 (4.26)

With the φj,k given from the Bethe ansatz solution.
Now, labelling with s and b the scattering and the bound state solutions
respectively we can write a completeness relation:∑

b

|b〉〈b|+
∑
s

|s〉〈s| = 1 (4.27)

So the initial state can be expressed in term of a linear combination of |s〉
and |b〉 states:

|φ(t = 0)〉 =
∑
b

C0
b |b〉+

∑
s

C0
s |s〉 (4.28)

with C0
b = 〈b|φ(t = 0)〉 and C0

s = 〈s|φ(t = 0)〉 being the coe�cient at initial
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time.

The time evolution of the system can be studied using the time dependent
Schroedinger equation which gives (setting ~ = 1):

|φ(t)〉 =
∑
b

C0
b e
−iĤt|b〉+

∑
s

C0
s e
−iĤt|s〉 (4.29)

The evolution will be obtained with time evolving Density Matrix Renor-
malization Group (DMRG or equivalently DMRGTEV) techniques. Here we
evaluate the evolution of the system on the basis of a Runge-Kutta approxi-
mation using the in�nitesimal time-evolving operator, so:

|φ(t+ ∆t)〉 = (1− iĤ∆t)|φ(t)〉 (4.30)

where ∆t is the time step of the evolution.

In the computational study of the dynamical evolution of a physical sys-
tem one should account very carefully to what is happening during the simu-
lation. The results are a�ected by errors which rise by the natural numerical
approximation, e.g. a calculator which has a �nite number of bits to repre-
sent a real (in�nite digits) number, and from the approximation which came
from the numerical methods we are implementing.
Although one cannot do nothing for �rst issue, the latter depends only on
the algorithm used to estimate the evolved state.
The �rst peculiarity of the a-DMRG we would like to display is the fact that
the Hilbert space considered during the evolution is "adapted" to the evolved
state.
So, the dimension of the Hilbert space considered is held constant and it is
always smaller than the dimension of the total Hilbert space.
This is based on the reasonable idea that if H̃ is the total Hilbert space
of the system the initial state |Ψ(t = 0)〉 can be descripted with a reduced

subspace H̃0. Now, if the system evolves toward a new state |Ψ(t = ∆t)〉
to describe the evolved state one could use an enlarged subspace of the kind
H̃∆t = H̃0 + δH̃ retaining all the subspace of the previous state.
This bring to an incontrolled growth of the subspace considered which cause
a useless growth of the computational time and consumption of computa-
tional resources.
Instead, the a-DMRG perform a stage of optimization of the subspace con-
sidered "adapting" the subspace to the evolved state. So at every step in
the new subspace there will be only the "vectors" which best describe the
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evolved state (Fig. 4.4)

Figure 4.4: a) the subspace of the initial state; b) the enlarged subspace for �rst steps of evolution; c) the
"adapted" subspaces for �rst steps of evolution. Fig. from [17]

For what concern the evaluation of the evolved state, the DMRG proceed
implementing a 4th order Runge-Kutta algorithm to every DMRG step.
Let us consider a typical next-neighbour interacting hamiltonian, it can be
splitted into the sum of two hamiltonian of the kind:

H = F +G =
∑
i

Fi,i+1 +
∑
j

Gj,j+1 (4.31)

Where i and j are respectively an even integer and an odd integer, thus Fi,i+1

is the hamiltonian which describes the interaction between a couple of next-
neighbour sites with i even (even bond) and Gj,j+1 is the hamiltonian which
describes the interaction between a couple of next-neighbour sites with j odd
(odd bond). All the terms of F and G commute each other but terms which
share one site.
The evolution operator can be represented with a �rst order Trotter expan-
sion in this way:

e−iHδt =
∏
i

e−iFi,i+1δt +
∏
j

e−iGj,j+1δt +O(δt2) (4.32)

So, the time evolution in the a-DMRG is evaluated at each time step trought
the local evolution operator (LEO) e−iFi,i+1δt and e−iGj,j+1δt

Using a second order Runge-Kutta approximation the evolved state is ex-
pressed by:

|Ψ(t+ δt)〉 = (1− iHδt)|Ψ(t)〉 (4.33)
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Figure 4.5: Partitioning the lattice for the time evolution. Fig. from [17]

The simulation starts implementing the �nite-size DMRG algorithm which
"build up" the lattice of the desidered lenght and compute the ground state
for the hamiltonian at t = 0.
Once the time starts the LEO is applied to the even bond of the state |Ψ(t)〉,
the LEO can be applied only when the system is in the right con�guration
of two sites-two blocks.
In order to get the right con�guration, the lattice is splitted at the bound
between points l and l+ 1. This i.e. to have a system block of lenght l− 1, a
point (site) l, a point (site) l+1 and an environment block of lenght L− l−1
(Fig. 4.5).

This allows to apply the LEO for the bound between l and l + 1 once the
evolved state is obtained a DMRG truncation of the Hilbert space is per-
formed in order to adapt the dimension of the Hilbert space to the evolved
state.
Then the next even bond is splitted (e.g. the bond between l + 2 and l + 3)
until the end of the chain is reached, this is called a sweep.
Once the end of the chain is reached another sweep starts in the opposite
direction but this time the evolved bonds are the odd.
When all the bonds are updated the algorithm proceed to evaluate the op-
erators (properties) given in the input.





Chapter 5

New results and outlooks

In our case of study the a-DMRG method has been applied to the two par-
ticles SF model hamiltonian. The quenching protocol is quite simple: the
starting hamiltonian is de�ned with U = 0 and a large chemical potential on
central sites, in the �nal hamiltonian an interacting potential is turned on
and the chemical potential is switched o�. The hopping parameter t is set
on unity.

H0(t = 0) = −1

2

L∑
i=1

(
c+
i ci+1 + c+

i+1ci
)

+ µ(nL
2

+ nL
2

+1) (5.1)

H(t 6= 0) = −1

2

L∑
i=1

(
c+
i ci+1 + c+

i+1ci
)

+ U

L∑
i=1

nini+1 (5.2)

This quenching protocol has been applied with several values of U ranging
from U = −4 to U = 4 with a starting product state given by the ground
state of H0:

|ΨPS〉 = c+
L
2

c+
L
2

+1
|0〉 (5.3)

which correspond to a wave packet of two fermions on the central sites of the
chain. The value of L used is L = 24.
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Figure 5.1: A 24 sites lattice with two fermions "sitting" on central sites

This con�guration is equivalent to the spin con�guration of [4] and is the
fermionic translation of the �rst case of [5].

Free particle case U = 0
Evaluating the expectation value of the density at every instant of the simula-
tion one can visualize the spreading of the wave packet during the evolution.
Let us start evaluating the spreading of a system of free fermion in which in
the evolving hamiltonian the interaction parameter is U = 0.

Figure 5.2: Density pro�le of a system of free fermions with PBC.

The wave packet spreads all along the chain, one could estimate the
spreading velocity calculating:
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v =
d

dt

√
R2(t)−R2(t = 0) (5.4)

where R2(t) is the time-dependent variance of the density distribution

R2(t) =
1

N

L∑
i=1

ni(t)(i− i0)2 (5.5)

here i0 is the centre of the wave packet at t = 0.
Plotting the spreading velocity in function of the time for U = 0, one obtain:

Figure 5.3: Spreading velocity of a system of free fermions with PBC.

in �g. (5.3) it is possible to see that the wave packet spread out with con-
stant speed v =

√
2, this value is obtained also in [5] as spreading speed for

the free bosonic particles case. The decreasing tail in �g. (5.3) is explained
considering that the system is under periodic boundary condition, thus when
the wave packet reaches the limits of the chain it bounces back bringing a
negative contribution to the spreading velocity. In fact, from �g. (5.2) one
can see that the re�ection of the wave packet starts for t ≈ 9, and at the
same time the spreading velocity in �g. (5.3) starts to decrease.

Interacting case with U = 0.25, U = 0.75 and U = 1.00
For di�erent values of U the evolution shows the e�ects of the interaction.
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In the following we will report for brevity only the results for U > 0, for
negative values of U the evolution turns to be exactly the same.

Figure 5.4: Density pro�le and spreading velocity of the system evolving with U = 0.25.
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Figure 5.5: Density pro�le and spreading velocity of the system evolving with U = 0.75.
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Figure 5.6: Density pro�le and spreading velocity of the system evolving with U = 1.0.

Evaluating the graphs in �gs. (5.4,5.5,5.6) one can see that during intial
instant of the evolution, the system stay focused on the central sites of the
chain but in a short time the scattering caracther prevail and the wave packet
spreads along all the chain. However, from the graphs of the spreading speed
in �gs (5.4,5.5,5.6) it turns out that this spreading is realized with a lower
speed than the free case.
This could be explained considering the presence of the bound states which
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tend to constrain the wave packet to stay bounded to the central sites of the
chain.

Interacting case with U = 2.5 and U = 4.0
For higher values of U the presence of bound states is more and more evident,
we present here the results for only two intermediate values of U :

Figure 5.7: Density pro�le and spreading velocity of the system evolving with U = 2.5.
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Figure 5.8: Density pro�le and spreading velocity of the system evolving with U = 4.0.

Examining the graphs in �gs. (5.7, 5.8) one can see that the "spreading
behaviour" is almost suppressed and the wave packet is very focused around
the central sites of the chain.
Something peculiar cames from the graphs of the spreading velocity. The
spreading velocity starts as expected from vscatt =

√
2 but it decreases rapidly

to a lower value and increases again reaching a sort of constant value.
The decreasing and increasing stage could be caused by the fact that the
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"spreading" and "bounded" component in the wave packet start together,
the former has velocity vspread =

√
2 the latter tends to stay on the central

sites so vbound � vspread.
At initial time the "spreading wave" is contained on central sites together
with the "bounded wave", in this case the density of the "spreading wave"
do not contributes to the evaluation of the spreading velocity so its value will
fall rapidly toward vbound. As soon as the "spreading wave" is able to reach
other chain sites its contribute to the spreading velocity becomes apprecia-
ble, the spreading velocity increases again toward a value (the plateau in the
spreading velocity graphs) that could be considered its asymptotic value.
Spreading velocity data for t > 9 are not to be considered because they are
in�uenced by the re�ection of the wave packet on the chain boundaries.

It is almost against the intuition that two particles with a repulsive next-
neighbour interaction (U > 0) tends more and more to stay on adjacent sites
as U is increased. Intuitively the repulsive interaction should force the par-
ticles to stay as much distant is possible.
Evaluating the asymptotic velocity one can �nd another surprisingly result,
the asymptotic velocity decrease as U increase (�g. (5.9)). Again, despite
the repulsive interaction, the particles prefer to stay bounded.

Figure 5.9: Asymptotic velocity v∞ vs U .
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This counterintuitive behaviour has been pointed out also in [4] and [5]
respectively for the spin 1

2
XXZ model and interacting bosons model.

For the interacting bosons model the authors conclude showing that the dy-
namics is strongly in�uenced by the presence of bound states. They are able
to evaluate the quantity PB =

∑
α〈Ψ0|ΦB

α 〉 which is the total projection of
the initial state (|Ψ0〉) over the bound state of the system (|ΦB

α 〉) for every
value of U . It turns out that the asymptotic velocity decrease as PB(U)
increase.

It could be interestingly to give a qualitative explaination of the role of
bound states also in the dynamics of the SF model and spin 1

2
XXZ model in

terms of the quantity PB(U). Some information about the role of the bound
states could be done extracted from the evaluation of the adjacent occupa-
tion de�ned as the quantity 〈nini+1〉 during the evolution of the system.
Moreover, it could be interestingly to study the dynamics of this system
starting from a di�erent initial state, perhaps an entangled state rather a
pure state, and to extend this study to the case of more than two particles
from both the analytical and the numerical sides.
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Appendix 1 - CBA on a system of

N = 2 fermionic particles

Let us consider the following hamiltonian:

H = − t
2

L∑
i=1

(
c+
i ci+1 + c+

i+1ci
)

+U
L∑
i=1

(ni−
1

2
)(ni+1−

1

2
) +µ

L∑
i=1

(ni−
1

2
) (6)

The states we will consider are two-particles fermionic states of the form:

|φ〉 =
L∑

j,k=1

φj,kc
+
j c

+
k |0〉 =

L∑
j,k=1

φj,k|j, k〉 (7)

With φj,k coe�cient to be determined. Considering the fermionic property
of the states, we must request that those coe�cient are antisimmetric and
that they obey to the Pauli's exclusion principle. So:

φj,k = −φk,j and φj,j = 0 (8)

From the Schroedinger equation, one obtain:

− t
2

L∑
i=1

L∑
j,k=1

(
c+
i ci+1 + c+

i+1ci
)
φj,k|j, k〉+

+U
L∑
i=1

L∑
j,k=1

(ni −
1

2
)(ni+1 −

1

2
)φj,k|j, k〉+

+µ
L∑
i=1

L∑
j,k=1

(ni −
1

2
)φj,k|j, k〉 =

= E

L∑
j,k=1

φj,k|j, k〉 (9)
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− t
2

L∑
i=1

L∑
j,k=1

φj,kc
+
i ci+1|j, k〉 −

t

2

L∑
i=1

L∑
j,k=1

φj,kc
+
i+1ci|j, k〉+

+U
L∑
i=1

L∑
j,k=1

nini+1φj,k|j, k〉 − U
L∑
i=1

L∑
j,k=1

niφj,k|j, k〉+
L

4
U

L∑
j,k=1

φj,k|j, k〉+

+µ
L∑
i=1

L∑
j,k=1

niφj,k|j, k〉 −
L

2
µ

L∑
j,k=1

φj,k|j, k〉 =

= E

L∑
j,k=1

φj,k|j, k〉 (10)

− t
2

L∑
i=1

L∑
j,k=1

φj,k|j − 1, k〉+
t

2

L∑
i=1

L∑
j,k=1

φj,k|j, k − 1〉+

− t
2

L∑
i=1

L∑
j,k=1

φj,k|j + 1, k〉+
t

2

L∑
i=1

L∑
j,k=1

φj,k|j, k + 1〉+

+U
L∑

j,k=1

(δj,k+1 + δk,j+1)φj,k|j, k〉+

+(2µ− 2U +
L

4
U − L

2
µ)

L∑
j,k=1

φj,k|j, k〉 =

= E
L∑

j,k=1

φj,k|j, k〉 (11)

And, �nally:

L∑
j=1

L∑
k=1

[− t
2

(φj+1,k + φj,k+1 + φj−1,k + φj,k−1)+ (12)

+φj,k(Uδj,k+1 + Uδk,j+1 − 2U + 2µ+
UL

4
− µL

2
− E)]|j, k〉 = 0 (13)

We can do a Bethe ansatz on the coe�cients φj,k,so:

φj,k = [Aei(p1j+p2k) +Bei(p1k+p2j)]θ(j−k)− [Aei(p1k+p2j) +Bei(p1j+p2k)]θ(k− j)
(14)

The minus sign take account of the antisimmetric property, it is easy to verify
that:

φj,k = −φk,j (15)
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Furthermore, the functions θ(j − k) and θ(k − j) are the step function (or
Heaviside's Theta) which let us discriminate between the cases j > k or
k > j. Note the strict disequality, this is given to the Pauli's exclusion
principle which impose j 6= k. This condition is automatically implemented
in the ansatz in fact, as previously said, the quantity φj,j vanish. Now, let
us study the eq.(12) when j > k + 1:

− t
2

(φj+1,k+φj,k+1 +φj−1,k+φj,k−1)+φj,k(2µ−2U+
UL

4
− µL

2
−E) = 0 (16)

De�ne F j>k+1
j,k = (φj+1,k + φj,k+1 + φj−1,k + φj,k−1):

(φj+1,k + φj,k+1 + φj−1,k + φj,k−1) =

= [Aei(p1j+p2k+p1) +Bei(p1k+p2j+p2)]+

+[Aei(p1j+p2k+p2) +Bei(p1k+p2j+p1)]+

+[Aei(p1j+p2k−p1) +Bei(p1k+p2j−p2)]+

+[Aei(p1j+p2k−p2) +Bei(p1k+p2j−p1)] =

= (Aei(p1j+p2k) +Bei(p1k+p2j))(eip1 + e−ip1 + eip2 + e−ip2) =

= 4(Aei(p1j+p2k) +Bei(p1k+p2j))(cos(p1) + cos(p2)) (17)

F j<k+1
j,k = 4φj,k (cos(p1) + cos(p2)) (18)

So:

Ej>k+1 = −2t (cos(p1) + cos(p2)) + 2µ− 2U +
UL

4
− µL

2
(19)

Considering the case k > j + 1 we have to proceed exactly in the same way.
In this case for F k>j+1

j,k and Ek>j+1 one obtain:

F k>j+1
j,k = 4φj,k (cos(p1) + cos(p2)) (20)

Ek>j+1 = −2t (cos(p1) + cos(p2)) + 2µ− 2U +
UL

4
− µL

2
(21)

The results are the same, so:

E = Ek>j+1 = Ej>k+1 = −2t (cos(p1) + cos(p2))+2µ−2U+
UL

4
− µL

2
(22)

Let us de�ne

E
(2)
0 = +2µ− 2U +

UL

4
− µL

2
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Consider now the cases j = k+ 1 and k = j+ 1. When j = k+ 1 the eq.(12)
take the form:

− t

2
(φk+2,k + φk+1,k−1) + Uφk+1,k + (E

(2)
0 − E)φk+1,k = 0 (23)

Subtituing the expression for E from the eq.(22):

− t
2

(φk+2,k+φk+1,k−1)+Uφk+1,k+(E
(2)
0 +2t (cos(p1) + cos(p2))−E(2)

0 )φk+1,k = 0

(24)
so:

− t

2
(φk+2,k + φk+1,k−1) + Uφk+1,k + 2t (cos(p1) + cos(p2))φk+1,k = 0 (25)

But:

2t (cos(p1) + cos(p2))φk+1,k =

=
t

2
(eip1 + e−ip1 + eip2 + e−ip2)φk+1,k =

=
t

2
(eip1 + e−ip1 + eip2 + e−ip2)[Aei(p1k+p2k+p1) +Bei(p1k+p2k+p2)] =

=
t

2

[
Aei(p1k+p2k)(ei2p1 + 1 + ei(p2+p1) + e−i(p2−p1))

]
+

+
t

2

[
Bei(p1k+p2k)(ei(p1+p2) + e−i(p1−p2) + ei2p2 + 1)

]
(26)

So:

− t
2

(Aei(p1k+p2k+2p1) +Bei(p1k+p2k+2p2)+

+Aei(p1k+p2k+p1−p2) +Bei(p1k+p2k+p2−p1))+

+U [Aei(p1k+p2k+p1) +Bei(p1k+p2k+p2)]+

+
t

2
[Aei(p1k+p2k)(ei2p1 + 1 + ei(p2+p1) + e−i(p2−p1))+

+Bei(p1k+p2k)(ei(p1+p2) + e−i(p1−p2) + ei2p2 + 1)] = 0 (27)

t

2
(Aei(p1k+p2k) +Bei(p1k+p2k))(1 + ei(p2+p1))+

+U(Aei(p1k+p2k)eip1 +Bei(p1k+p2k)eip2) = 0 (28)
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Finally, one can write:

A

B
= −

1 + ei(p2+p1) + 2U
t
eip2

1 + ei(p2+p1) + 2U
t
eip1

(29)

In the same way, for x = −1, we obtain from eq.(12):

− t

2
(φj,j+2 + φj−1,j+1) + φj,j+1(U + 2U + µ+

LU

4
− E) = 0 (30)

Which lead to an expression for B
A
similar to eq.(29):

A

B
= −

1 + ei(p2+p1) + 2U
t
eip1

1 + ei(p2+p1) + 2U
t
eip2

(31)

It can be shown that, in both cases, the quantity A
B
is equivalent to a phase

factor:
A

B
= eiθ (32)
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