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Abstract 

 

Questo lavoro riguarda la sintesi e caratterizzazione di nanoparticelle basate sul magnesio per 

l'immagazzinamento di idrogeno. Le nanoparticelle sono state cresciute mediante Inert Gas Condensation, 

una tecnica aerosol in cui il materiale viene sublimato e diretto verso i substrati tramite un flusso di gas 

inerte, e caratterizzate attraverso microscopia elettronica e diffrazione di raggi X. Queste operazioni sono 

state eseguite presso il Dipartimento di Fisica e Astronomia dell'Università di Bologna. Sono stati sintetizzati 

due tipi di particelle: nel primo il magnesio viene deposto direttamente sul substrato, nel secondo esso 

incontra un flusso di ossigeno prima di depositarsi sulla superficie. In questo modo si formano delle 

particelle con struttura core-shell in cui la parte interna è formata da magnesio e quella esterna dal suo 

ossido. La presenza di una shell consistente dovrebbe permettere, secondo il modello di deformazioni 

elastiche, di diminuire il valore assoluto dell'entropia di formazione dell'idruro di magnesio, condizione 

necessaria affinché il desorbimento di idrogeno possa avvenire in maniera più agevole rispetto a quanto 

non accada col materiale bulk. Tutti i campioni sono stati ricoperti di palladio, il quale favorisce la 

dissociazione della molecola di idrogeno. La capacità di assorbimento dell'idrogeno da parte dei campioni è 

stata studiata mediante idrogenografia, una tecnica ottica recentemente sviluppata in cui la quantità di gas 

assorbita dal materiale è legata alla variazione di trasmittanza ottica dello stesso. Le misure sono state 

eseguite presso l'Università Tecnica di Delft. I risultati ottenuti evidenziano che le nanoparticelle di solo 

magnesio  mostrano dei chiari plateau di pressione corrispondenti all'assorbimento di idrogeno, tramite cui 

sono stati stimati i valori di entalpia di formazione. Al contrario, i campioni con struttura core-shell, la cui 

crescita rappresenta di per sé un risultato interessante, non presentano tale comportamento. 
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CHAPTER I. Hydrogen economy: perspectives and problems. 

 

An alarming situation 

 

The need for more and more energy and the dramatic necessity of respecting Earth environmental limits 

force mankind to find new or improve clean and renewable sources of energy.  

According to US Energy Information Administration [1] in 2010 just 5,3% of the whole energy production 

came from clean sources and global power requirement was of about 17000 TW h per year, but experts say 

that it will grow up to 28000 TW h per year in 2030, especially due to the economic growth of the so called 

BRICS (Figures 1-1 and 1-2). 

The conversion from British Thermal Units and kWh is that 1 Btu stands for 0.000293 kWh. 

 

 Figure 1-1    Figure 1-2 

 

Today's situation is alarming since most of the exploited energy comes from hydrocarbon resources: a 

solution that creates geopolitical tensions, a degree of pollution so critical that if we do not change our 

energy supplying system climate changes will cancel out mankind soon and that is forced to end, since it 

takes million of years to create new fossil deposits. 

Being the situation so dangerous, the birth and the affirmation of an economically sustainable system 

based upon renewable sources appears a priority.  
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A new hope: hydrogen 

 

Hydrogen was thought to be a fuel that could substitute gasoline for the first time in the Seventies. In 1970, 

during a talk at General Motors Technical Centre, J. Bockris launched the idea of an hydrogen economy [2]: 

a system where this gas should have replaced petroleum derivates as fuel. Actually, this simple change 

would not solve the environmental problem: hydrogen does not occur naturally in quantity, but it must be 

generated and the way this is done is a central point of the discussion. 

Proponents of a world-scale hydrogen economy affirm that this solution would be cleaner, particularly in 

transport applications, being free from the release of pollutants. Moreover, a significant reduction in 

carbon dioxide emissions would be possible if carbon capture methods were utilized at the site of hydrogen 

production. In fact, hydrogen is just a carrier of energy. The simplest way to store and release energy is 

through the following reaction: 

   
 

 
         

It takes place in fuel cells (Figure 1-3), systems with very high values of efficiency (till 80%-85% for devices 

that are able to use heat produced by the reaction, without this skill efficiency drops to about 60%-70%) 

and produces just water. When working at very high temperatures some polluting gasses could be released, 

but this inconvenient can be eliminated by specific methods.  

 

Figure 1-3 

Nowadays molecular hydrogen is mainly created from fossil sources [3] and so carbon dioxide is produced: 

48% from natural gas, 30% from oil and 18% from coal. Just the 4% comes from electrolysis of water, a 

method that can be CO2 free. Decomposing water, since most hydrogen on Earth is bonded to oxygen in 

H2O, requires an external (electrical or heat) input and it would be positive if it came from clean source 

such as solar energy. 

Hydrogen production is a large and growing industry with rates of growth of around 10% per year [4]. Two 

are the primary uses of hydrogen: the synthesis of ammonia, that is widely diffused in fertilizers, and the so 

called hydrocracking, that is a process converting heavy petroleum sources into lighter fractions. 
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Hydrogen is industrially produced from steam reforming, which uses fossil fuels such as natural gas, oil or 

coal: greenhouse gasses are so generated. The most widely diffused method is named Kvaerner process, 

from the Norwegian company that developed it in the 1980s [5]. It is also possible to use biological agents 

to create hydrogen, like algae or some bacteria: the former, if deprived of sulphur, creates hydrogen 

instead of oxygen through the normal photosynthesis, the latter extract it from hydrocarbons, together 

with CO2. 

The process by which molecular hydrogen is split from water is named electrolysis and it has been found 

that it can be developed by aquatic plants too. These systems are not widely diffused due to their low 

efficiencies. 

Current best processes have an efficiency that varies from 50% to 80% [6]: 1 kg of hydrogen requires 50 to 

79 kWh of electricity that means about 3 €/kg, which is 3 up to 10 times the cost of hydrogen made from 

steam reformation of natural gas. Electrolysis can become cheaper using systems working at high pressure 

or at high temperature. 

Using electricity produced by photovoltaic systems represents the cleanest way to produce hydrogen: 

water is broken into hydrogen and oxygen by a photoelectrochemical cell (PEC) process which is called 

artificial photosynthesis. In 1983 direct water splitting was demonstrated with a low cost thin film of 

amorphous silicon multi-junction sheet immersed in water itself [7]. This pathway is very interesting and 

research goes on developing higher and higher efficiency multi-junction cell technology. 

Sun energy can be exploited in another way too. It was said that high temperatures are required to split 

hydrogen from water: it can be done exploiting concentrating solar plants, capable to heat water up to 

1200°C. 

Production is just the first step toward a hydrogen economy: storing the gas is a critical point and will be 

the core of this work. 

In 2009 the US Department of Energy set the performances that any hydrogen storage system should have 

in order to develop an economically sustainable fuel distribution. Data are shown in Table 1 [2]. 

Table 1 

 Unit 2010 2015 Final 

Gravimetric 

capacity 

wt% 

kWh/kg 

4.5 

1.5 

5.5 

1.8 

7.5 

2.5 

Volumetric 

capacity 

kg/m3 

kWh/m3 

28 

900 

40 

1300 

70 

2300 
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Minimal/maximal 

working 

temperature 

 

°C 

 

-30/50 

 

-40/60 

 

-40/60 

Purity % (dry) 99.97 99.97 99.97 

Supply time  

(for 5 kg of 

hydrogen) 

 

minutes 

 

4.2 

 

3.3 

 

2.5 

 

 

How to store hydrogen: different paths 

 

Nowadays there are several methods pointed as solution to this problem, each of one exploiting different 

physical phenomena: 

- Physical containment; 

- Physical adsorption; 

- Chemical bound. 

Molecular hydrogen has very high energy density on mass basis, but at ambient conditions it has very low 

energy density by volume, so the first solution tries to improve this ratio by pressurization or liquefaction. 

Achieving high pressures needs a great use of external energy for the compression. Liquid hydrogen is 

formed cooling the gas down to 20.28 K. Cryogenic storage requires large energies and very complex 

technologies and presents the problem of the boil off. Moreover, ice may develop in the device used to 

contain hydrogen, corroding it. 

The second approach is to absorb molecular hydrogen on the surface of a solid storage material, without 

hydrogen dissociation. In this way, the system does not suffer from limitations of gas kinetics. The very 

central problem of this solution is the low quantity of hydrogen stored and the low temperature. In order 

to improve physisorption, materials should have a good density of H2 per surface unit and a large active 

surface. The best candidates to develop this approach are Metal Organic Frameworks (Figure 1-4), 

activated carbon, hydrogen clathrate hydrate (Figure 1-5) and nanostructured carbons (Figure 1-6 shows 

graphite nanotubes) [8].  
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Figure 1-4    Figure 1-5    Figure 1-6 

    

 

The last one is what will be investigated in this work: hydrogen stored as a chemical hydride in some 

compounds. This solution is thought to be efficient for matters as safety, easiness of transport and mass 

and volume density problems. Storing and ejecting H2 molecules can be controlled by kinetics and heat 

control. Current barriers to practical and spread use are the values of pressure and temperature that must 

be reached in order to release or accumulate hydrogen, even if several compounds able to satisfy the US 

Department of Energy objectives are already known. Research goals are to lower pressure and temperature 

needed, make reactions faster and better volume and energy densities, keeping attention on costs. 

A large scale hydrogen economy cannot become reality without an efficient infrastructure system. It would 

be made up of pipelines and filling stations. If these are far from the pipeline network, they must be 

supplied by trucks which carry hydrogen (liquid, compressed or stored in hydrides). Since hydrogen 

corrodes steel, pipelines must be covered internally by special coatings that are already known. Even if they 

are expensive and still not competitive with petroleum or natural gas networks, pipelines represent the 

cheapest way to make hydrogen move from a point to another. 

Pipelines are essential in a scheme that expects a few hydrogen producing plants, but they could be in 

principle much less important if small and diffuse producing sites were adopted. In any case, it is 

reasonable that both approaches would be adopted, if hydrogen took the place of gasoline: centralized 

primary energy plants would have higher hydrogen production efficiency but they would require long range 

transportation networks, with the linked problems of hydrogen damage to and leak from the lines of 

distribution. On the contrary, small local plants would have lower production efficiency, but the reduced 

use of pipelines could result in a more efficient scheme in terms of primary energy used. 

Hydrogen has one of the widest explosive and ignition mix range with air of all the gasses, so safety is a 

central concern. Whatever the mix between air and hydrogen, an explosion is very probable. Moreover, 
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pure hydrogen-oxygen flames burn in the region of the ultraviolet, so a flame detector is necessary and 

hydrogen is also odourless, a feature that makes harder the gas detection. The European Commission 

launched the first higher educational program in hydrogen safety engineering at the University of Ulster. 

 

Lolland: the future has become reality 

 

European Union is cutting edge about hydrogen economy: Lolland Hydrogen Community  is the  first full-

scale Hydrogen Community Demonstration facility for residential Fuel Cell Combined Heat and Power (CHP) 

[9]. Lolland is an island in Denmark where wind is abundant. This factor makes possible a large production 

of energy from wind mills, so copious that more than the 50% of the energy produced is in excess. For this 

reason it is stored in the form of hydrogen and used for residential and industrial facilities. Hydrogen is 

produced by electrolysis of water together with oxygen. The oxygen is used in the municipal water 

treatment plant nearby to speed up the biological process. Hydrogen is stored in low-pressure storage 

tanks at six bars and fuels two PEM Fuel Cell Micro Combined Heat and Power (CHP) stations. 

 

 

 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Fuel_Cell
http://en.wikipedia.org/wiki/Cogeneration
http://en.wikipedia.org/wiki/Bar_(unit)
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CHAPTER II.  Hydrogen and metals 

 

Introduction 

 

Hydrogen is a very reactive molecule and it forms a wide range of different chemical bonds. It is possible to 

classify different compounds from the kind of interaction with hydrogen: 

 Saline hydrides: they are made up of hydrogen and alkali and alkali-earth elements, having low 

values of electronegativity, so that hydrogen forms ionic compounds (LiH, NaH, MgH2, BeH2, etc.); 

 Hydrogen-bonded molecular crystals: hydrogen reacts with atoms or radicals with high 

electronegativity values (2,5-dihydroxybenzoquinone (DpH), 2,5-dichloro-3,6-

dihydroxybenzoquinone (DpC1), etc.); 

 Covalent molecules and crystals: they are formed by hydrogen and an element that has got a 

similar electronegativity value (CH4, NH3, SiH4, HF, etc.); 

 Metallic hydrides: they are made up of hydrogen interstitial atoms in transition metals, lanthanides 

and actinides (NiHx, VH, VH2, CrH, CeH2, etc.). 

Note that heavy simple metals do not form any kind of compound with hydrogen. Moreover, metallic 

hydrides exist over large ranges of non-stoichiometric compositions, since hydrogen occupies interstitial 

sites and the quantity of gas included into the metal changes as the thermodynamic conditions do. In many 

cases the host material changes its structure in order to accommodate hydrogen. 

Phase diagrams 

 

Phase diagrams are a very useful instrument to study binary systems, such as those in which H atoms bond 

with M (metallic) ones. It is useful to define the variable   as the ratio of H concentration over the one of 

M. In other words: 

  
   

   
 

When T is on the abscissa, it is possible to speak of    diagrams. Changes in temperature involve changes 

in the thermodynamic equilibrium between the sample and the surrounding atmosphere. For this reason, 

to draw correct phase diagrams, it is more useful to study     phase diagrams at different temperatures, 

kept constant during a measurement. The result is the so called pressure-concentration-isotherms (   ) in 

which the phase boundary is determined by the inflection points of the diagram.  
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At each temperature under some critical one there is a plateau between the two inflection points. It means 

that two different phases coexist at the same time. Sometimes it is possible to observe a hysteresis, during 

a heating-cooling cycle. In this case, desorption branches are commonly taken as representative of the 

equilibrium condition. Moreover, it is only over some specific temperatures that the hydrogen diffusion 

process through the bulk is activated: it is a common practice to make the sample undergo heating-cooling 

cycles, in order to make it permeable.  

Figure 2-1 shows a    diagram (system of H and Pd) and Figure 2-2 a     one at different temperatures (D 

and Pd). 

 

 

  Figure 2-1       Figure 2-2 

 

Solid solution at low hydrogen concentration 

 

At low hydrogen concentrations, all     have a common slope, proportional to the pressure square root. 

This relation is known as Sievert's law and it can be explained intuitively considering that hydrogen 

molecules are dissociated into two atoms entering the host metal. Hydrogen solubility is a thermally 

activated phenomenon, so the expression for the solubility is 
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Where ΔSs is the entropy of solution referred to T and    and ΔHs the enthalpy of solution and stands for 

the change of entropy or enthalpy of hydrogen when it enters the host material. 

When thermodynamic equilibrium is achieved, the further expression stands: 

             

Calling   the chemical potential of the gas phase and    the one in the solid phase, it is equivalent to say 

 

 
      

For solid solution containing n hydrogen atoms, it is possible to distinguish the configurational (labelled by 

c) and non-configurational (nc) terms of the Gibbs free energy: 

                                   
  

        
 

It is easy to derive the chemical potential, once defined r=N/N0 as the number of interstitial sites per 

metallic atom (h and s stand for enthalpy and entropy per atom): 

   
  

  
              

 

   
 

Writing for    , that is the regime considered, the following expressions take place 

       
 

 
   

              
 

 
   

             
 

 
          

One can think that in this way it is possible to derive entropy and enthalpy by an Arrhenius plot of 

              versus    , but the intercept is not     and     is not represented by the slope of the linear 

relation, because, if it stands, it is impossible to distinguish both the contributes. For this reason, it is 

necessary to determine the variation of enthalpy and entropy per atom, which can be deduced by this kind 

of graphic. 
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Solid solution at high hydrogen concentration 

 

Observing the dependence of    from hydrogen concentration, it is possible to grasp that in all materials, 

it decreases initially and the it rises. The reason for this behaviour lies in the different kind of interaction 

between H atoms in the host material.  

Interstitial atoms produce on the average a lattice deformation that make easier entering the host material 

for the incoming hydrogen. The result is a lowering of the heat of solution, an effect independent from H 

atoms disposition, being connected just to their concentration, and that can be understood as a mean-field 

contribution.  

In order to explain this phenomenon, let us suppose that the volume per M atom increases linearly with 

the H concentration, as 

          

Where   is the pure host metal volume per atom and    is derived from 

   
   

  
   

   
  

 
    
  

 

The Δ   dependence from H concentration can be calculated as 

    
  

  
    
  

  
  

  
  

    
  

   

The first term is called the elastic contribution: 

 
    
  

  
  

  
  

    
  

  

  
 
 

  

  
     

  
 

  
       

So the elastic contribution to Δ   can be written as the product between      and H concentration. γ is a 

correction factor, whose estimate is difficult, being linked to the Poisson's ratio, and varies between 0.5 and 

1. The second term, the explicit derivate of the solution heat change respect to H concentration, represent 

the excess of electrons brought by the presence of interstitial atoms. In order to demonstrate the attracting 

interaction between H atoms at low concentration, it can be written 

       
                               

where u assumes only positive values. 
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This relation stands just for small values of H concentration: as mentioned before, for large   values Δ   

rises. It is reasonable to explain that supposing that when H atoms are at short distances, their interaction 

becomes repulsive and there are at least three reasons. 

The first one is an empirical rule, verified in many M-H systems, according to which the minimum distance 

between H atoms is 2.1 Å. Secondly, it is observed a reduction of the configurationally entropy, since the 

higher number of H atoms increases the mutual blocking:   decreases as   becomes larger. Finally, the 

formation of ordered structures explain the fact that interaction between H atoms is not attractive. If it had 

been true, at low temperatures phases rich in hydrogen would have formed. 

The presence of attractive long-range interactions between H atoms determines the spinodal composition, 

present in the part of the phase diagram where two different phases coexist. The critical point, over which 

in temperature there is just one phase, can be determined imposing that  

  

  
 
   

   
   

So, if             
 

   
, it is easy to derive that 

        and           

The spinodal decomposition can be also dependent on the sample shape. When two phases coexist, some 

stresses are created.  

 

Figure 2-3 

If the phase boundary is coherent (left side of Figure 2-3), certain modes of stress and concentration waves 

stand so that the free surface condition is respected and the spinodal composition is linked to the material 
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arrangement. On the contrary, this dependence vanishes if it is present an incoherent state (right side) 

where each stress relaxes at the grain boundaries. 

 

Hydrides structure 

 

The term hydride can be addressed both to systems that changes their structure due to the presence of H 

atoms and to cases in which the distribution of hydrogen becomes ordered just at low temperatures. 

Generally, it is possible to speak of hydride when a phase metal-hydrogen has not a random structure of H 

interstitials. 

Considering face cantered cubic, base cantered cubic or hexagonal closed packed metallic structures, 

hydrogen occupies just two types of interstitials: tetrahedral (T) and octahedral (O). More precisely: 

 in the fcc lattice, T and O sites are surrounded by tetrahedral and octahedral M atoms, 

respectively; 

 in the hcp structure, the polyhedron formed by the nearest M atoms is distorted when the axial 

ratio is different from the ideal value, in which the height over the hexagonal basis is 1,633; 

 in the bcc lattice, each O site is surrounded by a strongly distorted octahedron, having two M 

atoms closer than the others. In this way it is possible to distinguish OX, OY, OZ sites and, similarly, 

TX, TY, TZ ones. 

An useful notation to classify hydride uses the formula 

               
  

where x is a rational number that inform about the ratio of H atoms over M ones, structure has to be 

substituted by b (bcc), h (hcp) or f (fcc) and site by t (tetrahedral) or o (octahedral). 

It is useful to distinguish how hydrogen links itself to metal, according to the kind of metal considered: 

 fcc and hcp metals absorb hydrogen in O sites and form solid solutions until the value of x reaches 

the unity. In some cases, substoichiometric hydrates are formed by ordering vacancies in the 

hydrogen sublattice; 

 bcc metals organize H atoms at low concentrations so that they occupy T sites randomly, but at 

high concentrations their disposition forms a sublattice that causes an overall crystal distortion; 

 T sites are univocally occupied in hcp Ti and Zr solid solutions and when hydrogen links to rare-

earth metals. 
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Hydride formation thermodynamics 

 

The stability of a reaction can be described by the enthalpy change per H atom. So, the heat of formation of 

a hydrate MHXβ,    , is defined for a hypothetical reaction: 

 

   
   

 

 
   

 

   
      

Actually, a hydride is formed by hydrogenation of an α-solid solution by a reaction like 

 

     
      

 

 
    

 

     
      

In equilibrium condition the same reaction can be written using the thermodynamic quantity of chemical 

potential μ: 

    
      

                  
      

   

where   indicates the concentration,   stands for metal and   for hydrogen. The chemical potential can 

also be written as 

   
  

  
   

  

  
    

  

  
         

where    and    are molar enthalpy and entropy. Defining: 

      
     

     
    
      

      
     

     
    
     

where, if with x the two phases α and β are indicated:  

     
           

             
          

      

Exploiting gas thermodynamics, it is possible to link partial molar entropy to the pressure with the following 

formula, where the apices 0 stands for the thermodynamic quantities at standard conditions (  

             ): 

   
           

 

  
     

  

Thus, rearranging the previous expressions, it is possible to write what follows 
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where p is the plateau equilibrium pressure that can be determined knowing the other parameters.  

Experimentally, it is by far easier to measure equilibrium pressure in a phase diagram. Doing this operation 

at different temperatures let draw an Arrhenius plot, where the entropy and the enthalpy of formation can 

be derived fitting the line that is created putting the pressure logarithm on the y-axis and the inverse of 

temperature on the abscissa. 

The enthalpy of formation and of phase change have very similar values and vary homogenously across the 

periodic table, so it is possible to grasp that the electronic structure is more important than the crystalline 

structure or the hydrogen content in determining these values. Moreover, this behaviour is present also 

observing the values of entropy of formation and     , justifying the thesis according to which these 

parameters depend on the vanishing entropy of the hydrogen gas. 

In order to demonstrate the similarity of the two enthalpies, let consider a crystal with N0 metal atoms 

(chemical potential μ0)  and n hydrogen atoms (chemical potential μ), so that the system global Gibbs free 

energy is 

          

It is better to use 

  
 

  
        

In a    diagram the hydrogen chemical potential is the slope of the tangent to the g(x) function and the 

metal lattice one is the intercept at x equal to zero. 

The equilibrium conditions are written in terms of chemical potential as 

  
            

                                 
 

 
         

In the phase diagram the condition of the two phases coexistence is described by the common tangent rule 

            
           

     
 

The expression above is used when considering    diagrams; when     ones are in use, it is better to write 

equilibrium conditions as 
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This leads to the fact that enthalpy and entropy changes that determine the pressure plateau are equal to 

the enthalpy and entropy of formation of the coexisting phases. In symbols 

                                                        
                   

Enthalpy of formation is a central parameter to study a reaction: it determines the equilibrium pressure at 

a certain temperature and show the heat exchanged by the system with the environment. In the case in 

which the reaction is strongly exothermic, such as when hydrogen combines with magnesium to form 

magnesium hydrate, it is easy to form the reaction product, but it results complicated to form the reagents 

again. It can be easily understood that the best configuration in order to use hydrogen like an energy vector 

is the one in which formation enthalpy is negative, so the reaction exothermic, but its modulus small, in the 

sense that it values just a few tens kJ/mol. 

Equilibrium thermodynamics gives information weather a reaction happens or not, but it does not say how 

long it takes to happen. This fact, fundamental in order to exploit a determined material as hydrogen tank, 

is studied by kinetics. 

Modelling a reaction from an initial state to a final one, it is possible to determine different free energy 

values:    of the initial metastable state,    of the final stable state and    of the activated state. This one 

is the situation by which the system must go through (Figure 2-4), going from the initial to the final state. 

So, while the driving force is given by the difference between   and    (in red), it is necessary to overcome 

the energy barrier formed by the gap between the energy of the activated state and the one of the initial 

one (in blue). 

 

Figure 2-4 
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Energies showed in the graph are the averages over a large number of atoms that form the system. It may 

happen, of course, that some of them have a thermal energy able to make the atom pass the energy barrier 

without an external aid. 

Terminal solubility 

 

Terminal solubility stands for the maximum concentration of the solid solution (α-phase) in equilibrium 

with the coexisting hydride β-phase. The phase boundary is called solvus line. 

There are three methods used to determine the terminal solubility: 

 electrical resistivity: it increases as temperature rises, as hydride phase dissolution goes on, since 

resistivity is in general higher in disordered systems; 

 specific heat: when the hydride dissolves a positive anomaly in specific heat is measured, for the 

change of enthalpy between the two phases; 

 internal friction: performing internal friction measurements, while passing from a phase to the 

other, an extra energy loss is revealed. It is usually observed a hysteresis and the point of 

dissolution is higher during the heating than in the cooling down. It is a common practice to 

consider the points obtained during the heating run as the real dissolution points. 

These operations are believed to be realistic since the equilibrium between the two phases is reached 

much faster than the one between solid and gas phases, due to the rapid diffusion of hydrogen in the solid 

phase. Now, the equilibrium condition is given by the equality between the two solid phases chemical 

potentials. Considering just small deviations of stoichiometry between α- and β-phases: 

                        

Where              . It implies 

                                               

If the right-hand terms had been temperature independent, it would have been possible to derivate 

enthalpy and entropy from an Arrhenius plot. Actually, they both are linked to the optical vibrational 

modes of hydrogen, even if this behaviour vanishes when H atoms occupy boundary sites. This dependence 

appears in the Arrhenius plots which show a curvature for high temperatures (Figure 2-5). However, the 

operational definition of          and Δ        as slope and intercept of the tangent to Arrhenius plot leads 

to unreasonable results: high temperatures values are too large respect to the ones calculated from low 

temperatures data. If          is considered independent from temperature, the bend at high 
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temperatures can be attributed to a decrease of          whose behavior can be explained in terms of the 

attractive interaction between H atoms. 

 

Figure 2-5 

 

Destabilization of Mg-H system 

 

In order to have technological application, a metal-hydrogen system should have an equilibrium pressure at 

room temperature around 105 Pa. For magnesium, this pressure is reached at 573 K, so it is necessary to 

change the system thermodynamic properties.  

As said before the hydride is energetically favoured respect to the situation in which the gas and the metal 

do not interact. Anyway, there is an energetic barrier to overcome, determined by the energy needed to 

divide the hydrogen molecule (Figure 2-6). Once the hydride is formed, it is very hard to go back to the 

starting situation, due to the presence of an even higher energetic barrier, which limits the use of this 

solution for storage applications. 

 

Figure 2-6 



24 
 

In general it is possible to lower the energetic barrier through two methods. One is called catalysis and it 

consists in adding some special materials to the system whose thermodynamic properties are so modified. 

The other one is the reduction of the hydride formation enthalpy by physical methods, as the introduction 

of elastic constraints. This solution is what is defined as destabilization. 

During the absorption, the entering hydrogen enlarge the host metal volume. If something limits this 

expansion, an elastic energetic term is created and it changes de facto the hydride enthalpy of formation, 

modifying the equilibrium pressure respect to the one of the free expansion case. The net effect of this 

term is a growth of the equilibrium pressure. In this way, it is possible to obtain systems capable of 

releasing hydrogen at pressure values similar to the standard one. 

Blocking systems can be obtained both in two and in three dimensions. 2-D systems, linked to thin films, 

were studied by the TU Delft group led by R. Griessen. They found that: 

   
  

     
  

   

  
               

      

        
  

Where     and      are the Young modules of magnesium and of the constraint,   the Poisson's ratio,   

the thickness and    
 

 
   

   

  
 , with V as molar volume. Their results, summarized by the Figure 2-7, 

show that the best performances are achieved with palladium and nickel.  

The experiments were performed at 333 K with samples of Ti (10nm), Mg (20 nm), X (10 nm), Pd (10 nm), 

where X can be Ni, Ti, Pd, V, Nb. The dashed line stands for the bulk results. 

 

Figure 2-7 
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Figure 2-8 shows that varying the magnesium thickness makes clear that as it grows, it becomes more and 

more similar to the bulk equilibrium pressure. These experiments were performed at 333 K too, with 

samples of Ti (10 nm), Mg (z nm), Pd (40 nm). 

 

Figure 2-8 

 

The systems studied in this work are not thin films but nanoparticles, whose 3-D limit should be another 

material shell which lowers the expansion. 

Hydride formation enthalpy is volume depending by the bulk module  : 

     
  

  
    

  

    
    

  

   

   

    
   

 

  
 
   

    
  

Where partial molar enthalpy and partial molar volume can be written as 

   
  

  
 

   
   

  
 

Using these results in the previous model formula, the ratio between the equilibrium pressures of the 

constrained nanoparticle and of the free one is, considering that the enthalpies for a hydrogen mole: 
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The difference between the enthalpies of the free and of the constrained case can be approximated with 

the difference between the hydrogen enthalpies inside the metal: 

    
      

         
 

 

After some mathematics it is obtained that: 

  

     
       

     
  

  

 
  

  

 
 is an unknown term. In the core-shell geometry the nanoparticles are considered as spheres of radius  , 

surrounded by a layer whose thickness is called   (Figure 2-9). At the interface, the boundary conditions 

are: 

   
     

   
    

In the free case, if the particle has a relative expansion of 
 

 
, its volume variation is 

 
  

 
       

 

 
  

   
   

 

 

Figure 2-9 

When the constraint is introduced, the expansion is reduced to the value   with      . For     the 

expansion is blocked, for     there is the free case. Moreover, the volume variation results: 
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Using the definition of compression module  , the relation of the pressure at the interface is calculated 

     
  

  
  

     
  

 
 

Being   
 

       
 it is possible to obtain 

   
 

        

  

 
 

 

       

   

 
 

Where the subscript c stands for core. 

For what concern the shell, it can be pictured as a circular crown subjected to an internal pressure    and 

an external one   , so that it results 

      
  

  
 

          
 

  
 

     
 

    
 

   

     
 

Using the boundary conditions, the coefficients are determined 

  
        

        
 

   
      

   

      

      
 

With the subscript s indicating the shell and   
   

 
. 

Thus, the deformation is 

      
 

  
 

and 
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Rearranging the terms, the volume variation from the constrained case to the free one is 

  

 
  

  

 
   

 

 

        

  
      
       

  
       
       

         
 

Considering that  
  

 
      

  

 
, it follows that 

  

 
   

      

   

        

  
      
       

  
       
       

         
 

In conclusion the equilibrium pressure variation from the free case to the constrained one is 
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CHAPTER III. Hydrogen  

 

General features 

 

Hydrogen is the first element of the periodic table and the simplest atom in nature, being made up of a 

proton, which forms the nucleus, and an electron (Figure 3-1). This fact is the basis of many of its features 

such as the electronegativity value, which is the ability to attract an electron from another atom, its small 

atomic size and nuclear mass. These fundamental characteristics are linked to the formation of the bound 

between a metal and an hydrogen atom. 

As regards electronegativity, hydrogen has a medium value, so that it can form a wide range of bounds: 

both covalent and metallic (when the electronegativities of the atoms considered are similar) and ionic (a 

process that needs the transfer of an electron from the atom with the lowest electronegativity to the one 

which has the highest). 

Neutral hydrogen has a radius of 0.529 Å, as calculated by Bohr. This result revealed to be so important that 

this distance is called Bohr's radius and indicated by aB. H-, an atom with an extra electron, has a ionic 

radius of 2.1 Å, while H+, that a simple proton, according to Shannon and Prewitt, varies from - 0.18 Å and - 

0.38 Å [10]. The minus sign stands for the fact that the proton, or ion H+, attracts the surroundings 

electrons, creating a deformation of the ambient around the atom. 

 

Figure 3-1 

The small nuclear mass of the hydrogen atom (1.00794 amu) and strong binding interactions make the 

molecular vibrational levels distanced and isotope dependent. When hydrogen is linked to a metallic atom, 

it is possible to distinguish from the oscillator system two components: one (acoustic) with low frequencies 
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and similar to the vibrations of the lattice of the host metal and one (optic) with high frequencies, typical of 

H atoms. Vibrations of hydrogen atoms have also a finite extension, comparable to the Bohr's radius. 

Assuming the adiabatic approximation, H atoms may be pictured as harmonic oscillators. In this case, the 

wave function has a spatial variation depending on e-(x/d)^2, where 

  
 

     
 

   is the excitation energy of about 0.1 eV. In this way,   gets a value of about 0.3 Å. 

Hydrogen has two isotopes: deuterium and tritium. While deuterium has a nucleus made up of a proton 

and a neutron, tritium has one more neutron forming the nucleus. It is possible to summarize their 

properties with Table 2 [11]. 

Table 2 

 H D T 

NULCEUS 

Mass 

Spin 

Moment [μB] 

 

1.000 

1/2 

2.7928 

 

1.998 

1 

0.8574 

 

2.993 

1/2 

2.9788 

ATOM 

Ionization energy [eV] 

 

13.5989 

 

13.0625 

 

13.6038 

MOLECULE 

Binding energy [eV] 

Dissociation energy [eV] 

Vibrational energy [eV] 

Rotational energy [eV] 

 

4.748 

4.478 

0.5160 

7.32 10-3 

 

4.748 

4.556 

0.3712 

3.70 10-3 

 

- 

4.59 

0.3402 

- 

GAS LIQUID 

Critical temperature [K] 

Critical pressure [MPa] 

 

32.98 

1.298 

 

38.34 

1.649 

 

40.44 

1.906 

GAS LIQUID SOLID 

Triple point 

temperature [K] 

Triple point pressure 

[kPa] 

 

 

13.96 

7.20 

 

 

18.73 

17.15 

 

 

20.62 

21.60 
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Hydrogen molecule according to quantum mechanics  

 

Hydrogen molecule is made up of two atoms. It is possible to study the way by which two H atoms bound 

together, forming the molecule, according to quantum theory. In fact, even if Bohr's semi-classic theory has 

been able to explain the structure of a hydrogen atom since 1913, there is not a non quantum theory able 

to interpret even the simplest molecules.  

The problem of hydrogen ones was resolved for the first time by Heitler and London in 1927 [12]. Hydrogen 

molecule theory is of fundamental importance because it shows the stability of the bound and its 

saturation, the fact that just two atom can unite. It is the prototype of all molecular not electrostatic 

bounds: covalent ones. 

Let consider two electrons (1 and 2) in the field of two unitary charged nuclei (a and b) that are divided by a 

fixed distance Rab. If it is enough large, we have two isolated atoms, so electron 1 is referred to a nucleus, 

and 2 to b. It is possible to describe this situation by the wave function: 

               

Where these are hydrogen fundamental state normalized eigenfunctions, centred respectively in a and b 

nuclei. 

 Energy, or the expectation value of the operator H1+H2, where H1 and H2 are the Hamiltonian of the two 

separated nuclei, is obviously 2E0, if E0 is each atom energy (-13.59 eV). This is the case in which Rab is large. 

If it is not, there is an appreciable possibility that electrons exchange one another, creating the state 

described by the function 

               

So the wave function results to be 

 

  
                                  

This function must be integrated with the spin eigenfunction χ(σ1, σ2). The total wave function is 

  
 

  
                                         

Eigenfunctions for a couple of spins are an antisymmetric one χa, corresponding to antiparallel spins, and 

three symmetric ones χ1, χ2, χ3, that describe parallel spins orientation. In order to respect the global 
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antisymmetry of the function Ψ it is important to choose the right μ value: -1 for antiparallel spins and +1 

for parallel ones. 

   
 

  
            

   |     

   |     

   
 

  
            

Let calculate energy  

          

Where H includes all the interactions between electrons, electrons and nuclei and nuclei themselves. It is 

possible to write 

   
  

  
   

    
      

 

   
 

 

   
 

 

   
 

 

   
  

  

   
 

  

   
 

Final result can be expressed as 

      
  

   
     

With + as μ=+1 and - as μ=-1. J and K are 

      
 

   
 

 

   
 

 

   
           

                  

         
 

   
 

 

   
 

 

   
                 

 
                     

J is called coulombian integral and K exchange integral. 

Both J and K are negative in the region of the distances     that are the ones where the molecule is 

created, but K is much bigger and can enter the energy expression with the opposite sign. So the attractive 

or repulsive character of the interaction is determined by this parameter. 

According to this model, the minimum of energy is 3.14 eV (4.48 is the experimental value) and the 

equilibrium distance 0.80 Å, instead of 0.74 Å (Figure 3-2). 
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Figure 3-2 

Molecular hydrogen exists in three different states in nature: solid, liquid and gas. The triple point is 

defined by Ttriple = 13.96 K and Ptriple = 7.20 kPa and the critical one, as mentioned before, by Tc = 32.98 K 

and Pc = 1.298 MPa [13], as shown by Figure 3-3. 

 

Figure 3-3 

Under ordinary conditions (T > RT, P < 10 MPa) hydrogen may be described as an ideal gas. According to 

this assumption, the values of, respectively, chemical potential, equilibrium pressure, enthalpy and entropy 

per molecule are: 
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It is also possible to write, with T* = 9.20 K 

     

  
  

 

  
     

Even if considering hydrogen molecules as forming an ideal gas is often a very good approximation, in some 

situation its behaviour deviates from that. For example, at RT and 10 MPa, the experimental value is 6% 

larger than the ideal one, increasing the chemical potential of 1.1% from the ideal gas value. 
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CHAPTER IV. Materials 

 

Magnesium  

 

Magnesium is an alkaline earth metal and the 8th most diffused element on Earth's surface and the 4th in the 

planet behind iron, oxygen and silicon [14]. It is a fundamental element in human biology too: its ions, the 

most diffused one is Mg+2, are necessary to living cells, nucleic acids and enzymes and their presence 

determines the taste of natural water. 

Magnesium has three stable isotopes: Mg24, Mg25 and Mg26. All are present in significant amounts, but 79% 

of magnesium is Mg26. The isotope Mg28 is radioactive. Being very reactive, pure metal is not found 

naturally, so it is produced industrially by electrolysis.  

Pure magnesium is a strong, light-weight metal which looks silvery white, tarnishing slightly with air 

exposition, and reacts with water at room temperature. Magnesium burns easily when in powder and 

produces a brilliant and white light with radiations going into deep ultraviolet.  

Magnesium is widely used as structural metal and finds many applications as component in aluminium and 

zinc alloys, in the removal of sulphur during the production of iron and steel, in the production of titanium 

and in the manufacturing of high volume parts, for example in the automobile industry. Being a very light 

component, it can find wide diffusion in electronic components. 

 

Table 3 

Magnesium [15] 

General properties 

Element category  alkaline earth metal 

Group, period, block 2, 3,s 

Standard atomic weight  24.305(1) 

Electron configuration [Ne] 3s2 

2, 8, 2 

Physical properties 

Density (RT) 1738 kg·m−3 

Liquid density (atm.p.) 1584 kg·m−3 

Melting point 923 K 

http://en.wikipedia.org/wiki/Isotope
http://en.wikipedia.org/wiki/Names_for_sets_of_chemical_elements
http://en.wikipedia.org/wiki/Alkaline_earth_metal
http://en.wikipedia.org/wiki/Group_(periodic_table)
http://en.wikipedia.org/wiki/Period_(periodic_table)
http://en.wikipedia.org/wiki/Block_(periodic_table)
http://en.wikipedia.org/wiki/Alkaline_earth_metal
http://en.wikipedia.org/wiki/Period_3_element
http://en.wikipedia.org/wiki/S-block
http://en.wikipedia.org/wiki/Atomic_weight
http://en.wikipedia.org/wiki/Electron_configuration
http://en.wikipedia.org/wiki/Neon
http://en.wikipedia.org/wiki/Density
http://en.wikipedia.org/wiki/Density
http://en.wikipedia.org/wiki/Melting_point
http://en.wikipedia.org/wiki/Melting_point
http://en.wikipedia.org/wiki/Kelvin
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Boiling point 1363 K 

Heat of fusion 8.48 kJ·mol−1 

Heat of vaporization 128 kJ·mol−1 

Molar heat capacity 24.869 J·mol−1·K−1 

Atomic properties 

Oxidation states +2, +1 

 

Electronegativity 

(Pauling scale) 

1.31  

Ionization energies  1st: 737.7 kJ·mol−1 

Atomic radius 160 pm 

Covalent radius 141±7 pm 

Van der Waals radius 173 pm 

Miscellanea 

Crystal structure  hexagonal close-packed 

Magnetic ordering paramagnetic 

Electrical resistivity  (20 °C) 43.9 nΩ·m 

Thermal conductivity 156 W·m−1·K−1 

Thermal expansion (25 °C) 24.8 µm·m−1·K−1 

Speed of sound 4940 m·s−1 

Young's modulus 45 GPa 

Shear modulus 17 GPa 

Bulk modulus 45 GPa 

Poisson ratio  0.290 

Mohs hardness 2.5 

 

Magnesium oxide  

 

Magnesium oxide is a white hygroscopic solid mineral. It has an empirical formula of MgO and consists of a 

lattice of Mg2+ ions and O2− ions held together by ionic bonding. Magnesium hydroxide forms in the 

presence of water, but it can be reversed by heating it to separate moisture, according to the reaction 

                

http://en.wikipedia.org/wiki/Boiling_point
http://en.wikipedia.org/wiki/Enthalpy_of_fusion
http://en.wikipedia.org/wiki/Kilojoule_per_mole
http://en.wikipedia.org/wiki/Enthalpy_of_vaporization
http://en.wikipedia.org/wiki/Molar_heat_capacity
http://en.wikipedia.org/wiki/Oxidation_state
http://en.wikipedia.org/wiki/Electronegativity
http://en.wikipedia.org/wiki/Ionization_energy
http://en.wikipedia.org/wiki/Atomic_radius
http://en.wikipedia.org/wiki/1_E-10_m
http://en.wikipedia.org/wiki/Picometre
http://en.wikipedia.org/wiki/Covalent_radius
http://en.wikipedia.org/wiki/1_E-10_m
http://en.wikipedia.org/wiki/Van_der_Waals_radius
http://en.wikipedia.org/wiki/1_E-10_m
http://en.wikipedia.org/wiki/Crystal_structure
http://en.wikipedia.org/wiki/Close-packing_of_equal_spheres
http://en.wikipedia.org/wiki/Magnetism
http://en.wikipedia.org/wiki/Paramagnetism
http://en.wikipedia.org/wiki/Electrical_resistivity_and_conductivity
http://en.wikipedia.org/wiki/Thermal_conductivity
http://en.wikipedia.org/wiki/Coefficient_of_thermal_expansion
http://en.wikipedia.org/wiki/Speed_of_sound
http://en.wikipedia.org/wiki/Young%27s_modulus
http://en.wikipedia.org/wiki/Shear_modulus
http://en.wikipedia.org/wiki/Bulk_modulus
http://en.wikipedia.org/wiki/Poisson%27s_ratio
http://en.wikipedia.org/wiki/Mohs_scale_of_mineral_hardness
http://en.wikipedia.org/wiki/Hygroscopy
http://en.wikipedia.org/wiki/Mineral
http://en.wikipedia.org/wiki/Empirical_formula
http://en.wikipedia.org/wiki/Magnesium
http://en.wikipedia.org/wiki/Magnesium
http://en.wikipedia.org/wiki/Ionic_bond
http://en.wikipedia.org/wiki/Magnesium_hydroxide
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It is also possible to find magnesium peroxide MgO2 but it is a metastable compound. According to 

evolutionary crystal structure prediction, MgO2 is thermodynamically stable at pressures above 116 GPa 

and a totally new semiconducting suboxide Mg3O2 is thermodynamically stable above 500 GPa [16]. 

Magnesium oxide is used as a refractory material in furnace linings for producing iron, steel, nonferrous 

metals, glass, and cement. MgO finds applications also in the agricultural, chemical, and construction 

industries, often as an electrical insulator in fire-resistant cables. 

 

Table 4 

Magnesium oxide [17] 

Properties 

Molecular formula MgO 

Molar mass  40.3044 g/mol 

Density  3580 kg/m³ 

Melting point 3125 K 

Boiling point 3870 K 

Solubility in water 0.0086 g/100 mL (30 °C) 

Acidity (pKa) 10.3 

Band gap 7.8 eV 

Thermal 

conductivity 

45–60 W·m−1·K−1 

Refractive index(nD) 1.736 

Structure 

Crystal structure  Halite (cubic), cF8 

Space group Fm3m, No. 225 

Coordination 

geometry  

Octahedral (Mg2+); octahedral 

(O2–) 

Thermochemistry 

Std enthalpy of 

formation ΔfH
o

298 

−602 kJ·mol−1 

Standard molar 

entropy So
298 

27 J·mol−1·K−1 
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Palladium 

 

Palladium is an element with the chemical symbol Pd and an atomic number of 46. Palladium belongs 

to group 10 of the periodic table, but has a very atypical configuration in its outermost electron shells 

compared to the other members of group 10, having fewer filled electron shells than the elements directly 

preceding it (a phenomenon unique to palladium).  

Palladium is a soft silver-white metal that resembles platinum. It is the least dense and has the 

lowest melting point of the platinum group metals. It is soft and ductile when annealed and greatly 

increases its strength and hardness when it is cold-worked.  

Naturally occurring palladium is composed of seven isotopes, which includes six stable isotopes. The most 

stable radioisotopes are 107Pd with a half-life of 6.5 million years (found in nature), 103Pd with a half-life of 

17 days, and100Pd with a half-life of 3.63 days.  

Over half of the supply of palladium and its congener platinum goes into catalytic converters, which convert 

up to 90% of harmful gases from auto exhaust (hydrocarbons, carbon monoxide, and nitrogen dioxide) into 

less-harmful substances (nitrogen, carbon dioxide and water vapour).  The second-biggest application of 

palladium in electronics is in the manufacture of multilayer ceramic capacitors, in which palladium (and 

palladium-silver alloys) are used as electrodes. Palladium (sometimes alloyed with nickel) is used in 

connector plating in consumer electronics. Palladium is also used in dentistry, medicine, hydrogen 

purification, chemical applications, groundwater treatment and jewellery. Palladium plays a key role in the 

technology used for fuel cells, which combine hydrogen and oxygen to produce electricity, heat, and water. 

Palladium readily absorbs hydrogen at room temperatures forming palladium hydride PdHx with x below 

1. While this property is common to many transition metals, palladium is unique by the high absorption 

capacity and by that it does not lose its ductility until high x value. This property has been investigated for 

designing an efficient, yet inexpensive hydrogen storage material (palladium itself is prohibitively expensive 

for this purpose). 

Ore deposits of palladium and other PGMs are rare and the most extensive deposits have been found in 

the Transvaal Basin in South Africa, the Stillwater Complex in Montana, United States, the Thunder Bay 

District of Ontario, Canada, and the Norilsk Complex in Russia. Recycling is also a source of palladium, 

mostly from scrapped catalytic converters [18].  

The numerous applications and limited supply sources of palladium result in the metal attracting 

considerable investment interest. 
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Table 5 

Palladium [19] 

General properties 

Element category  transition metal 

Group, period, block 10, 5, d 

Standard atomic weight  106.42 

Electron configuration [Kr] 4d10 

2, 8, 18, 18 

Physical properties 

Density (near r.t.) 12.023 g·cm−3 

Liquid density atm.p. 10.38 g·cm−3 

Melting point 1828.05 K, 1554.9 °C, 2830.82 °F 

Boiling point 3236 K, 2963 °C, 5365 °F 

Heat of fusion 16.74 kJ·mol−1 

Heat of vaporization 358 kJ·mol−1 

Molar heat capacity 25.98 J·mol−1·K−1 

Atomic properties 

Oxidation states 0, +1, +2, +4 

 

Electronegativity 

(Pauling scale) 

2.20  

Ionization energies  1st: 804.4 kJ·mol−1 

Atomic radius 137 pm 

Covalent radius 139±6 pm 

Van der Waals radius 163 pm 

Miscellanea 

Crystal structure  face-centred cubic  

Magnetic ordering paramagnetic 

Electrical resistivity  (20 °C) 105.4 nΩ·m 

Thermal conductivity 71.8 W·m−1·K−1 

Thermal expansion (25 °C) 11.8 µm·m−1·K−1 

Speed of sound 3070 m·s−1 

Young's modulus 121 GPa 

http://en.wikipedia.org/wiki/Names_for_sets_of_chemical_elements
http://en.wikipedia.org/wiki/Transition_metal
http://en.wikipedia.org/wiki/Group_(periodic_table)
http://en.wikipedia.org/wiki/Period_(periodic_table)
http://en.wikipedia.org/wiki/Block_(periodic_table)
http://en.wikipedia.org/wiki/Group_10_element
http://en.wikipedia.org/wiki/Period_5_element
http://en.wikipedia.org/wiki/D-block
http://en.wikipedia.org/wiki/Atomic_weight
http://en.wikipedia.org/wiki/Electron_configuration
http://en.wikipedia.org/wiki/Krypton
http://en.wikipedia.org/wiki/Density
http://en.wikipedia.org/wiki/Room_temperature
http://en.wikipedia.org/wiki/Density
http://en.wikipedia.org/wiki/Melting_point
http://en.wikipedia.org/wiki/Melting_point
http://en.wikipedia.org/wiki/Kelvin
http://en.wikipedia.org/wiki/Boiling_point
http://en.wikipedia.org/wiki/Enthalpy_of_fusion
http://en.wikipedia.org/wiki/Kilojoule_per_mole
http://en.wikipedia.org/wiki/Enthalpy_of_vaporization
http://en.wikipedia.org/wiki/Molar_heat_capacity
http://en.wikipedia.org/wiki/Oxidation_state
http://en.wikipedia.org/wiki/Electronegativity
http://en.wikipedia.org/wiki/Ionization_energy
http://en.wikipedia.org/wiki/Atomic_radius
http://en.wikipedia.org/wiki/Picometre
http://en.wikipedia.org/wiki/Covalent_radius
http://en.wikipedia.org/wiki/Van_der_Waals_radius
http://en.wikipedia.org/wiki/Crystal_structure
http://en.wikipedia.org/wiki/Cubic_crystal_system
http://en.wikipedia.org/wiki/Magnetism
http://en.wikipedia.org/wiki/Paramagnetic
http://en.wikipedia.org/wiki/Electrical_resistivity_and_conductivity
http://en.wikipedia.org/wiki/Thermal_conductivity
http://en.wikipedia.org/wiki/Coefficient_of_thermal_expansion
http://en.wikipedia.org/wiki/Speed_of_sound
http://en.wikipedia.org/wiki/Young%27s_modulus
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Shear modulus 44 GPa 

Bulk modulus 180 GPa 

Poisson ratio  0.39 

Mohs hardness 4.75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Shear_modulus
http://en.wikipedia.org/wiki/Bulk_modulus
http://en.wikipedia.org/wiki/Poisson%27s_ratio
http://en.wikipedia.org/wiki/Mohs_scale_of_mineral_hardness
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CHAPTER V. Inert Gas Condensation 

 

General features  

 

Low dimensional systems can be produced by two opposite approaches: one called bottom up, according to 

which the nano-system is built putting more and more material on a substrate, and another defined top-

down, where a bulk material is divided into more and more pieces, smaller and smaller. 

Inert Gas Condensation (IGC) can be listed in the first group and represents a wide diffused method to build 

nanoparticles, due to its simplicity and easiness of controlling the growth. Schematically it can be described 

in the following way: a bulk sample is heated (usually by Joule's effect making a current pass between two 

electrodes) so that it sublimates. The material produced is directed to the substrate and cooled by an inert 

gas flow. As the material reaches the target, different phenomena can occur: particles may move, interact 

and melt together.  

Since this technique concerns very sophisticated systems, high purity of the evaporated samples and high 

vacuum levels in the work chamber are requested. 

 

Experimental setup 

 

The main chamber experimental set up used in this work is made up of (Figure 5-1): 

 An ultra high vacuum chamber produced in inox steel Thermionics NANO-A-2L-2-S with a 

diameter of 45 cm and 69 cm high, resulting in a volume of about 110 litres, with a window 

which permits to look at what happens in the chamber itself; 

 Two tungsten boats, hold between two copper electrodes heated by Joule's effect and 

containing a hole in which the material to be sublimated is put; 

 Two current generators Thermoionics HCPS 8, by which a high alternate current is generated 

 Water cooling pipelines; 

 A channel, which directs He flow and makes, together with the inert gas, the metallic vapours 

go towards the chamber centre; 

 A Bronkhorst Hi-Tech's EL-FLOW select F201CV mass flow controller; 
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 A metallic cylinder, which can rotate directed by the operator outside the chamber, with a 

diameter of 15 mm and 30,5 cm high; 

 An Edwards - Film Thickness Monitor FTM7 E0886-69-000 quartz microbalance, able to monitor 

the quantity of material deposited through the change of the quartz crystal vibrational 

frequency. Measurements depends also on pressure and temperature changes; 

 A  Varian TURBO-V300 turbomolecular pump, with maximum flow of 300 lt/s and minimum 

vacuum value of about 10-7 torr; 

 An Edwards E2M18 rotational pump, with maximum flow of 5,7 lt/s and minimum vacuum 

value of about 10-3 torr, able to pump either the chamber in order to make the so called pre-

vacuum and the back of the turbomolecolar pump, thanks to a specific system of valves; 

 A Varian ConvecTorr p-type Pirani IMG vacuum sensor; 

 A Varian cermaical CDG gauge VCMT13TGA capacitive pressure sensor, able to measure He 

flow; 

 A Varian Multi-gauge controller L8350301 controller, able to manage the turbomolecolar 

pump, Pirani and IMG sensors; 

 A PC software implemented by LabVIEW, which controls the ceramic pressure sensor, the 

quartz balance, the tension between the electrodes and the flow controller. 

 

Figure 5-1 
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Next to the main chamber there is a smaller one for compaction of pellets. These two volumes are linked 

by a gate and it is possible to transfer the sample powders by a bowl attached to a magnetic field by that is 

manually controlled by the user. The central part of the chamber has got a fixed piston on which powders 

are deposited and a mobile one, connected to a hydraulic press SPX Power Team 100TON. 

It is possible both to make hydrogen enter and interact with the sample and to treat it thermally due to the 

presence of an oven whose action takes place thanks to electrical resistances. This system is cooled by 

water pipes. 

The second chamber is equipped by: 

 An Edwards E2M18 rotational pump, with maximum flow of 5,7 lt/s and minimum vacuum 

value of about 10-3 torr, able to pump either the chamber in order to make the so called pre-

vacuum and the back of the turbomolecolar pump, thanks to a specific system of valves; 

 A Varian TURBO - V70 turbomolecular pump, with maximum flow of 70 lt/s; 

 A Varian ConvecTorr p-type Pirani IMG vacuum sensor. 

Powders are produced in the main chamber evaporating the material flow on the central cylinder which 

rotates by the action of an engine and which is cooled filling the core with liquid nitrogen. Once deposited, 

the material is scraped by a bronze blade and collected in the blow for transfer. 

The setup used has got two peculiarities: the possibility of creating more samples during a single 

experiment and of inserting an oxygen leak. 

As regards the first one, the fact that the cylinder can rotate and that it can be directed by the user has 

made possible the synthesis of more samples during a single experiment. This setup characteristic was 

exploited to create samples with different exposition times to the material flow. After an initial phase 

during which the deposition rate was not constant and the flux was directed towards a part of the cylinder 

without substrates, the user rotated the cylinder so that the material could be deposited on them. This 

operation could be controlled by the window. In order to change the substrate and synthesize a new 

sample, the user just had to move the cylinder again. 

The control of the oxygen leak can be considered one of the most original contributes of this work. The 

oxygen line is provided with a needle valve that, together with the pressure control made by the PC 

software, has permitted to obtain and estimate very small oxygen flow values. The oxygen line was filled 

with low quantities of gas and the chamber pressure set at about 0,6 torr. After that, the valve was just 

barely opened and a chronometer started. It was stopped as the pressure arrived to 0,7 torr, so that the 
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flux could be calculated. If it was too high, the chamber was emptied by the rotational pump and the 

previous steps done again, until the flux value was the one desired. 
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CHAPTER VI. Nucleation theories 

 

Classical nucleation theory 

 

IGC is a technique in which nanoparticles are formed during the vapour phase through a process defined 

homogeneous nucleation. This situation is made possible due to the fact that the gas becomes 

oversaturated: even partial pressure lowers during the gas diffusion, its cooling, helped by the inert gas 

flow presence, makes equilibrium pressure lower more. The result is the nucleation start. 

Let consider a nucleus made up of ν atoms and let μα and μβ be the chemical potentials of the two phases α 

and β. In this way, it is possible to write the bulk free energy as 

                

Being the nucleus small, it is impossible to point it as a thermodynamic system where surface contributes 

are neglected. Let call γ be the surface energy and η a geometrical coefficient, so 

                 

Then 

                    

The two contributes have opposite sign, as the system is instable, so that for low values of ν free energy 

increases until it reaches a maximum value, that can be pointed as    , after which it lowers.  

That maximum value and   , the relative number of atoms forming the nucleus with the highest value of 

free energy, can be determined imposing 

   

  
   

Results are 
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The process of formation of a cluster composed of     particles can be described by the following 

expression 

           

the process is reversible. Let write the cluster flux from a one of   particles to a one of     particles as: 

                 

Where    describes the probability of the creation of a     particles cluster and      the passage from 

    to  . Assuming that most of the material is in the initial phase, it can be derived, with    standing for 

Gibbs free energy,  that 

              

So, at the equilibrium   is zero and  

        
  
    

       
         

  
        

 

  
 
   

  
  

Supposing that         
  

  
  and that           

        
  
  

 
    
    

  

Where   represent the numerical cluster distribution. If       for     and      for     where   

and   are two values of the number of particles, after some mathematical passages, it is possible to obtain: 

      
   

      
        

   
  

  

The term under square root is called Zeldovich factor and its values is typically 0,1. 

 

Beyond classical theory 

 

Nucleation theory is not self-consistent as it will be proved later. However, beyond mathematical 

considerations, it is necessary to say that classical theory does not pay attention to cluster translational and 

rotational degrees of freedom and to its partial pressure. 

Several attempts to overcome these limits have been made by physicists.  
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Dillman and Meier added the curvature dependence of the surface energy and additional degrees of 

freedom in order to get thermodynamic consistency [20]. They found that 

  

  
                                      

where      describes the size dependence of the surface free energy and the second and the third terms 

shows the difference between the molecular structure of a free cluster and a group of the same number of 

particles in the bulk material.   and    are two coefficients whose values are derived by the fit of critical 

density and pressure. 

The so called "density functional theory" states that any nucleating system has an inhomogeneous 

structure whose free energy is a unique functional of the average density. Thermodynamic equilibrium 

holds as density is at its minimum at a given temperature. Cahn and Hillard found that [21] 

                                      

Where    is the grand-potential,   the average density, r the nanoparticle radius,    the free energy of a 

homogeneous system,   the chemical potential and   describes a non local contribution to   . 

 

Kinetic nucleation theory 

 

The kinetic nucleation theory do not consider the constrained equilibrium of the classical one at values of 

entropy more than 1, but with a stable equilibrium at entropy equal to 1 [22]. The passage between 

condensation and evaporation is described by 

             

Where   indicates a  -mer. Let write the rate of growth as 

                       

With   that expresses the monomer flux to the interface from the ideal gas kinetic theory 

                

And 
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With    the monomer evaporation coefficient from the equilibrium condition     . 

The following formulas stand: 

  
         

  
    
    
  

  

 

  
  
  

  

 
 
 

 
  

  
  
  

   

  
      

     
  

  

              
    

   
      

  
      

Where N is a normalization constant and c is linked to the Boltzmann statistic. 

In the case of classical theory of nucleation the equation below is not satisfied for     

  

  
 

 

  
            

This situation is not very interesting, since the values of   that are meaningful around   . Kinetic theory of 

nucleation overcomes this difficulty, as for    : 

  

  
 

 

  
      

However, the results for    are the same for both theories. What changes is    

    
    

 
 

 
    

It has to be stressed that γ itself is linked to temperature. 

 

Coalescence 

 

In a homogenous process of nucleation it is possible to distinguish four different situations, as described in 

the Figure 6-1: 
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Figure 6-1 

1. Incubation: the number of nuclei grows very slowly with the passing of time; 

2. Stationary: the rate of growth is almost constant:     ; 

3. Slowing down: the number of nuclei starts to lower and the previously formed entities become 

bigger and bigger; 

4. Coalescence: already present nuclei start to melt together. 

The coalescence process occurs when particles arrive on the substrate too. Once there, nanoparticles move 

due to the thermal effect. Their motion should be something similar to a Brownian one and depends on 

their temperature and the kind of substrate, if it is amorphous or crystalline, for example. 

It was found that the union of two islands is an exothermic reaction, so that the heat produced during the 

process rises the nanoparticles temperature itself, feeding the melting more and more particles. It is clear 

that this phenomenon put an inferior limit to the minimum nanoparticles size. 

Much direct and indirect evidence have been found in these years in order to prove the coalescence 

process. One of the most convincing is the decrease of the number density of nanoparticles during the 

deposition. In any case, the classical model, according to which island growth is thought to be led by 

monomers deposition, then followed by migration and coalescence with other growing particles, presents 

some questionable assumptions, as the fact that particles composed by more than a single monomer do 

not migrate on the surface [23]. Another process that must be understood better is the relation between 

coalescence, migration and new material deposition: two ways are possible, maybe both (Figure 6-2).  

According to the first, particles melting is due to the growth, the second one, instead, focuses on the 

islands motion. 
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Figure 6-2 
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CHAPTER VII. Devices used 

 

SEM 
 

A Scanning Electron Microscope is an instrument able to show images of objects with sizes around 

nanometres, reconstructing the signals produced by the interaction between a focused electron beam 

produced by the microscope and the sample.  

High vacuum is needed when the instrument is in use. 

 

History 

 

The first SEM was developed by von Ardennes (Figure 7-1) in 1937, who obtained a microscope with high 

magnification by scanning a very small raster with a demagnified and finely focused electron beam.  

 

Figure 7-1 

Further works and advancements were led by Cambridge's group in 1950s and 1960s which finally made 

possible the marketing of the first commercial instrument: the "Stereoscan" (1965) [24]. 

 

General features 

 

The probe used by the device is a beam of electrons produced by thermionic effect that occurs in a metal 

filament heated by Joule's effect through the passage of current. Typically, the material used is tungsten, 
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since it has the highest melting temperature and the lowest vapour pressure of all metals. A more 

performing but also expensive alternative is represented by lanthanum hexaboride. 

Once produced, electrons are accelerated and focused by a system of magnetic lens that results in a spot 

about 0.4 to 5 nm in diameter. Typically the final ones deflect the beam in the x and y axes so that it scans 

over a rectangular area of the sample surface. 

Primary electrons, shot by the microscope (schematically shown in Figure 7-2), interact with the sample 

surface within a volume whose shape has the form of a pear and it extends from less than 100 nm to about 

5 μm on the surface. The extension of this zone depends on the electrons energy and the sample atomic 

number and density. Electrons interact with the object with numerous and repeated scattering events, so 

that different kinds of electrons are produced: high energy ones undergo elastic scattering and are 

reflected, while secondary electrons are the result of inelastic scattering. From the dropping out of excited 

electrons X rays are produced.  

Each signal is analyzed by a specific detector, always linked to an electronic amplifier that makes possible 

for an opportune software to produce a picture. Each pixel represents a zone of the detector sensitive area 

and its brightness is proportional to the intensity of the signal, whose value is linked to the number of 

electrons hitting the device.   

Secondary electrons (SE), originated in the most external nanometres of the sample, are detected by 

a system which couples a scintillator and a photomultiplier. SE are first collected by attracting them 

towards an electrically biased grid, and then further accelerated towards a phosphor or scintillator 

positively biased. Now they have an energy sufficient to make the scintillator emit a flash of light (a 

phenomena called cathodelumiescence), which excites the photomultiplier, usually positioned outside the 

SEM column. 

The formerly described detector is inefficient for the detection of high energy elastic scattered reflected 

electrons because the positively biased detection grid has little ability to attract them. Dedicated 

backscattered electron (BSE) detectors are positioned above the sample in a "doughnut" type arrangement, 

concentric with the electron beam, maximizing the solid angle of collection. BSE detectors are usually either 

of scintillator or of semiconductor types. When all parts of the detector are used to collect electrons 

symmetrically about the beam, atomic number contrast is produced: heavy elements backscatter electrons 

more strongly than light ones and thus appear brighter in the image. However, strong topographic contrast 

is produced by collecting back-scattered electrons from one side above the specimen using an 

asymmetrical, directional BSE detector. 

http://en.wikipedia.org/wiki/Everhart-Thornley_detector
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X-rays are detected via apposite sensors which exploit techniques like EDS (energy dispersive X-ray 

spectroscopy) or WDS (wavelength dispersive X-ray spectroscopy). 

The spatial resolution of the SEM depends on the size of the electron spot, which in turn depends on both 

the wavelength of the electrons and the electron-optical system that produces the scanning beam, and of 

the volume of interaction. They are both large compared to the distances between atoms, so SEM 

resolution  is not high enough to image individual atoms. However it has compensating advantages like the 

ability to image a comparatively large area of the specimen; the ability to image bulk materials (not just 

thin films or foils); and the variety of analytical models available for measuring the composition and 

properties of the specimen. 

Magnification is independent from the system of lens adopted and results from the ratio of the dimensions 

of the raster on the specimen and on the display device. Assuming that the display screen has a fixed size, 

higher magnification can be produced reducing the size of the raster on the specimen. Magnification is 

therefore controlled by the current supplied to the x, y scanning coils, or the voltage supplied to the x, y 

deflector plates, and not by objective lens power. Moreover, it can vary between several orders of 

magnitude. 

 

 

Figure 7-2 
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Experimental setup 

 

The SEM used during this work is a Cambridge Stereoscan 360, able to create the electrons from the 

heating of a tungsten filament and accelerate them thanks to a 40 keV potential. This device can detect 

secondary electrons, with energies lower than 50 eV, a volume of interaction 1 μm deep and a path inside 

the sample of length between 3 nm and 10 nm. Backscattered electrons are revealed by the machine, but 

this ability has not been exploited, due to its poor spatial resolution. Cambridge stereoscan 360 can also 

determine the atomic structure of the sample, distinguishing the energy of the photons emitted by the 

atoms during the dropping out of the electrons, after the interaction with the electronic beam. 

 

TEM 
 

Transmission electron microscopy is a microscope technique able to create images of nanometric samples, 

interpreting the result of the interaction between an electronic beam and an ultrathin specimen, collected 

on an opportune device. 

 As for SEM, very low pressures are necessary to the correct instrument working. 

 

History 

 

TEM history starts with the birth of quantum mechanics, since the use of electrons as probe became 

reasonable after De Broglie's theory. The first TEM was created by Max Knoll and Ernest Ruska (showed in 

Figure 7-3) in 1931 and just two years later a TEM with higher resolution than the one of optic microscopes 

was produced [25]. In 1939 TEM became a commercial device. 

 A further result was acknowledged in the 70s when field emission gun TEM was developed by Crewe at the 

University of Chicago [26]. In 2008, Jannick Meyer described the direct visualization of light atoms such as 

carbon and even hydrogen put on a single layer grapheme substrate [27]. 
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Figure 7-3 

 

General features 

 

As for SEM, the probe consists in an electron beam produced by thermionic effect by a metallic filament 

heated by the passage of an electric current. As mentioned before, the most common material used as 

filament is tungsten, even if hexaboride lanthanum reaches better performances, but its widespread use is 

limited by cost.  

Once extracted, the upper lenses of the TEM (whose structure is shown by Figure 7-4) permit the formation 

of the electron probe to the desired size and location for later interaction with the sample. The electron 

beam can be controlled by the presence of an electromagnetic field: the application of high voltages make 

possible for the electrons to accelerate and acquire energy, while magnetic fields generated by coils called 

magnetic lens modify their orientation. 

Typically a TEM has three kinds of lens: condenser lenses, objective lenses and projector ones. The first are 

responsible for primary beam formation, while the second ones focus the beam that comes through the 

sample itself. The projector lenses are used to expand the beam onto the phosphor screen or other imaging 

device. The magnification of the TEM is due to the ratio of the distances between the specimen and the 

objective lens' image plane.  

Another important part of the device is the one which permits to insert the sample into the TEM and to 

move it. TEM specimen stages are designed in order to minimize air entrance in the microscope. Sample 

holders are adapted to hold a standard size of grid upon which the sample is placed or a standard size of 

self-supporting specimen. Usual grid materials are copper, molybdenum, gold or platinum. This grid is 

placed into the sample holder, which is paired with the specimen stage. Once inserted in the device, the 

sample can be moved in order to study different zones and to focus the image. It is possible to do that both 

in the XY plane and in the Z axis. Also rotations are permitted. 



56 
 

 

 

Figure 7-4 

 

TEM images are created interpreting the information included in the electronic wave functions exiting the 

sample. As mentioned before, the projector lenses aid focusing the image on the appointed device. The 

intensity of the observed image can be approximated by a temporal average of wave functions amplitude: 

  
 

     
       
  

  

 

It is clear that intensity I does not depend only on the wave amplitude, but also on its phase. Different 

imaging techniques modify the beam in order to obtain the desired information. To obtain high resolution 

images, it is necessary to have the thinnest sample possible, so that it cannot be treated it as an absorbing 

object, subjected to Beer's law. There are different methods to produce an image by TEM and each of them 

brings different information. 

The most common mode of operation is the bright field imaging mode, in which the contrast is formed by 

absorption of the electrons in the sample: thicker regions or zones characterized by an higher atomic 

number appear darker than others. The image is considered as the two dimensional projection of the 

sample and a first analysis can be done exploiting Beer's law. 

http://en.wikipedia.org/wiki/File:Scheme_TEM_en.svg


57 
 

Diffraction contrast is a technique based on the fact that the electron beam may undergo Bragg scattering, 

by which the crystalline sample disperse electrons into discrete locations. Bragg reflections can be selected 

to study only the part of the sample that causes the electrons to scatter. Modern TEMs are equipped with 

sample holders that are able to tilt the specimen to a range of angles that makes possible to obtain specific 

diffraction conditions. 

Utilizing the advanced technique of electron energy loss spectroscopy, present in TEMs appropriately 

equipped, electrons can be distinguished upon their energy, using EELS spectrometers. These devices allow 

for the selection of particular energy values, which can be associated to the way the electron has interacted 

with the sample. EELS spectrometers can often be operated in both spectroscopic and imaging modes, 

allowing for isolation or rejection of elastically scattered beams.  

Crystal structure can also be investigated by high-resolution transmission electron microscopy (HRTEM), 

also known as phase contrast. When utilizing a field emission source and a specimen of uniform thickness, 

the images are formed due to differences in phase of electron waves, which is caused by specimen 

interaction. So the image is not only dependent on the number of electrons hitting the screen, making 

direct interpretation of phase contrast images more complex. However this effect can be used as an 

advantage, as it can be manipulated to provide more information about the sample. 

 

Experimental setup 

 

TEM measurements were performed at IMM (Istituto di Microelettronica e Microsistemi) of the CNR in 

Bologna. The device used was Field-Emission Gun Tecnai F20 Super-twin  equipped with EDAX energy-

dispersive X-ray spectrometer (EDS),  Gatan Electron energy loss spectrometer (EELS) and Scanning TEM 

attachment (STEM).  

 

XRD 
 

History 

 

X-rays were discovered by Wilhelm Conrad Röntgen in 1895. Then, a dispute was born among physicists in 

order to define X rays nature. Finally, they were recognized as an electromagnetic wave, so a particular kind 

of light, since between the end of the XIX century and the beginning of the XX century the predominant 

conception of light was the one derived from Maxwell's view. It was accepted later that X rays, such as any 

http://en.wikipedia.org/wiki/Elastic_scattering
http://en.wikipedia.org/wiki/Wilhelm_Conrad_R%C3%B6ntgen
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radiation, have also a particle-like nature, being made up of photons. Sommerfield's group found that X ray 

wavelength was about 10-10 m, a characteristic needed to make diffraction happen. The theory of this 

phenomenon was developed by Bragg in 1912, also known as elastic scattering theory [28]. 

 

General features 

 

X ray diffraction (XRD) is a widely diffused investigation technique of crystal structures. When an X ray 

beam hit the sample, it undergoes diffraction due to the particular periodic structure of the crystal. The 

result of this phenomenon is collected on specific films that show a two dimensional image. Thanks to 

Fourier transformation and the theory of diffraction, it is possible to derive the three dimensional crystal 

structure. 

 

 

Figure 7-5 

 

X rays can be produced by synchrotron or by diffractometer (Figure 7-5). The former creates the brightest X 

rays, a feature that makes them have an astonishing resolution. Their principal limit is represented by the 

fact that they are very expensive and large, for this fact they are usually national facilities with several 

beam lines, each of them performing a different measure. Diffractometers, smaller, cheaper but less 

performing than synchrotrons, accelerate electrons with high electric potentials and make them hit atoms. 

Their inner electrons are excited and leave the atom. The filling of the hole so created by another electron 

creates a X ray. 

X rays are generally filtered to a single wavelength, making it monochromatic, and collimated to a specific 

direction, before hitting the sample.  
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Bragg proposed his simple but right theory about diffraction in 1912. Suppose that the incoming waves are 

reflected symmetrically by the crystal atomic planes, where each one reflects just a very little fraction of 

the radiation. Diffraction is observed when reflections interfere constructively. Consider parallel planes 

separated by the same distance d (hkl are the relative Miller's indices) as in Figure 7-6. The difference of 

path between adjacent planes is 2dhkl sin θ where the angle is the one shown below.  

Constructive interference occurs when the difference of path equals an integer multiple of the distance d: 

             

If every plane had reflected perfectly, then just the first one would have interfered with the wave. On the 

contrary, each plane reflects just from 10-3 to 10-5 of the total radiation, so, in a perfect crystal, the number 

of the planes that take part of the phenomenon varies between 103 and 105. 

 

Figure 7-6 

 

Bragg's law is linked to the theorem which states that the G vectors, the ones connecting two points of the 

Fourier's space, determine the possible X rays reflections (Figure 7-7). The amplitude of the diffused wave is 

                                             

 

 

Where n(r) is the electronic density, nG its Fourier transformation, k and k', respectively, the incident and 

diffused wave vectors, Δk their difference and V the sample volume. When the vectors difference and G are 

equal, F is different from zero.  

The connection between the two approaches is that dhkl = 2π/|G|.  

http://en.wikipedia.org/wiki/File:Bragg_diffraction_2.svg
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Figure 7-7 

 

When a crystal is mounted and exposed to an intense beam of X-rays, it scatters the X-rays into a pattern of 

spots of reflections that can be observed on a screen behind the crystal. The relative intensities of these 

spots provide the information to determine the arrangement of molecules within the crystal in atomic 

detail. The intensities of these reflections may be recorded by a photographic film, an area detector or by 

a charge-coupled device (CCD) image sensor. The peaks at small angles correspond to low-resolution data, 

whereas those at high angles represent high-resolution data; thus, an upper limit on the eventual 

resolution of the structure can be determined from the first few images.  

One image of spots is insufficient to reconstruct the whole crystal; it represents only a small slice of the full 

Fourier transform. To collect all the necessary information, the single crystal must be rotated step-by-step 

through 180°, with an image recorded at every step. 

Isolating a single monocrystal is a complicated operation, since it is easier to study a polycrystalline sample 

or a powder of it. In these cases, crystals are oriented randomly in all directions, so the results are 

diffractions cones, as the monocrystal was rotated uniformly.  

In three dimensional space, a point P is defined by the three Miller's indices hP, kP, lP: if the crystal is rotated 

uniformly, the vector d of the reciprocal space associated to the three indices describes a sphere centred in 

the origin and with a radius equal to the vector modulus. That sphere intercepts the Edwald's one, forming 

a cone of aperture 2θ, called Scherrer cone. The single point P determines an unique angular aperture 2θP 

but all its possible orientations draw a cone whose circumference is given by the interception with the 

imaging film.  

In general, an ideal crystallites distribution generates a series of cones with the same origin, each one 

associated to a single point. The imaging device presents different concentric circumferences. 

http://en.wikipedia.org/wiki/Photographic_film
http://en.wikipedia.org/wiki/Charge-coupled_device
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Then, the diffraction pattern of a polycrystalline sample is determined by both the diffraction angle and the 

intensity of the diffracted ray. Each  (hP, kP, lP) circumference can be pointed by two parameters: 2θP and 

IP
TOT, as Figure 7-8 shows. All the points with orientation equal to the one of the point P give their 

contribution to IP
TOT.  

 

 

Figure 7-8 

 

The diffraction image is a squeezing of the three dimensional crystal in the one dimensional space of 2θ 

(Figure 7-9). Each diffraction peak is linked to the reciprocal space point and, for this reason, it is possible to 

link it to a combination of Miller's indices. Generally, it may happen that some orientation is not statistically 

relevant, so the peaks intensity is not totally trustful. This problem can be partially resolved increasing the 

number of crystallites. 

 

 

Figure 7-9 
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Experimental setup 

 

The diffractometer used in this work is PANalytical X'Pert Pro that exploits the Bragg-Brentano geometry 

and uses as X ray source a Cu anode whose wavelength is 1.54 Å. 

Generally a graph produced by an opportune software linked to the instrument plots the number of 

diffracted photons versus 2θ. The so built diffractogram is analysed by the Rietveld method that connects 

the collected intensity to some structural parameters, according to 

  
         

       

   

        
 
                 

      

   

 

     depends on the incident wave intensity and on the cell volume,    is the Lorentz polarization factor 

which is linked to geometrical parameters as the beam dimension and the sample position,    is the 

absorption factor,     depends on the presence of preferential orientations in the sample,     is the Debye-

Waller factor and              determines the peak form. 

The high number of variables on which the diffractogram depends makes necessary the use of an 

opportune software for its analysis: MAUD was chosen for this task [29]. 
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CHAPTER VIII. Samples morphologic characterization  

 

The kinetics of hydrogen absorption and desorption and the enthalpy involved in the processes can be 

modified by adjusting the nanoparticles size. In this paragraph the most significant samples are shown 

together with their relative SEM images. All samples were produced by IGC while the chamber pressure 

was around 2 torr, in a helium atmosphere. The inert gas flow was of 65 mln/s.  

 

From pure Mg nanoparticles to Mg/MgO systems 

 

MgO_87 

 

The first attempt to form nanoparticles with a Mg core covered by a MgO shell is represented by MgO_87. 

After having created high vacuum, the oxygen needle valve was opened and closed very quickly, so that the 

pressure was of 4 10-6 torr in the chamber. Then helium was inserted and the experiment went on as usual. 

The presence of the rotational pump let us think that the quantity of oxygen present lowered as time 

passed. According to SEM pictures it seems that this low O2 quantity was not relevant in nanoparticles 

synthesis and they looked very similar to pure Mg ones.  

Below pure Mg samples images are shown with deposition time of 5 minutes, 2 minutes, 1 minute and 30 

seconds, respectively [30]. 
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Increasing the deposition time makes the particles dimensions larger and larger and closer and closer to the 

typical hexagonal shape. An accurate study of the correlation between deposition time, particles sizes and 

the ratio between coverage and size is summarized in Figure 8-1 [30]. 

 

 

Figure 8-1 

 

Four samples were synthesised and their outlook is be linked to the deposition time. 

Time 5 min Time 2 min 

Thickness 5 nm Thickness 3,5 nm 
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Time 1 min Time 30 s 

Thickness 2 nm Thickness 1 nm 

 

 

It appears clear that increasing deposition time makes nanoparticles bigger and bigger. As mentioned in 

Coalescence section, this result can be addressed to the union of bigger and bigger islands, to the union 

between previous islands thanks to the arrival of other material or to both the processes.  

Moreover, while the in the first sample the particles are all around 200 nm with a clear hexagonal 

structure, in the last most particles are around 60 nm of diameter. 
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MgO_88 

 

In order to be sure of the presence of a MgO shell, an oxygen flux was created and positioned so that it met 

the Mg particles before they got to the cylinder. 

In this experiment O2 flux was approximately 10-4 torr/s, equal to 0,015 mln/s. 

 

Time 5' 

Thickness 7,8 nm 

 

 

 

Time 2' 

Thickness 3 nm 
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Time 1' 

Thickness 1,2 nm 

 

Two different zones can be distinguished watching the sample at SEM at low magnification: one clearer (on 

the right) and one darker (on the left). The difference is caused by the different amount of material 

present. 

 

 

Time 30'' 

Thickness 0,7 nm 
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These samples are very different from the previous and demonstrate that it is possible to create very small 

particles covering Mg cores with MgO shells: some are found to have diameters around 20 nm. It is possible 

to hypothesize that the oxide shell limits the particles movement and/or the coalescence between islands. 

The evidence of that nanoparticles structure will be shown later. Obviously, the longer the deposition is the 

more numerous the nanoparticles are and the easier they get in contact: observing carefully the several 

"white" zones of the first two samples, they appear as agglomerates of single particles, not as bigger ones. 

The idea that the particles coalesce once they have arrived on the substrate is coherent with this remark 

and gives importance to the kind of substrate used in the experiment. Agglomerates can form with the 

arrival of more material too. 

 

MgO_Pd_89 

 

In order to understand the role of the substrate, this experiment differs from the previous one for the 

presence of a 5 nm thick Pd layer used as substrate, which had been deposited on silicon substrates before 

the Mg sublimation took place.  

Palladium was heated by a 270 A current, magnesium by a 96 A one and O2 flux was of 1,75 torr/s. 

 

Time 5 min Time 2 min 

Thickness 6,9 nm Thickness 1,5 nm 
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Time 1 min Time 30 s     

Thickness 0,8 nm Thickness 0,7 nm     

 

 

 

It could seem at a first look that the presence of Pd substrate limits the nanoparticles movement and, so, 

the melting probability. However, the quantity of material present could explain the difference respect to 

MgO_88 too. In order to understand more deeply the role of palladium, further experiments were 

performed.  

 

MgOPd_98 

 

In order to grasp better the issue before mentioned it was chosen to differentiate the samples according to 

the role of palladium, having fixed the Mg evaporation time. 

Palladium was sublimated by a 260 A current and magnesium by a 92 A one, oxygen flux was 8,85 10-5 

torr/s. 

 

Time 2' 

Thickness 4,9 nm 

Palladium presence Substrate 
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Time 2' 

Thickness 5,5 nm 

Palladium presence Substrate and coating 

 

 

Time 2' 

Thickness 5,1 nm 

Palladium presence Coating 
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The experiment showed that the presence of Pd substrate does not change dramatically the disposition and 

the dimensions distribution of the nanoparticles respect to what happens when they are deposited on the 

usual silicon substrate. What appears of some relevance is the Pd coating: it betters the SEM images 

quality, being palladium a metal and so more sensible to the SEM electron flux, and seems to prevent the 

formation of nanoparticles clusters, blocking them in their arrival position. In this way the possibility of 

further nanoparticles movement, which may create agglomerates, is reduced. 

These considerations appear valid but a central role must be attributed to the sublimation process and to 

the oxygen flux value.   

 

MgO_95 

 

The following images are taken by a pellet made imposing a 98 MPa pressure for 30 seconds on the sample 

powder. The pellet surface appears smooth observing it by the naked eye but it is also evident that there 

are darker and lighter zones.  

SEM analysis shows that the surface is rough: light zones present particles flakes, dark ones appear like 

terraces and the boundaries between the two different areas show the presence of nanoparticles.  

Powders were produced collecting the material deposited on the cylinder, cooled by the liquid nitrogen. 

Magnesium was heated by a current of 114 A and the oxygen flux was about 1,39 10-4 torr/s. 

 

Lighter zone  
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Darker zone  

 

 

Boundary  

 

 

While material was evaporated on the rotating cylinder, it was observed that two regions appeared on it, 

separated by an imaginary line which corresponded to the position of the oxygen flux. The zone under this 

line presented a colour varying between white and yellow, while the other one looked darker. In order to 

understand if morphologic and structural differences were present, in two experiments Si wafers were 

positioned one below this imaginary line and one above. Observing SEM images, it seems that bigger and 

less numerous nanoparticles covered the lower part of the cylinder, while the other one collected more 

material and smaller particles. 

It is quite clear confronting the images of MgO_87: the one on the left comes from the upper part respect 

to the previously mentioned imaginary line, the one on the right from the other. 
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An entire experiment was dedicated to this problem: MgO_Pd_97. 

 

MgO_Pd_97 

 

The images are ordered as follows: for each sample the one on the left is relative to the silicon present in 

the upper part, the one on the right is in the other. The last four images show nanoparticles covered by a 

5nm thick Pd coating, the first four do not present this layer. 

Palladium was sublimated by a 270 A current and magnesium by a 102 A one. The O2 flux was of 1,4 10-4 

torr/s. 

 

Time 5' 

Thickness 6 nm 
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Time 5' 

Thickness 9,5 nm 

 

 

 

Time 1' 

Thickness 2,7 nm 

 

 

 

The presence of the Pd layer improves greatly the images quality: in the second sample the observation of 

nanoparticles results very hard due to charge effects as MgO is an insulator. In any case, it is possible to 

confirm what said before: the zone above the oxygen line experiences less agglomeration and smaller 

particles. 
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EDX results represent a semi-quantitative confirmation of what said before: histograms show that the 

magnesium relative abundance is linked to the sample exposition time to the particles flux and to the 

position of the silicon substrate, if above or under the oxygen flux line. 

The large amount of oxygen is also linked to the presence of SiO2 in the substrate. The percentages are 

relative to the atomic weight and the numbers 1, 2, 3 and 4 correspond respectively to the samples of 5 

minutes, 2 minutes, 1 minute and 30 seconds of evaporation. As regards MgOPd_97 and MgOPd_98, 1, 2, 

3, 4, 5, 6, 7, and 8 correspond to 5 minutes of evaporation upper part and lower part, 2 minutes upper part 

and lower part, 1 minute upper part and lower part and 30 seconds upper part and lower part. 
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XRD analysis 

 

XRD analysis was performed in order to check the fact the nanoparticles created really showed both a 

metallic fraction a MgO one. Using MAUD program it was also possible to have an idea of the particles 

structure, as it can calculate the volumes fractions of Mg and MgO in the whole sample. Imaging the 

particles as spheres with a Mg core and an oxidized shell, as in Figure 8-1, it is possible to write: 
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Figure 8-2 
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MgO_95 

 

Palladium was sublimated by a 260 A current and magnesium by a 114 A one. The oxygen flux was 1,25 10-4 

torr/s.  

This sample presents the requested structure and confirms the validity of the growth technique and the 

average particles diameter results to be around 36,65 nm, a good value respect to this work objectives.  

Figure 8-3 comes from the pellet analysis, Figure 8-4 from material powders. 

The passage from the weight percentages to the Mg core radius and MgO shell thickness is achieved 

exploiting MAUD calculations, geometrical considerations and the relation between mass, volume and 

density (Table 6). Of course, these data should be considered as simple estimates, since the nanoparticles 

have not a spherical shape, but a hexagonal one, as will be showed in the TEM analysis section. This 

explains the fact that          is different from 36,65 nm 

 

Figure 8-3 

 

Figure 8-4 
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Table 6 

MgO_95          powder 

Mg % (weight) 47,06 

MgO % (weight) 52,94 

2RMg (nm)  29,77 

2RMgO (nm) 14,63  

 

MgO_93 

 

Palladium was sublimated by a 260 A current and magnesium by a 110 A one. The oxygen flux was 2 10-4 

torr/s.  In this case the spectrum is relative to powders (Figure 8-5). 

 

Figure 8-5 

Table 7 

MgO_93          powder 

Mg % (weight) 9,73 

MgO % (weight) 90,63 

2RMg (nm)  35,57 

2RMgO (nm) 62,44  

 

 

This sample shows a different ratio between RMg and RMgO and a total radius longer than the one of the 

previous case (Table 7). Actually, the results of MgO_95 are closer to what is desired, since the 
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nanoparticles are smaller and with a thinner oxidized shell. It is possible to address the diverse results to 

different experimental conditions during the nanoparticles growth: the oxygen flow seems to be the critical 

parameter. 

 

TEM analysis 

 

TEM images stress the fact that the creation of nanoparticles with a metallic core and an oxidized shell was 

achieved. Each technique used shows different nanoparticles characteristics. 

The sample used analyzed by this technique was MgO_102, where the oxygen flux was of about 1,2 10-4 

torr/s. 

Bright field TEM images reveal that the smallest particles have faced but irregular shapes, while bigger ones 

get the typical hexagonal structure. The inner and the external parts of the nanoparticles have different 

colours, being the core brighter than the shell. The fact that hexagonal and not cubic structures are present 

confirms that magnesium nanoparticles are formed before getting in contact with the oxygen flow which, 

then, creates the oxidized shell. 

Different magnifications are shown. 
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An high-angle annular dark-field imaging (HAADF) STEM image of some NPs dispersed on carbon film. This 

technique is sensitive to variations in the atomic number of atoms in the sample. Nanoparticles have a 

brighter contrast respect than the carbon film.  Some particles present  a brighter shell so it is possible that 

are some voids in the inner part of them. 

 

 

The presence of holes is an evidence of the synthesis of core-shell structure nanoparticles. As it has been 

explained by a Chinese group, the fast diffusion of Mg atoms from the core to the external part of the 

particle, combined with the slow one of O atoms, creates holes [31]. The phenomenon that takes place is 

the so called in situ Kirkendall effect. In 1947, Smigelkas and Kirkendall reported the movement of the 

interface between a diffusion couple (copper and zinc) as the result of the different diffusion rates of these 

two species at an elevated temperature [32]. This phenomenon, was the first experimental proof that 

atomic diffusion occurs mainly through vacancy exchange and not by the direct interchange of atoms, much 
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rarer phenomenon. The net directional flow of matter is balanced by an opposite flow of vacancies, which 

can condense into voids or annihilate at dislocations. Directional material flows also result from coupled 

reaction-diffusion phenomena at solid/gas or solid/liquid interfaces, leading to deformation, void 

formation, or both during the growth of metal oxide or sulphide films. These holes are usually explained by 

outward transport of fast-moving cations through the oxide layer and a balancing inward flow of vacancies 

to the vicinity of the metal-oxide interface. The observed volume fraction for pores is much smaller than 

would be expected considering the diffusing material amount. It can be explained considering both that 

vacancies can diffuse into a large volume of material and that they can react with crystalline defects [33]. If 

the faster-diffusing species is confined into a nanoparticle core, the net rate of vacancy injection should 

increase markedly, because of the high surface-to-volume ratio of the particle and the absence of defects in 

the core [34] as in the considered case.  

The device was also able to calculate the distribution of the particles diameters (Figure 8-6). The result was 

very interesting since it is evident that oxidation blocked the particles diameters growth, keeping them very 

small. 

 

 

Figure 8-6 

 

High Resolution TEM (HRTEM) image (in the next page on the left) and Fast Fourier Transformation analysis 

(whose result is on the right) show that nanoparticles are monocrystalline and that crystalline planes are 

present. The device was able to give an estimate of the interplanar distance. 
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In Table 8 are reported the experimental lattice fringes found by FFT of HR-TEM images with literature data 

for Mg and MgO  phase. The presence of the last one was unexpected. In the round brackets Miller indexes 

of the corresponding crystallographic plane are specified. 

Table 8 

FFT-HR d(Å) Mg d(Å) (hkl) MgO d(Å) (hkl) 

2,78 ± 0,08 2,778 (100) 

 2,60 ± 0,07 2,605 (002) 

 2,46 ± 0,06 2,452 (101) 2,425 (111) 

2,09 ± 0,06 

 

2,100 (200) 

 

EDS spectra were acquired focusing the electron beam on a single NP and on the carbon film.  While copper 

and carbon X-ray signals derive from the grid and from  the carbon film on which the sample is deposited, 

iron and cobalt ones come from the polar pieces of TEM. Note that there is also a presence of silicon and 

calcium X-ray signals. Figure 8-7 is relative to the particle, Figure 8-8 to the carbon film, but nothing 

relevant was derived by these two graphs. 
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Figure 8-7 

 

Figure 8-8 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Energy (keV)

C
o

u
n

ts

1086420

2000

1500

1000

500

0

C

O

Si
Si

Fe Fe
Fe
Fe

Fe

Co

Co

Co
Co

Co

Cu

Cu

Cu

Cu

Cu

Mg Ca
Ca

Acquire EDX



84 
 

CHAPTER IX. Samples subjected to hydrogenography 
 

In order to understand better the behaviour of nanoparticles with a Mg core and a MgO shell, it can be 

useful to compare them to pure Mg nanoparticles. For this reason MgPd_51 and MgPd_101 were subjected 

to hydrogenography measurements.  All the images of this section are taken by samples where the material 

is deposited on two kind of transparent glasses, different for dimensions and composition, that can be 

named as 1 (square of 15 mm X 15 mm)  and 2 (20 mm X 20 mm)  . Remember that in the previous section 

silicon was used as substrate.  

 

MgPd_51 

 

MgPd_51 was grown for a long time and present the typical magnesium nanoparticles with hexagonal disks 

with diameters between 100 nm and 200 nm and a thickness around 50 nm. The glass used is 1 and a small 

MgO shell is present due to the sample exposition to air. 

Time 40' 

Thickness 22 nm 

 

 

 

MgPd_101 

 

In this experiment the sample substrate changed:  glass 2 was used and the effect proved to be very 

relevant. While the sample exposed for 2 minutes to evaporation could not be seen due to charge effect, 

the others showed an interesting result: very small nanoparticles were produced without the presence of 
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the oxygen flux and thus of the MgO shell, even if a thin oxidation is present due to the sample exposition 

to air. It is assumed that also MgPd 101 2 minutes shows little nanoparticles, as other sample do. All 

samples were covered by a 5 nm palladium layer and while palladium was sublimated by a 260 A current, 

magnesium by a 102 A one. 

Time 1 min Time 30 s 

Thickness 1,4 nm Thickness 0,8 nm 

 

 

 

MgOPd_99 

 

Palladium was sublimated by a 260 A current and magnesium by a 102 A one, oxygen flux was 1,6 10-4 

torr/s. The samples present both a substrate and a coating of palladium and the substrate is glass 1. 

Time 5 min Time 2 min 

Thickness 7,2 nm Thickness 5,0 nm 
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MgOPd_100 

 

Palladium was sublimated by a 270 A current and magnesium by a 102 A one, oxygen flux was 1,2 10-4 

torr/s. Both samples are covered by a 5 nm palladium coating. Glass 1 is the substrate. 

Time 2 min Time 1 min 

Thickness 4,7 nm Thickness 1,6 nm 
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CHAPTER X. Hydrogenography 

 

General features 

 

Hydrogenography is a recently introduced experimental technique whose basis is the fact that the quantity 

of hydrogen stored in a material changes its optical transmission. Thanks to an opportune setup, this 

method is capable of monitoring the absorption and the desorption of hydrogen of several samples 

subjected to the same experimental conditions simultaneously. However, the real utility of this approach is 

the possibility of obtaining the values of key thermodynamic quantities as enthalpy and entropy of hydrate 

formation. 

In order to store hydrogen, MgH2 could be a very promising material, since it contains 7,6% wt of hydrogen. 

Its limit is represented by its large enthalpy of formation that is -74 kJ/mol, because it makes the hydrate 

too thermodynamically favoured respect to the situation in which hydrogen and magnesium are separated: 

absorbing H2 is easy but freeing it is too hard, a negative skill for a material that has to behave as storing 

one. Different attempts to destabilize MgH2 reversibly and successfully have been made doping the 

material with elements such as Ni, Cu, Co and Fe whose hydrogen absorption is hard. The hydrates so 

formed have all enthalpies more negative than what needed. This problem is overcome by changing Mg 

with Mg2Si, but in this situation hydrogen absorption is not reversible. 

Enthalpy of formation and Pressure-Concentration-Isotherms are determined measuring the changes of 

optical transmission as the hydrogen concentration varies. Optical transmission is derived by Lambert-

Beer's law, according which 

          

Where   is the sample thickness,   the absorption coefficient (for Mg it is equal to 0.11 nm-1). Transmitted 

intensity   can be written as a function of the absorbed hydrogen: 

                                

Where    is the incident intensity,    the absorption coefficient in the metallic phase,    in the hydrate 

one,   indicates the percentage of hydrogen present in the material (    in the hydrate phase and 0 in 

the metallic one),   the covering of the sample on the substrate and    the noise signal. 

Hydrogenography is applicable to any reaction involving a change in the electronic structure of the 

material. This is the case of light-weight hydrogen storage materials such as alanates and boronates, 
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insulators with a wide optical band gap. But the presence of a Mott transition is not necessary: 

hydrogenography was applied with good results also to a system such as Pd-H that is metallic at any H2 

pressure.  

Another advantage is that it is not necessary to have a former knowledge of the relation between the 

optical properties and hydrogen concentration to apply the method: under isothermal conditions, if there is 

a hydrogen concentration plateau in the PCI due to coexisting phases, the transmittance will necessary 

exhibit a plateau at the same pressure. 

Experimentally it has been shown that a dramatic change in optical transmission occurs when two phases 

coexist. Using experimental data it is possible to create the so called PTI (Pressure-Transmission-Isotherms), 

plotting hydrogen pressure versus the logarithm of the normalized transmittance. According to Beer-

Lambert's law the logarithm of this ratio is proportional to the hydrogen concentration while the two 

phases are coexisting. 

In the end, PTI  are similar to PCI , but the diffusion issues typical of the PCIs are lowered.  

 

Substrate presence effects 

 

An important point to discuss is the presence of the substrate. Hydrogenizing a sample makes it increase its 

volume for values between 11% to 32%.  

While bulk materials can expand in all three dimensions, the rigid substrate where nanoparticles are 

deposited do not allow the free expansion of the film parallel to the surface during hydrogenation. The 

contrast between the adhesion forces and the sample expansion generates compressive stresses that might 

influence the equilibrium plateau pressures of the samples and, consequently, their thermodynamics 

(Figure 10-1). 

It is possible to address this behaviour to the H-H interaction that is an elastic one. Normally, when H2 

diffuses in the host material, it increases its volume, creating a long range strain field around the solute 

atom, making it easier for further hydrogen to enter the system. However, the sign of this interaction 

depends on the boundary conditions and the presence of the substrate makes the sign of the force switch 

from attractive to repulsive. For this reason, hydrogen must have a higher chemical potential to diffuse in 

the material and to create a new phase. Thus, the substrate makes the equilibrium plateau shift to higher 

pressure values. 
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Figure 10-1 

 

Hysteresis phenomenon 

 

Ideally the processes of hydrogenation and dehydrogenation would be described by the same isotherms, 

but it is not what is experimentally observed: a phenomenon called hysteresis occurs. 

There are two different approaches that explain the presence of this feature and both focus their attention 

towards the presence of stresses arising in material during the phase transformation. Hysteresis is related 

to elastic and/or plastic deformations. 

In the first case the sample is thought to behave like an elastic body, without permanent deformations. 

When hydrogen enters the material, it creates strain and consequently stress, as it is below the Yield stress 

of the material. Sinha et al developed a model to explain the hysteresis presence exploiting the elastic 

strain energy effects in combination with the occupational sites of hydrogen inside the host material [35]. 

According to this study, gas atoms occupy interstitial sites smaller than the atoms themselves. For this 

reason there is no energy barrier to overcome during desorption and the dehydrogenation process can 

occur at lower pressures respect to absorption. Schwarz and Khachaturyan used a different approach, 

focusing not on hydrogen atoms, but solving the problem in terms of metallic and hydrate phases in the 

material [36]. The formation of the expanded (hydrate) phase occurs under the compressive forces of the 

metallic phase during hydrogenation, leading to the so called coherency stresses. The opposite situation 

happens during desorption, where the metallic phase is formed under a tensile stress generated by the 

hydrate phase. Therefore, dehydrogenation benefits from the presence of an already expanded lattice and 

so it takes place at lower pressures. The hysteresis depends on the mechanical properties of the metal 

hydride (Shear modulus    and Poisson's ratio ), lattice expansion   , width of the plateau (     ) and 

temperature, according to the following relation: 
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When a material is deformed plastically dislocations appears and they play a non-irrelevant role during 

hydrogen formation and decomposition. According to Flanagan et al, their presence makes a shift of 

plateaus to higher and lower pressures, respectively [37]. The overall hysteresis is equal to the energy 

involved in formation and movement of dislocation during hydrogenation and dehydrogenation. Anyway, 

the fact that nanoparticles cores are formed by single crystals, as TEM analysis showed, makes less likely 

this hypothesis for the systems studied. Another approach considers the problem in terms of Gibbs free 

energy: it is the path followed by Birnbaun et all [38]. They assumed that the change of the free energy 

during hydride formation       involves different terms, as shown below 

           
          

        
  

      
    

     
    

 

Where      
     is the free energy change on forming the unconstrained hydrate phase,      

   and      
  

 

the free energies associated to elastic and plastic deformations and      
  

 is the surface free energy term. 

Similarly, the change of free energy during dehydrogenation       can be written as 

           
          

        
        

     

Assuming that all the terms except the ones relative to plastic deformations have similar values, the overall 

Gibbs free energy change is just given by 

                    
        

   

Therefore, the model addresses the presence of hysteresis just to plastic deformations. 

 

Experimental setup 

 

The main component in a hydrogenography setup is the (de)hydrogenation gas cell that contains the 

samples. It is placed in an oven with a temperature controller. Due to the presence of sapphire windows, 

the maximum temperature that can be present in the cell is 573 K. In order to perform the measure, a 

white light source illuminates the samples, while a CCD camera detects the amount of light that passes 

through the sample. This operation is done while a hydrogen flow passes into the camera. The pressure is 

so determined modifying the inlet and the outlet flux and choosing the desired gas mixture entering the 

chamber. The software can detect at the same time both different samples and different parts of the same 

sample. It can also average the results in the XY plane or just along one direction: X or Y. 
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Figure 10-2 shows the samples disposition as seen by the CCD camera. The zones different brightness 

depends on their transparency.  

 

Figure 10-2 

 

The experimental set up used in this work is schematically represented by Figure 10-3 and made up of: 

 Two PT-100 resistors, that act as temperature controllers; 

 A 150 W white light source; 

 A 3-channel (RGB) SONY XC-003 CCD camera< 

 A blanket, which covers the camera and the vacuum cell, in order to avoid any disturbance to the 

setup coming from the external environment; 

 A PID system, that controls the opening of the input valve; 

 A baratron pressure gauge, reading the actual pressure; 

 A flow meter, that controls the pumping speed, together to the output valve; 

 A Delta 0-30 volt power supply, which regulates the opening of the output valve; 

 Two gas bottles, with different mixtures of pure hydrogen, argon and hydrogen; 

 A pumping system consisting of a diffusion and a rotary pump. 

 

Figure 10-3 
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Results 

 

Hydrogenography measurements performed were equilibrium ones: hydrogen pressure changed its value 

after a constant time set by the user. The gas bottle which was utilized to make hydrogen enter was the 

one with a mixture of argon (95,85%) and hydrogen (4,15%). The pressure rate could be set as a linear, a 

quadratic or a logarithmic function. An example is shown in Figure 10-4.  

 

Figure 10-4 

 

Anyway, all the measurements performed had both a logarithmic increase and decrease. 

The expression     
 

 
  stands for: 

   
 

 
      

    
     
    
     

  

Where   and   represent, respectively, the light intensity relative to the sample and to the light source, the 

subscript 0 stands for the initial value (without hydrogen) and d for the dark value, the value measured by 

the CCD camera even if the light source is covered. 

 

MgOPd_99 2 minutes 

 

This sample underwent eight cycles: six at 363 K (the first five and the last), one at 393 K (the sixth) and one 

at 423 K (the seventh). 
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As can be grasp from the data, no plateau appears. Moreover the very law values on abscissa mean that 

the optical contrast is very low, probably due both to the poor hydrogen absorption efficiency and the 

small amount of material. The third cycle was not shown since its behaviour was so irregular that the 

measurement surely suffered from measuring setup problems. 

 

MgOPd_99 5 minutes 

 

The cycles made on the sample were six: the forth at 393 K, the fifth at 423 K and the others at 363 K. 
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This sample shows a higher optical contrast than in the previous case. It is possible to address these 

difference to the higher deposition time and, thus, the larger amount of material deposited. The first cycle 

was not represented since its shape was so strange that must have been affected by errors in the 

measurement. 

 

MgPd_101 2 minutes 

 

This one underwent seven measurements: the first four and the last at 363 K, the fifth at 393 K and the 

sixth at 423 K. 
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Table 9 

Peq (Pa) T (K) 

528 363 

1947 393 

5105 423 

 

This sample performed very well, showing a plateau in each cycle and also at different temperatures, so 

that it was possible to calculate the enthalpy of formation, even if in a quite rough manner: the equilibrium 

pressure values were estimated graphically from the plots. Once the inflections points are individuated, 

which limit the plateau, the corresponding abscissa points are found. The equilibrium pressure is the one of 

the average between the two x-axis points, chosen as told before. The error estimate is the 5%. 
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Figure 10-5 

          
  

   
                                       

 

     
 

 

Anyway, it is also evident that cycling more times the samples, the optical contrast decreases, as if a 

complete desorption has not been reached for each cycle. A phenomenon that can be imagined looking at 

the unloading branch in the plots and at the one below, where on the abscissa there is simply the samples 

luminous intensity. Each cycle, except the first one, starts almost at the last value of the previous one. The 

first cycle was not considered since it shows initial and final intensity values very far from the others. 
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Table 10 

Cycle Average of the first five RAW 

data (au) 

Average of the last five RAW 

data (au) 

II 74,83 77,62 

III 77,66 77,28 

IV 77,25 77,59 

V 77,55 78,49 

VI 78,18 78,06 

 

 

MgPd_101 1 minute 

 

This sample was put in the experimental setup as the MgOPd_99 5 minutes. 
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Table 11 

Peq (Pa) T (K) 

552 363 

1995 393 

-- 423 

 

This sample shows clear plateaus except for the case of the VI cycle. The reason could lie in the progressive 

deterioration of the sample, as observed before. 

Anyway it is possible to do an evaluation of both formation enthalpy and entropy by exploiting the same 

technique used previously and the resulting Arrhenius plot (Figure 10-6). 

 

Figure 10-6 

          
  

   
                                       

 

     
 

 

The smaller values of      
 

 
   and formation enthalpy in comparison to the MgPd_101 2 minutes ones are 

caused by the different nanoparticles number and size. This parameter makes the values of equilibrium 

pressure higher than in the previously mentioned sample. 

 

MgOPd_100 2 minutes 

 

This sample underwent six measurements: the first three and the last at 363 K, the fourth at 393 K and the 

fifth at  423 K. 
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This sample shows a different behaviour respect to MgOPd_99 2 minutes: cycles are clearer and it is 

possible and it seems that hydrogen entering and exit is almost reversible, as if it is not stored by the 

metallic core. 

 

 

MgOPd_100 1 minute 

 

The sample was subjected to the same cycles as the previous one. 
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This sample had a behaviour very similar to the previous one, even if hysteresis shapes seem to be 

narrower.  

 

MgPd_51  

 

The sample underwent the same cycles as the previous one.  
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Table 12 

Peq (Pa) T (K) 

1670 363 

5298 393 

-- 423 

 

This sample shows clear plateaus even if a certain quality degradation can be observed. Anyway it is 

possible to draw an Arrhenius plot (Figure 10-7) and to derivate from it the values of formation enthalpy 

and entropy. 

 

Figure 10-7 

          
  

   
                                       

 

     
 

The luminous intensity behaviour was studied for this sample too: it results to be very similar to the one of 

MgPd 101 2 minutes. The first cycle was not considered also in this case because of its very high initial and 

final intensity values. 
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Table 13 

Cycle Average of the first five 

RAW data (au) 

Average of the last five 

RAW data (au) 

II 74,83 77,62 

III 77,66 77,28 

IV 77,25 77,59 

V 77,55 78,49 

VI 78,18 78,06 
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CHAPTER XI. Conclusions 
 

The results showed in this work are contrasting: while the behaviour of MgPd samples and the 

achievement of the formation of composited structure nanoparticles with a metallic core and an oxide shell 

can be considered as positive, the behaviour of MgOPd samples represents a substantial failure. 

The differences inside each group of samples can be addressed to the deposition time: samples with clearer 

graphs and higher changes in transmission are the ones with more material. 

MgOPd samples did not work properly: no plateaus appeared and changes in optical transmission are very 

small: this indicates that hydride formation does not take place. 

Palladium presence cannot be considered as a cause of the limited gas entering, as much literature says. 

Moreover, if it had been the limiting diffusion factor, both the kind of samples would have had the same 

behaviour.  

These consideration let think that what create differences is the amount of MgO in the nanoparticles: 

MgPd surely have an oxidized layer too [30], but its thickness (around 4-5 nm) does not stop the gas 

entering significantly. Trying to understand better this point, some calculations were performed, taking as 

reference a periodic density functional theory (DFT) study [39]. According to this model there are some 

energetic barriers that molecular hydrogen must overcome to diffuse in the material: one relative to 

molecular dissociation (2.2 eV), one for the H atom passage from the surface to the first atomic plane (1,52 

eV), one from the first atomic plane to the second one (1,2 eV) and, then, inside the bulk (1,02 eV).  

Considering just atomic diffusion, remembering that palladium favors molecular dissociation, there are 

astonishing differences between the various processes (Table 14). As it can be easily grasped, temperature 

is a critical parameter.  

Being   the interplanar distance,   the diffusion coefficient,    its pre-exponential value estimated for 

temperatures lower than 1173 K (150 cm2/s),   the energetic barrier,   the Boltzmann constant,   the 

typical diffusion time and   the temperature, it is possible to write: 
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Table 14 

Diffusion process T=363 K T=393 K T=423 K 

From surface to 1st plane τ=3130 s τ=77 s τ=3,2 s 

From 1st plane to 2nd plane τ=1,4 10-1 s τ=6,1 10-3 s τ=4,9 10-4 s 

Bulk τ=3,6 10-4 s τ=3,0 10-5 s τ=3,6 10-6 s 

 

These calculations demonstrate what is commonly believed about oxidized layers: they inhibit hydrogen 

diffusion. Even if the most difficult passage is from the surface to the first atomic layer, a phenomenon 

common to both MgPd and MgOPd samples, it is clear from experiments that the MgO thickness is the 

most relevant parameter, keeping in mind that the energetic barrier in bulk magnesium is just 0,22 eV [40]. 

 XRD analysis showed that the value of oxygen flux inserted during the evaporation is a critical point to 

determine the nanoparticles structure. While a flux of 1.25 10-4 torr/s creates a MgO shell whose thickness 

is about the 32% of the whole radius, increasing it to 2 10-4 torr/s increases this value up to the 64%. 

Moreover, it is impossible to determine if this relation is something like linear, exponential or whatever. For 

this reason, even if the flux values of the samples created are more similar to the one of MgOPd_95, even a 

small deviation from this value determine a great change in MgO thickness. This point is central to try to 

explain the differences between MgOPd_99 and MgOPd_100: these ones show clearer graphs and higher 

values of optical transmittance change. 

MgOPd_100 samples were prepared with a lower value of oxygen flux in comparison of the MgOPd_99 

ones and the data of the microbalance show that the amount of material is larger.   

As regards MgPd samples, the results, even if globally positive, display some points of discussion. The 

presence of clear and complete plateaus in the absorption branch, except for MgPd_101 1 minute and 

MgPd_51 up at 423 K, corresponds to what was expected and made the estimate of the formation enthalpy 

possible. Being more rigorous, the equilibrium pressure should be calculated as the geometrical average by 

the first inflection points of the absorption and desorption branches. Anyway, the lack of a clear desorption 

plateau only allows the calculations based only on the absorption equilibrium pressure. These should be 

considered just estimates due to the fact that the method is graphic and that two samples have just two 

points in the Arrhenius plot. Moreover, the entropies values are of about a order of magnitude lower than 

values corresponding to the entropy of a gas mole. In any case, it is significant that MgPd_101 1 minute, 

the sample with the smallest nanoparticles, has the lowest value of formation enthalpy. Finally, in all the 

samples this value is sharply different from the bulk value, showing the validity of the destabilization 

model. 
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The lack of desorption branches is the main problem showed by these samples for various reasons. Firstly, 

as mentioned before, it makes impossible to determine the formation enthalpy using the real equilibrium 

pressure. Secondly, it means that the samples take too much time to release hydrogen and it is a critical 

limit for practical applications. Then, it is linked to and explains the continue reduction of the cycles width. 

The causes of this phenomenon could be the progressive thickening of the MgO shell that makes the 

sample more and more transparent cycle after cycle, or the presence of accumulating hydrogen which 

remains inside the nanoparticles due to the partial desorption. It cannot be excluded that both processes 

take place. Anyway, these two explanations collide with the fact that both would have caused a continue 

growth of the equilibrium pressure of the absorption branch, a phenomenon that is not clearly observed. 

Working at high temperatures makes possible the formation of an alloy between magnesium and 

palladium: it would limit the gas diffusion.  

The fact that the samples do not react after high temperatures treatments can be linked to their almost 

complete oxidation or to morphological changes. Unfortunately, checking  this hypothesis by SEM has been 

made impossible by the charge effect. A XRD measurement try was also performed, but no information was 

obtained due to the too low material amount present on the glass. 

A sample that did not suffer from these problems and that was analyzed by hydrogenography was made up 

of nanodots with 30 nm of Mg, 5 nm of Ti and 5 nm of Pd. This sample was grown at KIT (Karlsruher Institut 

für Technologie) using molecular beam epitaxy (MBE): an alumina mask was deposited on the substrate, 

the materials deposited and the mask finally removed, as described by Figure 11-1. 

 

 

Figure 11-1 
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SEM images of the sample with (Figure 11-2) the alumina mask and of the mask itself (Figure 11-3). 

 

  Figure 11-2       Figure 11-3 

 

 

 

In this case the values of enthalpy and entropy calculated by the two different methods are very similar. 

The rigorous method gives 

          
  

   
                                        

 

     
 

While using just the absorption branch: 

          
  

   
                                        

 

     
 

These values are compatible to the ones of bulk magnesium within the errors. The entropy of formation 

absolute module is higher than for bulk material (             ). 

0,1 

1 

10 

100 

1000 

10000 

100000 

-0,05 0 0,05 0,1 0,15 

P
 (

P
a)

 

ln (T/U) 

Cycles at different temperatures 

363 K 

393 K 

423 K 



118 
 

An interesting thing is the comparison between the samples showing plateaus. The sample produced at KIT 

and MgPd 51 show high     
 

 
  values, since transmittance logarithm, according to Lambert-Beer's law, is 

directly proportional to the material thickness: the nanodots analyzed and MgPd 51 nanoparticles are "big" 

ones and in both samples the material amount is relatively large. MgPd 101 2 minutes has lower     
 

 
  

values due to the low quantity of magnesium deposited on the substrate. The most significant information 

coming from the graph below is the different hysteresis shape and extent on the y-axis. The sample with 

nanodots is the closer to the ideal case and to the bulk: their large size and the lack of an oxidized layer 

between magnesium and palladium which would have limited the metal expansion (MBE was performed in 

ultra-high vacuum conditions) are the reasons of this statement. On the contrary, the nanoparticles 

synthesized in Bologna surely have an oxidized layer around them, even if it is thinner than in MgOPd 

samples. This fact, as mentioned before, limits the metal expansion as the gas enters. Probably the core 

enlarge its volume so that the MgO shell undergoes plastic deformations that make the equilibrium 

pressure of the absorption branch higher and the one of the desorption branch lower. 

 

 

 

These points of discussion stress the good and the bad points of the created samples. MgOPd samples are 

undoubtedly useless for hydrogen storage, mainly due to the too thick oxidized shell, but their synthesis is 

one of the most exciting results of this work. Having the experimental setup described before, it proved to 

be very hard to create nanoparticles with the core-shell structure: it took months of attempts, checks and 

failures. Anyway, the XRD and TEM analysis proved that this ambitious goal was achieved. MgPd samples 

worked properly, showing absorption plateaus in one case even at 423 K (MgPd 101 2 minutes). The 

formation enthalpy estimates, even if the calculations are rough, are lower than the bulk value, considering 
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the absolute module, verifying the destabilization model. Another positive result is the creation of "pure" 

magnesium nanoparticles with very small sizes (MgPd 101) respect to the typical hexagonal disks (MgPd 

51), a goal achieved changing the kind of glass used as substrate. This point underlines the substrate role in 

the particles growth and it could be studied in a more rigorous and systematic way in the future. Anyway, 

an evident limit to the application of this kind of samples for hydrogen storage is represented by 

desorption, a too slow phenomenon that takes place at too low pressures. Moreover, the limited 

desorption after a cycle or the progressive oxidization cycle after cycle, reduce the transmittance variation 

after each hydrogenography measurement, i.e. the amount of entering gas. It would be very useful 

performing morphological and structural analysis of the samples after a cycle, after more cycles at the same 

temperature and, finally, after the temperature rise. It is evident that all the samples, after the 

measurement at 423 K, appear exhaust. Discovering how the sample evolutes during hydrogenography 

would give crucial data to clear these problems.   

In conclusion, even if this work did not find something that can bring to a large scale use of magnesium 

based nanoparticles for hydrogen storage, it represent a step which deserves further investigations 

towards the final goal of developing efficient light hydrogen storage materials. 
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