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Abstract

In questa tesi abbiamo studiato il comportamento delle entropie
di Entanglement e dello spettro di Entanglement nel modello XYZ
attraverso delle simulazioni numeriche. Le formule per le entropie
di Von Neumann e di Renyi nel caso di una catena bipartita in�nita
esistevano già, ma mancavano ancora dei test numerici dettagliati.
Inoltre, rispetto alla formula per l'Entropia di Entanglement di J.
Cardy e P. Calabrese per sistemi non critici, tali relazioni presen-
tano delle correzioni che non hanno ancora una spiegazione ana-
litica: i risultati delle simulazioni numeriche ne hanno confermato
la presenza. Abbiamo inoltre testato l'ipotesi che lo Schmidt Gap
sia proporzionale a uno dei parametri d'ordine della teoria, e in-
�ne abbiamo simulato numericamente l'andamento delle Entropie
e dello spettro di Entanglement in funzione della lunghezza della
catena di spin. Ciò è stato possibile solo introducendo dei campi
magnetici �ad hoc� nella catena, con la proprietà che l'andamento
delle suddette quantità varia a seconda di come vengono disposti
tali campi. Abbiamo quindi discusso i vari risultati ottenuti.
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Introduction

Entanglement, �rstly recognized in 1935 by Schrödinger, is one of the most
striking evidence of the quantum behaviour of nature: it represents the fact
that parts of a system can in�uence each other istantaneously. At �rst sight
it seemed that Entanglement was in contrast with Einstein's principle of Rel-
ativity, because nothing can move faster than light. But afterwards it was
shown that these physical facts are compatible, since two systems can send
informations about their status only through channels which involve devices
necessarily slower than light.

Much e�ort has been devoted to a quantitative understanding of Entan-
glement. For subsystems of pure states, a list of reasonable requirements for
a measure of Entanglement led to the de�nitions of the Von Neumann and
the Renyi entropies, which deal with bipartite systems. For mixed states, and
for multipartite systems, a satisfactory way to measure Entanglement is still
missing.

While, at the beginning, Entanglement was considered as a simple inter-
esting e�ect arising from the laws of Quantum Mechanics, it is only in the
last years that the interest for this phenomenon �ourished again, mainly due
to Quantum Information. It is believed that an entangled state, such as for
Qubits, can be used to store information and to construct logical gates. The
amount of information stored by such a quantum system would be potentially
in�nite, in contrast with the classical way to store memory through bits, and
the logical operations between Qubits are expected to work much faster than
nowadays computers.

Other important applications of Entanglement arised in General Relativity
for the study of black holes, and in Statistical Mechanics. First of all, Von
Neumann entropy coincides, for pure systems, with the thermodynamical En-
tropy of a quantum system. Moreover, Entanglement is related to quantum
phase transitions, since it diverges at critical points. A deeper analysis of
the Entanglement entropy in the space of parameters reveals further impor-
tant properties of a quantum system, such as the presence of what are called
essential singularities.

In this work we will focus on 1-d quantum spin chains. One dimensional
quantum systems have been deeply investigated in about the last 70 years,
for several reasons. They are strongly interacting (collisions can never be
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ignored), and the role of quantum statistics is somehow special: two particles
can exchange their position only if they interact. Moreover, most of higher
dimensional systems can't still be solved, but nevertheless 1-d quantum chains
can give some insights on the behaviour of 3-d analogous systems, such as the
Ising model. More recently, Entanglement of 1-d systems at criticality has
been connected to the classes of universality of these systems through their
central charge, thanks to the use of Conformal Field Theories.

The de�nition of Von Neumann entropy involves what is called the Entan-
glement Spectrum (ES), which is the spectra of the reduced density matrix of
a subsystem. The ES is also a very important feature, since it is believed that
it can describe the thermodynamics of statistical systems. As an example,
in [14] is presented the ansatz that the Schmidt Gap (that is the di�erence
between the two largest values of the ES) scales as some order parameter of
the theory: this implies that studying the Schmidt gap we should recover the
critical exponents of the theory.

In this thesis we focus on the XYZ model. We present in detail the results
obtained from numerical simulations performed on this model, for di�erent
sizes of the spin chain. Furthermore, we give some analytical results about the
Entanglement Spectrum, which are tested numerically. Formulas for the Von
Neumann and Renyi entropies already exist in the case of an in�nite bipartite
system (see [21]) but exhaustive numerical checks of these relations were still
lacking. Furthermore, these formulas contain corrections to the Von Neumann
entropy, arising near the critical XXZ chain, that are not explained by the
corrections described by Cardy, Calabrese and Peschel in [12], obtained using
a quantum �eld approach. Numerical simulations should help to understand
if these unusual corrections are indeed present in the model, and eventually
a theoretical description of these will be needed. Nonetheless, an analytic
description of the entropies, and of the Entanglement Spectrum, for �nite size
of the system still need to be found.

This thesis has the following structure:

Chapter 1 We justify, in the context of statistical systems at criticality, the
use of Lagrangians which are invariant under scale tranformations of
the coordinates: this leads to the concept of Conformal Field Theories
(CFTs). Furthermore, we give a glance at the Renormalization Group,
which is at the core for the suddivision of statistical models into classes
of universality.

Chapter 2 In the �rst part we present a summary of Conformal Field The-
ories. Then we describe �eld theories which are perturbation of CFTs,
thus representing statistical system out of criticality.
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Chapter 3 In this chapter we �rstly discuss how to compute bipartite en-
tanglement concerning one dimensional statistical models, for both the
cases at criticality and out of criticality. An introduction to the concept
of Entanglement and how this can be measured is presented in Appendix
A. Then we show the �corner transfer matrix� (CTM) method (a de�ni-
tion of CTMs is in Appendix B), which serves to evaluate Von Neumann
and Renyi entropies for in�nitely large spin chains, splitted in two half-
in�nite parts. Finally, we present the XYZ model, and a brief discussion
on the computation of the Entanglement Spectrum for some selected
systems.

Chapter 4 Here we present all the work performed on the XYZ model. First
we derive a formula for the Entanglement Spectrum of this model, in the
thermodynamical limit. Then we discuss all the numerical simulations
performed, concerning Von Neumann entropies and the Entanglement
Spectrum, �rst for in�nite systems, and then for �nite systems as a
function of their size. In Appendix C we report the numerical data, as
well as a description of the DMRG algorithm, which is at the basis of
the C++ program used to perform the numerical simulations.
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Chapter 1

Statistical Mechanics

This chapter is devoted to a review of some basic concepts about statistical
systems at criticality, that is at a second order phase transition.

1.1 Towards a �eld theory

Suppose we have a 2-dimensional classical statistical spin system, described by
the hamiltonian H({σi}) and the partition function:

Z =
∑
σi

e−βH({σi}) (1.1)

This determines all the thermodynamics of the model, which can be derived
from the Helmoltz free energy F = logZ (see e.g. [25]).

Let's use the �operatorial form� for a classical model. If the lattice has N
columns, and M rows labelled by a (integer) parameter τ , then we take as a
'state' the spin con�guration of all the N sites in row τ , denoted by |σ(τ)〉.
Most of the models are described by an Hamiltonian which can be splitted in
contributions that involve only 2 adjacent lines (or otherwise are equivalent to
models of this kind):

H
(
{σi}

)
=
∑
τ

H
(
{σ(τ)}, {σ(τ + 1)}

)
(1.2)

We de�ne the transfer matrix as an operator acting on the space of spin states
|σ(τ)〉, whose matrix elements are:

〈σ(τ)|T |σ(τ ′)〉 =
τ ′∑

τ ′′=τ

eH(τ ′′,τ ′′+1) (1.3)

If we use open boundary conditions, where the boundaries are associated to
|σ(1)〉 and |σ(M)〉, the partition function can be written as:
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1. Statistical Mechanics

Z =
∑
σi

i=2,...,M−1

〈σ(1)|T |σ(2)〉 〈σ(2)|T |σ(3)〉 . . . 〈σ(M − 1)|T |σ(M)〉

= 〈σ1|TM |σM〉
(1.4)

Comparing this expression to

〈xb, tb| e−
i
~ H̃(tb−tb) |xa, ta〉 (1.5)

which gives the transition amplitude between two space-time points (xa, ta)
and (xb, tb), we can then interpret T as an euclidean evolution operator:

T = e−τH̃ (1.6)

This de�nes the one dimensional quantum Hamiltonian H̃ associated to our
classical model. One way to obtain H̃ is the hamiltonian limit procedure,
descibed e.g. in [24]. As an example, associated to the 2-dimensional Ising
model

H
(
{σk}

)
= −J

∑
i nn j

σiσj − h
∑
i

σi (1.7)

we have the one dimensional quantum Hamiltonian:

H̃ = −
n∑
a=1

[
σ̃1(a) + λ σ̃3(a)σ̃3(a+ 1)

]
where the σ̃i are the Pauli matrices.

This reasoning can be easily extended between d-dimensional statistical
models and (d− 1)-dimensional quantum models. It's importance lays on the
fact that we can focus in all generality only on classical models.

In the following we will always work with classical systems in d = 2 di-
mensions. Let's remind the de�nition of the correlation functions of a set of
observables {Oi(xj)}:

〈O(x1)O(x2) . . . O(xn)〉 =
1

Z

∑
σk

O1(x1)O2(x2) . . . On(xn)e−βH({σk}) (1.8)

where the Oi take their value on the lattice, whose points are labelled with
xi. This gives us a measure on how, say, the values of O1(x1), . . . , On−1(xn−1)
in�uence the value of On(xn). Clearly, if the value of the observable in xi
does not in�uence the value of the observable in xj, ∀xi, xj, we expect the
correlation function to assume the value 〈O1(x1)〉 〈O2(x2)〉 . . . 〈On(xn)〉.

It is known (see e.g. [25]) that, for T 6= Tc and r ≡ |i − j| → ∞ the
two-point correlation function of two spins has the following behaviour:

G(r) ≡ 〈σiσj〉 − 〈σi〉 〈σj〉 ≈
r→∞

e−
r
ξ , (1.9)
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1.1. Towards a �eld theory

where d is the spatial dimension of the sistem. This de�nes one of the main
quantity of a statistical model, the correlation lenght ξ. We can roughly say
that, for r < ξ, the spins are correlated: this means that they tend to assume
the same value. And if r > ξ, they are not. So ξ gives us a measure of the
statistical �uctuations in the system. This doesn't mean that all the spins
within a range of ξ have all the same value: it better means we can �nd cluster
of spins of all dimensions, and the widest ones have a diameter approximately
long ξ.

Moreover, if T = Tc, the correlation lenght diverges and it can be shown
that:

G(r) =
1

rη
(1.10)

where the exponent η is the anomalous dimension, which in two dimensions
must be 6= 0 to avoid the unphysical behaviour G(r) ∝ log(r), for r � ξ. Now,
if ξ →∞, the spatial dimension of spin clusters can be very huge compared to
the lattice spacing a, so we can assume that σi does not vary �appreciably� in
a very little portion of space: we can then substitute the discrete variable σi
with a continuous one φ(x), which is indeed a �eld, and write our main object,
the partition function, as:

Z =
∑
σi

e−βH({σi}) →
∫
Dφ(x) e−S[φ] (1.11)

The correlation functions will change accordingly from:

〈σ1σ2 . . . σn〉 =
∑
k

σ1σ2 . . . σne
−βH({σk}) (1.12)

to

〈φ(x1)φ(x2) . . . φ(xn)〉 =

∫
Dφ(x)φ(x1)φ(x2) . . . φ(xn) e−S[φ] (1.13)

We further require the action to be invariant under rotation and traslation
of the system: this, in two dimensions, corresponds to Lorentz invariance in
the Minkowsky space (after a Wick rotation t→ −iβ), so we are dealing with
a relativistically invariant quantum �eld theory. But in what follows we will
always work in the Euclidean space. For example, to the Ising model (1.7), it
corresponds (see e.g. [26]) the Field Theory with action:

S =
1

2

∫
d2x

[(
∂µϕ(x)

)2
+m2ϕ2(x) +

λ

4
ϕ4(x) + . . .

]
(1.14)

where ϕ(x) is the continuum version of σi. As we shall see later, these require-
ments for the action are not enough to describe a system at criticality : we'll
need to impose conformal invariance as well, as we shall see later.
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1. Statistical Mechanics

Figure 1.1: A system at criticality looks the same if we apply a magni�cation or a

de-magni�cation. The two �gures represents the same system with di�erent magi�-

cations.

We conclude the section with a last remark. The �elds we are considering
take values on the points of the lattice, and the statement ξ →∞ is somehow
equivalent to say that a→ 0, where a is the spacing lattice. When we deal with
a �eld theory, the roled played by space and time are di�erent, but in a 2D
(two dimensional) lattice both spatial dimensions are completely equivalent:
this means that we can choose the �spatial direction� and the �time direction�
as we prefer. Consider for example a in�nite 2D strip, whose width is L. If we
take the time direction across the strip, then we have a �eld theory extended
in an in�nite 1D space dimension, living a �nite amount of time. If otherwise
we take t to be along the strip, we have a �eld theory de�ned on a �nite space,
but whose time extention is in�nite.

1.2 The renormalization group

When we study a statistical model at a second order phase transition, which
happens for ξ →∞, it will always have the same �shape�, no matter at which
scale we observe it (see �g 1.1): we will refer to this situation as a �critical
point� of the system. This means that the system can be described in the same
way, indipendently on the scale we choose to study it.

This naive intuition can be rigorously formalized in a branch of statistical
physics known as renormalization group (RG). The aim of renormalization
group theory is, roughly speaking, to describe how a system changes under a
dilation of the lattice: we can obtain lots of physical results with this approach,
such as all the critical exponents of a statistical system, and so on. We will
study some applications in the next sections. The topic is very wide: we refer
to e.g. [5] for further details.

When we talk about a dilation a → ba of the lattice, through a dilation
factor b > 1, we do not simply dilate everything, otherwise the system will
always remain the same. From now on, we will use �eld theories to describe
classical systems (as in section 1.1): suppose, for example, that our classical

14



1.2. The renormalization group

Figure 1.2: The renormalization group transformation.

system is described by the action:

S =

∫
d2x

[1

2

(
∂µϕ(x)

)2
+ g1ϕ(x) +

g2

2
ϕ(x)2 + · · ·+ gn

n!
ϕ(x)n + . . .

]
(1.15)

The parameters {gi} are called coupling constants, and we will refer to them
simply as g. A renormalization group transformation consists in a reduction
of the degrees of freedom of the system. Since the concept is clearer with a
�gure on hand, refer to �g. 1.2. Start from a given lattice, where each spin σi
is situated at the center of a face Bi whose side has lenght a. Then, enbody all
the faces that lie in a bigger face of side lenght ba, and call this block of spins
B′. The new lattice is built by these bigger faces B′j, and its spacing is now ba.
We need a rule that gives new spins σ′j at the center of each B′j. An example
is the majority rule: we can take the value of the new spin to be

σ′j = A
∑
i∈B′j

σi (1.16)

where the constant A ensures that σ′j may only take the values ±1, and we sum
over all the old spins in B′j. This transformation simulates the de-magni�cation
of an objects: if we look at this object from a larger distance, we lose the
resolution of some of its details. In the same fashion, after a RG transformation
on a lattice, we will lose the details, say, over the spins in the block B′, and
we will only be able to discern a sort of �mean� of these spins, which we call
σ′i. It is important to notice that applying this transformation to the lattice
the action doesn't change, but since we are modifying the spins arrangement
it will be characterized by new coupling constants g′. These are �xed by the
requirement:

Z
(
g, {σi}

)
= Z

(
g′, {σ′i}

)
(1.17)

This means that a de-magni�cation of a system doesn't change its physics,
so the partition function must be invariant. Now, after we obtained the new
lattice, we can perform many other RG transformations: if the system is huge
enough, the g then describe a curve on what is called the manifoldM of the
coupling constants. This is the renormalization group �ow of the coupling
constants, and a limit of this procedure usually exists.

15



1. Statistical Mechanics

If a system is in its critical point, that is ξ → ∞, its description doesn't
change at all if we perform a RG transformation, so we expect that g = g′.
This is a �xed point of the theory, usually denoted as g∗. Indeed, if we require
g = g′ for a RG transformation, it can be shown that either ξ = ∞ or ξ = 0.
In the following, we will always deal with critical �xed points.

To a change a → ba of the lattice spacing it corresponds a coordinate
dilatation:

x→ x′ = b−1x (1.18)

and this means that at criticality the action is invariant under a dilation of
coordinates, that is it doesn't change its form at all.

Let's then put ourselves in the neighbour of a (critical) �xed point, and
denote with δga the change of a coupling constant under RG. Then:

δg′a = Kab δgb (1.19)

Denoting with λi ≡ byi the eigenvalues of K, and with ∆i its left eigenvectors,
let's de�ne the scaling variables (or scaling �elds) as

ui ≡
∑
a

∆i
aδga =

∑
a

∆a(ga − g∗a) (1.20)

These transform, under RG, as:

u′i = λiui = byiui (1.21)

and if we start from a �xed point, we will always have ui ≡ 0 by de�nition.
Depending on the sign of yi (supposing it's real for simplicity), we have the
following cases:

• yi > 0. ui is said to be a relevant variable, and repeated application of
RG transformations moves it away from the �xed point value ui = 0.

• yi < 0. ui is a irrelevant variable, and a RG �ow moves it towards the
�xed point.

• yi = 0. ui is a marginal variable, and its value never changes under RG.

We de�ne the scaling �elds (or scaling operators) φi to be the �elds coupled
to ui. Since these scaling variables depend on {ga}, the φi are particular
combinations of the �elds ϕa coupled to ga (see (1.15)), such that:∑

i

ui φi(x) =
∑
a

(ga − g∗a)ϕa (1.22)

So, in the vicinity of a �xed point g∗ we can write:

S = S∗ +
∑
i

ui

∫
d2xφi(x) (1.23)
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1.2. The renormalization group

From this equation, it is clear that the φi will have the same character of their
coupling constants: �elds coupled to relevant variables will push the action
out from S∗, and so on. We will refer to them simply as relevant, irrelevant
and marginal �elds respectively.

If a �xed point is perturbed by irrelevant operators, we still have ξ = ∞:
this de�nes a surface in the manifold M, called the critical surface. If a
point lies on this surface, it will always reach a �xed point under RG �ow,
indipendently on its initial position. This important fact is the origin of the
universal behaviour of the critical phenomena: hamiltonians (or actions as
in our case) that di�er only by irrelevant scaling �elds give rise to the same
critical behaviour. In other words, these action describe systems that all look
the same under a su�cient de-magni�cation.

Now, we want to describe systems at criticality, that is systems at some
�xed points. Since the φi are all the �elds of the theory, we want to study how
they change under dilation at these points. Consider the Ising model, whose
relevant scaling variables are (see [5]):

t =
T − Tc
Tc

h =
B

kBT
(1.24)

Actually, in the nearest-neighbour Ising model these are the only variables.
They are associated to the energy density operator ε

(
|i − j|

)
= σiσj (with

i and j nearest neighbours) and to the spin operator σi respectively. It will
be useful in the following to let these scaling variables depend on the points
of the lattice: for example, we will have h(i), corresponding to a term in the
classical Hamiltonian

∑
i h(i)σi. Let's denote the �eld theory versions of these

operators as φt(x) and φh(x). Under a RG transformation a → ba of the
lattice, the scaling variables change as (see (1.21)):{

t′ = bytt

h′ = byhh

If we want the physical description of the system to be invariant, we must
require

Z
(
t, φt, h, φh

)
= Z

(
t′, φ′t, h

′, φ′h
)

(1.25)

To describe the change of φt and φh at the �xed point, we need to study the
change under RG of the correlation functions, and it's useful to evaluate these
objects away from criticality �rst. Using the de�nition of 〈φh(x)〉t,h we have:

〈φh(x)〉t,h ≡
1

NZ(t, h)

∂Z(t, h)

∂h(x)

= byh−d 〈φ′h(x′)〉t′,h′
(1.26)
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1. Statistical Mechanics

Notice that, after the RG transformation, the �eld φh(x) undergoes a global
transformation φh(x) → φ′h(x

′). Similarly, the two-point correlation function
of the spin operator

Gσ(x1 − x2, t, h) =
1

N2Z(t, h)

∂2Z(t, h)

∂h(x1)∂h(x2)

(where we have implemented traslational invariance) transform as:

Gh(x1 − x2, t, h, S) = b2yh−2dGh

(
(x1 − x2)′, bytt, byhh, S ′

)
. (1.27)

where S is the action corresponding to a given magni�cation of the system. It
is clear that this procedure generalizes to higher correlation functions. Anyway,
if we put ourselves on the �xed point, we have:

〈φh(x1)φh(x2)〉 = b2yh−2d 〈φh(x′1)φh(x
′
2)〉 (1.28)

This suggests that the �eld φh(x), at criticality, transforms under a coordinate
dilation as:

φh(x) = b−xh φh(x
′) (1.29)

where

xh = d− yh (1.30)

is the scaling dimension of φ(x). But it can be shown (see [17]) that, if the
action remains invariant under a certain transformation of coordinates and
�els, then a correlation function of a set of �elds {ϕi(x)} satisfy:

〈ϕ1(x′1) . . . ϕn(x′n)〉 = 〈ϕ′1(x′1) . . . ϕ′n(x′n)〉 (1.31)

So the actual transformation of the �elds is given by:

φ′h(x
′) = bxhφ(x) (1.32)

The same resoning holds for φt(x): denoting xt = d− yt, we have:

φ′t(x
′) = bth φt(x) (1.33)

1.2.1 Conformal invariance

We can generalize the reasoning of the previous section. Suppose we have a
theory whose scaling �elds are {φi}. It can be shown that any correlation
function of such �elds transform, under RG at criticality, as:

〈φ1(x1) . . . φn(xn)〉 =
∏
i

b−xi 〈 φ′1(x′1) . . . φ′n(x′n)〉 (1.34)

18



1.2. The renormalization group

where we de�ned the scaling dimensions xi ≡ d − yi. If we further imple-
ment rotation and translation invariance of the whole system, and we consider
spinless �elds for simplicity, we can generalize (1.34) as:

〈φ1(x1) . . . φn(xn)〉 =
∏
i

J (xi)
xi/2 〈φ′1(x′1) . . . φ′n(x′n)〉 (1.35)

where

J (x) =
∣∣∣∂x′
∂x

∣∣∣ (1.36)

is the Jacobian of the coordinate transformation considered. Equation (1.35)
is correct since it implies that the correlation functions are always invariant
under translations and rotations, and it reduces to (1.34) for dilations. The
�elds then change as:

φ′i(x
′) =

∣∣∣∂x′
∂x

∣∣∣−xi/2φi(x) (1.37)

Now, we want to show, at least heuristically, that there is still another
class of transformations leaving the system unchanged: this is the conformal
invariance, and we'll see in chapter 2 that it follows from the invariance of
the system under translations, rotations and dilations. These transformations
require the parameter b of the dilation to depend on the space point of the
lattice, that is b→ b(x) and:

x→ x′ = b(x)x (1.38)

(here we de�ne the dilation parameter to be b−1 instead of b). We have to sup-
pose that the Hamiltonian of the classical system doesn't involve long range
interactions, that is, the �eld theory description only involves local �elds. If
this is so, since at the critical point ξ → ∞, we expect that the long range
correlations between parts of the systems are not origining from the Hamilto-
nian parameters. Even if H has anisotropic interactions, these will only play
a marginal role, and we expect the system to be traslational and rotational
invariant. Now, suppose we make local dilations in our system. We know the
system has a global dilation invariance, but if b(x) doesn't vary appreciably, it's
like we are performing dilation su�cient wide portions of our system: thanks
to the short range interactions, our system will be invariant anyway. We will
give a rigorous de�nition of conformal invariance in the next chapter, we we
will study its implications on systems at criticality. Here we just wanted to
give the idea that at criticality another kind of symmetry exists, so to justify
the rather formal developments of the following chapters.
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Chapter 2

Conformal �eld theory

In this chapter we review the basic concepts of conformal �eld theory (CFT).
The �rst �ve sections are devoted to �eld theories that describe systems at
criticality, that is CFT in a strict sense, while in section 2.6 we deal with
systems out of criticality.

2.1 Basic hypothesis

The construction of a conformal �eld theory is completely di�erent from the
lagrangian formalism usually developed in quantum �eld theories. There, one
solves the equations of motion, and derivev the fundamental �elds as the most
general solution of these equations. Notice that this can be done only in
the non-interacting case, which is the only solvable one. Here, instead, we
won't introduce any Lagrangian, but we assume the existence of a basis of
local �elds {φi(x)}, even in the interacting case. These �elds must be local,
since we pointed out that conformal invariance is only possible for short range
interactions. Furthermore, we assume that they are eigenvectors of the dilation
operator (see equation (1.29)), that is:

φi(x) = λxiφ(λx) (2.1)

where xi is the scaling dimension of φ(x), and x → λx. All other �elds, such

as φ3
i (x) or

(
∂µφi(x)

)2
, can be expressed as a linear combination of this basis.

Our task is to understand how many such basis �elds are present in a
theory, and how they transform under conformal transformations, de�ned in
the next section. This will be enough, at least in principle, to compute all the
possible correlation functions, which are the only measurable quantities: this
means that we have solved the theory.

The hypothesis of locality of the �elds allows us to evaluate a product of
two �elds A(x1)B(x2). In fact, if x1 → x2 it is natural to assume that this
product behaves in a local way, so it can be expanded in the basis of local
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2. Conformal �eld theory

�elds:
A(x1)B(x2) =

∑
k

β(x1, x2)φk(x2) (2.2)

This de�nes the operator product expansion (OPE) of two �elds. Anyway,
since any �eld can be expanded in terms of the basis �elds {φi(x)}, the OPE
we really need to know is:

φi(x1)φj(x2) =
∑
k

Ck
ij(x1, x2)φk(x2) (2.3)

It it important to bear in mind that (2.2) holds only in a weak sence. If

〈A(z)X〉 = 〈B(z)X〉 (2.4)

for all possible combination of �elds, then we have A(z) = B(z), an equality
that only holds in correlation functions, otherwise it give rise to inconsistencies
(see [26]). Thus, if we want for example to know the correlation function

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 (2.5)

we need to perform

φ1(x1)φ2(x2) =
∑
i

Ci
12(x1, x2)φi(x2),

then
φ3(x3)φ4(x4) =

∑
k

Ck
34(x3, x4)φk(x4),

and at least the OPE between the resulting �elds φi(x2)φk(x4). This is one
way how we can obtain all the correlation functions. We refer to [17] for the
di�cult task of computing the quantities Ci

jk(xa, xb).

2.2 Classical Conformal invariance

In chapter 1 we gave an intuition about the existence of a new symmetry called
conformal invariance. Here the approach is formal, and we will always suppose
that our scaling operators φi(x) takes their value on a manifold parametrized
by coordinates xµ (from now on we will remove the symbol of vector from the
coordinates). This manifold is not always the simple R2 plane, and we'll see
that its curvature plays an important role.

2.2.1 De�nition of conformal transformation

A conformal transformation (CT) is de�ned as an invertible mapping x→ x′,
such that the metric tensor gµν(x) is invariant up to a scale:

g′µν(x
′) = Λ(x)gµν(x) (2.6)
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2.2. Classical Conformal invariance

The set of all these invertible transformation forms a group, and has the
Poincaré group as a subgroup. The epithet �conformal� is due to the prop-
erty of these transformation to leave unchanged the angle between two curves
crossing each other in some point. If we perform an in�nitesimal coordinate
transformation xµ → x′µ = xµ + εµ(x), the metric tensor change as:

gµν → gµν − (∂µεν + ∂νεµ) (2.7)

Imposing conformal invariance we end up with:

∂µεν + ∂νεµ =
(
1− Λ(x)

)
gµν (2.8)

where the factor f(x) ≡
(
1 − Λ(x)

)
is obtained by taking the trace on both

sides of this last equation:

f(x) =
2

d
∂ρε

ρ (2.9)

Suppose now that gµν = ηµν , where ηµν is the metric of a �at euclidean space.
This condition is not restrictive, since the �nite transformations will be in
tensorial form. Working on (2.8), we end up with{

(2− d)∂µ∂νf(x) = ηµν 2f(x)

(d− 1)2f(x) = 0
(2.10)

We just mention that in the case d ≥ 3 we have the constraint ∂µ∂νf(x) = 0,
which implies, from (2.9):

εµ = aµ + bµνx
ν + cµνρx

νxρ (2.11)

that is, εµ is at most quadratic in the coordinates. Clearly, aµ refers to an
in�nitesimal translation, while bµν is connected to in�nitesimal rotation and
dilation, since from (2.8) it follows that bµν = α ηµν +mµν with mµν = −mνµ.
The main novelty is represented by the term cµνρ, which introduces a new
transformation we can apply to a system at criticality, leaving it unchanged.
This is the special conformal transformation:

x′µ =
xµ − bµx2

1− 2bµxµ + b2x2
bµ =

1

d
cσσµ (2.12)

Let's turn to the case we want to study, that is d = 2. From (2.10), we see
that there are in�nite independent transformations satisfying the condition of
conformal transformation. To be more speci�c, consider again equation (2.6).
We label the coordinates in a di�erent way, that is we study the conformal
transformation zµ → wµ(z), with zµ ≡ (z0, z1). We then require that:

g′µν(w) =
(∂wµ
∂zα

)(∂wν
∂zβ

)
gµν(z) ∝ gµν(z) (2.13)

23



2. Conformal �eld theory

If again we set gµν(z) = ηµν , we arrive at the two couple of constraint:

∂w1

∂z0
=
∂w0

∂z1
,

∂w0

∂z0
= −∂w

1

∂z1
(2.14)

which are nothing but the Cauchy-Riemann equations for holomorphic func-
tions. It is then natural to change to complex coordinates:{

z = z0 + iz1

z̄ = z0 − iz1
(2.15)

Notice that this can be considered as a real coordinate transformation, from
(z0, z1) to (z, z̄), where the metric in the complex coordinates system is:

gµν =

(
0 1

2
1
2

0

)
gµν =

(
0 2
2 0

)
(2.16)

All the tensor equations we are going to express are then valid in both coordi-
nate systems.

The Chauchy-Riemann equations can be rewritten as:

∂z̄w(z, z̄) = 0 (2.17)

where ∂z̄ = ∂
∂z̄
. Their solution is then simply any function that doesn't depend

on z̄, that is any holomorphic function w(z). For the component w̄ we have a
similar constraint:

∂zw̄(z, z̄) = 0 (2.18)

and it follows that w̄ = w̄(z̄) is any possible antiholomorphic function.

2.2.2 Global and local conformal transformations

We must bear in mind that a set of transformations form a group if they are
invertible and if they map the complex plane onto itself: this last requirement
ensures that the transformations are all of the same kind. We know that
representation theory holds for any set of transformation which forms a group,
so in principle it would be useful to recover a group. Clearly, the constraints
(2.14) are of a local type: they don't necessary impose a transformation to
be de�ned everywhere and be invertible. We then must distinguish between
global conformal transformation, which form the conformal group, and local
conformal transformations, which are not de�ned everywhere and may not be
invertible. It can be shown that the set of all global CT is given by the maps:

f(z) =
az + b

cz + d
ad− bc = 1 (2.19)

Each of these maps is in one-to-one corrispondence with a matrix

A =

(
a b
c d

)
(2.20)
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2.2. Classical Conformal invariance

and the group of global CT is then isomorphic to the group of complex invert-
ible 2 × 2 matrix with unit determinant, which in turn is isomorphic to the
Lorentz group in four dimensions SO(3, 1). This means that the global CT
group is characterized by 6 parameters. Indeed, it is known that a map of the
form (2.19) is completely determined by successive applications of:

• translations:
z′ = z + a a ∈ C

• rotations:
z′ = eiθz θ ∈ R

• dilations:
z′ = λz λ ∈ R

• special conformal transformations:

z′ =
z

1 + bz
b ∈ C

More in general, the conformal group in d dimensions is isomorphic to SO(d+1,1),
since their generators share the same algebra (see [17]).

Let's now turn to the discussion of local CT, which form the local conformal
group. We want to �nd the generators Ga of this �group�, and we remind that
these are de�ned by a local transformation on the �elds, with in�nitesimal
parameters ωa

δΦ(x) = Φ′(x)− Φ(x) ≡ −iωaGaΦ(x) (2.21)

We need the Laurent expansion of the in�nitesimal transformation, that is

ε(z) = z′ − z =
∞∑
−∞

cnz
n+1 (2.22)

If we consider a spinless and scalar �eld φ, such that φ′(z′, z̄′) = φ(z, z̄), we
have:

φ′(z, z̄)− φ(z, z̄) = −ε(z)∂φ(z, z̄)− ε̄(z̄)∂̄φ(zz̄)

=
∑
n

(
cnlnφ(z, z̄) + c̄nl̄nφ(z, z̄)

)
(2.23)

We argue from this equation that the generators are

ln = −zn+1∂z l̄n = −z̄n+1∂z̄ (2.24)

and they obey what is called the Witt algebra:
[ln, lm] = (n−m)ln+m

[l̄n, l̄m] = (n−m)l̄n+m

[ln, l̄m] = 0

(2.25)
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2. Conformal �eld theory

which is a direct sum of two in�nite dimensional isomorphic algebras. Notice
that we have an in�nite number of generators for the local case, which would
imply an in�nite number of conserved charges. We expect that the global
CT group subalgebra is composed by six elements, since this is the number of
conserved charges. This can be seen by requiring the regularity of (2.23) at 0
and ∞. Indeed, the two vector �elds

v(z) = −
∑
n

anz
n+1∂z w(z) =

∑
n

an

(
−1

y

)n−1

∂y (2.26)

are regular in the neightbours of 0 and ∞ respectively, provided n ≥ −1 and
n ≤ q. So, the algebra of the global CT group is formed by the generators of

1. translations on the complex plane z′ = z + a:

l−1 = −∂z

2. scale transformations z′ = λz and rotations z′ = e−iθz:

l0 = −z∂z

3. special conformal transformations z′ = z/(1 + bz):

l1 = −z2∂z

and their complex conjugated l̄−1, l̄0, l̄1. We have thus discussed how classical
�elds change under CT, and we de�ned the classical generators ln, l̄n for these
transformations.

Let's go back to equation (1.37) for the change of the �elds under a change
of coordinates. We remind that, under a dilation x → λx of the coordinates
of a system at criticality, we have for a scaling �eld:

φ′(λx) = λ−xφ(x) (2.27)

Now, the elicity of a �eld Φ is a quantity E such that, if the coordinates
transform as x′µ = exp(iθ)xµ, the �eld changes as Φ′ = exp(iEθ) Φ. Here, in
the same fashion, we de�ne the conformal spin s such that, under a rotation
z → z exp(iθ), we have:

φ′(eiθz, e−iθz̄) = e−isθφ(z, z̄) (2.28)

We can then state that a scaling �eld change as:

φ′(λz, λ̄z̄) = λ−∆λ̄−∆̄φ(z, z̄) (2.29)
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2.2. Classical Conformal invariance

This enbodies the cases of rotations λ = exp(iθ) and dilations λ = b (see
equation (2.27)), provided we have:{

x = ∆ + ∆̄

s = ∆− ∆̄
(2.30)

The quantities (∆, ∆̄) are the holomorphic conformal dimensions, or complex
scaling dimensions, or simply conformal dimensions of the �elds φ, and are
the only quantities that characterize completely the behaviour of a �eld under
coordinate transformations, as we shall see. The case λ ∈ C is a combined
rotation and scale transformation.

We can now say which �elds are relevant. Suppose a �eld φ(z, z̄) has
conformal dimensions (∆,∆) for simplicity (it is a scalar �eld) and is coupled
to a certain scaling variable u. In the action we will have the term

u

∫
dz dz̄ φ(z, z̄) (2.31)

Under the coordinate transformation z′ = z/b, the �eld has scaling dimension
x ≡ ∆+∆̄ = 2∆, while the term dz dz̄ scales as b−2. If we require the action to
remain invariant under conformal transformations then u must scale as b2(1−∆).
This means that a scalar �eld is relevant only if its conformal dimension satisfy:

∆ < 1 (2.32)

2.2.3 The Stress Tensor

We know from Nother's theorem that to each continuous coordinate trans-
formation under which the action remains invariant, there corresponds a con-
served current. From translational invariance, we have that the conserved
current is the stress tensor (or energy-momentum tensor) T µν , which satis�es
the continuity equation

∂µT
µν = 0 (2.33)

This tensor is really important: if a system is translationan invariant, then
under an arbitrary in�nitesimal coordinate transformation xµ → xµ + εµ the
action changes as

δS =

∫
d2xT µν(x)∂µεν(x) (2.34)

If furthermore we require rotational and scale invariance of the system, then
(2.34) implies T µν = T νµ and T µµ = 0. We use the �rst property to write:

δS =

∫
d2xT µν(x)

(
∂µεν(x) + ∂νεµ

)
(2.35)
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2. Conformal �eld theory

and thanks to (2.8), we can write this as:

δS =
1

2

∫
d2xT µµ ∂ρε

ρ (2.36)

Since T µν is traceless, we have that δS = 0 automatically for conformal trans-
formations of the kind (2.8). This is Polyakov's theorem: if a system has
translational, rotational and scale invariance, then it automatically satisfy con-
formal invariance.

We can write the stress tensor in complex coordinates as well. Let's then
de�ne the components:

Tzz ≡ T (z, z̄) =
1

4
(T00 − T11 + 2iT01) (2.37a)

Tz̄z̄ ≡ T̄ (z, z̄) =
1

4
(T00 − T11 − 2iT01) (2.37b)

Tzz̄ = Tz̄z ≡
1

4
Θ(z, z̄) =

1

4
(T00 + T11) =

1

4
T µµ (2.37c)

Equation (2.33) can then be written as:{
∂z̄T (z, z̄) + 1

4
∂zΘ(z, z̄) = 0

∂zT̄ (z, z̄) + 1
4
∂z̄Θ(z, z̄) = 0

(2.38)

Notice that, thanks to conformal invariance, we have Θ(z, z̄) = 0, so T (z, z̄) ≡
T (z) and T̄ (z, z̄) ≡ T̄ (z̄): these are called the holomorphic and antiholomor-
phic part of the stress tensor.

2.3 Quantum conformal invariance

When we deal with the quantum theory of an action invariant under conformal
transformations, we may not rely anymore on some classical results. What
we can do is study the variation of correlation functions under coordinate
transformations. Using path integrals, we have the de�nition:

〈φ1(z1, z̄1) . . . φn(zn, z̄n)〉 =
1

Z

∫
DΦφ1(z1, z̄1) . . . φn(zn, z̄n) e−S[Φ] (2.39)

where Φ is a fundamental �eld. Here −S[Φ] is the classical action, and the
path integral approach allows us to use some classical arguments, for example
the relations derived for the variation of S under coordinate transformations.

If we make an in�nitesimal conformal transformation z → z′ = z + α(z),
we expect that:

δ 〈φ1(z1, z̄1) . . . φn(zn, z̄n)〉 = 0 (2.40)
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2.3. Quantum conformal invariance

that is, the local variation of a correlation functions is zero (see eq. (1.31)):
indeed, a coordinate transformation should not change the description of a
physical system (see eq. (1.31)). The variation on 1/Z gives rise to a term
including 〈Tµν〉, but we know that, at criticality, this value is zero (as we shall
see). We then have:∑

i

〈φ1(z1, z̄1) . . . δφi(zi, z̄i) . . . φn(zn, z̄n)〉 = 〈(δS)φ1(z1, z̄1) . . . φn(zn, z̄n)〉

(2.41)
We leave the expression of δS undeveloped, for the moment. This is our
starting point for the next section.

2.3.1 Conformal Ward identity

Suppose we want to study the variation of a correlation function, de�ned by
(2.39), under an in�nitesimal conformal transformation z → z′ = z + α(z).
We are goint to perform this change of coordinates only in a region C that
contains the points (zi, z̄i), and in the remaining we leave the coordinates
unchanged: z′ = z. We then expect a change of the action along the curve C,
given by (2.34). If we perform some integrations by parts, and turn to complex
coordinates, we end with (see e.g. [6]):

δS =
1

2πi

∮
C

α(z)T (z) dz − 1

2πi

∮
C

ᾱ(z̄)T̄ (z̄) dz̄ (2.42)

If we put this expression into (2.41), we have:∑
i

〈φ1(z1, z̄1) . . . δφi(zi, z̄i) . . . φn(zn, z̄n)〉

=
1

2πi

∮
C

α(z) 〈T (z)φ1(z1, z̄1) . . . φn(zn, z̄n)〉 dz + c.c. (2.43)

Now, remind that for a scaling �eld the relation (2.29) holds. If we perform a
transformation such that α(z) = λ(z − z1) where λ ∈ C, then δφ1 = (∆1λ +
∆̄1λ̄)φ1, and if we vary only φ1 we end with:

1

2πi

∮
C

(z − z1) 〈T (z)φ1(z1, z̄1), . . . , φn(zn, z̄n)〉 dz

= ∆1 〈φ1(z1, z̄1), . . . , φn(zn, z̄n)〉 (2.44)

This is not, strictly speaking, correct since all the �elds must vary, but sup-
pose we can do such an operation. If otherwise we perform a traslation, then
α = cost and δφi ∝ ∂ziφi. Varying again only φ1, we obtain:

1

2πi

∮
C

〈T (z)φ1(z1, z̄1), . . . , φn(zn, z̄n)〉 dz

= ∂z1 〈φ1(z1, z̄1), . . . , φn(zn, z̄n)〉 (2.45)
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Since we are integrating over a close contour, we can apply the theorem of
residues to the OPE between T (z) and φ1(z1). We then gain informations
about two singular terms of this OPE, and in general of the OPE between
T (z) and φi(zi), that is:

T (z)φi(zi, z̄i) = O
(
(z − zi)−3

)
+

∆i

(z − zi)2
φi(zi, z̄i) +

1

z − zi
∂ziφi(zi, z̄i) + reg.

(2.46)
We de�ne the primary �elds as those �elds such that the term O

(
(z − zi)−3

)
is absent in (2.46). We then have:

〈T (z)φ1(z1, z̄1) . . . φn(zn, z̄n)〉

=
∑
j

(
∆j

(z − zj)2
+

1

z − zj
∂zj

)
〈φ1(z1, z̄1) . . . φn(zn, z̄n)〉 (2.47)

and this is the conformal Ward identity for primary �elds. We derived this
relation using the holomorphic part of the stress tensor: the identity concerning
T̄ (z̄) is similar, and we simply have to make the substitutions T (z) → T̄ (z̄)
and ∆i → ∆̄i. If, at last, we put the OPE just obtained in (2.43), we must
have, for consistency:

δφi(zi, z̄i) = −
(
∆i∂ziα(zi) + α(zi)∂zi

)
φ(zi, z̄i) + c.c. (2.48)

which integrated gives the transformation law for primary �elds:

φ′(z′, z̄′) =
(dz′
dz

)−∆(dz̄′
dz̄

)−∆̄

φ(z, z̄) (2.49)

Notice that from (2.47) we can infer the conformal dimensions of T (z).
For this purpose, we must study the behaviour of this equation under a scale
transformation z → λz and under a rotation z → exp(iθ)z. Notice that the
conformal dimensions of the coordinates z and z̄ are (−1, 0) and (0,−1) re-
spectively. If now we require that both sides of (2.47) have the same conformal
dimensions, we get:

T (z) :

{
∆ = 2

∆̄ = 0
T̄ (z̄) :

{
∆ = 0

∆̄ = 2
(2.50)

A last comment is in order. If in (2.43) we consider the variation of one �eld,
we obtain that the variation of an arbitrary �eld φ(z, z̄) is (in a weak sense):

δφ(z, z̄) =

∮
z

dζ α(ζ)T (ζ)φ(z, z̄) (2.51)

where
∮
z
is for a contour integral containing the point z.
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2.3. Quantum conformal invariance

2.3.2 The central charge

We now want to calculate the OPE T (z)T (w), which has dimension (4, 0) from
(2.50). This �xes its general form:

T (z)T (w) =
c/2

(z − w)4
+

J(w)

(z − w)3
+

Q(w)

(z − w)2
+

R(w)

(z − w)
+ reg. (2.52)

where c/2 is a constant (it can't have any dimensions for consistency). We can
expand in Taylor series the functions comparing in this OPE, for example:

J(z) = J(w) + (z − w)∂wJ(w) +
1

2
(z − w)2∂2

wJ(w) + . . . (2.53)

Since T (z)T (w) = T (w)T (z), we have the contraints

J(w) = 0 R(w) =
1

2
∂wQ(w) (2.54)

and so:

T (z)T (w) =
c/2

(z − w)4
+

Q(w)

(z − w)2
+

(1/2)∂wQ(w)

z − w
(2.55)

Now, Q(z) has the same conformal dimensions of T (z), and the OPEQ(z)Q(w)
has the same form of T (z)T (w):

Q(z)Q(w) =
c/2

(z − w)4
+

R(w)

(z − w)2
+

(1/2)∂wR(w)

z − w
(2.56)

where again R(w) has the same dimensions of Q(w) and T (w). These all
belong to the space of �elds with conformal dimensions (2, 0). If we suppose
that the only �elds belonging to this class are stress tensors, then we can
rede�ne T (w) as being the sum of all these, apart for a multiplicative factor:
so we set Q(w) = kT (w) in (2.55). We can calculate k in the case c = 0: T (w)
is then a primary �eld by de�nition (see (2.46)), and its variation is given by
(2.48). Under an in�nitesimal dilation z′ − z = εz we have (see (2.51)):

δT (z) = ε

∮
z

dζ ζT (ζ)T (z) (2.57)

We now just need to integrate this by parts and use the theorem of residues.
Since ∆ = 2 for T (w), this �xes k = 2, and at last we obtain:

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w
(2.58)

The constant c is very important in the context of CFT, and is called the
central charge.
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2. Conformal �eld theory

If c 6= 0, then T (w) is not a primary �eld anymore, and its variation is
given by, using again (2.51):

δT (z) = 2(∂zα)T (z) + α(z)∂zT (z) +
c

12
∂3
zα(z) (2.59)

We state without demonstration that if we integrate this variation we end up
([17]) with the transformation law for the stress tensor under a coordinate
conformal transformation z → w(z):

T (′w) =
(dw
dz

)−2(
T (z)− c

12
{w; z}

)
(2.60)

where we have introduced the Schwartzian derivative

{w, z} =
d3w/dz3

dw/dz
− 3

2

(
d2w/dz2

dw/dz

)2

2.3.3 CFT on a cylinder

Here we want to give an example of the role played by the central charge. Let's
start from a CFT living on the complex plane, and map it on a cylinder of
circumference L via the transformation:

z → w =
L

2π
log z (2.61)

From the point of view of statistical mechanics, we are going from a classical 2
dimensional system de�ned on the plane to a system de�ned on a strip, where
periodic boundary conditions are imposed. These systems are in the same
class of universality, since they are linked by a conformal transformation.

Using (2.60), the stress tensor on the cylinder is given by:

Tcyl.(w) =
(2π

L

)2[
Tplane(z) z2 − c

24

]
(2.62)

We'll see that 〈Tplane(z)〉 = 0 when we quantize the theory through the operator
formalism. This implies:

〈Tcyl.(w)〉 = − cπ
2

6L2
(2.63)

Since T µµ = 0, it follows from equations (2.38) that

〈
T 00
cyl.

〉
= 〈Tzz〉+ 〈Tz̄z̄〉 = − 1

π
〈Tcyl.〉 =

πc

6L2
(2.64)

where we rede�ned T → −2πT following [17]. Thus, if we introduce a �nite
lenght in the system, it will react through a non-zero vacuum energy den-
sity

〈
T 00
cyl.

〉
related to the central charge. This is similar to what happens in
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2.3. Quantum conformal invariance

the Casimir e�ect, where the vacuum energy density becomes �nite due to a
transformation of the global geometry.

Now, under a change of the metric tensor, the free energy F = − logZ
varies accordingly to ([17]):

δF = −1

2

∫
d2x
√
g δgµν 〈T µν〉 (2.65)

Let's apply an in�nitesimal scaling of the circumference L → (1 + ε)δL, with
ε = δL/L. If the cylinder coordinates are w = w0 + iw1, where w1 runs across
the cylinder, then w1 → (1 + ε)w1, and (2.7) implies δgµν = −2ε δµ0δν0. Using
(2.64) the variation of the free energy on the cylinder is:

δF =

∫
dw0 dw1 πc

6L2

δL

L
(2.66)

Suppose the system has a free energy f0 per unit area in the L → ∞ limit.
Then we have to change (2.66) as:

δF =

∫
dw0 dw1

(
f0 +

πc

6L2

)δL
L

(2.67)

The integral over w1 gives a factor L. We then have that the free energy per
unit lenght of the cylinder FL varies accordingly to:

δFL =
(
f0 +

πc

6L2

)
δL (2.68)

from which it follows that:

FL = f0L−
πc

6L
(2.69)

This important relation describes the behaviour of the free energy density

f = f0 −
πc

6L2
(2.70)

at order O(L−3), and allows us to extract c for a given model. As we shall see,
the central charge determines all the �elds content of the theory. Consider for
example the one dimensional quantum Hamiltonian:

H = − 1

2η

N∑
n=1

[1 + η

2
σxnσ

x
n+1 +

1− η
2

σynσ
y
n+1 + hσzn

]
(2.71)

This model is also known as the XY model, and it has a critical point at
|hc| = 1 (see e.g. [24]). Suppose that the sites are separated by unity (so that
the spatial lenght of the system is L = N) and that the temporal extention is
in�nite. If N →∞ and h = hc the system is conformally invariant, and it can
be shown that the free energy density has the behaviour:

f = −π
2

(
1 +

arccos η

η
√

1− η2

)
− π

12N2
+O(N−4) (2.72)

From (2.70) we deduce that the central charge of the XY model is c = 1
2
.
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2.3.4 Correlation functions

Global conformal invariance permits us to �x completely (apart for a constant)
the form of the two and three points correlations functions for primary �elds.
To see this, let's turn back to real coordinates for a while, and consider spinless
�elds. We know that, thanks to (2.49) and to the fact that (see chapter 1)

〈φ1(x1) . . . φn(xn)〉 = 〈φ′1(x1) . . . φ′n(xn)〉

the correlation functions have the property:

〈φ1(y1) . . . φn(yn)〉 =
∏
i

∣∣∣∣∣∂y′∂y
∣∣∣∣∣
xi/2

y=yi

〈φ1(y′1) . . . φn(y′n)〉 (2.73)

(the exponents are scaling dimensions, and not coordinates). Consider the case
of a two-point correlation function. Translational and rotational invariance
require that

〈φ1(y1)φ2(y2)〉 = f
(
|y1 − y2|

)
(2.74)

while under a dilation y → λy we have

〈φ1(y1)φ2(y2)〉 = λx1+x2 〈φ1(λy1)φ2(λy2)〉 (2.75)

This imples that this correlation function assumes the form:

〈φ1(y1)φ2(y2)〉 =
C12

|y1 − y2|x1+x2
(2.76)

We need at last to use special conformal transformations, de�ned by (2.12),
and whose Jacobian turns out to be∣∣∣∣∣∂y′∂y

∣∣∣∣∣ =
1

(1− 2bµyµ + b2y2)2
(2.77)

Using again (2.73), the two point correlation function of two spinless �elds is

〈φ1(y1)φ2(y2)〉 =

{
C12

|y1−y2|2x1
if x1 = x2

0 if x1 6= x2

(2.78)

For the correlator of two �elds φi and φj we can set Cij = δij if we normalize
the �elds in a proper way. A similar reasoning �xes the form of the three point
correlation function:

〈φ1(y1)φ2(y2)φ3(x3)〉 =
C123

yx1+x2−x3
12 yx2+x3−x1

23 yx3+x1−x2
13

(2.79)

where we de�ned y12 = y1 − y2, and so on. Notice that the constant C123

remains free, and is not �xed by the normalization of the �elds.
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2.4. Quantization of a CFT

Figure 2.1: Mapping from the cylinder to the complex plane.

We may now turn to complex coordinates. At �rst sight, we simply need
to substitute yij → (zij z̄ij)

1/2. But if we allow the �elds to have non-zero spin,
we must furthermore substitute xi with ∆i if it's the exponent of holomorphic
coordinates, and with ∆̄i for antiholomorphic coordinates. In this way we
recover the correct spin of the correlator. In conclusion, we have:

〈φ1(z1, z̄1)φ2(z2, z̄2)〉 =
C12

(z1 − z2)2∆(z̄1 − z̄2)2∆̄
if

{
∆1 = ∆2 ≡ ∆

∆̄1 = ∆̄2 ≡ ∆̄

(2.80)
and

〈φ1(z1, z̄1)φ2(z2, z̄2)φ3(z3, z̄3)〉 = C123
1

z∆1+∆2−∆3
12 z∆2+∆3−∆1

23 z∆3+∆1−∆2
13

× 1

z̄∆̄1+∆̄2−∆̄3
12 z̄∆̄2+∆̄3−∆̄1

23 z̄∆̄3+∆̄1−∆̄2
13

(2.81)

There are several methods to completely determin the n-points correlation
functions, but they won't be discussed here: see [17] for details.

2.4 Quantization of a CFT

2.4.1 Radial quantization

Suppose we have a conformal �eld theory de�ned on the complex plane. We
pointed out in chapter 1 that we could choose which direction we prefer for
time and space. If for example the time direction t coincides with the real axis
and the space direction x with the imaginary axis, we may denote our complex
coordinates as

z = t+ ix (2.82)

Actually, when approaching the problem of quantizing a CFT it is typical to
let all the points at a �xed time t lying on a circle centered at the origin, while
the space direction runs over these circles. This choise leads to the so-called
radial quantization.

If we want to implement radial quantization it's convenient to put ourselves
in a in�nite cylinder �rst, and then turn back to the complex plane. Each point
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2. Conformal �eld theory

of the cylinder is labelled by ζ = t + ix: t is running from −∞ to ∞, while
x takes its value from 0 to L, with the identi�cation (t, 0) = (t, L). We can
map the cylinder to the complex plane through the conformal mapping (see
Fig. 2.1):

z = exp
(2πζ

L

)
(2.83)

Let's now assume the existence of a vacuum |0〉, which is invariant under
conformal transformations. Since a CFT is generally an interacting theory, we
cannot simply apply the quantized version of a �eld φ̂(z, z̄) to create a state
at position (z, z̄). We need to de�ne the asymptotic state

φin = lim
t→−∞

φ(x, t) (2.84)

where we suppose that for t→ −∞ the interactions are negligible. Notice that
this is the same approach one uses to de�ne quantum �eld theories in a curved
space-time manifold. Then, in complex coordinates, our �in� state is:

|φin〉 = lim
z,z̄→0

φ(z, z̄) |0〉 (2.85)

This de�nition, at �rst sight, is not very precise since we only specify at which
time we quantize our �eld, without any reference to space points. But fortu-
nately in radial quantization all the points such that t → −∞ degenerate to
the origin z = 0 in the complex plane, and this justi�es our de�nition: we are
really de�ning a state at one point (of the complex plane).

If we want to de�ne a scalar product between states, we need as well �out�
states. Notice anyway the following important point. In Minkowsky coordi-
nates, the Hermitian conjugation doesn't a�ect the coordinates, while in Eu-
clidean space it does: the Euclidean time τ = it is reversed. This corresponds
to the mapping z → 1/z∗ in the plane (remember that time is �rst de�ned
on the cylinder and then mapped on the complex plane). The de�nition of an
�adjoint� operator is then:[

φ(z, z̄)
]†

= z̄−2∆z−2∆̄φ
(1

z̄
,
1

z

)
(2.86)

We can justify the prefactors by demanding that

〈φout |φin〉 = lim
z,z̄→0
w,w̄→0

=
〈
0
∣∣φ(z, z̄)†φ(w, w̄)

∣∣ 0〉
is well de�ned and doesn't depend on the coordinates (see [17]).

The �eld φ(z, z̄) can be expanded in modes as:

φ(z, z̄) =
∑
m∈Z

∑
n∈Z

z−m−∆z̄−n−∆̄φm,n (2.87)
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Taking the adjoint of this expression, and comparing if with (2.86) we have
φ†m,n = φ−m,−n. Furthermore, if the �in� and �out� states are to be well-de�ned,
the vacuum must satisfy:

φm,n |0〉 = 0 for m > −∆, n > −∆̄ (2.88)

From now on, we will suppose that each �eld can be expressed as a product
between a holomorphic and an antiholomorphic part, denoted φ(z) and φ̄(z̄)
respectively

φ(z, z̄) = φ(z)⊗ φ̄(z̄) (2.89)

Their expansions are given by:

φ(z) =
∑
m∈Z

z−m−∆φm φ̄(z̄) =
∑
n∈Z

z̄−n−∆̄φ̄n (2.90)

and we'll say that the �elds φ(z) and φ̄(z̄) have conformal dimensions ∆ and
∆̄ respectively.

2.4.2 The Virasoro algebra

In the correlation functions of a quantum theory, the �elds must be time
ordered, otherwise we will head for unphysical e�ects. Now, because of radial
ordering, time ordering on the complex plane assumes the following form:

Rφ1(z)φ2(w) =

{
φ1(z)φ2(w) if |z| > |w|
φ1(w)φ2(z) if |z| < |w|

(2.91)

This allows us to relate OPE with commutation relations. Given two holomor-
phic �elds a(w) and b(w), we de�ne

A =

∮
a(z) dz (2.92)

where the integration is taken at �xed time, if there are no subscripts. Then,
it can be shown that:

[A, b(w)] =

∮
w

dz a(z)b(w) (2.93)

If we now de�ne the conformal charge as

Qε =
1

2πi

∮
dz ε(z)T (z) (2.94)

(where in this case the contour is around the point w) it is clear that we can
write (2.51) as:

δφ(w) = −[Qε, φ(w)] (2.95)
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This means that Qε is the quantum generator of conformal transformations
(see [17]). Let's perform a mode expansion of the stress tensor, that is:

T (z) =
∑
n∈Z

z−n−2Ln (2.96)

We remind that, if z → z′ = z + ε(z), we can write the in�nitesimal change of
coordinates as:

ε(z) =
∑
n∈Z

zn+1εn (2.97)

It follows that:

Qε =
∑
n∈Z

εnLn (2.98)

Then, the modes of the holomorhic and antiholomorphic parts of the stress
tensors Ln and L̄n are the quantum generators of the conformal transforma-
tions, exactly like ln are the classical generators. They satisty the Virasoro
algebra: 

[Ln, Lm] = (n−m)Ln+m + c
12
n(n2 − 1)δn+m,0

[Ln, L̄m] = 0

[L̄n, L̄m] = (n−m)L̄n+m + c
12
n(n2 − 1)δn+m,0

(2.99)

Like in the classical case, we have that global conformal transformations are
generated by L−1, L0 and L1. In particular, L0 + L̄0 is the generator of the
dilations (z, z̄)→ λ(z, z̄). But we are using radial quantization, so if we dilate
a circle of constant time t we obtain a new circle corresponding to t′. This
means that L0 + L̄0 is indeed the generator of time translations, and is then
proportional to the Hamiltonian of the system.

2.4.3 The Hilbert space

We now want to study the two spaces of states generated by Ln and L̄n re-
spectively: the total Hilbert space is the direct sum of these. As a �rst task,
we require the vacuum to be invariant for global conformal transformations:
it must be annichilated by L−1, L0 and L1 and their antiholomorphic coun-
terparts. This is a subcondition of the requirement that T (z) |0〉 and T̄ (z̄) |0〉
should be well de�ned, which implies:{

Ln |0〉 = 0

L̄n |0〉 = 0
for n ≥ −1 (2.100)

Since L†n = L−n, we also have

〈0 |T (z) | 0〉 =
〈
0
∣∣ T̄ (z̄)

∣∣ 0〉 = 0 (2.101)
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Consider now a primary �eld with conformal dimensions (∆, ∆̄). It can be
shown that the state ∣∣∆, ∆̄〉 ≡ φ(0, 0) |0〉 (2.102)

is an eigenstate of the Hamiltonian, with eigenvalue proportional to ∆ + ∆̄:

L0

∣∣∆, ∆̄〉 = ∆
∣∣∆, ∆̄〉 L̄0

∣∣∆, ∆̄〉 = ∆̄
∣∣∆, ∆̄〉 (2.103)

This follows from (2.93): using the OPE between T (w) and φ(z, z̄), we have

[Ln, φ(z, z̄)] = ∆(n+ 1) znφ(z, z̄) + zn+1∂zφ(z, z̄) (2.104)

which furthermore implies{
Ln
∣∣∆, ∆̄〉 = 0

L̄n
∣∣∆, ∆̄〉 = 0

if n > 0 (2.105)

Now, the Virasoro algebra implies that

[L0, L−m] = mL−m (2.106)

This means that we can obtain excited states by simply applying operators
L−m with m > 0. An example of such states is

L−k1L−k2 . . . L−kn |∆〉 (2.107)

where 1 ≤ k1 ≤ · · · ≤ kn for convention. Notice that we consider only the
Hilbert space spanned by holomorphic components of the �elds.

|∆〉 = φ(0) |0〉

We mention that, in a typical quantum �eld theory, each Fock space is gen-
erated by applying on |0〉 the modes φm (de�ned by (2.90)) of a fundamental
�eld, and the Hilbert space is the direct sum of these. Here, our approach is
equivalent since, thanks to (see [17])

[L0, φm] = −mφm (2.108)

the modes φm and L−m produce the same e�ect on a given state.
The states (2.107) are eigenstates of L0 with eigenvalue ∆ +

∑
i ki, and are

called descendants. The set of all the states |∆〉 and their descendants consi-
tutes a representation of the Virasoro algebra, which is called a Verma Module.
We have as well a representation where the states of the �Fock space� are the
�elds themselves, and to every descendant we can associate a descendant �eld.
To see this, consider the following descendant:

L−n |h〉 = L−nφ(0) |0〉 =
1

2πi

∮
dz z1−nT (z)φ(0) |0〉 (2.109)
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The descendant �eld associated to this state is then

φ−n(w) =
1

2πi

∮
w

dz
1

(z − w)n−1
T (z)φ(w) (2.110)

and an arbitrary descendant �eld is given by the recursive relation:

φ(−k1,−k2,...,−kn)(w) =
1

2πi

∮
w

dz (z − w)1−k1T (z)φ(−k2,...,−kn)(w) (2.111)

By de�nition, all the descendant �elds are secondary �elds. From this last
equation we can infer the conformal dimensions of φ(−k1,−k2,...,−kn)(w), which
are (∆ +

∑
i ki, ∆̄ +

∑
i ki). The set of a given primary �eld and all its descen-

dants is called a conformal family, and we will denote it with [φ].
It's easy to obtain all the possible existing �elds of a certain CFT. We

start from the set of its primary �elds {φi(z, z̄)}: this can be in�nite, and
there can be �elds with the same conformal dimensions. We then build all
the secondary �elds by simply performing integrals like (2.110). It's really
important to realize that the scaling dimension of a scalar secondary �eld is
always greater than 2, since by de�nition ki > 1: it follows (see (2.32)) that
the only relevant �elds are primary �elds. Since a theory has tipically only a
�nite number of relevant �elds (we have seen for example that the Ising model
has 2 of these), we would like it to have a �nite number of primary operators.

Furthermore, we require that all correlation functions must be positive,
that is we require a theory to be unitary. We will deal with these issues in the
next sections.

2.4.4 Verma modules and Kac table

The Fock space built up from a state |∆〉 ≡ φ(0) |0〉 is called a Verma module.
The set of raising operators {L−n} can be applied to the heighest weight states
|∆〉 (the terminology derives from the representation theory of Lie algebras)
to form a descendant state, which has the form:

L−k1L−k2 . . . L−kn |0〉 (2.112)

This is an eigenvector of the �Hamiltonian� L0, with eigenvalue

∆′ = ∆ +
∑
i

ki ≡ ∆ +N (2.113)

N is called the level of a string operator. All the states with the same level
form a subspace of eigenvectors with the same �energy� given by (2.113). The
number of states p(N) at a given level N is simply the number of partitions if
the integer N . The generating functions of p(N) is the Euler function:

1

ϕ(q)
≡
∞∏
n=1

1

1− qn
=
∞∑
n=1

p(n)qn (2.114)
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2.4. Quantization of a CFT

To see this, use the formula for a geometric series

1

1− qn
=
∞∑
n=0

qn

and rearrange all terms. We can de�ne a dual state by(
L−k1 . . . L−kn |0〉

)† ≡ 〈∆|Lkn . . . Lk1 (2.115)

which satis�es:

〈∆|Lj = 0 if j < 0 (2.116)

The inner product between two states

L−k1 . . . L−kn |∆〉 and L−l1 . . . L−lm |∆〉 (2.117)

is clearly

〈∆ |Lkn . . . Lk1L−l1 . . . L−lm |∆〉 (2.118)

and can be evaluated using the Virasoro algebra. Furthermore, states belong-
ing to di�erent levels are orthogonal. If we denote with V (c,∆) the Verma
module generated by a �eld, with conformal dimension ∆, belonging to a the-
ory with central charge c, then the Hilbert space of a given theory is the tensor
product: ∑

∆,∆̄

N∆,∆̄ V (c,∆)⊗ V̄ (c, ∆̄) (2.119)

This means that a theory has the set primary �elds {φ∆,∆̄} where each �eld
φ∆,∆̄ generates the space V (c,∆)⊗ V̄ (c, ∆̄), and a number of N∆,∆̄ �elds have
the same conformal dimensions.

Now, it may happen that a Verma module V (c,∆) is reducible. By this we
mean that there is a subspace of V (c,∆) which is itself a representation of the
Virasoro algebra. This is so if there exists a vector |χ〉 satisfying

Ln |χ〉 = 0 for n > 0 (2.120)

The vector |χ〉 then behaves like a generic highest weight state (see equation
(2.105)), thus we can buid a Verma module Vχ included in V (c,∆). Further-
more, it's clear that |χ〉 is orthogonal to the whole Verma module, and in
particular to itself: |χ〉 is therefore a null vector. Thanks to this property
it can be shown that all the descendants of |χ〉 are orthogonal to the whole
Verma module as well, and they all have zero norm.

If we want to recover an irreducible representation we need to identify states
that di�ers only by a state of zero norm: this is equivalent to quotienting out
the null submodule Vχ. We will call this irreducible representation M(c,∆).
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2. Conformal �eld theory

A representation V (c,∆) is said to be unitary if all the states have positive
norm. To understand when is this the case, we de�ne the Gram matrix as the
matrix of the inner products between all states of a Verma module:

Mij = 〈i | j〉 (2.121)

This matrix is hermitian (M † = M) and block diagonal: denote with M (l) the
block corresponding to the states at level l. Now, an arbitrary state |a〉 whose
expansion is |a〉 =

∑
i ai |i〉 has norm

〈a | a〉 = a†Ma =
∑
i

Λi|bi|2 (2.122)

where Λi are the eigenvalues of the Gram matrix M and b = Ua, where U is
the matrix that diagonalizes M . It follows that a representation is unitary if
all the eigenvalues of the Gram matrix are positive, and contains null vectors
if one of these is zero. A way to understand when a representation is unitary
is to study the determinant of the Gram matrix, which takes the name of Kac
determinant, given by the following formula due to Kac:

detM (l) = αl
∏
r,s≥1
rs≤l

(
∆−∆r,s(c)

)p(l−rs)
(2.123)

where αl is a constant and p(l − rs) is de�ned by (2.114). Using the Kac
determinant one can show that representations with c ≥ 1 and ∆ ≥ 0 are all
unitary, and for c < 1 unitarity is recovered for primary �elds whose dimensions
are given by one of the ∆r,s(c) (see [17]).

Furthermore, this formula tells us that we have null vectors if the dimension
of the primary �eld over which we construct V (c,∆) is equal to some ∆r,s(c).
If this is the case, we denote our primary �elds as φ(r,s). The functions ∆r,s(c)
can be expressed in various ways. One of these is:

∆r,s(c) = ∆0 +
1

4
(rα+ + sα−)2

∆0 =
1

24
(c− 1) (2.124)

α± =

√
1− c±

√
25− c√

24

A very important fact is that the set of conformal families generated by {φ(r,s)}
closes under the operator algebra, which means that the OPE of two such
�elds can be expressed as a sum involving only the same kind of �elds. This
statement is made rigorous by the following relation:

φ(r1,s1) × φ(r2,s2) =

k=r1+r2−1∑
k=1+|r1−r2|

k+r1+r2=1 mod 2

l=s1+s2−1∑
l=1+|s1−s2|

l+s1+s2=1 mod 2

φ(k,l) (2.125)
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2.4. Quantization of a CFT

Table 2.1: The Kac table for the minimal modelM(4, 3), with central charge c = 1
2 .

1
2

1
16

0

0 1
16

1
2

Formula (2.125) is an OPE (denoted by the symbol ×) written in a concise
way. It states that only the primary �elds with conformal dimensions ∆r,s

appearing in the sum on the r.h.s. contribute to the OPE φ(r1,s1)φ(r2,s2). The
coe�cients are suppressed for clarity, and writing φ(k,l) on the r.h.s. we mean
that all the �elds of its conformal family may contribute. We refer to [17] for
the details of the demonstration. Notice that, in generality, we need an in�nite
number of conformal families to close the algebra.

Now, it can be shown that, if two coprime integers p and p′ exist such that
pα− + p′α+ = 0, we have the periodicity property

∆r,s = ∆r+p′,s+p (2.126)

to which corresponds:

c = 1− (p− p′)2

pp′

∆r,s =
(pr − p′s)2 − (p− p′)2

4pp′

(2.127)

This is a really important statement since in (2.125) we then only need a �nite
number of conformal families to close the algebra. That is, for such values
of the parameters α± we have a �nite number of distinct primary �elds φ(r,s),
where the subscripts are delimited by{

1 ≤ r < p′

1 ≤ s < p
(2.128)

Since from (2.127) it follows that

∆r,s = ∆p′−r,p−s (2.129)

we can identify the �elds φ(r,s) and φ(p′−r,p−s). Then, the number of distinct
primary �elds of our theory is:

(p− 1)(p′ − 1)

2

These are usually organized in what is called a Kac table, see for example
table 2.1. In other words, if a theory has an in�nite set of primary �elds, we
can restrict ourselves to the subset of conformal families generated by {φ(r,s)},
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2. Conformal �eld theory

with ∆r,s given by (2.127): we will never need to use the other �elds of the
theory since (2.125) is enough to compute all the correlation functions between
�eld belonging to the conformal families of {φ(r,s)}. The theories built up from
{φ(r,s)} are called Minimal models, and we'll refer to them as

M(p′, p)

Furthermore, we stated without demonstration that the representation in-
volving such �elds are unitary. But these, as we discussed at the end of section
2.4.3, are the requirements we demanded for a CFT to describe a statistical
model. Then, we expect that all our models are described conformal �eld the-
ories whose central charges is of the form (2.127). Since c depends on p, and p′,
we then have that the central charge determines the �eld content of a theory
(as we anticipated in section 2.3.3), and the dimensions ∆r,s are delimited by

1 ≤ r < p′ 1 ≤ s < p (2.130)

To give an example, consider the minimal model M(4, 3), with central
charge c = 1

2
. This corresponds to p = 4 and p′ = 3, so we'll have the

three primary �elds I, φ(2,2) and φ(2,1), with conformal dimensions ∆1,1 = 0,
∆2,2 = 1/16 and ∆2,1 = 1/2. If we consider scalar �elds, then ∆ = ∆̄, and the
two point correlation functions are, using (2.80):〈

φ(2,1)(z, z̄)φ(2,1)(0, 0)
〉

=
1

z1/8z̄1/8

〈
φ(2,2)(z, z̄)φ(2,2)(0, 0)

〉
=

1

zz̄
(2.131)

Consider now the Ising model. We saw that this model has two relevant �elds:
the spin operator σi and the energy operator εi. It is known by exact solution
that:

〈σiσi+n〉 =
1

|n|1/4
〈εiεi+n〉 =

1

|n|2
(2.132)

This strongly suggests that, since (2.132) and (2.131) are the same with |n| = zz̄,
the Ising model is described by scalar �elds whose holomorphic and antiholo-
morphic parts belong to a c = 1

2
conformal �eld theory.

To described other models, such as the three states Potts model, we will
need �elds with spin, but we won't develop this topic here, and we refer again
to [17] for details.

2.5 CFT on a torus: modular invariance

In the last section we gave a hint on how to �nd all the primary (relevant)
�elds of a statistical system. Here, given a minimal model, we want to face the
problem of how many �elds are there with a same conformal dimensions, and
which �elds of the minimal model appear. This can be solved by requiring the
modular invariance of a CFT de�ned on the torus.
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2.5. CFT on a torus: modular invariance

Figure 2.2: A torus.

A torus in complex coordinates may be de�ned as a complex plane with
two periodic directions (see �g. 2.2), which we denote with ω1 and ω2. It is
characterized by the modular parameter

τ =
ω2

ω1

(2.133)

Let's compute the partition function of a CFT de�ned on a torus. This
object must be invariant under translations by ω1,2. We de�ne space and time
directions running over the real and the imaginary axis respectively. Recall
from chapter 1 that the partition function of a 2 dimensional classical system
is:

Z = 〈σ1|TM |σM〉 (2.134)

whereM is the rows number of the lattice. Since we require periodic boundary
conditions, from (1.4) we have that the partition functions is expressed as a
trace:

Z = Tr
(
TM
)

= Tr
(
eHlattice

)
(2.135)

As we discussed in chapter 1, the transfer matrix acts like an evolution opera-
tor. But now we quantized our theory, and in a quantum theory the evolution
operator has the form:

exp (iaG)

We then suppose, roughly speaking, that the space of classical spin con�gura-
tion |σ〉 is described by the states of the form (2.112), belonging to a represen-
tation of the Virasoro algebra. Here G is the generator of the translations: it
corresponds to H for time translations, and P for space translations. It can be
shown that the Hamiltonian and the momentum operator on the plane, using
radial quantization, are given by:

H =
2π

L

(
L0 + L̄0 −

c

12

)
P =

2πi

L
(L0 − L̄0) (2.136)
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2. Conformal �eld theory

We've already seen that the Hamiltonian is proportional to the combination
of Virasoro generators L0 + L̄0. The form of P can be justi�ed by noting
that L0 − L̄0 generates the rotations in the complex plane, which are spatial
translations in the view of radial quantization. If the classical lattice spacing is
a, the evolution operator that translates the system parallel to the ω2 direction
is then:

exp
[
− a

|ω2|
(
H Im(ω2)− iP Re(ω2)

)]
(2.137)

Suppose now that ω1 is real and equal to L, which imples |ω2| = Ma. To
compute the partition function, we need to take the trace of the operator
(2.137) to the M -th power, which gives:

Z(ω1, ω2) = Tr
(

exp
(
H Im(ω2)− iP Re(ω2)

))
(2.138)

If we now write Re(ω2) and Im(ω2) as functions of τ and τ̄ , and de�ne

q = exp (2πiτ) q̄ = exp (−2πiτ̄) (2.139)

we can express the partition function as:

Z(τ) = Tr
(
qL0−c/24q̄L̄0−c/24

)
(2.140)

Let's work with minimal models. As we saw in section 2.4.4, a certain theory
is described by the Hilbert space

H =
⊕

(r,s),(t,u)∈Ep,p′

M(r,s);(t,u)M(c,∆r,s)⊗M(c, ∆̄t,u) (2.141)

where Ep,p′ is the domain of the couple of variables (r, s) and (t, u). Notice
that in general (r, s) 6= (t, u): this allows the existence of �elds with spins,
that is whose left and right conformal dimensions are di�erent. We can write
(2.140) as:

Z(τ) =
∑

(r,s),(t,u)∈Ep,p′

M(r,s);(t,u)χr,s(τ)χ̄t,u(τ̄) (2.142)

The number M(r,s);(t,u) denotes how many primary �elds of the theory have
the same conformal dimensions (∆r,s, ∆̄t,u). From another point of view, it
describes how many times the tensor product M(c,∆r,s)⊗M(c, ∆̄t,u) appears
in the Hilbert space. Moreover, we de�ne the Virasoro characters as:

χr,s(τ) = TrM(c,∆r,s)

(
qL0−c/24

)
= q∆−c/24

∑
n≥0

d(n)qn (2.143)

where d(n) is the number of states at level n of the Virasoro representation
built on the holomorphic �eld φ(r,s). We can say, roughly speaking, that a
Virasoro character counts how many states are there in a representation.
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2.5. CFT on a torus: modular invariance

Now, the partition function on the torus must satisfy modular invariance.
On the plane, we can always rede�ne the parameters ω1,2 as:(

ω′1
ω′2

)
=

(
a b
c d

)(
ω1

ω2

)
(2.144)

where a, b, c, d ∈ Z. This is a modular transformation: it changes the period-
icity directions on the plane, but since we only take integer combinations, the
ω′1,2 describe the same torus of ω1,2. Equation (2.144) de�nes a matrix of inte-
gers. The inverse matrix must obviously be of the same form, and if we choose
the convention ad − bc = 1 (which is not restrictive), these transformations
form a group isomorphic to SL(2,Z), the group of integer, invertible matrices
with unit determinant. The modular parameter transforms as

τ → aτ + b

cτ + d
(2.145)

It can be shown that every modular transformation can be written as a product
involving only the following transformations:

T : τ → τ + 1, S : τ → −1

τ
(2.146)

described by the matrices

T =

(
1 1
0 1

)
S =

(
0 1
−1 0

)
(2.147)

As a last step to construct partition functions invariant under modular trans-
formations, we need to know how the Virasoro characters transform under T
and S. It can be shown that:

χr,s(τ + 1) =
∑

(ρ,σ)∈Ep,p′

T(r,s);(ρ,σ)χρ,σ(τ)

T(r,s);(ρ,σ) = δr,ρδs,σ exp
[
2iπ
(

∆r,s −
c

24

)] (2.148)

and

χr,s

(
−1

τ

)
=

∑
(ρ,σ)∈Ep,p′

S(r,s);(ρ,σ)χρ,σ(τ)

S(r,s);(ρ,σ) = 2

√
2

pp′
(−1)1+sρ+rσ sin

(
π
p

p′
rρ
)

sin
(
π
p′

p
sσ
) (2.149)

Let's now make some examples. Thanks to the unitarity of S we have a �rst
modular invariant partition function:

Z =
∑

(r,s)∈Ep,p′

|χr,s|2 (2.150)
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which is said to be diagonal. Here we have only scalar �elds, and all the �elds
of the minimal model appear, with no copies. Recall that the Ising model is
described by scalar �elds whose holomorphic components belong to M(4, 3)
(see the Kac table 2.1). Then, the partition function of the Ising model de�ned
on the torus is

Z = |χ1,1|2 + |χ2,1|2 + |χ1,2|2 (2.151)

Other examples of modular invariant partition functions can be found for p′/2
odd: the characters combination χr,s + χp′−r,s is then invariant under S and
is multiplied by a phase under T . This implies that the following diagonal
combination

Z =
∑

r odd, s

|χr,s + χp′−r,s|2 (2.152)

is a modular invariant. A similar partition function can be constructed if p/2
is odd. These modular invariants, among others, are not arranged in a casual
manner, but follow the so called ADE classi�cation: see [17], [24] or [26] for
details.

2.6 Out of the critical point

In the previous sections we dealt with CFT, which means that the statistical
systems associated to a quantum �eld theory were all at criticality. We now
want to describe these systems out of criticality, where conformal invariance
doesn't hold anymore, mantaining the �eld theory approach. The idea is to
start from a given action, which is conformal invariant, and then perturb it
with some �elds Φi(x):

S = SCFT +
n∑
i=1

λi

∫
Φi(x) d2x (2.153)

We know that, at the �xed point, the two-point correlation function of two
primary �elds behaves like:

Gi(r) ≡ 〈φi(r)φi(0)〉 ' δij
r2dj

for r → 0 (2.154)

where dj is the scaling dimension of the �eld φj. While the lattice spacing
chances as a→ ba, the coupling constants g will �ow in the scaling region, and
in general there are two di�erent physical scenarios associated to (2.153) (see
[26]):

• The �nal point of the RG �ow is also a �xed point to another conformal
�eld theory. This means that our theory is described by SCFT at the be-
ginning of the �ow (the ultraviolet region), while is described by another
CFT action S∗ at the end of the �ow (the infrared region). We remind
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2.6. Out of the critical point

that the ultraviolet region concerns with very short distances, while for
the infrared region is the opposite. This means that, in the two regimes,
the two-point correlation functions will have the following behaviour:

Gi(r) =

{
r−2duvi , r → 0

r−2diri , r →∞
(2.155)

where duvi 6= diri , because the two conformal �eld theories are di�erent.
We will see later how the central charges of the two theories are related.

• The �nal point of the RG �ow is not a CFT anymore, and the system
acquires a �nite correlation lenght ξ: the infrared behaviour of the theory
is ruled by a massive QFT. The two-point correlation functions now
behave like:

Gi(r) =

{
r−2duvi , r → 0

e−mir, r →∞
(2.156)

Here, mi = ξ−1 is the mass of the lightest particle that couples to φi.

2.6.1 Conformal Perturbation Theory

A quantum �eld theory is solved if we know all its correlation functions, that
is all the measurable quantities. One of the main approach to deal with �eld
theories out of the �xed point is the conformal perturbation theory. What
one does is to consider a theory that is solvable, and perturb its action with
some powers of the basic �elds. In 4-dimensional QFT, the solvable theory is
tipically a free theory. Consider for example the λφ4 theory, whose action is:

S =

∫
d4x

(
1

2

(
∂µφ
)2

+
1

2
m2φ2 +

λ

4!
φ4

)
(2.157)

The correlation functions of this QFT are expressed as powers of λ, whose
coe�cients are correlation functions of the free theory, which in principle are
all calculable. Here, instead, we start from the QFT at the �xed point, that
is the CFT, and then perturb its action SCFT, for example, with λ

∫
Φ(x) d2x.

The correlation function of a set of observables A is then expressed as:

〈A〉λ =
1

Zλ

〈
Ae−λ

∫
d2xΦ(x)

〉
0

=
1

Zλ

∞∑
n=0

(−λ)n

n!

∫
d2x1 . . . d

2xn 〈Aφ(x1) . . . φ(xn)〉0
(2.158)

If λ→ 0, the theory is at its conformal point, so Φ must tend to some �eld of
the set all the conformal families of the theory (this is valid also for more than
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2. Conformal �eld theory

one coupling constant). Because the coe�cients of λn are evaluated for λ = 0,
we must perform the replacement Φ→ φ in the correlation functions.

In general, SCFT may be perturbed by more than one �eld, so in more
generality we have:

S = SCFT +
∑
i

λi

∫
Φi(x) d2x (2.159)

The coupling costants of the renormalization group theory must be adimen-
sional, so these are truly given by:

gi = µ−dλZgiλi (2.160)

where dλ is the scaling dimension of λ, and Zgi describes the change of g under
renormalization. This naturally introduces a scale µ, which is usually taken
as the mass of the lightest particle:

µ = Diλ
1

2εi (2.161)

As a �rts condition on this action, we require that it's invariant under dilations,
since theories belonging to the same RG �ow are equivalent, which means that
they have the same partition function Z =

∫
Dϕ exp(−S[ϕ]). Furthermore, we

want this action to be invariant under rotation: this implies that Φi must be
scalar �elds. It is known (see for example [32]) that a QFT is renormalizable
if all the coupling constant λi has a scaling dimension that satisfy dλ ≥ 0. If
our perturbing �elds are all relevant, then dλi are all strictly positive, so our
theories are of the super-renormalizable type: only a �nite number of Feynman
diagrams super�cially diverges. In this case, the �elds Φi must tend, in the
limit λ → 0, to primary �elds φi of the CFT, more exactly to some scalar
primary �elds. If these have scalar dimension xi = 2∆i, for the action to be
invariant under dilations we require dλi = 2− 2∆i. The primary �elds are the
only �elds of the CFT with ∆ < 1, so are the only ones that ensure dλi > 0.

We now show that, under renormalization, the �elds change as:

Φi(x, g)→
(
Z(g)−1/2

)j
i
φj(x, g) (2.162)

where φj are certain �elds of the unperturbed theory (that is, the CFT). We
won't develop the whole problem here, and we refer to e.g. [26] for further
details. In general, a correlation function will have both ultraviolet and infrared
divergencies. Consider the action S = SCFT+λ

∫
Φ(x) d2x, and perturb it with

only one �eld Φ(x), satisfying Φ −−→
λ→0

φ(x). Consider then a generic �eld Ψ(x),

such that Ψ −−→
λ→0

ψ(x), where this time ψ(x) may be any �eld of the CFT.

For a generic set of �elds X, we have, using (2.158):

〈XΨ(0)〉λ ' 〈Xψ(0)〉0 − λ
∫
ε<|x|<R

d2x 〈Xψ(0)φ(x)〉0 +O(λ2) (2.163)
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2.6. Out of the critical point

where we have introduced, respectively, the ultraviolet and infrared cuto�s R,
ε. If we want to cure the ultraviolet divergence at the �rst order in λ, notice
that the integral diverges for x→∞ only if the OPE

φ(x)ψ(0) =
∑
k

Ck
φψ|x|

2(∆k−∆ψ−∆φ)Bk(0) (2.164)

contains the �elds Bk of the CFT with conformal �elds ∆k such that:

γk ≡ ∆k −∆ψ −∆φ + 1 ≤ 0 (2.165)

Then, the renormalized operator is de�ned by:

Ψ(x) = ψ(x) + λ
∑
k

bk e
2γkBk(x) +O(λ2) (2.166)

Notice that Ψ, after the renormalization procedure, is not just a function of
its limit �eld ψ: the renormalization procedure induces a mixing between the
�elds out of the �xed point and the �elds of the CFT.

2.6.2 The Callan-Symanzik equation

We now discuss the variation of a correlation function of generic �elds Ai(xi),
de�ned as

〈A1(x1) . . . An(xn)〉 =

∫
DφA1(x1) . . . An(xn) e−S[φ] (2.167)

(where the normalization constant 1/Z has been absorbed in exp(−S[φ]))
under the renormalization group �ow, that is under a change of the cuto�
a → ba ≡ eta. The dilation factor is b = et, so every point of the �ow is
parametrized by t, which plays a role similar to time in classical mechanics.
Accordingly, the coupling constants g ≡ g(t) will depend on t. It is important
to realize that the action

S(g, a) =

∫
d2xLg (2.168)

depends both on g and implicitly on the cuto� a. Let's now perform a dilation
of the coordinates:

xµ → x′µ = xµ + εµ (2.169)

where εµ = εxµ. The �elds will change as Ai(x) → Ai(x) + δAi(x), and the
variation of the action is given by (2.34):

δS =

∫
d2xTµν(x) ∂µεν(x) = ε

∫
d2xΘ(x) (2.170)
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2. Conformal �eld theory

where the trace of the stress tensor energy is Θ(x) = T µµ (x), and we absorbed
a factor 1/(2π) in its de�nition. Thanks to (2.168), this can be written as:

Θ(x) =
dLg
dt

(2.171)

because the coordinates change as x′µ = e−txµ, and for in�nitesimal transfor-
mation we have ε = dt, apart for a sign.

Varying all the terms in (2.167), we obtain:

n∑
i=1

〈A1(x1) . . . δAi(xi) . . . An(xn)〉 − ε
∫
d2x 〈Θ(x)A1(x1) . . . An(xn)〉 = 0

(2.172)
It can be shown ([17]) that, under a dilation, the variations of the �elds are:

δAi(x) = ε
(1

2
xµ∂µ + D̂

)
Ai(x) (2.173)

where D̂ is the operator that implements the internal transformation of the
�elds. Its eigenvalues are the scaling dimensions of the �elds.

Now, the �elds of the theory are de�ned as

φi(x) =
∂Lg
∂gi

(2.174)

and if Lg is a local Lagrangian, then the �elds are local as well. Thanks to
this last equation we can write:

Θ(x) =
∑
a

∂Lg
∂ga

∂ga
∂t

=
∑
a

∂ga
∂t

φa(x) (2.175)

If we consider only homogeneous and isotropic interactions, then the φi are
scalar �elds, and from the point of view of the di�erential geometry, these
will span the tangent space at a given point (g0, g1, . . . ) of the manifold of the
coupling constants. This means that they form a basis for the set of scalar
�elds, and since Θ belongs to this space, we have:

Θ(x) =
∑
a

βa(g)φa(x) (2.176)

where the coe�cients βa(g) are the beta functions of the theory. Comparing
with (2.175):

βa(g) =
∂ga
∂t

(2.177)

so the beta functions express the variation of the coupling constants under the
RG �ow. Furthermore, since at a �xed point the coupling constants g∗ don't
vary for de�nition, it follows that:

βa(g∗) = 0 (2.178)
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2.6. Out of the critical point

Now, the �elds Ai(x) may depend on the coupling constants as well, and
we express their variation under a RG �ow with an operator B̂i as:

B̂kAi(x) =
∂

∂gk
Ai(x) (2.179)

If we take the partial derivative of 〈A1(x1) . . . An(xn)〉 with respect to ga we
have, using (2.174):

∂

∂ga
〈A1(x1) . . . An(xn)〉 =

n∑
i=1

〈
A1(x1) . . . B̂aAi(xi) . . . An(xn)

〉
−
∫
d2x 〈φa(x)A1(x1) . . . An(xn)〉 (2.180)

Multiplying both sided by βa(g), summing over a and using (2.176), we �nally
obtain the Callan-Symanzik equation:

n∑
i=1

〈(1

2
xµi

∂

∂xµi
+ γ̂(i)(g)

)
A1(x1) . . . An(xn)

〉
−
∑
a

βa(g)
∂

∂ga
〈A1(x1) . . . An(xn)〉 = 0 (2.181)

where we de�ned γ̂(g) = D̂+ βa(g)B̂a. Comparing this equation with (2.172),
we can interpret γ̂ as an operator whose eigenvalues are the anomalous dimen-
sions of the �elds.

Let's see how to determine the �rts terms of the beta functions. We will
perform in�nitesimal transformations in the RG �ow, and we'll take advantage
of the invariance of the partition function under this transformation (remember
that theories belonging to the same �ow describe the same physics). If we set
gi = λia

2(1−∆i), and impose the ultraviolet cuto� a, we have:

Z =

∫
Dϕ exp

[
−S∗ −

∑
i

gi

∫
d2x

a2(1−∆i)
ϕi(x)

]

= Z∗

[
1−

∑
i

gi

∫
d2x

a2(1−∆i)
〈ϕi(x)〉

+
1

2

∑
i,j

gigj

∫
|x1−x2|>a

〈ϕi(x1)ϕj(x2)〉 d2x1

a2(1−∆i)

d2x2

a2(1−∆j)
+ . . .

]
(2.182)

If we perform the in�nitesimal scale transformation a→ (1+dt)a, the problem
is now to understand how the gi will transform so to leave Z invariant. To the
�rst order, this task is simple:

gi → (1 + dt)2(1−∆i)gi ' gi + 2(1−∆i)gi dt (2.183)
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2. Conformal �eld theory

At second order, we must pay attention to the transformation of the cuto� in
the integral (see [26] for further details). Taking derivatives of the coupling
constants, the beta functions have the following universal behaviour :

dgk
dt
≡ βk(g) = 2(1−∆k)gk − π

∑
i,j

Cijkgigj +O(g3) (2.184)

The higher order terms can be computed, in principle, iteracting the above
procedure. However, we won't discuss this here, since the calculations are
rather involved.

2.6.3 Zamolodchikov's c theorem

We know that the RG procedure reduces the degrees of freedom of the the-
ory: if we move along the �ow, we lose informations about the previous action
S. Two theories that belong to the same RG �ow are equivalent: if we com-
pute the correlation functions of observables evaluated in points ~xi such that
|~xi − ~xj| → ∞ for all i and j, these tend to the same limit. But, moving along
the �ow, we are not able anymore to evaluate correlation functions below the
ultraviolet cuto�. So in this sense the �ow is irreversible ([37]). The quantity
that somehow describes how large is the space of the degrees of freedom is the
central charge c: if at the end of the RG �ow we encounter another CFT (with
coupling constants ~g) we then expect that its central charge cir is less than cuv,
because some degrees of freedom are �averaged out� in the �ow. Let's denote
SCFT the action at the beginning of the �ow, and S∗ the action at the end of
the �ow. Notice that the degrees of freedom of S∗ remain in�nite, but they
live in a space that is �less in�nite� than the space of the degrees of freedom
of SCFT. We now demonstrate the c-theorem, that formalize these qualitative
facts:

"For every 2D unitary �eld theory, that is invariant under rotations and
translations, renormalizable, and whose stress tensor is conserved, there exist
a function C(g) of the coupling costants such that:

1. It decreases along the RG �ow:

∂C

∂gi
≤ 0

2. It is stationary at the CFT points:

dC

dgi

∣∣∣∣∣
g∗

= 0 =⇒ β(g∗) = 0

3. If g = g∗, we have:

〈T (z, z̄)T (0, 0)〉 =
cuv/2

z4

where the central charge of the new CFT is given by cuv = limg→g∗ C(g)."
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2.6. Out of the critical point

To begin the demonstration, we remind that the components T , T̄ and Θ of
the stress tensor have, respectively, spin 2, −2 and 0. The question is: what is
the form of the correlator 〈T (z, z̄)T (0)〉 out of the �xed point? If we require
rotational invariance, the spin of the correlator should not change if we make
a dilation of the system (i.e. if we move along the RG �ow): then it will have
the same spin of the �xed point, that is the CFT. On the other hand, the
dilations may change the theory: if we look at the system at di�erent scales, it
might behave in a di�erent way. This means that the correlator may depend
on a function F (mzz̄) that doesn't change the spin, whose argument contain
the mass scale m; this function depends on the coupling costants g as well. So,
we have the o�-critical correlators:

〈T (z, z̄)T (0, 0)〉 =
F (mzz̄)

z4

〈T (z, z̄) Θ(0, 0)〉 =
G(mzz̄)

z3z̄
(2.185)

〈Θ(z, z̄) Θ(0, 0)〉 =
H(mzz̄)

z2z̄2

Now, we have to use the conservation law ∂µT
µν = 0, whose form in complex

coordinates we remind here:{
∂z̄T + 1

4
∂zΘ = 0

∂zT̄ + 1
4
∂z̄Θ = 0

(2.186)

If we derive (2.185) with respect to z or z̄, and use (2.186), we obtain the
di�erential equations: {

Ḟ + 1
4

(
Ġ− 3G

)
= 0

Ġ−G+ 1
4

(
Ḣ − 2H

)
= 0

(2.187)

where τ = m2zz̄ = (mR)2 and

Ḟ =
dF

d log τ
.

If we de�ne

C(R, g) = 2F −G− 3

8
H (2.188)

we have

Ċ(R, g) = −3

4
H (2.189)

Since, by hypothesis, our �eld theory theory is unitary, it is H > 0, and so
Ċ < 0. From (2.185) we argue that, if g = g∗, then H,G = 0 and F = c/2 so
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2. Conformal �eld theory

that C(R, g∗) = cuv, and point 3 is demonstrated. Now, we need to use the
Callan-Symanzik equation (2.181), which in our case reduces to:(

1

2
R
∂

∂R
−
∑
a

βa
∂

∂ga

)
C(R, g) = 0 (2.190)

This is because, for example, γ̂(g)
(
T (z, z̄)T (0, 0)

)
= γ̂(g)

(
z4
)
, so we must have

γ̂(g)
(
F (mzz̄)

)
= 0: applying this reasoning to all the correlation functions of

(2.185), we obtain γ̂(g)
(
C(R, g)

)
= 0. If we use (2.176), we can express C as

in (2.188) and equal the functions that depend only on R, obtaining:

βa
∂

∂ga
C(1, g) = −3

4
Gab(g)βa(g)βb(g) (2.191)

where we have set τ = 1 and

Gab(zz̄, g) = (mzz̄)2 〈φa(z, z̄)φb(0, 0)〉 , Gab(g) ≡ Gab(1, g)

Again for the unitarity of the theory, Gab(g) is positive de�nite, and if the
coupling costants remain small βa(g) is positive thanks to (2.184), so we must
have

∂C

∂gi
≤ 0, ∀i

and point 1 is demonstrated. Point 2 trivially follows from (2.191).
It is now easy to evaluate the di�erence ∆c = cir − cuv. From (2.185) and

(2.189), we have:

∆c = −
∫ ∞

0

Ċ d
(
log τ

)
=

3

4

∫ ∞
0

H(mzz̄)
dτ

τ

=
3

4

∫ ∞
0

d(r2) r2 〈Θ(r)Θ(0)〉 =
3

2

∫ ∞
0

dr r3 〈Θ(r)Θ(0)〉 (2.192)

The c-theorem is very important in the context of conformal perturbation
theory, and has a wide number of applications. We will discuss one of these in
section 3.2, when we deal with entanglement entropy out of the critical point.
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Chapter 3

Entanglement entropy in 1-D

quantum chains

This chapter is dedicated to the evaluation of the entanglement entropy in one
dimensional quantum systems. Tipically, what one calculates is the entropy
of one part of the system, which may be a �nite interval, an in�nite interval,
or the union of more intervals, with respect to the rest of the system. The
most important measures of entanglement are the Von Neumann entropy (to
whom we will sometimes refer simply as entanglement entropy) and the Renyi
entropy. For a de�nition of entanglement and the discussion of its measure-
ment, see appendix A. In section 3.1 we will focus on systems at their critical
point, for which we can apply the methods of conformal �eld theory developed
in chapter 2, and we'll evaluate entanglement entropies in some cases. Section
3.2 is devoted to the entropy of non critical systems, while section 3.3 deals
with corrections to the Renyi entropies. The corner transfer matrix method is
developed in section 3.4, and it will then be applied to the XYZ model, which
is the topic of section 3.5. Finally, in the last section we describe the entan-
glement spectrum, i.e. the eigenvalues of the reduced density matrix. The
contents of section 3.1 are elaborated from [7], which was the �rst article that
proposed the evaluation of entanglement entropies through the use of CFT.
An alternative derivation can be found in [10].

3.1 The path integral approach

Let's start considering a lattice quantum theory in 1+1 dimensions, initially
on the in�nite line, described by a quantum Hamiltonian Ĥ. We will always
consider a continuous time, but for the moment let focus on a discrete lattice,
whose �nearest neighbour� sites, identi�ed by the couple (x, τ), are separated
by the lattice spacing a. Our theory is de�ned by a complete set of commuting
observables, denoted by {φ̂x}, evaluated at the points (x, τ). We will denote
their eigenvectors as ⊗x |{φx}〉, and for brevity we will refer to these objects
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3. Entanglement entropy in 1-D quantum chains

Figure 3.1: The cylindric surface with an open cut.

simply as |{φx}〉. If the system, at a inverse temperature β = 1/T in natural
units, is canonical (i.e. it is isolated), then the density matrix is given by

ρ̂ = e−βĤ . Using the eigenbasis |{φx}〉, the matrix representation becomes:

ρ{φ′x},{φ′′x} = Z(β)−1 〈{φ′x}| e−βĤ |{φ′′x}〉 . (3.1)

Now, we switch to the path integral formalism and express the density matrix
as:

ρ = Z−1

∫
[dφx,τ ]

∏
x

δ
(
φx,0 − φ′x

)∏
x

δ
(
φx,β − φ′′x

)
e−SE (3.2)

where SE =
∫ β

0
LE dτ , LE is the euclidean Lagrangian, and with φx,τ we denote

the observable evaluated at (x, τ).
It is clear that Tr ρ is obtained by setting {φ′x} = {φ′′x}, and integrating

over these observables. The key point is that this is equivalent to sewing
together the edges of the lattice along τ = 0 and τ = β, which reduces the
space we are evaluating the observabkes to a cylinder of circumference β. In
other words, calculating Z means performing a path integral of e−SE on a
cylindic geometry. Suppose then to have a subsystem A of the in�nite line
consisting, for simplicity, in the interval (x1, x2) (The case for A consisting
in several intervals is similar). It is then natural to compute Tr ρA as a path
integral where we sewn together the points x /∈ A. This will leave an open
cut for (x1, x2), along the line τ = 0 (see Fig. 3.1. If we want to calculate ρnA
(with n ∈ N), a smart trick is to make n copies, labelled by 1 ≤ k ≤ n, of the
above construction, and sewing them together cyclically along the cuts, that
is by letting φ′x,k = φ′′x,k+1, for all x ∈ A, ad for 1 ≤ k < n (See Fig. 3.1).
With an abuse of notation, we denoted with φx,k the observable evaluated in
the k-th copy. It is clear that our observables {φx} are now de�ned in a more
complicated geometry, which we denote Rn, that has Riemann sheets labelled
by k, and is, roughly speaking, �n� times larger than the previous one (we are
in fact raising ρA to the n-th power). The branch point of this structure are
x1 and x2, of order n. Clearly, we now have to divide our path integral by Zn

to recover ρnA.
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3.1. The path integral approach

We can further calculate Tr ρnA by simply sewing together the �rst and the
last sheet, that is by letting φ′x,n = φ′′x,1, ∀x ∈ A. If we denote the path integral
on this n-sheeted geometry by

Zn(A) =

∫
[dφ]Rn exp

[
−
∫
Rn
L[φ] d2x

]
, (3.3)

then we have:

Tr ρnA =
Zn(A)

Zn
(3.4)

But we can express Tr ρnA in another way, that is Tr ρnA =
∑

λ λ
n, where λ

are the eigenvalues of ρA. Noting that this is analytic for all Re(n) > 1 ([7]),
we have that the entropy SA = −

∑
λ λ log λ can be written as:

SA = − lim
n→1

∂

∂n

Zn(A)

Zn
(3.5)

Clearly, if a → 0 (continuum limit), the lattices points (x, τ) assume real
values. This means that the set of observables {φ̂x} become now a �eld φ(x, τ),
and the density matrix involves now path integrals of �elds over n-sheeted Rie-
mann surface. We just mention that SE should now go over into the euclidean
action for a quantum �eld theory, which describes a CFT if it's relativistic
invariant and massless (for further details, see again [7]).

3.1.1 The case of a single interval

As an example, we calculate the entropy of a single interval A of lenght l,
which we now denote by (v, u), in an in�nitely long 1-d quantum system, at
zero temperature. First, we map the n-sheeted Riemann surface Rn to the
z-plane C. This can be done in two steps: we use the conformal mappint
w → ζ = (w − u)/(w − v) to map the branch points to (0,∞), and then we
obtain the z-plane using:

ζ → z = ζ
1
n =

(
w − u
w − v

) 1
n

. (3.6)

The stress tensors T (w) and T (z) of the two geometries are related by (2.60),
which we remind here:

T (w) =
( dz
dw

)2

T (z) +
c

12
{z, w} (3.7)

If we suppose that 〈T (z)〉C = 0, then we have:

〈T (w)〉Rn =
c

12
{z, w} =

c

24

(
1− 1

n2

) (v − u)2

(w − u)2(w − v)2
(3.8)
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3. Entanglement entropy in 1-D quantum chains

Notice that 〈T (w)〉Rn = 0 if n = 1, since in that case we no longer have branch
points and the geometry is translational invariant.

Now, a correlation function involves a local interaction between �elds. This
means that, whatever is the geometry, if we put T (w) (the stress tensor of the
n-sheeted geometry) in a correlation function it will assume the form:

T (w) =
c

12
{z, w} =

c

24

(
1− 1

n2

) (v − u)2

(w − u)2(w − v)2
+ reg. (3.9)

If we are working in the plane, (3.9) must be compatible with the Ward iden-
tity:

〈T (w)Φ1(u)Φ2(v)〉C

=

(
∆1

(w − u)2
+

∆2

(w − v)2
+

1

w − u
∂

∂u
+

1

w − v
∂

∂v

)
〈Φ1(u)Φ2(v)〉C (3.10)

where Φ1(u) and Φ2(v) are two primary �elds of conformal dimensions ∆1

and ∆2. The compatibility is ensured if Φ1 and Φ2 have the same conformal
dimension, equal to:

∆n = ∆̄n =
c

24

(
1− 1

n2

)
. (3.11)

and we refer to them simply as φn. Notice also that:

〈T (w)〉Rn ≡
∫

[dφ]T (w)e−SE,Rn∫
[dφ] e−SE,Rn

=
〈T (w)φn(u)φn(v〉C
〈φn(u)φn(v)〉C

(3.12)

since T (w) behaves like a c-number when inserted in an arbitrary correlation
function (see again (3.9)), and can then be �pulled out' from it, leaving in
(3.12) a fraction of two equal objects. Now, let's consider the e�ect of an
in�nitesimal conformal transformation w → w′ = w + α(w) on the C coordi-
nates, and denote the in�nitesimal variation in real coordinates as αµ. This
transformation will act identically on each sheet of Rn. If we evaluate the
variation of log(Zn/Z

n), we only need to study the variation of Zn, because we
obviously require that the partition function doesn't change under a conformal
trasformation (we are considering the critical point of the theory). We then
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3.1. The path integral approach

have:

δ log
(Zn
Zn

)
=

1

Zn
δZn

=
n

Zn

∫
Rn

[dφ]
(
−δSE,Rn

)
e−SE,Rn

= − n

Zn

∫
Rn

[dφ]

∫
d2xT µν∂µαν e

−SE,Rn

=
n

2πiZn

∮
dw α(w)

∫
Rn

[dφ]T (w)e−SE,Rn

− n

2πiZn

∮
dw̄ ᾱ(w̄)

∫
Rn

[dφ] T̄ (w̄)e−SE,Rn

=
1

2πi

∮
dw α(w) 〈T (w)〉Rn −

1

2πi

∮
dw̄ ᾱ(w̄)

〈
T̄ (w̄)

〉
Rn

(3.13)

where the factor n in the second line comes from the fact that T (w) has to be
inserted in each sheet. We also notice the use of the Gauss theorem in the 4-th
line, after writing T µν∂µαν = ∂µ

(
T µναν

)
−(∂µT

µν)αν . On the other hand, let's
set Gφ(u, v) ≡ 〈φn(u)φn(v)〉. If we use the same coordinate transformation to
compute the variation of log

(
Gφ(u, v)

)n
, this time on the C geometry, we �nd:

δ log
(
Gφ(u, v)

)n
=

n

Gφ(u, v)
δ
(
Gφ(u, v)

)
=

n

Gφ(u, v)

1

ZC

∫
C

[dφ]φn(u)φn(v)
(
−δSE) e−SE

= − n

Gφ(u, v)

1

ZC

∫
C

[dφ]φn(u)φn(v)

(∫
d2xT µν∂µαν

)
e−SE

=
1

2πi

n

Gφ(u, v)

1

ZC

∮
dw α(w)

∫
C

[dφ]φn(u)φn(v)T (w)e−SE

− 1

2πi

n

Gφ(u, v)

1

ZC

∮
dw̄ ᾱ(w̄)

∫
C

[dφ]φn(u)φn(v)T̄ (w̄)e−SE

=
n

2πiGφ(u, v)

∮
dw 〈φn(u)φn(v)T (w)〉C

− n

2πiGφ(u, v)

∮
dw̄
〈
φn(u)φn(v)T̄ (w̄)

〉
C

=
1

2πi

∮
dw α(w) 〈T (w)〉Rn −

1

2πi

∮
dw̄ ᾱ(w̄)

〈
T̄ (w̄)

〉
Rn

(3.14)

where in the last passage we used (3.12). We have thus shown that:

δ

(
Zn
Zn

)
≡ δ
(

log Tr ρnA

)
= δ log

(
Gφ(u, v)

)n
(3.15)
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for every in�nitesimal conformal transformation. We remember here that, from
conformal invariance, the two point correlation function Gφ has the form

Gφ(u, v) = 〈φn(u)φn(v)〉 =
1

(u− v)2∆n (ū− v̄)∆̄n
(3.16)

So, for a �nite conformal transformation of the coordinates, we have log Tr ρnA =
log
(
Gφ(u, v)

)n
+ cost, from which follows the main result of this section:

Tr ρnA = cn

(
v − u
a

)−(c/12)(n−1/n)(
v̄ − ū
a

)−(c/12)(n−1/n)

(3.17)

where a is a costant that has been inserted to make the result dimensionless.
Let's now calculate entanglement entropies (Von Neumann entropies) in a

few cases. If u and v are the edges of the interval A considered at the beginning
of the section, then they have the same imaginary part: v − u = v̄ − ū ≡ l,
and if we now use (3.5), we obtain the entropy of a single interval of lenght l
in an in�nitely long 1+1 quantum system:

SA =
c

3
log l (3.18)

We can now easily obtain the entanglement entropy in other physical situ-
ations, by simply making conformal mappings z → z′ = w(z): this is be-
cause the entropy is calculated as derivatives of correlation functions, and
these change as:

〈Φ(z1, z̄1) Φ(z2, z̄2) . . . 〉 =
∏
j

|w′(zj)|2∆n 〈Φ(w1, w̄1) Φ(w2, w̄2) . . . 〉 (3.19)

Let's �rst consider the transformation

w → w′ =
β

2π
logw, (3.20)

which maps the C geometry into an in�nitely long cylinder of circunference
β. Using (3.19) and (3.16), we have that the two-point correlation function
chance as ([17])

〈Φ(w1, w̄1) Φ(w2, w̄2)〉 =

(
2π

L

)2∆n+2∆̄n
(

2 sinh
[π(w1 − w2)

β

])−2∆n

×

(
2 sinh

[π(w̄1 − w̄2)

β

])−2∆̄n

(3.21)

In we consider the points v and w as being part of the C geometry, these
are then mapped in the cylinder, and they still have the same imaginary part
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3.1. The path integral approach

thanks to (3.20): this means that they lie on a line parallel to the axis of the
cylinder. Physically, we can interpret β as an inverse temperature (see chapter
1), so we get an expression for Tr ρnA in a thermal mixed state at a �nite
temperature T = β−1. The new interval has lenght u′− v′ = ū′− v̄′ ≡ l, where
u′ and v′ are the trasformed of u and v under (3.20) (denoting the transformed
lenght as l is just an abuse of notation). We can now evaluate the entropy
through (3.5), which gives:

SA(β) ∼ c

3
log

(
β

πa
sinh

(πl
β

))
+ c′1 (3.22)

where again the constant a is inserted ad hoc to make the result dimensionless.
It is natural, in most cases, to interpret a as the lattice spacing, since it's the
only dimensionful quantity of the problem. As a check of the validity of this
reasoning, we note that if β → ∞, we recover the previous result (3.18):
SA ∼ (c/3) log(l/a).

If instead we now consider the transformation

w → w′ =
L

2π
log(iw) (3.23)

we still have a mapping on the in�nite cylinder, but this time u′ and v′ are
aligned perpendiculary to its axis, that is they have the same real part. The
di�erence with (3.21) is that we now have the replacements sinh → sin and
β → L, so we obtain the entropy for an interval of lenght l in a system of �nite
lenght L, at zero temperature:

SA ∼
c

3
log

(
L

πa
sin
(πl
L

))
+ c′1 (3.24)

Notice that in this case we are imposing periodic boudary conditions on the
quantum system, because its two edges are sewn together: the whole system
of lenght L is placed perpendicularly to the axis of the cylinder, so the two
edges coincide.

If in the last case just considered we impose instead open boundary condi-
tions, the entropy behaves in the following way:

SA ∼
c

6
log

(
L

πa
sin
(πl
L

))
+ c′2 (3.25)

We won't demonstrate this relation here (see [7]), but the treatment is quite
similar to the former case. As a last remark, the constant c′1 (and c′2) is
nonuniversal, because it depends on the integration constant cn of equation
(3.17). It is related to the boundary entropy (see [1] for further details).
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3. Entanglement entropy in 1-D quantum chains

3.1.2 The case of n disjoint intervals

In the general case, we wish to compute the bipartite entanglement of a set of
n disjoint intervals with respect to the rest of the system. We won't develop
the whole procedure here because it's very similar to what we have done in
the case of a single interval, and we refer to [7] and [8] for further details. The
basic idea is that T (z) of the Rn geometry can be expressed, when inserted in
a correlator, as a c-function (see equation (3.9)). This suggests that, roughly
speaking, T (z) can be �pulled out� from every correlator, and we can generalize
(3.12) as:

〈T (w)〉Rn =
〈T (w)φ1(w1) . . . φ1(wn)〉C
〈φ1(w1) . . . φn(wn)〉C

(3.26)

This time, the transformation from the n-sheeted geometry to the complex
plane is given by:

z =
∏
i

(
w − wi

)αi (3.27)

where we set
∑

i αi = 0 to avoid singularities at in�nity. Then, performing
the same reasoning of the previous section, we have that (Zn)/(Zn) trasforms

in the same way as
(
〈φ1(z1) . . . φn(zn)〉C

)n
. This correlator, as well as the αi,

can be determined by imposing the compatilibity between

〈T (w)〉Rn =
c

12
{z, w} (3.28)

(where we used 〈T (w)〉C = 0), and the Ward Identity〈
T (w)

∏
i

φi(wi)

〉
C

=
∑
i

[
∆i

(w − wi)2
+

1

w − wi
∂

∂wi

]〈∏
k

φk(wk)

〉
C

(3.29)

We just report the �nal result. If the whole system is in�nite, and if the
intervals j on the cylinder are (uj, vj), then the entropy is:

SA =
c

3

[∑
j≤k

log
(vk − uj

a

)
−
∑
j<k

log
(uk − uj

a

)
−
∑
j<k

log
(vk − vj

a

)]
+Nc′1

(3.30)

3.2 Entanglement Entropy in a non critical model

For our subsequent developments, it is necessary to evaluate the entropy in a
o�-critical point. For this purpose, we shall start with an in�nite non-critical
model in 1+1 dimensions, in the scaling limit a→ 0, and with the correlation
lenght ξ �xed, satisfying ξ � a. The two subsystem consists in two half-
in�nite chains, covering respectively the positive and the negative axis. We
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3.2. Entanglement Entropy in a non critical model

are still working in the Rn geometry, but now we can't change it by conformal
transformation, because the system is not at criticality anymore.

The argument ([7]) now parallels that of Zamolodchikov's c-theorem. Con-
sider the expectation values 〈T 〉,

〈
T̄
〉
, 〈Θ〉. If we are out from criticality, not

only 〈T 〉 ,
〈
T̄
〉
6= 0 in general (exept forR1, see section 3.1.1), but also 〈Θ〉 6= 0:

in fact, the expectation value of T µµ is a measure of the breaking of scale in-
variance. Thanks to the rotational invariance of Rn, we can write (in a similar
fascion of section 2.6.3):

〈T (z, z̄)〉 =
Fn(zz̄)

z2
(3.31a)

〈Θ(z, z̄)〉n − 〈Θ(z, z̄)〉1 =
Gn(zz̄)

zz̄
(3.31b)〈

T̄ (z, z̄)
〉
n

=
Fn(zz̄)

z̄2
(3.31c)

Notice that for 〈T (z, z̄)〉 and
〈
T̄ (z, z̄)

〉
n
we have the same function Fn, because

T and T̄ are complex conjugated if put in a correlation function. Notice as
well that we have set the mass scale m to 1 (see (2.185)).

Now, as we did for the c-theorem, we take advantage of (2.38), and end
with:

(zz̄)

(
F ′n +

1

4
G′n

)
=

1

4
Gn (3.32)

where ' means ∂R2 , setting R2 = zz̄. If |z| � ξ, we expect that (see section
3.1): {

Fn → c
24

(
1− 1

n2

)
Gn → 0

which are the CFT values. On the other hand, if |x| � ξ, we expect both
Fn and Gn to approach zero, because Rn is then indistinguishable from the
C-plane if we are far from the branch point z = 0.

Denoting

Cn(R2) ≡
(
F (R2) +

1

4
G(R2)

)
,

then

R2 ∂

∂(R2)
Cn(R2) =

1

4
Gn(R2) (3.33)

and if we integrate this equation, using the boundary conditions, we obtain:

∫ ∞
0

Gn(R2)

R2
d(R2) = − c

6

(
1− 1

n2

)
(3.34)

65



3. Entanglement entropy in 1-D quantum chains

If instead we integrate over all the n-sheeted surface, we have to multiply the

right hand side by n, and using the fact that d2x = dθ d(R2)
2

:∫
Rn

(
〈Θ〉n − 〈Θ〉1

)
d2x = −πn c

6

(
1− 1

n2

)
(3.35)

Performing an in�nitesimal scale transformation xµ → xµ+εµ, where εµ = εxµ,
the change of the free energy F = − logZ is:

δ
(
− logZ

)
=
δZ

Z

= − 1

Z

∫
[dφ]

(
−δS)e−S =

1

2π

∫
d2x 〈T µν(x)〉 ∂µεν

=
ε

2π

∫
d2x

〈
T µµ
〉 (3.36)

Now, ε is an adimensional quantity, and the only dimensionful parameter of
the renormalized theory is the mass scale m. We thus expect that the change
in the coordinates ε due to a dilation is proportional to the change in the scale
(i.e. in the mass scale):

ε =
δm

m
(3.37)

where we obviously divided by m to for dimensional reasons. Thus, the left
hand side of (3.35) is equal to

−(2π)m
∂

∂m

(
logZn − n logZ

)
(3.38)

and, integrating over m, gives:

Zn
Zn

= cn(ma)(c/12)(n−1/n) (3.39)

where cn is the integration constant, and a makes the result dimensionless.
Using (3.5), we �nally arrive at the desired result:

SA ∼ −
c

6
log(ma) =

c

6
log
(ξ
a

)
(3.40)

As a �nal comment, remind that we had to impose ξ � a, so we could use the
�eld theory approach. For lattice integrable models (such as the XYZ model
of section 3.5), it is indeed possible to obtain this last equation without this
restriction.

3.3 Corrections to Entanglement Entropy

In this section we want to give an idea about the main corrections to the
entanglement entropy, and to understand why these emerge. We will review
the main points of the articles [9], [11] and [12].
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3.3. Corrections to Entanglement Entropy

3.3.1 Corrections to Scaling

Before proceeding, let's compute the Renyi entropies using another approach,
based on scaling intuitions. From (3.17), these have the form:

S
(n)
A =

c

6

(
1 +

1

n

)
log l + cost (3.41)

If we remind that the free energy is given by F = − logZ, it is then useful to
write:

log
(

Tr ρnA

)
= log

(
Zn
Zn

1

)
= logZn − n logZ1

= −(Fn − nF1)

(3.42)

so that we can write the Renyi entropies as:

S
(n)
A =

1

1− n
log
(

Tr ρnA

)
=
Fn − nF1

n− 1
(3.43)

From renormalization group theory, we know that the systems belonging to
the same RG �ow behave in a universal way if their correlation functions (the
observable quantities) are evaluated at far distanced point. This means that
these universal e�ects should be independent of the cuto� ε imposed to the
systems. Our only dimensionful quantity is now ε (we are still at criticality, so
the mass scale is equal to 0), and in a similar fashion of (3.36), we can then
write:

−ε∂F
∂ε

=
1

2π

∫
〈Θ(z)〉 d2z (3.44)

Now, we would like to apply (3.35) to our case. This is possible because
〈Θ〉 6= 0: it is true that we are at the critical point, but the n-sheeted surface
doesn't preserve the translational invariance of 〈Θ〉. Pay attention that now
we have two branch points instead of one: in section 3.2 the branch cut of
the n-sheeted geometry was A = [0,∞), while now the branch cut is, say,
A′ = [x1, x2]. Thus, each branch point gives a contribution equal to (3.35):

1

2π

∫
Rn

(
〈Θ〉n − 〈Θ〉1

)
d2x = −n c

12

(
1− 1

n2

)
(3.45)

In conclusion, we have:

−ε∂(Fn − nF1)

∂ε
= − c

6

(
n− 1

n

)
(3.46)

and then:

(Fn − nF1) =
c

6

(
1 +

1

n

)
log
( ε
a

)
+ cost (3.47)
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3. Entanglement entropy in 1-D quantum chains

If we postulate that the entropy obeys scaling hypothesis, we argue that the
Entropy of an interval l should depend on the ratio l/ε, and then we must have
a = l. This is how we recover (3.41) from scaling arguments.

Let's now perturb the action of the �xed point with an irrelevant operator
Φ(z), that is with scaling dimension x = 2∆ > 2:

S = S∗ + λ

∫
Φ(z) d2z (3.48)

where S∗ = SCFT and λ is, as usual, the coupling costant, which can be
expressed as λ = g/ε2−x. Notice that, on the contrary of what we did for Con-
formal Perturbation Theory (see section 2.6.1), we are perturbing the action
with irrelevant operators, because we want to evaluate corrections at the crit-
ical point. In fact, from RG reasoning, the points lying on a �ow that points
to S∗ (i.e. on a critical surface, as in our case) are all characterized by ξ =∞.
But now the theory is not of the superrenormalizable type anymore, so we'll
have an in�nite number of divergencies, that all need to be cured to obtain
�nite results.

The change in the free energy is given by:

−δFn = −
(
Fn − Fn∗

)
=

1

Zn

[∫
[dφ] exp{S∗ + λ

∫
Rn

Φ(z) d2z} −
∫

[dφ] exp{−S∗}

=
∞∑
N=1

(−λ)N

N !

∫
Rn
. . .

∫
Rn
〈Φ(z1) . . .Φ(zn)〉Rn d

2z1 . . . d
2zN

(3.49)

and if A is the interval (0, l) in the n-sheeted geometry, then we can map Rn

in C′ = C/{0} by the coordinate transformation:

ζ =

(
z

z − l

)1/n

z = lf(ζ) ≡ l
ζn

ζn − 1
(3.50)

where the interval A is mapped in (0,∞). The correlation functions of the two
geometry are related by:

〈Φ(z1) . . .Φ(zn)〉Rn =
N∏
j=1

|lf ′(ζj)|−x 〈Φ(ζ1) . . .Φ(ζN)〉C′ (3.51)
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3.3. Corrections to Entanglement Entropy

Then we have, up to the second order:

δF (2)
n = −1

2
g2
( l
ε

)4−2x
∫
C′

∫
C′

|f ′(ζ1)|2−x|f ′(ζ2)|2−x

|ζ1 − ζ2|2x
d2ζ1d

2ζ2

= −1

2
g2
(nl
ε

)4−2x
∫
C′

∫
C′

|ζ1ζ2|(2−x)(n−1)

|ζn1 − 1|4−2x|ζn2 − 1|4−2x|ζ1 − ζ2|2x
d2ζ1d

2ζ2

≡ −1

2
g2
(nl
ε

)4−2x

I(x, ε)

(3.52)

where we used the fact that 〈Φ〉C′ = 0. Now, as we have several potential
sources of ultraviolet divergence, we need to impose an ultraviolet cuto� ε (the
integral always converges in the infrared for x > 2). As said before, because
the theory is not renormalizable, we might need ultraviolet cuto�s at every
order. Let's take n to have the behaviour n− 1� 1 and n > 1, and let's look
to the case ζ1 → ζ2: the integral will converge only if 2x < 2, that is x < 1.
But, with our hypothesis, we have x > 2, so we need to regularize this integral.
If n ' 1, then:

z1 − z2 '
ζ2 − ζ1

(ζ1 − 1)(ζ2 − 2)
(3.53)

If ζ1 → 1 or ζ2 → 1, the integral converges in the ultraviolet region if x > 3/2,
and if we consider the contribution coming from (3.53), the convergence is for
x > 2, which is always satis�ed by our hypothesis. So we shall not worry for
ζ1 or ζ2 approaching 1. We then have the behaviour:

|z1 − z2| ∼ |ζ1 − ζ2|

and we can impose an unltraviolet cuto� |z1 − z2| > ε. If we now make the
change of variables z = ζ1 − ζ2, w = ζ1, and denote the terms that make the
integral convergent with B, then:

I(x, ε) ∼
∫
C′

∫
C′

B(ζ1, ζ2)

|ζ1 − ζ2|2x
d2ζ1d

2ζ2 ∼
∫
C′

∫
C′

B′(z, w)

|z|2x
d2z d2w

∼
∫
C′

∫ ∞
ε

B′(z, w)

ρ2x
ρ dρ d2y ∼ ε2−2x

(3.54)

Fortunately, this divergence cancels out in the combination Fn−nF1 (remember
that n ' 1), so it is really a ��ctitious� divergence of the entropy, and if we
make an analitical continuation of the integral around the pole x = 1, the
entropy remains �nite for x < 3. What remains from Fn − nF1 is the �nite
part of the integrals I(x, ε), that is our �rst correction to the entropy:

l4−2x (3.55)

Let's now study the case where n is larger and x > 2. I(x, ε) can now
show divergencies for ζi → 0 and ζi →∞, that means for z1 or z2 approaching
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3. Entanglement entropy in 1-D quantum chains

the branch points. It is important to notice that these divergencies occur due
to the existence of these branch points, because of the exponent n − 1, and
n 6= 1. Consider, for example, the case ζi → 0, for i = 1, 2. we then have two
integrals, each giving a contribute:∫ ∞

ε

ρ(x/n)−x+1 dρ

This diverges if

n > nc(x) =
x

x− 2

and if does, I(x, ε) gives a multiplicative factor ∝ ε2−x+(x/n). But, for scaling

hypothesis, δF
(2)
n must depend on the ratio l/ε, and this gives our second

correction:
l4−2x−(2−x+x/n) = l2−x−x/n (3.56)

If both z1 and z2 are close to a branch point, we have a third correction:

l4−2x−2(2−x+x/n) = l−2x/n (3.57)

Which of these 3 correction dominates depends on the value of n with respect
to nc(x): if n > nc, the �rst dominates, but for n < nc the other tho are more
relevant. If n ≈ nc, all of them may play a role, and if n = nc, we espect
multiplicative logarithmic factors.

Let's now discussion the appearence of corrections with x < 2. These
are due to operators that live on the conical singularities, which have scaling
dimension x/n with x < 2. To explain how this works, consider the n-sheeted
geometry, where the branch point are, say, at 0 and ∞: let now Rn be the
living space of the 2-d classical system that corresponds to the 1-d quantum
chain. Every coordinate of the geometry corresponds to a site of the lattice,
and we'll have a site positioned on the branch point. If each site, in 2-d,
has 4 nearest neighbours, the site on the branch point will have instead 4n
nearest neighbours : this breaks the selfduality of the system, and drives it out
of criticality. The operator that concerns with the interaction between nearest
neighbour sites is the energy operator, which has x = 1, so we expect that it
will perturb the action S∗ of the �xed point. In conclusion, the correct form
of the perturbed action in the n-sheeted geometry is:

S = S∗ +
∑
j

λj

∫
Rn

Φj(z) d2z +
∑
P

∑
k

λkΦ
(n)
k (P ) (3.58)

where Φ
(n)
k (P ) is the relevant operator acting at the branch point P , with scal-

ing dimension xk/n. Each Φ
(n)
k should appear at most one in the perturbing

expansion in λk, otherwise we can use the OPE to write higher powers of Φ
(n)
k

in term of other localized operators. For x < 2 and n ' 1 we have another
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3.3. Corrections to Entanglement Entropy

divergenge, because the reasoning following (3.53) doesn't hold anymore. In
fact, using (3.53), we have that I(x, ε) presents two terms |ζi − 1|4: regular-
izing the integral and collecting all the terms proportional to l, we have the
correction

l−2x ≡ l−2xk/n (3.59)

Of course, this holds if
〈
Φ(n)(P )

〉
= 0. But it may happen that

〈
Φ(n)(P )

〉
6= 0

if the branch point is at the end of a �nite system (as we saw for the Casimir
e�ect), and in this case the leading correction will be of the form

l−xk/n (3.60)

In general, a correction at order λN to Fn−nF1, for x < 2, will be of the form:

l−(Nxk)/n (3.61)

We won't discuss the derivation of the s in the case x→ 2, which is much
more di�cult. The result, for x ≈ 2, is:

Fn−nF1 = − c
6

(
n− 1

n

)
log
( l
ε

)
+g2

(
n+

1

n

)( l
ε

)4−2x
(
π2

4
+O(x−2)

)
+O(g3)

(3.62)
Using (3.46), this can be recasted in the form:

ε
∂(Fn − nF1)

∂ε
= −ce�(g)

6

(
n− 1

n

)
(3.63)

where we have introduced the e�ective charge

ce�(g) = c− 3π2(2− x)g2 +O(g3) (3.64)

Let's parametrize the beta function with the lenght l of the interval:

l
dg(l)

dl
= −β

(
g(l)
)

(3.65)

We remind (see section 2.6.1) that β(g) has the universal behaviour

−β(g) = (2− x)g − πbg2 +O(g3) (3.66)

where g is the structure constant of 〈Φ(z)Φ(w)Φ(y)〉, Φ(z) being the perturb-
ing �eld with scaling dimension x = 2. If we suppose that g/b > 0, the
perturbation is marginally relevant and g(l) �ows 0. Solving the di�erential
equation (3.66), and substituting in (3.64):

ce�(l) = c+
2

b2
(

log l
ε

)3 +O

((
log

l

ε

)4
)

(3.67)

Integrating (3.63) over ε, we obtain the �nal result:

ce�(l) = c− 1

b2(log l)3
+O

(
(log l)4

)
(3.68)

and we notice the presence of logaritmic corrections to the entropy.
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3. Entanglement entropy in 1-D quantum chains

3.3.2 Correction for gapped systems

Now we discuss the corrections to the entropy for gapped systems, that is for
systems whose correlation lenght ξ is �nite. Suppose, like in section 3.2, that
the in�nite system is divide in two half in�nite intervals. In the case we've
already considered, if we focus on relevant operators, the Renyi entropy of an
interval with lenght l embedded in an in�nite system behaves like:

Sn(l) ' c

6

(
1 +

1

n

)
log l + bnl

−2x/n + c′n (3.69)

where again n is the order of the branch point of the n-sheeted geometry Rn.
Let's remind the reasoning at the beginning of section 3.3.1. Taking advance
of the cuto� ε of the system, we arrived ad the relation

(Fn − nF1) =
c

12

(
1 +

1

n

)
log
( ε
a

)
+ cost (3.70)

(this time we recover the factor c/12) and we said that it should be a = l,
since by scaling the entropy should depend on ε/l. If the system is gapped,
our main dimensionful quantities are now ε and ξ, so the entropy will depend
on ε/ξ, and if this time we set a = ξ, we obtain:

Sn '
c

12

(
1 +

1

n

)
log ξ + C ′n (3.71)

a result already derived in section 3.2. Now, what the authors of [12] did is to
postulate corrections to (3.71) using the same scaling arguments to argue this
relation. In equation (3.69), simply substitute l with ξ, so that:

Sn '
c

12

(
1 +

1

n

)
log ξ + C ′n +Bnξ

−x/n (3.72)

We notice that the last term has an exponent that is half the one in (3.69):
this is because we have only one branch point (the other was sent to ∞). In
general, there could be corrections of the form

ξ−(Nx)/n, forN = 1, 2, 3, . . . (3.73)

as in the previous section (see (3.61)).
The authors of [12] then tested this formula in a few situations. We just

report the calculations for the non-critical XXZ chain, whose Hamiltonian is:

HXXZ = −
∑
j

(
σxj σ

x
j+1 + σyjσ

y
j+1 + ∆σzjσ

z
j+1

)
(3.74)

in the ferromagnetic regime, that is for ∆ < −1. Furthermore, we remark again
that the system is in�nite and bipartite. Thus we can use the corner transfer
matrix method (see section 3.4) to compute the reduced density matrix.

ρA =
Â

Tr Â4
(3.75)
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3.3. Corrections to Entanglement Entropy

where the hat denotes the in�nite-lattice limit. For our case (and other more,
see [28] and chapter 3.5), we can write

ρA =
e−HCTM

Tr e−HCTM

=
eHCTM

Z
(3.76)

where HCTM = Â4 =
∑∞

j=0 εjnj is an e�ective hamiltonian, written in terms
of free-fermionic operators whose coe�cients are

εj = 2jε, ε = arccosh ∆ (3.77)

and the partition function is

Z = Tr e−HCTM =
∞∏
j=0

(
1 + e−2jε

)
(3.78)

Noting that Tr e−nHCTM =
∏∞

j=0

(
1 + e−2jnε

)
, the Renyi entropies of the XXZ

model are then given by:

Sn ≡
1

1− n
log
(

Tr ρnA

)
=

1

1− n

(
log
(

Tr e−nHCTM

)
− logZn

)
(3.79)

that is:

Sn =
1

1− n

[
∞∑
j=0

log
(
1 + e−2njε

)
− n

∞∑
j=0

log
(
1 + e−2jε

)]
(3.80)

If we are interested in the critical regime ξ � 1, then ([3]) the correlation
lenght is given by

log ξ ' π2

2ε
+O(ε0) (3.81)

and ε � 1. We are then looking to terms of the form ε−α ∝ e−απ
2/2ε. Now,

because the asimptotic expansion of the entropy around ε = 0 vanishes (we
have εkSn −−→

ε→0
0, ∀k), a nice trick is to use the Poisson resummation formula.

Given a function f(x), and denoting f̂(y) =
∫∞

0
f(x) cos(yx) dx, this formula

states that
∞∑

j=−∞

f
(
|εj|
)

=
2

ε

∞∑
k=−∞

f̂
(2πk

ε

)
(3.82)

If we apply it to fn(x) = log
(
1 + e−2nx

)
, and denoting cschx = 1/ sinhx, the

entropies become (see [12] for details):

Sn =
π2

24ε

(
1 +

1

n

)
+

log 2

2
+

1

1− n

∞∑
k=1

(
n

2k
csch

π2k

ε
− 1

2k
csch

π2k

εn

)
(3.83)
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3. Entanglement entropy in 1-D quantum chains

That is, the entropy is equal to (3.71) with c = 1, plus corrections. If we use
the fact that ε ' 0, we can write

csch
π2k

εn
' 2 exp

(
−π

2k

εn

)
Then, each of these terms in (3.83) gives rise to corrections of the form:

exp
(
−π

2k

εn

)
' ξ−2k/n (3.84)

which agree with (3.73) if we set the scaling dimension x equal to 2. Notice
that a multiplicative logarithmic corretion is absent in the gapped phase.

3.3.3 Parity e�ects in gapless spin chains

We now mention a last, but important, correction to the entanglement entropy,
which appears very often in DMRG simulations (see chapter 4 for numerical
examples). Suppose the system is in�nite, that is L =∞. This correction in-
troduces oscillations to the entropy, and if we denote with SCFT(l) the entropy
at the CFT point (eventually including the corrections already discussed), it
obeys the universal scaling law:

Sn(l)− SCFT(l) = fn cos
(
2kF l)|2l sin kF |−pn (3.85)

where pn = 2K/n, K is the Luttinger liquid parameter (see e.g. [30]), kF is the
Fermi momentum, and fn is a nonuniversal costant. If the system has instead
a �nite lenght, we must perform the replacement:

l→ L

π
sin

πl

L
(3.86)

in a similar fashion for the case without corrections, and fn → Fn(l/L), a
universal scaling function. If again the system is in zero magnetic �eld and at
zero temperature, we have half �lling of the Fermi levels, so that kF = (π/2)
and the entropy correction reduces to:

Sn(l)− SCFT(l) = fn(−1)l l−pn (3.87)

We won't demonstrate (3.85) since it is a very technical demonstration, and
we refer to [11] for details.

3.4 The Corner Transfer Matrix method

Here we want to show a method, �rst developed in [28], to evaluate reduce
density matrices in the thermodynamic limit, using the Corner Transfer Matri-
ces (CTMs, see the appendix B). This will be a usefull tool for the calculation
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3.4. The Corner Transfer Matrix method

of entanglement entropies of system out of criticality, in the thermodynamic
limit. Consider a quantum spin chain with L sites and Hamiltonian H. We
want to evaluate the entropy in the ground state |Φ〉, so we'll need the density
matrix

ρ = |Φ〉 〈Φ| (3.88)

Let's denote with ~σ = {σ1, σ2, . . . , σL} the spin con�guration of the chain, and
its corresponding quantum state with |~σ〉. Then we have the matrix notation:

ρ(~σ, ~σ′) = 〈~σ| ρ |~σ′〉 = Φ(~σ)Φ(~σ′) (3.89)

where Φ(~σ) = 〈~σ |Φ〉. Then we divide the system in two parts of lenght l and
L − l. If we set the spins of the former as ~σ1 = {σ1, σ2, . . . , σl} and the spins
of the latter as ~σ2 = {σl+1, σl+2, . . . , σL}, we'll denote

Φ(~σ1, ~σ2) =
(
〈~σ1| ⊗ 〈~σ2|

)
|Φ〉 (3.90)

The reduced density matrix of the part with lenght l is then:

ρ1(~σ1, ~σ
′
1) =

∑
~σ2

(
〈~σ1| ⊗ 〈~σ2|

)
|ρ〉 〈ρ|

(
|~σ′1〉 ⊗ |~σ2〉

)
=
∑
~σ2

Φ(~σ1, ~σ2)Φ(~σ′1, ~σ2)
(3.91)

Let's now take advantage of the correspondence between this quantum chain
of Hamiltonian H, and a classical spin model on a lattice whose row-to-row
transfer matrix is T = exp(−βH) (see chapter 1). There we saw that the
partition function of a classical model could be written (in "operatorial form")
as

Z = 〈~σ1|TN |~σN〉 (3.92)

where in this case ~σi is the spin con�guration of the i-th line. Notice an
important point: thanks to this correspondence, we can apply the operator T
to states that belong to H, the Hilbert space associated to H. Suppose that
this transfer matrix commutes with the Hamiltonian of the quantum system:

[H,T ] = 0 (3.93)

so that they share the same eigenvectors. This means that the lowest eigen-
value of H (the energy of the ground state |Φ〉) is equal to the highest eigen-
value of T . Let's consider the partition function

Z = 〈~σ|TN |~α〉 (3.94)

where the �start� spin con�guration ~α is arbitrary and the ��nal� con�guration
~σ is �xed. The lattice of the classical system has N rows and L columnns.
Denote with {|ϕi〉} the basis of eigenvector of H, where |ϕ0〉 ≡ |Φ〉 (the ground
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3. Entanglement entropy in 1-D quantum chains

Figure 3.2: The in�nite strip with a perpendicular cut, whose partition function in

the reduced matrix of the system.

state), and with {Ei} the corresponding eigevalues. We can then expand |~α〉
in this basis as:

|~α〉 = a0 |Φ〉+
∑
i

ai |ϕi〉 (3.95)

and applying TN , we obtain:

TN |~α〉 = e−NβE0a0 |Φ〉+
∑
i

e−NβEiai |φi〉 (3.96)

If we send N →∞, we are considering a classical spin model on a half-in�nite
vertical strip of width L. In this limit, the partition function becomes:

Z = 〈~σ|TN |~α〉 = 〈~σ|
[
e−NβE0

(
a0 |Φ〉+

∑
i

e−Nβ(E0−Ei) |φi〉
)]

−−−→
N→∞

e−NβE0a0 〈~σ |Φ〉
(3.97)

and we have then extablished the important relation:

Z ∝ 〈~σ |Φ〉 ≡ Φ(~σ) (3.98)

which says that Φ(~σ) can be interpreted as the partition function of an half-
in�nite vertical strip whose initial con�guration is arbitraty and whose end
con�guration is ~σ. Similarly, ρ(~σ, ~σ′) can be regarded as the partition function
of two such strips, one extending from −∞ to 0, and the other from 0 to ∞,
with end con�gurations ~σ and ~σ′ respectively. Finally, the reduced density
matrix ρ(~σ1, ~σ2) is obtained by identifying the two spin con�gurations ~σ2 and
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3.4. The Corner Transfer Matrix method

summing, that is by joining the two strips between sites l + 1 and L: it then
represents the partition function of an in�nite strip with a perpendicular cut
in it ([28]). The situation is described in Fig. 3.2. Let now L→∞, and let be
l equal to half-in�nite chain. The system is the divided in four blocks, which
can indeed be described by corner transfer matrices. These are denoted with
A, B, C and D, see again Fig. 3.2 and appendix B. Then, he reduced desity
matrix ρ1(~σ1, ~σ2) is given by:

ρ1(~σ1, ~σ2) =

(
ABCD

)
~σ1,~σ2

Z
(3.99)

where the partition function is Z = TrABCD. If, at last, we want to evaluate
entanglement entropies, we simply need the object:

Tr ρn1 =
Tr (ABCD)n

Zn
(3.100)

Let's consider some applications of this method. For many models, we have
that the reduced density matrix can be expressed as:

ρ1 = e−HCTM ≡ e−εO (3.101)

where O is an operator with integer eigenvalue. For example, the quantum
Ising chain with trasverse �eld, with Hamiltonian:

H = −
L−1∑
n=1

(
σxn + λσznσ

z
n+1

)
− δσxL (3.102)

is associated, with a proper choise of the parameters λ and δ, to the two-
dimensional Ising model in zero magnetic �eld:

H = −J
∑
i nn j

σiσj (3.103)

Since this classical lattice is isotropic, all the CTMs are equal and we'll refer
to them simply as A. Then we have:

ρ1 = A4 = e−HCTM (3.104)

Furthermode, the term δσxL can be neglected for L → ∞. For this model, we
have that HCTM can be diagonalized in terms of free fermions (see again [28]
for details):

HCTM =
∞∑
j=0

εjnj (3.105)
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3. Entanglement entropy in 1-D quantum chains

where nj = c†jcj gives the occupation number of fermions. The model is critical
for λ = 1, and between the two phases there is a di�erence in the spectrum of
the free fermions:

εj =

{
(2j + 1)ε λ < 1

2j ε λ > 1
ε = π

I(k)

I(k′)
(3.106)

Here I(k) is the complete elliptic integral of the �rst kind, k′ =
√

1− k2 where
0 ≤ k ≤ 1, and k is related to λ by:

k =

{
λ, λ < 1
1
λ
, λ > 1

Another interesting example of the use of CTMs is the XYZ model, which will
be treated in the next section.

3.5 The XYZ model

This is the main section of this chapter, since it describes the model which we
will work on, the XYZ model.

3.5.1 The de�nition of the model

Let's begin by de�ning the quantum spin-1
2
ferromagnetic XYZ chain:

ĤXY Z = −
∑
n

(
Jxσ

x
nσ

x
n+1 + Jyσ

y
nσ

y
n+1 + Jzσ

z
nσ

z
n+1

)
(3.107)

where σαn are the Pauli matrices, and Jα (α = x, y, z) are a measure of the
anisotropy of the model (in this section we will follow [22]). In Fig. 3.3 we

plot the phase diagram of the XYZ model in the
(
Jy
Jx
, Jz
Jx

)
plane. This is

divided into 12 regions named Ia,b,c,d, IIa,b,c,d, IIIa,b,c,d: regions of the diagram
having the same latin number share the same description, since are connected
by simmetries transformations which leave the Hamiltonian unchanged.

Consider �rst the Jx = Jy line. Here we recover the XXZ model, and thanks
to its equivalence with the six vertex model, we know that for |Jz

Jy
| < 1 we have

a critical paramagnetic phase, while for |Jz
Jy
| > 1 the phase is ferromagnetic.

Clearly, the same physics holds for Jy = −Jx. In fact, if we operate the parity
transformation

Px =
∏
n

σx2n (3.108)

to the hamiltonian, we only need to make the replacements{
Jy → −Jy
Jz → −Jz

(3.109)
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3.5. The XYZ model

Note that Jz changes sign under this tranformation, so the ferromagnetic and
antiferromagnetic phases are reversed. If we look at the lines Jz = ±Jx, we are
observing a XYX model, which is a rotated XXZ model because if this time
we rotate the system around the x axis by 90◦ through

Rx =
∏
n

exp
(
i
π

2
σxn

)
(3.110)

we need the replacements: {
Jy → Jz

Jz → Jy
(3.111)

Finally, along the diagonals Jy = ±Jz we have a XYY model of the form:

ĤXY Y = −
∑
n

(
Jxσ

x
nσ

x
n+1 + Jy(σ

y
nσ

y
n+1 ± σznσzn+1)

)
(3.112)

where the paramagnetic phase is for |Jy
Jx
| > 1 and the Ising phase is for |Jy

Jx
| < 1.

The XYZ model presents four tri-critical point at
(
Jy
Jx
, Jz
Jx

)
=
(
±1,±1

)
. Two of

these are conformal points: C1 = (1,−1) and C2 = (−1, 1). These correspond
to an antiferromagnetic Heisenberg chain at the Kosterlitz-Thouless transition
(see e.g. [25], and there the correlation lenght diverges. The other two, denoted
as E1 = (1, 1) and E2 = (−1,−1), correspond to an Heisenber ferromagnet at
its �rts order phase transition.

Sutherland ([33]) showed that the Jα constants of the XYZ model are re-
lated to the parameters Γ and ∆ of the eight vertex model in zero magnetic
�eld by the relations

Jx : Jy : Jz = 1 : Γ : ∆ (3.113)

and this implies that we can set, without loss of geneality, Jx = 1. The
principal regime (PR) of the eight vertex model corresponds to ∆ ≤ 1 and
|Γ| ≤ 1 and describes an anti-ferroeletric phase. In this regime, we have the
following parametrization in terms of Jacobi elliptic functions (see [3], and
appendix B for a de�nition):

Γ =
1 + k sn2 (iλ; k)

1− k sn2 (iλ; k)
∆ = −cn (iλ; k) dn (iλ; k)

1− k sn2 (iλ; k)
(3.114)

with the restrictions

0 ≤ k ≤ 1, 0 ≤ λ ≤ I(k′) (3.115)

and where

I(k′) =

∫ π
2

0

dθ√
1− k′2 sin2 θ

(3.116)
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Figure 3.3: The phase diagram of the XYZ model. The critical lines of the model

are represented by red lines.

is the complete elliptic integral of �rst kind, with argument k′ =
√

1− k2.
Accordingly, we refer as the principal regime for the XYZ model when the
parameters obey

|Jy| < Jx < −Jz (3.117)

corresponding to the region Ia of �gure 3.3. If these parameters are out of the
PR, we only need to use new J ′β that are functions of the old ones, and take
advantage of

J ′x : J ′y : J ′z = 1 : Γ : ∆

to recover Jα as functions of Γ and ∆.

3.5.2 Von Neumann and Renyi entropies

We now want to evaluate the entanglement entropy of a subsystem with lenght
l such that

l

L
=

1

2

where L is the lenght of the chain, in its ground state. We will do this in
the thermodinamic limit, that is for L → ∞, and we will take advantage of
the CTMs method developed in section 3.4. We know (see appendix B) that
for the eight vertex model in zero �eld the four CTMs are symmetric and
satisfy the relations A = C and B = D. The Hilbert space of the quantum
chain can be divided in two parts describing the two half-in�nite chains, that
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3.5. The XYZ model

is H = HR⊗HL, and for the density matrix of the ground state ρ = |0〉 〈0| we
have the expression in term of CTMs:

ρR(~σ, ~σ′) =
[
TrHL(ρ)

]
~σ,~σ′

=
(
ABCD

)
~σ,~σ′

=
(
AB
)2

~σ,~σ′
(3.118)

We now use the diagonal CTMs Ad(u) andBd(u) (de�ned respectively in (B.39)
and (B.40)) to write:

ρR =

(
1 0
0 x2

)
⊗
(

1 0
0 x4

)
⊗
(

1 0
0 x6

)
⊗ . . . (3.119)

where

x = e−ε ε ≡ π
λ

2I(k)
(3.120)

Using Ad(u) or A(u) doesn't make any di�erence here, because the entropies
we want to evaluate are traces over functions of ρR. Notice that we can write
our reduced density matrix as:

ρR = e−ε Ô (3.121)

where Ô has integer eigenvalues (compare with (3.101)). If we denote the
normalized reduced density matrix ρ′R = ρR/Z, where the partition function is

Z = TrHR ρR =
∞∏
j=1

(1 + x2j) (3.122)

the Von Neumann entropy is then given by

S = −TrHR ρ
′
R log ρ′R = −ε∂ lnZ

∂ε
+ lnZ (3.123)

Thus, we obtain an exact analytic expression for the entanglement entropy of
the XYZ model as:

S = 2ε
∞∑
j=1

j

1 + e2jε
+
∞∑
j=1

log
(
1 + e−2jε

)
(3.124)

As an important remark, note that this formula has been deduced for open
boundary conditions, see the discussion in appendix B. To compute the Renyi
entropies, whose de�nition we remind here

Sα =
1

1− α
log Tr ρ′αR (3.125)

we need instead

ραR =

(
1 0
0 x2α

)
⊗
(

1 0
0 x4α

)
⊗
(

1 0
0 x6α

)
⊗ . . . (3.126)
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and noting that Tr ρ′αR = Tr ραR/(Z
α), we have:

Sα =
α

α− 1

∞∑
j=1

log
(
1 + e−2jε

)
+

1

1− α

∞∑
j=1

log
(
1 + e−2jαε

)
(3.127)

As a check of the validity of these equations, let's consider the non critical
XXZ chain for Jz → −1− (that is, Jz approaches −1 from below). In this
limit, we have {

Γ = 1

∆→ −1−

{
k = 0

λ→ 0+

and from (3.120), using the fact that I(k) −−→
k→0

π/2, it is ε ≈ λ, and then

ε ≈ 0. This allows us to approximate the summations in (3.124) with an
integral. Using the Euler-MacLaurin formula, the entropy behaves as:

S ≈
∫ ∞

1

dx
( xε

1 + exε
+ log

(
1 + e−xε

))
≈
∫ ∞

0

dx
( xε

1 + exε
+ log

(
1 + e−xε

))
− log 2

2
+O(ε) =

π2

12ε
− log 2

2
+O(ε)

(3.128)

From our approximations, we have as well

−∆ ' coshλ

so that:

ε ≈ λ ≈
√

2
√
−∆− 1 (3.129)

We know from [3] that the XXZ chain is equivalent to the six vertex model
(which means, again, that the Hamiltonian of the former and the transfer
matrix of the latter commute). For ε � 1, the correlation function behaves
like

log ξ ' π2

2ε
(3.130)

and at last, substituting properly all the terms in (3.128), we �nd:

S ∼ 1

6
log

ξ

a
+ U (3.131)

where U = − log(2)/6. This agrees with Cardy, Calabrese prediction for the
entropy of a system out of criticality (see equation (3.40)), with c = 1. Notice
that this result was already obtained in section 3.3.2 by other means.
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3.5.3 The essential critical points

We now study the behaviour of the Von Neumann entropy in the (Jy, Jz) plane.
For this purpose, it is useful to switch from (λ, k) to the new parameters (u, l),
linked to the previous ones by a Landen transformation, that is:

l =
2
√
k

1 + k
u = (1 + k)λ (3.132)

In this way, we can reparametrize the two constants Γ and ∆ as (see [3]):

Γ =
1 + k sn2(iλ; k)

1− k sn2(iλ; k)
=

1

dn(iu; l)
(3.133a)

∆ = −cn(iλ; k) dn(iλ; k)

1− k sn2(iλ; k)
= − cn(iu; l)

dn(iu; l)
(3.133b)

It is possible to express (l, u) as functions of (Jy, Jz). Following [22], and
working for example in the principal regime

Jy > 1 − 1 < Jz < 1 (3.134)

one can obtain the following relations:

l =

√
1− J2

z

J2
y − J2

z

u = K(l′) + F (arcsin Jz; l
′) (3.135)

where l′ =
√

1− l2 and

F (φ, k) =

∫ φ

0

dθ√
1− k2 sin2 θ

= sn−1(sinφ; k) (3.136)

is the incomplete elliptic integral of the �rst type. Furthermore, we have:

I(l) = (1 + k)I(k) (3.137)

which allows us to write

ε = π
λ

2I(k)
= π

u

2I(l)
(3.138)

Since the entanglement entropy S, whose expression is given in equation (3.124),
depends only on ε, we have thus obtained a way to express it as a function
of (Jy, Jz). In �gure 3.4 we plot S in the (Jy, Jz) plane for −2 < Jy < 2 and
−2 < Jz < 2.

This is a contour plot: regions of similar colour have similar value of the
entropy, and the lines dividing regions of di�erent colors are lines of constant
entropy. The brighter is the colour, the bigger is the entropy. From this �gure
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Figure 3.4: Curves of constant entropy of the XYZ model in the (Jy, Jz) plane.

is evident the phase diagram of the model, and the most interesting points
are easily recognized as the four tri-critical points C1, C2 and E1, E2, for
Jy = ±1 and Jz = ±1 (see section 3.5.1). We emphasize the fact that C1 and
C2 are conformal, while E1 and E2 are not, since the latter points have low
energy excitations following the quadratic dispersion relation ε(q) = 1− cos q:
conformal �eld theories are also relativistically invariant �eld theories, so they
require a linear dispersion relation for the energy. This implies that the entropy
at E1 doesn't follow the behaviour predicted by Cardy and Calabrese ([7]) at
criticality.

Let's �rst study the conformal point C1 → (Jy, Jz) = (1,−1) (the point C2

has a similar treatment). We use the following parametrization{
Γ = 1− ρ cosφ

∆ = −1− ρ sinφ
0 ≤ φ ≤ π

2
(3.139)

which leads to: {
l =

(
tanφ+ 1

)−1/2
+O(ρ)

snh(z; l) =
√

2 cosφ+ 2 sinφ
√
ρ+O(ρ3/2)

(3.140)

where we de�ned
z = iu

The point C1 is reached for ρ → 0. In this limit l is not de�ned, since it
depends on the path followed towards C1, that is on φ. Solving (3.133), we
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�nd that sn(u; l) ' u+O(u2), and then:

z =
√

2 cosφ+ 2 sinφ
√
ρ+O(ρ3/2) (3.141)

It follows from (3.138) that ε ∼ √ρ, which means that S diverges in any
neighbourhood of C1.

For the point E1 → (Jy, Jz) = (1, 1) we use instead the following parametriza-
tion: {

Γ = −1− ρ cosφ

∆ = −1− ρ sinφ
0 ≤ φ ≤ π

2
(3.142)

which implies: {
l =

(
tanφ+ 1

)−1/2
+O(ρ)

snh(z; l) = −
√

2 cosφ+ 2 sinφ
√
ρ+O(ρ3/2)

(3.143)

In this case, using (3.133), it turns out that we must use the following expan-
sion:

sn(iu) = u− 2iI ′ +O
(
(u− 2iI ′)2

)
Clearly, we now have z ∼ 2I ′ , and then

ε ∼ I(l′)

I(l)

The fact that l is still not de�ned for ρ→ 0 implies that ε can take any positive
values in the neighbourhood of E1, depending on the value of φ; the same
holds true for the entropy. For this reason the point E1 is called an essential
singularity for the Renyi entropies: the value of S is direction dependent, since
E1 is an accumulation point for isoentropic lines (see also �gure 3.5), and it
seems that S can assume all the values between 0 to ∞, as we'll see below.

Let's now explain qualitatively why the entropy at E1 has this singular
behaviour. The isotropic point E1 can be described by the Hamiltonian:

ĤXXX = −
N∑
n=1

~σn · ~σn+1 (3.144)

(we take for the moment a �nite number of sites N in the chain), which com-
mutes with the generators

S2 =
1

4

N∑
n=1

~σn · ~σn , Sz =
1

2

N∑
n=1

σzn, S± =
1

2

N∑
n=1

σ±n (3.145)

The ground state is then N + 1 degenerated, spanned by the basis correspond-
ing to ferromagnetic states alligned along di�erent directions. Its precise form
depends on how the symmetry SU(2), satys�ed by the Hamiltonian (3.144), is
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3. Entanglement entropy in 1-D quantum chains

Figure 3.5: Curves of constant entropy of the XYZ model in the vicinity of E1.

broken. If the ground state consists in one of these (classical) basis states, the
entropy is 0, but a superposition of such states have an entanglement entropy
that may grow with the number of basis states, and in the limit N →∞ this
entropy can even diverge. In fact, two of the isoentropic lines approaching E1

are the Ising ferromagnetic line (Jz = 1) for which S = 0, and the XXZ line
that implies S →∞ in the thermodynamic limit.The situation is di�erent for
the points C1 and C2, since there the order is antiferromagnetic: the antiferro-
magnetic states (Neel states) are not eigenstates of the Hamiltonian describing
C1 or C2.

In the next chapter we will test the validity of formula (3.124) for the
entanglement entropy in the vicinity of the essential singularity.

3.5.4 Unusual corrections to the entanglement entropy

In section 3.3 we analized all the possible corrections to the formula

S =
c

6
ln l (3.146)

for the entanglement entropy of an interval of lenght l, embedded in an in-
�nitely long spin chain at criticality with open boundary conditions. For
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3.5. The XYZ model

gapped systems, by simply scaling arguments, we found instead the behaviour:

Sα =
c+ c̄

12

(
1 +

1

α

)
ln ξ + C ′α +

∞∑
n=1

Bn,α ξ
−(nx)/α (3.147)

Using the same scaling arguments, we can add all the corrections found at
criticality (see section 3.3.1) by simply making the substitution l→ ξ.

On the other hand, we have the formula of the Renyi entropies for the
XYZ model, given by (3.127). We now want to show (following [19]) that this
formula gives rise to corrections which can not be predicted by the reasonings
presented in section 3.3.

Using the q-Pochhammer symbol, de�ned by

(a; q)n ≡
n−1∏
k=0

(1− aqk) (3.148)

we can write the partition function of the XYZ model, whose expression is
given in (3.122), as

Z = (−x2;x2)∞ (3.149)

where x is de�ned in (3.120). Furthermore, using (3.126), we �nd a similar
expression for the density matrix:

Tr ραR =
(−x2α;x2α)∞
(−x2;x2)α∞

(3.150)

It can be shown (see [19]) that this partition function has the following alter-
native form:

Z = x−1/12χIsing1,2 (iε/π) (3.151)

where χIsing1,2 is a Virasoro character (see section 2.5) of the Ising model (whose
central charge is c = 1/2). It's interesting that the partition function of a c = 1
model can be expressed as a function of Virasoro characters of the c = 1/2
conformal �eld theory, but we won't dicuss this aspect further.

We now want to study the behaviour of the entanglement entropy approach-
ing to the critical line. It is then convenient to switch to the variable

x̃ ≡ e−iπ
2/µτ = e−π

2/ε (3.152)

through a modular transformation, and then take the limit x̃→ 0. It is known
(see for example [22]) that the elliptic parameter k, de�ned in section 3.5.1,
can be written as

k ≡ k(x) = 4
x1/2(−1;x2)4

∞
(−x;x2)4

∞
(3.153)

This changes, under a modular transformation, as:

k(x̃) =
(x;x2)4

∞
(−x;x2)4

∞
(3.154)
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3. Entanglement entropy in 1-D quantum chains

Taking advantage of these last two expression, and denoting k′ =
√

1− k2, we
obtain

(−x2α;x2α)∞ =
(x̃1/α; x̃2/α)∞√
2xα/12x̃1/(24α)

(3.155)

from which follows:

Tr ραR = 2(α−1)/2x̃(α2−2)/(24α) (x̃1/α; x̃2/α)∞
(x̃; x̃2)α∞

(3.156)

Using the expansion

ln(1− x) =
∞∑
i=1

xm

m
(3.157)

the divisor function

σ−1(n) ≡ 1

n

∞∑
j<k=1
j·k=n

(j + k) +
∞∑
j=1
j2=n

1

j
(3.158)

and the de�nition (3.125), we can now write the Renyi entropies as:

Sα = − 1 + α

24α
ln x̃− 1

2
ln 2

− 1

1− α

∞∑
n=1

σ−1(n)
(
x̃n/α − αx̃n − x̃2n/α + αx̃2n

) (3.159)

Since x̃ has meaning only within Baxter's parametrization of the model, if we
want to gain geneality we must measure the entropy as a function of a universal
parameter, such as the correlation lenght. In the scaling limit, obtained for
x̃→ 0, one can show that:

x̃ '
( ξ
a0

)2

+O(ξ−1) (3.160)

where a0 is a short distance cuto�, such as the lattice spacing. At last, keep-
ing only the dominant term of this last expression, we end up with the �nal
formula:

Sα =
1 + α

12α
ln

ξ

a0

− 1

2
ln 2

− 1

1− α

∞∑
n=1

σ−1(n)

[( ξ
a0

)−2n/α

−
( ξ
a0

)−4n/α
]

+
α

1− α

∞∑
n=1

σ−1(n)

[( ξ
a0

)−2n

−
( ξ
a0

)−4n
] (3.161)

Notice that the leading term of this formula is correctly predicted by (3.147),
while the other ones have a more di�cult interpretation. Indeed, using (3.147)
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3.6. The entanglement spectrum

for a scalar �eld, the scaling dimension reduces to x = 2h and (3.161) would
indicate h = 2, meaning that a marginal operator is dragging the system out
of criticality. But this is in contrast with what we deduced in section 3.3.1,
since a marginal operator would give rise to logarithmic corrections.

Furthermore, depending on the path used to reach the critical line, the ex-
pansion of x̃ in term of ξ/a0 is di�erent. Substituting these di�erent expansions
in (3.159) gives rise to many kind of terms, such as ξ−2h, ξ−2h/α, ξ−2(1+1/α), or
even 1/ ln ξ. For some of these terms a theorerical explanation is still lacking,
which may be possible by applying a reasoning similar to that of [9] for the
XYZ model.

3.6 The entanglement spectrum

We saw in section A.3 that the reduced density matrix of a subsystem can be
written as:

ρA = TrB |Ψ〉C 〈Ψ|C =
∑
i

|λi|2
∣∣̃i〉

A

〈̃
i
∣∣
A

(3.162)

That is, the eigenvectors
∣∣̃i〉

A
of ρA have eigenvalues |λi|2, which have a mean-

ing of probabilities: the subsystem has classical probability |λi|2 to be in the
state

∣∣̃i〉
A
. The set {|λi|2} is called the entanglement spectrum (ES).

We won't focus here on the ES at criticality (see [13] for details), but we
will be more concerned to it's connection with critical exponents: the Schmidt
gap, that is the di�erence between the greates and the second greatest eigen-
value, can be related to critical exponents of the theory, as we'll see in section
3.6.1. We then evaluate the ES for the XY model in section 3.6.2, and we will
generalize its derivation in the following chapter.

3.6.1 ES and critical exponents

The Schmidt gap is de�ned as the di�erence between the two largest eigenval-
ues of the reduced density matrix:

∆λ ≡ λ0 − λ1 (3.163)

It is known (see for example [14]) that ∆λ closes in the thermodynamic limit,
since it has the form:

∆λ ∝ 1− qα1

lc/12
(3.164)

Here q and α1 depend on the model under consideration, and l is the lenght
of the subsystem under consideration, which diverges in the thermodynamic
limit.

In the article [14], the authors make the ansatz that the Schmidt gap scales
with the universal critical exponents. In particular, in the thermodynamic limit
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3. Entanglement entropy in 1-D quantum chains

∆λ scale as

∆λ ∝ |g − gc|β (3.165)

and its �nite-size scaling is

∆λ ' Lβ/νf
(
|g − gc|L1/ν

)
(3.166)

This means that the Schmidt gap should have the same behaviour of the
order parameter. Indeed, near criticality an order parameter has the following
behaviour:

Q(L, g) ' LβQ/νfQ
(
|g − gc|L1/ν

)
(3.167)

where ν is the critical exponent associated to the divergence of the correlation
lenght, βQ is the order parameter critical exponent and fQ is a universal scaling
function.

One way to recover the two exponents β and ν is to take advantage of the
universality of the function f : we then require that the left hand side of

∆λLβ/ν ' f
(
|g − gc|L1/ν

)
(3.168)

keeps the same values varying L and g, but leaving the combination |g−gc|L1/ν

�xed.

Consider for example the transverse-�eld Ising model, whose Hamiltonian
is:

H = −J
∑
i

σxi σ
x
i+1 −Bz

∑
i

σzi (3.169)

This model has c = 1
2
, so we expect that

β =
1

8
ν = 1 (3.170)

In [14] the authors used numerical simulations to evaluate ∆λ as a function
of L and g. Since the model is critical for J = Bz, a reasonable choise for the
parameter g is:

g ≡ J

Bz

gc = 1 (3.171)

Using the method explained above, and taking advantage of the ansatz (3.168),
they found that {

β = 0.124± 0.002

ν = 1.00± 0.01
(3.172)

which is in perfect agreement with (3.170).

In the next chapter we want to test these conjectures about the Schmidt
gap to the XY Z model, approaching the critical line Jx = Jy = 1.
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3.6. The entanglement spectrum

3.6.2 ES for the XY model

In some relevant cases the Renyi entropy can determine completely the en-
tanglement spectrum. Let's follow [23] and consider the XY model, already
de�ned in section 2.3.3. We impose periodic boundary conditions on the sys-
tem. Here we change the notation:

H = −
∞∑

j=−∞

[
(1 + γ)σxj σ

x
j+1 + (1− γ)σyjσ

y
j+1 + hσzj

]
(3.173)

We restrict to γ ≥ 0 and h ≥ 0, since the Hamiltonian is invariant for γ → γ
and h → −h. If h = 2 the system undergoes a second order phase transi-
tion. For h < 2 we have the ordered phase, since the ground state is doubly
degenerate, while h > 2 is the disordered phase.

The so called zeta-function for a density matrix is

ζρA(α) ≡ Tr ραA =
∞∑
n=0

gnλ
n (3.174)

Here gn is the multiplicities of the eigenvalue λn. In term of the Renyi entropy,
this is:

ζρA(α) = exp
[
(1− α)S(ρA, α)

]
(3.175)

since the Renyi entropy is de�ned as (see appendix A)

S(ρA, α) =
1

1− α
log Tr(ραA) (3.176)

First, let's de�ne the two quantities:

τ0 ≡
I(k′)

I(k)
q ≡ e−πτ0 (3.177)

where I(k) is the complete elliptic integral of the �rst kind,

k =


(√

(h/2)2 + γ2 − 1
)
/γ if 4(1− γ2) < h2 < 4√(

1− h2/4− γ2
)
/
(
1− h2/4

)
if h2 < 4(1− γ2)

γ/
(√

(h2/4 + γ2 − 1
)

if h > 2

(3.178)

and k′ =
√

1− k2. The Renyi entropy for the XY model is given by:

S(ρ, α) =

{
1
12

α
1−α log k2k′2

16q
+ 2

1−α log
∏∞

m=0

[
1 + q(2m+1)α

]
for h > 2

1
6

α
1−α log 16qk′

k2
+ 2

1−α log
∏∞

m=1

(
1 + q2mα

)
for h < 2

(3.179)

It's now easy to obtain the entanglement spectrum. De�ning

qα ≡ qα (3.180)
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3. Entanglement entropy in 1-D quantum chains

we have that, using (3.179), the zeta functions are:

ζρA(α) =

exp
[
α
(
πτ0
12

+ 1
6

log kk′

4

)]∏∞
m=0

(
1 + q2m+1

α

)2
h > 2

2 exp
[
α
(
−πτ0

6
+ 1

6
log k′

4k2

)]∏∞
m=1

(
1 + q2m

α

)2
h < 2

(3.181)

We need the following relations from partition theory, that is

∞∏
n=0

(
1 + q2n+1

)
=
∞∑
n=0

pO(n)qn (3.182a)

∞∏
n=1

(
1 + q2n

)
=
∞∑
n=0

pD(n)qn (3.182b)

where:

• pO(n) is the number of partitions of n into distinct odd integers;

• pD(n) is the number of partition of n into distinct positive integers.

If we focus on the case h > 2, we take advantage of (3.182a). The zeta function
becomes:

ζρA(α) = exp
[
α
(πτ0

12
+

1

6
log

kk′

4

)] ∞∑
n=0

an q
n
α (3.183)

with

a0 = 1 an =
n∑
j=0

pO(j) pO(n− j) (3.184)

Thanks to (3.180), we conclude that

ζρA(α) =
∞∑
n=0

anλ
α
n λn = exp

(
−πτ0n+

πτ0

12
+

1

6
log

kk′

4

)
(3.185)

that is, comparing to (3.174), the eigenvalues of the reduced density matrix
for the case h < 2 are λn de�ned in (3.185), with multiplicities gn = an.

If instead h < 2 we use (3.182b), so that:

ζρA(α) = 2 exp
[
α
(
−πτ0

6
+

1

6
log

k′

4k2

)] ∞∑
n=0

bn q
2n
α (3.186)

where

b0 = 1 bn =
∞∑
j=0

pD(j) pD(n− j) (3.187)

the eigenvalues of ρA are now given by

λn = exp
(
−2πτ0n−

1

6
πτ0 +

1

6
log

k′

4k2

)
(3.188)
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3.6. The entanglement spectrum

Table 3.1: Values of an and bn.

(a) h > 2

n gn

0 1
1 2
2 1
3 2
4 4
5 4
6 5
7 6

(b) h < 2

n gn

0 2
1 4
2 6
3 12
4 18
5 28
6 44
7 64

with degeneracies
gn = 2bn (3.189)

In table 3.1 we list some values of the degeneracies in the two cases h > 2 and
h < 2.
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Chapter 4

Numerical simulations

4.1 Entanglement spectrum for the XYZ model

In this section we want to compute the entanglement spectrum in the case of
the XYZ model, for an in�nite system splitted in two half in�nite chains with
open boundary conditions. The approach is the same of section 3.6.2. We
remind that the Renyi entropies for this model are given by:

Sα =
α

α− 1

∞∑
j=1

log
(
1 + e−2jε

)
+

1

1− α

∞∑
j=1

log
(
1 + e−2jαε

)
(4.1)

For this case we must use again the relation (3.182b), which we report here:

∞∏
n=1

(
1 + q2n

)
=
∞∑
n=0

pD(n)qn (4.2)

The zeta function is then:

ζρA(α) ≡ exp
[
(1− α)S(α)

]
= exp

[
−
∞∑
j=1

log
(
1 + e−2jαε

)] ∞∑
n=1

pD(n)e−2nαε
(4.3)

Remind that pD(n) is the partition of n into distinct positive integers. We plot
some of its values in table 4.1.

In conclusion, the zeta function gives us the entanglement spectrum of the
XYZ model, for a half in�nite chain with open boundary conditions:

ζρA(α) =
∞∑
n=0

pD(n)λαn λn = exp
(
−2nε−

∞∑
j=1

log
(
1 + e−2jε

))
(4.4)
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Table 4.1: values of pD(n)

n pD(n)

0 1
1 1
2 1
3 2
4 2
5 3
6 4
7 5
8 6

As a check of the consistency of this equation, notice that the eigenvalues sum
up to 1, as to be expected for a reduced density matrix:

∞∑
n=0

pD(n)λn = exp
(
−
∞∑
j=1

log
(
1 + e−2jε

)) ∞∑
n=0

pD(n) e−2nε

=
1∏∞

j=1

(
1 + e−2jε

) ∞∑
n=0

pD(n) e−2nε = 1

(4.5)

4.2 Check of known results

Now we discuss the numerical simulations performed. These are based on
the DMRG algorithm, described in appendix C, where we also give a brief
description of the program in C++ that realizes the algorithm. This DMRG
program always evaluates entropies with logarithms in base 2 : if not speci�ed,
we will work from now on with logarithms in this base. We further assume
that the lattice spacing is a = 1. Let's report again the Hamiltonian of the
XYZ model for the sake of clarity:

HXY Z = −
∑
n

(
Jxσ

x
nσ

x
n+1 + Jyσ

y
nσ

y
n+1 + Jzσ

z
nσ

z
n+1

)
(4.6)

As a �rst check of the validity of the program we performed a simulation
of the XXZ model in its ferromagnetic regime, using the following parameters:

Jx = 1

Jy = 1

Jz = 0.4

(4.7)

The plot of the Von Neumann entropy S as a function of the number of sites
L of the system is given in �gure 4.1: periodic boundary conditions (PBC) are
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4.2. Check of known results

(a) Periodic boundary conditions. (b) Open boundary conditions.

Figure 4.1: The XXZ model with parameters given by (4.7). The plots show the

entropy S as a function of the number of sites L. The points represent numerical

data, while the continuous lines are the best �t of the form (4.8).

implemented in �gure 4.1a, while open boundary conditions (OBC) are used in
�gure 4.1b. Numerical data are extrapolated from L = 4 to L = 100, and the
number of sites L is always even: this is a peculiarity of the DMRG algorithm
(see again appendix C). We also have Mmin = Mmax = 400, where Mmin and
Mmax are respectively the minumum and maximum states used by the DMRG
program to construct the approximated wave function ψdmrg at each passage;
furthermore, we used no sweeps in the algorithm (see section C.1.3 for further
details).

Now, the form of S as a function of L must be compatible with Cardy and
Calabrese formula for the entanglement entropy in the case of zero tempera-
ture, and for a subsystem with lenght L/2 (see section 3.1.1). We then tried
to �t the numerical results with the following function:

S =
c

κ
log2 L+ b (4.8)

Remember that a = 1, and that the logarithms are evaluated in base 2. Here
κ = 3 for PBC and κ = 6 for OBC. The constant b includes a nonuniversal
term, the contribute of the boundary entropy and −(c/κ) log2 π. We made the
�ts in the following range:

OBC: L ∈ [50, 90] PBC: L ∈ [30, 90] (4.9)

Notice that for OBC we have oscillations of the entropy, encountered in sec-
tion 3.3.3: this is why we performed the �t for larger values of L, where the
oscillations are weaker. Thus, the best �t of (4.8) for both cases is:

OBC:

{
c = 0.98± 0.02

b = 0.55± 0.02
PBC:

{
c = 0.9942± 0.0003

b = 0.5157± 0.0006
(4.10)
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Since the XXZ model has central charge c = 1, the �t is satisfactory, and this
is a good check for the validity of the DMRG program.

We then moved away from criticality and used the following values for the
parameters:

(a)


Jx = 1

Jy = 1.1

Jz = 0.4

(b)


Jx = 1

Jy = 1.2

Jz = 0.4

(c)


Jx = 1

Jy = 1.3

Jz = 0.4

(4.11)
In these and all the subsequent simulations we used the following parameters
for the DMRG program:

Mmin = 50, Mmax = 200, D = 10−8 4 < L < 90 (4.12)

The Von Neumann entropy computed by the DMRG algorithm must now agree
with the formula for the XYZ model of section 3.5.2, that is (using base 2 for
the logarithms):

S =
1

log 2

[
2ε

∞∑
j=1

j

1 + e2jε
+
∞∑
j=1

log
(
1 + e−2jε

)]
(4.13)

While comparing the values given by the two methods, we faced the following
problem: the entropy obtained by numerical simulations was always greater
of about 1 that the one given by the exact formula. The origin of this fact
is due to the double degeneracy of the ground state (see [16]). While using
corner transfer matrices, we kept only one ground state. Instead, the DMRG
program can't distinguish between the two degenerated ground states, say,
|ψ1〉 and |ψ2〉, so it picks up the combination:

|ψ〉 = α |ψ1〉+ β |ψ2〉 (4.14)

The reduced density matrices are then evaluated from this pure state, whose
density matrix is:

ρ ≡ |ψ〉 〈ψ| = |α|2 |ψ1〉 〈ψ1|+ |β|2 |ψ2〉 〈ψ2|+
(
αβ∗ |ψ1〉 〈ψ2|+ βα∗ |ψ2〉 〈ψ1|

)
(4.15)

Suppose now that |ψ1〉 and |ψ2〉 live in spaces which are orthonormal, or almost.
This means that if we take the partial trace of ρ, the terms living inside the
round brackets give a negligible contribute, so we ignore them. Let's denote
the density matrices of the two states |ψ1〉 and |ψ2〉 with ρ1 and ρ2 respectively.
Thanks to eq. (A.40), we can write:

S(ρ) = S
(
|α|2ρ1 + |β|2ρ2

)
= H

(
α, β

)
+ |α|2S(ρ1) + |β|2S(ρ2) (4.16)

where we used the expression for the Shannon entropy:

H
(
α, β

)
= −|α|2 log2|α|

2 − |β|2 log2|β|
2 (4.17)
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Table 4.2: Values of S

(a) h = 0

L S

80 1.172616969688
82 1.172616589206
84 1.172617320654
86 1.172616704045
88 1.172616579468
90 1.172616573404

(b) h = 0.001

L S

80 0.172618694316
82 0.172618700352
84 0.172618685142
86 0.172618692224
88 0.172618698385
90 0.172618687172

If now we set

α = β =
1√
2

and we suppose that S(ρ1) = S(ρ2), which is quite reasonable if we interpret
the entanglement entropy as the thermodynamical entropy (see for example
[15]), then:

S(ρ) = 1 + S(ρ1) (4.18)

This is how the term 1 is justi�ed, when all the entropies are evaluated using
basis 2 for the logarithms. Otherwise the di�erence is, of course, log 2.

To remove the degeneracy of the two ground states, we used a weak mag-
netic �eld. The degeneracy is broken if the �eld is oriented along the y axis,
since it is the variation of the Jy parameter that moves the system out of
criticality. We then used the Hamiltonian:

H ′ = HXY Z +−hσy0 (4.19)

It was enough to apply the �eld at only one site. Figure 4.2a represents
numerical data from a simulation with no magnetic �eld; in �gure 4.2b we
switched on a magnetic �eld h = 0.001 while �gure 4.2c involves a �eld h =
0.000001. The values for the parameters of the model in these simulations are
given by case (c) of (4.11). The �gures involve lines connecting the numerical
data, instead of a set of points: this makes the situation visibly clearer. The
value of the entropy given by (4.13) is then

S = 0.17261871484 (4.20)

and this must be compared with the values in table 4.2, for the simulations
with h = 0 and h = 0.001.

For the case of h = 0.001, notice that �rst S increases with L, and then
it drops towards its correct value (4.20). This means that for small L the
two ground states are not degenerate yet. Increasing L their energy value
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(a) The case with no magnetic �eld. (b) The case with h = 0.001.

(c) The case with h = 0.000001.

Figure 4.2: XYZ model with parameters given by case (c) of (4.11). The plots show
the entropy S as a function of the number of sites L.

tend to coincide, but the magnetic �eld split these values: the DMRG will
take as the ground state that state with lower energy. Furthermore, in the
case h = 0.000001 the �eld is so weak that the program couldn't split the
two ground states at every passage. This represents somehow a limit of the
weakness of h, so we always worked with stronger �elds.

4.3 The Essential critical point

After the numerical checks discussed in the previous section, we proceeded to
study the essential critical point of the XYZ model (seesection 3.5.3), that is
the point (Jy, Jz) = (1, 1). From now on we will always set Jx = 1, and we
�rst consider the case:

Jy > 1 − 1 < Jz < 1 (4.21)

We will use the parameters (u, l), see section 3.5.3.
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4.3. The Essential critical point

Figure 4.3: Comparing the entanglement spectrum obtained from two simulations

for Jz = 0.5 and Jy = 1.3343958. The red dots are for the simulation with D = 10−8,

while the green dots are relative to the simulation with D = 10−10. The x-coordinate
merely represents a label for the eigenvalues plotted.

4.3.1 Lines of constant l

First, we performed simulations on lines of constant l, precisely for the values

l = 0.25, 0.35, 0.4, 0.45, 0.5, 0.6, 0.7

and for each of these values we performed 7 simulations for various Jz, that is:

Jz = 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.98

The idea is to study the behaviour of the entanglement entropy and the entan-
glement spectrum by approaching the essential critical point along these lines,
represented in �gure 4.4.

In appendix C we scheduled all the numerical results obtained from these
simulations. Here we just plot some signi�cant graphics, such as the Von
Neumann entropy and the Schmidt gap for various l, as a function of Jz (see
�gure 4.5). It is very remarkable that the entropy obtained by these simulations
is in astonishing agreement with the values evaluated from the exact formula:
in some cases they coincide up to the twelfth decimal. As for the entanglement
spectrum, the agreement between exact and numerical data is better for the
�rst eigenvalues, and gets worse for smaller eigenvalues. Part of this fact is
that the �machine precision� is about 10−15: as can be noticed from �gure
4.3, eigenvalues of this order and smaller tend to form a �continuum� (see also
section C.2).

In table 4.3 we list the eigenvalues of the reduced density matrix evaluated
from (4.4), as well as those calculated by two simulations relative to the same
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4. Numerical simulations

Figure 4.4: Lines of constant l in the (Jy, Jz) plane, from l = 0.25 (red) to l = 0.7
(). The bold black line represents the critical XXZ line.

point (Jy, Jz) = (1.3343958, 0.5), corresponding to l = 0.7. The �rst has

Mmin = 50, Mmax = 200, D = 10−8 (4.22)

while for the second

Mmin = 50, Mmax = 400, D = 10−10 (4.23)

Notice that by increasing the precision, groups of eigenvalues tend to assume
the same value, and the agreement with the formula for the entanglement
spectrum (4.4) is much better: see also �gure 4.3.
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4.3. The Essential critical point

Table 4.3: The values of the entanglement spectrum for Jz = 0.5 and Jy = 1.3343958.
We compare the �rst 30 eigenvalues of the two simulations with D = 10−8 and

D = 10−10 with the exact relation for the entanglement spectrum (4.4).

(a) D = 10−8.

9.831296568968 · 10−01

1.657962648369 · 10−02

2.796005039061 · 10−04

4.715191452217 · 10−06

4.715179631467 · 10−06

7.951446139730 · 10−08

7.950376571850 · 10−08

1.338552392480 · 10−09

1.337775725778 · 10−09

1.336512880107 · 10−09

2.253191380502 · 10−11

2.243414875683 · 10−11

2.231616133352 · 10−11

2.172088861992 · 10−11

3.682638141387 · 10−13

3.645046952995 · 10−13

3.445858752500 · 10−13

3.335553660803 · 10−13

2.854555380192 · 10−13

6.189419079311 · 10−15

5.861904932748 · 10−15

5.320737390903 · 10−15

4.644028724437 · 10−15

3.606257376956 · 10−15

2.685535888280 · 10−15

(b) D = 10−10.

9.831311792830 · 10−01

1.657962659151 · 10−02

2.796005492151 · 10−04

4.715212769425 · 10−06

4.715212549797 · 10−06

7.951783458651 · 10−08

7.951778901702 · 10−08

1.340996253781 · 10−09

1.340994809357 · 10−09

1.340961571140 · 10−09

2.261475451018 · 10−11

2.261463477196 · 10−11

2.261388463525 · 10−11

2.260829765861 · 10−11

3.813197078716 · 10−13

3.811791843748 · 10−13

3.807374734025 · 10−13

3.803414101681 · 10−13

3.763069961364 · 10−13

1.026766160278 · 10−14

9.210305292276 · 10−15

7.796748051580 · 10−15

6.390375353193 · 10−15

6.339236379522 · 10−15

6.270108610732 · 10−15

(c) Formula (4.4).

9.831359753752 · 10−01

1.657962659366 · 10−02

2.796005495284 · 10−04

4.715212785703 · 10−06

4.715212785703 · 10−06

7.951783947476 · 10−08

7.951783947476 · 10−08

1.340997126133 · 10−09

1.340997126133 · 10−09

1.340997126133 · 10−09

2.261471519064 · 10−11

2.261471519064 · 10−11

2.261471519064 · 10−11

2.261471519064 · 10−11

3.813769121405 · 10−13

3.813769121405 · 10−13

3.813769121405 · 10−13

3.813769121405 · 10−13

3.813769121405 · 10−13

6.431579964094 · 10−15

6.431579964094 · 10−15

6.431579964094 · 10−15

6.431579964094 · 10−15

6.431579964094 · 10−15

6.431579964094 · 10−15
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4. Numerical simulations

(a) Entanglement entropy.

(b) Schmidt gap.

Figure 4.5: Plots of the entanglement entropy and the Schmidt gap as functions of

Jz, along the lines of constant l. These lines are: l = 0.25 (red), l = 0.35 (green),

l = 0.4 (blue) and l = 0.45 (purple), l = 0.5 (light blue), l = 0.6 (light brown) and

l = 0.7 (yellow). The boxes refer to the value computed by the DMRG, while the

lines are for visible clarity.
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4.3.2 Circles surrounding the essential critical point

We then studied the behaviour of the entanglement entropy around the es-
sential singularity. We achieved this by performing numerical simulations on
circles parametrized by: {

Jy = 1 + r sinα

Jz = 1− r cosα
(4.24)

The values of r used are:
r = 0.96, 0.97, 0.98 (4.25)

and for each radius we performed 24 simulations. We chose the points on the
circles for equally distant values of α, whose range was α ∈ [π/48, π/2], and
where each value of α is separated from its neighbour by π/48.

The values of the entanglement entropies obtained by the simulations are
reported in appendix 4. In �gure 4.6 we show the lines of constant radius given
by (4.25), while in �gure 4.7 we plot the entropies evaluated by the DMRG
program as a function of the angle α of equation (4.24).

We didn't use the same DMRG parameters for all the simulations. Case
by case, �nding a balance between the precision of the output and a quick
execution of the simulations, we chose between three set of DMRG parameters:

(a) :


Mmin = 50, Mmax = 200

D = 10−8

Lmax = 90

(b) :


Mmin = 10, Mmax = 100

D = 0.25 · 10−7

Lmax = 180

(c) :


Mmin = 10, Mmax = 100

D = 0.25 · 10−7

Lmax = 220

(4.26)

and for each one we performed 5 sweeps at each passage. The agreement
between the entanglement entropies calculated by the DMRG program and
those evaluated by the exact formula (4.13) is still good, see appendix 4 for
further comments.
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4. Numerical simulations

Figure 4.6: The lines of constant r where we performed the simulations. The dots

denote the values of Jy and Jz used for the simulations.

Figure 4.7: Plots of the entropies, obtained by numerical simulations, as a function

of the angle α. These corresponds to r = 0.04 (red), r = 0.03 (green) and r = 0.02
(blue).
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4.4 Study of the Schmidt gap

We now wish to study the Schmidt gap along a di�erent line, that is for µ
constant, where

µ ≡ π
λ

I(k′)
(4.27)

From formula (4.4), the Schmidt gap is:

∆λ =
1− e−2ε∏∞

j=1(1 + e−2jε)
(4.28)

Our goal is to �nd the critical exponents of the Sine-Gordon model from the
behaviour of the Schmidt gap near its critical point, that is approaching the
line of the XXZ model. In table 4.4 we report the values of ∆λ obtained using
the analytic expression (4.28), for the line

µ = 2.1 (4.29)

These lines of constant µ (represented in �gure 4.8) correspond to the Sine-
Gordon model (see [22] for further details). To understand the notation, con-
sider the �rst value of Jy in the tables:

1.0 . . . 01 (4.30)

With this we mean that �. . . � represents a number of zeroes. For example, for
· · · = 9, (4.30) represents the number

1.000000000001

Following section 3.6.1, and noticing that we are working in the thermodynamic
limit, it is then natural to assume the following �ansatz�:

∆λ = a (Jy − 1)β (4.31)

The best �ts for the three cases of table 4.4 are:

(a):

{
a = 1.221± 0.002

β = 0.1023± 0.0003

(b):

{
a = 0.959± 0.002

β = 0.08983± 0.00007

(c):

{
a = 0.920± 0.002

β = 0.08829± 0.00007

(4.32)

and in �gures 4.9, 4.10, 4.11 we plot the numerical data with the �t functions.
The agreement with numerical data is good in each of the three cases, but
notice that the exponent β changes as we consider di�erent sets of data.
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Table 4.4: Schmidt gap as a function of Jy, evaluated on the line µ = 2.1.

(a) No �. . . �.

Jy ∆λ

1.0001 0.473689
1.0002 0.509419
1.0003 0.531567
1.0004 0.547852
1.0005 0.560812
1.0006 0.571615
1.0007 0.580899
1.0008 0.589052
1.0009 0.596329
1.0010 0.602905
1.0015 0.628796
1.002 0.647712
1.0025 0.662684
1.003 0.675100
1.0035 0.685721
1.004 0.695007
1.0045 0.703260
1.005 0.710690
1.0055 0.717446
1.006 0.723643
1.0065 0.729364
1.007 0.734679
1.0075 0.739641
1.008 0.744293
1.0085 0.748672
1.009 0.752808
1.0095 0.756727
1.01 0.760449

(b) �. . . � = 9.

Jy ∆λ

1.0 . . . 01 0.080190
1.0 . . . 02 0.085284
1.0 . . . 03 0.088426
1.0 . . . 04 0.090731
1.0 . . . 05 0.092565
1.0 . . . 06 0.094093
1.0 . . . 07 0.095406
1.0 . . . 08 0.096559
1.0 . . . 09 0.097590
1.0 . . . 10 0.098521
1.0 . . . 11 0.099372
1.0 . . . 12 0.100156
1.0 . . . 13 0.100884
1.0 . . . 14 0.101562
1.0 . . . 15 0.102198
1.0 . . . 16 0.102797
1.0 . . . 17 0.103363
1.0 . . . 18 0.103900
1.0 . . . 19 0.104410
1.0 . . . 20 0.104897

(c) �. . . � = 10.

Jy ∆λ

1.0 . . . 01 0.0.065488
1.0 . . . 02 0.0695889
1.0 . . . 03 0.072105
1.0 . . . 04 0.073952
1.0 . . . 05 0.075423
1.0 . . . 06 0.076645
1.0 . . . 07 0.077698
1.0 . . . 08 0.078620
1.0 . . . 09 0.079444
1.0 . . . 10 0.080190
1.0 . . . 11 0.080870
1.0 . . . 12 0.081496
1.0 . . . 13 0.082078
1.0 . . . 14 0.082620
1.0 . . . 15 0.083128
1.0 . . . 16 0.083607
1.0 . . . 17 0.084059
1.0 . . . 18 0.084487
1.0 . . . 19 0.084895
1.0 . . . 20 0.085284
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4.4. Study of the Schmidt gap

Figure 4.8: Lines of constant µ, where we plotted Jy as a function of Jz. Here are
represented the lines from µ = 1.6 to µ = 2.6, and µ increases by steps of 0.2.

Figure 4.9: Plot of the Schmidt gap as a function of (Jy− 1) and the �tting function

(4.31): case (a).
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4. Numerical simulations

Figure 4.10: Plot of the Schmidt gap as a function of (Jy−1) and the �tting function
(4.31): case (b).

Figure 4.11: Plot of the Schmidt gap as a function of (Jy−1) and the �tting function
(4.31): case (c).
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4.5. Studying the FSS of the entanglement spectrum

4.5 Studying the FSS of the entanglement spec-

trum

Our last task is to study, at least numerically, the behaviour of the Von Neu-
mann entropy and of the entanglement spectrum as functions of the number
of sites L of the system. This is always splitted in two halfs (with respect
to which we calculate the entanglement) and it's described by one of the two
degenerated ground states.

We remind that, applying a small �eld h to just one site, the system is
described by the Hamiltonian

H ′ = HXY Z + hσy0 (4.33)

and the entropy (as a function of L) follows the path of �gure 4.2b. This �eld,
as we discussed in section 4, is needed to split the degenerated ground states.
On the other hand, without magnetic �elds the entropy behaves like in �gure
4.2a. This suggests that the true behaviour of the entropy should simulate
this last situation: the entropy should be a monotonically increasing function
of L, apart from the oscillations explained in section 3.3.3, which saturates
to the value Sexact given by equation (3.128). We then performed simulations
corresponding to the parameters

Jx = 1

Jy = 1.1

Jz = 0.4

(4.34)

and we tried to eliminate the �hunch� of �gure 4.2b using the following ap-
proaches.

• Varying the intensity of the �eld h in equation (4.33), from h = 0.001
to h = 100. The result is that the convergence to the value of the exact
formula has di�erent speeds for di�erent values of h. Furthermore the
�hunch� remains, even if it's much less pronounced: see �gure 4.12.

• Using a staggered �eld, that is

H ′ = HXY Z + h
∑
i

(−1)iσyi (4.35)

for values of h from h = 0.001 to h = 1. Here the convergence is really
fast, and the hunch remains still. The �nal value of the entropy di�ers
signi�cally from Sexact by increasing the value of h. For values near
h ' 1 the entropy follows a path completely di�erent from the cases
with smaller values of h, and it doesn't even converge.
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4. Numerical simulations

Figure 4.12: The entropy as a function of L, for the following values of the magnetic
�eld at one edge: h = 0.01 (red), h = 1 (green), h = 100 (blue).

• Using a magnetic �eld only at the edges, that is{
(a) : H ′ = HXY Z + hσy0 − hσ

y
L−1

(b) : H ′ = HXY Z + hσy0 + hσyL−1

(4.36)

where L− 1 represents the last site of the chain. For case (a) the prob-
lem remains. Eventually, for h su�ciently large, the hunch disappears,
and the entropy becomes a monotonically decreasing function of L. For
case (b) we found that for h ≈ 0.25 the hunch disappears and the en-
tropy becomes a monotonically increasing function of L, apart from the
oscillations.

Therefore, we performed numerical simulations using �elds at the edges with
the same magnitude and direction, in the neighbourhood of h ' 0.25. The
Hamiltonian of the system is then:

H ′ = HXY Z + hσy0 + hσyL−1 (4.37)

In �gure 4.13 we plotted the entropy, as a function of L, for some values of h.
From h = 1 to h = 10 the behaviour of the entropy is the same: somehow this
represents a saturation for the e�ects of these �elds, or perhaps we need much
stronger �elds to check a di�erent behaviour.

The main problem with this approach is that the entropy as a function
of L depends also on the �eld h, even if, as we've already discussed, this
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4.5. Studying the FSS of the entanglement spectrum

Figure 4.13: The entropy as a function of L, for the following values of the magnetic
�eld at the two edges: h = 0.15 (red), h = 0.2 (green), h = 0.25 (blue), h = 0.3
(fuchsia), h = 10 (light blue).

dependence is much weaker for h > 1. We would like to describe the scaling of
the entropy and of the entanglement spectrum in a way which is independent
of the magnetic �eld applied.

For this purpose we turned back to the case without magnetic �eld, that
is h = 0, and we noticed the following: for L→∞, with respect to (4.4) (the
formula for the entanglement spectrum in the limit L→∞) the entanglement
spectrum degeneracies are doubled and each value is halved. This can be
explained quite easily. Suppose that the ground state is

|ψ〉 =
1√
2
|ψ1〉+

1√
2
|ψ2〉 (4.38)

where

|ψ1〉 =
∑
i

αi |ai〉 |ψ2〉 =
∑
i

βi |bi〉 (4.39)

and furthermore

〈ai | bj〉 = 0, ∀i, j (4.40)

This last requirement is reasonable since orthonormal states belong to or-
thonormal spaces. For the same reasons of section 4.2, we have:

ρ = ρ1 + ρ2 (4.41)
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We denote the eigenvalues of ρ1 and ρ2 with {λ(1)
i } and {λ(2)

i } respectively
Thanks to (4.40), if |φj〉 is an eigenstate of ρ1, then:

ρ2 |φj〉 = 0 (4.42)

It is natural to suppose that the entanglement spectrum is the same for ρ1 and
ρ2. Then the entanglement spectrum is doubled, and to recover

∑
λi = 1 we

must halve each eigenvalue.

In �gure 4.15 we report the plot of the �rst and the second eigenvalue λ0 and
λ1. In �gure 4.16, instead, we report λ2 and λ3. Notice that each eigenvalue
has parity e�ects similar to those discussed for the entropy in section 3.85.
Indeed, from numerical data we infer that if

L mod 4 = 0 (4.43a)

there is no degeneration between any of the eigenvalues, while if

L mod 4 = 2 (4.43b)

the eigenvalue λ0 and λ1 coincide up to 6 or 7 digits, and the same holds for λ2

and λ3. Moreover, as can be seen from these two �gures, the value for (4.43a)
tend to approach the values for (4.43b) in the limit L → ∞. This suggests
that, if we want to describe the eigenvalues of just one of the degenerated
ground states, we should take those satisfying condition (4.43b).

In �gure 4.17 we plotted the Schmidt gap for these values of L (a), as well
as the Schmidt gap in the case of equation (4.37) (b). For case b we found that
a �t using the function

∆λ(L) = a+ b · exp cL (4.44)

is very satisfactory, with parameters given by:
a = 0.89143± 0.00005

b = 0.153± 0.002

c = −0.185± 0.002

(4.45)

For case a, instead, we didn't �nd any satisfactory function �tting these
data, trying with the following ansatz:

∆λ = a+ b · exp cL ∆λ = a+ b · Lc (4.46)

Besides these facts, we still need to understand which approach is better to
describe the scaling of the quantities we are studying.
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Figure 4.14: The Schmidt gap as a function of L, for the following values of the

magnetic �eld at the two edges: h = 0.1 (red), h = 0.2 (green), h = 0.25 (blue),

h = 0.3 (fuchsia), h = 0.5 (purple), h = 10 (light blue).

Figure 4.15: The eigenvalues λ0 (red) and λ1 (blue) as a function of L, with no

magnetic �eld. Notice that they both have an oscillating behaviour.
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Figure 4.16: The eigenvalues λ2 (red) and λ3 (blue) as a function of L, with no

magnetic �eld. Notice that they both have an oscillating behaviour.

Figure 4.17: The Schmidt gap as a function of L for h = 10 (red) and no magnetic

�eld (green).
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As a last task of this section, we tried to get closer to the critical line, using
the following parameters: 

Jx = 1

Jy = 1.005

Jz = 0.4

(4.47)

The simulations without a magnetic �eld didn't provide sensible results, since
the algorithm doesn't converge for parameters so close to the critical line. We
saw that, empirically, these simulations converge for values of the entropy given
by formula (4.13) smaller than S ≈ 0.5, while in this case the entropy has a
theoretical value of

S = 0.874061 (4.48)

Instead, the application of a magnetic �eld as in case (4.37) brings to a result
which is at least convergent, even if not very precise (the agreement with
(4.13) is up to 2 �gures for L→∞). We performed the simulations with such
a magnetic �eld without sweeps, and with DMRG parameters:

Mmin = 10, Mmax = 100, D = 0.25 · 10−7, Lmax = 600 (4.49)

Notice that we needed a huge number of sites in the chain, compared to the
previous simulations, to obtain the convergence of the algorithm.

The behaviour of the entropy as a function of L (the size of the system) is
similar to the one in �gure 4.13. In �gures 4.18 and 4.19 we show the results
for h = 10. This time the best �t for the Schmidt gap, whose shape is in �gure
4.19, is not an exponential anymore, while it is of the form

∆λ(L) = a+ b · Lc (4.50)

obtaining the following best �t values, which are quite acceptable:
a = 0.652± 0.001

b = 1.03± 0.03

c = −0.67± 0.01

(4.51)

Furthermore, an ansatz of the same kind for the entropy

S(L) = d+ e · Lf (4.52)

is also quite compatible with numerical data, with the following values of the
coe�cients: 

d = 0.940± 0.004

e = −2.35± 0.07

f = −0.60± 0.01

(4.53)

We tried to add terms of the form Ln f to the ansatz (4.52), but this provided
a slightly worse agreement with numerical data. Perhaps, these terms acquire
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more importance further from to the critical line, where the best �t becomes
an exponential. In �gures 4.18 and 4.19 we also plotted the best �ts for the
Schmidt gap and the Entanglement entropy.

We remind here, from section 3.6.1, the ansatz of the function describing
the Schmidt gap, which represents the behaviour of an order parameter:

∆λ ' Lβ/νf
(
|g − gc|L1/ν

)
(4.54)

where for example, in the case of the Sine-Gordon model, we have

g − gc = Jy − 1

The best �t (4.50) would suggest the following form for the universal function
f :

f
(
|g − gc|L1/ν

)
= α |g − gc|−β · L−β/ν + γ |g − gc|δLδ/ν (4.55)

if, of course, we are near enough to the critical line. The constants α, γ and δ
should be determined from the simulations. In this way we would have

∆λ = α |g − gc|−β + γ |g − gc|δL(β+δ)/ν (4.56)

Indeed, to better understand if this form is sensible we need to perform further
simulations along a given line of constant µ, and check that the shape of
the Schmidt gap doesn't change when we get closer to the critical line. A
determination of the exponent β may come from the method discussed in
section 3.6.1, since we have an exact formula for the Schmidt gap. But as
we saw there, the exponent β changes as we approach the critical line. A
numerical study of the Schmidt gap seems then the best way to evaluate β
and ν for the Sine-Gordon model.
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Figure 4.18: The Schmidt gap for the parameters given in (4.47) as a function of L
(red crosses), and the best �t (4.50) (green line). The magnetic �eld is h = 10.

Figure 4.19: The entropy for the parameters given in (4.47) as a function of L (red

crosses), and the best �t (4.52) (green line). The magnetic �eld is h = 10.
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4.6 Conclusions and outlook

In this thesis we wanted to better understand the behaviour of the Entangle-
ment entropies and the Entanglement Spectrum for a XYZ chain. If we denote
with L the lenght of this chain, formulas for the Entanglement entropies al-
ready existed in the case L→∞, and turned out to be in excellent agreement
with numerical data. As for the Entanglement Spectrum, we derived a for-
mula for L → ∞ which also agreed greatly with numerical data. Indeed, the
agreement got worse as we approached the critical XXZ line. Numerical sim-
ulations which may give a very accurate accordance with theoretical results,
approaching the XXZ line, would probably require a huge amount of memory
and several days of computer working: these could be a possible task for the
future.

A further task would be to test these formulas near the antiferromagnetic
points. Indeed, in every neighborhood of such points the Entanglement entropy
diverges, as we described in section 3.5: this implies that the convergence of
the numerical algorithms is di�cult to obtain however we move towards such
points. Moreover, since the correlation lenght is greater near the antiferro-
magnetic points, the convergence of the Entanglement entropy is eventually
reached for very high values of L: one then needs to �nd a compromise between
the realization of this convergence and the precision of numerical data.

As we pointed out, a formula for the Entanglement entropy and the Entan-
glement spectrum for �nite size systems is still lacking. The main problem in
the numerical study of the behaviour of the Entanglement entropy as a func-
tion of L is the double degeneracy of the ground state: this requires necessarily
the use of magnetic �elds to split the degenerated ground states. We showed
that, with a smart application of these �elds, one can obtain an Entanglement
entropy which is monotonically increasing with L. But with this approach,
for example, the oscillations of the entropy disappear. On the other hand,
the use of no magnetic �elds gives results which can hardly be represented by
�tting functions, and near the critical line simulations without magnetic �elds
don't converge at all. It would be interesting to understand in an analytical
way which approach is the best, and then eventually obtain a plausible func-
tion for the entropy as a function of L, which might be explained analytically.
Moreover, near the antiferromagnetic point the oscillations of the entropy are
much more pronounced, so it may be easier to understand analitically their
origin near these points, if one could manage to achieve the convergence of the
entropy.

At last, �nding the correct behaviour of the Schmidt gap as a function of
L would allow us to compute the critical exponents of the Sine-Gordon model,
that is to check if the conjecture in [14], about the behaviour of the Schmidt
gap as an order parameter, is correct even for the XYZ model.
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Appendix A

Entanglement

Entanglement is one of the most striking evidence of the quantum behaviour of
Nature. It has no classical counterpart, as for the concept of spin, and from a
point of view generally accepted it represents the non-locality of the quantum
theory.

Suppose we have a physical system C, composed by two subparts A and
B and described by a pure state |Ψ〉C (entanglement for mixed states will not
be treated here). We say that the system C is separable with respect to the
partition A|B if we can write

|Ψ〉C = |ψ〉A ⊗ |ψ〉B (A.1)

where obviously |ψ〉A ∈ HA, the Hilbert space of the subsystem A, and the
same for B. If this is not possible, we say that |Ψ〉C is entangled. What we
de�ned is the bipartite entanglement, but let's de�ne the multipartite entangle-
ment in an analogous way. A system C composed by subparts A1, A2, . . . , An
is separable with respect to this partition if it can be written as:

|Ψ〉C = |ψ〉A1
⊗ |ψ〉A2

· · · ⊗ |ψ〉An (A.2)

otherwise |Ψ〉C is said to be entangled. To give an example of an entangled
state, suppose that a spinless particle (for example a π+), at rest, decades in
two fermions α and β with spin 1

2
, and opposite momentum. The two subparts

of the system are the two particles respectively. Let's denote the eigenstates
of ~

2
σz with |0〉 and |1〉 (σz is a Pauli matrix, and in the following we will set

~ = 1). Then these two fermions may be described by the following spin wave
function:

|Ψ〉C =
|1〉 |0〉 − |0〉 |1〉√

2
(A.3)

that is, a singlet state with spin 0 by de�nition. This function can't by no
means reduced to the form (A.1), so the state |Ψ〉C is entangled with respect
to the partition α|β. In general, a physical state described by a bidimensional
Hilbert space, that is which is spanned by two base vectors |0〉 and |1〉, is called
a qubit.
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A. Entanglement

Consider now a less trivial example. Suppose again |Ψ〉C = |ψ〉A ⊗ |ψ〉B,
where |ψ〉A is a qubit, and:

|ψ〉B =
|0〉B′ |1〉B′′ − |1〉B′ |0〉B′′√

2
(A.4)

We see that |Ψ〉C is separable with respect to the separation A|B′B′′, but is
not with respect to AB′|B′′.

A.1 EPR paradox and Bell inequality

We want to describe why entanglement is a genuine quantum e�ect, and its
consequences on our vision of the world. We know that Albert Einstein has
always been skeptical about quantum theory of nature. In 1935, A. Einstein,
B. Podolsky and E. Rose (EPR) proposed a paradox that aimed to demolish
the internal consistency of quantum mechanics. In their article ([18]), they
asked which properties should have a physical theory to be succesfull. They
required that such a theory must:

• agree with experiments;

• have elements of reality (realism): if, without perturbing the system, we
can predict with certainty the value of a physical quantity, then �there
exists an element of physical reality corresponding to this physical quan-
tity�.

• be complete (completeness): �every element of the physical reality must
have a counterpart in the physical theory�.

While quantum mechanics agrees very well with experimental data, the ques-
tion is if this theory satisfy reality and completeness, that is if it's (in one
word) complete. We now describe an experiment, similar to the one proposed
by EPR but with the same consequences, that gives a negative answer to this
question. This is based on the existence of entangled states.

Let's then turn back to our state (A.3), composed by two travelling particles
α and β with spin 1

2
and opposite momentum:

|Ψ〉C =
|0〉 |1〉 − |1〉 |0〉√

2
(A.5)

The two particles will travel far away from each other, and at some time they
will be separated by a space-like interval. Suppose we have two observers
called Alice and Bob (in the same fashion of information theory). Alice can
perform measurements on α, while Bob on β. Now, Alice measures sz(α),
the spin component along z of particle α. This will alter the wave function:
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A.1. EPR paradox and Bell inequality

if Alice measures, say, 1
2
, then |Ψ〉C collapses to |1〉 |0〉 (neglecting a phase

factor). This means that sz(β) = −1
2
without uncertainty. In EPR view, sz(β)

is an element of reality, since we can predict its value without uncertainty
before making any measurements. But why this is so? Indeed, we apparently
�perturbed� the system. The fact is that the two particles are separated by a
space-like interval, so these cannot be in any kind of cause-e�ect relationship,
if we accept Special Relativity. This is the hypothesis of locality and implies
that sz(β) must be in its value 1

2
before we start performing the measures.

But let's denote with |1〉x and |0〉x the eigenstates of
1
2
σx. If we expand |1〉

and |0〉 in term of this new base, we have:

|Ψ〉C =
|0〉x |1〉x − |1〉x |0〉x√

2
(A.6)

Alice could as well have performed a measurement of sx(α), and it follows that
sx(β) is another element of realism. On the other hand, remember that spin
operators along di�erent axis satisfy the commutation relation:

[σz, σx] = 2iσy (A.7)

So, quantum mechanics tells us that the the spin components of two di�erent
axis can not be determined simultaneously, while we just showed that this is
possible since they must have de�nite values. This is the EPR paradox. If we
require quantum theory to be complete and local, then it's not consistent.

If quantum mechanics is not satisfactory to describe reality, it should be
possible to �nd a theory which is complete, local, and agrees with experi-
ment. Various attempt have been made to �nd such a theory (see for example
the hidden variable theory), and �nally in 1964 Alexander Bell proposed an
experiment to discern between these.

Let's take for the moment the point of view of a theory that is complete and
local. We start again from a pion π+ at rest, decaying in two particles α and β
having opposite momentum. Suppose Alice measures two physical properties
of the particle α, which we denote with Q and R, and Bob measures the
properties S and T of the particle β. Let the possible values of these physical
quantities (which we denote with q, r, s and t) be ±1. These are elements of
reality, so they are known before performing any measurements. If we repeat
this experiments many times, we can evaluate the probabilities p(q, r, s, t) of the
system to have de�nite values of these quantities. Consider now the particular
combination QS + RS + RT −QT , which can only assume the values ±2. If
we denote with E(·) the mean value of a quantity, we have:

B ≡ E(QS) + E(RS) + E(RT )− E(QT ) = E(QS +RS +RT −QT )

=
∑
q,r,s,t

p(q, r, s, t) (qs+ rs+ rt− qt) ≤ 2
∑
q,r,s,t

p(q, r, s, t) = 2 (A.8)
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A. Entanglement

and this de�nes the Bell inequality for a complete and local physical theory:

B ≤ 2 (A.9)

Let's now turn to quantum mechanics, and choose the properties described
above to be the following:

Q = σzα S =
−σzβ − σxβ√

2
(A.10)

R = σxβ T =
σzβ − σxβ√

2
(A.11)

which have the same possible values ±1. If we compute the expectation value
of these quantities over the state |Ψ〉C given by (A.5), we �nd that:

〈QS〉 =
1√
2
, 〈RS〉 =

1√
2
, 〈RT 〉 =

1√
2
, 〈QT 〉 = − 1√

2
(A.12)

and so:
B ≡ 〈QS〉+ 〈RS〉+ 〈RT 〉 − 〈QT 〉 = 2

√
2 > 2 (A.13)

that is, quantum mechanics violates the Bell inequality.
In the last decades, various experiments showed that Bell inequality is vio-

lated up to 30 standard deviations: this is a striking evidence of the validity of
quantum theory of nature. We then have to reject some of the commonsense
intuitions: quantum mechanics is either not complete or not local, and philo-
sophical debates about which point of view is more correct are still open. If
we accept non-locality, it seems that entanglement violates special relativity,
because a perturbation on the subsystem α propagates istantaneously on β.
Now, if Alice, after measuring sz(α), wants to know if sz(β) assumed a de�nite
value, she has to communicate her results to Bob: otherwise Bob, measuring
sz(β), may think to be the �rst who perturbed the wave function. But no sig-
nal can travel faster than light, and in this way the relationship of cause-e�ect
is preserved.

A.2 Reduced density matrices

It is known (see e.g. [25] or [27]) that quantum mechanics can be reformulated
in terms of density matrices. If a system is in a pure state |Ψ〉, its density
matrix is de�ned as ρ ≡ |Ψ〉 〈Ψ|. If, instead, a system is not in a �xed state,
but has (classical) probabilities pi to be in the states |ψi〉, then its density
matrix is ρ ≡

∑
i pi |ψi〉 〈ψi|: we will refer to this as a mixed state. Given a

density matrix, we can discern these two situations by simply calculating ρ2:
if ρ2 = ρ the system is in a pure state, otherwise it's in a mixed state. Notice
that this last situation can not be described by a wave function: in some sense,
the density matrix is a more general object than the |ψi〉 themselves.
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A.3. Schmidt decomposition

Suppose we have a system C divided in two subparts A and B. In the case
ρC ≡ ρAB = ρA ⊗ ρB, we can describe the subsystem A through:

ρA = TrB ρC (A.14)

This is the reduced density matrix for the system A, and this de�nition is valid
even in the more complex case ρAB 6= ρA ⊗ ρB. To see this, suppose M is
an observable on the system A. If we denote with M̃ the same observable
performed on the larger system AB, it easy to see that:

M̃ =M⊗ IB (A.15)

In fact, we have the decompositionM =
∑

m pmPm, where Pm are projectors
on A, with eigenvectors |m〉. We then have to �nd in AB the vectors whose
eigenvalues are pm, and these are clearly |m〉 ⊗ |ψ〉, with |ψ〉 arbitrary. From
this reasoning the validity of (A.15) follows.

Now, physical consistency requires that any prescription to associate a state
ρA to the subsystem A must have the property that measurements averages
be the same whether computer via ρA or ρAB, that is:

TrA (M ρA) = TrAB (M̃ ρAB) = TrAB
(
(M⊗ IB) ρAB

)
(A.16)

and this relation is satis�ed only for ρA = TrB ρAB. This is because (A.16) is
valid for all observables, so let's take {Mi} to be an orthonormal basis with
respect to the scalar product (P ,Q) ≡ Tr (PQ). We have the decomposition:

ρA =
∑
i

Mi TrA (MiρA) =
∑
i

MTrAB
(
(Mi ⊗ IB) ρAB

)
(A.17)

Thus, ρA is uniquely de�ned by (A.16) if we know ρAB, and this is equal to
TrB ρAB since it satis�es (A.16).

A.3 Schmidt decomposition

A useful tool to determine whether a state is entangled or not is the Schmidt
decomposition. Suppose {|i〉A} and {|j〉B} are orthonormal bases of HA and
HB respectively, and let the dimensions of HA and HB be dA and dB. Then,
a pure state belonging to HC = HA ⊗HB can be expanded as:

|Ψ〉C =
∑
i,j

Mij |i〉A |j〉B (A.18)

A theorem of linear algebra states that any rectangular matrix M with dA×dB
lines and rows can be decomposed as:

M = U Λ V† (A.19)
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A. Entanglement

where U is a dA× dA unitary matrix, V is a dB × dB unitary matrix, and Λ is
a dA × dB matrix whose non zero elements, lying in the diagonal, are all real
and positive. If we switch to the orthonormal vectors:{∣∣̃i〉

A
=
∑

j

(
UT
)
ij
|j〉A∣∣̃i〉

B
=
∑

j

(
F†
)
ij
|j〉B

(A.20)

(note that
(
UT
)
and

(
F†
)
are unitary matrices as well), then (A.18) becomes:

|Ψ〉C =
∑
i,k,l,j

Ui,kΛk,lV
†
l,j |i〉A |j〉B =

∑
k,l

Λk,l

∣∣̃i〉
A

∣∣̃i〉
B

(A.21)

If, at last, we write Λk,l = δk,lλk, we obtain the Schmidt decomposition of the
pure state |Ψ〉C :

|Ψ〉C =
∑
i

λi
∣∣̃i〉

A

∣∣̃i〉
B

(A.22)

Notice that in equation (A.20) the two set of states are orthonormal, but only
the states corresponding to the Hilbert space with lower dimension are a basis.
Furthermore, the state |Ψ〉C is separable if λi = 1 for some i: this imples that
λj = 0 for j 6= i because

∑
j|λj|

2 = 1.
If we take the partial trace of |Ψ〉C with respect to the subsystem B, we

have:
ρA = TrB |Ψ〉C 〈Ψ|C =

∑
i

|λi|2
∣∣̃i〉

A

〈̃
i
∣∣
A

(A.23)

But in an analogous way:

ρB = TrA |Ψ〉C 〈Ψ|C =
∑
i

|λi|2
∣∣̃i〉

B

〈̃
i
∣∣
B

(A.24)

that is, the two reduced density matrix ρA and ρB share the same eigenvalues.
We wil �nd this property very important when de�ning the Von Neumann
entropy of a pure state. The numbers λi are the Schmidt numbers for the state
|Ψ〉C , and they quantify the amount of entanglement between the two systems
A and B. Since the set {|λi|2} is formed by real numbers, it represents a better
way to describe the entanglement: it is called the entanglement spectrum.
Notice also the following: if the system |Ψ〉C is separable, then ρA and ρB
describe pure stated, because only one Schmidt number is non-zero. Otherwise,
if the system is entangled, ρA and ρB always describe mixed states.

A.4 Information theory and Shannon entropy

Information theory is the study of the quanti�cation of information. For ex-
ample, if we have a source sending information, the goal of information theory
is to evaluate the smallest amount of memory needed to store all the output.
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A.4. Information theory and Shannon entropy

The key concept of classical information theory is the Shannon entropy, which
is associated to a probability distribution X = (p1, p2, . . . , pn), and is de�ned
by:

H(X) ≡ H(p1, . . . , pn) = −
∑
i

pi log2 pi (A.25)

where the logarithm is taken in base 2. We use the convention 0 log2 0 = 0.
This gives us the �rts hint on H(X): if an event has probability 0, then it will
never give us any kind of information.

To understand the meaning of Shannon entropy, suppose we have a source
that is producing bits X1, X2, . . . , each being 0 with probability p, and equal
to 1 with probability 1−p (that is, these variables are indipendent). Let's then
study the limit n→∞, where n is the number of bits emitted by the source.
In this limit we know that, for a given output, the number of 0 bits is equal to
pn, and the number of 1 bits is (1 − p)n. The outputs (x1, . . . , xn) satistying
this condition are called typical sequences, and for n → ∞ this is true for all
outputs. If n is �nite, the probability to �nd a typical sequence is given by:

p(x1, . . . , xn) = p(x1) p(x2) . . . p(xn) = pnp(1− p)(1−p)n (A.26)

If we take the logarithm on both sides, we get:

− log2 p(x1, . . . , xn) = −np log2 p− n(1− p) log2(1− p) = nH(X) (A.27)

where X = (p, 1− p) is the probability distribution for each bit. Finally:

p(x1, . . . , xn) = 2−nH(X) (A.28)

Now, we want to store the information we obtained from the source, that is
we search a method to record the output of the source using the least number
of bits possible. Recall that j bits can describe 2j numbers. If n → ∞, the
number of sequences which are not typical tends to 0, so let's focus on the
typical ones. Since the probability for each of these sequences is given by
(A.28), if we label each sequence with a number, we then need nH(x) bits
to store the informations in output from the source. Clearly, this very simple
�algorithm� of data compression has some lacks, the most obvious one is that
it doesn't consider the untypical sequences. But this gives us an idea of the
meaning of Shannon entropy: it is the mean number of bits we need to store
our information. In other words, H(X) quanti�es how much information we
gain, on average, when we learn the value of X ([27]), and this is equivalent to
say that H(X) measures the amount of uncertainty about X before we learn
its value.

Clearly, the reasoning above is valid for an arbitrary probability distribution
X = (p1, . . . , pk), where, for the sake of clarity, pi is the probability for the
outcome of the variable labelled vi. Now a typical sequence (x1, . . . , xn) will
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A. Entanglement

have np1 outputs of v1, and in general npi outputs of vi, and its probability to
appear is:

p(x1, . . . , xn) = 2−nH(X) (A.29)

If we assume that all the outputs are typical sequence (a good approxima-
tion indeed in the limit n → ∞), we just need nH(X) bits to store all the
information in output.

Let's de�ne the relative entropy between two probability distributions X =
{p(x)} and Y = {q(x)} as:

H
(
p(x) ‖ q(x)

)
≡
∑
x

p(x) log
p(x)

q(x)
= −H(X)−

∑
x

p(x) log q(x) (A.30)

This gives us a measure of the closeness betweenX and Y . It has the important
property H

(
p(x) ‖ q(x)

)
≥ 0, with equality if p(x) = q(x) for all x. If we set

q(x) = 1/d for all x, where d is the number of outcomes from a source, we
have:

H
(
p(x) ‖ q(x)

)
= log d−H(X) (A.31)

It's then easy to see that the Shannon entropy has the boundaries

0 ≤ H(X) ≤ log d (A.32)

where the equality H(X) = log d is for p(x) = 1/d for all x. This corresponds
to the maximum uncertainty of the output given by a source, so we'll need the
maximux possible amount of bits to store it.

The joint entropy of a pair of random variables X and Y is de�ned as:

H(X, Y ) ≡
∑
x,y

p(x, y) log p(x, y) (A.33)

and it simply represents the amount of information we gain from the two
events X and Y combined together. If these are indipendent variables, then
it's simply H(X, Y ) = H(X) +H(Y ), otherwise we have:

H(X, Y ) ≤ H(X) +H(Y ) (A.34)

Other kind of entropies can be de�ned, see again [27] for further details.

A.5 Measuring the entanglement

A.5.1 The Von Neumann entropy

The Von Neumann entropy is the generalization of the classical case to the
quantum context, with density operators replacing probability distributions.
Suppose that a state is described by

ρ =
∑
i

λi |ψi〉 〈ψi| (A.35)
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If {|ψi〉} is a set of orthogonal vectors belonging to a Hilbert space H, the Von
Neumann entropy of ρ is de�ned as:

S(ρ) = −Tr ρ log ρ (A.36)

where the trace is over H. Clearly, thanks to (A.35) we have:

S(ρ) = −
∑
i

λi log λi (A.37)

Here we state some properties of S(ρ):

• S(ρ) is positive; S(ρ) = 0 only for pure states and has its maximal value
log d when the states |ψi〉 are all equally probable, in which case ρ = I/d:

0 ≤ S(ρ) ≤ log d

• If a composite system C is in a pure state |Ψ〉C = |ψ〉A ⊗ |ψ〉B then we
have:

S(ρA) = S(ρB) (A.38)

where ρA and ρB are the reduced density matrices of the two subsystems
A and B respectively. This property follows from (A.23) and (A.24).

• The entropy is concave: if a state is a classical superposition of states
ρj, with probabilities pj, then:

S
(∑

j

pjρj

)
≥
∑
j

pjS(ρj) (A.39)

This means, in the point of view of classical information theory, that the
information we have about ρ =

∑
j pjρj is greater than the average of

the S(ρj), because S(ρ) takes into account not only our ignorance about
the whole system ρ, but also our lack of knowledge on the ρj themselves.
In the special case where the ρj live in orthogonal spaces, we have:

S
(∑

j

pjρj

)
= H(

{
pj}
)

+
∑
j

pjS(ρj) (A.40)

• S(ρ) satis�es subadditivity : if ρ = ρAB, where A and B are two subsys-
tems, then

S(ρAB) ≤ S(ρA) + S(ρB) (A.41)

where the equality is for ρAB = ρA ⊗ ρB.

• If we apply a unitary transformation ρ → UρU−1 on our system, the
entropy remains invariant:

S(UρU−1) = S(ρ) (A.42)
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Let's turn to the problem of measuring the entanglement. This hasn't been
solved yet, in the sense that it is still lacking a formula which measures, in
a satisfactorial way, bipartite and multipartite entanglement in every possible
cases. Let's approach the problem in the case of bipartite entanglement of a
pure state. Suppose we have, as usual, a system C described by a density
matrix ρ = |Φ〉 〈Φ| and divided in two subsystems A and B. We then require
that a measure E(ρ) of the entanglement of the system C satis�es the following
reasonable properties:

1. E(ρ) = 0 for separable states

2. If Θ is an operator that realizes LOCC, then

E
(
Θ(ρ)

)
≤ E(ρ) (A.43)

A �local operation� (LO) is an operation acting locally on only one of
the subsystems, and it shoudn't increase E(ρ) since entanglement exists
only as an interaction between the two subsystems. Furthermore, entan-
glement is a quantum e�ect, so if A and B perform operations between
themselves throught a classic channel (�channel communication�, CC),
we expect this not to increase the entanglement of the total system as
well.

3. E(ρ) is a convex function, that is:

E
(
λρ1 + (1− λ)ρ2

)
≤ λE(ρ1) + (1− λ)E(ρ2) (A.44)

for 0 ≤ λ. In fact, it is reasonable to assume that entanglement doesn't
increase under a classical mixing of two or more states, since this is a
quantum e�ect, and it is not concerned with classical statistics.

4. given two states described by ρ and σ, we have:

E(ρ⊗ σ) ≤ E(ρ) + E(σ) (A.45)

which means that putting together two non interacting systems should
not increase the overall entanglement. Of course, for a single state ρ we
expect that

E
(
ρ⊗N

)
= NE(ρ)

We now want to show that the entropy

S(ρA) = −Tr ρA log ρA (A.46)

gives a measure of the entanglement between A and B, in the case of a pure
state |Φ〉. First of all notice that S(ρA) = S(ρB), thanks to (A.23) and (A.24).
This states the reasonable fact that A is entangled to B in the same measure
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that B is entangled of A. As a consequence, we can euristically de�ne the
entropy of the pure state |Φ〉C as:

E
(
|Φ〉C

)
≡ S(ρA) = S(ρB) (A.47)

Furthermore, S(ρA) = 0 if ρA describes a pure state, which implies that |Ψ〉C is
separable (see section A.3): when the entropy is 0, we have no entanglement be-
tween the two parts. If instead S(ρA) takes its maximum value log d, we expect
|Ψ〉C to be maximally entangled. This is the case where we have the maxi-
mum uncertainty about the mixed state ρA, that is we have the least amount
of information possible to know which pure state A is going to take, since
ρA = IA/d (if A is the part with lower dimensional Hilbert space). Anyway,
the most important problem of Von Neumann entropy is that it is concave, so
it doesn't satysfy property 3 for a measure of entanglement at all. This means
that we can take S(ρA) = −Tr ρA log ρA to measure entanglement of a system
C only if ρC is in a pure state, in which case we always have λ = 1 in property
3, and (A.44) becomes an equality.

We will deal with Von Neumann entropy in the context of conformal �eld
theory (see chapter 3), but due to this last discussion we will always refer to
the entropy of a pure and bipartite state.

A.5.2 The Renyi entropies

Let's now derive Shannon Entropy in a more abstract way. We already know
thatH(X) ≡ H(p1, p2, . . . , pn) quanti�es our uncertainty about the probability
distribution X before we know its value. Actually, the form

H(X) = −
∑
i

pi log pi (A.48)

can be derived from a set of axioms that Shannon entropy should satisty. These
axioms are ([29]):

1. H(p1, . . . , pn) is a symmetric function of its arguments;

2. H(p, 1− p) is a continuous function of p, for 0 ≤ p ≤ 1;

3. H
(

1
2
, 1

2

)
= 1;

4. H
(
tp1, (1− t)p1, . . .

)
= tH(p1, . . . ) + p1H(t, 1− t) for 0 ≤ t ≤ 1.

Suppose we have two sets of probability distributions X = (p1, p2, . . . , pn) and
Y = (q1, q2, . . . , qn), and denote with X ∗ Y the direct product of these two
distibutions, whose elements are given by piqj. It follows from (A.48) that:

H(X ∗ Y ) = H(X) +H(Y ) (A.49)
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A. Entanglement

This equation expresses the property of additivity for Shannon entropy: if
we have two independent events, the information we gain on the combined
experiment is equal to the sum of the information we gain performing the two
experiments separately. It can be shown that axiom 4 implies (A.49), but
the opposite is not true. Anyway, (A.49) is the only important property we
need for a measure of information, so if we try to �nd an expression satisfying
axioms 1, 2, 3 and (A.48), we end up with several functions. One class of such
functions are the so called Renyi entropies :

Hα(X) =
1

1− α
log2

(∑
i

pαk

)
(A.50)

and these can also be regarded as a measure of the entropy of the distribution
X. An important property of the Renyi entropies is that for α→ 1 we recover
the Shannon entropy, as can be easily seen by taking this limit in (A.50).

The quantum equivalent take also the name of Renyi entropies, and these
are given by:

Sα(ρ) =
1

1− α
log
(
Tr ρα

)
(A.51)

As a �nal remark, note that Von Neumann and Renyi entropies are de�ned
with logarithms in base 2. When evaluating these objects in statistical systems
(as in chapter 3), we will take, for convenience, the natural logarithms instead.
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Appendix B

Corner Transfer Matrix

In this section we focus on the de�nition and some properties of the Corner
Transfer Matrices (CTMs). We also give an overview of the eight vertex model,
and describe its CTMs. The presentation is concise, since these topics are very
wide. The book which best covers them is ([3]), and all the details can be found
there.

B.1 De�nitions

We know that, in the context of classical models, a row-to-row transfer matrix
describes the interaction between two rows, or equivalenty it adds a row on
the lattice, from the point of view of Baxter's book. This transfer matrix is
composed by the two operators

[Pi(K)]~σ,~σ′ = exp
(
K σi σi+1

)
δσ1,σ′1 . . . δσN ,σ′N (B.1)

and

[Qi(L)]~σ,~σ′ = δσ1,σ′1 . . . δσi−1,σ′i−1
exp
(
Lσi σ

′
i

)
δσi+1,σ′i+1

. . . δσN ,σ′N (B.2)

where the δα,β are Kronecker deltas, also denoted with δ(α, β). Suppose we
are building the Boltzmann weight of a lattice with M rows and N columns,
and that we have already constructed k rows. Then [Pi(K)]~σ,~σ′ adds an inter-
action between sites σi and σi+1 (on the same row k) with Boltzmann weight
exp
(
K σi σi+1

)
. On the contrary, [Qi(L)]~σ,~σ′ �rts creates a new spin σi in a

new row k + 1, and then produces an interaction between σi and the old spin
σ′i (on row k), with Boltzmann weight exp

(
Lσi σ

′
i

)
. With the expression �old

spin� we mean a site over which we are not going to apply these operators
anymore, because it became now a �bulk� spin. Combining (B.1) and (B.2)
(for i ranging from 1 to N) in a smart way, we then obtain the row-to-row
transfer matrix of the model.

In the same fashion, a corner transfer matrix adds an entire quadrant to
the lattice. We will just need four of these objects: in the thermodynamic
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B. Corner Transfer Matrix

limit, they will cover the entire plain. CTMs can be de�ned in general for
models with short-range interaction, but for the sake of clarity we will restrict
ourselves to a square lattice model with interactions round faces (also known
as IRF models). The eight vertex model enters in this class, because it's
equivalent to a model with diagonal and nearest neighbour interactions. Let's
associate to each site of the lattice a spin σi, whose possible values are σi = ±1
for simplicity. The IRF models, by de�nition, have interactions between spins
that lay on the same face, so the Hamiltonian H can be written as a sum of
terms ε involving only spins on the same face, that is:

H =
∑
faces

ε(σi, σj, σk, σl) (B.3)

Here the subscripts (i, j, k, l) refers to the sites surrounding counterclockwise a
given face, see Fig. B.1a. Let's denote with {σ} the set of all the spins of the
lattice, and β = 1/(kT ). Thanks to the form (B.3) of the energy, the partition
function is:

Z ≡
∑
{σ}

e−βH({σ})

=
∑
{σ}

∏
faces

w(σi, σj, σk, σl)
(B.4)

where the sum is over all the spin con�gurations of the lattice, the product is
over all the faces of the lattice, and the Boltzmann weight are:

w(σi, σj, σk, σl) = e−β ε(σi,σj ,σk,σl) (B.5)

Consider now the lattice in Fig. B.1b, which has the shape of a quadrant of the
lattice in Fig. B.2, and let's evaluate its partition function. Label the left-hand
spins with ~σ = {σ1, σ2, . . . , σm}, and the top ones with ~σ′ = {σ′1, σ′2, . . . , σ′m}.
It is clear from the �gure that σ1 = σ′1, and with the numbers (j), (j)′ we
indicate the boundary spins. The CTM of this quadrant is then de�ned as its
partition function:

A~σ,~σ′ =

{∑
{σ}
∏

facesw(σi, σj, σk, σl) if σ1 = σ′1
0 if σ1 6= σ′1

(B.6)

Note that A~σ,~σ′ is a function of ~σ and ~σ′: we are not summing over this indices,
as well as over the boundary conditions, which we suppose to be �xed to their
ground state values. Let's now de�ne the corner transfer matrices B~σ,~σ′ , C~σ,~σ′
and D~σ,~σ′ as in Fig. B.2, where the spins ~σ′ of each CTM can be reached from
~σ circling counterclockwise on the lattice. The matrices product

A~σ,~σ′B~σ′,~σ′′C~σ′′,~σ′′′D~σ′′′,~σ
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B.1. De�nitions

(a) A Boltzmann weight. (b) The CTM A.

Figure B.1

is then the Boltzmann weight of the entire lattice (with �xed boundaries) and
the partition function is:

Z =
∑

~σ,~σ′,~σ′′,~σ′′

A~σ,~σ′B~σ′,~σ′′C~σ′′,~σ′′′D~σ′′′,~σ (B.7)

where the summation is subjected to the condition σ1 = σ′1 = σ′′1 = σ′′′1 . But
this can be ignored thanks to the de�nition (B.6), and so we have:

Z = TrABCD (B.8)

Let's now de�ne other classes of CTMs. Denote with ~s the spins in the
ground state of the model. If we set

α = A~s,~s′ β = B~s′,~s′′ (B.9)

γ = C~s′′,~s′′′ δ = D~s′′′,~s (B.10)

then we have the normalized CTMsMn (whereM is one of the four matrices):

An = α−1A Bn = β−1B (B.11)

Cn = γ−1C Dn = δ−1D (B.12)

normalized in the sense that their ground state elements (Mn)~s,~s′ are unity.
We can also de�ne the diagonal CTMs Md as:

An = α′PAdQ
−1 Bn = β′QBdR

−1 (B.13)

Cn = γ′RCdT
−1 Dn = δ′TDnP

−1 (B.14)

where the factors α′, β′, γ′ and δ′ ensures that the maximum values of the
diagonal matrices Md are unity.
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.

Figure B.2: The lattice with partition function (B.7)

All these sets of CTMs have the property that they do not change the
expectation value of the observables. For example, the mean value of the spin,
say, σ1 over the lattice is:

〈σ1〉 =
1

Z

∑
{σ}

σ1

∏
faces

w(σi, σj, σk, σl)

=
Tr
(
SABCD

)
Tr
(
ABCD

) (B.15)

where S =

(
1 0
0 −1

)
. Thanks to the ciclicity of the traces, we can make the

subtitution M →Mn →Md without a�ecting the result.
Now, if the model is isotropic and re�ection-symmetric, and is ferromag-

netic (so the boundary spins can be chosen to be equal), then all the CTMs
are equal and symmetric. If otherwise we have the symmetry:

w(a, b, c, d) = w(c, b, a, d) = w(a, d, c, b) (B.16)

(where a, b, c and d are the value of the spins surrounding a face) the CTMs
are still symmetric, and satisfy C = A, B = D. Thanks to the simmetry of
the CTMs, we can set

Mn = µ′PMdP
−1 (B.17)

where P is an orthonormal matrix that diagonalize all the CTMs.
To conclude this section, let's de�ne the face operators as:

(Ui)~σ,~σ′ = δσ1,σ′1 . . . δσi−1,σi+1
w(σi, σi+1, σ

′
i, σi−1) δσi+1,σ′i+1

. . . δσm,σ′m (B.18)
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B.1. De�nitions

Figure B.3: The e�ect of the face operator (B.18) on the preexistent sites of the

lattice. The old site is σ′i.

These operators create a new face to the lattice: �rst they add a new spin σi,
going in the NE to SW direction (see Fig. B.3), and then they link it with the
rest of the lattice through an interaction round faces with Boltzmann weight
w(σi, σi+1, σ

′
i, σi−1). Since our CTM A is built by faces of spins, we expect

that it can be written in term of these operators. To do this, we need to de�ne
face operators involving boundary spins, and we have two tipes of these faces.
One contains one boundary of spin s, and will be �created� by the operator

(U s
m)~σ,~σ′ = δσ1,σ′1 . . . δσm−1,σ′m−1

w(σm, s, σ
′
m, σm−1) (B.19)

The other will contain three boundary spins, whose value is s, t and z respec-
tively, and its associated face operator is:

(U stz
m+1)~σ,~σ′ = δσ1,σ′1 . . . δσm,σ′m w(s, t, z, σm) (B.20)

We will label the boundary spins with numbers (j) and (j)′, which means that
they lay in the same row of σj, and the prime indicates the spin on the right.
There is only one spin at �row� 1, denoted in a obvious way as (1). Paying
now attention to the positions of all the face operators, the CTM A is easy to
construct. It is given by:

A = F (m+1)(m+1)′(m)
2 F (m)(m)′(m−1)

3 . . . F (2)(2)′(1)
m+1 (B.21)

where

F (m+3−j)(m+3−j)′(m+2−j)
j =

U
(m+3−j)(m+3−j)′(m+2−j)
m+1 U (m+1)

m Um−1 Um−2 . . . Uj (B.22)

As a simple case, for m = 2 we have:

A = U
(3)(3)′(2)
3 U

(2)
2 U

(2)(2)′(1)
3 (B.23)
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B.2 The eight vertex model

Consider a lattice with sites and edges, and let's synthetize the interaction
between two adjacent sites in a graphichal way with an arrow, that can point
towards one or the other site respectively. For the sake of clarity, consider an
ice cube, which is modelized in the following way. Each site contains an Oxigen
atom, an the Hydrogen atoms are placed on the edges. Suppose that each edge
can host only one Hydrogen atom. We then have two situations: the H atom,
due to electrical attraction, may seat nearer to one or the other O atom, and
these possibilities will be represented with an arrow that points towards one or
the other site. Here, the arrow is simply describing the electic dipole between
two opposite charges. If we further require that only 0 or 2 Hydrogen atoms

(a) The ice cube

con�guration

with Oxigen and

Hydrogen atoms.

(b) The equiv-

alent repre-

sentation with

arrows.

Figure B.4: A modelization of the ice cube

can lie in the neighbour of an Oxigen atom, we have then de�ned the ice
type model, known as well as the six vertex model, because only six vertex
con�gurations are allowed. The eight vertex model is a generalization of this,
and the allowed vertex con�gurations are represented in Fig. B.5. We will here
focus on the �zero �eld� eight vertex model: if we denote with w(a, b, c, d) the
Boltzmann weight of a vertex con�guration, only four of these are indipendent,
and are denoted as

w(+,+|+,+) = w(−,−|−,−) ≡ a

w(+,−|−,+) = w(−,+|+,−) ≡ b

w(+,−|+,−) = w(−,+|−,+) ≡ c

w(+,+|−,−) = w(−,−|+,+) ≡ d

(B.24)

Moreover, if εα (for α = a, b, c, d) is the energy of a vertex, these weights can
be written as:

a = e−βεa (B.25)

and so on. Let's now de�ne the Jacobi elliptic functions sn (u, k), cn (u, k)
and dn (u, k) as a generalization of the trigonometric functions, such that they
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Figure B.5: The vertex con�gurations allowed by the eight vertex model.

satisfy:
sn2 u+ cn2 u = 1 sn2 u+ k2 dn2 u = 1 (B.26)

These are real if 0 ≤ k ≤ 1, and if it's clear the value of k from the context,
we simply write, for example, snu. Denoting with f(u) one of the elliptic
functions, these have the important property:{

f
(
u+ 2I(k)

)
= ±f(u)

f
(
u+ 2iI(k′)

)
= ±f(u)

(B.27)

where the sign ± depends on which one we are considering. This means that
elliptic functions are double periodic on the complex plane, with periods 4I
and 4I ′, where

I(k) =

∫ π
2

0

dθ√
1− k′2 sin2 θ

(B.28)

is the complete elliptic integral of �rst kind, of argument k, and k′ =
√

1− k2.
Let's de�ne in a similar fascion the function snhu = −i sn iu, which is the
analog of the iperbolic function sinhu = −i sin iu. A series expansion of all
these functions can be found in chapter 15 of [3]. The Boltzmann weights of
the eight vertex model can then be parametrized in terms of entire functions
as: 

a = ρ snh (λ− u)

b = ρ snhu

c = ρ snhλ

d = ρ k snhλ snhu snh (λ− u)

(B.29)

We now want to give a sketch, without proving every passage (the demon-
stration is quite lenghty), of the derivation of the CTMs for the eight vertex
model. First, note that this model can be described as a �IRF model�. To see
this, replace the arrows with spins, the arrow pointing left/right correspond-
ing to spins having value σ = +1,−1 respectively: we can then consider the
Boltzmann weight w(a, b, c, d) of a vertex as a Boltzmann weight of a face.
Since these weights satisfy (B.16), the CTMs will be symmetric and A = C,
B = D. Furthermore, this implies that:

An(λ− v) = Bn(v) (B.30)

Using (B.17), let's write

Ad(u) =
P−1An(u)P

a1(u)
(B.31)
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with a1(u) the highest eigenvalue of An(u). Thanks to these symmetry prop-
erties, the diagonal matrix Ad(u) satis�es

Ad(u)Ad(v) = Xd(u+ v − λ) (B.32)

where Xd is another diagonal matrix. Due to the dependence on u+ v of Xn,
if we take ∂

∂ log x
and ∂

∂ log y
separately on this equation, and then compare the

results, we have that the elements of Ad(u) must have the form:[
Ad(u)

]
r,r

= mr exp (−αru) (B.33)

and it can be shown, by other means, that the mr must all be equal to 1.
Now, the CTMs are functions of the Boltzmann weights of the faces of the
lattices, and these are double periodic thanks to (B.29). Because they are real
quantities, we have u ∈ iR, so Ad(u) is periodic along the complex line, with
period 4iI. We then have:[

Ad(u)
]
r,r

= exp
(
−πnru

2I

)
(B.34)

The integers nr can be determined in the limit k → 0, while leaving the other
parameters �xed. The Boltzmann weight will tend to:

w(a, b, a, b)→ 1
2
ρ exp

(
πλ
2I

)
w(a, b,−a,−b)→ 0

w(a, b, a,−b)→ 1
2
ρ exp

(
π(u−λ)

2I

)
w(a, b,−a, b)→ 0

(B.35)

and so the face operators (B.18) will be diagonal:

(Ui)~σ,~σ = δ(σ1, σ
′
1) . . . δ(σm, σ

′
m)

1

2
ρ exp

(
2λ− πu(1− σi−1σi+1)

4I

)
(B.36)

Thanks to (B.21), A(u) is diagonal as well, and to recover Ad(u) we simply
need to divide all the elements of A(u) by exp

(
λ/(2I)

)
(we have to normalize

the maximum entry by 1). Performing the matrix products in (B.21), and
omitting the Kronecker deltas for clarity, we have:

[
Ad(u)

]
~σ,~σ

= exp

[
−πu

m+1∑
i=2

(i− 1)(1− σi−1σi+1)

4I

]
≡ s

∑m+1
i=2 (i−1)(1−σi−1σi+1)/2

(B.37)

where we de�ned s = exp
(
−πu

2I

)
. With respect to the top spins of Fig. B.1b,

the spin σm+1 is (1), while σm+2 is (2)′. It is important to notice that this
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formula for Ad(u), in the limit m → ∞, is valid only in the ferromagnetic
ordered phase: this means that Ad(u) will have a �nite value only if there exist
j such that

σi = 1 for i > j OR σi = −1 for i > j (B.38)

Furthermore, this makes evident that the boundary conditions are e�ectively
open boundary conditions.

We are now ready to put these CTMs in their �nal form: this is an in�nite
tensor product of matrices. For Ad and Cd, we have

Ad(u) = Cd(u) =

(
1 0
0 s

)
⊗
(

1 0
0 s2

)
⊗
(

1 0
0 s3

)
⊗ . . . (B.39)

Remembering (B.30), and setting t = exp
(
−π(λ−u)

2I

)
, we have instead for Bd

and Dd:

Bd(u) = Dd(u) =

(
1 0
0 t

)
⊗
(

1 0
0 t2

)
⊗
(

1 0
0 t3

)
⊗ . . . (B.40)

This notations means the following. The matrix elements of Ad(u) are labelled
with (~σ, ~σ′) as above. The �rst matrix of (B.39) concerns with σ1 and σ

′
1, and

in general the n-th matrix deals with σn and σ′n. Then, label the elements
of these 2 × 2 matrices with (σ1, σ

′
1) (where the value +1 stands for the �rst

row and the �rst column), and select the element corresponding to these spin
values (σ1, σ

′
1). Do this for all the 2 × 2 matrices, and take the product of

all the elements selected: this will give the value [Ad(u)]~σ, ~σ′ . The reader may
convince himself that this in�nite matrix product is equivalent to (B.37).
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Appendix C

Numerical data

This section involves the description of the DMRG algorithm, �rst introduced
by White in [34], which is actually the most powerful one for the realization
of numerical simulations. We then brie�y describe the C++ program that
implements the algorithm and we report the data obtained by the simulations.

C.1 The DMRG algorithm

C.1.1 Density-Matrix approach

In the standard renormalization group approach (see chapter 1) one starts with
a spin chain, and breaks it into identical blocks, denoted by B. Let HB be the
Hamiltonian describing a single block, which doesn't involve interactions with
other blocks. Consider, for example, the Heisenberg model, whose Hamiltonian
is

H =
∑
i

~Si · ~Si+1 (C.1)

If at the beginning each B is made by just one spin, we have HB = 0. The
next step consists in enbodying two neighbour blocks in a bigger block B′ =
BB, and taking into account the interactions between these blocks. In the
Heisenberg model, for example, only the neighbour spins interact, and if each
block consists in a number n of spins then, eventually, only the neighbouring
spins, set in the edges of the two blocks respectively, may interact through
(C.1). This means that, instead of diagonalizing the Hamiltonian of the whole
spin chain, we are studying �smaller� systems which are ensembled together
step by step: the idea is then to �nd a proper number of states that best
describe the Hamiltonian HB′ , instead of keeping all the states, otherwise the
number of states would be too large to perform any kind of calculations.

The main problem of this approach is how to consider the interaction of the
blocks with the rest of the system: in each step the Hamiltonians B′ = BB
of each pair of blocks do not involve the rest of the system in which they
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are embedded, and this rebounds in important numerical errors after each
step. Some temptatives to �x this inconvenient have been made, such as the
�combination of boundary conditions� (CBC) approach (see [36]). This consist
in varying the boundary conditions of each block of spins in a suitable manner,
so to simulate the quantum �uctuations of the whole spin chain: the authors
spoke about a complete set of boundary conditions to be found case by case.
But in more than one cases it's impossible to �nd a satisfactory set of such
boundary conditions.

The best way to describe a system as being part of a universe is to consider
its density matrix. If the system is isolated we simply talk of density matrix,
while if this is embedded in a larger environment we invoke the more general
concept of reduced density matrix (see appendix A), which describes completely
the interaction between the system and the environment. This is the basic idea
of the DMRG algorithm.

The density matrix approach assumes the knowledge of the wave function
of the whole spin chain (which typically describes the ground state), also called
target state. Consider a subsystem of our spin chain, formed by two blocks BB.
Denote with {|i〉} a base of BB (whose dimension is l), and let {|j〉} describe
the rest of the spin chain. Then we can write

|ψ〉 =
∑
i,j

ψi,j |i〉 |j〉 (C.2)

We need to de�ne a procedure for producing a set of states

|uα〉 α = 1, . . . ,M (C.3)

that describe the subsystem BB in the best way. Here M is the maximum
number of states we use to describe BB, also denoted DMRG states. Of course,
we can't reproduce exactly |ψ〉 ifM < l, but we may construct a wave function∣∣ψ̄〉 =

∑
α,j

aα,j |uα〉 |j〉 (C.4)

which best represents |ψ〉 if the quantity

S ≡ ‖ψ − ψdmrg‖2 (C.5)

is minimized. It can be shown (see [34]) that the set of states {|uα〉} mini-
mizing S are eigenstates of the reduced density matrix ρ describing BB, and
corresponds to the M largest eigenvalues of ρ. This is a general result, no
matter if |ψ〉 is in a pure or mixed state.

We know that the set of eigenvalues {wα} of ρ satis�es∑
α

wα = 1
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This suggests the following: a good way to determine how large should be the
number M of DMRG states is by requiring that the quantity

D = 1−
M∑
α=1

wα (C.6)

should be reasonably small.
Once we have constructed the wave function of BB, we then consider bigger

blocks B′ that englobe the previous B, and repeat the procedure until we
eventually cover the whole size of the system. Furthermore, each eigenstate
of the reduced density matrix describes how the block BB is entangled with
the spin chain, that is it describes the connection between BB and the rest of
the systems: this is why we need to consider smaller blocks B and add them
together.

C.1.2 Density-Matrix algorithm

Indeed, if we want to reproduce this reasoning in a numerical algorithm, we
can't use the wave function describing the whole system, because typically it
is not known. What we can do is to diagonalize a larger systems, called su-
perblock, containing the two blocks B. A density-matrix algorithm is de�ned
mainly by the form of this systems, the target space used, and the manner in
which the blocks are enlarged. Let's de�ne the blocks BL

i and BR
i , where the

Figure C.1: Spin-block con�guration.

superscrips L and R denote the left or the right block respectively, and the
subscript counts the number of spins contained by the blocks. In our case, we
won't double the blocks, that is B′ = BB, but instead we add a single site to
each block: B′ = B + site. We won't explain here all the advantages of this
choise, see [35] for further details. Figure C.1 shows the spin-block con�gura-
tion at each passage of the algorithm. The superblock is then composed by
BL
i , B

R
i and the two spins in �gure. As described in [34], the passage of the

DMRG algorithm are the following:

1. Make four initial blocks, each consisting of a single site, representing the
initial four site system.

2. Diagonalize the superblock Hamiltonian to �nd the target state.
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3. Form the reduced density matrix for the two-block system, formed by
B′L2 = BL

1 + site and B′R2 = BR
1 + site (in general B

′L/R
i+i = B

L/R
i + site).

4. Diagonalize the reduced density matrix and keep the m largest eigenval-
ues with associated eigenvectors: these will describe the block B′Li+i. We
take as the block BR

i+1 the re�ection of block BL
i+1.

5. Add two spins as in �gure C.1, and go to step 2.

In principle this process could continue to in�nity, but in practice, after
a certain number of iteration which depend on the correlation lenght of the
system, the main properties of the system (such as the energy or the entan-
glement entropy) don't vary appreciably anymore, and at that point one can
stop the process: this means that the chain obtained is simulating nicely the
in�nite chain.

C.1.3 The DMRG program

Here we just give a few notions of the program used to implement the DMRG
simulations.

Among other data, the input of the DMRG program requires:

• A number Mmin that imposes the minimum number of DMRG states to
be taken in the construction of ψdmrg;

• A numberMmax which instead represents the maximum number of DMRG
states;

• The number D of condition (C.6).

• The lenght of the spin chain Lmax, that is the number of spins.

• Two numbers describing how many sweeps (see below) should the pro-
gram perform, and at which lenght of the subsystem the program begins
to perform these sweeps.

The program starts from a number of spins L = 4, and adds two spins after
each step, until Lmax is reached: this implies that Lmax must be even. Initially
the two blocks BL and BR consist in one spin, as described in the previous
section.

Before adding to the superblock BL
i B

R
i the two spins, the program may

eventually perform some sweeps. These consists in removing one spin from,
say, BL

i and attach it to BR
i , so to create the superblock BL

i−1B
R
i+1: again

we calculate the reduced density matrix and the states describing the left
block, which is our reference block. This operation is repeated until BL has
approximately 10 spins, and then the operation is reversed, removing spins
from BR and attaching them to BL. When the two blocks BL and BR have
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C.2. Simulations for costant l

again the same number of spins, the �sweep� is completed. This improves the
precision of the �nal data, even if the reason for this fact is still not clear.

At each passage of the algorithm, the new wave function ψdmrg, describing
BL, must satisfy

1−
M∑
α=1

wα < D (C.7)

where wα, as already explained, are the eigenvalues of the reduced density
matrix ρ describing BL.

After each step, the program makes one of the following choices. To con-
struct ψdmrg we use a number of states M which possibly satisfy the condition
(C.6). If M < Mmin, then the wave function is built using exactly M = Mmin

states. If there doesn't exist any value M < Mmax such that (C.6) is true,
then the algorithm takes M = Mmax states. Otherwise, the algorithm takes
the �rst value M , between the two edges, that satisfy (C.6). If, at last, we
have Mmin = Mmax, then M = Mmin = Mmax at each passage.

At last, one can ask the program to send in output several quantities, for
example energies, entanglement entropies, entanglement spectrum, and mean
values of various quantities, such as the spin along a certain direction.

C.2 Simulations for costant l

Here we report (from table C.2 to table C.15) all the data obtained by the
simulations performed for costant l, in the sector

Jy > 1 − 1 < Jz < 1 (C.8)

and we remind the de�nition of l (see (3.135)):

l =

√
1− J2

z

J2
y − J2

z

(C.9)

We performed simulations according to the following values of l:

l = 0.25, 0.35, 0.4, 0.45, 0.5, 0.6, 0.7 (C.10)

The number of �DMRG states� used to construct ψdmrg lied between Nmin = 50
and Nmax = 200; furthermore, D = 10−8 and Lmax = 90. All the entropies
are evaluated with logarithms in base 2, because this is the basis used by the
DMRG program. We always applied, to one site of the spin chain, a magnetic
�eld along the y axis, of magnitude

h = 0.0001

This is to split the two existing ground states (see discussion in section 4.2).
The tables relative to a certain value of l are gathered together. For each

value of l, we have:
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C. Numerical data

• A table where we plotted all the values (Jy, Jz) used to perform the
numerical simulations. Here Jz is treated as the indipendent variable,
and Jy is computed according to (C.9).

• The Schmidt gap as a function of Jz, that is the di�erence between the
largest and the next-largest eigenvalues.

• Two tables, representing respectively the value of the entanglement en-
tropy S(Jz, l) computed by the program, and the entanglement entropy
computed by the exact formula (3.124). We remark the very good agree-
ment between numerical and exact data, even though we applied a (small
but nonzero) magnetic �eld.

• The entanglement spectrum for each couple (Jy, Jz), always speci�ed
in the relative table. We kept only the eigenvalues greater that 10−16,
because the �machine precision� is about 10−15. Even the eigenvalues of
this order are not relyable: indeed, we can hardly �nd degenerations of
eigenvalues at order 10−15. Below this value the DMRG saves a huge
number of eigenvalues that form a �continuum� down to about 10−20:
these values are certainly not relyable, so we do not report them.

C.3 Simulations around the circles

In this section we show (from table C.16 to table C.21) the results obtained
by the simulations performed on the circles parametrized by{

Jy = 1 + r sinα

Jz = 1− r cosα
(C.11)

for the values
r = 0.96, 0.97, 0.98 (C.12)

For each value of r we have two tables. The �rst one depicts the values of Jy
and Jz used for the numerical simulations. The other one shows the values
of the entanglement entropy obtained from the exact formula and from the
numerical simulations, as well as the DMRG parameters (see section 4.3.2)
used in each simulation, under the column �type�.

Notice the following: in certain simulations we used values of (Jy, Jz) which
were very close to the critical line. This implied that the value of the entropy
may have converged, in some case, only for a huge number of spins in the
chain: for this reason, we used such high values for Lmax. Let's explain this in
a better way.

In column �type� of the tables we put in round brakets the number L of
sites corresponding to the value of the entanglement entropy SDMRG reported.
In fact the DMRG program, increasing the number of sites, gives at some point
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C.3. Simulations around the circles

Table C.1: r = 0.02: Values of the entropies.

L SDMRG

200 0.228886240228
202 0.228879294565
204 0.228875349080
206 0.228875295600
208 0.228869337533
210 0.228866288713
212 0.228867026761
214 0.228861814841
216 0.228859443283
218 0.228860778550
220 0.228856130471

a value of SDMRG that best represents the value of S in the limit L→∞. As
we saw in section 4.2 (see �gure 4.2b), �rst the entropy increases, it reaches a
maximum, and then decreases monotonically towards a value Stheor. that may
be predicted theoretically. But for a certain value of L this entropy starts to
oscillate: there is a number of digits that don't vary, while the others may
increase or decrease randomly. In the case of the simulations for costant l we
didn't mentioned these oscillations because they were negiglible (tipically at
order 10−12). This situation is represented in table C.1, where we plotted the
values of the entropies given by the DMRG program as a function of the size
L of the spin chain, corresponding to:

r = 0.98 Jy = 1.002610523844 Jz = 0.9801711028 (C.13)

Here the entropy decreases up to the value L = 210, after which it starts
oscillating. In each simulation performed, we took the value of the entropy
corresponding to the size L before which SDMRG begins its oscillations, in this
case to L = 210. If there is no value under round brakets, we took the value
of SDMRG corresponding to Lmax.

For the parameters (C.13) the agreement between theoretical and numerical
results is good, up to 4 digits, but not excellent (see the tables below); the
agreement improves by moving away from the critical line.
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C. Numerical data

Table C.2: l = 0.25

(a) Jz and Jy values

for simulation

Jz Jy

0.5 3.5
0.6 3.2557641
0.7 2.9410882
0.8 2.5298221
0.9 1.9621417
0.95 1.5692355
0.98 1.2625371

(b) Schimdt gap as a func-

tion of Jz.

Jz S

0.5 0.997255524040
0.6 0.997923911443
0.7 0.998514687860
0.8 0.999040766679
0.9 0.999512774952
0.95 0.999732097652
0.98 0.999861072803

(c) Von Neumann Entropy

S(Jz, l) from numerical

data.

Jz S

0.5 0.015057025216
0.6 0.011803444757
0.7 0.008800369296
0.8 0.005984089290
0.9 0.003276682161
0.95 0.001917026574
0.98 0.001059845581

(d) Von Neumann Entropy

S(Jz, l) from the exact for-

mula.

Jz S

0.5 0.01505702507
0.6 0.01180344476
0.7 0.008800369295
0.8 0.00598408929
0.9 0.003276682161
0.95 0.001917026575
0.98 0.0010598455812
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C.3. Simulations around the circles

Table C.3: l = 0.25 entanglement spectrum.

Jy = 3.5
Jz = 0.5

9.986268179140 · 10−01

1.371293874288 · 10−03

1.883032625348 · 10−06

2.585741295973 · 10−09

2.585734088540 · 10−09

3.550628872635 · 10−12

3.550535618713 · 10−12

4.935291161068 · 10−15

4.914771109798 · 10−15

4.876814878059 · 10−15

1.017995958292 · 10−15

Jy = 3.2557641
Jz = 0.6

9.989614158338 · 10−01

1.037504391023 · 10−03

1.077534463610 · 10−06

1.119108764941 · 10−09

1.119104057236 · 10−09

1.162259098212 · 10−12

1.162068952302 · 10−12

1.989709123934 · 10−15

1.476791191750 · 10−15

1.370261818168 · 10−15

Jy = 2.9410882
Jz = 0.7

9.992570677514 · 10−01

7.423798909343 · 10−04

5.515376522404 · 10−07

4.097547438435 · 10−10

4.097539503194 · 10−10

3.044138339756 · 10−13

3.044100003982 · 10−13

1.490815921691 · 10−15

1.269093176625 · 10−15

Jy = 2.5298221
Jz = 0.8

9.995202682129 · 10−01

4.795015343334 · 10−04

2.300320728298 · 10−07

1.103535732268 · 10−10

1.103533240164 · 10−10

5.294409472305 · 10−14

5.291598120734 · 10−14

1.121229590792 · 10−15

Jy = 1.9621417
Jz = 0.9

9.997563577880 · 10−01

2.435828359919 · 10−04

5.934705201648 · 10−08

1.445923431165 · 10−11

1.432202335705 · 10−11

3.746302224271 · 10−15

3.600001111242 · 10−15

Jy = 1.5692355
Jz = 0.95

9.998660398519 · 10−01

1.339422003252 · 10−04

1.794291548702 · 10−08

2.403620163220 · 10−12

2.403413731795 · 10−12

1.732850402985 · 10−15

1.125728349574 · 10−15

Jy = 1.2625371
Jz = 0.98

9.999305339887 · 10−01

6.946118527233 · 10−05

4.825189638050 · 10−09

3.351287444326 · 10−13

3.349898223094 · 10−13

1.292905818465 · 10−15
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Table C.4: l = 0.35

(a) Jz and Jy values

for simulation

Jz Jy

0.5 2.5243710
0.6 2.3631525
0.7 2.1571429
0.8 1.8917652
0.9 1.5365612
0.95 1.3032338
0.98 1.1329895

(b) Schimdt gap as a func-

tion of Jz.

Jz S

0.5 0.994330825351
0.6 0.995676342233
0.7 0.996868040435
0.8 0.997931843444
0.9 0.998890885049
0.95 0.999341843291
0.98 0.999614496856

(c) Von Neumann Entropy

S(Jz, l) from numerical

data.

Jz S

0.5 0.028186351065
0.6 0.022324583995
0.7 0.016888389693
0.8 0.011764003266
0.9 0.006803580126
0.95 0.004283919290
0.98 0.002657537920

(d) Von Neumann Entropy

S(Jz, l) from the exact for-

mula.

Jz S

0.5 0.02818635107
0.6 0.022324583995
0.7 0.016888389692
0.8 0.011764003266
0.9 0.006803580125
0.95 0.004283919290
0.98 0.002657537926
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Table C.5: l = 0.35 entanglement spectrum.

Jy = 2.5243710
Jz = 0.5

9.971613724005 · 10−01

2.830547049683 · 10−03

8.034804413615 · 10−06

2.280762987760 · 10−08

2.280762770168 · 10−08

6.474159048802 · 10−11

6.473759435556 · 10−11

1.837217259306 · 10−13

1.836981652180 · 10−13

1.834211149953 · 10−13

1.113095438047 · 10−15

Jy = 2.3631525
Jz = 0.6

9.978358242419 · 10−01

2.159482009034 · 10−03

4.673476768618 · 10−06

1.011417434011 · 10−08

1.011416407772 · 10−08

2.188843117780 · 10−11

2.188754769074 · 10−11

4.735210216564 · 10−14

4.714040491190 · 10−14

4.653287860726 · 10−14

1.094521271613 · 10−15

Jy = 2.1571429
Jz = 0.7

9.984327902256 · 10−01

1.564749790587 · 10−03

2.452285148175 · 10−06

3.843230792317 · 10−09

3.843224585259 · 10−09

6.023015789257 · 10−12

6.022838130864 · 10−12

9.455276287559 · 10−15

9.436505637753 · 10−15

9.401174444697 · 10−15

1.391490191667 · 10−15

1.080836738172 · 10−15

Jy = 1.8917652
Jz = 0.8

9.989653859560 · 10−01

1.033542512345 · 10−03

1.069316452747 · 10−06

1.106325257348 · 10−09

1.106319817135 · 10−09

1.144592978417 · 10−12

1.144514305291 · 10−12

1.684518948997 · 10−15

1.593455630160 · 10−15

1.451946651526 · 10−15

1.345167869953 · 10−15
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Jy = 1.5365612
Jz = 0.9

9.994452885872 · 10−01

5.544035383758 · 10−04

3.075338715282 · 10−07

1.705918443487 · 10−10

1.705914104591 · 10−10

9.459428583036 · 10−14

9.441708583341 · 10−14

1.499302365054 · 10−15

Jy = 1.3032338
Jz = 0.95

9.996708674640 · 10−01

3.290241728504 · 10−04

1.082925469446 · 10−07

3.564192217792 · 10−11

3.564134169096 · 10−11

1.176507359572 · 10−14

1.169915475431 · 10−14

Jy = 1.1329895
Jz = 0.98

9.998072298313 · 10−01

1.927329756937 · 10−04

3.715306057973 · 10−08

7.165017677871 · 10−12

7.152991029390 · 10−12

2.068557389183 · 10−15

1.293343211254 · 10−15

1.082761637969 · 10−15

1.002461901748 · 10−15

Table C.6: l = 0.4

(a) Jz and Jy values

for simulation

Jz Jy

0.5 2.2220486
0.6 2.0880613
0.7 1.9176809
0.8 1.7
0.9 1.4133294
0.95 1.2295833
0.98 1.0990405

(b) Schimdt gap as a func-

tion of Jz.

Jz S

0.5 0.992339295357
0.6 0.994127727340
0.7 0.995714002160
0.8 0.997132661462
0.9 0.998416346970
0.95 0.999025043655
0.98 0.999399087058

(c) Von Neumann Entropy

S(Jz, l) from numerical

data.

Jz S

0.5 0.036466907924
0.6 0.029050441639
0.7 0.022156694159
0.8 0.015641641310
0.9 0.009310347139
0.95 0.006070799703
0.98 0.003950623534

(d) Von Neumann Entropy

S(Jz, l) from the exact for-

mula.

Jz S

0.5 0.036466907925
0.6 0.029050441639
0.7 0.022156694159
0.8 0.015641641306
0.9 0.009310347134
0.95 0.006070799703
0.98 0.003950623538
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Table C.7: l = 0.4 entanglement spectrum.

Jy = 2.2220487
Jz = 0.5

9.961622554925 · 10−01

3.822960135817 · 10−03

1.467132900076 · 10−05

5.630397998235 · 10−08

5.630396895427 · 10−08

2.160767128637 · 10−10

2.160650072096 · 10−10

8.291186369418 · 10−13

8.290538029931 · 10−13

8.288295325350 · 10−13

3.302762641646 · 10−15

3.227250135354 · 10−15

3.214457083321 · 10−15

3.176086051042 · 10−15

Jy = 2.0880613
Jz = 0.6

9.970595278442 · 10−01

2.931800504524 · 10−03

8.620803425263 · 10−06

2.534900971208 · 10−08

2.534900551681 · 10−08

7.453701390712 · 10−11

7.453146469155 · 10−11

2.191308968230 · 10−13

2.190916077495 · 10−13

2.189705577742 · 10−13

1.183995157659 · 10−15

1.092868781349 · 10−15

Jy = 1.9176809
Jz = 0.7

9.978546949978 · 10−01

2.140692837682 · 10−03

4.592417963133 · 10−06

9.852086920929 · 10−09

9.852080324518 · 10−09

2.113539697132 · 10−11

2.113406695691 · 10−11

4.529126900855 · 10−14

4.513596095192 · 10−14

4.495545450041 · 10−14

1.126674743995 · 10−15

1.041978269571 · 10−15

Jy = 1.7
Jz = 0.8

9.985653000769 · 10−01

1.432638614902 · 10−03

2.055402290997 · 10−06

2.948865651242 · 10−09

2.948857497220 · 10−09

4.230533233792 · 10−12

4.230280213367 · 10−12

6.129311827700 · 10−15

6.092005240754 · 10−15

5.812802086164 · 10−15

1.066647490466 · 10−15
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Jy = 1.4133294
Jz = 0.9

9.992078594938 · 10−01

7.915125235778 · 10−04

6.269887336760 · 10−07

4.966597917868 · 10−10

4.966562765108 · 10−10

3.933175030477 · 10−13

3.931925349418 · 10−13

1.686352084125 · 10−15

1.539495830403 · 10−15

1.076733444892 · 10−15

Jy = 1.2295833
Jz = 0.95

9.995124028940 · 10−01

4.873592393429 · 10−04

2.376348926239 · 10−07

1.158689931863 · 10−10

1.158665573207 · 10−10

5.636367946705 · 10−14

5.632120798273 · 10−14

1.241852454706 · 10−15

1.028671542729 · 10−15

Jy = 1.0990450
Jz = 0.98

9.996994981474 · 10−01

3.004110895427 · 10−04

9.027389696354 · 10−08

2.712624487109 · 10−11

2.712208599514 · 10−11

8.201008467041 · 10−15

7.804607993945 · 10−15

1.166710551867 · 10−15

1.033782687658 · 10−15

Table C.8: l = 0.45

(a) Jz and Jy values

for simulation

Jz Jy

0.5 1.9883922
0.6 1.8762979
0.7 1.7345081
0.8 1.5549205
0.9 1.3222222
0.95 1.1764274
0.98 1.0751537

(b) Schimdt gap as a func-

tion of Jz.

Jz S

0.5 0.989911349885
0.6 0.992222020234
0.7 0.994275206310
0.8 0.996115791867
0.9 0.997789055296
0.95 0.998590329137
0.98 0.999091134481

(c) Von Neumann Entropy

S(Jz, l) from numerical

data.

Jz S

0.5 0.046086065287
0.6 0.036942408348
0.7 0.028423477633
0.8 0.020350684902
0.9 0.012470791065
0.95 0.008404969492
0.98 0.005705035306

(d) Von Neumann Entropy

S(Jz, l) from the exact for-

mula.

Jz S

0.5 0.046086065289
0.6 0.036942408349
0.7 0.028423477633
0.8 0.020350684901
0.9 0.012470791054
0.95 0.008404969494
0.98 0.005705035309
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Table C.9: l = 0.45 entanglement spectrum.

Jy = 1.9883922
Jz = 0.5

9.949428234119 · 10−01

5.031473526758 · 10−03

2.544440266064 · 10−05

1.286735510126 · 10−07

1.286735229992 · 10−07

6.507061662705 · 10−10

6.506959436862 · 10−10

3.290303618027 · 10−12

3.290048656720 · 10−12

3.288951348558 · 10−12

1.666823245044 · 10−14

1.656560935294 · 10−14

1.651195975213 · 10−14

1.635335272919 · 10−14

1.100986948690 · 10−15

Jy = 1.8762979
Jz = 0.6

9.961033889771 · 10−01

3.881368742800 · 10−03

1.512395547718 · 10−05

5.893127259518 · 10−08

5.893126438684 · 10−08

2.296283674744 · 10−10

2.296125219709 · 10−10

8.946081001084 · 10−13

8.945446654387 · 10−13

8.941882998576 · 10−13

3.592287370945 · 10−15

3.513354380212 · 10−15

3.483055467363 · 10−15

3.452257071555 · 10−15

1.259353421478 · 10−15

Jy = 1.7345081
Jz = 0.7

9.971334829858 · 10−01

2.858276675630 · 10−03

8.193231587479 · 10−06

2.348584194880 · 10−08

2.348583818047 · 10−08

6.732163303422 · 10−11

6.731645513891 · 10−11

1.929120540914 · 10−13

1.928921816871 · 10−13

1.927627131534 · 10−13

1.165291681496 · 10−15

1.064852930109 · 10−15

Jy = 1.5549205
Jz = 0.8

9.980560027119 · 10−01

1.940210844783 · 10−03

3.771750395338 · 10−06

7.332242644488 · 10−09

7.332235102405 · 10−09

1.425368281414 · 10−11

1.425273955645 · 10−11

2.770648493557 · 10−14

2.765574578027 · 10−14

2.749995745531 · 10−14

1.232206770708 · 10−15
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Jy = 1.3222222
Jz = 0.9

9.988939152620 · 10−01

1.104859965584 · 10−03

1.222067246410 · 10−06

1.351695785930 · 10−09

1.351672285343 · 10−09

1.495097912390 · 10−12

1.494289554576 · 10−12

2.076479470705 · 10−15

1.757506452574 · 10−15

1.663862761799 · 10−15

Jy = 1.1764274
Jz = 0.95

9.992949158187 · 10−01

7.045866813828 · 10−04

4.967926541793 · 10−07

3.502777874374 · 10−10

3.502644583469 · 10−10

2.467604561651 · 10−13

2.459143096335 · 10−13

1.527917692312 · 10−15

1.284035410656 · 10−15

Jy = 1.0751537
Jz = 0.98

9.995454614904 · 10−01

4.543270094637 · 10−04

2.065068437844 · 10−07

9.386380784400 · 10−11

9.385442559898 · 10−11

4.253642235830 · 10−14

4.205163741897 · 10−14

1.085230073819 · 10−15

Table C.10: l = 0.5

(a) Jz and Jy values

for simulation

Jz Jy

0.5 1.8027756
0.6 1.7008007
0.7 1.5905973
0.8 1.4422205
0.9 1.2529964
0.95 1.1368817
0.98 1.0577334

(b) Schimdt gap as a func-

tion of Jz.

Jz S

0.5 0.986957398455
0.6 0.989739720936
0.7 0.992482335847
0.8 0.994822301380
0.9 0.996961709197
0.95 0.997997670619
0.98 0.998656427614

(c) Von Neumann Entropy

S(Jz, l) from numerical

data.

Jz S

0.5 0.057261457250
0.6 0.046749794225
0.7 0.035885277318
0.8 0.026074132763
0.9 0.016448944937
0.95 0.011435840724
0.98 0.008056897255

(d) Von Neumann Entropy

S(Jz, l) from the exact for-

mula.

Jz S

0.5 0.057261457258
0.6 0.046749794230
0.7 0.035885277318
0.8 0.026074132763
0.9 0.016448944913
0.95 0.011435840714
0.98 0.008056897276
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C.3. Simulations around the circles

Table C.11: l = 0.5 entanglement spectrum.

Jy = 1.8027756
Jz = 0.5

9.934571566189 · 10−01

5.031473526758 · 10−03

2.544440266064 · 10−05

1.286735510126 · 10−07

1.286735229992 · 10−07

6.507061662705 · 10−10

6.506959436862 · 10−10

3.290303618027 · 10−12

3.290048656720 · 10−12

3.288951348558 · 10−12

1.666823245044 · 10−14

1.656560935294 · 10−14

1.651195975213 · 10−14

1.635335272919 · 10−14

1.100986948690 · 10−15

Jy = 1.7008007
Jz = 0.6

9.948565656764 · 10−01

3.881368742800 · 10−03

1.512395547718 · 10−05

5.893127259518 · 10−08

5.893126438684 · 10−08

2.296283674744 · 10−10

2.296125219709 · 10−10

8.946081001084 · 10−13

8.945446654387 · 10−13

8.941882998576 · 10−13

3.592287370945 · 10−15

3.513354380212 · 10−15

3.483055467363 · 10−15

3.452257071555 · 10−15

1.259353421478 · 10−15

Jy = 1.5905974
Jz = 0.7

9.962340502308e · 10−01

2.858276675630 · 10−03

8.193231587479 · 10−06

2.348584194880 · 10−08

2.348583818047 · 10−08

6.732163303422 · 10−11

6.731645513891 · 10−11

1.929120540914 · 10−13

1.928921816871 · 10−13

1.927627131534 · 10−13

1.165291681496 · 10−15

1.064852930109 · 10−15

Jy = 1.4422205
Jz = 0.8

9.974077822292 · 10−01

1.940210844783 · 10−03

3.771750395338 · 10−06

7.332242644488 · 10−09

7.332235102405 · 10−09

1.425368281414 · 10−11

1.425273955645 · 10−11

2.770648493557 · 10−14

2.765574578027 · 10−14

2.749995745531 · 10−14

1.232206770708 · 10−15

159



C. Numerical data

Jy = 1.2529964
Jz = 0.9

9.984796971875 · 10−01

1.104859965584 · 10−03

1.222067246410 · 10−06

1.351695785930 · 10−09

1.351672285343 · 10−09

1.495097912390 · 10−12

1.494289554576 · 10−12

2.076479470705 · 10−15

1.757506452574 · 10−15

1.663862761799 · 10−15

Jy = 1.1368817
Jz = 0.95

9.989983330885 · 10−01

7.045866813828 · 10−04

4.967926541793 · 10−07

3.502777874374 · 10−10

3.502644583469 · 10−10

2.467604561651 · 10−13

2.459143096335 · 10−13

1.527917692312 · 10−15

1.284035410656 · 10−15

Jy = 1.0577334
Jz = 0.98

9.993279694942 · 10−01

4.543270094637 · 10−04

2.065068437844 · 10−07

9.386380784400 · 10−11

9.385442559898 · 10−11

4.253642235830 · 10−14

4.205163741897 · 10−14

1.085230073819 · 10−15

Table C.12: l = 0.6

(a) Jz and Jy values

for simulation

Jz Jy

0.5 1.5275252
0.6 1.5275252
0.7 1.3808210
0.8 1.2806248
0.9 1.1566234
0.95 1.0832051
0.98 1.0346013

(b) Schimdt gap as a func-

tion of Jz.

Jz S

0.5 0.978936153343
0.6 0.983408828653
0.7 0.987416103248
0.8 0.991048176714
0.9 0.994418085799
0.95 0.996092126131
0.98 0.997193269529

(c) Von Neumann Entropy

S(Jz, l) from numerical

data.

Jz S

0.5 0.085593499917
0.6 0.070103300982
0.7 0.055558246072
0.8 0.041638245770
0.9 0.027813561503
0.95 0.020457791044
0.98 0.015348864455

(d) Von Neumann Entropy

S(Jz, l) from the exact for-

mula.

Jz S

0.5 0.085593500056
0.6 0.070103301050
0.7 0.055558246080
0.8 0.041638245770
0.9 0.027813561502
0.95 0.020457791042
0.98 0.015348864911
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C.3. Simulations around the circles

Table C.13: l = 0.6 entanglement spectrum.

Jy = 1.5275252
Jz = 0.5

9.894114364211 · 10−01

1.047528307852 · 10−02

1.109058875745 · 10−04

1.174202965767 · 10−06

1.174202275905 · 10−06

1.243157412417 · 10−08

1.243121450238 · 10−08

1.315288692702 · 10−10

1.315163007884 · 10−10

1.314337781050 · 10−10

1.391422790559 · 10−12

1.388900142074 · 10−12

1.385367107157 · 10−12

1.378581361617 · 10−12

1.448429323560 · 10−14

1.443068554062 · 10−14

1.398654917759 · 10−14

1.378848851191 · 10−14

1.181408216888 · 10−14

Jy = 1.4621141
Jz = 0.6

9.916694308714 · 10−01

8.260602218392 · 10−03

6.881078142452 · 10−05

5.731933051471 · 10−07

5.731930325391 · 10−07

4.774623043901 · 10−09

4.774522878739 · 10−09

3.975001527535 · 10−11

3.974539777383 · 10−11

3.973613275351 · 10−11

3.307951448204 · 10−13

3.299048004016 · 10−13

3.289507383443 · 10−13

3.283929044340 · 10−13

2.882063188926 · 10−15

2.761445848185 · 10−15

2.702644910514 · 10−15

2.560610080195 · 10−15

2.365066363748 · 10−15

1.101291556910 · 10−15

Jy = 1.3808210
Jz = 0.7

9.936880068405 · 10−01

6.271903592402 · 10−03

3.958664525370 · 10−05

2.498606844544 · 10−07

2.498605980016 · 10−07

1.577045995091 · 10−09

1.577033354227 · 10−09

9.950848457898 · 10−12

9.946188316285 · 10−12

9.944936784662 · 10−12

6.269193126165 · 10−14

6.252917825388 · 10−14

6.247281353138 · 10−14

6.210595770850 · 10−14

1.066671190300 · 10−15

Jy = 1.2806248
Jz = 0.8

9.955139814368 · 10−01

4.465804722463 · 10−03

2.003328147817 · 10−05

8.986786276503 · 10−08

8.986778680528 · 10−08

4.031321542321 · 10−10

4.031196253264 · 10−10

1.807986064053 · 10−12

1.805969758786 · 10−12

1.804812588495 · 10−12

8.144327269268 · 10−15

8.001642400590 · 10−15

7.923541796429 · 10−15

7.783237084407 · 10−15

1.256211649377 · 10−15

1.027482821941 · 10−15
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C. Numerical data

Jy = 1.1566234
Jz = 0.9

9.972051262866 · 10−01

2.787040488049 · 10−03

7.789364986407 · 10−06

2.177011358389 · 10−08

2.177009158659 · 10−08

6.084137238369 · 10−11

6.083986200895 · 10−11

1.696844061248 · 10−13

1.692667244087 · 10−13

1.676653119160 · 10−13

1.640253294719 · 10−15

1.169062738101 · 10−15

Jy = 1.0832051
Jz = 0.95

9.980441415455 · 10−01

1.952015414536 · 10−03

3.817831283572 · 10−06

7.467065646671 · 10−09

7.466910540514 · 10−09

1.460392636017 · 10−11

1.460197038788 · 10−11

2.844642271624 · 10−14

2.824332864223 · 10−14

2.634910984739 · 10−14

1.067513977102 · 10−15

Jy = 1.0346014
Jz = 0.98

9.985951373483 · 10−01

1.401867818848 · 10−03

1.967995752375 · 10−06

2.762697880055 · 10−09

2.761540041283 · 10−09

3.878975338704 · 10−12

3.866218923669 · 10−12

5.335418400126 · 10−15

4.421481089779 · 10−15

1.030127608893 · 10−15

Table C.14: l = 0.7

(a) Jz and Jy values

for simulation

Jz Jy

0.5 1.3343958
0.6 1.2907836
0.7 1.2307837
0.8 1.1724734
0.9 1.0944200
0.95 1.0495140
0.98 1.0204001

(b) Schimdt gap as a func-

tion of Jz.

Jz S

0.5 0.966550030413
0.6 0.973168128626
0.7 0.979149383523
0.8 0.984634250478
0.9 0.989823874642
0.95 0.992478629130
0.98 0.994273426958

(c) Von Neumann Entropy

S(Jz, l) from numerical

data.

Jz S

0.5 0.125660655013
0.6 0.104690856436
0.7 0.084869957704
0.8 0.065731010764
0.9 0.046424509528
0.95 0.035897741561
0.98 0.028365564586

(d) Von Neumann Entropy

S(Jz, l) from the exact for-

mula.

Jz S

0.5 0.125660657866
0.6 0.104690857496
0.7 0.084869936795
0.8 0.065731010809
0.9 0.046424509533
0.95 0.03589774157
0.98 0.02836555636
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C.3. Simulations around the circles

Table C.15: l = 0.7 entanglement spectrum.

Jy = 1.3343958
Jz = 0.5

9.831296568968 · 10−01

1.657962648369 · 10−02

2.796005039061 · 10−04

4.715191452217 · 10−06

4.715179631467 · 10−06

7.951446139730 · 10−08

7.950376571850 · 10−08

1.338552392480 · 10−09

1.337775725778 · 10−09

1.336512880107 · 10−09

2.253191380502 · 10−11

2.243414875683 · 10−11

2.231616133352 · 10−11

2.172088861992 · 10−11

3.682638141387 · 10−13

3.645046952995 · 10−13

3.445858752500 · 10−13

3.335553660803 · 10−13

2.854555380192 · 10−13

6.189419079311 · 10−15

5.861904932748 · 10−15

5.320737390903 · 10−15

4.644028724437 · 10−15

3.606257376956 · 10−15

2.685535888280 · 10−15

Jy = 1.2907837
Jz = 0.6

9.864916108747 · 10−01

1.332348224849 · 10−02

1.799459376832 · 10−04

2.430330839314 · 10−06

2.430323122390 · 10−06

3.282225512440 · 10−08

3.281607874690 · 10−08

4.426578863841 · 10−10

4.423405340038 · 10−10

4.420894303105 · 10−10

5.960140429232 · 10−12

5.931080676299 · 10−12

5.868804645602 · 10−12

5.542801482664 · 10−12

7.835367645201 · 10−14

7.622385122664 · 10−14

7.038442798378 · 10−14

6.892833188857 · 10−14

6.372006793749 · 10−14

1.624682579609 · 10−15

1.329368786890 · 10−15

1.226513533030 · 10−15

1.055629801461 · 10−15
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C. Numerical data

Jy = 1.2372616
Jz = 0.7

9.895192032876 · 10−01

1.036981976427 · 10−02

1.086721306049 · 10−04

1.138845828824 · 10−06

1.138842497468 · 10−06

1.193451258575 · 10−08

1.193403149078 · 10−08

1.249718032540 · 10−10

1.248057078748 · 10−10

1.247406660143 · 10−10

1.303719187720 · 10−12

1.296660713881 · 10−12

1.293839811332 · 10−12

1.275460119601 · 10−12

1.335936891060 · 10−14

1.293735626207 · 10−14

1.244754347454 · 10−14

1.060571232444 · 10−14

1.044273775056 · 10−14

Jy = 1.1724734
Jz = 0.8

9.922871541645 · 10−01

7.652903686917 · 10−03

5.902216298931 · 10−05

4.552017664292 · 10−07

4.552016763553 · 10−07

3.510619821723 · 10−09

3.510500586897 · 10−09

2.706529127291 · 10−11

2.706061419488 · 10−11

2.699940350733 · 10−11

2.080315773445 · 10−13

2.066680101866 · 10−13

2.051808792497 · 10−13

2.008326080823 · 10−13

1.778607640279 · 10−15

1.739096258223 · 10−15

1.674502168523 · 10−15

1.566276156328 · 10−15

1.410694278584 · 10−15

Jy = 1.0944200
Jz = 0.9

9.948988497066 · 10−01

5.074975065089 · 10−03

2.588742695534 · 10−05

1.320516908617 · 10−07

1.320511253743 · 10−07

6.735534359265 · 10−10

6.734996209253 · 10−10

3.435508329811 · 10−12

3.422959223799 · 10−12

3.417085354369 · 10−12

1.723824122505 · 10−14

1.654321141274 · 10−14

1.565786889779 · 10−14

1.471545345651 · 10−14

Jy = 1.0495140
Jz = 0.95

9.962318679854 · 10−01

3.753238855869 · 10−03

1.414007379298 · 10−05

5.327183810878 · 10−08

5.327111677679 · 10−08

2.006858483946 · 10−10

2.006249046052 · 10−10

7.532220278431 · 10−13

7.467872179098 · 10−13

7.436498589340 · 10−13

2.799672543455 · 10−15

2.496918238966 · 10−15

2.228639310547 · 10−15

1.576338027746 · 10−15

Jy = 1.0204001
Jz = 0.98

9.971249273000 · 10−01

2.851500341546 · 10−03

8.154372603602 · 10−06

2.331943545124 · 10−08

2.331863788055 · 10−08

6.668043891079 · 10−11

6.663472375819 · 10−11

1.904804928343 · 10−13

1.866852907652 · 10−13

1.842782773708 · 10−13

1.074447694899 · 10−15
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C.3. Simulations around the circles

Table C.16: r = 0.04: values for simulations.

α/π Jy Jz

1/48 1.002616125169 0.9600856431
2/48 1.005221047689 0.9603422055
3/48 1.007803612881 0.9607685888
4/48 1.0103527618 0.9613629669
5/48 1.01285757861 0.9621227948
6/48 1.01530733729 0.9630448187
7/48 1.01769154761 0.9641250903
8/48 1.02 0.9653589838
9/48 1.02222280932 0.9667412155
10/48 1.02435045716 0.9682658664
11/48 1.0263738326 0.9699264077
12/48 1.02828427125 0.9717157288
13/48 1.0300735923 0.9736261674
14/48 1.03173413361 0.9756495428
15/48 1.03325878449 0.9777771907
16/48 1.03464101615 0.98
17/48 1.03587490966 0.9823084524
18/48 1.0369551813 0.9846926627
19/48 1.03787720518 0.9871424214
20/48 1.03863703305 0.9896472382
21/48 1.03923141122 0.9921963871
22/48 1.03965779445 0.9947789523
23/48 1.03991435693 0.9973838748
24/48 1.04 1
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C. Numerical data

Table C.17: r = 0.04: Values of the entropies.

α/π type Stheor. SDMRG

1/48 c (180) 0.246125579330 0.246118354635
2/48 c (144) 0.171810663637 0.171809858054
3/48 c (136) 0.132950275427 0.132949973342
4/48 b (126) 0.107823585477 0.107823539042
5/48 b (92) 0.089811885516 0.089812124370
6/48 b (88) 0.076057537202 0.076057561516
7/48 b (88) 0.065086724876 0.065086676452
8/48 b (90) 0.056050650089 0.056050637384
9/48 b (88) 0.048422100970 0.048422091959
10/48 a 0.041855187031 0.041855190188
11/48 a 0.036113531221 0.036113532521
12/48 a 0.031030619486 0.031030620012
13/48 a 0.026486614752 0.026486615016
14/48 a 0.022394204904 0.022394204970
15/48 a 0.018689719261 0.018689719351
16/48 a 0.015327503342 0.015327502988
17/48 a 0.012276454800 0.012276454666
18/48 a 0.009518146370 0.009518146313
19/48 a 0.007046304431 0.007046304418
20/48 a 0.004867729808 0.004867729812
21/48 a 0.003005190546 0.003005190549
22/48 a 0.001503795125 0.001503795131
23/48 a 0.000445582680 0.000445582504
24/48 a 0 0.000000000000
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C.3. Simulations around the circles

Table C.18: r = 0.03: values for simulations.

α/π Jy Jz

1/48 1.001962093877 0.9700642323
2/48 1.003915785767 0.9702566542
3/48 1.00585270966 0.9705764416
4/48 1.007764571353 0.9710222252
5/48 1.009643183959 0.9715920961
6/48 1.01148050297 0.972283614
7/48 1.01326866071 0.9730938178
8/48 1.015 0.9740192379
9/48 1.01666710699 0.9750559116
10/48 1.01826284287 0.9761993998
11/48 1.01978037445 0.9774448058
12/48 1.02121320344 0.9787867966
13/48 1.02255519422 0.9802196255
14/48 1.02380060021 0.9817371571
15/48 1.02494408837 0.983332893
16/48 1.02598076211 0.985
17/48 1.02690618225 0.9867313393
18/48 1.02771638598 0.988519497
19/48 1.02840790388 0.990356816
20/48 1.02897777479 0.9922354286
21/48 1.02942355841 0.9941472903
22/48 1.02974334584 0.9960842142
23/48 1.0299357677 0.9980379061
24/48 1.03 1
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C. Numerical data

Table C.19: r = 0.03: Values of the entropies.

α/π type Stheor. SDMRG

1/48 c (186) 0.238108317085 0.238108886334
2/48 c (166) 0.165415130137 0.165413840331
3/48 b (156) 0.127547618706 0.127547360711
4/48 b (114) 0.103143815107 0.103144060800
5/48 b (104) 0.085704006231 0.085704003142
6/48 b (104) 0.072425388065 0.072425260363
7/48 b (96) 0.061863931007 0.061863957500
8/48 b (104) 0.053188706166 0.053188680546
9/48 b (96) 0.045883943986 0.045883946226
10/48 b (102) 0.039611412342 0.039611387625
11/48 b (96) 0.034140011525 0.034140002077
12/48 b (88) 0.029306922072 0.029306921755
13/48 a 0.024994897824 0.024994900918
14/48 a 0.021118410843 0.021118412466
15/48 a 0.017614954662 0.017614954953
16/48 a 0.014439531216 0.014439531357
17/48 a 0.011561248019 0.011561248171
18/48 a 0.008961456674 0.008961456798
19/48 a 0.006633202072 0.006633202173
20/48 a 0.004582055658 0.004582055685
21/48 a 0.002828828669 0.002828828720
22/48 a 0.001415586340 0.001415586375
23/48 a 0.000419424084 0.000419423689
24/48 a 0 0
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C.3. Simulations around the circles

Table C.20: r = 0.02: values for simulations.

α/π Jy Jz

1/48 1.001308062585 0.9800428215
2/48 1.002610523844 0.9801711028
3/48 1.00390180644 0.9803842944
4/48 1.005176380902 0.9806814835
5/48 1.006428789306 0.9810613974
6/48 1.007653668647 0.9815224093
7/48 1.008845773804 0.9820625452
8/48 1.01 0.9826794919
9/48 1.01111140466 0.9833706078
10/48 1.01217522858 0.9841329332
11/48 1.0131869163 0.9849632039
12/48 1.01414213562 0.9858578644
13/48 1.01503679615 0.9868130837
14/48 1.01586706681 0.9878247714
15/48 1.01662939225 0.9888885953
16/48 1.01732050808 0.99
17/48 1.01793745483 0.9911542262
18/48 1.01847759065 0.9923463314
19/48 1.01893860259 0.9935712107
20/48 1.01931851653 0.9948236191
21/48 1.01961570561 0.9960981936
22/48 1.01982889723 0.9973894762
23/48 1.01995717846 0.9986919374
24/48 1.02 1
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C. Numerical data

Table C.21: r = 0.02: Values of the entropies.

α/π type Stheor. SDMRG

1/48 c (210) 0.228859204209 0.228866288713
2/48 c (196) 0.158056446596 0.158055094877
3/48 b (142) 0.121344050136 0.121344993672
4/48 b (140) 0.097779189906 0.097779097234
5/48 b (128) 0.081001414425 0.081001206766
6/48 b (120) 0.068272162287 0.068272029391
7/48 b (128) 0.058182329410 0.058182274384
8/48 b (114) 0.049921957210 0.049922003174
9/48 b (116) 0.042988718020 0.042988724461
10/48 b (112) 0.037053390331 0.037053375719
11/48 b (112) 0.031891093262 0.031891082204
12/48 b (106) 0.027343373370 0.027343371429
13/48 b (98) 0.023296056905 023296066110
14/48 b (106) 0.019665744513 0.019665741756
15/48 b (100) 0.016391331377 0.016391332607
16/48 a 0.013428628013 0.013428644089
17/48 a 0.010747029302 0.010747039849
18/48 a 0.008327672212 0.008327679276
19/48 a 0.006162853389 0.006162858145
20/48 a 0.004256762036 0.004256765029
21/48 a 0.002627988999 0.002627991009
22/48 a 0.001315131014 0.001315132137
23/48 a 0.000389638509 0.000389637826
24/48 a 0 0.000000000000
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