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If people do not believe that mathematics is simple,

it is only because they do not realize how complicated life is.

(J. Von Neumann)



Introduzione

Sia X una varietà quasiproiettiva su C e sia Xan la sua varietà complessa associata. Per il

lemma di Poincaré olomorfo, il complesso di de Rham olomorfo (Ω•Xan , d) è una risoluzione del

fascio costante C, pertanto abbiamo che

Hk(Xan,C) = Hk(X,Ω•Xan),

dove Hk denota il k-esimo gruppo di ipercoomologia. La scelta di un’immersione proiettiva

definisce su X una struttura di varietà Kähler , dunque, per la teoria di Hodge, i suoi gruppi

di coomologia Hk(Xan,C) ∼= Hk(Xan,Q)⊗ C ammettono la decomposizione di Hodge

Hk(Xan,C) =
⊕
p+q=k

Hp,q.

Dall’ isomorfismo di Dolbeault

Hp,q ∼= Hq(Xan,Ω
p
Xan

),

e dalla corrispondenza GAGA di Serre otteniamo l’isomorfismo canonico

Hq(Xan,Ω
p
Xan

) = Hq(X,Ωp
X),

dove il termine di destra indica la coomologia del fascio coerente delle p forme regolari sulla

varietà algebrica X. Da ciò otteniamo una versione relativamente semplice del più profondo

teorema di de Rham algebrico, dovuto a Grothendieck, che afferma l’esistenza di isomorfismi

Hk(Xan,C) ∼= Hk(X,Ω•X) ∼=
⊕
p+q=k

Hq(X,Ωp
X)

i



INTRODUZIONE ii

per ogni varietà algebrica complessa. Il teorema afferma quindi la possibilità di definire in

modo puramente algebrico l’invariante trascendente Hk(Xan,C). In particolare, per ogni au-

tomorfismo di campo σ ∈ C, detta Xσ la varietà algebrica complessa ottenuta applicando σ

ai coefficienti delle equazioni che definiscono X, abbiamo in modo naturale un isomorfismo

σ(C)-lineare σ∗ tra i gruppi di coomologia H∗(Xan,C) e H∗(Xσ
an,C), compatibile con la filtra-

zione di Hodge F ∗ associata alla decomposizione di Hodge. Tale isomorfismo esiste nonostante

Xσ
an e Xan possano essere completamente diverse: ad esempio, gli spazi vettoriali H∗(Xan,C)

and H∗(Xσ
an,C) hanno una struttura naturale su Q proveniente dal teorema dei coefficienti

universali H∗(−,C) = H∗(−,Q)⊗ C e, in generale, σ∗ non è compatibile con queste strutture

razionali.

In un certo senso, la teoria delle classi di Hodge assolute di Deligne verte esattamente su tale

(mancanza di) compatibilità.

Se Z è una sottovarietà algebrica di X di codimensione p, esiste un modo per associare ad

essa una classe di coomologia

[Z] ∈ H2p(Xan,Q) ∩Hp,p.

La celebre congettura di Hodge afferma che è vero anche il viceversa:

Congettura 0.0.1 (Congettura di Hodge). Sia X una varietà proiettiva liscia su C. Per

ciascun intero non negativo p, il sottospazio di grado p delle classi di Hodge razionali

H2p(Xan,Q) ∩Hp,p

è generato su Q dalle classi di coomologia di sottovarietà algebriche di X di codimensione p.

Chiamiamo cicli di Hodge gli elementi di H2p(Xan,Q) ∩Hp,p.

É importante osservare che la definizione di classe di Hodge ha due aspetti di natura diversa:

1. La razionalità delle classi di coomologia, fatto che di per sé non ha senso considerando

X come varietà algebrica astratta,

2. il fatto di essere di tipo (p, p), o più precisamente di appartenere a F pH2p(X,Ωp
X), che è

una nozione prettamente algebrica .
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Nell’articolo [08] Deligne considera una classe piú ristretta di cicli di Hodge, alla quale a

priori devono appartenere le classi dei cicli algerbici, definendo i cicli di Hodge assoluti come

quelle classi di coomologia che rimangono Hodge applicando un isomorfismo σ∗ associato ad un

automorfismo di C. Come detto sopra, la condizione forte che caratterizza le classi di Hodge

assolute sta nel fatto che queste debbano rimanere classi razionali.

Definizione 0.1 (Classe di Hodge assoluta). Sia X una varietà complessa proiettiva liscia

e sia p un intero non negativo. Sia poi α un elemento di H2p(X/C(p)). Diciamo che α è

una classe di Hodge assoluta se per ogni automorfismo σ di C la classe di coomologia ασ ∈

H2p(Xσ
an,C) ∼= H2p(Xσ/C) è una classe di Hodge.

Non è difficile provare che le classi di varietà algebriche sono classi di Hodge assolute.

Questo fatto permette di spezzare la congettura di Hodge nelle seguenti sottocongetture.

Congettura 0.0.2. Le classi di Hodge su una varietà complessa proiettiva liscia sono classi

di Hodge assolute.

Congettura 0.0.3. Sia X una varietà complessa proiettiva liscia. Allora le classi di Hodge

assolute sono generate su Q dalle classi di sottovarietà algebriche.

La congettura 0.0.2 è stata risolta affermativamente da Deligne per le classi di Hodge su

varietà abeliane. La dimostrazione si basa sui due seguenti principi:

A) Siano t1, . . . , tN cicli di Hodge assoluti su una varietà complessa proiettiva liscia X e sia

G il sottogruppo algebrico massimale di GL(H∗(X,Q))×GL(Q) che fissa i ti; allora ogni

classe di coomologia t su X fissata da G è un ciclo di Hodge assoluto.

B) Se (Xb)b∈B è una famiglia algebrica di varietà proiettive lisce con B liscia connessa e (tb)b∈B

è una famiglia di cicli razionali tale che tb è un ciclo di Hodge assoluto per un certo b ∈ B,

allora tb è un ciclo di Hodge assoluto per ogni b ∈ B.

L’obiettivo di questo lavoro è provare il principio B. Tale principio fornisce uno strumento

essenziale per dimostrare che alcune classi di Hodge sono assolute. In particolare, nel caso

delle varietà abeliane, permette di ridurre la dimostrazione al caso di varietà abeliane con

moltiplicazione complessa.



Introduction

Let X be a smooth projective variety over C, and Xan its associated complex manifold. The

holomorphic de Rham complex (Ω•Xan , d) is, by the holomorphic Poincaré Lemma, a resolution

of the constant sheaf C, hence

Hk(Xan,C) = Hk(X,Ω•Xan),

where Hk denotes the k-th hypercohomology group. The choice of a projective embedding en-

dows X with a Kähler structure, hence, by Hodge theory, its cohomology groups Hk(Xan,C) ∼=

Hk(Xan,Q)⊗ C admit the Hodge decomposition

Hk(Xan,C) =
⊕
p+q=k

Hp,q.

By the Dolbeault isomorphism

Hp,q ∼= Hq(Xan,Ω
p
Xan

),

and by the GAGA principle of Serre we have a canonical isomorphism

Hq(Xan,Ω
p
Xan

) = Hq(X,Ωp
X),

where the last term indicates the cohomology of the coherent sheaf of regular p forms on the

algebraic variety X. Thus we have isomorphisms (a relatively easy version of the deep algebraic

de Rham theorem of Grothendieck)

Hk(Xan,C) ∼= Hk(X,Ω•X) ∼=
⊕
p+q=k

Hq(X,Ωp
X).

The highly non-trivial point of this is that the transcendental invariant Hk(Xan,C) affords an

algebraic characterization. In particular, for any field automorphism σ ∈ C, letting Xσ be the

ii
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complex algebraic variety obtained by applying σ to the coefficients of the defining equations of

X, we have a natural σ(C)-linear isomorphism σ∗ between the cohomology groups H∗(Xan,C)

and H∗(Xσ
an,C), which is compatible with the Hodge filtration F ∗ associated to the Hodge

decomposition. This isomorphism holds despite the fact that Xσ
an and Xan are completely dif-

ferent: for instance, the vector spaces H∗(Xan,C) and H∗(Xσ
an,C) are endowed with a natural

Q structure, coming from the universal coefficient theorem H∗(−,C) = H∗(−,Q)⊗C and there

is in general no compatibility of the isomorphism σ∗ with these rational structures. In a sense,

Deligne’s theory of absolute Hodge classes deals precisely with this (lack of) compatibility:

If Z is an algebraic subvariety of X of codimension p, we have a way to associate a coho-

mology class

[Z] ∈ H2p(Xan,Q) ∩Hp,p.

The famous Hodge conjectures states that the viceversa holds:

Conjecture 0.0.4 (Hodge conjecture). Let X be a smooth projective variety over C. For any

nonnegative integer p, the subspace of degree p rational Hodge classes

H2p(Xan,Q) ∩Hp,p

is generated over Q by the cohomology classes of codimension p subvarieties of X.

We call the elements of H2p(Xan,Q) ∩Hp,p Hodge cycles.

It is important to note that the definition of Hodge class contains two aspects:

1. Rationality of the cohomology class, clearly a transcendental issue, which makes no sense

for X considered as an abstract algebraic variety.

2. Being of type (p, p), or more precisely in F pH2p(X,Ωp
X), is definitely an algebraic notion.

In [08] Deligne puts a stronger condition on Hodge cycles, defining absolute Hodge cycles

as those classes which remain Hodge after applying any isomorphism σ∗ associated with a field

automorphism of C. In view of the preceding discussion the strong requirement is that these

classes remain rational. We then have the following definition of absolute Hodge class.
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Definition 0.1 (Absolute Hodge class). Let X be a smooth complex projective variety. Let p

be a nonnegative integer and let α be an element of H2p(X/C(p)). We say that the cohomology

class α is an absolute Hodge class if for every automorphism σ of C the cohomology class

ασ ∈ H2p(Xσ
an,C) ∼= H2p(Xσ/C) is a Hodge class.

It is not hard to prove that the class of an algebraic subvariety is absolute Hodge. This

allows to split the Hodge conjecture in the two following subconjectures.

Conjecture 0.0.5. Hodge classes on smooth complex projective varieties are absolute Hodge

Conjecture 0.0.6. Let X be a smooth complex projective variety. Absolute Hodge classes are

generated over Q by algebraic cycles classes.

Conjecture 0.0.5 has been solved affermatively by Deligne for Hodge classes on abelian

varieties. The proof is based on the following two principles.

A) Let t1, . . . , tN be absolute Hodge cycles on a smooth projective variety over X and let

G be the largest algebraic subgroup of GL(H∗(X,Q)) × GL(Q) fixing the ti; then every

cohomology class t on X fixed by G is an absolute Hodge cycles.

B) If (Xb)b∈B is an algebraic family of smooth projective varieties with B smooth connected

and (tb)b∈B is a family of rational cycles such that tb is an absolute Hodge cycle for one b,

then tb is an absolute Hodge cycle for all b.

The goal of this work is to prove principle B. This principle provides a great tool for proving

that some Hodge classes are absolute. In particular, in the case of abelian varities considered by

Deligne, it allows for a reduction to the proof of the conjecture in the case of abelian varieties

with complex multiplication.
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Chapter 1

Cohomology and Hodge

decomposition

We now do a short review on cohomology. Since this is not the main topic of this work, we

will not give proofs of many of the result we are presenting. Precise details about the following

section can be found in [14] and [25]

1.1 A review of sheaf cohomology

Given a topological space X and a sheaf F of abelian groups, we have the natural functor Γ of

global section, which to F associates Γ(X,F) := F(X), with values in the category of abelian

groups. This functor is left exact but not right exact, i.e. a surjective morphism of sheaves

φ : F → G does not necessarily induce a morphism at the level of global sections. Thus it is

interesting to compute this defect in exactness via the use of invariants, namely the images

under the right derived functors RiΓ, written H i(X, ·), of the sheaves F ,G, ker(φ). These

functors are defined as follows: consider two abelian cathegories C, C′ and assume that C has

enough injectives. If F : C → C′ is a left exact functor and A is an object of C, we take an

injective resolution I• of A and define the i-th right derived functor as the i-th cohomology

1
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group of the complex F (I•):

RiF (A) := H i(F (I•)) ∀i ≥ 0.

It can be proved that if we choose another injective resolution, we obtain canonically isomorphic

objects. Also, the functors RiF satisfy the following properties for all A,B,C ∈ Ob(C):

(i) R0F (A) = F (A);

(ii) for any exact sequence

0→ A
φ−→ B

ψ−→ C → 0

we can construct a long exact sequence (i.e. an exact complex)

0→ F (A)
F (φ)−−−→ F (B)

F (ψ)−−−→→ F (C)→ R1F (A)→ R1F (B)→ R1F (C)→ R2F (A)→ . . . ;

(iii) For every injective object I ∈ Ob(C): RiF (I) = 0, ∀i > 0.

As both the category of sheaves of abelian groups and the functor Γ satisfy the conditions

we have given above, it is possible to construct the right derived functors RiΓ. We will use

these functors to define the cohomology of a sheaf F of abelian groups over X

H i(X,F) := RiΓ(F)

and prove comparison theorems.

However, injective resolutions are difficult to manipulate. Thus we would like to find a weaker

and easier condition for our pourposes. Luckily, such a condition exists and it is acyclicity.

Definition 1.1. We say that an object A of C is acyclic for a functor F (or F -acyclic) if

RiF (A) = 0 for all i ≥ 0. A resolution is said acyclic for F if its objects are F -acyclic.

From the properties of derived functors we immediately notice that injective objects are

acyclic for any functor. As a consequence, any injective resolution is acyclic. Anyway, it is still

possible to compute the right derived functors from the cohomology of an acyclic resolution.

Theorem 1.1.1. Let M• be a F -acyclic resolution of an object A of C. Then

RiF (A) = H iF (M•)
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An important category of Γ-acyclic sheaves is that of flasque sheaves.

Definition 1.2. Let F be a sheaf of abelian groups over a topological space X. We say that

F is flasque (or flabby) if for every open set U ⊂ X, the restriction map F(X) → F(U) is

surjective.

Theorem 1.1.2. Flasque sheaves are acyclic for the functor Γ.

The previous theorem allow us to use Godement resolutions, which have the advantage of

being canonical and functorial, to compute the cohomology of a sheaf. Given a sheaf F , the

Godement resolution of F is computed by considering the inclusion of F in the sheaf C0F

which to any open set U associates the direct product of the stalks of Fx of its elements:

U → C0F(U) =
∏
x∈U
Fx.

As the restriction map is surjective by definition, C0F is flasque. Then we can inject

Q1 := C0F/F into C1F := C0Q1. We repeat this procedure by setting

Qk = C0Qk−1/Qk−1

CkF = C0Qk.

In this way we construct a long exact sequence

0→ F → C0F → C1F → . . .

called the Godement canonical resolution of F and its terms CkF are the Godement sheaves

of F . One can show (see [10]) that any sheaf morphism φ : F → G induces a morphism

Ckφ : CkF → CkG and that each Ck() is an exact functor from sheaves to sheaves, called the

k-th Godement functor.

We have the following definition.

Definition 1.3. A sheaf F is called fine if for any open covering U = {Ui}i∈I of X there exists

a family of endomorphisms φi : F → F such that

i)
∑

i φi(x) = idFx where the sum is required to be locally finite;
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ii) Supp(φ) ⊂ Ui.

Such a family is called a partition of the unity associated to F and U .

Fine sheaves have an interesting property which will be useful when we prove the de Rham

theorem.

Theorem 1.1.3. Every fine sheaf F over a topological space X is Γ-acyclic, i.e. H i(X,F) =

0, ∀i > 0.

Example 1.1. The sheaf Ak of smooth k-forms on a manifold X is a fine sheaf on X. Indeed

we know that, given a locally finite open cover {Uα} of X, there is a C∞ partition on unity ρα

associated to it. However ρα is a collection of smooth real valued functions, not sheaf maps.

Thus, for any open U ⊂ X we define

ηα,U : Ak(U)→ Ak(U), ηα,U (ω) := ρα(ω)

and prove that it is a partition of unity associated to Ak.

If x 6∈ Uα, then x has a neighbourhood U disjoint from supp ρα. Hence ρα vanishes identically

on U and ηα,U = 0, so that the stalk map ηα,x : Akx → Akx is he zero map. This proves that

suppηα ⊂ Uα. For any x ∈ X, the stalk map ηα,x is multiplication by the germ of ρα, so∑
α etaα,x is the identity map on the stalk Akx. Hence, {ηα} is a partition of unity of the sheaf

Ak subordinate to {Uα}.

1.1.1 Cohomology groups on a manifold and comparison theo-

rems

Betti Cohomology

The degree i Betti cohomology group H i(X,R) of a topological manifold X with value in any

abelian group R (usually Z,Q,R or C) is the ith cohomology group of the constant sheaf R.

It can be computed in several ways, which correspond to various choices of acyclic resolutions

of the constant sheaf R on X. In the case of a complex algebraic variety, we will refer to

this cohomology groups, which take into account only the topological space (or differentiable

manifold) associated with X, as the Betti cohomology.
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De Rham cohomology

Let X be a differentiable manifold X and let TX denote its tangent bundle. Set AkX := ΛkT ∗X

and let AkX be the associated sheaf of sections. We denote by Ak(X) := Γ(X,Ak) the space of

C∞ k-forms on X. Given the complex (A•, d), Poincaré’s lemma tells us that d2 = 0 and thus

we can define the k-th de Rham cohomology group:

Hk
dR(X,R) :=

Ker{d : Ak(X)→ Ak+1(X)}
Im{d : Ak−1(X)→ Ak(X)}

The same construction works if we take the C∞-forms with complex coefficients and we

have an identification

Hk
dR(X,R)⊗ C = Hk

dR(X,C).

Singular cohomology

To define singular cohomology one considers the standard k-simplex

∆k := {(x0, . . . , xn) ∈ Rk+1 :
∑

xi = 1, xi ≥ 0}.

The faces of ∆k are the subsets ∆k−1
q = ∆k ∩ {xq = 0} with inclusion maps jq : ∆k−1

q → ∆k.

We denote with Sk(X) the group generated by continuous maps σ : ∆k → X and call its

elements k-singular chains. If R is a ring, we set Sk(X,R) := Sk(X) ⊗ R and Sk(X,R) :=

Hom(Sk(X,R), R). There exists a boundary map

∂ : Sk(X,R)→ Sk−1(X,R), σ 7→
∑
q

(−1)qσ ◦ jq.

The coboundary map δk : Sk(X,R) → Sk+1(X,R) is defined as the transpose of ∂k. The

singular homology and cohomology groups are defined by

Hsing
k (X,R) := Hk(S•(X,R)) =

Ker{∂ : Sk(X)→ Sk−1(X)}
Im{∂ : Sk+1(X)→ Sk(X)}

Hk
sing(X,R) := Hk(S•(X,R)) =

Ker{δ : Sk(X)→ Sk+1(X)}
Im{δ : Sk−1(X)→ Sk(X)}

We now state the first comparison theorem:
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Theorem 1.1.4. Let X be a locally contractible topological space, and R a commutative ring.

Then we have a canonical isomorphism

Hk
sing(X,Z) ∼= Hk(X,Z)

between singular and Betti cohomology.

Remark 1. The previous results holds for any commutative ring R.

Proof. Consider the sheaf Sk of the singular cochains associated to the presheaf

U 7→ Sk(U,Z).

The differential δ on each section Sk(U,Z) gives a differential at the level of sheaves

δ : Sk → Sk+1.

The complex of singular cochains gives a resolution of the constant sheaf Z. In fact, since the

cohomology of a constant sheaf on every contractible open U is 0 in positive degree, (S•, δ)

exact in positive degree and the Kernel of δ0 : S0 → S1 is the constant sheaf Z, as X is locally

pathways connected. Also, such a resolution is Γ-acyclic because Sk is flasque.

Theorem 1.1.5 (de Rham). Let X be a C∞ differentiable manifold. Then

Hk
dR(X,R) ∼= Hk(X,R) ∼= Hk

sing(X,R)

Proof. First we observe that the constant sheaf of stalk R is naturally included in the sheaf

C∞(X) of C∞ functions. Poincaré lemma tells us that every closed form of degree k > 0 is

locally exact, which means that the sequence

. . .→ Ak−1 d−→ Ak d−→ Ak+1 d−→ . . .

is exact in the middle for k ≥ 1. Furthermore, if we look at the kernel of d0 : C∞ = A0 → A1, we

notice that df = 0 if and only if f is locally constant, i.e. ker d0 = R. We have thus constructed

a resolution with fine sheaves of the constant sheaf R, called the de Rham resolution, such that:

Hk(A•) =


R for k=0

0 otherwise.
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As the de Rham resolution is Γ-acyclic by theorem 1.1.3, the sheaf Hk(X,R) is equal to the

cohomology of the complex of the global sections of A•, which is precisely Hk
dR(X,R). From

theorem 1.1.4, we also have an isomorphism

Hk(X,R) ∼= Hk
sing(X,R).

Remark 2. The direct isomorphism

Hk
dR(X,R) ∼= Hk

sing(X,R)

is given by the following pairing: choose a closed form ω and a singular chain γ ∈ Ker{∂ :

Sk(X)→ Sk−1(X)}. Define:

I(ω, γ) :=

∫
γ
ω.

The numbers I(ω, γ) are called periods of ω. By Stokes’ theorem, I defines a pairing:

Hk
dR(X,R)×Hsing

k (X,R)→ R

and thus, for every ω ∈ Hk
dR(X,R) a functional in Hk

sing(X,R) = Hom(Hsing
k (X,R),R) which

maps γ into
∫
γ ω. The map ω 7→

∫
ω is an isomorphism between Hk

dR(X,R) and Hk
sing(X,R).

Remark 3. De Rham theorem also holds in the case of a complex manifold. Choosing the

resolution of the C∞ k-forms Ak(X) with complex coefficients, we have

Hk
dR(X,C) ∼= Hk(X,C) ∼= Hk

sing(X,C)

and the isomorphism between de Rham and singular cohomology is given as above.

Dolbeault cohomology

Let X be a complex manifold of dimension n. Consider the sheaf Ωp of holomorphic p-forms.

If U is an open set of X we have that Ωp = ker{Ap,0(U) → Ap,1(U)}. It follows, from the

∂̄-Poincaré lemma, that for each 0 ≤ p ≤ n we get a complex

0→ Ωp(U) ↪→ Ap,0 ∂̄−→ Ap,1 ∂̄−→ . . .
∂̄−→ Ap,n ∂̄−→ 0
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called the Dolbeault complex. Its cohomology spaces

Hp,q

∂̄
:=

ker{∂̄ : Ap,q → Ap,q+1}
Im{∂̄ : Ap,q−1 → Ap,q}

are called Dolbeault cohomology groups. Since the sheaves Ap,q are fine, we also have that the

Dolbeault complex is an acyclic resolution of the sheaf Ωp and so there is an isomorphism:

Hp,q

∂̄
= Hq(X,Ωp).

1.2 The Hodge Decomposition

De Rham theorem tells us two things:

(i) if all the periods of a differential form vanish, the form is exact;

(ii) Every cohomology class a ∈ Hk(X,R) can be represented by a closed differential fomr.

The representative in (ii) is of course not unique, since it is defined up to adding an exact

form. The aim of Hodge theorem will be to identify Hk(X,R) with a subspace, rather than

a subquotient, of Ak(X) by finding a unique representative for a cohomology class. This

representative is provided by an isomorphism of Hk(X,R) with the harmonic k-forms.

1.2.1 Harmonic forms and laplacians

The L2 metric

Let (X, g) be a compact oriented riemannian manifold of dimension n. Choose an orthonormal

basis for the tangent space TX,x with respect to the inner product gx. We can extend the inner

product g to T ∗X,x =: A1
X,x and so to each vector bundle

∧k A1
X,x =: AkX,x by requiring that the

corresponding bases of these spaces are orthonormal with respect to g. Given α, β ∈ Ak(X),

we have (α, β)x := gx(αx, βx) and we define the L2 metric (or Hodge metric) on Ak(X) by

(α, β)L2 :=

∫
X

(α, β)xV ol
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where V ol is the volume form associated to (X, g).

To construct a formal adjoint for d with respect to this metric, we introduce the Hodge star

operator. We recall that the volume form V ol ∈ AnX,x determines an isomorphism between An

and R given by integration. Thus, the wedge product induces a bilinear form

I : Ak(X)×An−k(X)→ R

which gives an isomorphism of vector spaces p : An−k(X)
'−→ Hom(Ak(X),R).

Also, we have an isomorphism m given by the L2 metric between Ak(X) and Hom(Ak(X),R).

We define the Hodge operator ∗ as the unique isomorphism for which the following diagram

commutes:

Ak(X)
m−−−−→ Hom(Ak,R)y∗ ∥∥∥

An−k(X)
p−−−−→ Hom(Ak,R)

where

m : β 7→ (α 7→
∫
X

(α, β)V ol)

p : γ 7→ (α 7→
∫
X
α ∧ γ).

Given β ∈ Ak(X), ∗β will be the only element of An−k(X) such that∫
x
(α, β)V ol =

∫
X

(α ∧ ∗β).

One can easily verify from the definition that the Hodge operator satisfies the following

properties:

(i) ∗ ◦ ∗ = (−1)k(n−k)

(ii) (∗α, ∗β) = (α, β)

Proposition 1.2.1. The operator

d∗ = (−1)nk+1 ∗ d∗ : Ak+1(X)→ Ak(X)

is the formal adjoint of d with respect to the L2 metric.
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Proof. Let α ∈ Ak(X), β ∈ Ak+1(X). Using Stokes theorem we have:

(dα, β)L2 =

∫
X
dα ∧ ∗β

= (−1)k+1

∫
X
α ∧ d ∗ β

= (−1)k+1

∫
X
α ∧ ∗(∗−1d ∗ β)

= (−1)k(n−k)+k+1

∫
X
α ∧ ∗(∗d ∗ β)

= (−1)nk+1(α, ∗d ∗ β).

Laplacians

Definition 1.4. Let X be a compact Riemannian manifold. We define the d-Laplacian operator

∆d := dd∗ + d∗d : Ak(X)→ Ak(X)

Lemma 1.2.2. In the prevoius hypotheses we have that ker ∆d = ker d ∩ ker d∗.

Proof. Take ω ∈ Ak(X).

(ω,∆dω)L2 = (ω, dd∗ω)L2 + (ω, d∗dω)L2 = (d∗ω, d∗ω)L2 + (dω, dω)L2 . (1.1)

Clearly dω = d∗ω = 0 if and only if ∆dω = 0.

Corollary 1.2.3. From the formula 1.1, we notice that the laplacian has the followwing prop-

erties:

(i) ∆ = ∆∗

(ii) ∆ commutes with ∗, d, d∗.

Definition 1.5. Let ω ∈ Ak(X). We say that ω is harmonic if ∆dω = 0. We will denote the

vector space of k-harmonic forms with Hk.
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In particular we have that every harmonic form is closed. So we have a map i: Hk →

Hk
dR(X,R) which to a form α associates its de Rham cohomology class. In order to prove that

this is actually an isomorphism, we need the famous Hodge theorem:

Theorem 1.2.4 (Hodge theorem). Let X be a compact oriented riemannian manifold. For

all k we have:

(i) dimHk <∞

(ii) Ak(X) = Hk ⊕∆Ak(X) = Hk ⊕ dAk−1(X)⊕ d∗Ak+1(X)

where the direct sum in (ii) is rispect to the L2 metric.

We are now able to prove the following theorem:

Theorem 1.2.5. There map

Hk → Hk
dR(X,R)

α 7→ [α]dR

is an isomorphism.

Proof. By Hodge theorem we have the decomposition

Ak(X) = Hk ⊕∆Ak(X) = Hk ⊕ dAk−1(X)⊕ d∗Ak+1(X).

Let α ∈ Ak(X) be a closed form, and write α = ω + ∆β with ω harmonic. As α and ω are

closed, we then have

0 = dα = dω + d2d∗β + dd∗dβ = dd∗dα⇒ d∗dβ ∈ Kerd ∩ Imd∗ ⇒ d∗dβ = 0.

So α = ω + dd∗β (i.e. [α]dR = [ω]dR) and thus i is surjective. To see that i is also injective we

take a harmonic exact form and we show that it is necessarily 0. Let α ∈ Hk be exact. Then by

lemma 1.2.2 α ∈ ker d∗. However α is also in Imd so, by Hodge theorem, α must be zero.
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The complex case

In the case of a complex manifold we can extend the definition of * by C-linearity to complex

valued forms, which we will again denote by Ak(X). We extend the metrics (, )x to Hermitian

metrics on the complexified bundles AkX,C. On the subject of the Hermitian metric induced

on the complexified bundles, let us remark the following fact. If V is a complex vector space,

W = Hom(V,R) and h is an Hermitian metric on V , we have a decomposition:

WC := W ⊗ C = W 1,0 ⊕W 0,1, ΛlWC =
⊕
p+q=k

W p,q.

Each component W p,q :=
∧pW 1,0 ⊕

∧qW 0,1 has a hermitian metric hp,q induced by h on

W 1,0 ∼= HomC(V,C), W 0,1 ∼= HomC(V,C) and their tensor products. Furthermore, we have

the Hermitian metric hk induced by g on
∧kWC ∼=

∧kW ⊗ C.

Lemma 1.2.6. 2khk =
∑
hp,q on

∧kWC, where
∑

denotes the direct sum of the metrics hp,q.

On a complex manifold with hermitian metric h we define

∗ : Ap,q(X)→ An−q,n−p(X)

such that α ∧ ∗β. = h(α, β)V ol for all α, β ∈ Ap,q(X). The L2 inner product will be given by

(α, β)L2 =

∫
X
α ∧ ∗β.

The decomposition

Ak(X) =
⊕
p+q=k

Ap,q(X)

is orthogonal with respect to this inner product.

As in the riemannian case, we define the formal adjoint of the differential d and also the

adjoint operators of ∂ and ∂̄. Using the same techniques of the riemannian case, one can show

that

∂∗ = − ∗ ∂̄ ∗ ∂̄∗ = − ∗ ∂ ∗ .
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We define the laplacian operators

∆d = dd∗ + d∗d

∆∂ = ∂∂∗ + ∂∗∂

∆∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄

and the space of (p, q)-harmonic forms as

Hp,q := {ω ∈ Ap,q | ∆∂̄ω = 0}

By elliptic operator theory one obtains an analogue of Hodge theorem for ∆∂̄ .

Theorem 1.2.7. Let X be a compact complex manifold. For all k we have:

(i) dimCHp,q <∞

(ii) Ap,q(X) = Hp,q ⊕∆∂̄Ak(X) = Hk ⊕ Im∂̄ ⊕ Im∂̄∗

where the direct sum in (ii) is rispect to the L2 metric.

Corollary 1.2.8. The natural map from the space of complex valued (p, q)-harmonic forms to

the Dolbeault cohomology group Hp,q

∂̄
is an isomorphism.

Hp,q ∼= Hp,q

∂̄

Proof. The proof is the same as theorem 1.2.5, with ∂̄ instead of d.

1.2.2 Hodge theory on Kähler manifolds

Let us first recall the definition of Kähler manifold. Let X be a complex manifold of dimension

n with an hermitian metric h. We can define a differential 2-form ω ∈ A1,1(X) by:

ω = −=(h)

where = denotes the imaginary part of h. In local coordinates {z1, . . . , zn} this form can be

written as

ω = − i
2

n∑
j,k=1

hjkdzj ∧ dz̄k, hjk = hkj
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and one can show (see [25]) that ω = ω̄, i.e. that ω is real. If ω is closed we call h the Kähler

metric and we say that X is Kähler .

We now give some examples of Kähler manifolds

Example 1.2. • Cn with the standard hermitian metric is a Kähler manifold.

• Consider Pn(C), with the usual holomorphic atlas (Uj , ψj),  = 0, . . . , n where Uj =

{[z0, . . . , zn] ∈ Pn(C) | zj 6= 0} ∼= Cn by ψj : [z0, . . . , zn] 7→ (z0/zj , . . . , 1̂, . . . zn/zj). Let

also π : Cn+1 − {0} → Pn(C) be the canonical projection π(z0, . . . , zn) = [z0, . . . , zn]. It

also induces maps

φj : Pn(C)→ Cn+1, [z0, . . . , zn] 7→ (z0/zj , . . . , 1, . . . zn/zj)

such that on Uj ∩ Uk we have φj = ([zj/zkφk). We have thus constructed a line bundle

L which has the φj as sections.

Definition 1.6. Let us denote the dual of L by OPn(1)

Now let h be the standard hermitian metric on Cn+1. By restriction, the inclusion of

vector bundles L ⊂ Pn(C) × Cn+1 gives a hermitian metric on L, as well as on its dual

OPn(1). The real closed (1,1) form associated to h∗ is, by definition, equal to

1

2πi
∂∂̄logh∗(φ∗i ), on Ui,

where φ∗i is the section dual to φi in Ui. We have h∗(φ∗i ) =
1

h(φi)
. Finally, the identifi-

cation Ui ∼= Cn, the sections φ of L, which we can consider as holomorphic Cn+1-valued

map, is given by φi(z0, . . . , zn) = (z0, . . . , 1, . . . zn), where 1 is in the i− th position. We

thus obtain

h(φi) = 1 +
∑
i

| zi |2,

and

ωi :=
1

2πi
∂∂̄log

1

1 +
∑

i | zi |2
.

By gluing the ωi we obtain a form ω on Pn(C) which is positive. The associated Kähler

metric is called the Fubini-Study metric.
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• As every submanifold of a Kähler manifold is Kähler , every complex projective manifold

is Kähler

Kähler identities and proportionality

Definition 1.7. Let (X,ω) be a n-dimensional, compact Kähler manifold. We define the

Lefschetz operator as

L : Ak(X)→ Ak+2(X)

α 7→ ω ∧ α

We also denote with Λ : Ak(X)→ Ak−2(X) its formal adjoint relative to the L2 inner product

and one verifies that

Λ = (−1)k ∗ Lω∗

We have the following commutation relations of L and Λ with d, ∂ and ∂̄: the first two are

known as Kähler identities. See [25] for the proof.

Proposition 1.2.9. ?? Let (X,ω) be a n-dimensional, compact Kähler manifold. Then the

following identities hold:

(i) [∂, L] = [∂̄, L] = [∂∗,Λ] = [∂̄∗,Λ] = 0.

(ii) [∂̄∗, L] = i∂, [∂∗, L] = −i∂̄, [∂̄,Λ] = i∂∗, [∂,Λ] = −i∂̄∗.

(iii) L,Λ commutes with ∆d.

(iv) [L,Λ] = (k − n)Id on Ak(X).

A remarkable consequence of the Kähler identities is the fact that on a complex Kähler

manifold , the laplacians ∆d,∆∂̄ and ∆∂ are multipliples of each other:

Theorem 1.2.10 (Proportionality). Let X be a compact Kähler manifold. Then:

∆d = 2∆∂̄ = 2∆∂
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Proof. We have

∆d = (∂ + ∂̄)(∂∗ + ∂̄∗) + (∂∗ + ∂̄∗) =

= (∂ + ∂̄) = ∆∂ + ∆∂̄ + ∂̄∗∂ + ∂∂̄∗ + ∂̄∂∗ + ∂∗∂̄

It suffices to show that

(i) ∂̄∗∂ + ∂∂̄∗ + ∂̄∂∗ + ∂∗∂̄

(ii) ∆∂ = ∆∂̄

To show (i) we use the identity [Λ, ∂] = i∂̄∗ to obtain

i(∂̄∗∂ + ∂∂̄∗) = ∂[Λ, ∂] + [Λ, ∂]∂ = ∂Λ∂ − ∂Λ∂ = 0.

By complex conjugation we find ∂̄∂∗ + ∂∗∂̄ = 0 as well, so (i) is proved. Now we have to show

(ii):

∆∂ = ∂∂∗ + ∂∗∂ − i∂[Λ, ∂̄] + i∂[Λ, ∂̄]

= i(∂Λ∂̄ − ∂∂̄Λ + Λ∂̄∂ − ∂̄Λ∂)

= i(Λ(∂∂̄ + ∂̄∂) + (∂∂̄ + ∂̄∂)Λ− i(∂̄∂̄∗ + ∂̄∗∂̄))

= ∂̄∂̄∗ + ∂̄∗∂̄ = ∆∂̄

Hodge decomposition theorem

Proportionality leads to one of the main results of Hodge theory: the Hodge decomposition.

Theorem 1.2.11. Let X be a compact Kähler manifold. We have a decomposition

Hk(X,C) ∼=
⊕
p+q=k

Hp,q(X)

such that Hp,q = Hq,p, where the complex conjugation comes from the isomorphism Hk(X,C) ∼=

Hk(X,R)⊗ C.
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Proof. Put Hp,q := Hp,q. We have seen that

(i) Hk(X,C) ∼= Hk

(ii) Hp,q

∂̄
∼= Hp,q

Hence it suffices to show that Hk =
⊕

p+q=kHp,q. Given α ∈ Hk ⊂ Ak(X), write α =
∑

p,q αp,q

with αp,q ∈ Ap,q(X). As ∆d(Ap,q(X)) ⊂ Ap,q(X), proportionality tells us that the components

αp,q are harmonic. In fact

0 = ∆dα = 2∆∂̄α =
∑
p,q

∆∂̄αp,q =⇒ ∆∂̄αp,q = 0 ∀p, q.

This shows that the map

i : Ak(X)→
⊕
p+q=k

Ap,q(X)

α 7→ (αk,0, αk−1,1, . . . , α0,k)

induces an injective map

i : Hk →
⊕
p+q=k

Hp,q.

Given β ∈ Hp,q, we have 0 = ∆∂̄β = 1
2∆dβ, i.e. β ∈ Hk and i is surjective.

Furthermore the complex conjugation on Ak(X) ∼= AkR ⊗ C induces a C-linear isomorphism

Ap,q(X) ∼= Aq,p(X). As ∆∂̄ = 1
2∆d commutes with complex conjugation, we obtain an induced

C-linear isomorphism

Hp,q ∼= Hq,p =⇒ Hp,q ∼= Hq,p.

Proposition 1.2.12. The Hodge decomposition does not depend on the choice of a Kähler

metric on X.

Proof. From the proof of theorem 1.2.5 it is clear that the isomorphism Hk ∼= Hk
dR(X,C) does

not depend on the metric, however it is not so for the isomorphisms Hp,q ∼= Hp,q. We shall

identify every space Hp,q with a subspace of Hp+q
dR (X,C). Set

Cp,q(X) := {[α]dR ∈ Hp+q
dR (X,C) | α ∈ Ap,q(X), dα = 0}.
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As ker ∆d = ker d ∩ ker d∗, there is a natural injective map:

i : Hp,q → Cp,q(X)

α 7→ [α]dR

To show that i is surjective, we choose α ∈ Cp,q(X) and thanks to Hodge theorem, we can

write it as α = β + ∆dγ with β harmonic. As ∆d = 2∆∂̄ preserves types, we obtain

α = βp,q + ∆dγp,q.

By applying d to the equation we get

0 = dα = d∆dγp,q = dd∗dγp,q.

Again, as Imd∗ ∩ ker d = 0, we gave d∗dγp,q = 0 and so

α = β + d(d∗γ)

and [α]dR = [β]dR ∈ Cp,q(X). This shows that i is an isomorphism and since Cp,q does not

depend on the choice of the metric neither does i.

Corollary 1.2.13. If a cohomology class c ∈ Hk(X,C) is represented by closed forms αp,q and

αr,s such that (p, q) 6= (r, s) then c = 0.

Proof. As Cp,q ∼= Hp,q(X), we have Cp,q ∩ Cr,s = 0.

Another useful consequence of Hodge decomposition is the following:

Corollary 1.2.14. The odd Betti number b2k+1 = dimCH
2k+1 are even.

Example 1.3. A Hopf surface is the quotient of C2−{(0, 0)} by the equivalence relation (z1, z2) '
1
2(z1, z2). It is diffeomorphic to S3 × S1, and its Betti numbers are 1, 1, 0, 1, 1. By the above

corollary, we see that Hopf surfaces are not Kähler .

Corollary 1.2.15. The cup product ∪ : Hk(X,C) ⊗ H l(X,C) → Hk+l(X,C) is bigraded for

the bigraduation given by the Hodge decomposition
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Proof. If α is a closed form of type (p, q) and β is a closed form of type (p′, q′) then α ∧ β is a

closed form of type (p+ p′, q + q′).

Corollary 1.2.16 (∂∂̄-lemma). Let α ∈ Ap,q(X) such that ∂α = ∂̄α = 0. Then if α is ∂ or ∂̄-

exact, there exists a form β such that α = ∂∂̄β.

Proof. For istance we can take ω ∂̄-exact, ω = ∂̄α. By Hodge theorem, we can write α = β+∆dγ

with β-harmonic. As ∆d = 2∆∂̄ , we have ∂̄β = 0. Further, we noticed in the proof of ?? that

∂̄∂∗ = −∂∗∂̄. Thus,

ω = 2∂̄(∂∂̄∗ + ∂∂∗)γ = −2∂∗(∂∂̄γ) + 2∂̄∂∂∗γ.

As both ω and 2∂̄∂∂∗γ = −2∂∂̄∂∗ are ∂-closed, it follows that ∂∗(∂̄∂γ) is also. However,

∂∗(∂̄∂γ) ∈ Im∂∗, then it must be 0. So we obtain

ω = ∂̄∂(∂∗γ).

1.2.3 Hard Lefschetz theorem

The commutation relation between L and Λ has the following consequence.

Lemma 1.2.17. Let X be a compact Kähler manifold of dimension n with Kähler form ω.

The morphism

Lk : An−kR (X)→ An+k
R (X)

α 7→ ωk ∧ α

is an isomorphism.

Proof. See [25].

Definition 1.8. We say that a form α is primitive if and only if ker(Ln−k+1).
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As ω is a closed (1, 1) real form, Lk respects bigraduation and also it induces morphisms

in cohomology:

Lk : Hn−k(X,C)→ Hn+k(X,C) (1.2)

Lk : Hn−p,n−q(X,C)→ Hn−p+k,n−q+k(X,C) (1.3)

Theorem 1.2.18. In the previous hypotheses

(i)

Hk(X,C) =
⊕

r≥max(k−n,0)

LrHk−2r
pr (X,C)

Hp,q(X) =
⊕

r≥max(p+q−n,0)

LrHn−p+k,n−q+k
pr (X)

(ii) (Hard Lefschetz) The morphisms 1.2 and 1.3 are isomorphisms.

Remark 4. Even if the result is stated for cohomology with complex coefficients, it also hold

for H∗(X,R) because ω is a (1, 1)-real form. Further if ω is integral, the result is valid for

H∗(X,Q) as well.

An important application of the Lefschetz theorems are the so called Hodge-Riemann bi-

linear relations. We will meet them again when introduce the concept of polarization of Hodge

structure. Define a bilinear form

Q : Hk(X,C)×Hk(X,C)→ C, Q(u, v) =

∫
X
u ∧ v ∧ ωn−k (1.4)

By the same argument as in remark 4, Q is real valued on Hk(X,R) and if the the Kähler

class is integral, Q takes integral values on Hk(X,Z). Also, Hard Lefschetz theorem implies

that it is non-degenerate.

Proposition 1.2.19. The bilinear form Q has the following properties, which are called the

Hodge Riemann bilinear relations:

(i) Q is symmetric when k- is even and antisymmetric when k is odd;

(ii) The Hodge decomposition is orthogonal respect to Q, i.e. if u ∈ Hp,q(X) and v ∈ Hr,s(X)

then Q(u, v) = 0 if (q, p) 6= (r, s);
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(iii) If u ∈ Hp,q
pr (X) and u 6= 0, then

(−1)k(k−1)/2ip−qQ(u, ū) > 0

1.3 Cohomology of an algebraic variety

A complex algebraic variety X carries two natural topologies: the Euclidean (or classical),

given by the embedding in Cn (if affine) or Pn(C) (if quasi-projective), and the Zariski topology,

defined by the property that the closed subsets are the algebraic subsets of X, that is, subsets

defined by the vanishing of polinomial functions restricted to X. These sets are closed for the

classical topology, which so happens to be stronger. Indeed, Zariski topology is very weak. For

example, if X is irreducible, any two open Zariski sets have no empty intersection by analytic

continuation. Thus the only continuous sections of the constant sheaf C are the constant

function and so C is flasque. Hence, by theorem 1.1.2, Hk(X,C) = 0 for all k > 0. However,

the Zariski topology behaves much more better in computing cohomology on other sheaves,

namely coherent sheaves, and, more essentially, it is defined in completely algebraic terms. For

instance, if we conjugate a complex algebraic variety by an automorphism of C, a Zariski open

set remain open, while this does not happen for the open sets of the classical topology.

1.3.1 Coherent sheaves

Definition 1.9. Let R be a sheaf of commutative rings on a topological space X. A sheaf F of

R-modules on X is locally free of rank p if every point x ∈ X has a neighbourhood U on which

there is a sheaf isomorphism F|U ∼= R
⊕p
|U .

Example 1.4. Let OXan be the sheaf of holomorphic functions over a complex manifold X

of dimension n. A sheaf of OXan-modules is also called an analytic sheaf. The sheaf Ωk of

holomorphic k-forms is an analytic sheaf. Indeed, it is locally free of rank
(
n
k

)
with local frame

{dzi1 ∧ . . . ∧ dzik} with 1 ≤ i1 < i2 < . . . < ik ≤ n.

Example 1.5. The sheaf O∗Xan of nowhere-vanishing holomorphic functions with pointwise mul-

tiplication is not an analytic sheaf, since multiplying a nowwhere vanishing function by the
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zero function 0 ∈ OXan will result in a function not in O∗Xan .

Let R and F as above and let s1, . . . , sp be sections of F over an open set U in X . For

any r1 . . . rp ∈ R(U), the map

R⊕p(U)→ F(U),

(r1 . . . rp) 7→
∑
i

risi

defines a sheaf map φ : R⊕p|U → F|U over U . The kernel of φ is a subsheaf of R⊕p called the

sheaf of relations among s1, . . . , sp, denoted by S(s1, . . . , sp). We say that F|U is generated by

s1, . . . , sp if φ is surjective over U .

Definition 1.10. A sheaf F of R modules over a topological space X is of finite type if for all

x ∈ X there exists an open neighbourhood U of x and s1, . . . , sp ∈ Γ(U,F) such that for any

y ∈ U the stalk Fy is generated by s1(y), . . . , sp(y).

Definition 1.11. A sheaf F of R modules on a topological space X is coherent if

(i) F is of finite type,

(ii) for any open set U ⊂ X and any collection of section s1, . . . , sp ∈ F(U), the sheaf of

relation S(s1, . . . , sp) is of finite type over U .

Example 1.6. The sheaf of holomorphic functions OXan on a complex manifold X is a coherent

sheaf of rings, by a classical theorem of Oka.

Example 1.7. The sheaf of regular functions OXalg over an algebraic variety X is a coherent

sheaf of rings1 We will call algebraic sheaves the sheaves of OXalg modules. Let X = An (i.e.

Cn endowed with the Zariski topology). Then O = OXalg is a coherent sheaf of rings. Given

x ∈ X, let U be an open neighbourhood of x and s1, . . . , sp ∈ Γ(U,OXalg). Up to restricting U

to a smaller neighbourhood V of x, we can write si =
Pi
Qi

with P,Q ∈ C[x1, . . . , xn], Q 6= 0

1If R is a sheaf of rings, we can see it as a sheaf of R-modules and ask whether it is coherent or not.

By Hilbert’s Nullstellensatz, R is of finite type, so it will be coherent if and only if any sheaf of relation

S(s1, . . . , sp) over an open set U is of finite type.
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in any point of U . Let y ∈ U and ri ∈ O such that
∑p

i=1 risi = 0 in a neighbourhood of y.

We can also write ri in the form ri =
Ri
Ti
, T 6= 0. Thus, in a neighbourhood of y the relation∑p

i=1 risi = 0 is equivalent to
∑p

i=1RiPi = 0. Since C[x1, . . . , xn] is noetherian, S(P1, . . . , Pn)

is finitely generated; then S(s1, . . . , sp) is of finite type.

Example 1.8. If X is a smooth algebraic variety the sheaf Ωk
alg of algebraic k-forms is an algebraic

sheaf, locally free of rank
(
n
k

)
, where n = dimX

Remark 5. We know that given a complex manifold every Zariski-open set is also Euclidean-

open. Even if we consider OXalg and OXan only on Zariski-open sets, these sheaves are far

from being equal: for example if we consider A1, we notice that the function ez ∈ OXan but it

is not in OXalg .

In the following sections we will work with complex algebraic varieties. We will write

(Xan,OXan) when we considerX as a complex manifold with the classical topology, (Xalg,OXalg)

when we consider X as an algebraic variety with the Zariski topology. We would like to find a

connection between the cohomology of these two structures. This leads to use a more general

notion of cohomology, that is hypercohomology. Hypercohomology is just the cohomology of

a complex instead of the cohomology of a sheaf. Cohomology is the special case of hyperco-

homology in which a sheaf is considered as a complex concentrated only in degree 0. Before

stating some important theorems on hypercohomology and give some examples, we introduce

the notion on spectral sequence, which will be useful in proving the algebraic de Rham theo-

rem and other crucial results in Hodge theory. We refer to [10] and [25] for proofs and further

details.

1.3.2 Spectral sequences of a filtered complex

Let C be an abelian category and (K•, d) a complex in C. A filtration F · of the complex is

defined by a family of subobjects F i ⊂ Kj satisfying dj(F
iKj) ⊂ F iKj+1. A complex K•

endowed with a filtration F • is called a filtered complex. We consider decreasing filtrations

F i+1 ⊂ F i. In the case of an increasing filtration Wi, we obtain the terms of the spectral
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sequence from the decreasing case by a change of the sign of the indices of the filtration which

transforms the increasing filtration into a decreasing one F with F i = W−i.

Definition 1.12. Let K• be a complex of objects of an abelian category C, with a decreasing

filtration by subcomplexes F •. It induces a filtration F • on the cohomology H∗(K•), defined

by:

F iHj(K•) := Im{Hj(F i(K•))→ Hj(K•)}, i, j ∈ Z

Let F iK/F jK for i < j denote the complex (F iKr/F jKr, dr)r∈Z with induced filtra-

tion; in particular we set GrpF (K) := F pK/F p+1K. The associated graded object is Gr∗F :=⊕
p∈ZGr

p
F (K). Similarly, we define GriFH

j(K) and:

Gr∗FH
j(K) :=

⊕
i∈Z

GrFH
j(K) =

⊕
j∈Z

F iHj(K)/F i+1Hj(K)

Though at a first glance spectral sequences might seem unpleasant, they give a method to

compute the graded objectGrFH
∗(K) out of the cohomologyH∗(F iK/F jK) for various indices

i > j of the filtration. A spectral sequence of a filtered complex (K•, d, F •) consists of :

1. indexed objects of C Ep,qr , r > 0, p, q ∈ Z such that Ep,q0 = GrpF (Kp+q);

2. differentials dr : Ep,qr → Ep+r,q−r+1
r , such that dr ◦ dr+1 = 0, and d0 is induced by d;

3. isomorphisms:

Ep,qr+1
∼=
Ker{dr : Ep,qr → Ep+r,q−r+1

r }
Im{dr : Ep−r,q+r−1 → Ep,2r }

4. We also require that for p+ q and r sufficiently large, we have:

Ep,qr =: Ep,q∞ = GrpFH
p+q(K).

The aim of the spectral sequence is to compute the term Ep,q∞ , which is called the limit of the

spectral sequence.

Definition 1.13. We say that a spectral sequence degenerates at Er0 if the differential dr of

Ep,qr vanish for all r ≥ r0.
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The existence of such a sequence is of course not obvious. We briefly describe the construc-

tion of the terms and refer to [25] for the proof of the theorem. Set

Zp,qr = {x ∈ F pKp+q | dx ∈ F p+rKp+q+1}.

Zp,qr naturally contains Zp+1,q−1
r−1 and dZp−r+1,q+r−2

r−1 . Let

Bp,q
r := Zp+1,q−1

r−1 + dZp−r+1,q+r−2
r−1 ⊂ Zp,qr .

We set

Ep,qr := Zp,qr /Bp,q
r

As d sends Zp,qr to Zp+r,q−r+1
r , and Bp,q

r to Bp+r,q−r+1
r , we have a differential

dr : Ep,qr → Ep+r,q−r+1

which clearly satisfies d2
r = 0 since it is induced by d.

Spectral sequences of the simple complex associated to a double complex

In the case of the filtration of the simple complex (K•, d) associated to a double complex

(K ·,·, ∂, ∂̄) spectral sequences come in a particularly simple form.

Proposition 1.3.1. Let K• be the simple complex associated to a double complex (K ·,·, ∂, ∂̄).There

exists two natural decreasing filtrations F ′•, F ′′• defined by:

F ′p(Kn) =
⊕

r≥p,r+s=n
Kr,s

F ′′p(Kn) =
⊕

r≥p,r+s=n
Kr,s

and the spectral sequences associated to them have first terms given by:

• ′Ep,q0 =′′ Ep,q0 = Kp,q, d′0 = (−1)p∂̄ and d′′0 = ∂

• ′Ep,q1 = Hq(Kp,•, ∂̄), ′′Ep,q1 = Hq(Kp,•, ∂).

The differential d′1 : Hq(Kp,•)→ Hq(Kp+1,•) is induced by the morphism of complexes

∂ : Kp,• → Kp+1,•,
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while d′′1 : Hq(K•,p)→ Hq(K•,p+1) is induced by the morphism of complexes

∂̄ : K•,p → K•,p+1,

• ′Ep,q2 := Hp[Hq(K•,•, ∂̄), ∂], ′′Ep,q2 := Hp[Hq(K•,•, ∂), ∂̄]

Example 1.9. Let X be a complex manifold of dimension n. Now, consider the double complex

given by complex differential forms (Ap,q, ∂, ∂̄). We define the de Rham complex as the simple

complex associated to it. On this complex we have the filtration:

F pAk =
⊕

r≥p,r+s=k
Ar,s.

The spectral sequence associated to this complex is called the Frölicher spectral sequence. The

first term is quite easy to compute: in fact, if we apply proposition 1.3.1, we deduce

Ep,q1 = Hq(Ap,•, ∂̄) = Hp,q
∂ .

This spectral sequence satisfies a crucial property in the case of compact Kähler manifolds.

Theorem 1.3.2. Let X be a compact Kähler manifold. Then the Frölicher spectral sequence

degenerates at E1

1.3.3 Hypercohomology

To define hypercohomology of a complex M• of sheaves of abelian groups over a topological

space X, we first construct the double complex of global sections of the Godement resolution

of the sheaves Mq:

K =
⊕
p+q=k

Kp,q :=
⊕
p+q=k

Γ(X, CpMq). (1.5)

This double complex comes with two differentials:

horizontal ∂ : Kp,q → Kp+1,q, coming from the Godement resolution

vertical ∂̄ : Kp,q → Kp,q+1, coming from the complex

Since the differential d :Mq →Mq+1 induces a morphism of complexes C•Mq → C•Mq+1

where C is the Godement resolution, ∂ and ∂̄ commutes.
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Definition 1.14. We define the ith hypercohomology group as the ith cohomology group of

the simple complex (K•, ∂ + (−1)p∂̄) associated to the double complex Kp,q (we set K l =⊕
p+q=lK

p,q).

Hi(X,M•) := H i(K•)

Remark 6. The cohomology of a single sheaf F can be seen as a special case of hypercoho-

mology. Indeed, we can consider F as a complex F• which is F in degree 0 and 0 elsewhere.

Hence, the double complex K• =
⊕

Γ(X, CpFq) has nonzero entries only in degree 0. Thus

Hi(X,F•) = H i(Γ(X, C•F)) = Hk(X,F)

Spectral sequences of hypercohomology

Given a double complex (K•,•, ∂̄, ∂) with commuting differential ∂̄, ∂, we have the two

spectral sequences defined in 1.3.1. Fix a nonnegative integer p and let T = Γ(X, Cp(·)) be the

Godement sections functor that associates to a sheaf F on a topological space X the group of

sections Γ(X, CpF) of the Godement sheaf CpF . Since T is an exact functor, it commutes with

cohomology:

Hq(T (M•)) = T (Hq(M•)).

For the double complex defined in 1.5, the ′E1 term of the first spectral sequence is, by propo-

sition 1.3.1, the cohomology of K with respect to the vertical differential ∂̄. Thus, ′Ep,q1 = Hp,q

∂̄

is the q-th cohomology of the p-th column Kp,• = Γ(X, CpM•) of K:

′Ep,q1 = Hp,q

∂̄
= Hq(Γ(X, CpM•))

= Hq(T (M•)) (definition of T)

= T (Hq(M•)) (T is exact)

= Γ(X, CpHq(M•)) (definition of T).

Hence, the term ′E2 is

′Ep,q2 = Hp(Hq(K•,•, ∂̄), ∂) = Hp((H•,q, ∂̄), ∂) = Hp((Γ(X, C•Hq)) = Hp(X,Hq). (1.6)
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We then notice that the qth row of the double complex
⊕
Kp,q =

⊕
Γ(X, CpMq) calculates

the sheaf cohomology of Mq on X. Thus

′′Ep,q1 = Hp,q
∂ = Hp(K•,q) = Hp(Γ(X, C•Mq)) = Hp(X,Mq)

and the second term is

′′Ep,q2 = Hq(Hp(K•,•, ∂), ∂̄) = Hq((Hp,•, ∂), ∂̄) = Hq(Hp(X,M•)). (1.7)

We now give some important results on hypercohomology.

Theorem 1.3.3. Let F• and G• be complexes of sheaves of abelian groups over a topological

space X. If F• and G• are quasi-isomorphic (i.e. there is a morphism Φ : F• → G• of

complexes of sheaves which induces isomorphisms on the cohomology sheaves) then Φ induces

an isomorphism on the hypercohomology sheaves and we have

H∗(X,F•) ∼= H∗(X,G•).

Theorem 1.3.4. IfM• is a complex of acyclic sheaves of abelian groups on a topological space

X, then the hypercohomology of M• is isomorphic to the cohomology of the complex of global

sections of M•:

Hi(X,M•) ∼= H i(X,M•)

Theorem 1.3.5. If 0→ F →M• is an acyclic resolution of F (i.e. Mq is Γ-acyclic for any

q),then the cohomology of F can be computed from the complex of global sections of M•:

Hk(X,F) = Hk(X,M•).

This theorem tells us that when we compute the cohomology of a sheaf F , we can take any

acyclic resolution of F instead of the Godement resolution.

1.3.4 Analytic and algebraic de Rham theorems

The analytic and algebraic de Rham theorems are the analogues of the classical de Rham theo-

rem for respectively complex manifolds and algebraic varieties. The analytic de Rham theorem
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states that the cohomology of the constant sheaf C can be computed from the holomorphic

forms. Thanks to the holomorphic Poincaré Lemma, this theorem is far easier to prove than

the algebraic counterpart.

Lemma 1.3.6 (Holomorphic Poincaré Lemma). Let X be a complex manifold of dimension

n and set Ωk
an := Ak ∩ ker ∂̄ the sheaf of holomorphic k-forms on X. Then the sequence

0
i−→ C ∂−→ OXan → Ω1

an
∂−→ . . .

∂−→ Ωn
an → 0

is exact. In other words the complex Ω•an is, via i, a resolution of the constant sheaf C.

Proof. We want to show that the sheaves of cohomology Hk = Hk(Ω•an) satisfy H0 = i(C) and

Hk = 0 for k > 0. Now, we have the inclusion of the holomorphic de Rham complex into the

de Rham complex of C-valued differential forms:

(Ωk
an, ∂)→ (Ak, d)

since d and ∂ coincide on holomorphic forms. Moreover we can see the usual de Rham complex

as the simple complex associated to the double complex (Ap,q, ∂, (−1)p∂̄). By Poincaré lemma,

we now that

Hk(A•) =


C for k = 0

0 for k > 0

By ∂̄-Poincaré lemma, each column (Ap,•, (−1)p∂̄) gives a resolution of Ωp
an and so the ′E1 term

of the spectral sequence of (Ap,q, ∂, (−1)p∂̄) is given by:

′E0,0
1 = OXan = Ω0

an
′Ep,01 = Ωp

an
′Ep,q1 = 0 otherwise.

Hence, the E2 term is given by

′Ep,q2 =


Hp(Ω•an) for q = 0

0 for q > 0

Since the spectral sequence degenerates at ′E2,

Hk(Ω•an) =′ E2 =′ E∞ ∼= Hk(A•) =


C for k = 0

0 for k > 0
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Corollary 1.3.7 (Analytic de Rham theorem). Let X be a complex manifold. Then

Hk(X,C) ∼= Hk(X,Ω•an).

Proof. By the holomorphic Poincaré lemma, we have a quasi-isomorphism between the C•

(C in degree 0, 0 elsewhere) and Ω•an. This induces, by theorem 1.3.3, an isomorphism in

hypercohomology:

Hk(X,C) ∼= H(X,Ω•an).

Also, by remark 6, we have Hk(X,C) = Hk(X,C) and so we have finished.

Let now X be a nonsingular quasi-projective variety defined over a field K of characteristic

zero. One has the morphism X → Spec(C) and the sheaf of Kähler (or algebraic) differentials

ΩX/K which is a locally free algebraic coherent sheaf on X, locally generated by the differentials

dfi where the fia are algebraic functions on X defined in a neibourghood of x ∈ X. The

relations are given by da = 0 for a ∈ K and the Leibniz rule d(fg) = fdg + gdf .

We can form the locally free sheaves Ωl
X/K :=

∧l ΩX/K and, by the definition of ΩX/K and using

Leibniz rule, we get the differentials d : OXalg → ΩX/K, d : Ωl
X/K → Ωl+1

X/K. The complex

0→ OXalg → ΩX/K → . . .→ Ωn
X/K → 0

is called the algebraic de Rham complex and we denote it by Ω•X/K. When K = C we will

denote it by Ω•alg.

The painful aspect of the algebraic de Rham complex is that there is no Poincaré lemma,

i.e. the complex

0→ C→ OXalg → Ω1
alg → Ω2

alg → . . .

is in general not exact. Also, as we told earlier, the sheaf cohomology groups computed regard-

ing Zariski topology are trivial. Fortunately we can still use hypercohomology.

Definition 1.15. The algebraic de Rham cohomology of X is defined as the hypercohomology

of the algebraic de Rham complex : H l(X/K) := Hl(X,Ω•X/K)
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Remark 7. This definition is compatible with field extensions. In fact given a field extension

K ⊆ L , we let XL = X ×Spec(K) Spec(L) denote the variety obtained from X by estensions of

scalars. Since ΩXL/L
∼= ΩX/K ⊗K L, we obtain H i(XL/L) ∼= H i(X/K)⊗K L.

Theorem 1.3.8 (Algebraic de Rham theorem). Let Xalg be a nonsingular projective variety

over C and let Xan denote the associated complex manifold. Then there is a canonical isomor-

phism

Hk(Xalg/C) ∼= Hk(Xan,C)

and under this isomorphism, F pHk(Xalg/C) ∼= F pHk(Xan,C) gives the Hodge filtration on

singular cohomology.

Proof. By the analytic de Rham theorem, we have an isomorphism:

Hk(Xan,C) ∼= Hk(Xan,Ω
•
an).

Also, in the second spectral sequence converging to H∗(Xan,Ω
•
an) the ′′E1 term is, by equation

1.7,

′′Ep,q1,an = Hp(Xan,Ω
q
an).

Similarly, in the second spectral sequence converging to the hypercohomology H∗(Xalg,Ω
•
alg) =

H∗(Xalg/C) the ′′E1 term is

′′Ep,q1,alg = Hp(Xalg,Ω
q
alg).

By Serre’s GAGA principle, we have an isomorphism

Hp(Xan,Ω
q
an) ∼= Hp(Xalg,Ω

q
alg).

The isomorphism E1,an
∼= E1,alg induces an isomorphism in E∞. Hence,

H∗(Xalg/C) = H∗(Xalg,Ω
•
alg)
∼= H∗(Xan,Ω

•
an) = H∗(Xan,C).

Since the Hodge filtration on H i(Xan,C) is induced by the filtration on the complex Ω•an

F pΩ•an := Ω≥pan ,

the second assertion follows by the same argument.
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Hodge structures

2.1 Hodge structures

Let R be Z,Q, or R.

Definition 2.1 (Hodge structure). A R-Hodge structure of weight k is the datum of

• A free abelian module VR of finite type over R;

• a complex vector space V with a decomposition of complex vector spaces

V =
⊕
p+q=k

V p,q with V p,q = V q,p; (2.1)

• an isomorphism α

V ∼= VC := VR ⊗ C. (2.2)

Given such a decomposition, we define the associated Hodge filtration F •V by

F pV :=
⊕
r≥p

V r,k−r.

It is a decreasing filtration on VC which satisfies

V = F pV ⊕ F k−p+1V .

32
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The Hodge filtration determines the Hodge decomposition by

V p,q = F pV ∩ F qV , for p+ q = k.

This shows that we can equivalently define a Hodge structure either from the Hodge filtration

or the decomposition.

Remark 8. This definition can be simplified by setting V = VC := VR⊗C and forgetting about

the comparison isomorphism. However in practice, the filtration F • is often not defined on

VR ⊗ C itself, but on an isomorphic vector space. Keeping track of the isomorphism can be

useful. Anyway, unless specify otherwise, the isomorphism in 2.2 will be the identity.

Definition 2.2 (Polarised Hodge structure). We say that a R-Hodge structure (VR, F,Q)

is polarised if there exists a bilinear form Q : VR × VR → R that satisfies the Hodge-Riemann

bilinear relations of proposition 1.2.19.

Definition 2.3. A morphism of R-Hodge structures φ : (VR, F
•) → (WR, F

′•) of weight re-

spectively k is a homomorphism of abelian groups φ : VR → WR such that φC ⊗ C : VC → WC

satisfies

φC(F pVC) ⊆ F ′pWC.

By a slight abuse of notation, we will also consider morphisms of Hodge structures of type

(r, r) between a Hodge structure VR of weight k and one WR of weight k + 2r, requiring that

φC(F pVC) ⊆ F ′p+rWC.

Definition 2.4. Let (VR, F
•) be a Hodge structure of weight k. The dual Hodge structure

(V ∗R, F
•) is the Hodge structure of weight −k defined by

V ∗R = HomR(VR, R) F pV ∗C = HomC(F pVC,C).

Let us now give some examples of Hodge structures. A crucial one is given by the Hodge

decomposition of the cohomology of a compact Kähler manifold.

When X is a compact Kähler manifold we have the Hodge decomposition

Hk(X,C) =
⊕
p+q=k

Hp,q(X)
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withHp,q = Hq,p. If we set V = Hk(X,Z) (resp. V = Hk(X,Q)) we have an integral (resp.

rational) Hodge structure of weight k. The associated Hodge filtration has the following prop-

erty.

Proposition 2.1.1. Let F pAk(X) be the set of complex differential forms of type (r, k − r)

with r ≥ p at every point. Then we have

F pHk(X,C) =
Ker{d : F pAk(X)→ F pAk+1(X)}
Im{d : F pAk−1(X)→ F pAk(X)}

.

Proof. Consider the projection Ker{d : F pAk(X) → F pAk+1(X)} → Hk(X,C), which to a

closed form in F pAk(X) associates its class. The image of this map contains F pHk(X,C),

which is generated by a closed form of type (r, k − r) with r ≥ p, since such a form lies in

Ker{d : F pAk(X) → F pAk+1(X)}. Conversely, consider [α] with α closed form F pAk(X).

Given a Kähler metric on X we can write α = β + ∆γ, with β harmonic. Now, as ∆ respects

bigraduation and the expression above is unique, β belongs to F pAk(X) and we can assume

that γ ∈ F pAk(X) as well. As α and β are closed, d∗dγ belongs both to kerd amd Imd∗, so

it must be 0 and α = β + dd∗γ. Thus [α] = [β], but as β is harmonic, also its components of

type (r, k − r) for r ≥ p are, and the others are 0. Thus

[βr,k−r] ∈ Hr,k−r(X) ⊂ F p(X,C) ∀r

and α ∈ F pHk(X,C).

Now we show that the kernel of this map is exactly

Im{d : F pAk−1(X)→ F pAk(X)}.

We use decreasing induction on p. If p = k, a closed form of type (k,0) is holomorphic and

both ∂, ∂̄-closed. If it is exact, by ∂∂̄-lemma it is equal to ∂∂̄η, then it is 0 for reasons of

type. Assume now that the property is satisfied for p + 1 and let α ∈ Ak(X) be a closed

form of class 0. Then its harmonic representative β is zero, thus we have α = ∆γ and also

αp,q = ∆γp,q = 2∆∂̄γ
p,q. As the components αp,q are ∂̄-closed and α has no component of type

(m, l) with l > q, we deduce that ∂̄∗∂̄ = 0 and thus that

αp,q = 2d∂̄∗γp,q.
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Then the form α′ = α − 2∂̄∂̄∗γ ∈ F p+1Ak(X) and of class 0. By the induction hypothesis

α′ = dβ′, β′ ∈ F p+1Ak−1(X). As ∂̄γp,q ∈ F pAk−1 and αp,q = 2d∂̄∗γp,q +dβ′ the result is shown

also for p.

Example 2.1 (Hodge structure on P1(C)). We consider the Hodge structure on P1. The Hodge

decomposition tells us that

H2(P1,C) = H2,0(P1)⊕H1,1(P1)⊕H0,2(P1)

with H2,0 = H0,2. As H2(P1,C) = C, H2,0 = H0,2 = 0 because they should have the same

dimension. Thus

H2(P1,C) = H1,1(P1)

and it is generated by the Kähler form ω =
1

2πi
∂∂̄log

1

(1+ | z |2)2
, which is an integral class.

Example 2.2. Let R be again Z,Q or R.

• (Trivial Hodge structure) The trivial Hodge structure R(0) is the Hodge strucure of

weight 0 given by

R(0) = R R(0)C = C, F 0 = C F 1 = {0}.

The only non-trivial Hodge subspace is R(0)0,0 = C.

• (Tate structures) The Tate R-Hodge structure is defined as follows:

R(1) = 2πiR, R(1)C = 2πiC, F−1 = 2πiC, F 0 = {0}

It is a Hodge structure of weight −2 with R(1)−1,−1 = C as unique non-trivial subspace.

We then define for any n ∈ Z

R(n) := R(1)⊗n

R(n) is a Hodge structure of weight −2n and it has

R(n) = (2πi)nR R(n)C = (2πi)nC, F−n = C F−n+1 = {0}

Again, the only non trivial subspace is R(n)−n,−n = C.
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• Let X be a compact Kähler manifold. Set VQ = Hk(X,Q)prim. We have seen in the

previous example that it carries a polarized Hodge structure of weight k.

• Set VZ = H2(P1,Z) and VC = H2(P1,C), F 1VC = VC, F 2VC = {0}. Let α be the inverse

of the isomorphism between de Rham and singular cohomology

H2(P1,C)→ H2(P1,Z)⊗ C = HomC(H2(P1,Z),C), [ω] 7→ (σ 7→
∫
σ
ω)

This Hodge structure is isomorphic to the so-called Lefschetz structure Z(−1) and the

isomorphism sends the fundamental class [P1] to (2πi)−1. Thus it is of weight 2 and type

(1, 1).

• Let X ⊂ PN be a compact projective manifold. The Lefschetz operator L : Hk(X,C)→

Hk+2(X,C) defines a morphism of Hodge structures of type (1, 1). As the Kähler form ω

can be written as 1
2πi∂∂̄logh we have that [ω] ∈ H2(X,Z)(−1) and so it is more natural

to think of L as a morphism oh Hodge structures between Hk(X,C)→ Hk+2(X,C)(−1).

Remark 9 (Compatibility of Hodge structure with Poincaré duality). Hodge Tate structures

deserve a particular attention. Let X be a compact oriented manifold. In the first chapter we

have given an isomorphism between Hk
dR(X,C) ∼= Hk(X,C) and now we want to examine the

Hodge structures we have over them. We define

Hk(X,Z)(n) := Hk(X,Z)⊗ Z(n)

and thus

Hk(X,Z)(n)C = (2πi)nHk(X,C)

If dimX = n, we have a map in cohomology, the so called the trace map

Tr : Hn(X,C)→ C, [α] 7→
∫
X
α.

If we compose this map with the cup product

Hk(X,C)⊗Hn−k(X,C)
∪−→ Hn(X,C)

Tr−→ C
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we obtain the Poincaré duality isomorphism between Hk(X,C) and Hom(Hn−k(X,C),C).

Then we define the trace map of Hodge structures:

Tr : H2n(X,C)
'−→ C(−n), α 7→ 1

(2πi)n

∫
X
α

such that Poincaré duality is compatible with the Hodge structure:

Hn−k(X,C) ∼= Hom(Hn+k(X,C),C(−n))

where the duality between Hp,q(X) and Hn−p,n−q corresponds to Serre duality. The Hodge

structure on homology is defined by duality:

(Hk(X,C), F ) ∼= Hom((Hk(X,C), F ),C)

where C is considered as the trivial Hodge structure of weight 0, hence Hk(X,Z) is of weight

−k. Then Poincaré duality becomes an isomorphism of Hodge structures:

Hn+k(X,C) ∼= Hn−k(X,C)(−n)

.



Chapter 3

Variations of Hodge structures

In the preceding chapter we showed the existence of a Hodge structure on the cohomology

of a Kähler manifold, depending only on its complex structure. Now, we wish to describe

how this Hodge structure varies with the complex structure. First we introduce the notion of

family of compact complex manifolds, then a theorem by Ehresmann allows us to see families

as deformations of the complex structures of fixed manifolds, at least locally. In particular, the

cohomology groups of the fibres Xt of this family can be considered locally as a variable Hodge

structure on a constant lattice. We refer to [25] for the proofs of some theorems and further

details.

3.1 Smooth families

Definition 3.1. Let X and B be complex manifold and π : X → B be a holomorphic map.

We say that X
π−→ B is a smooth family if π is a proper holomorphic submersion, i.e. π is

surjective and, for every x ∈ X, the differential

π∗,x : TX,x → TB,π(x)

is surjective. It follows from the submersion theorem that for each t ∈ B, the fibre Xt := π−1(t)

is a complex submanifold of X of codimension equal to the dimension of B.

38
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If B is connected and 0 ∈ B is a reference point, we say that X is a family of deformations of

the fibre X0 and each fibre Xt, t ∈ B, is called a deformation.

Example 3.1. Consider B = C− 0, 1 and put

X = {([x0, x1, x2], λ) ∈ P2 ×B | x2
2x0 = x1(x1 − x0)(x1 − λx0)},

and π : X → B the projection. Then X
π−→ B is a family and the fibre Xλ is a smooth plane

cubic with j-invariant

J(Xλ) =
(λ2 − λ+ 1)3

λ2(λ− 1)2
.

Note that the fibres are diffeomorphic, but in general not biholomorphic since we know that

two elliplitic curves are biholomorhic if and only if they have the same j-invariant.

Theorem 3.1.1 (Ehresmann). Let X
π−→ B be a smooth family of differentiable manifold and

suppose B is contractible with base point 0. Then there exists a diffeomorphism

T : X ∼= X0 ×B

such that the following diagram commutes

X
π

> B

X0

T0

∨
<
pr1

X0 ×B

pr2

∧
T

>

Remark 10. As pr2 ◦ T = π, the trivialisation will be determined by its value on the first

component T0 = pr1 ◦ T , which induces a diffeomorphism Xt
∼= X0 for any t ∈ B. Indeed, the

diffeomorphism is given by considering

T−1
|X0×{t} : X0 → Xt

and its inverse is (T0)|Xt. Up to composing T with (T0)−1
|X0

, we may assume that (T0)|X0
= Id,

i.e. that T0 is a retraction of X onto X0.

In the complex case, we cannot in general choose the trivialisation T to be holomorphic.

However, via each isomorphism T0 : Xt → X0, a C∞ trivialisation enables us to consider the

complex structure on Xt as a complex structure on X0 which varies with t. Further, a more

precise statement holds.
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Proposition 3.1.2. Let X
π−→ B be a family of complex manifolds and let 0 ∈ B be a point of

B. Then, up to replacing B by a contractible neighbourhood of 0, there exists a C∞ trivialisation

T = (T0, π) : X → X0 ×B such that the fibres of T0 are complex submanifolds of X.

These fibres are submanifold of X which are diffeomorphic to B. The fact that they are

complex implies that the family of complex structures on X0 parametrised by B, which to

t ∈ B associates the complex structure of Xt
∼=(T0)|Xt X0, varies holomorphically with t.

3.2 Local systems and Gauss Manin connection

Let B be a differentiable manifold.

Definition 3.2. A local system over B is a sheaf of finitely generated abelian groups H, locally

isomorphic to the constant sheaf of stalk G, where G is a fixed abelian group.

Given an open cover {Ui} of B, H can be trivialised in the Ui and give rise to transition

isomorphism Mij ∈ Aut(G).

Given a local system H of abelian groups over B, we can consider the associated sheaf of free

C∞(B)-modules (or OB-modules, in case B is complex)

H = H ⊗R C∞(B)

The C∞ holomorphic vector bundles obtained in this manner are equipped with an additional

structure: a flat connection. On H we define the following connection

∇ : H → H⊗ ΩB∑
i

αiσi 7→
∑
i

σi ⊗ dαi

where {σi} is a basis of a local trivialisation of H. In the C∞ case, this construction gives a

C∞ vector bundle equipped with a C∞ connection ∇ such that ∇σ ∈ H⊗C∞(B) ΩB, where ΩB

denotes the bundle of C∞ differential 1-forms. In the holomorphic case, we obtain a holomorphic

vector bundle equipped with a holomorphic connection, i.e. ∇σ ∈ H⊗OB ΩB where ΩB denotes

the bundle of holomorphic differential 1-forms.
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We notice that the expression of ∇ does not depend on the choice of the trivialisation , since

another local trivialisation is obtained from the first one by a transition matrix with constant

coefficients, which commutes with the derivations. Given a connection∇ we define its curvature

Θ : H →
2∧

ΩB

as follows: ∇ gives a map

∇ : H⊗ ΩB → H⊗
2∧

ΩB

σ ⊗ ω 7→ ∇σ ∧ ω + σ ∧ dω.

Definition 3.3. The curvature of ∇ is then defined by Θ = ∇ ◦ ∇. We say that ∇ is flat if

Θ = 0

This map is OB linear, i.e. Θ(fσ) = fΘ(σ), so Θ is a section of End(H)⊗
∧2 ΩB. We have

the same in the differentiable framework. The connection associated to a local system is flat.

In fact, in a local trivialisation we have

Θ(σ) = ∇(
∑
i

σi ⊗ dαi) =
∑
i

(∇(σi)⊗ dαi + σi ⊗ d2αi) = 0.

Proposition 3.2.1. The previous correspondence between C∞ (or holomorphic in case B is

complex) vector bundles with a flat connection and isomorphism classes of local systems of

vector spaces is bijective.

Remark 11. In the second case vector spaces are complex, in first one they can be real if we

consider real bundles equipped with a real connection.

Proof. (Idea)

The inverse map associates to the vector bundle (H,∇) the local system H of the flat sections,

i.e. those annihilated by ∇. We need to see that H is a local system and that we have

H = H ⊗ C∞(B). We refer to [25] for this check.

Now let X
π−→ B be a smooth family of complex manifolds. By Ehresmann’s theorem, in the

neighbourhood of X0 X is isomorphic to X0 × B0, where B0 is a contractible neighbourhood
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of 0 in B. We can consider the direct image sheaf on B

π∗A : U 7→ A(π−1(U)), A = Z,Q,R,C

and compute the higher direct image Rkπ∗A, which is the sheaf associated to the presheaf

U 7→ Hk(π−1(U), A).

As B0 is contractible, we have an isomorphism

Hk(X0 ×B0, A) ∼= Hk(X0, A).

Considering a fundamental system of neighbourhood of 0, we deduce that Rkπ∗A is a local

system because it is locally isomorphic to constant sheaf of stalk Hk(X0, A). We denote it by

HK
A . Of course, as the fibres are diffeomorphic, we have

Hk(Xt, A) ∼= Hk(X0, A)

for all t ∈ B0.

Definition 3.4. The flat connection

∇ : Hk → Hk ⊗ ΩB

on the vector bundle Hk = HK
A ⊗C OB associated to the local system HK

A is called the Gauss-

Manin connection.

3.3 The Kodaira-Spencer Map

Let π : X → B be a family of complex manifold as above. Let TX0 ,TX and TB denote the

holomorphic tangent bundles of X0, X and B, respectively. Recalling that for each x ∈ X0 ,

TX0,x = ker{π∗,x : TX,x → TB,0}

we have an exact sequence of holomorphic vector bundles over X0:

0→ TX0 ↪→ TX|X0

π∗−→ X0 × TB,0 → 0.
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On the other hand, the fact that π is a submersion means that we also have an exact sequence

of bundles over X:

0→ TX/B → TX
π∗−→ π∗(TB)→ 0,

where π∗(TB) is the pull-back bundle and TX/B is the relative bundle defined as kerπ∗. We

notice that we obtain the first sequence by restriction of the second to X0 and π∗(TB)|X0
is the

trivial holomorphic vector bundle of fibre TB,0. The first exact sequence gives rise to a long

exact sequence in cohomology. In particular we have a map:

ρ : TB,0 = H0(X0, π
∗(TB)|X0

)→ H1(X0, TX0).

Definition 3.5. The map ρ so defined, is called the Kodaira-Spencer map at 0 of the family

X
π−→ B.

The Kodaira-Spencer map can be seen as the differential of the map which associates to

each t ∈ B the complex structure of the fibre Xt
∼= X0.

3.4 The Kähler case

Let π : X → B be a family of complex manifold and assume that X0 = π−1(0) with 0 ∈ B, is

Kähler . Now we want to show that if do not get too far from 0, the fibres Xt are still Kähler

manifold. First we show that the Hodge numbers are constant for t near 0.

Proposition 3.4.1. Let t ∈ B be near 0. Then we have hp,q(Xt) = hp,q(X0). Moreover the

Frölicher spectral sequence degenerates at E1.

Proof. Let Ωp
Xt

denote the vector bundle of the holomorphic p-forms on Xt. By a foundational

theorem, which we do not prove here, the function which to t ∈ b associates hp,q(Xt) =

dimHq(Xt,Ω
p
Xt

) is upper semicontinuous, i.e. dimHq(Xt,Ω
p
Xt

) ≤ Hq(X0,Ω
p
X0

) (see [25] for

the complete proof ). Thus, we have that

hp,q(Xt) ≤ hp,q(X0).
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Now we recall that

Hq(Xt,Ω
p
Xt

) = Ep,q1 (Xt)

where Ep,q1 (Xt) denotes the first term of the Frölicher spectral sequence defined in example ??.

As we observed, we have

Ep,q∞ (Xt) = F pHp+q(Xt)/F
p+1Hp+q(Xt) and dimEp,q∞ (Xt) ≤ Ep,q1 (Xt).

The first identity gives

dimHk(Xt,C) =
∑

dimEp,q∞ (Xt).

However Xt
∼= X0 by Ehresmann’s theorem (maybe up to shrinking the neighbourhood of 0),

so dimHk(Xt,C) = dimHk(X0,C) =: bk. We then construct the following chain of inequalities,

all involving positive numbers,

bk =
∑

dimEp,q∞ (Xt) ≤
∑

dimEp,q1 (Xt) =
∑

hp,q(Xt) ≤
∑

hp,q(X0) = bk.

Thus all inequalities are actually equalities and we have

hp,q(Xt) = hp,q(X0), Ep,q∞ (Xt) = Ep,q1 (Xt).

Actually, for t near 0, a much stronger condition holds: Xt admits the Hodge decomposition.

Proposition 3.4.2. For t near 0, we have

Hk(Xt,C) =
⊕
p+q=k

Hp,q(Xt)

with Hp,q(Xt) = Hq,p(Xt) and Hp,q(Xt) ∼= Hq(Xt,Ω
p
Xt

).

Proof. The proof is based on a theorem by Kodaira ([17]) which states the following

Theorem 3.4.3. Let ∆ = (∆t)t∈B be a relative differential operator acting on a vector bundle

F → X, such that each induced operator ∆t on Ft is elliptic of fixed order. Then if dim ker ∆t

is independent of t, the subspace ker ∆t ⊂ C∞(Ft) varies in a C∞ way with t.
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Now, we notice that the dimension of the subspace F pHk(Xt,C) ⊂ Hk(Xt,C) ∼= Hk(X0,C)

are constant by proposition 3.4.1. If we take F = ΩX and ∆ as the laplacian, we can apply

Kodaira’s theorem and so we have that F pHk(Xt,C) varies in a C∞ way. For t = 0, X0 is

Kähler , so we have:

Hk(X0,C) = F pHk(X0,C)⊕ F q+1Hk(X0,C), p+ q = k. (3.1)

By continuity, this also holds for t near 0. Set Hp,q(Xt) := F pHk(X0,C)∩F qHk(X0,C), p+

q = k. As these two spaces generate Hk(Xt,C), the dimension of Hp,q(Xt) is equal to the

dimension of Hp,q(X0). Now by 3.1 we have

Hp,q(Xt) ↪→ F pHk(Xt,C)→ F pHk(Xt,C)/F p+1Hk(Xt,C) ∼= Hq(Xt,Ω
p
Xt

)

is an isomoprhism. Finally we have

Hk(Xt,C) =
⊕
p+q=k

Hp,q(Xt)

with Hp,q(Xt) ∼= Hq(Xt,Ω
p
Xt

). The complex conjugation property Hp,q(Xt) = Hq,p(Xt) is a

straightforward consequence of 3.1.

A striking consequence of the previous proposition is the following, which we do not prove

(again we refer to [25] for the proof).

Theorem 3.4.4. Let π : X → B be a family of complex manifolds and let 0 ∈ B. If the fibre

X0 is Kähler , then so is Xt for all t sufficiently near 0.

3.5 Period maps and period domains

Let now X be a Kähler manifold and let π : X → B a family of deformations of X. Up to

restricting B, we may assume that the fibres Xt satisfies the degeneracy at E1 of the Frölicher

spectral sequence and also that dimF pHk(Xt,C) = dimF pHk(X0,C) =: bp,k (by theorem

3.4.4 we could also assume that Xt is Kähler but we do not need that). Moreover, up to

restricting B, again we can assume that B is contractible and apply Ehresmann’s theorem to
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have diffeomorphisms Xt
∼= X0 for t ∈ B. These diffeomorphism leads to isomorphisms in

cohomology, namely

Hk(Xt, A) ∼= Hk(X0, A), for A = Z,Q,R,C.

Definition 3.6. We define the period map

Pp,k : B → Grass(bp,k, Hk(X0,C))

where Grass(bp,k, Hk(X,C)) denotes the grassmannian of bp,k-dimensional subspaces of Hk(X0,C),

as the map which to t ∈ B associates the subspace

F pHk(Xt,C) ⊂ Hk(Xt,C) ∼= Hk(X0,C)

As we noticed in the proof of proposition 3.4.2, the map

t 7→ F pHk(Xt,C)

varies in a C∞ way, that is Pp,k is C∞. Let us recall the fact that given a point [W ] ∈

Grass(l, V ), there is a canonical isomorphism

T[W ]Grass(l, V ) ' Hom(W,V/W )

Griffiths showed that in fact the differential of the period maps lands in a subspace which is

smaller than expected.

Theorem 3.5.1. The period map has the following properties:

(i) Pp,k is holomorphic for all p, k such that p ≤ k.

(ii) (Griffiths transversality) The differential

dPp,k : TB,t → Hom(F pHk(Xt,C), Hk(Xt,C)/F pHk(Xt,C))

takes values in Hom(F pHk(Xt,C), F p−1Hk(Xt,C)/F pHk(Xt,C))

Proof. We refer to [04] for the proof.
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Since we are assuming that X0 is Kähler , for each integer k ≤ dimCX0 the Hodge decom-

position theorem gives a Hodge structure of weight k one the cohomology group Hk(X0,C)

with Hodge numbers hp,q. Also, we have the Hodge filtration

0 = F k+1Hk(X0) ⊂ . . . F pHk(X0) ⊂ F p−1Hk(X0,C) ⊂ . . . ⊂ F 0Hk(X0) = Hk(X0,C)

by complex subspaces of dimension bp,k :=
∑

i≥p h
i,k−i. We call b := (b1,k, . . . , bk,k) and define

Fb,k(H
k(X0,C) as the set of the decreasing filtrations on Hk(X0,C) by complex subspace of

dimension bp,k for 0 < p ≤ k.

Fb,k(H
k(X0,C) is a complex submanifold of

∏
0<p≤kGrass(b

p,k, Hk(X0,C)) with the map

F kHk(X0) ⊂ . . . F pHk(X0) ⊂ . . . ⊂ F 0Hk(X0) 7→ (F kHk(X0), . . . , F pHk(X0), . . . , F 0Hk(X0)).

Consider now a family X → B of deformations of X0. After restricting to a neighbourhood

of 0 such that all the fibres Xt are Kähler , we can construct the period map defined as

Pk : B → Fb,k(H
k(Xt,C)) ∼= Fb,k(H

k(X0,C))

t 7→ (P1,k(t), . . . ,Pk,k(t))

which, by the preceding results, it is holomorphic. Also, the Hodge filtration must satisfy the

condition

F pHk(Xt,C)⊕ F k−p+1Hk(Xt,C)

and this condition defines an open set D of Fb,k(H
k(Xt,C)), which is called period domain.

3.6 Hodge bundles

Assume now π : X → B is a family of compact Kähler manifolds and let

Hk = Rkπ∗C⊗OB

be the holomorphic vector bundle defined in section 3.2. We have seen that this bundle is

equipped with the Gauss-Manin connection

∇kH → Hk ⊗OB ΩB
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which is flat and holomorphic. Also Hk admits local ∇-flat trivialisations

Hk|B0
∼= Hk(X0,C)⊗C OB,

where B0 is an open contractible neighbourhood of 0 in B. On this neighbourhood we have

the holomorphic period map

Pp,k : B0 → Grass(bp,k, Hk(X0,C))

t 7→ F pHk(Xt,C) ⊂ Hk(Xt,C) ∼= Hk(X0,C).

This implies that there exists a holomorphic vector subbundle

F pHk ⊂ Hk

defined by the condition:

F pHkt ⊂ Hkt can be identified with F pHk(Xt,C) ⊂ Hk(Xt,C) for all t ∈ B (3.2)

The identification is given by

Hk = (Rkπ∗C)t ⊗ (OB/MtOB)

where Mt denotes the maximal ideal of the functions that vanish at t. One can show ([25])

that this subbundles are equal to

Rkπ∗Ω
≥p
X/B ⊂ R

kπ∗(Ω
•
X/B).

The bundles Hk are called Hodge bundles and F pHk are the Hodge subbundles. Their succes-

sive quotients satisfy

Hp,qt = (F pHk/F p+1Hk)t = F pHk(Xt)/F
p+1Hk(Xt) = Hq(Xt,Ω

p
Xt

), p+ q = k.

3.7 Algebraic approach

Let π : X → B be a family of smooth complex projective varieties. We have seen that, for each

i, we have a variation of Hodge structure whose underlying vector bundle is

Hi = Riπ∗Q⊗Q OBan ∼= Riπan∗ Ω•Xan/Ban
∼= (Riπ∗Ω•X/B)an (3.3)
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where ΩX/B is the sheaf of differentials of X over B 1 and Riπ∗Ω•X/B denotes the hyperdirect

image 2. The first isomorphism comes from the fact that middle term is a resolution of the

first, the second is due to GAGA. A relative version of Grothendieck’s theorem, tells us that

the Hodge bundles are given by F pHi ∼= (Riπ∗Ω•≥pX/B)an. Moreover, in [16], Katz and Oda have

shown that the Gauss-Manin connection can also be constructed algebraically. Starting from

the exact sequence

0→ π∗Ω1
B/C → Ω1

X,C → Ω1
X/B → 0

we set LrΩi
X/C = π∗Ωr

B/C ∧ Ωi−r
X/C. We get a short exact sequence of complexes

0→ π∗Ω1
B/C ⊗ Ω•−1

X/B → Ω•X,C/L
2ΩX/C → Ω•X/B → 0

and hence a connecting morphism

Riπ∗Ω•X/B → Ri+1π∗(π
∗Ω1

B/C ⊗ Ω•−1
X/B) ∼= Ω1

B/C ⊗ Riπ∗Ω•X/B.

The theorem of Katz and Oda shows that the associated morphism between vector bundles

is precisely the Gauss-Manin connection. For our purposes the most interesting fact is that if

π,X,B are all defined over a subfield K of C, then the same is true for the Hodge bundles and

the Gauss-Manin connection and their construction is algebraic.

1For a full definition of ΩX/B we refer to [18]
2Given a complex of sheaves F• on X, there exists a double complex I•,• such that, for all p, Ip,• is

a resolution of Fp. We define

Rπ∗(F•) := Hk(π∗I
•)

where I• is the simple complex associated to I•,•



Chapter 4

Absolute Hodge Classes

4.1 Cycle classes

Let X be a nonsingular projective variety over C of dimension n. We now want to define the

cycle class associated to an algebraic subvariety Z ⊆ X of codimension p. We will give two

different constructions: the first one is due to Grothendieck and associates to Z an element

of 2πiH2p(Xan,Q); the second, by Bloch in [02], is purely algebraic and associates to Z an

element of F pH2p(X/C). There is a comparison theorem between the classes obtained from

the two constructions:

Theorem 4.1.1. Under the isomorphism H2p(X/C) ∼= H2p(Xan,C), we have

[Z] = [Zan].

4.1.1 Grothendieck’s construction

Firstly, we recall that integration of differential forms gives an isomorphism

H2n(Xan,Q(n))→ Q, α 7→ 1

(2πi)n

∫
Xan

α

Now we construct the cycle class

[Zan] ∈ H2p(Xan,Q(p))

50
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as follows . By Hironaka’s theorem, there exists a resolution Z̃ of the singularities of Z and let

µ : Z̃
µ̃−→ Z

i−→ X denote the induced morphism. We may consider

H2n−2p(X,Q(n− p)) µ∗−→ H2n−2p(Z̃,Q(n− p))
∼=−→ Q, α 7→ 1

(2πi)n−p

∫
Z̃an

µ∗α.

By Poincaré duality, the linear function in the equation is represented by a unique class ζ ∈

H2p(Xan,Q(p)) with the property that

1

(2πi)n−p

∫
Z̃an

µ∗α =
1

(2πi)n

∫
Xan

ζ ∪ α.

Observe that the class ζ ∈ H2p(Xan,Q(p)) which is endowed with a weight zero Hodge struc-

ture. The class ζ is a Hodge class. Indeed, if α ∈ H2n−2p(X,Q(n− p)) is of type (n− i, n− j)

with i 6= j, than either i or j is greater than p, and
∫
Z̃an

µ∗α = 0. This implies
∫
Xan

ζ ∪ α = 0

and that, as a consequence, ζ is of type (0,0) in H2p(Xan,Q(p)). In fact, one can prove that it

actually comes from a class in H2p(Xan,Z(p)).

4.1.2 Bloch’s construction

Let X be a projective variety and Z a subvariety of codimension p, both defined over a field

K ⊆ C of characteristic 0.

We want to use Bloch’s construction, which works for an arbitrary locally complete intersection

Z in X. We first need some background on local cohomology, and we will focus our discussion

on coherent sheaves. Given a sheaf F we have the local cohomology groups which fit in the

exact sequence

. . .→ Hk
Z(X,F)→ Hk(X,F)→ Hk(X − Z,F)→→ Hk+1

Z (X,F)→ . . .

We also define the sheaves

HkZ(X,F) := lim
→k

ExtkOX (OX/Ik,F)

where I ⊂ OX is the ideal of Z. One can show that HZ and HkZ are left exact functors for the

category of abelian sheaves, and that they are related by the so called local-to-global spectral
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sequence which has the property that

Ep,q2 = Hp(X,HqZ(X,F)) ∼= Hp+q
Z (X,F). (4.1)

Finally these notions can be extended to a complex of sheaves F• to define the analogues

of these functors in hypercohomology. To construct the cohomology class [Z] in algebraic de

Rham cohomology, we start with the subsheaf Ωk,cl
X/K of closed forms of degree k over the field

K. This maps naturally to the truncated complex Ω•≥kX/K

0→ Ωk
X/K → Ωk+1

X/K → . . .→ Ωn
X/K → 0,

which is itself a subcomplex of the full de Rham complex. In this way we get

H l(X,Ωk,cl
X/K)→ Hl+k(X,Ω•≥kX/K) = F kHl+k(X,Ω•X/K) ↪→ Hl+k(X,Ω•alg) = Hk+l(X/K)

Choose an open set U ⊂ X such that the subset U ∩Z of U is defined by p equations f1, . . . , fp.

Then W = U − (U ∩ Z) is covered by the open sets U1 . . . Up where Ui is the subset for which

fi 6= 0. Consider the closed differential form

ωU =
df1

f1
∧ . . . ∧ dfp

fp
∈ Ωp,cl

alg (U1 ∩ . . . ∩ Up).

This determines a class in Čech cohomology of degree p − 1 for the sheaf Ωp,cl
X/K restricted to

W , and so a class in

Hp−1(W,Ωk,cl
X/K)→ H2p−1(W,Ω•≥pX/K)→ H2p

Z∩U (U,Ω•≥pX/K).

We can glue these locally defined classes to get a global section in

Γ(X,H2p
Z (X,Ω•≥pX/K)) ∼= H2p

Z (X,Ω•≥pX/K).

where the isomorphism comes from 4.1 and the fact that HiZ(X,Ω•≥pX/K) = 0 for i ≤ 2p − 1.

Using natural maps

H2p
Z (X,Ω•≥pX/K)→ H2p(X,Ω•≥pX/K)→ H2p(X,Ω•X/K) = H2k(X/K)

we end up with a class in H2k(X/K), which is called the algebraic de Rham representative of

Z and is denoted by [Z].
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Remark 12. The construction shows that in particular, [Z] ∈ H2p(X,Ω•≥pX/K). Recall that

H2p(X,Ω•≥pX/K) = F pH2p(X/K). Thus [Z] ∈ F pH2p(X/K).

In order to give a more general construction, we need to introduce the Chern classes. Also,

they will be useful because they provide an example of Hodge class.

4.1.3 Chern classes

Let E a locally free sheaf of rank r over X. We want to define the Chern classes ci(E) ∈

H2i(X,Z), 1 ≤ i ≤ r. By convention, we set c0(E) = 1 and ci(E) = 0 for i > r. First

we construct the first Chern class of an algebraic line bundle L. Taking the corresponding

holomorphic line bundle Lan, we consider the short exact sequence

0→ Z(1)→ OXan
exp−−→ O∗Xan → 0.

This induces a long exact sequence in cohomology, in particular there is a map:

c1 : H1(Xan,O∗Xan)→ H2(Xan,Z(1)).

As isomorphism class of Lan belongs to H1(X,O∗Xan), we define the first Chern class to be

the image c1(Lan) ∈ H2(Xan,Z). To relate this to differential forms, we cover X by open

simply connected subset {Ui} on which Lan is trivial, and let gij ∈ OXan(Ui ∩ Uj) denote the

holomorphic transition function for this cover. On each Ui we can write gij = exp(fij), then

the cocycle condition tells us that

fjk − fik + fij ∈ Z(1)

forms a 2-cocycle that represents c1(Lan). Its image in H2(Xan,C) ∼= H2(Xan,Ω
•
an) is a (1,1)

form cohomologous to the class of the 1-cocycle dfij ∈ H1(Xan,Ω
1
an). However, dfij = dgij/gij ,

so we find the case of the Bloch’s construction.

To define the first Chern class of L in the algebraic de Rham cohomology, we use the fact

that a line bundle is also locally trivial in the Zariski topology. As above, we denote by {Ui}

the Zariski-open sets on which L is trivial and by gij the corresponding transition function.
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We define c1(L) ∈ F 1H2(X,C) to be the hypercohomology class determined by the cocycle

dgij/gij . Under the isomorphism of Grothendieck’s theorem we have c1(L) = c1(Lan).

Now suppose E is a locally free sheaf of rank r over X. On the associated projective bundle

π : P(E)→ X, we have the universal line bundle OE(1) toghether with a surjection from π∗E .

In the Betti cohomology we have a decomposition (cf [25], §7)

H2r(P(Ean),Z(r)) =
r−1⊕
i=0

ζiπ∗H2r−2i(Xan,Z(r − i)), (4.2)

where ζ = c1(OE(1)) ∈ H2(P(Ean),Z(1). Consequently, there are unique classes ck ∈ H2k(P(Ean),Z(k))

such that

ζr − π∗(c1)ζr−1 + π∗(c2)ζr−2 + . . .+ (−1)rπ∗(cr) = 0.

We define

ck(Ean) := ck.

We can do the same construction with the algebraic de Rham cohomology, obtaining Chern

classes ck(E) ∈ F kH2k(X/C). As in the case of line bundles ck(E) = ck(Ean) under Grothendieck

isomorphism.

Now, coherent sheaves on regular schemes admit finite resolution by locally free sheaves,

so it is possible to define Chern classes. A consequence of the Riemann-Roch theorem gives us

the formula

[Zan] =
(−1)p−1

(p− 1)!
cp(OZan) ∈ H2p(Xan,Q(p)).

Thus we define

[Z] :=
(−1)p−1

(p− 1)!
cp(OZ) ∈ F pH2p(X/C)

and we have [Zan] = [Z] as desired.

Proposition 4.1.2. The Chern classes ck(Ean) of an holomorphic vector bundle Ean of rank r

over a complex projective variety X are of type (k, k).

Proof. We have seen that on the associated projective bundle we have a decomposition

H2r(P(Ean),Z(r)) =
r−1⊕
i=0

ζiπ∗H2r−2i(Xan,Z(r − i)),
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where ζ = c1(OE(1)) ∈ H2(P(Ean),Z(1). As ζ is represented by a form of type (1, 1), we have

that the morphism

ζi : H2r−2l(X,Z(r − i))→ H2r(P(Ean),Z(r))

α 7→ α ∪ ζi

is a morphism of Hodge structures of bidegree (i, i). Thus, if β is a form of type (p, q) ∈

H2r(P(Ean),Z(r)), its components αi in the decomposition 4.2, are of type (p − i, q − i). In

particular the Chern classes ci are the component of ζr, thus are of type (r-i,r-i)

What we have just proved motivates the following defintion.

Definition 4.1. Let V = (VZ, (VC, F
•)) be an integral Hodge structure of weight 2p. The Hodge

classes of V are the integral classes of type (p, p).

Hdg(V ) = VZ ∩ V p,p

In the case of a Kähler manifold X and VZ = H2p(X,Z)/torsion, we write Hdg2p(X) =

Hdg(V ).

Example 4.1. Let X be a smooth projective variety. We have seen that the classes of algebraic

subvarieties of X and the Chern classes are Hodge classes.

Actually an interesting property holds:

Theorem 4.1.3. Let X be an algebraic variety. Then the subgroup of Hdg2p(X) generated by

the algebraic classes and the one generated by Chern classes of vector bundles coincide

Proof. (Idea) Let us first prove the statement for p = 1. If L is a holomorphic line bundle and

σ is a holomorphic non-zero section of L, consider the divisor D ⊂ X od σ. It is the cicle of

codimension 1 associated to the subscheme whose sheaf of ideals is locally generated by σ, which

we can consider locally as a function by trivialising the bundle L. We have D =
∑
niDi, and

we can show that this decomposition is given locally by the decomposiion into prime elements

of the function corresponding to σ in a local trivialisation of L.
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Theorem 4.1.4. (Lelong) Let L be a holomorphic line bundle and let σ be a non-zero holo-

morphic section of L. Then the cohomology class of the divisor D of σ and the first Chern

class c1(L) are equal in H2(X,Z).

Proof. Each componentDi ofD allows one to define a holomorphic line bundle Li := OX(Di) :=

I∗Di , where I∗Di is the sheaf of OX -modules of rank 1 given by the holomorphic functions van-

ishing on Di. Indeed, one can show (see [19]) that the sheaf of ideals of Di is locally generated

by an equation fi. Clearly there exists a section σi of Li whose divisor is equal to Di: in fact

the inclusion

j : IDi → OX

dualises the inclusion

jt : OX → IDi

which gives the section σi = jt(1) of Li. Now, the equation fi gives a local generator of IDi ,

i.e. a trivialisation

IDi ∼= OX

and in this trivialisation, the map j is multiplication by fi. This also holds for jt, which shows

that the divisor of σi = J t(1) is equal to Di.

We then have L =
⊗

i L
⊗ni
i , since the section σ of L gives a morphism OX → L whose dual

L∗ =: L−1 → OX

identifies L−1 with the free OX -submodule of rank 1

ID =
∏
i

IniDi
∼=
⊗
i

L⊗−nii .

Since the first Chern class and this cycle class map are both additive, it suffices to prove the

result for the section σi of Li, whose divisor Di can be thought generically smooth (see [25] for

details). Now consider the exact sequence of relative cohomology

. . .→ H2(X,X −Di,Z)→ H2(X,Z)→ H2(X −Di,Z)→ . . .
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and the Thom isomorphism

H2(X,X −Di,Z) = H0(Di,Z) = Z.

We notice that the Chern class c1(Li) vanishes on X −Di, since Li is trivial on X −Di. Thus

it comes from H0(Di,Z) and so it is an integral multiple of the class of Di which can be seen

as the image of 1 ∈ H0(Di,Z) (see [25],§11.1.2). Actually, something stronger holds: in fact

one can show

c1(Li) = [Di].

Then, as D =
∑

i niDi , we can consider the associated line bundle OX(D) := ⊗iI⊗−niDi
and

conclude that c1(OX(D)) = [D].

As corollaries of Lelong’s theorem we have that

Corollary 4.1.5. If X is a complex projective manifold, the Chern classes of holomorphic line

bundles on X are the classes of divisors.

Corollary 4.1.6. Let Z be an algebraic cycle of codimension k, and L a line bundle over an

algebraic variety X. Then [Z]∪ c1(L) is the class of an algebraic cycle Z ′ of codimension k+ 1

of X.

Next, if E is a holomorphic vector bundle over an algebraic variety equipped with an ample

line bundle H, then it is possible to show E′ = E ⊗ H⊗N is generated by its global sections

for a sufficiently large N (see [20]). The global sections of E′ then give a holomorphic map φ

from X to the Grassmannian G(N − r,N), r = dimH0(X, E ′), where E ′ denotes the sheaf of

holomorphic sections of E′. This map associates to every x ∈ X the subspace of the sections

of E′ which vanish at the point x.

The bundle E′ can then be naturally identified with the pullback φ∗Q, where Q is the quotient

tautological bundle ober the Grassmannian. One can show (see [11]) that the cohomology of

the Grassmannian is generated by classes of smooth algebraic cycles, which we may furthermore

assume transverse to φ (i.e. smooth cycles Z of codimension k such that the scheme φ−1(Z) is

also smooth of codimension k). We then have

φ∗([Z]) = [φ−1(Z)],
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and we deduce that the Chern classes of E are classes of algebraic cycles.

Finally the Chern classes of E can be computed using the Chern classes of E′ = E ⊗ HN

and their cup-products with powers of c1(H) (see [25]). Then, by proposition 4.1.6, the Chern

classes of E are also classes of algebraic cycles.

4.2 Absolute Hodge Classes

In this section, we introduce the notion of absolute of absolute Hodge classes in the cohomology

of a complex algebraic variety. While Hodge theory applies to general compact Kähler mani-

folds, absolute Hodge classes are brought in as a way to deal with cohomological properties of

a variety coming from its algebraic structure.

4.2.1 Definition of absolute Hodge classes

Here we enter one of the most fascinating aspects of the Hodge conjecture, which seriously

involves the fact that the complex manifolds we are considering are algebraic. We now introduce

the notion of (de Rham) absolute Hodge class (cf.[08]). Firs of all, let us give a new slightly

different definition of Hodge class.

Definition 4.2. A class α ∈ H2p(X,Q(p)) is Hodge class of degree 2p on X if

α ∈ H2p(X,Q(p)) ∩H0,0(X)

.

Now let X be a smooth proper complex algebraic variety and Z an algebraic cycle of

codimension p in X. As we have shown earlier, Z has a cohomology class

[Z] ∈ H2p(Xan,Q(p))

which is a Hodge class, that is, the image of [Z] in H2p(Xan,C(p)) = H2p(Xan,C)(p) lies, by

remark 12, in

F 0H2p(X,C)(p) = F pH2p(X,C).
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Given any automorphism σ of C, we can form the conjugate variety Xσ defined as X ×σ

Spec(C), the unique complex algebraic variety such that the following cartesian diagram com-

mutes

Xσ σ−1

−−−−→ Xy y
Spec(C)

σ∗−−−−→ Spec(C)

Xσ is a smooth projective variety. If X is defined by homogeneus polynomials p1, . . . , pr

in some projective space, then Xσ is defined by the conjugates of the pi by σ. In this case,

the morphism from Xσ to X in the cartesian diagram sends the closed point with coordinates

(x0 . . . xn) to the closed points (σ−1(x0) . . . σ−1(xn)), which allow us to denote it by σ−1. Let

us note that Xσ is in general not homotopically equivalent to X. However, the pull-back of

Kähler forms still induces an isomorphism between the de Rham complexes of X and Xσ

(σ−1)∗Ω•X/C
∼=−→ Ω•Xσ/C.

Taking hypercohomology and using theorem 4.1.1, we get an isomorphism

(σ−1)∗ : H∗(X/C)
∼=−→ H∗(Xσ,C), α 7→ ασ.

This isomorphism is not C-linear, but σ(C)-linear i.e. for all λ ∈ C we have (λα)σ = σ(λ)ασ.

We thus get an isomorphism of complex vector spaces

H∗(X,C)⊗σ C ∼= H∗(Xσ/C)

where the notation ⊗σ means that we are taking tensor product with C mapping to C via the

morphism σ. Let us note that, since this isomorphism comes from an isomorphism of the de

Rham complexes, it preserves Hodge filtration.

We can now apply these considerations to the cycle class of an algebraic cycle Z ⊂ X, of

codimension p and form its conjugate [Zσ] ∈ H2p(Xσ/C)(p). The construction of the cycle

class map in de Rham cohomology shows that

[Zσ] = [Z]σ.
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Since Xσ is a smooth projective complex variety, its de Rham cohomology group H2p(Xσ/C)(p)

is canonically isomorphic to the singular cohomology group H2p(Xσ
an/C(p)). The cohomology

class [Zσ] in H2p(Xσ
an/C(p)) ∼= H2p(Xσ

an/C)(p) is a Hodge class. This leads to following

definition of absolute Hodge class.

Definition 4.3 (Absolute Hodge class). Let X be a smooth complex projective variety. Let p

be a nonnegative integer and let α be an element of H2p(X/C(p)). We say that the cohomology

class α is an absolute Hodge class if for every automorphism σ of C the cohomology class

ασ ∈ H2p(Xσ
an/C(p)) ∼= H2p(Xσ

an/C)(p) is a Hodge class.

Using the canonical isomorphism H2p(Xan/C(p)) ∼= H2p(X/C)(p) we will say that a class

in H2p(Xan/C) is absolute Hodge if its image in H2p(X/C)(p) is.

The preceding discussion shows the following fact:

Proposition 4.2.1. The cohomology class of an algebraic cycle is an absolute Hodge class. In

particular, taking σ = IdC, we see that absolute Hodge classes are Hodge classes.

4.2.2 Algebraic cycles, absolute Hodge classes and Hodge con-

jecture

Let X be a smooth projective variety over C, as above. The singular cohomology group of X

are endowed with a pure Hodge structure such that for any integer p, H2p(X;Z(p)) has weight

0. We denote by Hdgp(X) the group of Hodge classes in H2p(X;Q(p)). As we showed earlier,

if Z is a subvariety of X of codimension p, its cohomology class [Z] ∈ H2p(X;Q(p)) is a Hodge

class. The Hodge conjecture states that the cohomology classes of subvariety of X span the

Q-vector space generated by Hodge classes.

Conjecture 4.2.2 (Hodge Conjecture). Let X be a smooth projective variety over C. For

any nonnegative integer p, the subspace of degree p rational Hodge classes

Hdgp(X)⊗Q ⊂ H2p(X,Q(p))

is generated over Q by the cohomology classes of codimension p subvarieties of X.
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Proposition 4.2.1 allow us to split the Hodge conjecture in two subconjectures:

Conjecture 4.2.3. Hodge classes on smooth complex projective varities are absolute Hodge

Conjecture 4.2.4. Let X be a smooth complex projective variety. Absolute Hodge classes on

X are generated over Q by algebraic cycle classes.

It is clear that these conjectures together imply the Hodge conjecture. Conjecture 4.2.3

was solved affermatively by Deligne in [08] for Hodge classes on abelian varities.

4.2.3 Generalization to the compact Kähler case

If X is only assumed to be a compact Kähler manifold, the cohomology groups H2p(X,Z(p))

still carry Hodge structures, and analytic subvarities of X still give rise to Hodge classes. How-

ever, while a general compact Kähler manifold can have very few analytic subvarieties, Chern

classes of coherent sheaves are Hodge classes on the cohomology of X (see [25]). While on a

smooth projective complex variety analytic subvarieties are algebraic by GAGA, and Chern

classes of coherent sheaves are linear combinations of cohomology classes of algebraic subva-

rieties (in particular they are classes of divisors), this is no longer true on a general compact

Kähler manifold. Indeed, Chern classes of coherent sheaves can generate a strictly larger sub-

space than that generated by the cohomology classes of analytic subvarieties. One could wonder

whether it is possible to generalize the Hodge conjecture to compact Kähler manifolds by ask-

ing whether Chern classes of coherent sheaves generate the space of Hodge classes. The answer

is still negative, because Voisin proved in [23] that on a Weil torus W the group Hdg2(W ) is

torsion free, while for any coherent sheaf F on W the second Chern classes of F is 0.

Moreover neither of the two subconjectures make sense in the setting of Kähler manifolds. In

fact, automorphisms of C other than the identity and complex conjugation are very discontin-

uous, even not measurable. This makes it impossible to define the variety Xσ and absolute

Hodge classes.

Even for algebraic varieties, the fact that automorphisms of C are discontinuous appears: the

main problem is that it is not to be expected that the σ-linear isomorphism

(σ−1)∗ : H∗(Xan,C)
∼=−→ H∗(Xσ

an,C)
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maps H∗(Xan,Q) to H∗(Xσ
an,Q) (for example one can see [05]).

4.2.4 Second definition of absolute Hodge class

We can rephrase the definition of absolute Hodge cycles in a slightly more intrinsic way. Let

K a fiel of characteristic 0 and let X a smooth projective variety over K. Assume that there

exists embeddings of K into C.

Definition 4.4. Let p be a positive integer and let α be an element of the de Rham cohomology

space H2p(X/K). Let τ be an embedding of K into C, and let τX denote the complex variety

obtained from X by base change to C. We say that α is a Hodge class relative to τ if the image

of α in

H2p(τX/C) = H2p(X/K)⊗τ C

is a Hodge class. We say that α it is absolute if it is a Hodge class relative to every embedding

of K into C

Let τ be any embedding of K into C. Since by standard field theory, any two embeddings

of K into C are conjugated by an automorphism of C, it is straightforward to check that such

a cohomology class α is absolute Hodge if and only if its image in H2p(τX/C) is. The second

definition we have given has the advantage of not involving automorphism of C, and allow us

to work with absolute Hodge classes in a wider setting by using other cohomology theories such

as étale cohomology (see [08] for further details).

4.3 Functoriality properties of absolute Hodge classes

We now want to show some functoriality properties of absolute Hodge classes and give further

examples. Firstly, we give a third more general definitions of absolute Hodge class, which allows

us to exhibit elementary cases.

Definition 4.5. Let K be a field of characteristic 0 with cardinality less or equal than the

cardinality of C. Let (Xi)i∈I and (Xj)j∈J be smooth projective varieties over C, and let (pi)i∈I ,
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(qj)j∈J , n be integers. If α is an element of the tensor product

(
⊗
i∈I

Hpi(Xi/K))⊗ (
⊗
j∈J

Hqj (Xj/K)∗)(n)

and τ is an embedding of K into C, we say that α is a Hodge class relative to τ if its image in

(
⊗
i∈I

Hpi(Xi/K))⊗ (
⊗
j∈J

Hqj (Xj/K)∗)(n)⊗τ C

= (
⊗
i∈I

Hpi(τXi/C))⊗ (
⊗
j∈J

Hqj (τXj/C)∗)(n)

is a Hodge class. We say that α is absolute Hodge if it is a Hodge class relative to every

embedding of K into C.

As before, taking K = Q, we can speak of absolute Hodge classes in the group

(
⊗
i∈I

Hpi(Xi/Q))⊗ (
⊗
j∈J

Hqj (Xj/Q)∗)(n).

If X and Y are two smooth projective complex varieties, and if

f : Hp(X,Q(i))→ Hq(Y,Q(j))

is a morphism of Hodge structures, we will say that f is absolute Hodge - or, more precisely,

is given by an absolute Hodge class - if the element corresponding1 to f in

Hq(Y,Q)⊗Hp(X,Q)∗(j − i)

is an absolute Hodge class. Similarly, we can define what it means for a multilinear form (and

so a polarization), to be absolute Hodge. With such a definition we are now able to present

some examples.

Example 4.2. Consider the cup product

Hp(X,Q)⊗Hq(X,Q)→ Hp+q(X,Q).

1We have canonical isomorphisms Hom(Hp(X,Q(i), Hq(Y,Q(j))) ∼= Hq(Y,Q(j)) ⊗Hp(X,Q(i))∗ ∼=

Hq(Y,Q)⊗Hp(X,Q)∗(j − i)
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this map is given by an absolute Hodge class.

In fact, given an embedding τ of Q into C, we have the induced map

Hp(τX,C)⊗Hq(τX,C)→ Hp+q(τX,C)

which is the cup-product on the de Rham cohomology of τX. Since we know that it is com-

patible with Hodge structures (see [25], chap. 7) we deduce that it is given by a Hodge class.

Morphism given by absolute Hodge classes behave in a functorial way.

Proposition 4.3.1. Let X,Y, Z be smooth projective varieties of dimension respectively n,m, l

and let

f : Hp(X,Q(i))→ Hq(Y,Q(j)), g : Hq(Y,Q(j))→ Hr(Z,Q(k))

be morphism of Hodge structures. Then

(i) If f is induced by an algebraic correspondence, then f is absolute Hodge

(ii) If f and g are absolute Hodge, then g ◦ f is absolute Hodge.

(iii) Let

f t : H2m−q(Y,Q(m− j))→ H2n−p(X,Q(n− i))

be the adjoint operator of f respect to Poincaré duality. Then f is absolute Hodge if and

only if f t is.

(iv) If f is an isomorphism, then is absolute Hodge if and only if f−1 is absolute Hodge.

We will need a refinement of the last property of proposition 4.3.1 as follows.

Proposition 4.3.2. Let X and Y be smooth projective complex varieties, and let

p : Hp(X,Q(i))→ Hp(X,Q(i)) and q : Hq(X,Q(j))→ Hq(X,Q(j))



4.4 Examples of absolute Hodge classes 65

be projectors. Assume that p and q are absolute Hodge. Let V (resp. W ) be the image of p

(resp. q) and let

f ◦ p : Hp(X,Q(i))→ Hq(Y,Q(j))

be absolute Hodge. Assume that q ◦ f ◦ p induces an isomorphism from V to W . Then the

composition

p : Hq(Y,Q(j))→W
(q◦f◦p)−1

−−−−−−→ V ↪→ Hp(X,Q(i))

is absolute Hodge.

Proof. We need to check that after conjugating by any automorphism of C, the above compo-

sition is given by a Hodge class. Since we know that if q, f and p are absolute Hodge also their

inverse are, we only have to check this for the identity automorphism, which is the case.

4.4 Examples of absolute Hodge classes

The Künneth components

Let X be a smooth projective complex variety of dimension n, and let ∆ be the diagonal of

X×X. We notice that ∆ is an algebraic cycle of codimension n in X×X, hence we can define

its cohomology class [∆] ∈ H2n(X ×X,Q(n)). By the Künneth formula for cohomology, there

is an isomorphism of Hodge structures

H2n(X ×X,Q) ∼=
2n⊕
i=0

H i(X,Q)⊗H2n−i(X,Q)

and also projections H2n(X ×X,Q)→ H i(X,Q)⊗H2n−i(X,Q). We denote by πi the compo-

nent of [∆] in H i(X,Q)⊗H2n−i(X,Q)(n) ⊂ H2n(X ×X,Q)(n) and we call them the Künneth

components of [∆]. By definition, the Künneth components are Hodge classes. Now, let σ be

an automorphism of C and denote by ∆σ the diagonal of Xσ × Xσ = (X × X)σ. Let πi,dR

(resp. πσi,dR) denotes the de Rham representative of πi ( πσi ). As the Künneth formula holds

for de Rham cohomology and it is compatible with the comparison theorem, it follows that

(πi,dR)σ = πσi,dR.
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Now πσi,dR are Hodge classes because they are the Künneth components of ∆σ, thus (πi,dR)σ

are Hodge classes as well.

Projections on the primitive components

Fix an embedding of X into a projective space, and let h ∈ H2(X,Q(1)) be the cohomology

class of a hyperplane section. The hard Lefschetz theorem states that for all i ≤ n = dimCX,

the morphism

Ln−k = ∪hn−k : Hk(X,Q)→ H2n−k(X,Q(n− k)), x 7→ x ∪ hn−k

is an isomorphism. In example 4.2 we have seen that this map is absolute Hodge, thus its

inverse

fk : H2n−k(X,Q(n− k))→ Hk(X,Q)

is absolute Hodge.

As an immediate corollary we obtain the following result.

Proposition 4.4.1. Let k be an integer such that 2k ≤ n. An element α ∈ H2k(X,Q) is an

absolute Hodge class in and only if x ∪ hn−2k ∈ H2n−2k(X,Q(n − 2k)) is an absolute Hodge

class.

Now we can show that the projections on the primitive components of the Lefschetz de-

composition are absolute Hodge.

Proposition 4.4.2. Let X be a smooth projective complex variety of dimension n, and let

h ∈ H2(X,Q(1)) be the cohomology class of a hyperplane section. Let L denote the operator

given by cup-product with h. Consider the Lefschetz decomposition

Hk(X,Q) =
⊕
j≥0

LiHk−2i(X,Q)prim

of the cohomology of X into primitive parts. Then the projection of Hk(X,Q) onto the com-

ponent LiHk−2i(X,Q)prim with respect to the Lefschetz decomposition is given by an absolute

Hodge class.



4.4 Examples of absolute Hodge classes 67

Proof. By induction, it is enough to prove that the projection of Hk(X,Q) onto LHk−2(X,Q)

is given by an absolute Hodge class. While this could be proved by the same argument as in

example 4.2, consider the composition

L ◦ fk ◦ Ln−k+1 : Hk(X,Q)→ Hk(X,Q)

where fk is the inverse of the Lefschetz operator as above. It is the desired projection since

Hk(X,Q)prim is the Kernel of Ln−k+1 in HK(X,Q).

Remark 13. It is currently unknown if the Künneth projectors or the inverse of the Lefschetz

operator are classes of algebraic cycles. Roughly speaking this is the content of the set of the

so-called ”Standard conjectures” of Grothendieck. The lack of progress on these foundational

questions led Deligne to introduce the notion of absolute cycles discussed here, which is strong

enough to develop some part of the theory of motives. See ([01], §5).

The proof of proposition 4.4.2 allows for the following result, which shows that the Hodge

structures on the cohomology of smooth projective varieties can be polarized by absolute Hodge

classes.

Proposition 4.4.3. Let X be a smooth projective complex variety and k be an integer. There

exists an absolute Hodge class giving a pairing

Q : Hk((X,Q)⊗Hk(X,Q)→ Q(−k)

which turns Hk(X,Q) into a polarized Hodge structure.

Proof. Let n be the dimension of X. By the Hard Lefschetz theorem, we can assume k ≤ n.

Let H be an ample line bundle on X with first Chern calss h ∈ H2(X,Q(1)), and let L be

the endomorphism of the cohomology of X given bu the cup-product with h. Consider the

Lefschetz decomposition

Hk(X,Q) =
⊕
i≥0

LiHk−2i(X,Q)prim

of Hk(X,Q) into primitive parts. Let s be the linear automorphism of Hk(X,Q) which is given

by multiplication by (−1)i on LiHk−2i(X,Q)prim.
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By the Hodge index theorem, the pairing

Hk(X, q)⊗Hk(X,Q)→ Q(1), α⊗ β 7→
∫
X
α ∪ Ln−k(s(β))

turns Hk(X,Q) into a polarized Hodge structure. By proposition 4.4.2, the projections on

Hk(X,Q) onto the factors LiHk−2i(X,Q)prim are given by absolute Hodge classes. It follows

that the morphism s is given by an absolute Hodge class as well.

Since also the cup-product is given by an absolute Hodge class and L is induced by an algebraic

correspondence- and so it absolute Hodge-, it follows that the pairing Q is given by an absolute

Hodge class, which concludes the proof of the proposition.



Chapter 5

Deligne’s principle B

5.1 Absolute Hodge classes in families

5.1.1 Variational Hodge conjecture

Let B be a smooth connected complex quasi-projective variety, and let π : X → B be a smooth

projective morphism. Let 0 be a complex point of B, and let α be a cohomology class in

H2p(X0,Q(p)). Recalling that X0 = π−1(0) and the definition of direct image, assume that

α is the cohomology class of some codimension p algebraic cycle Z0 and that it extends as

a section α̃ of the local system R2pπ∗Q(p) on B. In [13] Grothendieck makes the following

conjecture:

Conjecture 5.1.1 (Variational Hodge conjecture). For any complex point b ∈ B, the class

α̃b is the cohomology class of an algebraic cycle.

Using the Gauss-Manin connection and the isomorphism between de Rham and singular

cohomology, we can riformulate the conjecture in terms of de Rham cohomology. If we keep

notations as above, we have a coherent sheaf H2p = R2pπ∗Ω
•
X/B which computes the relative de

Rham cohomology of X over B. We also know that it is endowed with a canonical connection,

the Gauss-Manin connection ∇.

69
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Conjecture 5.1.2 (Variational Hodge conjecture for de Rham cohomology). Let β be a

cohomology class in H2p(X0,C). Assume that β is the cohomology class of some codimension p

algebraic cycle Z0 and that β extends as a section β̃ of the coherent sheaf H2p = R2pπ∗Ω
•
X/B with

the property that β̃ is flat for the Gauss-Manin connection. The variational Hodge conjecture

states that for any complex point b ∈ B, the class βs is the cohomology class of an algebraic

cycle.

The two conjectures above have a different flavor: the first considers the local system

R2pπ∗Q(p) threfore the rational structure on the cohomology groups: as such, it involves the

classical topology. In contrast, the second, given the fact that the Gauss-Manin connection

affords a purely algerbaic definition, involves a purely algebraic setting. However we have the

following:

Proposition 5.1.3. The two conjectures are equivalent

Proof. As we have seen in the preceding chapter, the de Rham comparison isomorphism be-

tween singular and de Rham cohomology in a relative context (cfr. equation 3.3) takes the

form of a canonical isomorphism

R2pπ∗Ω
•
X/S
∼= R2pπ∗Q(p)⊗Q OB. (5.1)

We notice that this formula is not an algebraic geometry one. Indeed, the sheaf OB denotes here

the sheaf of holomorphic functions on the complex manifold B. The derived functor R2pπ∗ on

the left is a functor between categories of complexes of holomorphic coherent sheaves, while the

one on the right is computed for sheaves with the usual complex topology. The Gauss-Manin

connection is the connection on R2pπ∗Ω
•
X/S for which the local system R2pπ∗Q(p)) is constant.

As we saw in section 3.7, the locally free sheaf R2pπ∗Ω
•
X/S is algebraic, i.e. is induced by a

locally free sheaf on the algebraic variety B, as well as the Gauss-Manin connection. Given β

a cohomology class in the de Rham cohomology group H2p(X0/C), we know that β belongs to

the rational subspace H2p(X0,Q(p)) because it is the cohomology class of an algebraic cycle.

Furthermore, since β is flat for the Gauss-Manin connection and is rational at one point, it

corresponds to a section of the local system R2pπ∗Q(p) under the comparison isomorphism



5.1 Absolute Hodge classes in families 71

above. This shows that Conjecture 5.1.1 implies Conjecture 5.1.1.

Conversely, sections of the local system R2pπ∗Q(p) induce flat holomorphic sections of the

coherent sheaf R2pπ∗Ω
•
X/S . We have to show that they are algebraic. This is a consequence of

the following important result, which is due to Deligne [09].

Theorem 5.1.4 (Global invariant cycle theorem). Let π : X → B be a smooth projective

morphism of quasi-projective complex varieties, and let i : X ↪→ X be a smooth compactification

of X. Let 0 ∈ B a complex point of B, and π1(B, 0) be the fundamental group of B. For any

integer k, the space of monodromy-invariant classes of degree k

Hk(X0,Q)π1(B,0)

is equal to the image of the restriction map

i∗0 : Hk(X ,Q)→ Hk(X0,Q),

where i0 is the inclusion of X0 in X .

Before concluding the proof, let us make some remarks.

Remark 14. In the theorem, the monodromy action is the action of the fundamental group

π1(B, 0) on the cohomology groups of the fibre X0. We recall that, given a variation of Hodge

structure (H,∇, F •) over a complex connected manifold B, the monodromy representation acts

as follows. Fix 0 ∈ B. Given a curve µ : [0, 1]→ B, with µ(0) = 0 and µ(1) = b we may define

a C-linear isomorphism

µ∗ : Hb → H0

by parallel translation relative to the flat connection ∇. These isomorphisms depend only on

the homotopy class of µ and we denote by

ρ : π1(B, 0)→ GL(H0)

the resulting representation, which is called the monodromy representation. In our case, H is

H2p(X0,Q), ∇ is the Gauss-Manin connection and F • is the Hodge filtration.
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Remark 15. While it is clear that the restriction of a cohomology class in X to X0 is mon-

odromy invariant, the converse is non trivial. The global invariant cycle theorem in fact says

something stronger, and actually consists of two different statements: first of all, the mon-

odromy invariants in the cohomology of the fibre are precisely the classes obtained by restriction

from X . This follows from the fact that the Leray spectral sequence for π degenerates at E2, so

that in particular the map

Hk(X )→ Hk(X0,Q)π1(B,0) = H0(B,Rkπ∗Q) = E0,k
2

is necessarily surjective. The second statement is much deeper, as it states that in

Hk(X )
a→ Hk(X )

b→ Hk(X0,Q)π1(B,0)

the two maps a and a◦b have the same image. This stronger, and in fact surprising, statement,

is a consequence of the existence on the cohomology groups of X of a functorial Mixed Hodge

structure, constructed in [09].

Remark 16. Note that the theorem also implies that the space Hk(X0,Q)π1(B,0) is a sub-

Hodge structure of Hk(X0,Q). This despite the fact that the fundamental group of B does not

in general act by automorphisms of Hodge structures.

End of the proof of proposition 5.1.3. The global invariant cycle theorem implies the alge-

braicity of flat holomorphic sections of the vector bundle R2pπ∗Ω
•
X/B as follows. Let β̃ be such

a section and keep the notation of the theorem. By definition of the Gauss-Manin connection, β̃

corresponds to a section of the local system R2pπ∗Ω
•
X/B under the isomorphism 5.1, that is, to

a monodromy-invariant class in H2p(X0,C). The global invariant cycle theorem shows, using

the comparison theorem between singular and de Rham cohomology on X , that β̃ comes from

a de Rham cohomology class b in H2p(X,C). As such, it is algebraic. The previous remarks

readily show the equivalence of the two versions of the variational Hodge conjecture.

The next proposition shows that the variational Hodge conjecture is implied by the Hodge

conjecture.
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Proposition 5.1.5. Let B be a smooth connected quasi projective variety, and let π : X → B

be a smooth projective morphism. Let 0 ∈ B be a complex point of B and let p be an integer.

(i) Let α be a cohomology class in H2p(X0,Q(p)). Assume that α is a Hodge class and that

it extends as a section α̃ of the local system R2pπ∗Q(p) on B. Then for any complex point

t ∈ B, the class α̃t is a Hodge class.

(ii) Let β be a cohomology class in H2p(X0,C). Assume that β is a Hodge class and that

it extends as a section β̃ of the coherent sheaf R2pπ∗Ω
•
X/B such that β is flat for the

Gauss-Manin connection. Then for any complex point t ∈ B, the class β̃t is a Hodge

class.

As an immediate corollary, we have:

Corollary 5.1.6. The Hodge conjecture implies the variational Hodge conjecture.

Proof. The two statements are equivalent by the argument of proposition 5.1.3. Let us keep

the notations as above. We want to prove that for any complex point t ∈ B, the class α̃t is a

Hodge class. Let us show how this is a consequence of the global invariant cycle theorem. This

is a simple consequence of 4.3.2 in the – easier – context of Hodge classes. Let us prove the

result from scratch. As in Proposition 4.4.3, we can find a pairing

H2p(X,Q)⊗H2p(X,Q)→ Q(1)

which turns H2p(X,Q) into a polarized Hodge structure. Let i : X ↪→ X be a smooth compact-

ification of X, and let i0 be the inclusion of X0 in X. By the global invariant cycle theorem,

the morphism

i∗0 : H2p(X,Q)→ H2p(X0,Q)π1(B,0)

is surjective. It restricts to an isomorphism of Hodge structures

i∗0 : (Keri∗0)⊥ → H2p(X0,Q)π1(B,0),

hence a Hodge class a ∈ (Keri∗0)⊥ ⊂ H2p(X,Q) mapping to α. Indeed, saying that α extends

to a global section of the local system R2pπ∗Q(p) exactly means that α is monodromy-invariant.
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Now let is be the inclusion of Xt in X . Since B is connected, we have α̃t = i∗t (a) , which shows

that α̃t is an Hodge class.

5.2 Deligne’s principle B

Theorem 5.2.1 (Principle B). Let B be a smooth connected complex quasi-projective variety,

and let π : X → B be a smooth projective morphism. Let 0 ∈ B be a complex point of B and,

for some integer p, let α be a cohomology class in H2p(X0,Q(p)). Assume that α is an absolute

Hodge class and that it extends as a section α̃ of the local system R2pπ∗Q(p) on B. Then for

any complex point b ∈ B, the class α̃b is absolute Hodge.

We can rephrase it for de Rham cohomology in the following way:

Theorem 5.2.2 (Principle B for de Rham cohomology). Let B be a smooth connected complex

quasi-projective variety, and let π : X → B be a smooth projective morphism. Let 0 ∈ B be

a complex point of B and, let β be a cohomology class in H2p(X0,C). Assume that β is an

absolute Hodge class and that it extends as a section β̃ of the coherent sheaf R2pπ∗Ω
•
X/B which

is flat for the Gauss-Manin connection. Then for any complex point b ∈ B, the class β̃b is

absolute Hodge.

Proof. We work with de Rham cohomology. Let σ be an automorphism of C. Since β̃ is a global

section of the locally free sheaf H2p , we can form the conjugate section β̃σ of the conjugate

sheaf (H2p)σ on Bσ. Now, this sheaf identifies with the relative de Rham cohomology of Xσ

over Bσ. Fix a complex point t ∈ B . We want to show that the class β̃t is absolute Hodge. This

means that for any automorphism σ of C , the class β̃σσ(t) is a Hodge class in the cohomology

of Xσ
σ(t). Now since β = β̃0 is an absolute Hodge class by assumption, β̃σσ(0) is a Hodge class.

Since the construction of the Gauss-Manin connection commutes with the base change via σ,

the Gauss-Manin connection ∇σ on the relative de Rham cohomology of Xσ over Bσ is the

conjugate by σ of the Gauss-Manin connection on H2p. These remarks allow us to write

∇σβ̃σ = (∇β̃)σ = 0
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since β̃ is flat. This shows that β̃σ is a flat section of the relative de Rham cohomology of Xσ

over Bσ. Since β̃σσ(0) is a Hodge class, proposition 5.1.5 shows that β̃σσ(t) is a Hodge class, which

is what we needed to prove.



Bibliography
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