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Abstract

Capire come ottenere l’informazione accessibile, cioè quanta informazione classica si
può estrarre da un processo quantistico, è una delle questioni più intricate e affascinanti
nell’ambito della teoria dell’informazione quantistica. Nonostante l’importanza della
nozione di informazione accessibile non esistono metodi generali per poterla calcolare,
esistono soltanto dei limiti, i più famosi dei quali sono il limite superiore di Holevo e il
limite inferiore di Josza-Robb-Wootters.

La seguente tesi fa riferimento a un processo che coinvolge due parti, Alice e Bob,
che condividono due qubits. Si considera il caso in cui Bob effettua misure binarie sul
suo qubit e quindi indirizza lo stato del qubit di Alice in due possibili stati. L’obiettivo
di Alice è effettuare la misura ottimale nell’ottica di decretare in quale dei due stati si
trova il suo qubit.

Lo strumento scelto per studiare questo processo va sotto il nome di quantum
steering ellipsoids formalism. Esso afferma che lo stato di un sistema di due qubit
può essere descritto dai vettori di Bloch di Alice e Bob e da un ellissoide nella sfera di
Bloch di Alice generato da tutte le possibili misure di Bob. Tra tutti gli stati descritti
da ellissoidi ce ne sono alcuni che manifestano particolari proprietà, per esempio gli
stati di massimo volume.

Considerando stati di massimo volume e misure binarie si è riuscito a trovare un
limite inferiore all’informazione accessibile per un sistema di due qubit migliore del
limite inferiore di Josza-Robb-Wootters. Un altro risultato notevole e inaspettato
è che l’intuitiva e giustificata relazione distanza tra i punti nell’ellissoide - mutua
informazione non vale quando si confrontano coppie di punti ”vicine” tra loro e lontane
dai più distanti.
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Introduction

The scope of this work is studying the accessible information in a two-qubit system.
The tool used to reach this goal is the so called quantum steering ellipsoids formalism.

This work considers a quantum process in which two parties, Alice and Bob, share
two qubits and Bob performs a binary measurement (i.e. composed of only two
measurement elements) on his qubit so that he collapses Alice’s qubit state to two
possible states. The aim of Alice is to perform the best measurement in order to find
in which state her qubit is. The accessible information is defined as the maximum
of the mutual information over all the possible measurement schemes that Bob and
Alice can undertake. It quantifies how much classical information can be extracted in
a quantum process.

The accessible information issue is one of the most intricate and intriguing in
quantum information theory since it captures in a quantitative way what Nielsen
and Chuang ([11]) called the hidden nature of quantum information and, despite the
importance of this notion, almost nothing is known about it. Unfortunately no general
methods for calculating the accessible information are known; only a variety of impor-
tant bounds exists, either on the number of the optimal measurement elements (e.g.
the Davies theorems [2]) or on the accessible information itself (e.g. the Holevo upper
bound and the Josza-Robb-Wootters lower bound [3]). The difficulties of obtaining an
exact expression of the accessible information derive from the maximization procedure
over all possible measurements and from the trascendent logarithmic expression of the
mutual information. In order to face the problem of considering all possible measure-
ment schemes it is necessary to develop a method to find the optimal measurement
scheme, since it is not possible to explore all the possible ones. The maximum likelihood
discrimination allows to find this optimal measurement scheme in a very simple and
intuitive way. This method is strictly related to the concept of trace distance, a measure
of the distinguishability between states which corresponds to the euclidean distance in
the two-qubit systems case.

The idea of this work is studying the accessible information through the geometric
tool of the quantum steering ellipsoids. As the state of a qubit system can be represented
by a vector inside the Bloch sphere, the state of a two qubit system can be represented,
according to the quantum steering ellipsoid formalism, by Alice’s Bloch vector, Bob’s
Bloch vector and an ellipsoid inside Alice’s Bloch sphere (or Bob’s one). In particular
it results that if Bob performs all the possible measurements on his qubit, the set
of Bloch vectors that Bob can collapse Alice’s qubit to forms an ellipsoid inside her
Bloch Sphere: the quantum steering ellipsoid. The power of this formalism derives
from the fact that the steering ellipsoid encodes all the correlation features of a two
qubit state through geometrically (and so intuitively) describing it and its properties
in three dimensions. It is a geometrical picture of correlations. This formalism has
allowed to reach many results, for example one remarkable theorem states that a state

xi
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of a two qubit system is separable if and only if its steering ellipsoid fits inside a
tetrahedron that fits inside the sphere; this is called the nested tetrahedron condition.
There are some special states represented by steering ellipsoids with a null Bob’s Bloch
vector and an Alice’s Bloch vector coinciding with the centre of the ellipsoid which
show particular properties; they are called canonical states and they are derivable
from a unitary transformation on the original state. Not all the steering ellipsoids
describe physical states, there exist a limit on the volume of the ellipsoid over which
the state represented by that ellipsoid is no more physical. This work deals with states
corresponding to maximum volume ellipsoids, which are a special class of canonical
states and show particular symmetries (they touch the Bloch sphere in only one point).

The assumptions of binary measurements and maximum volume states allows to
treat quite easy calculations and formulate geometrical intuitions. The key intuition of
this thesis is that, according to the maximum likelihood discrimination and the trace
distance, the maximum of the mutual information should arise for the states described
by the furthest points on the steering ellipsoid, since they are the most distant and
so the closest to be distinguishable. Calculations in spherical coordinates show it is
true and so the mutual information for the furthest points of the steering ellipsoid
is a lower bound to the accessible information of a two-qubit system. Moreover it
is a tighter lower bound than the already known Josza-Robb-Wootters lower bound
and by considering the famous Holevo upper bound the conclusion of this work is
that the accessible information for a two qubit system is included between the mutual
information of the furthest points and the Holevo quantity.

Beyond this result, a quite unexpected behaviour emerges: the relation between
the euclidean distance between points of the ellipsoid and the corresponding mutual
information does not always hold. Sometimes the mutual information for a couple of
closer points is greater than the mutual information for a couple of further points. In
general it happens when the distance difference between the two couples is small and
these couples are far from the couple of furthest points of the steering ellipsoid. Another
special behaviour arises by considering couples of opposite points inside the steering
ellipsoid: in the case that the distance of a couple of closer points becomes greater than
the distance of a couple of further points, the value of the centre at which it arises does
not coincide with the value of the centre at which their mutual information inverts.
These special behaviours probably show that the maximum likelihood discrimination,
based on the trace distance concept, is not the appropriate measure of distinguishability
between quantum states for the current scope. It works only for quite distant couples
of points. It may be appropriate to use a method related to another measure of
distinguishability between states, such as the fidelity ([11]).

The next step in order to improve the knowledge of the accessible information and
the lower bound consists of studying the case of measurements composed of three
elements and refering to the more general canonical states. This fact implies more
difficult calculations and a the necessity of a new method to substitute the optimal
measurement one in order to maximise the mutual information. A common method in
this case is the so called pretty good measurements method ([4]); a new one is the SIC
measurements method ([8]).

The thesis is divided in four chapters and two appendices:

The first chapter consists of a review of all the basic notions of information theory.
It begins with the definition of the Shannon and Von Neumann entropy in order
to define the mutual information for two random variables. This work deals
with the classical mutual information, which has a precise physical meaning, and
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not with the quantum mutual information, which, as the state-of-art stands at
the present, is only a mathematical expression. After that, the postulates of
quantum mechanics are enunciated, especially the one refering to the quantum
measurements, with a particular emphasis on the POVM and PVM. It is later
introduced the distinguishability problem which is strictly related to the impossi-
bility of cloning non orthogonal quantum states. All these concepts are a bridge
for defining the maximum likelihood discrimination method and the accessible
information in a quantum process, which is the main protagonist of all the work.
All the results known about the accessible information are reported, i.e. bounds
on the number of the optimal measurement elements (e.g. the Davies theorems)
or on the accessible information itself (e.g. the Holevo upper bound and the
Josza-Robb-Wootters lower bound).

The second chapter consists of a review of the quantum steering ellipsoids formalism.
After a rapid discussion of how to represent two-qubit states and a section on
the notations used, the key idea about the construction of steering ellipsoids is
formulated. A very important class of states is given by the canonical states and
a whole section describes them and their derivation. Canonical states are very
suitable in order to illustrate the main results of the steering ellipsoids formalism:
the nested tetrahedron condition, which provides a geometrical and intuitive way
of viewing if a state is either entangled or separable; the physicality conditions,
which point out the mathematical and geometrical constraints for a state and its
ellipsoid to describe a physical state; a list of other results such as an inequality
for the entanglement monogamy (strictly stronger than the famous Coffman-
Kundu-Wootters inequality for the monogamy of concurrence), a generalization
of the Euler theorem of classical geometry, a theorem of incomplete steering (it
is possible that sometimes some decompositions of Alice’s state are inaccessible)
and a specific dissertation on the volume of the ellipsoids. The volume of an
ellipsoid is a very important property of the ellipsoid describing the state and
among the canonical states a very remarkable class of states is given by the
maximum volume states, which show particular symmetries. This work deals
always with maximum volume states.

The third chapter derives all the results of this thesis. It begins with the calculation
of the mutual information in spherical coordinates for the couple of furthest and
nearest points on the surface of the steering ellipsoid. This is the starting point
for a gradual generalization to couples of opposite points on the surface of the
steering ellipsoid and then couples of points inside the steering ellipsoid. In the
latter case it is assumed, in order to make the calculations less cumbersome,
that the points within a couple belong to an ellipsoid inside the steering one.
A large dissertation on the results obtained, expecially the one highlighting a
special behaviour of the mutual information for close couples of points far from
the furthest one, concludes this chapter. A last chapter (4) points out the key
concepts of this work and further considerations.

The appendices illustrate a theorem about Alice’s qubit state decomposition in the
case that Bob performs a binary PVM on his qubit and the maximum likelihood
method in the case that Bob performs a binary POVM on his qubit.





Chapter 1

Introduction to accessible
information

1.1 Basic Definitions

The purpose of this chapter is to precisely define the accessible information.
Before defining the accessible information, it is necessary to define the basic

quantities and functions of the information theory, thus starting from the classical
Shannon entropy and the quantum Von Neumann entropy.

1.1.1 Shannon entropy

The function Shannon entropy gives a quantitative meaning to the concept of
(classical) information. It measures the amount , or the size, of the message that carries
the information in a communication scenario which involves two parties transmitting a
message (e.g. Alice and Bob). Consider the following game to understand the intuition
behind it :

Bob hides a coin in one of eight equal boxes and Alice has to find where he hid it (
figure 1.1). The information which Alice needs is precisely where the coin is.

This information can be quantified in an objective way through counting the number
of binary questions Alice needs to ask in order to obtain the missing information.
"Binary questions" mean those questions that halve the set of possible outcomes in
two equally probable parts, in this case:

1st question - Is the coin in the right half of the eight boxes?

Figure 1.1: Game of the eight boxes and a coin. Which is the best strategy involving
binary questions to obtain where the coin is hidden? The answer is the strategy
that halves the set of possible outcomes in two equally probable parts in each
question.

1



2 CHAPTER 1. INTRODUCTION TO ACCESSIBLE INFORMATION

2nd question - Is the coin in the right half of the remaining four boxes?
3rd question - Is the coin in the right half of the remaining two boxes?
It results the smartest way to get the knowledge on where the coin is, i.e. involving

the minor number of questions possible.
Alice would gain the same amount of information (which is fixed in the very

description of the game) also with other questioning strategies (asking more questions),
but it is clearly better to define the missing information in terms of the binary strategy.

Note that the amount of missing information is intrinsecally determinated by the
probability distribution, in this case: {1/8,1/8,1/8,1/8,1/8,1/8,1/8,1/8}.

This game can be generalized through refering to a random variable X (the game
in the current case) with probability distribution pi = {p1, ..., pn}.

The measure of the missing information can be defined through the dimensionless
and non negative function called Shannon entropy 1 :

H(p) = −
n∑
i=1

pi log pi, with

n∑
i=1

pi = 1. (1.1)

It can also be interpreted either as a measure of the Alice uncertainty before she
learns the value of X, or as a measure of how much information Alice has gained after
she learns the value of X.

The amount of information in the previous example can be calculated through
considering the logarithm to base two: H(p) = log28 = 3. Hence 3 bits is the numerical
value of the missing information in this game.

Note that adopting the binary smartest strategy Alice gains the maximum infor-
mation from each question, i.e. one bit of information. Therefore the amount of
missing information is equal to the number of questions Alice needs to ask to obtain
the required information.

Note that it satisfies the following properties in order to undestand better why the
Shannon entropy is the appropriate function to measure the missing information:

1. H is continuous in all his variables; it is expected that by making a small change
in the probabilities,then the change in the uncertainty should also be small.

2. H reaches its maximum if all pi = 1/n and the maximum value is a monotonic
increasing function of n (it is ugual to log d, where d is the number of outcomes);
it is expected a zero missing information in the case there is the certainty of
an outcome and, on the contrary, a maximum missing information in the case
all the outcomes are equiprobable. It has to increase if the number of possible
outcomes increases.

3. H is the weighted sum of the individual values of H of each event composing the
random variable (the questions in the game example); the missing information
must depend only on the distribution pi = {p1, ..., pn} and must not depend on
the strategy Bob chooses.

The great importance of the Shannon entropy derives firstly from the fact that it
can be used to quantify the resources needed to store information (Shannon’s noiseless
coding theorem).

Consider the following communication process:

1It is sometimes written as H(X) too.
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Bob wants to send a message to Alice. The message is composed by a string
of n characters, written in an alphabet of k letters {a1, ..., ak}. Every letter has a
probability p(ai) to appear into the message, with the condition

∑k
i=1 p(ai) = 1.

Supposing the simplest case of a binary alphabet ( "1" with probability p and
"0" with probability 1-p) it is easy to see that the Shannon entropy quantifies the
maximum possible compression of the message without loss of information:

assuming a large n, a typical message will contain n(1− p) characters "0" and np
"1". The number of possible messages written in this form is

(
n
np

)
and the Stirling

formula logn! = nlogn− n implies
log
(
n
np

)
= n log n−n−np log np+np−n(1−p) log n(1−p)+n(1−p) = n[−(p log p+

(1− p) log(1− p))] = nH(p).
This can be easily generalized to the case of k letters, thus obtaining the Shannon

entropy related to the distribution X = {x, p(x)}.
Hence Bob can compress his message of n classical states into nH(X) bits. The

Shannon entropy quantifies the optimal compression that may be achieved through
considering a classical message.

1.1.2 Von Neumann entropy

The Shannon entropy can be generalized to the quantum case through considering
quantum states instead of classical states, i.e. density operators2 instead of probability
distributions.

The Shannon entropy is repalced by the Von Neumann entropy:

S(ρ) = −ρ log ρ, (1.2)

where ρ is a quantum state and the logarithm is taken to base two. It can also be
rewritten as:

S(ρ) = −
∑
x

λx log λx, (1.3)

where λx are the eigenvalues of ρ.
The main properties of the Von Neumann entropy are:

1. It is continuous.

2. It is non-negative. It is zero if and only if the state is pure.

3. Its maximum is log d in a d -dimensional Hilbert space. It reaches its maximum
if and only if the system is in the completely mixed state I/d.

4. If a composite system AB is in a pure state, then S(A) = S(B).

5. It is a concave function of its inputs, i.e. S(
∑
i piρi) ≥

∑
i piS(ρi).

It can be now considered the previous classical process in the quantum version, i.e.
considering a quantum source instead of a classical one. While the latter is defined by
X (the set of probabilities {pi}), the former is defined by the density operator ( the
set of probabilities {pi} and the corresponding quantum states |ψi〉).

2Positive unitary trace operators associated to some ensembles, such as {pi, |ψi〉}. In the case it is
a pure state it is also idempotent.
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It results that if Bob wants to involve the best compression on his message of n
quantum states, then he compresses it into nS(X) qubits. In general the Von Neumann
entropy for {pi} is strictly smaller than the Shannon entropy for {pi}; the equality holds
only if the states |ψi〉 are orthogonal. If, for example, a quantum source produces the
state |0〉 with probability p and (|0〉+ |1〉)/2 with probability 1-p, then the compression
involves less than nH(p, 1− p) qubits per use of the source.

Therefore the Von Neumann entropy quantifies the optimal compression that may
be achieved: the content of incomprimible information into a quantum source just like
the Shannon entropy quantifies the content of incomprimible information in a classical
source.

1.1.3 Mutual Information

The accessible information is defined through a procedure of maximization of
the so called mutual information. This section contains the precise definition of the
mutual information in both the classical and quantum case, through considering an
abstract scenario in which no communication processes are involved, but probability
distributions only.

The classical case

Suppose to consider two random variables X and Y , e.g. two games described
by two probability distributions, respectively pi and qj , with i = 1, 2, ..., n and j =
1, 2, ...,m , and to investigate the common information between these two variables.

Let us write the Shannon entropy defined on the joint probability P (i, j) of occurence
of the events Xi and Yj :

H(X,Y ) = −
n∑
i=1

P (i, j) logP (i, j). (1.4)

The probabilities pi and qi can be written as pi = −
∑m
j=1 P (i, j) and qj = −

∑n
i=1 P (i, j).

This implies
H(X) +H(Y ) ≥ H(X,Y ), (1.5)

i.e.

−
∑
i,j

P (i, j) log

m∑
j=1

P (i, j)−
∑
i,j

P (i, j) log

n∑
i=1

P (i, j) ≥ −
∑
i,j

P (i, j) logP (i, j).

It derives from the property of any two probability distributions:

−
n∑
i=1

qi log qi ≤ −
n∑
i=1

qi log pi. (1.6)

The equality holds in the case of two independent variables, i.e. P (i, j) = pi · pj . While
for two dependent sets of outcomes the missing information in the joint experiment
(X,Y ) will always be smaller than the missing information in the two experiments
separately.
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Let us now introduce the conditional entropy, linked to the conditional probabilities
P (j/i) = P (i, j)/pi:

H(Y/X) = −
∑
i

pi
∑
j

P (j/i) logP (j, i)

= −
∑
i,j

P (i, j) logP (j/i)

= −
∑
i,j

P (i, j) logP (i, j) +
∑
i,j

P (i, j) log pi

= H(X,Y )−H(X).

(1.7)

Therefore H(X,Y ) can be written as

H(X,Y ) = H(X) +H(Y/X)

= H(Y ) +H(X/Y ).
(1.8)

Hence, from (1.5) and (1.7), the missing information of Y can never increase by knowing
X :

H(Y/X) ≤ H(Y ). (1.9)
It is the average uncertainty about the value of Y when the value of X is known. Note
that it is different to calculate the information in X given a single event Yj , and the
information on X given Y .

The main protagonist of this work, the mutual information, is defined as

H(X : Y ) ≡ H(X) +H(Y )−H(X,Y ). (1.10)

It can also be written as
H(X : Y ) = H(Y )−H(Y/X)

= H(X)−H(X/Y ).
(1.11)

It is a measure of the extent of the dependence between X and Y or the average
reduction in missing information about X that results from knowing Y and vice versa.
Hence it is the measure of how much information X and Y have in common. The
mutual information satisfies the following properties:

1. H(X : Y ) ≥ 0

2. H(X : Y ) = H(Y : X)

3. H(X : X) = H(X)

4. H(X : Y ) = 0 if the two experiments are independent.

5. H(X : Y ) ≤ H(Y ), with equality if and only if Y is a function of X, i.e.
H(Y/X) = 0.

The first property can be easily proved:

H(X : Y ) = −
n∑
i=1

pi log pi −
m∑
j=1

pj log pj +
∑
i,j

P (i, j) logP (i, j)

=
∑
i,j

P (i, j) log
P (i, j)

pi · pj

=
∑
i,j

P (i, j) log f(i, j).

(1.12)
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Figure 1.2: Relationship between the quantities H(X), H(Y ), H(X,Y ), H(X : Y ).

Where f(i, j) is the correlation between the two events Xi and Yj .
The other properties are obvious from the definition.
The definition can be straightforwardly generalized to the case of more-than-two

variables.
Figure 1.2 represents the relations between the Shannon entropy, the conditional

entropy and the mutual information.

The quantum case

Generalize the Shannon entropies defined above to the quantum case.
The joint quantum entropy for a composite quantum system composed by two

parts A and B can be naively defined as

S(A,B) ≡ −tr(ρAB log(ρAB)), (1.13)

where ρAB is the density matrix of the system AB.
Therefore the quantum conditional entropy and the quantum mutual information

are defined as
S(A/B) ≡ S(A,B)− S(B) (1.14)

S(A : B) ≡ S(A) + S(B)− S(A,B)

= S(A)− S(A/B) = S(B)− S(B/A).
(1.15)

It is important to stress that while the classical mutual information can be inter-
preted as a measure of the classical correlation in a given process, the quantum mutual
information has not an operatively clear meaning.

The accessible information consists of a maximization of the mutual information
over all possible measurement schemes. This is why the next section will discuss the
quantum measurements.

1.2 Quantum measurements
Before stating the definition of quantum measurements, it is necessary to define

the of states in quantum mechanics and their evolution.
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1.2.1 Fundamental principles
The state of an isolated physical system is described by a unit vector in an Hilbert

space, univocally determined up to a global phase factor eiθ. In the general case of a
quantum system which state is not completely known it can be described through an
ensemble of the possible state vectors: {pi, |ψi〉} , where the pi are the probabilities
associated to the state vectors |ψi〉 . Therefore the state of the system is defined
through the density operator given by

ρ =
∑
i

pi |ψi〉 〈ψi| . (1.16)

When all the probabilities are zero except one (so there is the certainty of the state of
the system), the state is called pure, otherwise it is mixed. In the case of pure states the
framework of density operators is not necessary, the state vector is enough to describe
the state of the system.

The qubit is the physical system this work will deal with. A qubit (quantum bit) is
the quantum generalization of a classical bit. While a bit is described by a state either
0 or 1, a qubit is described by a superposition of states

|ψ〉 = α |0〉+ β |1〉 , (1.17)

where α and β are complex numbers such that |α|2 and |β|2 are the probabilities of
obtaining respectively|0〉 and |1〉 when the qubit is measured. Obviously it results
|α|2 + |β|2 = 1. The state of a qubit is a vector in a two-dimensional complex
vector space, where |0〉 and |1〉 form an orthonormal basis for this vector space called
computational basis states.

Figure 1.2 represents the relations between Shannon entropy, conditional entropy
and mutual information.

The state of a qubit can be represented as a vector inside a sphere: the Bloch
sphere (figure 1.3). This is possible because a qubit in a mixed state ρ (Hermitean
2× 2 matrix) can be written in the Pauli basis 3 as

ρ = c0I + ~c · ~σ. (1.18)

Note trρ = 1 implies c0 = 1
2 and so

ρ =

(
1
2 + cz cx − icy
cx + icy

1
2 − cz

)
,

where ~c has real components since ρ = ρ† and the determinant of the matrix is
detρ = 1

4 − ||~c||
2 ≥ 0. Hence ||~c|| = 1

2 ||~n|| ≤
1
2 ⇒ ||~n|| ≤ 1 and

ρ =
I + ~n · ~σ

2
. (1.19)

~n is a vector belonging to the unitary ray tridimentional sphere of the "Pauli space",
i.e. the Bloch sphere. If ||~n|| = 1, then the state is pure. If ||~n|| < 1, then the state is
mixed.

3Remember the Pauli matrices are given by
[
0 1
1 0

]
,
[
0 −i
i 0

]
,
[
1 0
0 −1

]
. Their main properties

are {σi, σj} = 0, σi
2 = I and tr[σi] = 0. I, σx, σy , σz form an orthonormal basis by considering the

scalar product between matrices generated by the trace.
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Figure 1.3: Bloch sphere. The vector ~n represents the state of a qubit. If |~n| = 1 the state is
pure, if |~n| < 1 the state is mixed. The Bloch sphere is a geometrica tool which
allows to intuitively study properties of the quantum system such as mixedness,
coherence and dynamics.

The state of a composite physical system is the tensor product of the states
composing the system:

ρ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn. (1.20)

The evolution of a closed quantum system from a time t1 to a time t2 is described
by a unitary trasformation |ψi〉 → U |ψi〉 , hence

ρ′ = UρU†, (1.21)

where U depends only on the times t1 and t2.
The evolution is not unitary when the system interact with the observer’s equipment

(an external physical system which performs a measurement on the quantum system).
Quantum measurements are described by a set of measurement operators {Mm} acting
on the Hilbert space of the system being measured and satisfying the completeness
equation

∑
mM

†
mMm = I , where m is the index of the possible measurement outcomes.

The probability that m occurs is

p(m) = tr(M†mMmρ), (1.22)

where ρ is the state before the measurement. The state after the measurement is
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given by

ρ′ =
MmρM

†
m

tr(M†mMmρ)
. (1.23)

For the case of a pure state described by the state vector |ψ〉 the results above can
be replaced by

p(m) = 〈ψ|M†mMm |ψ〉 (1.24)

and
|ψ′〉 =

Mm |ψ〉√
p(m)

. (1.25)

An example of quantum measurement is the measurement of a qubit in the computa-
tional basis, i.e described by the measurement operators M0 = |0〉 〈0| and M1 = |1〉 〈1|.
Suppose the state to measure is |ψ〉 = a |0〉+ b |1〉 . Hence 4:

p(0) = 〈ψ|M†0M0 |ψ〉 = 〈ψ|M0 |ψ〉 = |a|2,

p(1) = |b|2,

|ψ′〉 =
M0 |ψ〉
|a|

=
a

|a|
|0〉 ,

|ψ′′〉 =
M1 |ψ〉
|b|

=
b

|b|
|1〉 .

By ignoring the "modulo one" multipliers because quantum states are defined up to a
global phase factor, the states after the measurements effectively are |0〉 an |1〉.

Two specific quantum measurements can be now discussed: the PVM and POVM.

1.2.2 Projective measurements and POVM
The projective or Von Neumann measurements (often called PVM, Projective-Valued

Measures) are a special class of measurements described by an observable M , i.e.
an Hermitean operator on the Hilbert space of the system being observed. As
every Hermitean operator, M can be write in its spectral decomposition:

M =
∑
m

mPm, (1.26)

where Pm is the projector onto the eigenspace of M with eigenvalue m. As in the
previous case, the eigenvalue m is also the index indicating the possible outcomes.

The probability of obtaining the outcome m for the state ρ is

p(m) = tr(Pmρ) (1.27)

and the related state immediately after the measurement is

ρ′ =
Pmρ

p(m)
. (1.28)

In the case of a pure state it results that

p(m) = 〈ψ|Pm |ψ〉 (1.29)
4Note M0 and M1 are hermitean operators.
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and
|ψ′〉 =

Pm |ψ〉√
p(m)

. (1.30)

It is important to note that the general measurements described above reduce
to PVM if the Mm are orthogonal projectors, i.e. Hermitean and such that
MmM

′
m = δmm′Mm. It is possible to refer to a PVM as the set of orthogonal

projectors Pm satisfying
∑
m Pm = I and PmP ′m = δmm′Pm, without esplicitly

writing the observable M =
∑
mmPm. There also exists another way of refering

to it as a measure in basis |m〉 , where |m〉 form an orthogonal basis, refering to
a PVM with projectors Pm = |m〉 〈m| .
It is useful to apply the above statements thus giving some examples of projective
measurements: the measurements of the observables σx, σy, σz.

Let us write for example the measurement of σz on the state |+〉 = (|0〉+|1〉)√
2

,
which gives the outcome +1 with probability 〈+|0〉 〈0|+〉 = 1/2 and outcome −1
with probability 1/2.
This result derives from the fact that σz has eigenvalues +1 and −1 with
corresponding eigenvectors |0〉 and |1〉. Therefore the spectral decompositions
of all the Pauli matrices imply the possibility of performing measurements of a
general observable ~v · ~σ = v1σ1 + v2σ2 + v3σ3 . These spectral decompositions
are derivable from 5:

σx |±〉 = ± |±〉 , where |±〉 =
(|0〉 ± |1〉)√

2
(1.31)

σy |±i〉 = ± |±i〉 , where |±i〉 =
(|0〉 ± i |1〉)√

2
(1.32)

σz |0〉 = |0〉 , σz |1〉 = − |1〉where |0〉 =

[
1
0

]
and |1〉 =

[
0
1

]
. (1.33)

We conclude about PVM noting that they are repeatable, i.e. if an observer
performs a PVM obtaining m , then performing again the PVM he obtains m
again without any change in the state.

The POVM formalism (Positive Operator-Valued Measure) is used when there is
no interest in the post measurement state of the system. It consists of defining
POVM elements

Em = M†mMm, (1.34)

where Mm is a generic measurement operator. Then, taking into account the
general definitions of quantum measurements 1.2.1 and the completeness relation,
it results that Em is a positive operator such that

∑
mEm = I and

p(m) = tr(Emρ). (1.35)

The whole set {Em} is called a POVM. It is immediate to see that PVM are a
special case of POVM where all Em coincide with Pm.
PVM and POVM are fundamental notions for the following chapters.

5They are not the esplicitely spectral decompositions, but the eigenvalues equations only, because
they are more suitable for the future applications.
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1.3 The distinguishability problem

Accessing quantum information encoded in states about which we may have
some prior information is strictly related to the indistinguishability of quantum non-
orthogonal states and the impossibility of cloning a quantum state. This is why it is
convenient to start considering the famous no cloning theorem. It states that is not
possible to build a device which generates two copies of a given quantum state |ψ〉 .

Suppose it is possible: prepare the arbitrary quantum state |ψ〉 and a ’virgin’ state
|v〉 through which it is possible to copy the state. Insert them in the special device,
thus obtaining

|ψ〉 |v〉 → |ψ〉 |ψ〉 .

Then perform the same operation in another arbitrary input state |ψ′〉, thus obtaining
|ψ′〉 |v〉 → |ψ′〉 |ψ′〉 . Now calculate the inner product of these two expressions ( assuming
〈v|v〉 = 1) and obtain 〈ψ|ψ′〉 = 〈ψ|ψ′〉2, i.e. either 〈ψ|ψ′〉 = 0 or 〈ψ|ψ′〉 = 1. However
it contradicts the hypothesis on the arbitrariety of the states.

Note that it is possible to clone input states as |0〉 and |1〉. Therefore it is evident
that the special behaviour of quantum states is linked to their non-orthogonality. If it
is possible to clone an unknown quantum state it is possible to make many copies ,
perform some measurements and learn what it was. Moreover It is possible to measure
the momentum of the first copy with high precision and also the position of the second
copy with high precision, contradicting the uncertainty principle. However it has been
proved that it is impossible.

1.3.1 Distinguishing non-orthogonal quantum states

The non-orthogonality of arbitrary quantum also states affects the capacity of
distinguish them. Consider the following game involving two parties, Alice and Bob.
Both parties know a fixed set of quantum states {|ψi〉}. Immagine Bob chooses one of
these states |ψi〉 and gives it to Alice, whose task is to identify the index i of such a
state.

If the states are orthonormal then Alice can perform a quantum measurement to
distinguish them: she takes the measurement operators Mi ≡ |ψi〉 〈ψi|, one for each
index i, and M0 defined as the positive square root of I−

∑
i 6=0 |ψi〉 〈ψi| so that they

satisfy the completeness relation. If Bob prepares the state |ψi〉 then Alice identifies
the index i with probability p(i) = 〈ψi|Mi |ψi〉 = 1.

On the other hand, if the states are not orthogonal, Alice cannot choose any
measurement operators to distinguish them. Consider two of such states |ψ0〉 and |ψ1〉.
The key point is that |ψ1〉 can be decomposed into a non-zero component parallel to
|ψ0〉 and a non-zero component orthogonal to |ψ0〉. Even by supposing Alice guesses
the state was |ψ0〉 when she observes an index j, then by considering the component
of |ψ1〉 parallel to |ψ0〉, there is a non-zero probability of obtaining the result j when
|ψ1〉 is prepared, so sometimes Alice fails trying to identify which state was prepared.

This example implies the necessity to derive the fundamental limitation of distin-
guishing a pair of non-orthogonal states, by finding which are the best measurement
operators to guess the state which is measured, i.e to maximize the probability of
success in guessing it. This is why the next section will explain a procedure known as
maximum likelihood discrimination.
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1.3.2 Maximum Likelihood Discrimination
Consider the previous game in the case of only two states (prepared with a half of

probability each):
|ψ0〉 = cos(

α

2
) |0〉+ sin(

α

2
) |1〉

|ψ1〉 = cos(
α

2
) |0〉 − sin(

α

2
) |1〉 .

Alice wants to guess whether Bob has prepared either |ψ0〉 or |ψ1〉 through inter-
acting with his qubit. She wants to reach the aim with as high a likelihood of success
as possible.

Imagine Alice performs a PVM composed of two elements: {M0,M1}. If she obtains
0 (the M0 outcome) she guesses |ψ0〉.If she gets 1 (the M1 outcome) she guesses |ψ1〉.
She wants to choose the best PVM elements in order to maximize the probability of
success:

P (success) = P (|ψ0〉)P (success/ |ψ0〉) + P (|ψ1〉)P (success/ |ψ1〉)

=
1

2
〈ψ0|M0 |ψ0〉+

1

2
〈ψ1|M1 |ψ1〉

=
1

2
+

1

2
(〈ψ0|M0 |ψ0〉 − 〈ψ1|M1 |ψ1〉)

=
1

2
+ Tr[M0(|ψ0〉 〈ψ0| − |ψ1〉 〈ψ1|)],

where in the second line it was considered M1 = I −M0, as a consequence of the
two-outcome measurement.

If we now evaluate the quantity |ψ0〉 〈ψ0| − |ψ1〉 〈ψ1| in the computational basis,
then

|ψ0〉 〈ψ0| − |ψ1〉 〈ψ1| = sin(α)σx.

Hence, according to the spectral decomposition of the x−Pauli matrix 1.2.2, the
probability of success results

P (success) =
1

2
+

1

2
sinαTr(〈+|M0 |+〉 − 〈−|M0 |−〉).

In order to maximise this quantity it is necessary to seek a M0 that makes the term
〈−|M0 |−〉 as small as possible. So M0 = |+〉 〈+| . Then

Pmax(success) =
1

2
+

1

2
sinα. (1.36)

When considering a mixed state of a qubit, by defining it through its Bloch vector
it can be found an equivalent formulation. Label the Bloch vector of M0 as ~s and so
the Bloch vector of M1 = I−M0 is −~s (note that two orthogonal states are represented
as two diametrically opposite vectors in the Bloch sphere). Label the Bloch vectors of
the states, ρ0 and ρ1, Bob can prepare with equal probability as ~r0 and ~r1. Then the
probability of success results

P (success) =
1

2
Tr(ρ0M0) +

1

2
Tr(ρ1M1)

=
1

2

1

2
(1 + ~r0s) +

1

2

1

2
(1− ~r1~s)
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=
1

2
+

1

4
~s(~r0 − ~r1).

Therefore, considering that ~s is unitary because it represents a PVM 6 and that the
purpose is to maximize this probability, then it is necessary to take ~s to be parallel to
~r0 − ~r1 , and so

Pmax(success) =
1

2
+

1

4
||~r0 − ~r1||. (1.37)

The trace distance between two qubit states appears in this formula: D(ρ0, ρ1) =
1
2 ||~r0 − ~r1||, that results to be half the ordinary Euclidean distance between the
vectors on the Bloch sphere. The general definition of the trace distance between
two quantum states is D(ρ0, ρ1) = 1

2 |tr(ρ0 − ρ1)| and it reduces to the classical trace
distance when ρ0 and ρ1 commute (because in this case they are diagonalizable in
the same basis and it implies a difference only between the eigenvalues ρi0and ρi1):
D(ρ0, ρ1) = 1

2

∑
i |ρi0 − ρi1 |.

The best measurement operators to guess the qubit state, considered it can be
either ρ0 or ρ1 (described respectively by the Bloch vectors ~r0 and ~r1 ) are given by
the eigenvectors of ρ0 − ρ1, i.e. the operator Bloch vector ~s is parallel to ~r0 − ~r1.
If the optimal measurement is a PVM, then the eigenvectors must be normalized,
since they belong to the Bloch sphere surface, i.e. they are unit vectors (see B for a
generalization). Figure 1.4 makes this reasoning more intuitive.

There are other state discrimination methods such as the unambiguous discrimina-
tion (see [12]) , but the maximum likelihood discrimination is the most useful for the
future work. It will be often used in chapter 3.

1.4 Accessible information

Definition
Consider once again the game of subsection 1.3.1 when Bob preapares a quantum

state ρX chosen from a fixed set {ρ1, ..., ρn} and gives it to Alice. Alice performs a
quantum measurement on ρX and obtains the result Y , derived from the best guess
she can do.

How much information has Alice gained from getting Y ?
The mutual information H(X : Y ) between X and the measurement result Y 1.1.3

is a good function to measure it.
It is known that H(X : Y ) ≤ H(X) and the inequality is saturated only if Alice

can infer X from obtaining Y , so she wants to choose a measurement to obtain mutual
information as close as possible to H(X). Considering that, the accessible information
is defined as the maximum of the mutual information over all possible measurement
schemes. It is a measure of how well Alice can infer at the quantum state Bob gave to
her.

The accessible information is an interesting quantity only in quantum theory because
of the indistinguishability of non-orthogonal quantum states. 7 Try to understand why,

6In rough analogy, a POVM is to a PVM what a density matrix is to a pure state. A PVM is
represented by a vector on the surface of the Bloch sphere. A POVM by a vector inside the Bloch
Sphere. See 2.1.1 for a better understanding.

7Actually the accessible information makes sense also in the following classical case. Immagine Bob
prepares the state 0 or 1 according to one of two possible probability distributions: either {p, 1− p}
or {q, 1− q}. Alice has to guess the probability distribution just from the knowledge the state Bob
gives her. It is obvious it is not possible for Alice to obtain the answer with certainty. However this
work will only refer to quantum theory in the future.
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Figure 1.4: Maximum likelihood discrimination. Alice’s optimal measurement ({Π, I−Π} )
to guess if the qubit state is either ρ0 or ρ1 (represented by state vectors ~r0 and
~r1) is given by the opposite Bloch vectors ~s and −~s, which are parallel to ~r0−~r1
. Note that a vector inside the Bloch sphere makes sense only if it originates
from the centre of the sphere. In the figure above we can see the case in which
~r0 − ~r1 is parallel to the x axis and so the optimal quantum measurement is the
PVM in basis |−〉 and |+〉. In the case of pure states |ψ0〉 and |ψ1〉 the Bloch
vectors touch the surface of the sphere, however Alice’s optimal measurement
remains the same.

as it has already stated in the previous section, the accessible information is linked
to "the indistinguishability of quantum non-orthogonal states and the impossibility of
cloning a quantum state".

First of all note that if the two variables X and Y in the definition of the mutual
information 1.1.3 are distinguishable then the mutual information reduces to H(X) and
if they are completely indistinguishable it reduces to 0. Then consider the no cloning
theorem. Suppose Bob prepares one of two non-orthogonal quantum states |φ〉 and |ψ〉
with probability p and 1− p respectively. Assume Alice’s accessible information about
these states coincides with H(p), i.e Alice is able to discriminate which is the state
Bob has prepared. Then she can easily clone the states: after she has identified the
state either |φ〉 or|ψ〉 through the measurement, she can prepare as many copies as she
wants of the state she has received from Bob. The no-cloning theorem is a consequence
of the accessible information is always smaller than H(p). Vice versa if she can clone
states, she uses the cloning device to make as many copies as she wants of the state she
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receives from Bob, obtaining either |φ〉⊗n or |ψ〉⊗n. In the limit of large n these states
are always more orthogonal and so it is possible to distinguish them through PVM.

In conclusion the no-cloning theorem is equivalent to the statement the accessible
information is always smaller than H(p).

The accessible information is a really intriguing quantity as it quantifies how
much classical information is recoverable in a quantum (and so "misterious" ) process.
However it involves a really tricky issue, because of the difficulty in maximizing a
logarithm expression. 8 and because of the lack of sufficiently powerful techniques for
searching over all quantum measurement schemes (all POVM with arbitrary number
of outcomes). Moreover it can be shown that it is a non linear and convex function
on the set of all POVM’s (see [5]). It results that only for extremely special systmes
configuration it is possible to find an esplicit expression of the accessible information.
9 For the general case there only exist some results in the form of bounds:

1. bounds on the number of the optimal POVM elements (and outcomes),

2. bounds on the accessible information itself.

Some of them are illustrated below.

1. The Davies Theorems

There exist a couple of theorems by Davies (see [2]) linked to the number of
elements needed in an optimal POVM (i.e. a POVM which maximizes the mutual
information).

The first theorem states that there always exists an optimal POVM in a d-
dimensional Hilbert space with n rank one operators where d ≤ n ≤ d2. It is
possible to formulate also a real version of this theorem (i.e. all states are real),
stating that n ≤ d(d+1)

2 .

The second theorem states that for a symmetric ensemble of states with irreducible
representation σ there exists an optimal POVM which is a single orbit. This
theorem can be reduced to the real version and can be generalized to the case of
reducible representations (see [2]). This theorems has been studied by P. Shor,
the first (see [16]) and T. Decker (see [2]) , the second, using special quantum
states called lifted trines.

2. Some Bounds The most famous upper bound on the accessible information
is certainly the Holevo bound. It states that:

H(X : Y ) ≤ S(ρ)−
∑
x

pxS(ρx), (1.38)

where ρ =
∑
x pxρx. The state ρX (X = 1, . . . , n) is the state prepared by Bob,

with probabilities p0, . . . , pn . Y is, as usual, the measurement outcome of the
Alice’s POVM.

8there exist other criteria for the quantum detection problem which are much simpler such as the
minimization of specified Bayes costs (see [2]). However they are only useful when one has to reach a
decision after performing a single quantum measurement (see [5]) .

9Maybe the less trivial example was formulated by M. Sasaki et all which have founded the optimal
strategy for an ensemble of M qubit states with symmetry group ZM , i.e. the group of integeres
modulo M(bibiliography).
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The most famous lower bound on the accessible information is the Jozsa-Robb-
Wootters bound. It states that:

H(X : Y ) ≥ Q(ρ)−
∑
x

pxQ(ρx), (1.39)

where Q(ρ) is the a rather complicated quantity called the subentropy of ρ :

Q(ρ) = −
D∑
j=1

(
∏
k 6=j

λj
λj − λk

)λj log λj , (1.40)

where λj are the eigenvalues of ρ and D is the dimension of the Hilbert space of
ρ (see [3] for further details).

These are the best bounds expressible solely in terms of ρ when ρx are pure
states. It is possible to improve them including more details on the probabilities
p0, . . . , pn and the density operators ρx themselves (see [3]).

Conclude this chapter noting that it is possible to define the quantum accessible
information through considering the maximum of the quantum mutual information.
However the next sections will always deal with the classical accessible information
for quantum systems, because the puporse is to extracting the maximum classical
information possible from a quantum process (between the two given variables X and
Y ).

The process analyzed in the next chapters consists of two parties, Alice and Bob,
which share a pair of qubits. Bob performs measurements on his qubit and, in this
way, he "steers" Alice’s qubit to a certain state she wants to guess through quantum
measurements. The aim consists of understanding which is the best measurement for
Bob, and then for Alice, to maximize the mutual information in a binary case, i.e. the
case in which Bob performs a measurement composed only by two elements.

However, before trying to calculate the accessible information, it is necessary to
introduce a new and powerful theoretical tool to reach this purpose: the quantum
steering ellipsoids formalism.



Chapter 2

Quantum steering ellipsoids

We have seen in chapter one that the Bloch sphere represents the state space of one
qubit, which is described by a vector inside the sphere. The possibility of geometrically
representing the state of a qubit allows to find new insights and intuitively understand
fundamental features of the single qubit system. Is it possible to find such an intuitively
representation for two qubit systems?

2.1 Representing two-qubit states

If the basic quantum unit for the information theory - the single qubit system - has
an intuitively three-dimensional representation and it is described by the simple state
1.19, the basic quantum unit for the theory of bipartite quantum correlations - the two
qubit system - is described by the state

ρAB =
1

4
(I⊗ I + ~a · ~σ ⊗ I + I⊗~b · ~σ +

3∑
i,j=1

Tijσi ⊗ σj), (2.1)

where ~a and ~b are respectively Alice’s Bloch vector and Bob’s Bloch vector. The matrix
T ∈ R3×3 describes correlations between Alice and Bob. ρAB is a 15-dimensional state
(rank four matrix with unit trace) and it has been found by considering the quantum
definition of composite states ( 1.20). Both the single-qubit state and the two-qubit
state are hermitean and unit trace and they describe physical states if and only if
they are positive semi-definite. For the former it implies the Bloch vector fits inside
the sphere, for the latter it is decisely harder to say and we will discuss it further on.
Dealing with two qubit systems is therefore a much more difficult task than the single
qubit one.

A brilliant idea to study two qubit states consists of using the quantum steering
ellipsoids formalism. According to this method, the two qubit state 2.1 is represented
by both Alice’s and Bob’s state vectors (~a and ~b) and Alice’s steering ellipsoid εA (all
inside Alice’s Bloch sphere), which describes the bipartite correlations1 ( Figure 2.1) .
The inclusion of Bob’s Bloch vector determines ρAB up to a choice of basis for Bob,
which can be fixed by indicating the orientation of the ellipsoid. The fundamental role
of the quantum steering ellipsoid is that it encodes all correlation features of a two

1it is obviously equivalent to use Bob’s steering ellipsoid instead.
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¶
A

a
b

Figure 2.1: The quantum steering ellipsoid representing a two-qubit state. A two-qubit
state ρAB can be described by Alice’s and Bob’s Bloch vectors ~a and ~b and
Alice’s steering ellipsoid εA all inside Alice’s Bloch sphere. Note Alice’s Bloch
vector lies inside her steering ellipsoid.

qubit state through geometrically (and so intuitively) describing it and its properties
in three dimensions. Hence it is the generalization of the Bloch sphere.

The quantum steering ellipsoid of a two qubit state inside Alice’s Bloch sphere is
the set of Bloch vectors that Bob can collapse Alice’s qubit to,through performing all
possible measurements on his qubit. It is important to show the intuitions why all
Alice’s steered state vectors form an ellipsoid that fits inside her Bloch sphere.

2.1.1 Notations

First of all it is necessary and useful to list the notations that will be used (and
that has already been used). All 4× 4 matrices are denoted by Greek capital letters,
3× 3 matrices by Roman capital letters, 4-vectors by the simbol tilde over the letter
and 3-vectors by the simbol arrow over the letter. The two qubit state ρAB shared
between Alice and Bob ( 2.1) has reduced states ρA and ρB described by Bloch vectors
~rA and ~rB .

We will always refer to states written in Pauli basis. It means that a single-qubit
hermitean operator M is written as M = 1

2

∑3
µ=0Xµσµ, where Xµ = tr(M)σµ are

real coefficients. In the case the operator has unit trace, e.g. it identifies a qubit state,
X0 = 1. A two-qubit state like 2.1 can be written as ρAB = 1

4

∑3
µ,ν=0 Θµνσµ ⊗ σν ,

where Θµν = tr(ρABσµ ⊗ σν). The block matrix Θ can be written as Θ =

(
1 ~bT

~a T

)
.

Consider now that Bob performs a POVM measurement on his qubit, thus obtaining,
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P 

POVM 

PVM 

PVM 

Figure 2.2: POVM inside the Bloch sphere. The figure shows the Bloch sphere in two
dimensions. A POVM can be written as a combination of PVM.

for example, the outcome M0. Hence he steers Alice’s qubit to the state

ρA0 =
1

p0
trB [ρAB(I⊗M0)], (2.2)

where p0 is the probability associated with the outcome M0. This work will always
consider the case of two only possible outomes for Bob’s POVM measurement (binary
case), so it is appropriate to name the measurement elements as M0 = Π, M1 = I− Π
and the probabilities as p0 = p and p1 = 1− p.

Note that according to the definition of projective measurements ( 1.2.2), a PVM
element is identified, in Pauli basis, by an operator having X0 = 1 and | ~X| = 1.2 This
fact implies that a PVM is described by a unit vector in the Bloch sphere, i.e. a vector
which touches the surface of the sphere. On the other hand, a POVM is described by
a vector inside the sphere. A POVM can be written as a combination of projective
measurements and this is easy to understood through viewing their picture in the
Bloch sphere (see 2.2). It results that in the PVM case the probabilities p0 and p1 are
equal to 1

2 (see A). In rough analogy, we can think the relation between a POVM and
a PVM similar to the relation between a mixed state and a pure state ( 1.2).

We will refer to Alice’s state in Pauli basis as

ρA =
1

2
(I + ~a · ~σ), (2.3)

but it can be also written as the combination of her collapsed states:

ρA = pρA0 + (1− p)ρA1 . (2.4)

Hence Bob’s POVM induce a convex decomposition of Alice’s local state into the
ensemble {pb, ρAb }, b = 0, 1.

2It is sufficient to write a positive operator ρ as a 4-vector in Pauli basis such that it satisfies the
completeness relation (i.e. representing a POVM) and add also the property ρ = ρ2. Moreover it
results that a PVM has eigenvalues λ = 0, 1.
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Table 2.1: Notations for future use. Pauli representation through 4-vectors of (in order): Al-
ice’s state, Bob’s state, Alice’s steered states (b = 0, 1), Bob’s generic measurement
operatorMB

b , Bob’s measurement operatorMB
0 = ΠB (rememberMB

1 = I−MB
0 ),

Alice’s measurement operator MA
0 = ΠA (remember MA

1 = I−MA
0 ).

Operator 4-vector

ρA = 1
2 (I + ~a · ~σ) ã =

(
1
~a

)
ρB = 1

2 (I +~b · ~σ) ã =

(
1
~b

)
ρAb = 1

2 (I + ~rAb · ~σ) r̃Ab =

(
1
~rAb

)
MB
b = 1

2 (Xb
0I + ~Xb · ~σ) X̃b =

(
Xb

0
~Xb

)
ΠB = 1

2 (X0I + ~X · ~σ) X̃ =

(
X0

~X

)
ΠA = 1

2 (s0I + ~s · ~σ) s̃ =

(
s0
~s

)

In the following we will usually refer to the 4-vectors composed of the components
of the states (see Table 2.1) .

We will also deal with probability distributions, denoted as follows.

• The probability that Bob performs, for example, ΠB (and that Alice’s steered
state is ρA0 ):

p(MB
0 ) = p(ΠB) = p(ρA0 ) = p(~rA0 ) = p = tr(ρABI⊗ΠB) = tr(ρBΠB). (2.5)

• The probability that Alice performs MA
a given that Bob has performed MB

b

(a, b = 0, 1):
p(MA

a /M
B
b ) = tr(ρAaM

B
b ). (2.6)

• Therefore the joint probability that Alice’s outcome is a and Bob’s outcome is b
is

pABab = p(MB
b )p(MA

a /M
B
b ) = p(MB

b )tr(ρAaM
B
b ). (2.7)

For example
pAB00 = p · p(Ma

0 /M
B
0 ) = p · p(~s/ ~X).

2.1.2 Constructing the ellipsoid
A very important result deriving from the above formulas is that

pbr̃
A
b =

1

2
ΘX̃b. (2.8)

This formula defines the relationship between Bob’s POVM outcome b and the corre-
sponding Alice’s steered state, given an initial shared state defined by Θ. Moreover
the condition that MB

b are positive semi-definite, i.e. MB
b ’s eigenvalues λ± are non

negative, implies that
(Xb

0)2 ≥ | ~Xb|2. (2.9)
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This can be seen through esplicitely considering

MB
b =

(
Xb

0 +Xb
3 Xb

1 − iXb
2

Xb
1 + iXb

2 Xb
0 −Xb

3

)
.

The characteristic equation is

λ2 − 2Xb
0λ+ (Xb

0)2 − | ~Xb|2 = 0,

so
λ± = Xb

0 ± | ~Xb|.

It implies Xb
0 ≥ | ~Xb|. The inequality 2.9 can be more appropriately written as

X̃b
T
ηX̃b ≥ 0,

where η = (1,−1,−1,−1). This result constrains Alice’s steered states to an ellipsoidal
region

(r̃Ab )T (Θ−T ηΘ−1)r̃Ab ≥ 0, (2.10)

where Θ−T = (Θ−1)T .
The relation 2.10 is the central equation of the steering ellipsoids formalism. However

the easiest way to understand why all Alice’s steered state vectors form an ellipsoid
that fits inside her Bloch sphere consists of considering states with ~b = 0 and supposing

that Bob performs a PVM onto some pure state X̃ =

(
1
~v

)
(remember | ~X| = 1 for

PVM). Hence

r̃ = ΘX̃ =

(
1 0T

~a T

)(
1
~X

)
=

(
1

~a+ T ~X

)
. (2.11)

Note that Alice’s steered Bloch vector is ~a + T ~X. Therefore the set of all possible
Alice’s collapsed states is the unit sphere of possible ~X, shrunk and rotated by T and
translated by ~a, i.e. an ellipsoid centred at ~a with orientation and semiaxes given by
the eigenvectors and eigenvalues of TTT . All points inside the ellipsoid are reached by
taking Bob’s POVM (convex combination of PVM) and the dimension of the ellipsoid
is equal to rank(Θ)− 1.

The rigorous derivation of the general case of ~b 6= 0 can be found in [14]. It results
that Alice’s steering ellipsoid is centered at ~cA = ~a−T~b

1−b2 and matrix

QA =
1

1− b2
(T − ~a~bT )(I +

~b~bT

1− b2
)(TT −~b~aT ) (2.12)

gives, through its eigenvectors and eigenvalues qi, the semiaxes orientation and lengths
si =

√
qi. QA and ~cA specify the ellipsoid εA. Therefore a two qubit state ρAB is

represented by (εA,~a,~b). This representation is faithful: it can be proved ([14]) that
also ρAB can be derived from an ellipsoid εA and the vectors ~a and ~b (the reverse
procedure).

2.1.3 Canonical aligned states
The 15-dimensional two-qubit state 2.1 can be reduced to a simpler standard form.

Immagine of performing the following operations.
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1. A local filtering operation on Bob’s qubit

ρAB → ρ̃AB =
1

2
[I⊗ (ρB)−

1
2 ]ρAB [I⊗ (ρB)−

1
2 ],

where ρB = trAρ
AB . The state ρ̃AB is called canonical state and its main features

are: Bob’s reduced state is maximally mixed, i.e. ~̃b = 0, and Alice’s state vector
~̃a coincides with the centre of her steering ellipsoid ~cA. Note that εA = ε̃A, i.e.
local filtering operations on Bob’s qubit do not change Alice’s steering ellipsoid.
Therefore

ρ̃AB =
1

4
(I⊗ I + ~cA · ~σ ⊗ I +

3∑
i,j=1

T̃ijσi ⊗ σj), (2.13)

where T̃ is the canonical transformation of T. It implies that QA becomes T̃ T̃T .

2. State-dependent local unitary operations on ˜ρAB

ρ̃AB → ρ̃′AB = (UA ⊗ UB)ρAB(U†A ⊗ U
†
B),

where it is always possible to choose a unitary transformation ( a signed singular
value decomposition [6]) that gives a diagonal T̃ ′. Hence

ρ̃′AB =
1

4
(I⊗ I + ~c′A · ~σ ⊗ I +

3∑
i=1

T̃ ′iiσi ⊗ σi). (2.14)

The fact that T̃ ′ is diagonal means Alice’s steering ellipsoid has its axes aligned
with the coordinate axes. This last transformation consists of a rotation of ε̃A
about the origin, treating the centre vector ~cA as a rigid rod.
We can now define ~t = (T̃ ′11, T̃

′
22, T̃

′
33). The product of the components of ~t,

t1t2t3, is the same for any choice of the signed singular value decomposition. It is
possible to perform several rotations which aligns εA(ρ̃AB) with the coordinate
axes, but they can at most flip two signs among t1, t2, t3.

The operations above imply some restrictions on Alice’s and Bob’s Bloch vectors ~a
and ~b. The local filtering operation implies (ρB)−

1
2 must exist, since |~b| < 1 (|~b| = 1

means a product state ρAB in which no steering is possible). Moreover Alice’s state
vector ~a = (1− b2)~cA + T~b ([14]) and so ~a lies on an ellipsoid with the same centre as
εA(ρAB) and semiaxes scaled by a factor |~b|. Hence ~a strictly lies inside εA(ρAB).

We have obtained a 6-parameters state, the canonical aligned state (see figure 2.3).
)

ρ̃′AB =
1

4
(I⊗ I + ~c · ~σ ⊗ I +

3∑
i=1

tiσi ⊗ σi). (2.15)

It is possible to transform back th results obtained on 2.15 to the original state ones,
through using rotationally invariant terms such as detQ, trQ and |~c|2.

The results of this work will involve a special case of canonical aligned state ( 2.3).

2.2 Main results
Quantum steering ellipsoids are functions of the qubits correlations only, and they

provide a picture to intuitively and geometrically intend these correlations. In order
to understand how powerful is the quantum steering ellipsoids formalism we will list
several results obtained through this tool.
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Figure 2.3: Canonical aligned states. They are states described by a canonical, aligned
ellipsoid εA. The axes of the ellipsoid are parallel to the coordinate axes, the
centre of the ellipsoid is represented by a green blob (~c = ~a) and Bob’s Bloch
vector is represented by a red blob (~b = 0).

2.2.1 Conditions for separability
Given a mixed state ρC =

∑
i pi |ψi〉 〈ψi| ( 1.2), it is defined as separable if it can

be written as
ρC =

∑
j

cjρ
A
j ⊗ ρBj , (2.16)

where the system C described by ρC is divided in two parties A and B described
respectively by ρA =

∑
i pi |ψi〉 〈ψi| and ρB

∑
i pi |ψi〉 〈ψi|. If the state ρC is not

separable, then it is entangled 3.
The particular case of pure states is straightforward. The pure state |ψC〉 is

separable if it can be written as a product state |ψC〉 = |ψA〉 ⊗ |ψB〉. Otherwise it is
entangled. If |ψC〉 is separable, then the states ρA and ρB are pure. If it is entangled,
then they are mixed. Note that for a product state the ellipsoid reduces to a point.
For a pure entangled state the ellipsoid is steered to the whole Bloch sphere.

One of the most striking results of the quantum steering ellipsoids theory is the
nested tetrahedron condition. It is a geometric criterion for separability and it states
that a two qubit state ρC is separable if and only if its steering ellipsoid εA fits inside
a tetrahedron that fits inside the Bloch sphere. It is quite easy to prove the necessity.
Let us assume that Alice and Bob share a separable state ρC =

∑n
j=1 cjρ

A
j ⊗ ρBj .

It is always possible to choose n ≤ 4, so the Bloch vectors representing ρAj define

3Note that entanglement refers to a given state and a given partition of the system. The same
physical system could be either separable or entangled by simply changing partition.
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a tetrahedron T within Alice’s Bloch sphere (Note that T can also be degenerate).
Immagine now that Bob performs a measurement with outcome M , then Alice is
collapsed to the state

∑n
j=1

cjtr(MρAj )

tr(MρB)
ρAj . This implies that her steering ellipsoid is

contained in T , because her new Bloch vector will be given by a convex combination of
the Bloch vectors for the ρAj . The sufficiency is not as straightforward as the necessity
([14]).

Therefore we have obtained an intuitively geometrical condition to state if a given
state is entangled or separable, just by viewing its steering ellipsoid. Roughly speaking,
if the state is entangled, then the ellipsoid is either too big or too near to the surface
of the Bloch sphere (it cannot fit inside a tetrahedron inside the sphere).

2.2.2 Physicality conditions

The canonical aligned state 2.15 can be used to find the physicality conditions on
the general two qubit state 2.1, since ρAB ≥ 0⇐⇒ ρ̃′AB ≥ 0. It results that ([9]) the
necessary and sufficient geometrical conditions to have ρAB ≥ 0 are:

ρAB is a physical state ⇐⇒ detρAB ≥ 0 and ε(ρAB) ⊆ B,

where B denotes the Bloch sphere. The condition ε(ρAb) ⊆ B coincides with the
condition that ρAB is Bloch positive, i.e it fulfils

〈
ψ|ρAB |ψ

〉
≥ 0 for all product states

|ψ〉.
There exists a useful quantity we have not still defined: the chirality of ε(ρAB).

It is simply given by w = sign(t1t2t3). If w = +1(−1) the state has right-handed
(left-handed) chirality. It results that:

• for entangled states only the left-handed ellipsoids are physical states;

• for separable states both left and right handed ellipsoids are physical states.

What does a non-physical ellipsoid represent? There are two distinct ways in which
the ellipsoid can be unphysical: either fitting into the Bloch sphere or piercing it. In
the first case the ellipsoid represents an entanglement witness, in the second case it
represents a truly unphysical state. The first case corresponds to an ellipsoid that has
the ’wrong’ chirality but represents an entangled state when flipped. An entanglement
witness indicates the presence of entanglement in the system and it is defined as
an Hermitean operator ρ which is block positive but not positive semi-definite, i.e.
〈ψ|ρ|ψ〉 ≥ 0 for all product states |ψ〉 but there exists some entangled states |φ〉 for
which 〈φ|ρ|φ〉 < 0. It results that a two-qubit entanglement witness exactly has one
negative eigenvalue and three positive eigenvalues ([9]).

A complete classification of all possible cases for states described by ellipsoids inside
the Bloch sphere will clarify every doubt:

detρAB ≥ 0 and det(ρAB)TB ≥ 0⇐⇒

{
ρAB is a separable state (w = ±1, 0)

(ρAB)TB is a separable state (w = ∓1, 0)

detρAB ≥ 0 and det(ρAB)TB < 0⇐⇒

{
ρAB is an entangled state (w = −1)

(ρAB)TB is an entanglement witness (w = +1)



2.2. MAIN RESULTS 25

Figure 2.4: Ellipsoids describing entanglement witnesses. The figure shows an ellipsoid such
that detρAB < 0 and det(ρAB)TB < 0. It represents an entanglement witness.

detρAB < 0 and det(ρAB)TB ≥ 0⇐⇒

{
ρAB is an entanglement witness (w = +1)

(ρAB)TB is an entangled state (w = −1)

detρAB < 0 and det(ρAB)TB < 0⇐⇒

{
ρAB is an entanglement witness (w = ±1, 0)

(ρAB)TB is an entanglement witness (w = ∓1, 0)

(ρAB)TB is the partially transposed state of ρAB and it is an important quantity
because the Peres-Horodecki criterion ([7]) states that a two qubit state ρAB is separable
if and only if (ρAB)TB ≥ 0.

Figure 2.6 shows an example of the first case above (separable states), figure 2.3
of the second case (physical state) and 2.4 of the third case (entanglement witnesses).

2.2.3 Other results
The quantum steering ellipsoids theory counts several results in addition to the

ones already mentioned. This section will list some of them.

• Incomplete steering phenomenon. Given a separable state it is possible
that some decompositions of Alice’s state are inaccessible, i.e. there are some
decompositions of Alice’s reduced state which are not steered by any measurement
of Bob. An example of such a state is ρAB = 1

2 (|00〉 〈00|+ |1+〉 〈1+|).

• Volume of the ellipsoid. The volume of an ellipsoid is given by 4π
3 s1s2s3,

so εA has volume VA = 4π
3 |
√
detQa| = 64π

3
|detρAB−det(ρAB)TB |

(1−b2)2 . The volume of
an ellipsoid provides a new resource (different from entanglement) for two-qubit
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information theory: the obesity. It is linked to the three-dimensionality of the
ellipsoid which describes the two-qubit state. An obese state means a state with
more-than-classical correlations between the shared qubits. It is a measure of
quantum correlations between Alice and Bob ([9]). From the tetrahedron theorem
it results that the maximum volume for a state to be separable is VSep = 4π

81 , so
the volume is an entanglement witness. The maximum volume separable state is
the so called Werner state. Its ellipsoid is a sphere (inside a tetrahedron) with
radius 1

3 centred in the origin of the Bloch sphere. Every ellipsoid with volume
VA > VSep must represent an entangled state. It is also possible, fixed a centre,
to find the maximum volume VPhys for an ellipsoid to represent a physical state
(VPhys ≥ VSep). We will refer to them as maximum volume states and we will
illustrate them in the next section.

• Entanglement monogamy. Quantum steering ellipsoids can be also used for
three-qubit system issues. Immagine Bob performs measurements on his qubit
to steer Alice’s and Charlie’s qubit. It results that ([13])

√
VA|B +

√
VC|B ≤

√
4π

3
,

where VA|B and VC|B are Alice’s and Charlie’s volume of their steering ellipsoids.
The previous inequality is called the monogamy of steering. It is possible to derive
the famous CKW (Coffman-Kundu-Wootters) inequality for the monogamy of
concurrence 4 from the monogamy of steering, thus showing it is strictly stronger
than the CKW result.

• Euler theorem. The quantum steering ellipsoids formalism also shows its
power in different fields from quantum information theory, such as classical
Euclidean geometry. A really curious and intriguing result involves a famous
inequality of Euler: r ≤ R

2 , where R is the triangle circumradius and r is the
triangle inradius. This theorem can be derived from the nested tetrahedron
condition ([13]), which also generalizes it to the three-dimensional case of a
tetrahedron and circumscribed and inscribed spheres: c2 ≤ (R+ r)(R− 3r).

Note that the most striking fact of the quantum steering ellipsoids formalism is
how naively and intuitively are these results pictured. This is due to its geometrical
nature.

2.3 Maximum volume states
The volume of ellipsoids is a fundamental feature to capture much of the non-trivial

quantum correlations and states corresponding to maximum volume ellipsoids , fixed a
centre c, have really special properties. ’Maximum volume’ means the volume over
which the ellipsoid no longer describes a physical state.

In order to study the physical-unphysical boundary we start by considering inept
states ([15]), i.e. states given by

ρAB = r |φε〉 〈φε|+ (1− r)ρ′AB ⊗ ρ′AB ,
4The concurrence is an entanglement monotone connected with the entanglement of formation,

thus linked to the quantification of entanglement in a quantum system. A more precise definition can
be found in [18].



2.3. MAXIMUM VOLUME STATES 27

where |φε〉 =
√
ε |00〉 +

√
1− ε |11〉 and ρ′AB = trA(|φε〉 〈φε|) = trB(|φε〉 〈φε|). An

inept state is described by a steering ellipsoid εA that consists of a sphere of radius
r, centre ~c = (0, 0, (2ε− 1)(1− r)) and Q = diag(r2, r2, r2). Note that if ε = 1

2 , then
both Alice’s and Bob’s Bloch vectors are null and ~c = (0, 0, 0), so it coincides with the
Werner state.

It is now necessary to state an important theorem (algebric physicality condition,
see [13] for the proof). Consider ρAB as an operator of the form 2.15 represented by
the ellipsoid εA with centre ~cA, matrix QA and chirality χ. ρAB represents a physical
state( ρAB ≥ 0) if and only if

g1 = c4 − 2uc2 + q ≥ 0,

g2 = 1− trQA − 2χ
√
detQA − c2 ≥ 0,

where u = 1− trQA + 2ĉTAQAĉA and q = 1 + 2tr(Q2
A)− 2trQA− (trQA)2− 8χ

√
detQA.

This theorem and the fact that entangled states must be left-handed states are sufficient
to find the ellipsoid representing the maximum volume state. Therefore we need to seek
the extremal ellipsoid that achieves ρAB ≥ 0 with χ = −1,5 i.e. maximize V = 4π

3 s1s2s3
for a given c in presence of constraints g1 ≥ 0 and g2 ≥ 0. This task can be achieved
through a generalization of the method of Lagrange multipliers: the Karush-Kuhn-
Tucker (KKT) conditions ([17]). Let us write the Lagrangian L = V + λ1g1 + λ2g2,
where λ1 and λ1 are KKT mutlipliers. Hence it is necessary to solve

∂L
∂~s

= ~0

λ1g1 + λ2g2 = 0

λ1, λ2, g1, g2 ≥ 0

.

This system can be simplified because of symmetry reasons. Any maximum ellipsoid
must have one axis aligned radially and the other two axes which are equal. For an
aligned state this implies we can choose ~c = (0, 0, c) and ~s1 = ~s2. Therefore maximum
ellipsoids could be oblate spheroids (s1 = s2 > s3), prolate spheroids(s1 = s2 < s3)
and sphere(s1 = s2 = s3).

Coming back to inept states, the previous proof implies the physical-unphysical
boundary is r = 1− c, i.e. the maximum volume sphere touches the Bloch sphere in
one point. The physicality constraint for inept states coincides with the fact that the
steering sphere must lie inside the Bloch sphere.

If we generalize the case of inept states to generic canonical states, then the largest
volume physical ellipsoid εA centred at ~c is an oblate spheroid with its minor axis
oriented radially. The next chapter will assume ellipsoids εmaxc with ~c = (0, 0, c), with
0 ≤ c ≤ 1 so the major semiaxes are s1 = s2 =

√
1− c and the minor semiaxis is

s3 = 1 − c (see figure 3.1). They are the maximum volume states we will refer to.
They are entangled states, except the case of c = 1, which corresponds to a product
state. The state described by εmaxc can be written as

ρmaxc = (1− c

2
) |ψc〉 〈ψc|+

c

2
|00〉 〈00| , (2.17)

where |ψc〉 = 1√
2−c (|01〉+

√
1− c |10〉). They are rank-2 ’X states’, i.e. states described

by density matrices that, in the computational basis, have elements different from zero
only in the diagonal and anti-diagonal.

5Remember VPhys ≥ VSep.
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Figure 2.5: Ellipsoid describing an entangled state. In the case of pure states, the ellipsoid
of an entangled state concides with the Bloch sphere; the ellipsoid of a product
state coincides with a point. In the case of mixed states the ellipsoid cannot fit
inside a tetrahedron because it is either too big or too near to the surface of the
Bloch sphere.

Maximum volume states have a precise physical interpretation: if Alice and Bob
share the Bell state |+〉 = 1√

2
(|01〉+ |10〉) and Alice passes her qubit through a Choi-

isomorphic channel6, then the result is a maximum volume state centred at ~c = (0, 0, c).
Another remarkable fact is that the volume of maximum volume states allows to write
an upper bound to the concurrence ([13]).

The next chapter will concern the accessible information in maximum volume states
in the case that Bob performs a measurement composed by only two elements. Despite
the strong symmetry constraint, it will be an difficult task to deal with.

We conclude this Chapter through considering figure 2.5, 2.6, 2.7, 2.8, 2.9 which
shows several cases of ellipsoids corresponding to different states.

6Choi-isomorphic channel: ρmaxc is isomorphic to the trace-preserving single qubit amplitude-
damping channel with decay probability c (see [1] for further details).
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Figure 2.6: The Werner state. It is a special example of a separable state: It is the maximum
volume separable state and it is represented by a sphere, which fits inside a
tetrahedron, with radius 1

3
centred in the origin of the Bloch sphere.

Figure 2.7: The Bell-diagonal state. It is described by an ellipsoid centred at the origin and
its semiaxes are given by the three singular value of T . See [14] for more details.
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Figure 2.8: Ellipsoid reducing to a steering pancakes. The set of Alice’s steered states can
be degenerate and, for example, generates a two-dimensional set. The figure
shows a separable pancake which fits inside a triangle (a three-dimensional
tetrahedron).

Figure 2.9: Ellipsoids reducing to a steering needle. The set of Alice’s steered states can be
even more degenerate and generates a one-dimensional set. The figure shows a
line segment, often called a steering needle.



Chapter 3

Binary accessible information in
maximum volume states

Imagine Alice and Bob were to share two qubits described by two states ρA
and ρB (the whole system is described by the state ρAB). Bob performs a quantum
measurement in his qubit, the elements of which are {M0,M1, . . . ,Mn}, and he collapses
Alice’s qubit to one state taken among {ρ0, ρ1, . . . , ρn} with respective probabilities
{p0, p1 . . . , pn}. Each collapsed state is represented by a vector on her ellipsoid. After
Bob’s measurement, Alice wants to guess in which state her qubit is. Hence she
performs a quantum measurement and wants it to maximize the mutual information
for this quantum process.

We underline once again that this work will deal with classical mutual information,
because this expresses the classical correlation that can be extracted from the quantum
process. It is not possible to give such an operationally clear meaning for quantum
mutual information.

Finding the optimal measurement in the above situation actually involves two
optimizations: the first related to Bob’s measurement and the second related to Alice’s
measurement.This work will not deal with the first optimization because it will always
assume the binary case, i.e two measurement elements {M0,M1} and so two possible
state vectors on Alice’s ellipsoid, with probabilities {p0, p1}. The aim is to find the
binary accessible information in a two qubit system when Alice’s ellipsoid describes a
maximum volume state ( 2.3), which is a particular case of canonical states.

The reason of this assumption derives from the fact that maximum volume states
show symmetry and special properties. This means Alice’s steered state is described
by an oblate spheroid εmaxc , with its minor axis oriented radially and touching the
Bloch sphere surface at one point. Without loss of generality, we can also assume the
ellipsoid is centered on the z axis, so ~c = (0, 0, c), with 0 ≤ c ≤ 1. For such an ellipsoid
the major semiaxes are (figure 3.1)

s1 = s2 =
√

1− c (3.1)

and the minor semiaxis is
s3 = 1− c. (3.2)

The state represented by the maximum volume ellipsoid depends only on the parameter

31
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Figure 3.1: Maximum volume states. The figure above shows the special maximum volume
state we will deal with. It is an oblate spheroid with ~c = (0, 0, c), s1 = s2 =√

1− c and the minor semiaxis is s3 = 1− c.

c and it can be written as

ρmaxc = (1− c

2
) |ψc〉 〈ψc|+

c

2
|00〉 〈00| , (3.3)

where |ψc〉 = 1√
2−c (|01〉+

√
1− c |10〉). It corresponds to an entangled state, except

the case of c = 1, which describes a product state, so it has chirality χ = −1, i.e. it is
described by a left-handed steering ellipsoid. This fact implies that the semiaxes are

~t = (
√

1− c,
√

1− c, c− 1), (3.4)

where the sign of the third semiaxis has been flipped.
Starting from these assumptions we procede as follows:
We first consider the mutual information for couples of opposite points (state

vectors) on the surface of Alice’s ellipsoid, and then we refer to couples of points inside
the ellipsoid. The first case corresponds to a PVM performed by Bob, the secondFr to
a POVM (see the Appendix).

It is expected that the maximum value of the mutual information in this particular
case of maximum volume states will be reached if we consider the furthest points on the
ellipsoids. This is because the mutual information reaches its maximum for classical
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Figure 3.2: Alice’s collapsed states ρA0 and ρA1 . They are represented by their Bloch vectors
~rA0 and ~rA1 . The figure above also shows the values of semiaxes and the Pauli
basis vectors {|−〉 , |+〉 , |0〉 , |1〉} along the axes.

distinguishable states, and the more distant the points in the Bloch sphere are, the
nearer to be classical the behaviour of the corresponding states is.

If the above intuition is right, then it implies a lower bound of the accessible
information for a two qubit system because in a general non-binary quantum task the
mutual information could be greater.

3.1 State vectors on an ellipsoid’s surface, Bob’s PVM

3.1.1 Furthest and nearest points on the ellipsoid’s surface

Let us try to find the mutual information for the furthest points case, i.e. the
extreme points on the major axis. How distant are they?

We name Alice’s two collapsed states ρA0 and ρA1 ; the corresponding state vectors
are (figure 3.2)

~rA0 = (−
√

1− c, 0, 0) (3.5)

and
~rA1 = (

√
1− c, 0, 0). (3.6)

Their euclidean distance is simply given by
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d(ρA0 , ρ
A
1 ) = ||~rA0 − ~rA1 || = 2

√
1− c. (3.7)

In the case of general canonical states, it is 2 maxi |ti|, where the index i denotes the
three semiaxes.

Alice’s two collapsed states in the Pauli basis are

ρA0 =
1

2
(I−

√
1− c · σx + cσz) (3.8)

ρA1 =
1

2
(I +

√
1− c · σx + cσz). (3.9)

We refer now to the mutual information 1.1.3:

H(A : B) = H(A) +H(B)−H(A,B). (3.10)

We evaluate separately each quantity of it. Note that the optimal measurement for
Alice here is in basis {|−〉 , |+〉}, according to the maximum likelihood discrimination
( 1.3.2).

H(A) = −pA− log pA− − pA+ log pA+,

H(B) = −pB0 log pB0 − pB1 log pB1 , (3.11)

H(A,B) = −pAB−0 log pAB−0 − pAB+0 log pAB+0 − pAB−1 log pAB−1 − pAB+1 log pAB+1 ;

where pA− = pA+ = 1
2 are the probabilities for Alice of respectively measuring |−〉

and |+〉, and pB0 = pB1 = 1
2 are the probabilities for Bob of respectively measuring M0

and M1. The reason these probabilities are necessary equal to 1
2 derives from the fact

that Bob performs PVM and the fact that maximum volume states are a particular
case of canonical states for which Bob’s Bloch vector b is null. A precise explanation
can be found in the Appendix.

We name M0 and M1 as Π0 and Π1 = I−Π0 since they are PVM elements. pABab
are the joint probabilities of obtaining a for Alice’s measurement and b for Bob’s
measurement; a = −,+ and b = 0, 1. They are given by

pABab ≡ pBb · p(|a〉 /Πb)

≡ Tr(ρAB |a〉 〈a| ⊗Πb)

=
1

2
〈a| ρAb |a〉

(3.12)

Substitute now 3.8 and 3.9 in the expression 3.12 above and evaluate 3.11, thus
obtaining

〈−| ρA0 |−〉 = 〈+| ρA1 |+〉 =
1

2
(1 +

√
1− c) (3.13)

〈+| ρA0 |+〉 = 〈−| ρA1 |−〉 =
1

2
(1−

√
1− c) (3.14)

and so the mutual information for the furthest points of Alice’s steering ellipsoid is

H(A : B) = 2 +
1

2
(1−

√
1− c) log[

1

4
(1−

√
1− c)] +

1

2
(1 +

√
1− c) log[

1

4
(1 +

√
1− c)]
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= 2 +
1

2
log[

1

16
(1 +

√
1− c)(1−

√
1− c)] +

1

2

√
1− c log(

1 +
√

1− c
1−
√

1− c
)

= 2 +
1

2
log 2−4 +

1

2
log c+

1

2

√
1− c log(

(1 +
√

1− c)2

c
)

=
1

2
[log c+ 2

√
1− c log(

1 +
√

1− c√
c

)] ≡ f(c), (3.15)

where the properties 1.2.2 of Chapter one have been used. Note that H(A)+H(B) = 2.

Before going on, note that all the previous reasonings deal with a completely
abstract scenario in which no communication processes are involved. It is possible to
consider a communication process consisting of two parties, Charlie and Dick. Dick
wants to communicate a classical message to Charlie and encondes it in two quantum
states ρ0 and ρ1 with probabilities p0 and p1. Charlie performs a quantum measurement
described by the elements {M0,M1} to guess the message.

All the passages performed before could be replaced through substituting Alice
and Bob with Charlie and Dick. In both the Abstract and Communication scenario
the mathematics is the same. It is important to highlight this possibility, because
most authors in the literature usually deal with the communication scenario 1. This is
mathematically equivalent to the Abstract scenario of the current work. Moreover note
that in both scenarios the issue is almost completely classical since it mostly involves
classical probability distributions, except when quantum measurements are involved
(it is the only quantum task). Let us now compare the mutual information obtained
for the furthest points with the mutual information calculated for generic couples of
points on the surface of Alice’s ellipsoid.

Firstly start calculating the mutual information for the nearest points on the surface
of the ellipsoid, i.e. the extreme points on the minor axis. It should be the lower
value of the mutual information for couples of points on the surface of the ellipsoid,
according to our previous intuition.

It is possible to evaluate the quantities appearing in the formula 3.10 as before.
The quantities of interest are now

~r
′A
0 = (0, 0, 2c− 1)→ ρ

′A
0 =

1

2
(I + (2c− 1)σz) (3.16)

~r
′A
1 = (0, 0, 1)→ ρ

′A
1 =

1

2
(I + σz) (3.17)

and so

p
′AB
00 = p

′B
0 〈0| ρ

′A
0 |0〉 =

c

2

p
′AB
10 = p

′B
0 〈1| ρ

′A
0 |1〉 =

1− c
2

p
′AB
01 = p

′B
1 〈0| ρ

′A
1 |0〉 =

1

2

p
′AB
11 = p

′B
1 〈1| ρ

′A
1 |1〉 = 0.

1The communication scenario certifies the application of the classical mutual information in the
information theory.
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p
′A
0 = p

′AB
00 + p

′AB
01 =

1 + c

2

p
′A
1 = p

′AB
10 + p

′AB
11 =

1− c
2

p
′B
0 =

1

2

p
′B
1 =

1

2
.

Note that now the optimal measurement for Alice is in basis {|0〉 , |1〉}, according to
the maximum likelihood discrimination ( 1.3.2). Figure 3.2 shows why, geometrically,
in this case the probabilities p

′A
0 and p

′A
1 are not equal to 1

2 : the nearest points are not
"centered" between |0〉 and |1〉. On the other hand the furthest points are centered
between |−〉 and |+〉, so pA0 = pA1 = 1

2 .

The mutual information for the nearest points of Alice’s steering ellipsoid is

H(A : B) = −1 + c

2
log

1 + c

2
+

1

2
+
c

2
log

c

2

=
1

2
[c log c− (1 + c) log(1 + c)− c+ (1 + c) + 1]

=
1

2
[c log c− (1 + c) log(1 + c) + 2]

=
1

2
[c log

c

1 + c
− log(1 + c) + 2] ≡ n(c). (3.18)

Figure 3.3 plots what it has been found.

It is clear that f(c) ≥ n(c), where the equality holds only for c = 0, 1 and it is
obvious to expect the region included between f(c) and n(c) to be the region of the
possible values of the mutual information for generic couples of points on the ellipsoid
surface.

The function f(c) can also be plotted with respect to the half-distance between the
points in the couple (see figure 3.4), i.e. the maximum half-distance d for couples of
points on the ellipsoid surface. It is possible to rewrite 3.15 as

f(d) =
1

2
[log(1− d2) + 2d log(

1 + d√
1− d2

)

=
1

2
[log(1− d2) + d log(

1 + d

1− d
)], (3.19)

where d =
√

1− c. It is a monotonically increasing function of d and it reaches its
maximum for d = 1, when the ellipsoid coincides with the whole Bloch sphere, i.e.
the two qubits become distinguishable. It vanishes when d = 0, i.e when the ellipsoid
reduces to a point and the two qubits are completely indistinguishable.

At this point we discuss the case of generic couples on the ellipsoid surface. We
expect to find functions of c located between n(c) and f(c) ( 3.3).



3.1. STATE VECTORS ON AN ELLIPSOID’S SURFACE, BOB’S PVM 37

f(c)

n(c)

0.2 0.4 0.6 0.8 1.0
c

0.2

0.4

0.6

0.8

1.0

Figure 3.3: Mutual information for the furthest and nearest points on the maximum volume
ellipsoid. It is clear that the mutual information is greater for the furthest points.
The region included between the two curves should be the one containing the
mutual information functions for general couples of points on the surface of the
ellipsoid.

3.1.2 Generic couples of points on the ellipsoid’s surface

Let us start from the maximum likelihood discrimination. It states that the optimal
operator elements are given by the eigenvectors of the difference betweeen Alice’s two
collapsed states : ρ

′′A
0 − ρ′′A

1 .
These two qubit states have state vectors ~r

′′A
0 and ~r

′′A
1 . This implies the eigenvectors

of their difference are
± ~s = ±1

2
[~r

′′A
0 − ~r

′′A
1 ]. (3.20)

±~s must be normalized because they correspond to PVM elements. Therefore the
appropriate unit vectors are

± ŝ = ± ~s

|~s|
. (3.21)

Hence the conditional probability p(Π
′′A
b /Π

′′B
b ) = p(±~s/~r′′A

b ), where Π
′′B
b and Π

′′A
b

respectively indicates Bob’s PVM elements and Alice’s PVM elements and b = 0, 1 2, is

p(±ŝ/~rb) = Tr(ρ
′′A
a Π

′′A
b ) = Tr[

1

2
(I + ~r

′′A
b · ~σ) · 1

2
(I± ŝ · ~σ)] =

1

2
(1± ~r

′′A
b · ŝ). (3.22)

It is now possible to calculate the joint probability 3.12 and so the mutual information
3.10.

The quantities of interest are

2Indicating Alice’s measurement through the index b = 0, 1 is an abuse of notation. However this
notation should be clearer and unambiguous.
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Figure 3.4: Mutual information for the couple of furthest points on the maximum volume
ellipsoid with respect to the half-distance d between them. It is a monotonic
increasing function of d and it reaches its maximum when the ellipsoid coincides
with the whole Bloch sphere.

p
′′AB
−0 =

1

4
(1− ~r

′′A
0 · ŝ)

p
′′AB
+0 =

1

4
(1 + ~r

′′A
0 · ŝ)

p
′′AB
−1 =

1

4
(1− ~r

′′A
1 · ŝ)

p
′′AB
+1 =

1

4
(1 + ~r

′′A
1 · ŝ).

(3.23)

p
′′A
− = p

′′AB
−0 + p

′′AB
−1 =

1

4
(2− (~r

′′A
0 + ~r

′′A
1 ) · ŝ)

p
′′A
+ = p

′′AB
+0 + p

′′AB
+1 =

1

4
(2 + (~r

′′A
0 + ~r

′′A
1 ) · ŝ)

p
′′B
0 =

1

2

p
′′B
1 =

1

2
.

(3.24)
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Figure 3.5: Spherical coordinates of centre ~c = (0, 0, c). 0 ≤ ϑ ≤ π and 0 ≤ ϕ ≤ 2π.

The mutual information is

H(A : B) = 1− 1

4
(2− (~r

′′A
0 + ~r

′′A
1 ) · ŝ)log[

1

4
(2− (~r

′′A
0 + ~r

′′A
1 ) · ŝ)]

− 1

4
(2 + (~r

′′A
0 + ~r

′′A
1 ) · ŝ)log[

1

4
(2 + (~r

′′A
0 + ~r

′′A
1 ) · ŝ)]

+
1

4
(1− ~r

′′A
0 · ŝ)log[

1

4
(1− ~r

′′A
0 · ŝ)]

+
1

4
(1 + ~r

′′A
0 · ŝ)log[

1

4
(1 + ~r

′′A
0 · ŝ)]

+
1

4
(1− ~r

′′A
1 · ŝ)log[

1

4
(1− ~r

′′A
1 · ŝ)]

+
1

4
(1 + ~r

′′A
1 · ŝ)log[

1

4
(1 + ~r

′′A
1 · ŝ)].

(3.25)

It is appropriate to write ρ
′′A
0 , ρ

′′A
1 and ŝ in spherical coordinates (figure 3.5).

~r
′′A
0 =


x0 = −

√
1− c sinϑ cosϕ

y0 = −
√

1− c sinϑ sinϕ

z0 = −(1− c) cosϑ+ c

(3.26)

~r
′′A
1 =


x1 =

√
1− c sinϑ cosϕ

y1 =
√

1− c sinϑ sinϕ

z1 = (1− c) cosϑ+ c

(3.27)
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~s =


sx = −

√
1− c sinϑ cosϕ

sy = −
√

1− c sinϑ sinϕ

sz = −(1− c) cosϑ

, (3.28)

where 0 ≤ ϑ ≤ π and 0 ≤ ϕ ≤ 2π. Note the third semiaxis is not flipped because of
the necessity of positive lengths (remember 0 ≤ c ≤ 1). Moreover

|~s| =
√

(1− c) sin2 ϑ+ (1− c)2 cos2 ϑ. (3.29)

A quick check to verify that ŝ is the right vector to indicate Alice’s optimal measurement
consists of substituting, for example, ϑ = 0 (the nearest points case). It results that
ŝ = (0, 0,±1), i.e. −ŝ = |0〉 and +ŝ = |1〉 as expected.

Other useful quantities are

(~r
′′A
0 + ~r

′′A
1 ) · ŝ = −2c(1− c) cosϑ

|~s|

~r
′′A
0 · ŝ =

(1− c)[1− c cosϑ(1 + cosϑ)]

|~s|

~r
′′A
1 · ŝ = − (1− c)[1 + c cosϑ(1− cosϑ)]

|~s|
It is now possible to evaluate again the mutual information:

H(A : B) = 1− 1

2
(1 +

c(1− c) cosϑ

|~s|
))log[

1

2
(1 +

c(1− c) cosϑ

|~s|
)]

− 1

2
(1− c(1− c) cosϑ

|~s|
)log[

1

2
(1− c(1− c) cosϑ

|~s|
)]

+
1

4
(1− (1− c)[1− c cosϑ(1 + cosϑ)]

|~s|
)log[

1

4
(1− (1− c)[1− c cosϑ(1 + cosϑ)]

|~s|
)]

+
1

4
(1 +

(1− c)[1− c cosϑ(1 + cosϑ)]

|~s|
)log[

1

4
(1 +

(1− c)[1− c cosϑ(1 + cosϑ)]

|~s|
)]

+
1

4
(1 +

(1− c)[1 + c cosϑ(1− cosϑ)]

|~s|
)log[

1

4
(1 +

(1− c)[1 + c cosϑ(1− cosϑ)]

|~s|
)]

+
1

4
(1− (1− c)[1 + c cosϑ(1− cosϑ)]

|~s|
)log[

1

4
(1− (1− c)[1 + c cosϑ(1− cosϑ)]

|~s|
)]

≡ g(c, ϑ).

(3.30)

Figure 3.6 plots the mutual information g(c, ϑ) for several values of ϑ. Some comments
are now necessary.

1. g(c, ϑ) does not depend on ϕ. It is invariant over rotations around z-axis. This
fact derives from the geometry of the ellipsoid: it is an oblate spheroid.

2. g(c) reduces to f(c) for ϑ = π
2 as expected.

3. g(c) reduces to n(c) for ϑ→ 0 as expected.
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Figure 3.6: Mutual information for general couples of points on the maximum volume ellip-
soid. The plot shows the mutual information for several values of ϑ: 0, π
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Note that f(c) is the greatest function for every value of c, but n(c) is not the
lowest function for every value of c. This contradict our expectations. For values
of ϑ such that 0 < ϑ < ϑ∗ ' 0, 31313 ' π

3
, g(c) crosses n(c). It means that

over a certain value of c, in correspondence of the crossing point, g(c) < n(c),
i.e. the mutual information is lower for further points, even if we thought they
should be more distinguishable.

4. The most astonishing fact is that while f(c) is the greatest function for every
value of c, n(c) is not the lowest function for every value of c as expected. For
values of ϑ such that 0 < ϑ < ϑ∗ ' 0, 31313 ' π

3 , g(c) crosses n(c).3 This
means that over a certain value of c = c∗, in correspondence to the crossing
point, g(c) < n(c), i.e. the mutual information is lower for further points, thus
contradicting our previous intuitions. The idea of a direct dependence between
points distance and mutual information crashes down. It is very unexpected
because we thought of further points as more distinguishable: nearer to being
classical and so corresponding to greater mutual information. What should this
feature mean?

Let us try to understand what geometrically and dynamically happens through
studying the relation c∗ = c∗(ϑ).

5. The crossing point g(c∗) → 1 (for c∗ → 0) if ϑ → 0. g(c∗) → 0 ( for c∗ → 1)
if ϑ → ϑ∗. This means that if c∗ is small, i.e. the ellipsoid is similar to the
whole Bloch sphere, then this special behaviour can be observed only for small
angles. On the other hand, if c∗ is big, i.e. the ellipsoid is a small disk near
to being a point of the sphere (the contact point between the ellipsoid and the
Bloch sphere), then this special behaviour can be observed also for angles near

3the limit angle ϑ∗ ' 0, 31313 has been found through an approximation based on a plots analysis.
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to ϑ∗ ' π
3 .

Figure 3.7 shows the relation c∗ = c∗(ϑ), which is derived from from a numerical
estimation because of the difficulty of solving the trascendental equation g(c, ϑ) =
n(c).

6. It can be helpful to study the behaviour of the difference ∆H(A : B) = g(c, ϑ′)−
n(c), for a fixed angle 0 < ϑ′ < ϑ∗, with respect to the centre of the ellipsoid c
(see Figure 3.8). Firstly imagine the ellipsoid coincides with the Bloch sphere, i.e.
c = 0, and calculate ∆H(A : B). Then imagine the centre of the ellipsoid increases.
The ellipsoid shrinks and approaches the contact point. This implies that if we
consider the nearest points on the surface N1 and N2 and two other generic
opposite points on the surface G1 and G2, then ∆d = d(G1, G2) − d(N1, N2)
increases4 until a certain point cmax and then it rapidly decreases (see figure
3.9); i.e. N1 and N2 get close more rapidly than G1 and G2 until a given value
c = cmax(ϑ), then ∆d inverts its behaviour. It could be expected that ∆H(A : B)
increases when ∆d increases and it decreases when ∆d decreases, but this is not
the case. ∆H(A : B) changes sign when c = c∗ 6= cmax.

We have found neither a direct relation between the mutual information H(A : B)
and the distance d(P1, P2) between two points on the ellipsoid , nor a relation
between H(A : B) and the rapidity with which the distance d(P1, P2) changes.

7. It is interesting to note that by comparing for instance g(c, π8 ) and g(c, π12 ) the
special behaviour does not arise just before c = 1, but in a small region between
C = 0.5 and c = 1, leaving the region just before c = 1 unaffected by the special
behaviour. In other words, the two functions intersect at two points in addition
to c = 0, 1 instead of one, as for n(c) and g(c, ϑ′), with ϑ′ < ϑ∗.

The next section will discuss what happens for generic couples inside the ellipsoid.
We expect to find functions of c always located under f(c) ( 3.3).

3.2 State vectors inside the ellipsoid, Bob’s POVM

The first question to answer in Bob’s POVM case is whether the number Nb of
Bob’s POVM elements coincides with the number Na of Alice’s optimal measurement
elements on her Nb states. The answer is not so simple; it results that it is always
possible to consider a situation in which Nb = Na, even if , in general, Nb ≤ Na. This
work will always assume Nb = Na = 2 (because of the binary case).

The second necessary consideration is associated with the strategy to adopt. If we
choose to consider generic couples of points inside Alice’s steering ellipsoid it could
make the calculations very cumbersome. One appropriate way to proceed is to consider
couples of opposite points situated on the surface of ellipsoids centred at ~c = (0, 0, c)
inside the steering one. Let us see how it works and why it is an appropriate choice.

3.2.1 Ellipsoids inside the steering one

If we assume that Alice’s collapsed states are described by two opposite points on
the surface of an ellipsoid inside the steering one, then they can be written in spherical
coordinates as

4The function d(P1, P2) indicates the euclidean distance between two points P1 and P2.
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~rA0 =


x0 = −α

√
1− c sinϑ cosϕ

y0 = −β
√

1− c sinϑ sinϕ

z0 = −γ(1− c) cosϑ+ c

(3.31)

~rA1 =


x1 = α

√
1− c sinϑ cosϕ

y1 = β
√

1− c sinϑ sinϕ

z1 = γ(1− c) cosϑ+ c

, (3.32)

where α, β, γ are real coefficients such that 0 < α, β, γ ≤ 1. The 4-vector describing
Alice’s optimal measurement s̃ is given, according to the maximum likelihood discrim-
ination (see B), by s0 = 1 and ~s = X0

2 ~r
A
0 − (1 − X0

2 )~rA1 , where X0 denotes the first
component of the 4-vector describing Bob’s measurement element ΠB. In order to
evaluate ~s, note that

X0

2
ρA0 + (1− X0

2
)ρA1 = ρA =

1

2
(I + cσz)

X0

2
[
1

2
(I + ~rA0 ~σ)] + (1− X0

2
)[

1

2
(I + ~rA1 ~σ)] =

1

2
I +

c

2
σz

1

2
I + [

X0

4
(~rA0 − ~rA1 ) +

~rA1
2

] =
1

2
I +

c

2
σz,

hence 
−X0

2
α
√

1− c sinϑ cosϕ+
1

2
α
√

1− c sinϑ cosϕ = 0

−X0

2
β
√

1− c sinϑ sinϕ+
1

2
β
√

1− c sinϑ sinϕ = 0

−X0

2
γ(1− c) cosϑ+

1

2
(c+ γ(1− c) cosϑ) = c

,

and so 
X0α
√

1− c sinϑ cosϕ = α
√

1− c sinϑ cosϕ

X0β
√

1− c sinϑ sinϕ = β
√

1− c sinϑ sinϕ

X0γ(1− c) cosϑ = γ(1− c) cosϑ

.

This system of equations has a solution if and only if X0 = 1. This result implies that
p = p(ΠB) = tr(ρBΠB) = X0

2 = 1
2 and so the probability distributions 3.23 and 3.24

are still valid. The fact that p = 1
2 could also be intuitively deduced by considering

that opposite points on an ellipsoid are equally distant from its centre which, in this
case, corresponds to the state vector representing ρA. This very useful simplification
implies that

~s =


sx = −α

√
1− c sinϑ cosϕ

sy = −β
√

1− c sinϑ sinϕ

sz = −γ(1− c) cosϑ

. (3.33)

Some necessary quantities to calculate the mutual information are

(~rA0 + ~rA1 ) · ŝ = −2cγ(1− c) cosϑ

|~s|
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~rA0 · ŝ =
(1− c) sin2 ϑ(α2 cos2 ϕα2 + β2 sin2 ϕ)− γ(1− c)c cosϑ+ γ2(1− c)2 cos2 ϑ

|~s|

~rA1 · ŝ =
−(1− c) sin2 ϑ(α2 cos2 ϕα2 + β2 sin2 ϕ)− γ(1− c)c cosϑ− γ2(1− c)2 cos2 ϑ

|~s|
,

where ŝ = ~s
|~s| and

|~s| =
√
α2(1− c) sin2 ϑ cos2 ϕ+ β2(1− c) sin2 ϑ sin2 ϕ+ γ2(1− c)2 cos2 ϑ (3.34)

It is now possible to evaluate the mutual information for couples of opposite
points inside the steering ellipsoid, situated on the surface of an ellipsoid centered at
~c = (0, 0, c):

H(A : B) = 1− 1

4
(2− (~rA0 + ~rA1 ) · ŝ)log[

1

4
(2− (~rA0 + ~rA1 ) · ŝ)]

− 1

4
(2 + (~rA0 + ~rA1 ) · ŝ)log[

1

4
(2 + (~rA0 + ~rA1 ) · ŝ)]

+
1

4
(1− ~rA0 · ŝ)log[

1

4
(1− ~rA0 · ŝ)]

+
1

4
(1 + ~rA0 · ŝ)log[

1

4
(1 + ~rA0 · ŝ)]

+
1

4
(1− ~rA1 · ŝ)log[

1

4
(1− ~rA1 · ŝ)]

+
1

4
(1 + ~rA1 · ŝ)log[

1

4
(1 + ~rA1 · ŝ)]

≡ i(c, ϑ, ϕ, α, β, γ).

(3.35)

Let us now try to interpret the above expression.

3.2.2 Classification of results

The mutual information 3.35 depends on six variables. The idea is to choose a
fixed value of ϕ, α, β, γ and see the behaviour of the function i(c, ϑ, ϕ, α, β, γ) with
respect to c for different values of ϑ. We will start by considering a quite general case:
α ≥ β ≥ γ, e.g. α = 0.6, β = 0.5, γ = 0.4 (so the z-axis is always the smallest and the
x-axis is always the greatest). Its plot shows, for fixed values of ϕ, a behaviour as a
fan, instead of the typical behaviour as a banana for the mutual information of couples
of opposite points on the surface of the steering ellipsoid. Note that the fan behaviour
includes also the special behaviour.

Except for the special behaviour, the fan behaviour can be explained in terms of a
direct relation between the euclidean distance and the mutual information. The lowest
function corresponds to the couple of nearest points and by increasing the value of
ϑ the function increases. The functions do not cross at c = 0 because at c = 0 the
ellipsoid does not become a sphere as it does for the steering ellipsoid. Moreover, it
results that varying the value of ϕ from π

2 to 0 the special behaviour is shifted towards
c = 1 and also the limit angle ϑ∗ gradually has a lower value. In order to get a better
understanding of the case above and how far a direct relation between the euclidean
distance and the mutual information can hold, let us see some particular cases:
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1. α = β = γ. the opposite points are situated on the surface of an ellipsoid similar
to the steering one.

2. α = γ or β = γ. the opposite points are situated on the surface of an ellipsoid
which mantains the same proportion between one of the major axes and the
minor axis with respect to the steering ellipsoid.

3. α = β � γ. The opposite points are situated on the surface of an oblate spheroid
which looks like an orizontal disk.

Case 1 shows, as intuitively expected, a banana behaviour like the case of the
opposite points on the surface of the steering ellipsoid. The only difference is that now
all the different functions (with different values of ϑ) intersect (at c = 0) at i(c) 6= 1.
If the values of the coefficients are much smaller than the ones in the figure (e.g.
α = β = γ = 0.1 ), it is very difficult to recognize a Banana, because all functions
become almost the same and very closer to the x-axis (this derives from the fact that
all points become closer).

Case 2 needs further explaination:

1. if α = γ and ϕ = 0 or if β = γ and ϕ = π
2 , then the plot shows a banana

behaviour with a crossing point(at c = 0) at i(c) 6= 1. If the values of the
coefficients are smaller than those in the figure, the banana turns into a fan.
Therefore the fan can be interpreted as a right part of the banana.

2. if ϕ is respectively different from 0 and π
2 , then the plot shows a fan.

Case 3 shows a fan behaviour, but without the presence of the special behaviour.
It derives from the fact that the nearest points are very closer to one another. In
particular if the values of α, β are a bit closer to γ, then the fan shows the special
behaviour and this case reduces to the general one. Instead of an orizontal disk
(α = 0.8, β = 0.8, γ = 0.1) we can also consider, for instance, an orizontal needle
(α = 0.8, β = 0.1, γ = 0.1, ϕ = 0) or a vertical needle (α = 0.1, β = 0.1, γ = 0.8), and
the behaviour is the same.

We can sum up the previous reasonings by stating that, in general, the plots are
easily interpretable in terms of the relation between the euclidean distance and the
mutual information, except for the special behaviour which arises, as expected, like in
the steering ellipsoid case. It is possible to intuitively interpret the behaviour of the
mutual information in terms of the euclidean distance when the difference between
the distances of couples of points is significant, i.e. the coulples of points considered
are not close to each other (in general high values of ϑ and small values of ϕ). When
these differences are slightly perceptible, i.e. small values of ϑ and high values of ϕ,
the special behaviour arises.

The table 3.1 shows all the above cases.
In order to understand the special behaviour, consider now the interesting case

in which one of the steering ellipsoid’s major axes are reduced more than the minor
axis, e.g. α = 0.6, β = 0.3, γ = 0.4, so the x-axis is always the greatest, but for the
smallest axis the situation is different: if c < c̄ = 0.4375 the y-axis is the smallest, if
c > c̄ the z-axis is the smallest (see figure 3.10 ). Table 3.2 shows all the possible
kind of behaviours varying ϕ. It results that going from ϕ = 0 to ϕ = π

2 the plots
show the following situation:

• if ϕ = 0 the plot is a fan with the special behaviour which is practically nonexistent
because it is really close to c = 1.
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Table 3.1: Mutual information for points inside the steering ellipsoid: some cases. The table
shows, in order,
1) A general case with α = 0.6, β = 0.5, γ = 0.4 and ϕ = π

2
(it is not important

the value of ϕ), but note that α, β > γ.
2) An ellipsoid similar to the steering one, α = β = γ = 0.8. The same plot arises
by taking either α = γ and ϕ = 0 or β = γ and ϕ = π

2
.

3)An orizontal Disk, α = β = 0.8, γ = 0.1. It could be chosen, for example, a
vertical needle (α = 0.1, β = 0.1, γ = 0.8) or an orizontal needle (α = 0.8, β =
0.1, γ = 0.1, ϕ = 0).
Note that every plot shows that all functions are lower than f(c). It is a lower
bound to the accessible information for a two qubit system.
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• if ϕ = π
4 the plot is a fan, but the special behaviour is now well visible because it

is further from c = 1 than the previous case. Note that the fan tends to shrink
near c = 0.

• if ϕ = π
3 the plot is almost a banana.The fan is completely shrunk until reaching

a crossing point at (almost) c = 0.

• if ϕ = 17π
48 the plot shows a hair clip behaviour, i.e. the banana crossing point

shifts down towards c = 1 and leave at its left an opposite behaviour with respect
to its right: the function which were greater become smaller and vice versa. The
hair clip behaviour shows the special behaviour for certain values of ϑ.

• if ϕ = π
2 the plot is a hair clip, but there are many different crossing points in

correspondence with the different values of ϑ. The hair clip behaviour is shifted
towards c = 1.

The evolution of the plot is clear: for ϕ = 0 it is an ’open’ fan with the strange behaviour
near c = 1, then the crossing point c∗ denoting the stange behaviour gradually ’climbs’
the slope of the functions until arriving, at ϕ ' π

3 , at c = 0. At that point the strange
behaviour arises again near c = 1. After the banana behaviour the crossing point
which arose at c = 0 moves down towards c = 1 and, at its left, the plot shows the
inverse behaviour with respect to its right: the function which were greater become
smaller and vice versa . This may happen in correpsondence with the inversion of
the behaviour between the distances: couples of points which were closer than others,
become more distant. By varying ϕ towards π

2 the hair clip moves down to c = 1 and
it no longer shows a single crossing point.

The most interesting aspect of this case is the hairclip behaviour. We expect that
the typical crossing point of the hair clip appears in correspondence with the point at
which there is the inversion of the distances. However it is not true. There exists a
slight deviation. Consider for example the sharp case of ϕ = 17π

48 and the functions
corresponding to ϑ = 0 and ϑ = π

8 (see figure 3.11 ). In this case the point at which
the distances invert their behaviour is given by the solution of the equation√

(0.6
√

(1− c) sin
π

8
cos

17π

48
)2 + (0.3

√
(1− c) sin

π

8
sin

17π

48
)2 + (0.4(1− c) cos

π

8
)2

= 0.4(1− c) cos 0,

which is c̄′ = 0.107392. The crossing point between the functions representing the
mutual information is c̄∗ = 0.12217. Therefore our expectation is incorrect. There
exists another special behaviour: for c such that c̄′ < c < c̄∗ couples of nearer opposite
points have a greater mutual information than couples of further opposite points.

There may exist an identity between the difference D = c̄∗ − c̄′ (inversion-mutual
information-point and inversion-distance-point ) and D′ = c∗ − 1 (crossing point of the
usual special behaviour and c = 1, where the distances between all points coincide),
even if in the first case the inversion behaviour of the mutual information is delayed
and in the second case it is in advance with respect to the inversion behaviour of the
distances. Unfortunately D = 0.014778 6= D′ ' −0.37 and it is a very difficult task to
find a relation between D(ϑ, ϕ) and D′(ϑ, ϕ).

We can conclude this cumbersome reasoning by highlighting that when the difference
between the distances of couples of points is slightly perceptible, really particular
behaviours arise.
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Table 3.2: The evolution of the mutual information for points inside the steering ellipsoid
with α = 0.6, β = 0.3, γ = 0.4 for different values of ϕ. When ϕ = 0 the plot is
an ’open’ fan with the strange behaviour near c = 1, then the crossing point c∗

denoting the stange behaviour gradually ’climbs’ the slope of the functions (as
for ϕ = π

4
) till arriving, at ϕ ' π

3
, at c = 0. At that point the strange behaviour

arises again near c = 1. After the banana behaviour, at ϕ = 17π
48

, the crossing
point which arose at c = 0 moves down towards c = 1 and, at its left, the plot
shows the inverse behaviour with respect to its right: the function which were
greater become smaller and vice versa .It is interesting that it does not happen
in correpsondence with the inversion of the behaviour between the distances, but
for bigger values of c . Varying ϕ towards π

2
the hair clip moves down to c = 1

and it does not show a single crossing point anymore.
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ϕ = π
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The introduction of the symmetry between points inside the steering ellipsoid
(opposite to the centre of an ellipsoid) has allowed us to simplify the calculations
(X0 = 1, p = 1

2 ) and describe more features of the mutual information also in the case
of Bob’s POVM. It would be useful to consider generic couples of points inside Alice’s
steering ellipsoid (X0 6= 1, p 6= 1

2 ). However this implies the addition of other four
parameters to the function: three to define the components of ~rA1 and another which is
X0 6= 1 and the calculations result really cumbersome.

We expect to find the functions expressing the mutual information always lower
than f(c), since we have experienced that special behaviours of the mutual information
arise far from f(c). For the purpose of this work we have sufficient results for reliable
considerations.

Beyond all these attempts to interpret the behaviour of the mutual information
for points inside the steering ellipsoid, in order to find the accessible information the
principal aspect to stress is that i(c, ϑ, ϕ, α, β, γ) ≤ f(c) for each value of ϑ, ϕ, α, β, γ
in their domain and the equality holds only if {ϑ = π

2 , ϕ = 0, α = β = γ = 1} or if
{c = 0, α = β = γ = 1} (couples of points on the surface of the steering ellipsoid which
coincides with the whole Bloch sphere) or if c=1 (the steering ellipsoid coincides with
a point).

Hence f(c) is a lower bound for the accessible information in a two-qubit system. It
is possible that by involving more than two measurement elements or considering more
general states, e.g. generic canonical states, the mutual information becomes greater
than f(c), but we are certain that the accessible information, i.e. the maximum of the
mutual information over all possible schemes of measure, is not smaller than f(c).

It is important now to compare the lower bound f(c) with the most famous of the
already known lower bounds: the Josza-Robb-Wootters lower bound (1.39). In the
current case it states that:

H(A : B) ≥ Q(ρA)− 1

2
Q(ρA0 )− 1

2
Q(ρA1 ) ≡ l(c), (3.36)

where the subentropy Q(ρA) of ρA is given by

Q(ρA) =
λA0

λA0 − λA1
λA0 log λA0 +

λA1
λA1 − λA0

λA1 log λA1 . (3.37)

The eigenvalues of ρA = 1
2 (I + cσz) =

(
1+c
2 0
0 1−c

2

)
are λA0 = 1+c

2 and λA1 = 1−c
2 .

Through considering the furthest points decomposition of ρA,5 ρA0 = 1
2 (I−

√
1− cσx +

cσz) =

(
1+c
2

−
√
1−c
2

−
√
1−c
2

1−c
2

)
and ρA1 = 1

2 (I +
√

1− cσx + cσz) =

(
1+c
2

√
1−c
2√

1−c
2

1−c
2

)
, then

the eigenvalues are λ00 = λ10 = 1
2 (1−

√
1− c+ c2) and λ01 = λ11 = 1

2 (1 +
√

1− c+ c2).
By substituting the above values in l(c) it is possible to compare f(c) and l(c). Figure
3.12 shows that l(c) is a worse lower bound than f(c) since it is always lower (except,
obviously, at c = 0, 1). The figure also shows the Holevo upper bound. In the current
case it is given by

H(A : B) ≤ S(ρA)− 1

2
S(ρA0 )− 1

2
S(ρA1 ) ≡ χ(c), (3.38)

5It is obviously the most natural choice in order to maximise the value of l(c).
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where S(ρA) is the well known Von Neumann entropy 1.2.
In the end we can conclude that the accessible information certainly belongs to the

region f(c) ≤ H(A : B) ≤ χ(c).
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Figure 3.8: Difference of mutual information between general couples of points and the
nearest points on the ellipsoid’s surface for ϑ = π

4
. Note that in correspondence

of the crossing point c∗ ' 0, 700645, ∆H(A : B) = g(c, ϑ′) − n(c) changes its
sign. It decreases when c approaches c∗ and it increases when c overreaches c∗.
When c approaches ’one’ it decreases again like every g(c, ϑ) do for each value of
ϑ, according to the fact that the ellipsoid reduces to a point for c = 1. Moreover
comparing the above figure with figure 3.9 we can see that there is no relation
between H(A : B) and the rapidity with which the distance d(P1, P2) between
two points changes.
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Figure 3.9: Difference between distances of couples of points on the surface of the ellipsoid
as a function of c for ϑ = π

4
.Note that the function increases until c is near to

one. This implies that it decreases very rapidly at the end.
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Figure 3.10: y−axis and z−axis behaviour for α = 0.6, β = 0.3, γ = 0.4. Note that at
c̄ = 0.4375 the z−axis becomes smaller than the y−axis.
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Figure 3.11: Mutual Information for couples of opposite points inside the steering ellipsoid
with α = 0.6, β = 0.3, γ = 0.4, ϕ = 17π
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for ϑ = 0 and ϑ = π

8
. Note that the

plot shows both the usual special behaviour near c = 1 and another crossing
point. The latter should be linked to the inversion of the behaviour of the
distances, but it does not happen for the same value of c.
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Figure 3.12: Mutual information: lower and upper bounds. The accessible information
certainly belongs to the region f(c) ≤ H(A : B) ≤ χ(c), i.e. between the
quantity f(c) and the Holevo quantity χ(c). Note that the Josza-Robb-Wootters
quantity l(c) is a worse lower bound than f(c) in the general two qubit case.





Chapter 4

Conclusion

Dealing with the accessible information in a two qubit system is an intricate issue,
since it involves a maximization over all possible measurement schemes and trascendent
logarithmic expressions. The assumption of the binary measurement elements case
considerably simplifies the situation, but it does not remove the pitfalls. In order to
face the problem of considering all possible measurement schemes it is necessary to
develop a method to find the optimal measurement scheme, since it is not possible to
explore all the possible ones. The maximum likelihood discrimination allows to find
this optimal measurement scheme in a very simple and intuitive way. This method
is strictly related to the concept of trace distance, a measure of the distinguishability
between states.

The quantum steering ellipsoids formalism and the specific choice of considering
maximum volume states allows to geometrically see the states and their correlations
and perform quite easy calculations. The choice of using the trace distance for two
qubits implies to think of two states represented by vectors belonging to the steering
ellipsoid as more distinguishable if they are more distant.1 Therefore their mutual
information, which is directly related to the distinguishability of two states, has to
increase if the states are more distinguishable, and so described by more distant points.

Unexpectedly sometimes the mutual information for a couple of closer points is
greater than the mutual information for a couple of further points. In general it happens
when the distance difference between the two couples is small and these couples are far
from the couple of furthest points of the steering ellipsoid. Another special behaviour
arises by considering couples of opposite points inside the steering ellipsoid: in the case
that the distance of a couple of closer points becomes greater than the distance of a
couple of further points, the value of the centre at which it arises does not coincide
with the value of the centre at which their mutual information inverts. It is not clear
how to proceed to understand these special behaviours, despite several attempts have
been done, e.g studying how rapidly the distances between couples of points change
with respect to the centre. These special behaviours probably show that the maximum
likelihood discrimination, based on the trace distance concept, is not the appropriate
measure of distinguishability between quantum states. It works only for quite distant
couples of points.

The other famous measure of distinguishability between states is the fidelity (see
[11]), but it has not a clear and intuitive interpretation as the trace distance (for

1This fact derives from the expression of the trace distance 1.3.2 for two qubits in terms of the
euclidean distance between their state vectors in the Bloch sphere.
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example it is not a metric). The next step in order to obtain new insights about
the special behaviours of the mutual information may consist of choosing an optimal
measurement method related to fidelity and studying its relation with the mutual
information.

Another comment on the choice of the system of coordinates. The spherical
coordinates system seems to be the best and most natural system of coordinates in
order to study the mutual information for couples of opposite points on an ellipsoid, but
another choice could highlight some key features which are now obscure, e.g. ellipsoidal
coordinates system.

Beyond these special behaviours, the main result of this work is that the mutual
information of the couple of furthest points on the steering ellipsoid f(c) is a lower
bound to the accessible information of a two-qubit system. It is given by

f(c) =
1

2
[log c+ 2

√
1− c log(

1 +
√

1− c√
c

)].

It could be that involving more than two measurement elements or considering more
general states, e.g. generic canonical states, the mutual information becomes greater
than f(c), but it is certain that the accessible information is not lower than f(c). The
mutual information f(c) arises when Bob performs a PVM in basis {|−〉 , |+〉} and
Alice performs a PVM in basis {|−〉 , |+〉}.

It results that f(c) is a tighter lower bound than the already known Josza-Robb-
Wootters lower bound and by considering the famous Holevo upper bound we conclude
that the accessible information for a two qubit system belongs to f(c) ≤ H(A : B) ≤
χ(c).

The next step in order to improve this limit and the knowledge of the accessible
information consists of studying the case of measurements composed of three elements
and refering to the more general canonical states. This fact implies more difficult
calculations and a the necessity of a new method to substitute the optimal measurement
one in order to maximise the mutual information. A common method in this case is the
so called pretty good measurements method ([4]); a new one is the SIC measurements
method ([8]).



Appendix A

Bob’s PVM

The purpose of this Appendix is to state and prove the following theorems.
Suppose Bob steers Alice’s qubit to two states ρ0 and ρ1 represented by state

vectors ~r0 and ~r1 with respective probabilities p0 and p1.
Suppose also Alice’s steering ellipsoid represents a maximum volume state, a special

case of canonical states, i.e. ~a = ~c and ~b = 0.

Theorem 1.
If Alice’s state vectors ~r0 and ~r1 are opposite vectors situated on the surface of her
steered ellipsoid, then

1. p0 = 1
2 = p1.

2. Bob has performed a PVM.

Theorem 2.
Vice versa if Bob performs a PVM composed by two elements {M0,M1 = I −M0},
then

1. p0 = 1
2 = p1.

2. ~r0 and ~r1 are opposite vectors situated on the surface of Alice’s steered ellipsoid.

Therefore, for maximum volume states, the fact that Bob performs a PVM is
equivalent to say that Alice’s state vectors are situated on the surface of her steered
ellipsoid.

Proof 1. It is appropriate to write ρ0 and ρ1 in spherical coordinates (figure 3.5) with
respect to the centre of the ellipsoid ~c = (0, 0, c)

r0 =


x0 = −

√
1− c sinϑ cosϕ

y0 = −
√

1− c sinϑ sinϕ

z0 = −(1− c) cosϑ+ c

(A.1)

r1 =


x1 =

√
1− c sinϑ cosϕ

y1 =
√

1− c sinϑ sinϕ

z1 = (1− c) cosϑ+ c

, (A.2)

where 0 ≤ ϑ ≤ π and 0 ≤ ϕ ≤ 2π. Note the third semiaxis is not flipped because of
the necessity of positive lengths.
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1. Alice’s qubit state can be written as

ρA =
1

2
(I + cσz) = pρA0 + (1− p)ρA1 , (A.3)

where p0 = p and p1 = 1− p because of the binary measurement case. Through
substituting A.1 and A.2 it results

1

2
(I + cσz) = p{1

2
(I−

√
1− c sinϑ cosϕσx

−
√

1− c sinϑ sinϕσy − [(1− c) cosϑ+ c]σz}

+ (1− p){1

2
(I +

√
1− c sinϑ cosϕσx

+
√

1− c sinϑ sinϕσy + [(1− c) cosϑ+ c]σz}

=
1

2
{I +

√
1− c sinϑ cosϕσx

+
√

1− c sinϑ sinϕσy + [(1− c) cosϑ+ c]σz}
+ p[−

√
1− c sinϑ cosϕσx

−
√

1− c sinϑ sinϕσy − (1− c) cosϑσz]

=
1

2
(I + cσz)

+ (
1

2
− p)[

√
1− c sinϑ sinϕσx

+
√

1− c sinϑ sinϕσy + (1− c) cosϑσz]

Hence it is obvious p must be 1
2 .

2. Alice’s qubit state can be written as

ρAb =
1

p
trB [ρAB(I⊗Mb)], (A.4)

where b = 0, 1. Mb indicates Bob’s measurement element. We denoteM0 = Π and
M1 = I−Π. A generic measurement element can be written as Π = 1

2 (X0I+ ~X ·~σ).
It represents a PVM if and only ifX0 = 1 and || ~X|| = 1 (see 2.1.1). A generic two-
qubit canonical aligned state can be written as ρAB = 1

4 (I⊗I+~c·~σ+
∑3
i=1 tiσi⊗σi),

where ~t = (
√

1− c,
√

1− c, c− 1).

Therefore we evaluate A.4 for a = 0 and we equal it to ρA0 (A.1), thus checking
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Π satisfies X0 = 1 and || ~X|| = 1.

ρA0 =
1

p
trB [ρAB(I⊗Π)] = 2 · 1

4
trB(I⊗Π + ~c · ~σ ⊗Π +

3∑
i=1

tiσi ⊗ σiΠ)

=
1

4
trB [X0I⊗ I + I⊗ ~X · ~σ +X0~c · ~σ ⊗ I + ~c · ~σ ⊗ ~X · ~σ

+

3∑
i=1

ti(X0σi ⊗ σi · I + σi ⊗ σi · ~X · ~σ)]

=
1

4
(2X0I + 2X0~c · ~σ + 2

3∑
i=1

tiσiXi) =

=
1

2
[X0I +X0cσz +

√
1− cσxX1 +

√
1− cσyX2 + (c− 1)σzX3]

≡ 1

2
{I−

√
1− c sinϑ cosϕσx −

√
1− c sinϑ sinϕσy + [c− (1− c) cosϑ]σz}

It results: 
X0 = 1

√
1− cX1 = −

√
1− c sinϑ cosϕ

√
1− cX2 = −

√
1− c sinϑ sinϕ

(c− 1)X3 + c = −(1− c) cosϑ+ c

HenceX0 = 1 and || ~X|| =
√
X2

1 +X2
2 +X2

3 =
√

sinϑ2cosϕ2 + sinϑ2sinϕ2 + cosϑ2 =
1.

It is also possible to reach this result through considering the 4-vectors r̃b and X̃
of the Pauli components of Alice’s collapsed states and Bob’s measurement elements.

Consider for example ρ0 for the furthest points case ρ0 = 1
2 (I−

√
1− cσx + cσz). It

is represented by r̃0 =


1

−
√

1− c
0
c

. Bob’s measurement element Π = 1
2 (X0I+ ~X ·~σ) is

represented by X̃ =

(
X0

~X

)
.The relation (2.8) pr̃0 = 1

2ΘX̃ can be inverted (the matrix

Θ which represents the state ρAB here is Θ =


1 0 0 0
0
√

1− c 0 0
0 0

√
1− c 0

c 0 0 c− 1

) and it

gives

X̃ = θ−1r̃0 =


1
−1
0
0

 . (A.5)

Therefore Π = 1
2 (I− σx.) Bob has measured on σx as intuitively expected.

Note that knowing Bob’s measurement elements is not useful for calculating the
mutual information, however it is a a good way of understanding what happens in the
whole process.
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Proof 2. Consider that Bob’s measurement Π can be written as 1
2 (I + ~X~σ), where

~X = (X1, X2, X3) is such that || ~X|| =
√
X2

1 +X2
2 +X2

3 = 1.

1. It is possible to write p0 = p as the probability that Bob performs Π, so

p = p(Π) = tr(ρBΠ) = tr[
I
2

1

2
(I + ~X~σ)] =

1

2
.

Note that, according to the canonical state case, ρB = I
2 and, since Bob has

performed a PVM, then X0 = 1.

2. Through using the relation 2.8, r̃0 is

r̃0 = ΘX̃ =


1 0 0 0
0
√

1− c 0 0
0 0

√
1− c 0

c 0 0 c− 1




1
X1

X2

X3

 =


1√

1− cX1√
1− cX2

c+ (c− 1)X3

 .

Hence ~r0 =

 √
1− cX1√
1− cX2

c+ (c− 1)X3

 .

Considering that M1 = I−Π = 1
2 (I− ~X~σ), r̃1 is given by:

r̃1 =


1 0 0 0
0
√

1− c 0 0
0 0

√
1− c 0

c 0 0 c− 1




1
−X1

−X2

−X3

 =


1

−
√

1− cX1

−
√

1− cX2

c− (c− 1)X3

 .

Hence ~r1 =

 −√1− cX1

−
√

1− cX2

c− (c− 1)X3

 .

It is necessary to prove that ~r0 and ~r1 are opposite vectors on the surface of the
ellipsoid and that they belong to the surface of the ellipsoid, i.e. they satisfy the
equation of an ellipsoid. It is immediate to see that

(1− c)X2
1

1− c
+

(1− c)X2
2

1− c
+

(1− c)2X2
3

(1− c)2
= X2

1 +X2
2 +X2

3 = 1.

Moreover, through comparing the vector components, it is obvious they are
opposite vectors on the surface of the ellipsoid.

Note that if Bob performs a POVM, then, in general, it implies Alice’s state vectors
are not situated on the surface of the ellipsoid.
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Maximum likelihood
discrimination - Bob’s POVM

Immagine Alice and Bob share two qubits. Bob performs a binary POVM on his
qubit composed of two elements {ΠB , I−ΠB}, where the operator ΠB is represented

by the 4-vector
(
X0

~X

)
. In this situation Alice’s state ρA is steered to two collapsed

states ρA0 and ρA1 . The probabilities associated with these two states are respectively
given by 1 p = p(ρA0 ) = p(ΠB) = tr(ρBΠB) = X0

2 and P (ρA1 ) = 1− p = 1− X0

2 .
Alice’s aim is to perform the best measurement in order to guess whether her state

is either ρA0 or ρA1 . She wants to reach the aim with as high a likelihood of success as
possible.

Imagine Alice performs a binary measurement composed of two elements: {ΠA, I−

ΠA}, where the operator ΠA is represented by the 4-vector
(
s0
~s

)
. If she obtains 0 (the

ΠA outcome) she guesses ρA0 .If she obtains 1 she guesses ρA1 . She wants to choose the
best measurement elements in order to maximize the probability of success:

P (success) =
X0

2
Tr[ρA0 ΠA] + (1− X0

2
)Tr[ρA1 (I−ΠA)]

= 1− X0

2
− tr[(X0

2
ρA0 − (1− X0

2
)ρA1 )ΠA].

Considering that 1− X0

2 is a fixed quantity, the obvious way to maximize P (success)

consists of choosing ~s parallel to X0

2 r
A
0 − (1− X0

2 )rA1 , where rA0 and rA1 represent Alice’s
collapsed states . Hence the most natural and appropriate choice for Alice consists
of performing a PVM: s0 = 1 and ŝ = ~s

|~s| , where ~s = X0

2 r
A
0 − (1 − X0

2 )rA1 must be
normalized according to the fact that a PVM is represented by a unit vector. Note
that this choice is in accordance with the definition of general measurements (1.2).

In conclusion Alice can always choose a PVM as her optimal measurement, even if
Bob performs a POVM.

1We always assume the maximum volume state case.
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