
Alma Mater Studiorum ¨ Università di Bologna

SCUOLA DI SCIENZE
Corso di Laurea in Informatica Magistrale

Hypergraph Mining

for Social Networks

Tesi di Laurea in Complementi di Basi di Dati

Relatore:
Chiar.mo Prof.
Danilo Montesi

Presentata da:
Giacomo Bergami

Sessione I
Anno Accademico 2013/2014

C O N T E N T S

1 preface 11
1.1 Why to de�ne an Algebra over hypergraphs? 11
1.2 Introduction to Data Mining . 12

1.2.1 Relational Data . 12
1.2.2 Graph Mining: Problems . 13

1.3 R and statistical analysis . 14
1.4 Notation . 14

1.4.1 Dovetailing . 15

i data modelling 19
2 data model 21

2.1 Basic Hypergraph . 21
2.1.1 Databases vs. Hypergraphs . 26
2.1.2 Graph vs. Hypergraph . 27

2.1.2.1 On Graph and Hypergraph visit algorithms 28
2.1.3 Database with Uncertain Data vs. Typed Adjacency Matrix 30

2.2 Some proofs . 31
2.2.1 Database and ED-Hypergraph isomorphism 31
2.2.2 The A, A´1 isomorphism . 32
2.2.3 The Adb, dbA isomorphism . 33

3 relational data mining 35
3.1 Preliminary relational algebraic operations over data tables with uncertain data 35
3.2 Preface on Threefolded Data Mining (TDM) 38
3.3 Database operations . 43
3.4 Other relational statistical techniques . 44

3.4.1 Classi�cation: Naïve Bayes . 44
3.5 Indexing consistency of relational operations 46

3.5.1 Preliminar lemmas . 46
3.5.2 Proofs for algebraic operations . 49

4 a survey on (hyper)graph mining techniqes 51
4.1 Graph Mining . 51

4.1.1 Graph Clustering . 51
4.1.1.1 Intra-Graph clustering . 52
4.1.1.2 Graph Descriptors . 54
4.1.1.3 Hierarchical Intra-Database clustering 57

4.1.2 Association Analysis . 60
4.1.3 Graph Classi�cation Rules . 61

3

Contents

4.2 Hypergraph Mining . 61
4.2.1 Vertex Clustering via Regularized Laplacian 61

5 hypergraph operators 65
5.1 Hypergraph de�nition over the three worlds 65

5.1.1 Tensors for binary relations . 66
5.1.2 D/I-Hypergraphs algebraic operations - Data operations 68
5.1.3 D/I-Hypergraphs algebraic operations - Relational operations 74
5.1.4 Pure I-Hypergraph for non data-driven relations 79

5.2 Promoting data relations . 80
5.2.1 Expliciting Laplacian data correlation into a matrix form 80

5.3 Hypergraph Databases: a super�uous de�nition 81

ii hypergraph applications 83
6 gspan expansion - using subgraph mining for our graph database

definition 85
6.1 Targeting the Subragrph Isomorphism over DHImp 85
6.2 gSpan over DHImp . 87
6.3 gSpan Extended: an implementation . 88

7 hypergraph for data mining implementations 89
7.1 De�ning the data structures in R . 89

7.1.1 Tables and Table Records . 89
7.1.2 Implementing the operators . 91
7.1.3 Some examples . 91

7.2 De�ning the whole DHImp in Java . 92
7.2.1 A brief example . 95

8 sentiment analysis over time 97
8.1 De�nitions . 97
8.2 Twitter Data Extraction . 99

8.2.1 Trend Mining . 103
8.2.2 Users and Users’ timeline . 103

8.3 Data Manipulation . 104
8.3.1 Analyzing small datasets (movie reviews) 104
8.3.2 Data Mining “in the large” (or, Training the algorithm with Twitter

datasets) . 104
9 social network forensics 107

9.1 Data Localization . 107

iii epilogue 111
10 postface 113
a r and hadoop: an overview 115

a.1 Data Mining’s purposes . 115

4

a.1.1 R . 116

a.1.2 Hadoop . 116

a.2 Architectural Targets . 118

a.2.1 Architectural Context . 119

a.2.1.1 Possible Scenarios . 120

a.2.2 Architectural Properties . 121

a.3 Adapter Solutions’ Architectural Analysis . 122

a.3.1 R+Streaming . 122

a.3.2 RHadoop (rmr2) . 127

a.3.3 Rhipe . 128

a.4 Final Remarks . 132
b implementing a simple type system in r 135
c algorithms 141

c.1 Hypergraphs in R . 141

c.2 DHImp implementation in R . 142

c.3 Hypergraphs and gSpan Extended in Java . 146

c.4 Graph Mining algorithms . 156

c.5 Text Mining algorithms . 160

c.6 Proofs . 167
d references 169

d.1 Bibliography . 169

d.2 Further Reading . 173
Index 177

Contents

6

Contents

Iannis Xenakis: “Mass Black Implosion”. Some examples of Graph musical notation on contemporary clas-
sical music. More on http://marcofusinato.com/projects/mass_black_implosion/01.php

7

http://marcofusinato.com/projects/mass_black_implosion/01.php

P R E FA Z I O N E

La tesi si pre�gge lo scopo di mostrare come tutt’ora manchi un’analisi sistematica su come
strutturare i dati a grafo, allo scopo di e�ettuare query e mining : di fatti già da tempo la ricerca
accademica ha messo in luce come strutture dati per relazioni n-arie richiedano l’utilizzo di
ipergra� per poter mappare nel modo più espressivo possibile i dati, ma tutt’ora ci si limita ad
una rappresentazione a grafo, che non sempre può essere comoda.

Dopo una dissertazione iniziale, si è dimostrato come questi ipergra� possano in realtà essere
rappresentati tramite delle strutture dati già note, ovvero dei database relazionali e delle matrici
di adiacenza di gra�. Questo permette di non “reinventare la ruota”, ma di utilizzare (almeno
per un primo momento) delle strutture dati già note e già ottimizzate allo scopo, quali appunto
i database relazionali. Un altro vantaggio dato da questa rappresentazione è la possibilità in
alcuni contesti di e�ettuare una forte parallelizzazione delle computazioni: questa prospettiva,
sebbene sia molto allettante, va oltre gli scopi iniziali di questa tesi, e pertanto viene analizzata
unicamente in appendice.

La tecnica di mining su gra� è inoltre molto giovane, ed è nostra opinione che alcune tecniche
che si sono rivelate vincenti nel campo pratico non siano state ancora prese in considerazione
dal punto di vista teorico, e non siano molto citate in letteratura. Questa situazione fa porre
molti interrogativi al lettore, che deve pertanto comprendere come questo campo di ricerca sia
molto giovane (il primo libro che parlava espressamente del data mining su Gra� è stato edito
solo in Luglio 2013); da ciò segue che inevitabilmente le tecniche qui riportate siano sì parte
dello “stato dell’arte”, ma non sono da ritenersi necessariamente le uniche e sole e�caci �n’ora
sviluppate.

Altra tecnica già descritta in letteratura ma non ancora presa in seria considerazione è la
de�nizione di un’algebra per il data mining: si è quindi deciso di trasporre quest’idea nell’ambito
del graph mining allo scopo di generalizzare il meccanismo di alcuni algoritmi, indipendente-
mente dalla loro e�ettiva implementazione, e di rendere possibile in un futuro l’estensione della
stessa con nuovi operatori sui gra�, che possono essere fatti derivare da studi futuri.

Lo scopo di questa tesi è quindi quello di presentare una summa di tutte le possibili tecniche
che possono essere utilizzate per “interrogare” i dati strutturati ad (iper)grafo, per poi imple-
mentare su di essi la nostra algebra, di cui ci si è occupati nei primi capitoli.

In ultima analisi questa nuova de�nizione potrebbe sembrare solo un puro arti�cio logico se
non si delineasse anche un contesto di applicazione pratico per le de�nizioni e teoremi forniti:
allo scopo ci si è focalizzati sullo studio dei social network, che sono un altro ambito recente
di ricerca e su cui molti interrogativi.

9

1
P R E FA C E

RICERCAR, The Theme Given by the King’s Command Resolved According to the Canonic Style:
The initial Latin inscription of the “Musikalisches Opfer” by Johann Sebastian Bach

Nowadays, more and more data is collected in large amounts, such that the need of studying
it both e�ciently and pro�tably is arising; we want to acheive new and signi�cant informations
that weren’t known before the analysis. At this time many graph mining algorithms have been
developed, but an algebra that could systematically de�ne how to generalize such operations
is missing. In order to propel the development of a such automatic analysis of an algebra, We
propose for the �rst time (to the best of my knowledge) some primitive operators that may be
the prelude to the systematical de�nition of a hypergraph algebra in this regard.

1.1 why to define an algebra over hypergraphs?

At this point, I will use a philosophical methodology, called maieutics, whith which we like
to prevent some counterarguments that are frequent and usual when a new methodology is
introduced.
Why shouldwe use hypergraphs instead of Graphs? I studied the hypergraph structure

as a model for mapping datas because:

• [Fag83] �rstly showed how databases could be expressed as hypergraphs: this encour-
ages the research to go towards this initial intuition.

• The path model in strati�cation, that [Fre05] expressed in a graph, could be better ex-
pressed with an hyperedge, where all the preconditions are expressed in the tail of the
hyperedge and the consequences in its head. Its weight could represent the accuracy
mined correlation.

• [Gal+93] showed that hyperedges could better represent functional dependency in databases,
since in this way we could easily detect which part of the data establishes such relation.

11

preface

• [ERV05] points out how many complex networks could even be expressed in hypergr-
pahs, since a lot of �nancial relations involve more than two entities; some other re-
lations, like friendship and collaboration, could be instead easily represented as binary
transactions.

Moreover, I’ll show how recent graph-mining techniques could be used even over hypergraphs,
given that the algebra operators that I’ll de�ne will create an abstraction layer over the datas.

Why analyze HyperGraph data? [Ber+11] points out that nowadays a lot of data, in-
cluding those of social networks ([MR13b; MR13a]) and Genetic Analysis1, is represented in a
graph form. In real world data also appears in a multidimensional way, as it maps on the same
layer di�erent kind of relations and correlates each layer with other interconnections, where
each level represents a di�erent point of view in the reality’s representation. Those explicit
connections could be also “mined” through the imposition of rules that must comply with cer-
tain clauses, in order to �nd implicit correlations inside the data. In order to de�ne a structure
where both data and relations are mixed together, I choose to use hypergraph in order to give
a better representation of the concepts of shared data between the entities, correlation among
the datas and the mined properties.

Why do we need an algebra for Hypergraph Data Mining? Mainly, as highlighted as
well by [Ber+11], «the literature still misses a systematic de�nition of a model for multidimen-
sional networks» wich, throug data mining, could point out those implicit relations over data
that we could obtain by mapping those relation through Hypergraph Data Mining and by col-
lecting the information gained from data mining operations over the corrispondent graph. By
the way, [Ber+11] points out a way to categorize the data through an analysis of its size, but
doesn’t show how to obtain implicit relations through data mining. As my work de�nes a
model that maps all the tabular operations into the hypergraph data world, this model could
inherit also any measuring system over multilayered graphs. We could want also to design my
model data in order to be aware of the temporal evolution of the network ([MR13a; Ber+11]).

1.2 introduction to data mining

1.2.1 Relational Data

Concerning the data mining techniques over structured data, I wish to draw attention to
classi�cation, association and cluster analysis [TSK05]. Classi�cation has the aim to catego-
rize the data over some rules generally de�ned as a classi�cation model, that could be obtained
over some data used to train the model.

The Clustering algorithms divide data into groups, according to its spatial arrangement and
their content, in order to detect some similarities inside the data.

1 http://www.geneontology.org.

12

http://www.geneontology.org

1.2 introduction to data mining

• The clustering algorithm is said to be hierarchical if it divides the data in nested clusters
that provide a set hierarchy over the data. If we stop the analysis at the �rst level of the
hierarchy, then we have a partitional clustering.

• The clustering algorithm is said to be exclusive if each object is assigned to a single
cluster; if otherwise an object could be assigned even to more than one cluster, then we
have an overlapping clustering. It exists also a fuzzy clustering, where to each object
a membership weight is assigned to each inferred cluster.

• A complete clustering assigns each object to a speci�c cluster, whereas in the partial
clustering some nodes (called outliers) could be not included in any cluster, and hence
is generally used for noise detection.

De�nition 1.2.1. Given a power set function PpSq “ tT|T Ď S ^ T ‰ Hu, the set of all
the possible clusterizations is given by PpPpSqq, and hence a possible clusterization for S is a
C P PpPpSqq. [TSK05] If YcPCc “ S then C is a complete clustering, otherwise (YcPCc Ă S)
is a partial clustering. If @c, d P C.c ‰ d ñ cX d “ H then C is a exclusive clustering,
otherwise (@c, d P C.c ‰ d ñ cX d ‰ H) is a overlapping clustering. Hence, any clustering
algorithm A could be generalized by a function CA where CA : S Ñ PpPpSqq

An Association algorithm has the aim to discover some regularities over a sequence of
items: given that such associations are usually performed over transactions above di�erent
measures of interestingness, their graph mining counterparts have the aim to perform such
operations via (e.g.) subgraph mining and vertex clustering techniques.

[TSK05] points out that we should avoid model under�tting and over�tting, respectively due
to a lack of representative candidates in the training data or to having collected so much data
that is too adhering to the data model.

1.2.2 Graph Mining: Problems

The aim of graph mining is not only to retrive some brand new information over data, but
also to remove noise that is always present inside large data. For this purpose, we want to adopt
some statistical techniques that could cleanse our data and mine some interesting properties.
Given that graph mining algorithms are still very computationally costly, we will ignore the
time complexity factor, and we’ll focus on the property of the depicted operations. In particular,
real data could be collected in a graph form, which has the aim to ease the representation of
the data in a way that remarks the interconnections of the single elements; moreover we could
think to solve some interesting problems that deserve special attention.

Problem 1.1. [Kim+13; Zac77] Given a social network where all the vertex represent the users
and where the edges’ weight represente the strength of the bond, we would like to detect wich are
the most representitive communities.

In [Zac77] we have two distinct factions ruled by two “enemies”, where the edge’s network
form a directed graph which edges could be eventually weighted in order to remark the strenght

13

preface

of the friendship. In [Kim+13] we have a on-line social network, where it is stated that the user-
user linking models the mouth-to-mouth spread: their aim is to solve the In�uence Maximization
Problem by �nding those people inside the net that are more in�uent, and hence contribute to the
dissemination of information.

Problem 1.2. [BH09; For10] Given an PPI (Protein Protein Interaction) network where the
vertices represent the proteins and the unweighted edges represent the interaction between the
substances, we want to identify those protein that that belong to the same complex. In this case
we want to detect the proteins’ functional groups (“proteins having the same or similar functions,
which are expected to be involved in the same processes”).

Since these problems involve only one graph per time, we could use intra-graph clustering
in order to detect the interested areas wich form a subgraph.

Problem 1.3. [Des+05] We want to build a classifcation model for chemical compounds based
on their common substructure: this could be particularly useful since topological descriptors
(based on frequent subgraph search) and geometric descriptors (which are also based on the
disposition of the graph nodes in a n-dimensioanl space, where usually n “ 3) are superior to
physicochemical properties. In order to acheive my goal, I could use the frequent subgraphs in
a given graph database, and then use those to group via clustering the graphs by most frequent
shared graphs.

Another problem strictly related to the subgraph mining is the formation of the substructure
interaction graphs, which has the aim to �nd new correlations inside the data:

Problem 1.4. [TTM11] Given a bipartite graph G “ pG Y T , Eq where E “ G ˆ T and
where G “ t Gi uiďk is the set of the chemical compounds and T “ t Ti uiďl is the set of the
target proteins, we want to mine which substructure g of Gi interacts with the substructure t in Tj
(g Ø t).

1.3 r and statistical analysis

R [Mat11] is a tool that has born for statistical analysis, and that nowadays2 is used for data
mining [Zha13; Van09]. We would like to check if such language could be used as a future
environment for developing our hypergraph mining algebra.

1.4 notation

• The �lter function over over a set L returns the subset l Ď L where each element of l
statis�es the property P:

FilterpL, Pq “ t e | e P L^ Ppeq u

2 http://www.revolutionanalytics.com/.

14

http://www.revolutionanalytics.com/

1.4 notation

• The map function transforms each element in L with a function f :

MappL, f q “ t f peq | e P L u

• The work environment is mainly the place where all the functions, data and its opera-
tors are saved.

• V is the set of all the values that are represented inside the data.

• D is the set of all the values that are used for expressing a metric or a weight of some
data properties. These values could be also be choosen in a r0, 1s range (D ” r0, 1s).

• t : T means that “t has type T”, and T P T where T is the set of all the (data) types.

• T1 ă: T2 means that “T1 is a subtype of T2”

• Given a matrix M, with Mi,j (or Mij or Mri, js) we want to select the j-th column of the
i-th row.

• Given a matrix M, rowspMq returns the list of all the rows in M and nrowspMq “
|rowspMq|.

• Given a matrix M, colspMq returns the list of all the columns in M and ncolspMq “
|colspMq|.

• I assume that each data element o that is stored in the environment has an index i “
ϕpoq, where ϕ : Obj Ñ Idx; since we assume that to each index it corresponds one and
only one object and vice versa, it exists also the inverse function ϕ´1piq “ o. Hereby we
could easily assume that each object colud be casted as its index when needed.

• µx.S fi minx S.

• Given a table t, t.X or trXsmeans “retreive from table X the element of type X. Moreover
π~Lptq ” tr~Ls.

1.4.1 Dovetailing

Since |N| “ ℵ0 “ |N
2|, then we could code the integer couples N2 to N by dovetailing.

De�nition 1.4.1 (Dovetailing function). Given two numbers i, j P N, it is possible to express
them as a single integer via the dovetailing function [Odi92] as follows:

dtpi, jq “ j`
i`j
ÿ

k“0

k

It is also possible to reverse this process, that is to obtain the i and j that previously formed
the c value, and hence we could de�ne a dt´1pcq “ xi, jy reverse dovetailing function.

15

preface

Lemma 1.1 (Reverse Dovetailing function). Given that a “diagonal” d is a set of cells pi, jqwhere
i` j “ d and Sk a shorthand of

ři
i“0 “

kpk`1q
2 , the reverse dovetailing function is de�ned as

follows:
dt´1pcq “ xdmax ´ pc´ Sdmaxq, c´ Sdmaxy

Proof. Suppose that now we want to de�ne dt´1pcq: given that c is inside a row d and then
Sd ď c ă Sd`1, when we have that

$

&

%

d2 ` d´ 2c ď 0

d2 ` 3d` 2´ 2c ě 0

If c ą 0 (c “ 0 is trivial and dt´1p0q “ x0, 0y) then we obtain that dmin “
´3`

?
1`8c

2 , dmax “
´1`

?
1`8c

2 , and dmin ă c ď dmax, hence d P rrdmins, tdmaxus. Since dmax ´ dmin “ 2, when
rdmins ‰ dmin then tdmaxu´ rdmins “ 1 and then d “ rdmins “ tdmaxu is the only possible
solution; otherwise (when ´3`

?
1` 8c is not a perfect square) then tdmaxu is the expected

solution for d. In order to reconstruct the original coordinates, we could see that the second
coordinate is obtained with j “ c´ Sdmax , while the �rst one is i “ dmax ´ pc´ Sdmaxq by the
diagonal de�nition. Finally:

dt´1pcq “ xdmax ´ pc´ Sdmaxq, c´ Sdmaxy

Here we could express any tuple of items xa1, . . . , any as xa1, xa2, . . . xan´1, any . . .yy; in order
to keep track of how many times to unfold the couples in order to terminate the visit of the
nested tuple, we could express the latter representation as xn, xa1, . . . xan´1, any . . .yy. Given
this representation, we could think to represent these tuples in a single number via dovetailing.

De�nition 1.4.2 (Vectiorial Dovetailing). Given a vector~a P Nn, we could de�ne its dt repre-
sentation called vectorial dovetailing as follows:�
let

ÝÑdt l =

let rec R ls =

match ls with

| [] -> 0

5 | a::[] -> a

| a::l’ -> dt a (R l’)

in (dt |l| (R l))� �
Algorithm 1.1: Vectorial Dovetailing

The inverse function could be given as follows:

De�nition 1.4.3 (Reverse Vectiorial Dovetailing). Given a numerical representation of a tuple
c, we could de�ne the following reverse vectorial dovetailing function:

16

1.4 notation

�
let

ÝÝÑ
dt´1 c =

let rec Rdt n cl =

match (dt´1 cl) with

xi, jy ->

5 if (n == 0) then []

else if (n == 1) then [cl]

else i::(Rdt (n-1) j)
in match (dt´1 c) with

xi, jy -> Rdt i j� �
Algorithm 1.2: Vectorial Dovetailing

Algorithm C.2 on page 142 and C.4 on page 146 provide an implementation of such dovetail-
ing function in both R and Java.

17

Part I

D ATA M O D E L L I N G

2
D ATA M O D E L

Contents
2.1 Basic Hypergraph . 21

2.1.1 Databases vs. Hypergraphs . 26
2.1.2 Graph vs. Hypergraph . 27
2.1.3 Database with Uncertain Data vs. Typed Adjacency Matrix . . . 30

2.2 Some proofs . 31
2.2.1 Database and ED-Hypergraph isomorphism 31
2.2.2 The A, A´1 isomorphism . 32
2.2.3 The Adb, dbA isomorphism . 33

Our aim is to give a progressive introduction to our data model, in order to gradually explain
which are our choices for providing a more powerful expressiveness inside our data. In this chapter
we’ll show the base data model, which is the hypergraph, that could be used to represent both
multidimensional relations and correlations among the datasets.

2.1 basic hypergraph

De�nition 2.1.1 (Hypergraph). An basic hypergraph is de�ned as a coupleH “ pV , Eqwhere
V is the set of the vertices (V Ď V), and E P PpPpVqq. If an hypergraph is directed[Gal+93],
then each edge e P E is equipped by a head Hpeq, a tail Tpeq and the union of the both is called
Upeq “ Hpeq Y Tpeq; the notation e ” a :: b could be used for de�ning an hyperedge with
Hpeq “ a, Tpeq “ b.

Example

1. Figure 2.1 shows an example of an hypergraph, where the data-vertices are made explicit. Due
to the hyperdraw implementation, we can’t de�ne same labels for di�erent hyperedges, and hence

21

data model

tom sampos1 pos2

id1 id2

id3 id4

content1 content2 geopos2geopos1

User2 User1

Post1 Post2

tom sampos1 pos2

id1 id2

id3 id4

content1 content2 geopos2geopos1

(a) Hypergraph

User ULocation Uid

tom pos1 id1
sam pos2 id2

(b) Tabular representation of the
User relation

Uid Text PLocation Pid

id1 content1 getpos1 id3
id2 content2 getpos2 id4

(c) Tabular representation of the Post relation

Figure 2.1: An example of an Hypergraph; the code used for plotting this structure was given in Algo-
rithm C.1 on page 141.

22

2.1 basic hypergraph

the i-th instance of a relation of a given type T is labelled as T1 for i “ 1. In the given hypergraph
di�erent types of relations are hereby marked with di�erent colours.
This hypergraph depicts data-driven relations that are marked by shared vertices: in this case

it is quite simple to correlate each social-network user to his post. The hypergraph given in the
picture could be formally de�ned as follows:

H “ pV , Eq

V “ t tom, sam, pos1, pos2, id1, id2, id3, id4, content1, content2, geopos2, geopos1 u

E “ttid1u :: ttom, pos1u, tid2u :: tsam, pos2u, tid3u :: tid1, content1, geopos1u,

tid4u :: tid2, content2, geopos2uu

In this case it is clear that there is no need to make explicit the relation “post p belongs to user
u”, since this correlation is data driven: the post this correlation is obvious by analysing the shared
data among the hyperedges.

Moreover we could see that vertices that don’t belong to any hyperedge are meaningless
since they won’t be part of any entity or relation. At this point we could assume to ignore by
design all the vertices from the hypergraph de�nition and to de�ne the set of all the vertices
as:

V fi
ď

tUpeq | E P ED Y EE u

We could assume to not explicitly de�ne V in all our next declarations, and hence we’ll use V
only as a useful shorthand.

De�nition 2.1.2 (Data-hyperedge). Given the V set of all the possible values of the dataset, an
data-hyperedge is de�ned as a directed hypergraph’s edge hd :: tl, where hd, tl P PpVq, where
hd is the head of the hyperedge and tl is its tail.

In this review, we use a peculiar specialisation of the hyperedge de�nition, where we distin-
guish the data relations (ED) from the correlational ones (EE).

De�nition 2.1.3 (Hypergraph Data Model). The Hypergraph Data Model (HDM) is de�ned
as a couple H “ pED, EEq where the data relations (ED) and the correlational relations (EE) are
set of hyperedges and disjoint sets (ED X EE “ H). Each hyperedge e P ED Y EE is de�ned as
the following quadruple, where the �rst element is the schema of the relation driven by the data
itself (Speq P PpT q), the second is the “label” or “type” of the relation (Tpeq P Label), the third is
the data-hyperedge (Dpeq P PpVq) and the fourth casts some more additional informaton, like a
metric over the data hyperedge (wpeq P D):

e ” xSpeq, Tpeq, Dpeq, wpeqy

23

data model

Moreover the following axiom must be true:

HG1 @e, e1 P ED.Tpeq “ Tpe1q ñ Speq “ Spe1q

that induces a bijective function s f t : Label Ñ T , where s f t stands for “scheme·from·type”. The
correlational relations have a type but don’t necessarily meet the property (HG1), since we would
like to correlate with the same relation many di�erent kinds of data. Moreover we de�ne the
following shorthands:

Upeq fi UpDpeqq Hpeq fi HpDpeqq Tpeq fi TpDpeqq

Example

2. Let’s see Figure 2.2: we could see that the ‘Post’ and ‘User’ hyperedges are data-driven, and that
they explicit a correlation between the single atomical data parts in order to de�ne the entities of
the hypergraph. Moreover we’ll have that Post<:ED and User<:ED.
Let’s take a look at the ‘Follow’ relationships in red: even if these edges are data-driven, they

don’t de�ne any interesting entity of the database, but they establish a correlation between two
(or more) elements, and hence Follow<:Correlation<:EE.

The current hypergraph could be represented as H “ pED, Eq, where V is here only showed in
order to explicitly state the types of the data:

V “ttom : User, sam : User, pos1 : ULocation, pos2 : ULocation, id1 : Uid,

id2 : Uid, id3 : Pid, id4 : Pid, id5 : Pid, content3 : Text,

content1 : Text, content2 : Text, geopos2 : PLocation,

geopos1 : PLocationu

ED “t
@

tUser, ULocation, Uidu, “User2, tid1u :: ttom, pos1u, 1
D

,
@

tUser, ULocation, Uidu, “User2, tid2u :: tsam, pos2u, 1
D

,
@

tUid, Text, PLocation, Pidu, “Post2, tid3u :: tid1, content1, geopos1u, 1
D

,
@

tUid, Text, PLocation, Pidu, “Post2, tid4u :: tid1, content2, geopos2u, 1
D

,
@

tUid, Text, PLocation, Pidu, “Post2, tid5u :: tid1, content3, geopos2u, 1
D

u

EE “t
@

tUId, UIdu, “Follows2, tid1u :: tid2u, 1
D

,
@

tUId, UIdu, “Follows2, tid2u :: tid1u, 1
D

u

These examples could guide to the following de�nition of the mappings between databases,
graphs and hypergraphs.

24

2.1 basic hypergraph

tom

sam

pos1

pos2id1

id2 id3id4id5

content3 content1content2geopos2 geopos1

User1

Post3
Post1

Post2 User2
Follows1

Follows2

tom

sam

pos1

pos2id1

id2 id3id4id5

content3 content1content2geopos2 geopos1

Figure 2.2: An example of an Hypergraph DataModel, where some di�erent types of Hyperedges are showed.
Edges with di�erent width are used when it’s not visually clear where each arm of the hyperedge
is directed.

Tom Sam

Follows

Follows

Post1 Post2 Post3

Figure 2.3: Hypergraph Data Model: the same data in Figure 2.2 represented as a graph. Note that in the
previous datamodel the correlation between users and their post is more natural and data-driven,
and no explicit hyperedges are necessary to make it evident.

25

data model

De�nition 2.1.4 (Hypergraph adjacency matrix). Given an hypergraph datamodelH “ pED, EEq,
its adjacency matrix A1pHq : V Ñ ED Y EE Ñ D is de�ned as:

A1ijpHq “

$

&

%

1 vi P Upejq

0 oth.

If we want to make explicit that we could correlate the hyperedges-tuples over some attributes, we
could de�ne the typed adjacency matrix ApHq : ED Y EE Ñ T Ñ D where wemake explicit
the values of the data as follows:

AjtpHq “

$

&

%

vi Dvi P Upejq.vi : t

ε oth.

2.1.1 Databases vs. Hypergraphs

De�nition 2.1.5 (COE framework). A COE framework [MM06] is de�ned by a three level of
datasets, where a collection c P C is a set of objects (c P PpOq), an object o P E is a set of entities
(o P PpEq), and an entity e P E is a collection of data e P PpVq.
De�nition 2.1.6 (Database). A database is de�ned as a collection of tables (DB P C), where
each table t P DB is de�ned as an object (t P O) formed by entries e P t that are entities (e P E)
de�ned as e “ xSpeq, Tpeq, Dpeqy with type Tpeq and schema Speq. Moreover the following
axioms must be true:

DB1 @t, t1 P DB.t “ t1 ô Tptq “ Tpt1q

DB2 @t P DB.@e, e1 P t.Tpeq “ Tpe1q ^ Speq “ Spe1q ^Tpeq “ Tptq

The notation e “ xSpeq, Tpeq, Dpeqy with type Tpeq given for table records make necessary
to rede�ne all the basic operations over data, since in this case we must also consider that the
record contains the information of the tuple’s schema and datatype.

Example

3. Let’s provide a short example: the union operation between two data tables t and t1 with the
same schema could be represented as follows:

tY t1 “
 @

Speq, Tpeq ¨ ”_ ” ¨Tpe1q, e
D ˇ

ˇ e P t_ e P t1
(

where:
e P t ô Dd.Dpeq “ Dpdq ^ d P t

26

2.1 basic hypergraph

De�nition 2.1.7 (DatabaseÑHypergraph Data Model morphism). The DB Ñ H transforma-
tion is given by:

DBHpdbq “ pt xSpeq, Tpeq, IDpeq :: eztIDpequ, 1y | t P db^ e P t^ e u ,Hq

Moreover banally (HG1) is derived by (DB2) via the de�nition of ED. We don’t map the database’s
tuples into EE since standard databases don’t explicitly cast informations of data correlations, and
hence EE “ H.

De�nition 2.1.8 (Hypergraph Data ModelÑDatabase morphism). Given the set of all the pos-
sible types in the Hypergraph Data Model h and a set SAphq “ tTpaq | a P ED _ a P EE u, the
HÑ DB transformation is given by:

HDBphq “ t t xSpeq, Tpeq, Upeqy | e P ED Y EE ^Tpeq “ t u | t P SAphq u

Given thatHDB collects by de�nition in a same table all the vertices that have a same type t, we
have only one table with that type, and hence condition (DB1) and the �rst and third part of (DB2)
is satis�ed. (HG1) and the �rst part of (DB2) gives the proof for the second part of (DB2).

2.1.2 Graph vs. Hypergraph

De�nition 2.1.9 (Graph). A graph is a G “ pV, Eq where E Ď VˆV, where λ : V Ñ D maps
each vertex (i.e.) to its probability value, and w : E Ñ D maps each edge to its weight.

[DVMT13] shows how relational databases could be mapped in a graph data model even if,
by doing this, the �nal graph nodes doesn’t respect the initial database structure, as each node
doesn’t exactly match with a given entry of a database’s table. In order to distinguish if the data
is shared among the entities or if there is a generic correlation that is not made explicit by the
data itself, it could be useful to treat graphs where each vertex represents a single entity, and
where edges represent relations between those entities. [Vaz09] points out how «[hypergraphs
are] very useful for representing a population of elements and their attributes». Furthermore we
could map this model to hypergraphs as follows:

De�nition 2.1.10 (GraphÑHypergraph Data Model morphism). Given a graph g “ pV, Eq
we could de�ne a morphism to hypergraphs as follows:

GHpgq “ pED, EEq

ED “ t xSpvq, Tpvq, pIDpvq :: vzIDpvqq, λpvqy | v P V u

EE “ t xTpvq, pvzIDpvqq :: puzIDpuqq, wpu, vqy | pu, vq P E u

By the way the hypergraph is more expressive than the graph. In order to show that, we
shall introduce the following de�nitions:

27

data model

De�nition 2.1.11 (Prev). The prev function over a hyperedge f P ED Y EE, is de�ned as the set
of hyperedges where each of them are linked to f by the vertices in Tpeq.

@e, f P ED Y EE.e P prevp f q ô Dv P V .v P Upeq X Tp f q ô Dv P Tp f q.v P Upeq

De�nition 2.1.12 (Next). The next function over a hyperedge f P ED Y EE, is de�ned as the set
of hyperedges where each of them are linked to f by the vertices in Hpeq.

@e, f P ED Y EE.e P nextp f q ô Dv P V .v P Upeq X Hp f q ô Dv P Hp f q.v P Upeq

De�nition 2.1.13 (Adj). The adj function over a hyperedge f P ED Y EE, is de�ned as the set of
hyperedges that are or in f ’s prev or in its next.

@e, f P ED Y EE.e P adjp f q ô e P prevp f q Y nextp f q

It is immediate to test that every hypergraph obtained by the GH morphism statis�es the
following property, which states that each hyperedge EE is preceeded and followed by another
hyperedge in ED:

HG2 @e P EE.@ f P adjpeq. f P ED

since @pa, bq P E has a, b P V where each vertex is mapped in the ED. Moreover it is also simple
to prove that each hypergraph obtained by the GH morphism statis�es the other following
property, that isn’t generally true for any data model hypergraphs, which states that each
hypergraph’s EE is linked by only one hyperedge in the prev set and only one in the next one:

HG3 @e P EE.D! f , g P ED. t f u “ prevpeq ^ t g u “ nextpeq

Concerning the hypergraph to graph transformations, [ABB06; SJY08] provide some basic
transformations for undirected hyperedges.

2.1.2.1 On Graph and Hypergraph visit algorithms

Our aim is to de�ne a subset of all the possible hypergraphs where, given a graph visit
algorithm of cost Op|V| ` |E|q, we have a visit cost of Op|EE| ` |ED|q. Let’s recall a simple
graph DFS algorithm [BM10] in an Ocaml-like pseudocode:�
module VQ = Queue.Make(Node);;

module EQ = Queue.Make(Edge);;

let gdfs (G:Graph) (r:Node) = {

5 s:=VQ.empty;

s:=VQ.push r s;

r.mark();

while (VQ.length s > 0) do {

u:=S.pop s;

10 E.iter (fun e ->

28

2.1 basic hypergraph

e.mark();

if (Vertex.notmark (Edge.next e)) then

gdfs G (Edge.next e);

) (Node.out s);

15 }

}� �
Algorithm 2.1: DFS in graphs

If an hypergraph satis�es the (HG2) condition, then we could de�ne a similar visiting algorithm
for hypergraphs as follows:�
module V = Queue.Make(ED);;

module E = Queue.Make(EE);;

let hdfs (G:Graph) (r:ED) = {

5 s:=V.empty;

s:=V.push r s;

r.mark();

while (V.length s > 0) do {

u:=S.pop s;

10 E.iter (fun e ->

if (EE.notmark e) {

e.mark();

E.iter (fun d ->

if (ED.notmark d) then

15 hdfs G d;

) (EE.next e);

}

) (ED.next s); (* next is the next previously defined *)

}

20 }� �
Algorithm 2.2: DFS for hypergraphs with (HG2)

In this case, we have a computational cost of Op|EE| ` |ED|q, since no vertex is examined,
and only hyperedges are traversed. By the way, Data mining operations could produce hy-
peredges e P EE where D f P EE. f P nextpeq. Given that such operations normally produce
distinct vertices and distinct edges, in those cases we prefer to use a generic hypergraph vis-
iting algorithm as the one proposed in [Gal+93], which is OpHq, and makes necessary to use
the original hypergraph structure.�
Procedure HVisit(r, H):

begin

for each i P V do Pv[i]:= 0;

for each Ej P EE Y ED do Pe[Ej]:= 0;

5 Pv[r]:= nil; Q:= t r u;
repeat

i:=Q.pop();

29

data model

for each Ej P next(i) (* each edge which has the vertex i in its tail *)

if Pe[Ej]=0 do

10 begin

Pe[Ej] := i ;

for each hPH(Ej) do

if Pv[h]=0 do begin

Pv[h] := Ej;

15 Q := Q Yt h u
end

end

until Q = H

end.� �
Algorithm 2.3: DFS for generic hypergraphs

At this point we could use the hypergraph data model to map the data and the correlated
data from databases or graphs, while we’ll keep the basic hypergraph in order to represent
correlations between the data properties. This will be clearer with Example 19 on page 79.

2.1.3 Database with Uncertain Data vs. Typed Adjacency Matrix

The reason why we introduce this other analysis will be more clear on Chapter 5 on page 65,
where we introduce the relational operators over the hypergraph and hence we’ll change the
original hypergraph data structure that was here previously introduced. First, let’s introduce
a database where we introduce an uncertainty measure w : E Ñ r0, 1s:

De�nition 2.1.14 (Database with Uncertain Data). ADatabase with Uncertain Data (UD) is
de�ned as a collection of tables (DB P C), where each table t P DB is de�ned as an object (t P O)
formed by entries e P t that are entities (e P E) de�ned as e “ xSpeq, Tpeq, Dpeq, wpeq, ϕpeqy
with type Tpeq and schema Speq. Moreover the following axioms must be true:

DB1 @t, t1 P DB.t “ t1 ô Tptq “ Tpt1q

DB2 @t P DB.@e, e1 P t.Tpeq “ Tpe1q ^ Speq “ Spe1q ^Tpeq “ Tptq

From now on, we’ll assume to treat always database with uncertain data, and hence we
will refer to them as databases. Our �nal aim is to show that the Typed Adjacency Matrix
(abbreviated as TAM) is isomorphic to such database. In order to do so, we need to de�ne a wA
weight function and a TA type function for each row in the TAM. Since this TAM’s extensions
are trivial and involve the fact that wA ” w and TA ” T since they use the same types of
data, we won’t re-de�ne the UD data structure and then suppose to store those function in the
work environment.

Since we want to later prove the isomorphism of the two data structures, we have to de�ne
the inverse function of the A operator.

30

2.2 some proofs

De�nition 2.1.15 (Inverse Typed Adjacency Matrix Transformation). The A´1 : TAM Ñ

HDM operator is de�ned as follows:

A´1pAq “ pamupA, EDq, amupA, EEqq

where amu is de�ned as:

amupA, Zq “
! A

Ť

xiPX t ti | xi : ti u , Tpeq, X, wpeq
E ˇ

ˇ

ˇ
j P rowspAq, X “

xi
ˇ

ˇ t P colspAq,Ajt ‰ ε
(

, j P Z
)

De�nition 2.1.16 (DatabaseØTAM morphisms). Given a database db and a TAMA, we de�ne
the function dbA (that permits to transform a database into a TAM) and Adb (vice versa) as
follows:

dbApdbq “ ApDBHpdbqq AdbpAq “ HDBpA´1pAqq

2.2 some proofs

2.2.1 Database and ED-Hypergraph isomorphism

We want to show how databases are isomorphic to hypergraphs composed of ED edges only:
this proof has the aim to show how such hypergraphs could well represent n-ary relations.

Lemma 2.1.
HDBpDBHpdbqq “ db

Proof.

HDBpDBHpdbqq “ t t xSpeq, Tpeq, Upeqy | e P ED YH^Tpeq “ tt u | tt P ApDBHpdbqq u

where ED ” t xSpeq, Tpeq, IDpeq :: ezIDpeq, 0y | t P db^ e P t u

HDBpDBHpdbqq “ t t xSpeq, Tpeq, ey | t P db^ e P t^Tpeq “ tt u | tt P tTpeq | t P db^ e P t u u

By (DB2) Tpeq “ tt ñ Tpeq “ Tptq, and hence:

HDBpDBHpdbqq “ t t xSpeq, Tptq, ey | t P db^ e P t^Tptq “ tt u | tt P tTptq | t P db^ e P t u u

By (DB1) we have that only a single table has a given type tt, and hence:

HDBpDBHpdbqq “ t t xSpeq, Tptq, ey | t P db^ e P t u | t P db u

“ t t xSpeq, Tpeq, ey | e P t u | t P db u

“ t t e | e P t u | t P db u

“ t t | t P db u

“ db

31

data model

By the way, we can’t prove that DBHpHDBpED, EEqq “ pED, EEq because we assume that
a standard database doesn’t allow to distinguish correlations by data relations. We could prove
the former statement only if we impose that the head of a given hyperedge contains its ID 1 by
default, and if the hypergraph hyperedges’ weight function are set to 1 by default.

Lemma 2.2.

DBHpHDBpED, EEqq “ pED Y EE,Hq^ @e P ED Y EE. IDpeq “ Hpeq

Proof. Given that @e P E .IDpeq “ Hpeq by initial hypothesis we have that Tpeq “ ezIDpeq.
Moreover:

db “ HDBphq “ t t xSpeq, Tpeq, Upeqy | e P ED Y EE ^Tpeq “ tt u | tt P Aphq u

and DBHpdbq “ pt xSpeq, Tpeq, IDpeq :: ezIDpeqy | t P db^ e P tq u ,Hq
The last formula could be rewrote as:

E 1D ” t xSpeq, Tpeq, Hpeq :: Tpeqy | tt P Aphq ^ e P ED Y EE ^Tpeq “ tt u

” t xSpeq, Tpeq, Hpeq :: Tpeqy | e P ED Y EE u

” ED Y EE

The statement is proofed immediately.

Corollary 2.1.

DBHpHDBpED,Hqq “ pED,Hq^ @e P ED. IDpeq “ Hpeq

Proof. Immediate by previous lemma.

At this point,

Theorem 2.1. Given the set H1 of all the hypergraphs with only ED hyperedges, the DBH and
HDB functions with the HDM and H1 datatypes form an isomorphism.

Proof. The proof is immediate given the Lemma 2.1 and the Corollary 2.1.

2.2.2 The A, A´1 isomorphism

In order to proof the isomorphism in the next subsection, we have to �nd that@H P HDM.A´1pApHqq “
H and @A.ApA´1pAqq “ A.

Lemma 2.3.
@H P HDM.A´1pApHqq “ H

Proof. We can rewrite H ” pED, EEq; giving De�nition 2.1.15 on the preceding page we have
that A´1pApHqq “ pamupApHq, EDq, amupApHq, EEqq, where we could see that the amu
function selects each row and recreates the original hyperedge in H, since each ApHq row
represents a tuple in ED Y EE.

32

2.2 some proofs

Lemma 2.4.
@A P TAM.ApA´1pAqq “ A

Proof. For any A we have that the lemma is proved i�. @j P ED Y EE.@t P T .AjtpA´1pAqq “
Ajt. If Ajt “ ε, then or the j doesn’t exists as a row (and hence it won’t exists as a hyperedge in
the A´1pAq) or t R Spjq (and hence no value of such type will be inserted in the j hyperedge in
A´1pAq). In the other case, we have that j P ED Y EE and t P Spjq and hence the Ajt element
will be part of the j hyperedge in A´1pAq that will be consequently remapped in Ajt with the
A transformation.

Theorem 2.2. The morphisms A, A´1 with the HDM and TAM datatypes form an isomorphism

Proof. The proof is trivial thanks to the two previous lemmas.

2.2.3 The Adb, dbA isomorphism

In this subsection we want to show how the databases are isomorphic to TAM with only
data rows, that is rows that don’t map relations (@r P rowspAq.r P ED).

Lemma 2.5.
@r P rowspAq.r P ED. ñ A´1pAq “ pED,Hq

Proof. IfA doesn’t contain rows belonging to EE, all the rows will be mapped in a ED hyperedge
in a resulting hypergraph by A´1 de�nition.

Lemma 2.6. For each database d, AdbpdbApdqq “ d.

Proof. By rewriting we have that AdbpdbApdqq “ HDBpA´1pApDBHpdqqqq; if we apply the
Lemma 2.3 on the preceding page (@H P HDM.A´1pApHqq “ H) we obtain thatHDBpA´1pApDBHpdqqqq “
HDBpDBHpdqq and by Lemma 2.1 on page 31 (HDBpDBHpdbqq “ db) we have that the
lemma is proved.

Lemma 2.7.

@A P TAM. p@r P rowspAq.r P EDq ñ dbApAdbpAqq “ A

Proof. By rewriting we have that dbApAdbpAqq “ ApDBHpHDBpA´1pAqqqq; given that the
current lemma satis�es the conditions of Lemma 2.5, when we have that ApDBHpHDBpA´1pAqqqq “
ApDBHpHDBpED,Hqqq. Moreover by Corollary 2.1 we have that ApDBHpHDBpED,Hqqq “
ApED,Hq, and hence we have to prove that ApED,Hq “ A. Since A´1 is a function and then
@x, y. f pxq “ f pyq ñ x “ y, then A´1pApED,Hqq “ A´1pAqwe obtain that A´1pApED,Hqq “
pED,Hq by the Theorem 2.2 and then A´1pAq “ pED,Hq from Lemma lem:Amensimpl.

Theorem 2.3. There is an isomorphism between the database and the TAM with no correlational
rows (that is, we chose @T P TAM.rowspTq Ď ED).

33

data model

Proof. Via the two previous lemmas.

At this point we could not use the TAM representation, and see the dbA as a di�erent view
over the database data. If we evaluate the dbApdbq function we could simplify the notation
and then obtain the following result:

dbAjtpdbq “ AjtpHDBpdbqq “

$

&

%

v Dv.v P Upjq ^ v : t^ e P τ^ τ P db

ε oth.

This also implies that the cost of accessing the data via database is the same of accessing it on a
matrix form that is often used for representing data in hypergraphs. At this point we’ll choose
to provide a database representation for the ED relations, in order to apply albebric operations
over data. We’ll also use the dbA function when we need to provide a read-only view over the
data. This theorem will bring us to the De�nition 5.1.3 on page 67.

34

3

R E L AT I O N A L D ATA M I N I N G

Contents
3.1 Preliminary relational algebraic operations over data tables with uncer-

tain data . 35
3.2 Preface on Threefolded Data Mining (TDM) 38
3.3 Database operations . 43
3.4 Other relational statistical techniques . 44

3.4.1 Classi�cation: Naïve Bayes . 44
3.5 Indexing consistency of relational operations 46

3.5.1 Preliminar lemmas . 46
3.5.2 Proofs for algebraic operations 49

Many researchers committed in KDD have published some guidelines in order to automate
the process of knowledge discovery and to make it resemble to a software engineering process -
an example of such framework is proposed in [Deb+99]. In this section we suggest another way
[Cal+06] to automate the KDD discovery that is data driven and uses operations over data that,
by the way, hasn’t been examined or implemented yet. At the end of the chapter we’ll also explain
some other statistical techniques that are already used for data mining purposes.

3.1 preliminary relational algebraic operations over data tables with
uncertain data

• Why dowe have to extend the record de�nition with the indexing function, that
is e ” xSpeq, Tpeq, Dpeq, wpeq, ϕpeqy? This choice gets the data model more compli-
cated. The main bene�t of the indexing function ϕ will be later evident in the “tensor-
like representation” of the correlational relations over the data EE , by which we could
store on each result entry via dovetailing which entities took part in generating it and
we’ll only add a scanning linear time of the previous database representation to update
the tensor, and hence we could lower the time complexity. Another advantage is that this
indexing will permit to de�ne this latter tensor-like representation in a more easy way,

35

relational data mining

since it allows to implement the operations on the database and on tensor in separate
steps.

• Apparently, there are still some problem with your indexing update de�nition,
as you have also to check if the indices are consistent or not. The only real index-
collision problem could be observed in the union function, where we could merge databases
with a di�erent indexing structure. At this point we shall assume that each hypergraph,
and hence its database-plus-tensorial representation, have di�erent index values, as we
assume that each hypergraph is “nestled” in the same work environment. In order to
show that each algebric operation has consistent indices, for each algebric operation we
have to prove that is “index-consistent”.

De�nition 3.1.1 (Index-consistency). Adatabase unary operation 9B is said to be index-consistent
i�. for all the tables of the current database the indices among the tables are kept distinct.
A database binary operation 9’ is said to be index-consistent i�. it generates a database where

the indices among the tables are kept distinct.

We recall De�nition 2.1.14 on page 30 where we showed the concept of database with un-
certain data. [MM12] de�ned the Join operation for these datasets through some SQL queries:
now we want to de�ne them inside the relational algebra. We could see that some operations,
like π, σ, Calc and ρ don’t change the weight of the relations, since they don’t “structurally
modify” the data. At this point we have only to modify the probabilities of some other opera-
tions, likeY, ’ and Γ (since in this case the data is aggregated and hence transformed) drawing
on the previous considerations concerning the index update of the transformed tables.

This measure is necessary for reasons that will be clear in Subsection 5.1.2 on page 68.

De�nition 3.1.2 (Union). The union operator over a set of tables T with the same schema and
size |T| “ n (@t ‰ t1 P T.Tptq “ Tpt1q) is de�ned as follows:

ď

T “ t
A

Speq, TpT1q ¨ ”_ ¨ ¨ ¨ _ ” ¨TpTnq, e, avg MappE, wq,
ÝÑ
dtpMappE, ϕqq

E

|

E “ te, e1|t, t1 P T, e P t, e1 P t1 ^Dpeq “ Dpe1quu

In the following examples, S and T representations are omitted, in order to focus more on
the changes occurring on the data.

Example

4. Given two tables T1 and T2 respectively de�ned as follows:

Num1 Num2 Num3 w ϕ

1 2 3 1 1

1 2 6 1 2

1 4 3 1 3

Num1 Num2 Num3 w ϕ

1 2 3 1 4

1 2 6 0.8 5

1 2 1 0.8 6

36

3.1 preliminary relational algebraic operations over data tables with uncertain data

the result of YT1, T2 is the following one:

Num1 Num2 Num3 w ϕ

1 2 3 1 250

1 2 6 0.9 663

1 4 3 0.1 13

1 2 1 0.8 34

De�nition 3.1.3 (Selection). The selection operator over a table t is de�ned as follows:

σPptq “ t xSpeq, Tpeq, Dpeq, wpeq, ϕpeqy | e P t^ Ppeq u

De�nition 3.1.4 (θ-Join). The theta join operator over two tables t and t1 is de�ned as follows:

t ’θ t1 “
 @

Speq Y Spe1q, Tpeq ¨Tpe1q, eY e1, wpeqwpe1q, dtpϕpeq, ϕpe1qq
D ˇ

ˇ e P t, e1 P t1, θpe, e1q
(

Example

5. Given two tables T1 and T2 respectively of schema A and B de�ned as follows:

Num1 Num2 w ϕ

1 2 1 1

1 4 1 2

Num2 Num3 w ϕ

2 3 1 3

2 6 0.8 4

2 1 0.8 5

the result of T1 ’A.Num2“B.Num2 is the following one:

Num1 Num2 Num3 w ϕ

1 2 3 1 13

1 2 6 0.8 19

1 2 1 0.8 26

De�nition 3.1.5 (Projection). The projection operator over a table t with schema Sptq over the
data types~L is de�ned as follows:

π~Lptq “ t
A

~LX Speq,~L ¨ ”in” ¨Tpeq,
!

xi

ˇ

ˇ

ˇ
xi P e^ xi : t^ t P~L

)

, p, i
E

|

e P t^ P “ Filterpt, x ÞÑ π~Lpteuq “ π~Lptxuqq ^w “ avg MappP, wq ^ i “
ÝÑ
dtpMappP, ϕqqu

37

relational data mining

Example

6. Given a table T1 de�ned as:

Num1 Num2 Num3 w ϕ

1 2 3 0.4 1

1 2 6 0.6 2

1 4 3 1 3

the result of πNum1,Num2pT1q is the following one:

Num1 Num2 w ϕ

1 2 0.5 63

1 4 1 13

De�nition 3.1.6 (Rename). The rename operator over a table t with schema Sptq is de�ned as
follows:

ρRÐXptq “ πSptqztXupCalcx ÞÑx.X as Rptqq

where Calc is made explicit in De�nition 3.2.1.

De�nition 3.1.7 (Embedding). The embedding operator over the records t of a table T as de�ned
in [MM06] extends a value v as a X �eld:

εXÐvpTq “ t xSpeq Y t X u , X ¨Tpeq, tY t v : X u , wptq, ϕptqy | t P T u

3.2 preface on threefolded data mining (tdm)

Let’s use an algebra for data mining as expressed in [Cal+06]. This model, introduced in
[JLN00], de�nes a multistep process where each output of a mining operation should be used
as a input for the following, in order to acheive Knowledge Discovery with a one-shot activity
that involves also decision trees, data partitioning, aggregation and transformation.

This could be acheived throug a division of the data in three communicating worlds [Cal+06],
named Data-World (D-World), Intensional-World (I-World) and Extensional-World (E-World).
The Data World is de�ned exactly as the traditional Relational Algebra over tuples t-s and re-
lational schemas RpB1, . . . , Bnq where each attribute B1 P A has a domain dompB1q. By

38

3.2 preface on threefolded data mining (tdm)

Col1 Col2 Col3 w ϕ

A 2 4 0.1 1
B 8 10 0.2 2
C 15 20 0.3 3
A 28 3 0.4 4
C 1 3 0.5 5

(a) T

Col1 Col2 Col3 S w ϕ

A 2 4 6 0.1 1
B 8 10 18 0.2 2
C 15 20 35 0.3 3
A 28 3 31 0.4 4
C 1 3 4 0.5 5

(b) CalcCol2`Col3 as SpT q

Col1 R w ϕ

A 30 0.25 44548
B 8 0.2 53
C 16 0.4 327642

(c) ΓSumpCol2q as R
xCol1y pπtCol1,Col2upT qq

Figure 3.1: Examples of Calc and Γ operations over a table T .

detailing the D-World de�nition, we can see that it could be extended with the functions given
in the following de�nition:

De�nition 3.2.1 (D-World Functions). Inside the D-World algebra, [Cal+06] de�nes some
arithmetic operations over the tuples are de�ned as:

CalcOpp~Lq as SpTq “
! A

Speq Y tSu, S ¨Tpeq, eY tOpper~Lsq : Su, wpeq, ϕpeq
E ˇ

ˇ

ˇ
e P T

)

An aggregation operation similar to SQL’s group by could be de�ned as:

Γ‘pXiq as S
x~LztXiuy

pDq “ t
A

~LztXiu, ”Aggr” ¨ Xi ¨ ”over” ¨~LztXiu ¨ ”in” ¨Tpeq, xr~LztXius Y ts : Su, w, i
E

|

e P t^ P “ Filterpt, x ÞÑ xr~Ls “ er~Lsq ^ s “ ‘MappP, x ÞÑ xrXisq

i “
ÝÑ
dtpMappP, ϕqq ^w “ avg MappP, wq

u

where X3 R

Xi, . . . , Xj
(

. We have to remark that the xX1, . . . , Xny “ xy means that the
aggregation is performed over all the values with type Xi.

39

relational data mining

D E

Pop

I

πA πRDA

κ
λ

Figure 3.2: Original Data Mining algebra in 3W representation ([Cal+06]).

Example

7. Let’s take a look at Figure 3.1: given table T provided in Sub�gure (a), we want to express the
previous non-relational operations by providing some examples; CalcCol2`Col3 as SpT q returns
the table (b), while (c) provides an example of the grouping operation.

[Cal+06] provides a tabular representation of a decision tree, where the region de�nes the
terms under which the classi�cation applies. Each region is organized as a set of clauses r “
t pi uiPN where pi are predicates over the relational data.

For the tables de�ned in this world, they de�ne the same traditional relational operations,
with some grouping and ungrouping operations through which could also de�ne more complex
operators, as showed in [Cal+06] for the set di�erence.

We could also de�ne the classi�cation as a couple of k-ary functions ppk, ckq where if pkp~aq,
then there is a classi�cation function ckp~aq that returns a classi�cation value. This de�nition
maps r ÞÑ p and vice versa.

[Woo12] points out how «aggregation functions play an essential role in network analysis,
while the ability to transform network by creating new nodes based on aggregations of set of
existing nodes is also crucial». The mined data could be aggregated through the Γ operator
given in De�nition 3.2.1 on the previous page.

Inside the Extensional-World, we could want to link the clauses given in the previous world
to the relations given in the �rst. Concerning this world, they de�ne for intra-world operators
the Γ aggregator and the σ selection as in the D-World.

De�nition 3.2.2 (Clause classi�cation over tuples). A tuple t satis�es every clause in the ex-
tended region r “ t c1, . . . , cn, c u (expressed like JtKr) i�. given a classi�cation pp, cq over a

40

3.2 preface on threefolded data mining (tdm)

common classi�cation function c and a predicate p “
Ź

iďn pi, then pptq. Finally we could de�ne
that t is classi�ed as cptq towards p as follows:

JtKp ñ cptq

The mining loop operator is de�ned in order to obtain interesting properties from the rules
that couldn’t be directly extracted over the data. This operator provides a general while-condition
scheme, that could be implemented in any kind of algorithm over inferenced rules.

De�nition 3.2.3. A mining loop λinit,∆R,A operator over clauses [Cal+06] is a general instan-
tiation of the following scheme:�
R Ð init

while (∆R) {

R Ð A(R)

}

5 return R� �
Algorithm 3.1: Mining Loop operator schema

Example

8. Frequent Itemset as λ. [Cal+06] provides an example of how we could use the mining loop
operators with other one previously discussed in order to provide an algebric implementation of
the frequent-itemset technique.�
FIinit(Items) {

return pH, κProductQmemberOfpUnnestSetOf<Product>pItemsqqq
}

FI∆R Ð C ‰ H in pF, Cq
5

FIAθ(F, C) {

F Ð FY σsuppěθ

´

ΓCOUNTpSetOf<Product>q as supp
<Set> pPoppC, Dqq

¯

C Ð getCanpFq
return pF, Cq

10 }

MFSGθ ” λFIinit,FI∆R,FIAθ� �
where genCan is an algebric function as depicted in the same quoted article to generate the next
candidates.

Some other operations could be de�ned in order to obtain clauses from the data (κ), to join
the claueses with data that satisfy the �rst (Pop), for then splitting data (πA) from intensional

41

relational data mining

A B C w ϕ

2 2 4 0.4 1
5 1 3 0.2 2

(a) T

R w ϕ

B` C ď 6 0.4 4
B` C ď 4 0.2 8

(b) κB`CďvalpBq`valpCq as RpT q

Figure 3.3: An example of the application of the regionizing operator κ for mining relations over the
data. Weights and indices are omitted

data (πRDA). A general overview of these [Cal+06] Data-Mining operations could be viewed
in Figure 3.2 on page 40 and in the following de�nition:

De�nition 3.2.4 (DM Extraworld operations). [Cal+06] de�nes a populating function PoppD, Rq,
where D is in the D-World and R in I-World tables, gives an E-Relation with a domain dompDq Y
dompRq and:

PoppD, Rq “ D ’td,tr ÞÑJtdKtr R

We shall also de�ne a πRDA projection towards E-World attributes and a πA towards D-World
attributes.
We de�ne a regionizing operator κ fA...Z as R over Ds where, given a D-World relation, we

de�ne a I-World region over the function described inf and f is de�ned as a relation between some
operations over labels A . . . Z and some values a . . . zassociated to the previously given labels:

fA...Zpa, . . . zq “ <pA ˚1 ¨ ¨ ¨˚n Z, a ˚n`1 ¨ ¨ ¨ ˚n`m zq ” <pOpfpA . . . Zq, opfpa . . . zqq

in order to obtain a set of properties:

κ f~L as RpDq “ txtRu, R, r, 1, iy |

t P D^ P “ FilterpD, x ÞÑ f~Lpxr~Lsq “ rq ^ r “ f~Lptr~Lsq^

^ i “
ÝÑ
dtpMappP, ϕqq ^w “ avgpMappP, wqq^u

where to each property pi in the given set could be associated a common classi�cation function c
over A . . . Z.
We could easily extend the given de�nition by association to each property of the given set a

same classi�cation function c.

Example

42

3.3 database operations

Region Class

{shp=‘bell’,odor=‘none’} {pois=‘f’}
{shp=‘bell’,odor<>‘none}́ {pois=‘t’}

{shp<>‘bell’,col=‘red’} {pois=‘t’}
{shp<>‘bell’,col<>‘red’} {pois=‘f’}

(a) T

shp col odor pois

bell red none f
bell yellow none f
�at yellow ansie t
�at green none f

(b) Testing

Region Class shp col odor pois

{shp=‘bell’,odor=‘none’} {pois=‘f’} bell red none f
{shp=‘bell’,odor=‘none’} {pois=‘f’} bell yellow none f
{shp<>‘bell’,col<>‘red’} {pois=‘f’} �at green none f

(c) PoppT , Testingq

Figure 3.4: An example of the Pop operator between the data table Testing and the intensional table T .

9. [Cal+06] provides an example of the application of the previously de�ned operators: Figure 3.3
provides an example for the regionizing operator, while Figure 3.4 shows why the Pop operator
could be interpreted as a join over properties (T) and some data (Testing).

3.3 database operations

We would like to extent all these operations to databases. Since all the previous B opera-
tions were table-based, we’ll have naturally that any database operation 9B could be seen as an
application of B to all its tables:

9BpDBq “ tBptq | t P DB u

If we have a general binary operator ’ among data tables, this could be generalised with a 9’

de�ned as follows:

DB1 9’DB2 “ t d1 ’ d2 | d1 P DB1 ^ d2 P DB2 u

In some cases, we have also to check if we could perform the B to all databases’ entries. For
instance, we must rede�ne some operations that are schema dependant as follows.

43

relational data mining

De�nition 3.3.1 (Reindexing). Given a table t, the reindexing operator changes each record’s
index ϕprq in t with a function f pϕprqq:

Φ f ptq “ t xSpeq, Tpeq, Dpeq, wpeq, f pϕpeqqy | e P t u

9ďDB “
!

ď

T
ˇ

ˇ

ˇ
T “

t, t1
ˇ

ˇ db, db1 P DB, t P db, t1 P db1, Tptq “ Tptq
(

)

9π~LpDBq “
!

π~Lptq
ˇ

ˇ

ˇ
t P DB^~LX Sptq ‰ H

)

9CalcOpp~LqasSpDBq “
!

CalcOpp~LqasSptq
ˇ

ˇ

ˇ
t P DB^~L Ď Sptq

)

Y

!

ΦÝÑ
dt
ptq

ˇ

ˇ

ˇ
t P DB^~L Ę Sptq

)

9κ f~L as RpDBq “
!

κ f~L as Rptq
ˇ

ˇ

ˇ
t P DB^~L Ď Sptq

)

9ΓOppXiq as S
XztXiu

pDBq “
!

ΓOppXiq as S
XztXiu

ptq
ˇ

ˇ

ˇ
t P DB^ X Ď Sptq

)

Y

!

ΦÝÑ
dt
ptq

ˇ

ˇ

ˇ
t P DB^ X Ę Sptq

)

3.4 other relational statistical techniqes

3.4.1 Classi�cation: Naïve Bayes

Bayesian classi�ers [HKP12; Wu+07] are statistical classi�ers that can predict a class mem-
bership of a tuple over a particular class. This classi�cation technique uses the Bayes theorem:

PpH|Xq “
PpX|HqPpHq

PpXq

where PpH|Xq could be read as “the probability that event H holds, given that X has appened”.
For example, we would like to test that a given tuple t “ xx1 : T1, . . . , xn : Tny belongs to a
class ci of type Class, and hence:

Ppt|ciq ” Ppt|Class “ ciq “
ź

iďn

PpT1 “ x1|Class “ ciq

Supposed that the ci is already de�ned over a dataset d, we could interpret the conditional
probability PpTi “ xi|Class “ ciq for not-continuous data as:

PpTi “ xi|Class “ ciq “
|σClass“ci^Ti“xipdq|
|σClass“cipdq|

If Ti is otherwise a continuous attribute, then probability could be de�ned with a Gaussian
distribution:

PpTi “ xi|Class “ ciq “
1

?
2πσTi ,ci

exp

«

´
pxi ´ µTi ,ci :Classq

2

2σ2
Ti ,ci :Class

ff

where the sample mean is de�ned as µTi ,ci :Class “ ΓavgpTiq as µ
xy

pπTipσClass“cipdqqq, and the
sample variance is σ2

Ti ,ci :Class “
1{|σClass“Ci pdqq|

ř

t : TiPπTi pσClass“Ci pdqq
pt´ µTi ,ci :Classq

2

44

3.4 other relational statistical techniqes

Owner Status Income Defaulted Borrower

T Single 125K F
F Married 100K F
F Single 70K F
T Married 120K F
F Divorced 95K T
F Married 60K F
T Divorced 220K F
F Single 85K T
F Married 75K F
F Single 90K T

Table 3.1: A small database for a Naïve Bayes example.

Example

10. [TSK05] provides some examples concerning the use of this classi�er. Given the Table 3.1, we
could have that:

PpIncome “ 120K|Defaulted Borrower “ Fq “
1

?
2π54.54

exp
„

´
p120´ 110q2

2 ¨ 2975



“ 0.0072

where µIncome,F:DefaultedBorrower “ 110 is the mean of all the income values where
Defaulted Borrower “ F and σ2

Income,F:DefaultedBorrower “ 2975. In order to classify X fi

xOwner “ F, Status “ Married, Income “ 120Ky, we have to �nd:

max
cPDefaultedBorrower

t PpX | cq u

hence we have that:

PpX|DefaultedBorrower “ Fq “ PpOwner “ F|DefaultedBorrower “ Fq¨

PpStatus “ Married|DefaultedBorrower “ Fq¨

PpIncome “ 120K|DefaultedBorrower “ Fq

“ 4{7 ¨ 4{7 ¨ 0.00072 “ 0.0024

45

relational data mining

3.5 indexing consistency of relational operations

3.5.1 Preliminar lemmas

Before starting to prove the index-consistency property for relational operations , we must
prove some lemmas over the dt de�nition ÝÑdt .

Lemma 3.1.
@i, j, k, n P N.i ‰ j^ k ‰ h ñ dtpi, kq ‰ dtpj, hq

Proof. We prove by contradiction: suppose that dtpi, kq “ dtpj, hq, then k` Si`k “ h` Sj`h.
Since k ‰ h i�. k ą h_ h ą k, hence Dm, n ‰ 0.k “ h`m_ h “ k` n. Similarly i ‰ j i�.
Da, b ‰ 0.i “ j` a_ j “ i` b.

Suppose to prove the case where k “ h`m^ i “ j` a. In this case we’ll have that:

k` Si`k “ h` Sj`h ô h`m` Sj`h`a`m “ h` Sj`h

ô m` Sj`h`a`m “ `Sj`h

ô m`
j`h`a`m

ÿ

u“j`h`1

u “ 0

that is impossible because the obtained value is always positive.

Suppose to prove the case where k “ h`m^ j “ i` b. Now we have that:

k` Si`k “ h` Sj`h ô h`m` Si`h`m “ h` Si`b`h

ô m`
i`h`m
ÿ

u“i`h`1

“

i`h`b
ÿ

u“i`h`1

u

Now we have to prove by cases:

• If m ą b then we have that
ři`h`m

u“i`h`1´
ři`h`b

u“i`h`1 u ą 0 and hence the absurd is given
that a positive quantity couldn’t be zero.

• If m ă b then m “
ři`h`b

u“i`h`m`1 u “ i` h`m` 1` . . . i` h` b and then even in this
case we have an always positive quantity that couldn’t be zero.

• If m “ b then it is impossible that m “ 0.

The other cases are symmetric.

Lemma 3.2.
@x, y, z, t P N.x ‰ z_ y ‰ t ñ dtpx, yq ‰ dtpz, tq

46

3.5 indexing consistency of relational operations

Proof. Suppose to have x ‰ z. If y “ t, then we should have that:

dtpx, yq ‰ dtpz, yq ô y` Sx`y ‰ y` Sz`yu ô
y`x
ÿ

u“y`1

u ‰
y`z
ÿ

u“y`1

u

Since it is obvious that x ă z ô
řy`x

u“y`1 u ă
řy`z

u“y`1 u and x ą z ô
řy`x

u“y`1 u ą
řy`z

u“y`1 u,
the y “ t case is proved. If y ‰ t, we use the previous lemma (Lemma 3.1).

Suppose to have x “ z. If y “ t, then the case is proved by symmetry of the “N relation. If
y ‰ t, then:

dtpx, yq ‰ dtpx, tq ô y` Sx`y ‰ t` Sx`t

where it’s clear that if y ą t then y` Sx`y ą t` Sx`t and similarly if t ă y.

Inter alia this last lemma guarantees that any two list of naturals of di�erent size have a
di�erent vector dovetailing representation: that could be easily seen since given any two lists
l, l1 with |l| ‰ |l1|, we have that ÝÑdtplq “ dtp|l|, Rlq and ÝÑdtpl1q “ dtp|l1|, Rl1q by de�nition.

Corollary 3.1.
@x, y, z, t P N.dtpx, yq “ dtpz, tq ñ x “ z_ y “ t

Proof. By previous lemma.

Lemma 3.3.
@x, y, z, t.x “ z^ y “ t ñ dtpx, yq ‰ dtpz, tq

Proof. Obvious by rewriting and symmetry.

Theorem 3.1.
@x, y, z, t.x “ z^ y “ t ô dtpx, yq ‰ dtpz, tq

A formal demonstration of the following theorem is given via Matita script in Algorithm C.15
on page 167, where we also provide the formal de�nition of the double induction strategy for
lists, that could be de�ned as:

@R : list Ñ list Ñ Prop.p@n.R rs nq Ñ

p@n, m.R n :: m rsq Ñ

p@m, n, o, p.R m p Ñ R pn :: mq po :: pqq Ñ

p@n, m.R n mq

Now, we could provide a description of that lemma as follows:

Lemma 3.4. Two lists of the same length have the same vector dovetailing representation i�.
they’re the same:

@l, m.
ÝÑ
dtplq “

ÝÑ
dtpmq ñ l “ m

47

relational data mining

Proof. We could rewrite the main hypothesis by Theorem 3.1 on the preceding page:
ÝÑ
dtplq “

ÝÑ
dtpmq ô dtp|l|, Rlq “ dtp|m|, Rmq ô |l| “ |m| ^ Rl “ Rm

This means that we have to prove that, for two chosen lists l and m:

|l| “ |m| ñ Rl “ Rm ñ l “ m

We could treat this property that we want to prove as the one over which apply the double
induction strategy for lists. In this case we have to prove:

• @n.|rs| “ |n| ñ Rrs “ Rn ñ rs “ n

After choosing l as a particular n list, we have that from the �rst hypothesis that 0 “ |L|
i�. L “ rs, and then it is immediate to prove the �nal goal rs “ L.

• @n, m1.|n :: m1| “ |rs| ñ Rpn :: m1q “ Rrs ñ n :: m1 “ rs

Given that from the �rst hypothesis |n :: m1| “ 1` |m1| “ 0 “ |rs|, we could prove
n :: m1 “ rs by absurd since it is clear that 1` |m1| ‰ 0.

• At this point, we gain for lists B Ă l and D Ă m and naturals A, B P N that:

p|B| “ |D| ñ RB “ RD ñ B “ Dq ñ |A :: B| “ |C :: D| ñ RpA :: Bq “ RpC :: Dq ñ A :: B “ C :: D

where the �rst gained hypothesis is the inductive hypothesis. At this point, given theÝÑdt
provided in Algorithm 1.1 on page 16, we must apply the double induction strategy even
over B and D, and hence we have to prove this other following sub-cases:

– For B “ rs we observe that, :

|rAs| “ |C :: D| ô 1 “ 1` |D| ô 0 “ |D| ô D “ rs

We could rewrite D as an empty list in our goal, and then achieve the following
result:

RrAs “ RrCs ñ A “ C

where RrAs “ RrCs ñ A “ C by R de�nition, and hence we could prove the
A “ C �nal goal.

– Even for B ” E :: F ^ D “ rs we don’t use the inductive hypothesis, and hence
we have:

|A :: E :: F| “ |rCs| ñ RpA :: E :: Fq “ RrCs ñ A :: E :: F “ rCs

The goal is proved by absurd since it is clear that it is not possible that:

|A :: E :: F| “ 2` |F| “ 1 “ |rCs| ñ 1` |F| “ 0

48

3.5 indexing consistency of relational operations

– For B ” E :: F^D ” G :: H, we obtain two inductive hypothesis; we use only:

|E :: F| “ |G :: H| ñ RpE :: Fq “ RpG :: Hq ñ E :: F “ G :: H

Given that the goal with the non-inductive hypothesis is:

|A :: E :: F| “ |C :: G :: H| ñ RpA :: E :: Fq “ RpC :: G :: Hq ñ A :: E :: F “ C :: G :: H

we have that |A :: E :: F| “ |C :: G :: H| ô |E :: F| “ |G :: H|, and hence we
could use this in our inductive hypothesis in order to reduce it to:

RpE :: Fq “ RpG :: Hq ñ E :: F “ G :: H

Since we have by R’s de�nition and previous lemmas that:

RpA :: E :: Fq “ RpC :: G :: Hq ô dtpA, RpE :: Fqq “ dtpC, RpG :: Hqq

ô A “ C^ RpE :: Fq “ RpG :: Hq

we can use RpE :: Fq “ RpG :: Hq for reduce the remaining part of the inductive
hypothesis into E :: F “ G :: H and hence rewrite A :: E :: F into C :: G :: H,
and then apply the symmetry of the equivalence.

Lemma 3.5.
@l, m.l “ m ñ

ÝÑ
dtplq “

ÝÑ
dtpmq

Proof. Trivial.

Theorem 3.2.
@l, m.l “ m ô

ÝÑ
dtplq “

ÝÑ
dtpmq

Proof. By the two previous lemmas.

3.5.2 Proofs for algebraic operations

Theorem3.3 (Algebraic Union’s Consistency). Given a set of databases DBwhere each database
have di�erent indices for di�erent data entries, we have that 9

Ť

DB generates a new database with
consistent indices.

49

relational data mining

Proof. The proof could be easily carried out from the Theorem 3.2 on the preceding page, where
the following corollary could be easily obtained:

@l, m.l ‰ m ô
ÝÑ
dtplq ‰

ÝÑ
dtpmq

Given that the
Ť

TS de�nition guarantees that, if there is only one occurrence of a given record,
this will be mapped as a list with a single element; it also checks that multiple occurrences with
the same data value are mapped into a single entry: this guarantees that the generated database
will have consistent indices, too.

Similar considerations could be carried out for projection and Γ.

Theorem 3.4 (Algebraic Join’s Consistency). Given two databases db and db1 and two tables t P
db and t P db1 and four indices @i, j, k, h P N such that ϕ´1piq, ϕ´1pjq P t and ϕ´1pkq, ϕ´1phq P
t1, given that through db 9’θdb1 even t ’θ t1 is computed, if θpi, kq and θpj, kq then dtpi, kq ‰
dtpj, kq

Proof. It is immediate by Lemma 3.1.

Some other operations, like ε or Calc only extend the data entry with some other values or
change their de�nition like ρ, and so it is trivial to prove that they transform each data table
into an index-consistent data table. Since σP removes the data entries that don’t satisfy P, if
the database is index-consistent with all its indices, it will remain so even after removing some
indices.

50

4

A S U R V E Y O N (H Y P E R) G R A P H M I N I N G T E C H N I Q U E S

Contents
4.1 Graph Mining . 51

4.1.1 Graph Clustering . 51
4.1.2 Association Analysis . 60
4.1.3 Graph Classi�cation Rules . 61

4.2 Hypergraph Mining . 61
4.2.1 Vertex Clustering via Regularized Laplacian 61

4.1 graph mining

Why studying graph mining techniques if this thesis is about an hypergraph min-
ing algebra? [ABB06] shows that «while hypergraphs may be an intuitive representation of
higher order similarities, it seems (anecdotally at least) that graphs lie at the heart of this prob-
lem». In fact it is there showed that the problems of spectral hypergraph analysis is reducible to
the graph spectral analysis via star expansion and clique expansion, that transform hyperedges
in graph edges.

4.1.1 Graph Clustering

At this point, we suppose to manage graph data and hence, in order to provide a smooth
transition to the hypergraph representation, we introduce the graph data model, that will be
used only for a preliminary review.

De�nition 4.1.1 (Graph Data Model). The graph data model of a graph G “ pV, Eq is de-
scribed by the following properties and functions:

• V is the vertex/data set, that could be extracted through tables’ tuples from databases.

• E is the set of the edges E Ď V2

• Each vertex v P V, as an instance of a relation < over attributes, has a schema Spvq “ <.

51

a survey on (hyper)graph mining techniqes

• @pu, vq P E.wpu, vq ‰ 0, where w is the weight function that is strictly liked with the graph
structure and to the informations that are shared. If wpu, vq we could assume that the link
between a and b is missing.

• T : E Ñ String is a function that retreives the kind of relation that intercurs between two
nodes.

• λ : V Ñ R is a vector that maps each graph vertex into its weights.

Moreover each graph vertex is represented as a single record of a given relation’s instance; the set
of all the possible graphs is indicated with G.

De�nition 4.1.2 (Graph Database Model). The graph-database model is de�ned by a list of
graphs DB “ t gi uiďl where each gi is a graph (data model), where each graph index is a DFS
code as de�ned in [YH02]. Each database’s graph is described by the following functions:

• Λ : G Ñ String is the function that returns the graph’s associated name or label.

• ∆ : G Ñ String returns the graph’s DFS code.

• C : G Ñ List<String> returns the graph’s assigned cluster (or list of clusters).

4.1.1.1 Intra-Graph clustering

With intra-graph clustering we want to detect all the subgraphs of a given graph, which
could detect all the similar nodes inasmuch as they are related by vertex-linking edges: this
interconnection could be also weighted in order to express the strength of such relationship.

De�nition 4.1.3 (Subgraph Isomorphism). Given two graphs G “ pV1, E1q and H “ pV2, E2q,
H is a subgraph of G (H ď G) [GJ90] i�.1:

DV, E.D f : V2 Ñ V.V Ď V1 ^ E Ď E1 ^ |V| “ |V2| ^ |E| “ |E2|^

p@pu, vq P V2 ˆV2.pu, vq P E2 ô p f puq, f pvqq P Eq

Given PGpGq “ tg|g ď G ^ g ‰ pH,Hqu the set of all the possible subgraphs, PpPGpGqq
returns the set of all the possible graph clusters. Hence any intra-graph clustering algorithm
A with an input G P G returns a set of tuples t pgi, Λpgiq, ∆pgiq, Cpgiqq uiďl , @i ď l.gi ď G and
Ť

iďl gi ă G.

Both these problems could be resolved with the Markov Clustering Algorithm over a square
matrix M [Don00], which could be normalized, and then we could alternate the calculation
of the matrix power e with the in�ation operation, which ampli�es the contrast between the
areas with greater �ow and the ones with a lower one by a given parameter r.

1 Note that every book provides di�erent de�nitions of the same problem. More de�nitions are provided in [Sam+13;
WNK10].

52

4.1 graph mining

1 2

3

4

5
6

7
8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33
34

Figure 4.1: Graphic resolution of the [Zac77] problem with the Algorithm C.8 on page 156 using a 6
factor for both in�ation and number of iterations. Given a initial uncolored graph, such
algorithm identi�es the clusters as ideti�ed by the di�erent colours.

53

a survey on (hyper)graph mining techniqes

�
M Ð NormalizerM` Is
do {

prev Ð M
M Ð Me

5 M Ð In�aterM, rs
} while (prev ff M)� �

Algorithm 4.1: MCL Algorithm

Exercise 4.1. Given a graph representation G “ pV, Eq and an edge weight function w, we could
extract from the graph some rules by expr ” E, < ” “ and vexpr ” w. Our relation table could
be de�ned as M “ κE,“,wpGq. At this point, we could easily express all the iterative matrix-based
algorithms in a mining-loop form.

MCL’s time complexity could be reduced to Opnqwith the following heuristics, that remove
the less probable walks in sparse matrices:

• Exact pruning, where only the largest k escape probability are computed in the Markov
matrix associated to the weighted graph.

• Theresold pruning where, for each stochastic column c of a matrix and the threshold
θ9ctrpcq where ctr is the mass center of the vector, only the values greater that θ are
kept.

It was also proved in [BH09] that this algorithm with the heuristics introduced in [Don00]
in order to reduce the computational complexity, outperformed on the other clustering algo-
rithms over some undirected protein networks, by using a so�sticated systematical compara-
tion. Event if this version doesn’t handle directed graph, [YKSP13] proposed an extension of
Markov Clustering that could also handle directed graphs.

4.1.1.2 Graph Descriptors

In order to de�ne the intra-database algorithms, we must now de�ne some functions and
show some freqeunt subgraphs algorithms in order to be able to characterize the database’s
graphs Gi via each mined subgraphs gj, and hence establish the correlation spGi, gjq via a
support function s.

De�nition 4.1.4 (Support Function). A support function ϑ : G ˆ G Ñ R [YH02]returns the
likeness that the �rst graph contains the second as a subgraph:

ϑpg, Gq “

$

&

%

1 g ď G

0 oth.

The frequency support function denotes how frequent is a subgraph g in a graph database DB:

GSpg, DBq “
ÿ

GPDB

ϑpg, Gq

54

4.1 graph mining

De�nition 4.1.5. Given a graph database DB “ t Gi uiďk Ď PpGq the most frequent sub-
graphs t gi uiďl are those which appear more frequently in DB. Given aminimum support thresh-
old θ, this algorithm could be generalized as a MFSGG

θ where MFSGG
θ : PpGq Ñ DPpGq.

Example 8 provided an algorithm for mining the most frequent itemsets from transactions:
we choose to show here only gSpan [YH02; CH06a; Sam+13], as far as other solutions require
substantial changes in order to extend the computation in order to include directed graphs
[W+̈05]. This algorithm uses the depth-�rst approach in order to produce a minimum DFS
code, which is composed from the vertices’ and edges’ values; moreover, these codes could be
sorted with the DFS lexicographic order which has the aim to enumerate the frequent rightmost
extensions g ˛r e of a graph code g with an edge e. The algorithm hereby returns the S set of
the frequent substructures in the graph database DB.

By the way, [YH02] doesn’t explicitly de�ne the support function, that is still hard to
compute, since the subgraph isomorphism is still considered as an NP-Complete problem
[GJ90]. [Fan+11] shows how it is possible to reformulate such subgraph isomorphism as
“graph pattern queries” with a Op|V|3q of the queryied graph, with both SplitMatch and
JoinMatch. Moreover, it is also interesting to observe how a given graph pattern query
could be translated into a HML formula[Ace+07], in order to check if it exists another
graph that could be satisfy that formula, and hence to test if it could simulate the subgraph-
query.�

gSpan(DB, minsupp, Solution) {

Ξ Ðsort(FrequentEdges(DB,minsupp))

Solution Ð Ξ;
NStack Ð S

5 while (g Ð NStack.pop()) {

if g ‰ minD f sCodepgq continue;

Solution Ð g
@e P Ξ. if (e ˛re g)ñ { // if e ˛re g is a rightmost expansion of g by e
if GSpe ˛re g, DBq ě minsupp

10 NStack.push(e ˛re g)
}

}

}� �
Algorithm 4.2: gSpan

Exercise 4.2. Given the algorithm implementation in R given in [Sam+13], Figure 4.2 provides
an example of the execution of the algorithm over a minimal DB “ t G1, G2 u graph database.

Problem 4.1. We could try to express the latter algorithm with a while-loop, since recursion
could be easily expressed as an inde�nite loop and the rules could be expressed over < ” ˛r.

Now we’ll introduce the average distance which is the base of geometrical descriptors,
inasmuch as this measure could be relevant to identify a “geometric signature” of a speci�c
subgraph that is translational and rotation invariant:

55

a survey on (hyper)graph mining techniqes

0

1

2

3

4

5

6

7

8
9

10
11

12

13

14 15

16

17

18

19

(a) G1 P DB

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

(b) G2 P DB

0

1

2

3

45

6

7

8

9

10

11 12

13

(c) g2 P Res

0

1

2

3

4

5

6

7

8

9

10

11

12

(d) g2 P Res

0

1

2

3
4

5

6

7

8

9

10

11

12

(e) g3 P Res

Figure 4.2: Given a graph database DB “ t G1, G2 u, the result of the gSpan algorithm with support
0.95 provided in [Sam+13] returns 335 graphs which g1, g2, g3 are the �rst three.

56

4.1 graph mining

De�nition 4.1.6. Given a grpah G “ pV, Eq, the matrix D of the geometrical vertices’ dis-
tances (gvd) is:

DG “ t eppospuq, pospvqq uu,vPV

where pos : V Ñ Rn gives the space location of the vertex and e is the euclidean distance. The
average distance avgpDq is de�ned over the average over the values obtained in D.

De�nition 4.1.7. A graph g “ pV , Eq is an embedding of gj in gi iif. Vi ” V Ď Vj ^ Ei ”

E Ď Ej. The set of the embeddings is consequently de�ned as follows:

Embedpgi, gjq “

pV , Eq
ˇ

ˇ Vi ” V Ď Vj ^ Ei ” E Ď Ej
(

De�nition 4.1.8. A geometric graph ci “ pgi, avgpDrVgi ; Vgisqq is de�ned by a (topological)
graph gi and its average distance. A geometric graph C “ pG, Dq contains a geometric subgraph
c “ pg, dq (c ĺ C) iif.:

g Ď G^ De P Embedpg, Gq. minpDGq ď avgpDeq ď maxpDGq

In order to mine the most frequent geometric subgraphs, we could think to adapt any pre-
viously given algorithm for mining topological descriptors (as gSpan) as depicted in [Des+05],
in a way that also improves the classi�cation accuracy of the algorithm:

• Collect all the frequent geometrical subgraphs t ci uiďl in DB with a variant of the most
frequent subgraphs algorithm depicted above, wich instead returns the most frequent
topological subgraphs t gi uiďl .

• For each Gi P DB (and hereby Cj P DB) and ci where ci ĺ Cj, set vci ,Cj “ t avgpgq u

• Given a bound r to the interatomic distance, we could perform a one-dimensional clus-
tering cl over the values collected in vci ,Cj (cl P Ppvci ,Cjq) where @ν P cl.|maxpνq ´
minpνq| ą r, in order to remove the possible outliers.

• For each ν P cl we could obtain the �nal cν “ pci, avgpνqq geometrical frequent sub-
graphs.

4.1.1.3 Hierarchical Intra-Database clustering

The hierarchical clustering over topological graph is very simple, as we could directly use
the support function in order to classify the graphs t Gi uiďk “ DB against the most frequent
subgraphs t gi uiďl previously mined, as introduced before:

De�nition 4.1.9. Given a set of topological subgraphs t gi uiďl obtained from a graph database
t Gi uiďk “ DB, for each Gi P DB we want to de�ne a (topological) description vector vi as
follows:

@j ď l.virjs “

$

&

%

supppGi, gjq supppGi, gjq ą minSupp

0 oth.

57

a survey on (hyper)graph mining techniqes

These database graph’s vectors are produced by the following function:

TDVpDB, t gi uiďlq “ tvi | Gi P DB^Dompviq “ t gi uiďlu

De�nition 4.1.10. Given a generic distance function δ between two elements, we could de�ne
the K function, which creates the similarity matrix as follows:

KδpVq “ t δpx, yq ux,yPV

At this point, as suggested in [WNK10], we could use the Tanimoto coe�cient in order to
de�ne the distance between two vectors X and Y:

TpX, Yq “
řM

i“1 Xris ¨Yris
řM

i“1 Xris2 `Yris2 ´ Xris ¨Yris

De�ne a distance matrix between the mined vectors:

DVθ
TpDBq “ KTpTDVpDB, MFSGθpDBqqq

and then use the UPGMA algorithm (�rstly described in [SM58]) to de�ne the associated den-
dogram that provides the hierarchical clustering algorithm. UPGMA returns a TpDBq tree
(which is induced by the representation of the dendogram) where the leaves represent all the
graphs in DB:�
while (nrowspKTq ą 1) {

Dendogram[A,B]Ð 1
2 minA,B KTrA, Bs

@i R t A, B u
Mri, t A, B us Ð Mrt A, B u , is Ð MrA,is`Mri,Bs

2
5 Mrt A, B u , t A, B us Ð 0

delete in M rows and columns whose index

is in t A, B u
}

return Dendogram;� �
Algorithm 4.3: UPGMA Algorithm

Exercise 4.3. Given the Laurasiatherian RNA sequence data provided in [LY10], we could use the
UPGMA implementation given in the same package in order to obtain the result showed in Figure
4.3.

Exercise 4.4. As observed before, even this algorithm could be expressed as a mining loop because
it is based on a matrix iteration and manipulation.

We could hereby cluster the DB graphs via geometrical subgraphs the same way as for
topological ones. In this case, an hierarchical clustering algorithm A could be generalized
with the following operator:

HCA : Mp|DB|, Rq Ñ TpDBq

58

4.1 graph mining

Platypus

Wallaroo
Possum

Bandicoot
Opposum

Armadillo

Elephant

Aardvark

Tenrec
Hedghog

Gymnure

Mole
Shrew
Rbat
FlyingFox
RyFlyFox

FruitBat
LongTBat

Horse
Donkey
WhiteRhino
IndianRhin

Pig

Alpaca
Cow
Sheep

Hippo

FinWhale
BlueWhale
SpermWhale

Rabbit
Pika

Squirrel
Dormouse

GuineaPig

Mouse
Vole

CaneRat

Baboon
Human

Loris

Cebus

Cat
Dog

HarbSeal
FurSeal

GraySeal

Figure 4.3: UPGMA algorithm example over RNA sequence classi�cation.

59

a survey on (hyper)graph mining techniqes

where Mpn, Kq is the set of the K-valued matrices with nˆ n size. Moreover, we could also
think to cut the tree from a given distance from the root with a PrunepT, hq operator, in order
to remove the most infrequent clusters and to obtain some cluster C Ď PpDBq where each
cluster c P C is at least h-far from the root.

4.1.2 Association Analysis

In order to solve this problem, [TTM11] exstimate the support witout extimating the con�-
dence of the relation between subcomponents, which measures the reliability of the proposed
interaction; by the way, they used the likelihood-ratio test with logistic regression as a replace-
ment [Sha13]. In particular, suppose to have already performed some hierarchical clustering
over G and T in order to perform the interaction analysis only over clusters achieved through
graph descriptors for both drugs (t gi uiďm) and protein (t ti uiďn). We could obtain some rele-
vant information from this particular problem as follows:

De�nition 4.1.11. The support function which determines the how a rule is common inside
a graph, is de�ned as follows:

supppg Ø tq “
σpg, tq
|E|

where σpg, tq “ |

pGi, Tjq
ˇ

ˇ g Ď Gi, t Ď Tj, pGi, Tjq P E
(

|. The con�dence function is in-
stead de�ned as:

con f pg Ø tq “
σpg, tq
σpgq

where σpgq “ | t Gi | g Ď Gi,Gi P G u |.
A generic association algorithm for binary relations with minimum support θ and minimum

con�dence ρ could be de�ned as follows:

AA2
θ,ρpEq “ t e | e P E, supppeq ą θ, con f peq ą ρ u

We could consequently obtain another graph, which shows the relations between the sub-
structures of both chemical molecules and protein as follows:�
t gi uiďM Ð MFSGθpGq
t ti uiďN Ð MFSGθpT q
t ui uiďM Ð TDVpG, t gi uiďMq

t vi uiďN Ð TDVpT , t ti uiďNq

5 t Gi uiďm Ð leavespPrunepHCApDVθ
TpGqq, h1qq, m ă M

t Ti uiďn Ð leavespPrunepHCApDVθ
TpT qq, h1qq, n ă N

E f Ð
!

pgk, tlq
ˇ

ˇ

ˇ
pGi, Tjq P E, uirks ‰ 0, vjrls ‰ 0

)

G f Ð pt gi uiďM Y t ti uiďN , AA2
θ,ρpE f qq� �

Algorithm 4.4: Problem 5 solution

60

4.2 hypergraph mining

A more trivial DB graphs’ classi�cation could be induced by the their TDVs in order to
hierarchically correlate the graphs in a lattice as follows [CH06a]:

vi Ď vj ô @k ď l.virks ď vjrks

where l is the common vector size.

4.1.3 Graph Classi�cation Rules

Since the TDV provides a method to map each graph Gi P DB into a description vector vi,
the vi extended with the belonging class mined through the hierarchical clustering could be
seen as a relation <pg1, . . . , gl , Cq, where t gi uiďl are the mined most frequent subgraph, and
C expresses to which hierarchical cluster c P C each graph Gi belongs to. Given this tabular
form, we could use Naïve Bayes over continue attributes (see Subsection 3.4.1 on page 44) in
order to predict from the previously mined frequent subgraphs t gi uiPN the classi�cation of a
chemical compound Gtest. For instance, we could de�ne a bayesian classi�er as follows:

ClasspGtest, t gi uiďlq “ max
cPCpGq

#

ź

iďl

Ppgi “ vtestris|C “ cq

+

CpGtestq “ ClasspGtest, t gi uiďlq

where t gi uiďl , as already said, was previously mined through most frequent subgraphs and
vtest is the description vector of Gtest.

4.2 hypergraph mining

Well, but didn’t you say that all mining hypergraph problems were reducible to
graph problems? Yes, and we’re always of the same opinion. By the way, it is clear that the
Zoo database used in [Vaz09] (where each hyperedge-row represents a di�erent animal and
each column represent an attribute that characterises and distinguishes it from the others) has a
natural hypergraph representation, as it doesn’t provide any obvious correlational relationship
over the data. However it is clear that such correlations could be mined by manipulating such
hypergraph.

4.2.1 Vertex Clustering via Regularized Laplacian

Given an hypergraph data model H, we could try to point out the correlation between the
data inside each hyperedge («the relationship among di�erent labels can then be captured by their
interactions with the data points» [SJY08]), by computing ApHqATpHq. By the way [Sam+13]
points out how this similarity matrix’s weights (in fact such «transition probability between the
nodes associated with two [hyperedges-entities] captures their similarity » [SJY08]) are strictly

61

a survey on (hyper)graph mining techniqes

related to the weighted degree of each vertex, and hence we have to normalize such informa-
tion:

De�nition 4.2.1 (Target Normalized Laplacian). A target normalized laplacian of a hyper-
graph [Sam+13] H “ pV , ED, EEq is de�ned as follows:

@vi, vj P V .Li,jpApHqATpHqq “

$

’

’

’

’

&

’

’

’

’

%

1 vi “ vj ^ degpviq ‰ 0

´ 1?
degpviqdegpvjq

vi ‰ vj ^ ApHqATpHqri, js ‰ 0

0 oth.

where the degree could be de�ned as:

degpviq “
ÿ

vjPV
ApHqATpHqri, js

The following code de�nes the �nal matrix that could be used to infer the similarity relations
over the data:�
VertexClust <- function (BTB) {

BTB <- as.matrix(unname(BTB));

BTB <- BTB %*% t(BTB);

rows <- dim(BTB)[1];

5 cols <- dim(BTB)[2];

D <- diag(rowSums(BTB));

I <- diag(1,rows,rows);

10 Lap <- matrix(0,rows,rows);

for (i in 1:rows) {

for (j in 1:rows) {

Lap[i,j] <- (D[i,j] - BTB[i,j])/sqrt(D[i,i]*D[j,j]);

}

15 }

return(Lap);

}� �
Algorithm 4.5: Regularized Laplacian Matrix

Since graph and hypergraph laplacians are usually de�ned in order to simulate random walk
models over them [SJY08], we decided to use the MCL over such matrix, instead of applying
other algorithms that have been proposed as [ABB06; SJY08]. Using the Iris data set [Fis36]
with Markov Clustering over graphs adjacency matrices, we made out to separate all the three
�owers clusters as follows:�
Setosa+Virginica Clusters

SV <- iris[c("Petal.Width","Petal.Length")];

62

4.2 hypergraph mining

Lap <- VertexClust(SV);

res = collect.mcl.clusters(mcl(Lap,2,600));

5

The second cluster is made of Virginicas

SV <- iris[c("Petal.Width","Petal.Length")];

Lap <- VertexClust(SV);

10 res = collect.mcl.clusters(mcl(Lap,2,8));� �
Algorithm 4.6: Iris Database Example

63

5

H Y P E R G R A P H O P E R AT O R S

Contents
5.1 Hypergraph de�nition over the three worlds 65

5.1.1 Tensors for binary relations . 66
5.1.2 D/I-Hypergraphs algebraic operations - Data operations 68
5.1.3 D/I-Hypergraphs algebraic operations - Relational operations . . 74
5.1.4 Pure I-Hypergraph for non data-driven relations 79

5.2 Promoting data relations . 80
5.2.1 Expliciting Laplacian data correlation into a matrix form 80

5.3 Hypergraph Databases: a super�uous de�nition 81

In this chapter, We de�ne the operators that will be used in the Data Mining Algebra: these are
useful since they allow to de�ne some data mining operators as a composition of di�erent algebra
operators over hypergraphs.

In the light of new knowledge provided by the Threefolded Data Mining, we’ll try to re�ne
our �rst basic data model over hypergraphs, in order to suggest a structure that makes possible to
di�erentiate data from mined relations.

5.1 hypergraph definition over the three worlds

At this point, we want to distinguish two hypergraph worlds, one of the correlated data and
the other of the mined properties. An example of the �rst kind of an hypergraph was already
depicted on Figure 2.2 on page 25, where we could de�ne as data the world of both binary
relations and pure data entities. We could provide a preliminary de�nition of D/I-Hypergraph
in order to map entities and correlational relations provided by the data.

De�nition 5.1.1 (D/I-Hypergraph). An hypergraph data model (De�nition 2.1.3 on page 23)
where the property (HG2) on page 28 holds, is called a D/I-Hypergraph D/I-Hypergraph.

For the D/I-Hypergraph we could use the Algorithm 2.3 on page 29 as a visit procedure. By
the way, this data-hyperedge ED de�nition doesn’t take into account all the considerations
that could be carried out from lemmas in Section 2.2 on page 31, and hence we would like to
specialize the latter de�nition for:

65

hypergraph operators

• Providing an algebraic representation of non-correlational data, in order to eas-
ily express such algebraic operators.

Since we’ve seen in Subsection 2.2.3 on page 33 the data relations ED could be represented
directly as databases and that the transformation of a database to a TAM could have a
linear computational cost in the size of the database, we could map all the ED into a
database.

• Producing (when needed) relation modi�cations (hyperedges in EE) only as a
side e�ect of data manipulations.

In order to make that possible, we introduce a tensor-like notation for binary relations
and use the indexing structure presented in the previous chapters, in order to easily keep
track of data modi�cations.

• We would like to abstract binary EE to more general ones.

For the moment, we won’t abstract the binary relations into “more general ones”, and
we suppose (in order to ease our de�nitions) to keep binary relations among the data
elements.

5.1.1 Tensors for binary relations

[NTK11] suggests a “tensor model for relational data”, where each binary relation between
two entities i and j in a relation < could be expressed as pi, jq P <, where < should be inter-
preted as a binary matrix. Hence, we could de�ne our tensor for binary relations as follows:

De�nition 5.1.2 (D/I-Hypergraph tensor). A D/I-Hypergraph tensor representation of the EE

hyperedges of any D/I-Hypergraph H is indicated as a TDIpHq of size1 |ED| ˆ |ED| ˆ |TpHq|
where @i, j P Idx.@k P TpHq.TDIri, j, ks ‰ 0^ ϕ´1piq, ϕ´1pjq P ED i�. there is a relation <k
where ϕ´1piq <k ϕ´1pjq. In other words:

@i, j, k.TDIri, j, ks ‰ 0 ô De P EE.Tpeq “ k^ tϕ´1piqu “ prevpeq ^ tϕ´1pjqu “ nextpeq

From now on we’ll use TDIri, j, ks fi TDIrϕpiq, ϕpjq, ks and TDIkri, js fi TDIri, j, ks as
shorthands.

As a �rst step, we’ll only analyze tensors for binary relations, even if we know that it is also
possible to de�ne tensors for n-ary relations via rectangular matrices.

Example

1 TpHq is used as a shorthand for tTpeq | e P EE u.

66

5.1 hypergraph definition over the three worlds

Figure 5.1: This picture clari�es the DHImpl representation: each Relational Database table entry ϕ´1piq
has an index i, which is also be used in the Tensor representation in order to identify that par-
ticular instance..

11. Suppose to have a social network hypergraph where the vertices types are posts, users and
topics, where we have a friendship relation among users and another relation that links each user
to a topic of interest (e.g. each Diaspora user could describe her-/him-self by using 5 hashtags,
and hence hashtags are used as a peculiar instance of the topic type). We could suppose to treat
the “post-belongs-to” relation as data driven, and hence we won’t use that relation in the tensor
representation.
Suppose that nowwe have to detect themost popular user by selecting the nodes with the greatest

degree in the cluster mined with MCL: if we want to consider the in�uence only by the following-
“followee”’ relation, we would like to apply the MCL only over this layer without involving the
other data relations.

We could think to rede�ne D/I-Hypergaphs in order to map data hyperedges into databases
and binary relations into tensors as follows:

De�nition 5.1.3 (D/I-Hypergraph implementation). AD/I-Hypergraph implementation (DHImp)
could be seen as a couple pdb, Tq where db is a Database for Uncertain Data and T is a D/I-
Hypergraph tensor.

67

hypergraph operators

Example

12. Figure 5.1 explains how Relational Databases and Tensors are linked together in DHImp-s:
given that the database structure is indexed, we could use such indices to point out which entries
inside the tensor are related together. While di�erent data tables express di�erent types of entities,
di�erent tensors express di�erent kind of relations among the data. This also implies that any
change to the database structure should be re�ected also on the Tensor representation. The other
way around update is not necessary because we could have data that is not related to other entities
but that still appears in our dataset.

5.1.2 D/I-Hypergraphs algebraic operations - Data operations

We want to de�ne algebraic operations (inspired by the relational ones) over hypergraphs. At
�rst, we shall discuss how to manipulate ED as relational operators, and how these operations
could re�ect the way EE are manipulated. In order to achieve this goal, we have to de�ne some
preliminary functions or relations, in order to better de�ne the algebraic operations.

De�nition 5.1.4 (Binary EE hyperedge constructor). An hyperedge constructor dTpi, jq takes
two data hyperedges i and j, a D/I-Hypergraph tensor T and a type k P T and then recreates the
original binary EE hyperedge as follows:

dTpi, j, kq “ xSpjq Y Spiq, k, Upjq :: Upiq, Tri, j, ksy

De�nition 5.1.5 (Elicitation predicate). The elicitation predicate E : ED Ñ ED Ñ T Ñ

TDI Ñ Prop Ñ Prop is true i�. it exists an hyperedge with a desired property.

Eri, j, k, T, Ps ô Tri, j, ks ‰ 0^ PpdTpi, j, kqq

De�nition 5.1.6 (Data Selection). The selection operation over a DHImp h “ pdb, Tq is de�ned
as:

σD
P phq “ p 9σPpdbq, σ̃PpTqq

where the σ̃P selection function for the tensor is de�ned as:

@i, j, k.pσ̃PpTqqri, j, ks “

$

&

%

Tri, j, ks Ppiq ^ Ppjq ^ Eri, j, k, T, Ps

0 oth.

In order to make the explanation clearer, I will only treat examples where a single relational
table and tensor layer are showed.

68

5.1 hypergraph definition over the three worlds

Example

13. Given a DHImp h de�ned with a database db “ tt1u where t1 is de�ned as follows:

Num1 Num2 Num3 w ϕ

A 2 4 0.1 1

B 8 10 0.2 2

C 15 20 0.3 3

A 28 3 0.4 4

C 1 3 0.5 5

and a tensor T with only one layer k:

1 2 3 4 5

1 0.1 0 0.3 0 0

2 0 0.2 0 0.5 0.1

3 0 0 0.5 0.6 0

4 0.1 0 0 0.2 0

5 0 0.3 0 0 0.5

the selection σD
h.DB.T.Num1““A2phq provides the following result:

Num1 Num2 Num3 w ϕ

A 2 4 0.1 1

A 28 3 0.4 4

1 4

1 0.1 0

4 0.1 0.2

Where indices come useful

At this stage we have to de�ne the join operation. Since that @t P db.@t1 P db1.t ’θ t1

produces entity indices which are the result of the dovetailing function, @r P t ’θ t1.dt´1pϕprqq

69

hypergraph operators

provides the two original indices xi, jy such that ϕ´1piq P t and ϕ´1pjq P t1 by de�nition.
Moreover all the resulting structure has binary indices, and hence:

pT ’θ T1qri, j, ks ‰ 0 ô D<k.Da, b, c, d.dt´1piq “ xa, by ^ dt´1pjq “ xc, dy^

pϕ´1paq<k ϕ´1pcq _ ϕ´1paq<k ϕ´1pdq _ ϕ´1pbq<k ϕ´1pcq_

ϕ´1pbq<k ϕ´1pdqq

That means that two data-joined relations are linked together by a k relation i�. at least one of
the �rst previous relations were linked to one on the second. In this case the reverse dovetailing
function simpli�es the de�nition of pT ’θ T1qri, j, ks.

De�nition 5.1.7 (Data θ-Join). The θ-join operation over two DHImp h “ pdb, Tq and h1 “
pdb1, T1q is de�ned as follows:

h ’D
θ h1 “ pdb 9’θdb1, T’̃θT1q

where the ’̃θ function for the two tensors is de�ned as:

@i, j, k.pT’̃θT1qri, j, ks “ avg
!

i
ˇ

ˇ

ˇ
i “ avgtTira, b, ks|a P dt´1piq ^ b P dt´1pjqu0^ Ti P tT, T1u

)

Example

14. The join DHImp1 ’D
DHImpl1.DB.t1.Num1“DHImpl1.DB.t1.Num2 DHImpl2 where the DHImpl

DHImp1 “ ptt1u, T1q and DHImp2 “ ptt2u, T2q are de�ned with the following data tables (t1

and t2 respectively):

Num1 Num2 Num3 w ϕ

A 2 4 0.1 1

B 8 10 0.2 2

C 15 20 0.3 3

A 28 3 0.4 4

C 1 3 0.5 5

Num1 Num2 w ϕ

A 7 0.2 6

B 5 0.3 7

and the following tensors (T1 and T2 respectively):

70

5.1 hypergraph definition over the three worlds

1 2 3 4 5

1 0.1 0 0.3 0 0

2 0 0.2 0 0.5 0.1

3 0 0 0.5 0.6 0

4 0.1 0 0 0.2 0

5 0 0.3 0 0 0.5

6 7

6 0 1

7 1 0

gives us the following result:

t1.Num1 t1.Num2 t1.Num3 t2.Num1 t2.Num2 w ϕ

A 2 4 A 7 0.2 34

B 8 10 B 5 0.6 52

A 28 3 A 7 0.8 61

34 52 61

34 0.0125 0.15 0

52 0.125 0.025 0.1875

61 0.0125 0.125 0.025

This de�nition could be generalized in order to express the union of the weights over the
data:

De�nition 5.1.8 (Data Union). The union operation over a set of DHImp, H “ t pdbi, Tiq uiďk
is de�ned as:

D
ď

H “ p
9ď

i
dbi,

˜ď
i
Tiq

where the ˜Ť union function for the set of tensors is de�ned as:

@i, j, k.p ˜ďTqri, j, ks “ avg
!

i
ˇ

ˇ

ˇ
i “ avgtTira, b, ks|Tira, b, ks ‰ 0, a P

ÝÝÑ
dt´1piq, b P

ÝÝÑ
dt´1pjqu, i ‰ 0, Ti P T

)

71

hypergraph operators

Example

15. The union between the following DHImp1 “ ptt1u, T1q and DHImp2 “ ptt2u, T2q, where
t1 and t2 are respectively de�ned as follows:

Num1 Num2 Num3 w ϕ

A 2 4 0.1 1

B 8 10 0.2 2

C 15 20 0.3 3

A 28 3 0.4 4

C 1 3 0.5 5

Num1 Num2 Num3 w ϕ

A 7 11 0.2 6

B 2 4 0.1 7

and tensors T1 T2 have a single layer and are de�ned as depicted below:

1 2 3 4 5

1 0.1 0 0.3 0 0

2 0 0.2 0 0.5 0.1

3 0 0 0.5 0.6 0

4 0.1 0 0 0.2 0

5 0 0.3 0 0 0.5

6 7

6 0 1

7 1 0

gives us the following result:

Num1 Num2 Num3 w ϕ

A 7 11 0.2 34

A 28 3 0.4 19

B 8 10 0.2 8

C 1 3 0.5 26

C 15 20 0.3 13

A 2 4 0.1 1078

34 19 8 26 13 1078

34 0 0 0 0 0 0.25

19 0 0.1 0 0 0 0.025

8 0 0.25 0.1 0.05 0 0

26 0 0 0.15 0.25 0 0

13 0 0.3 0 0 0.25 0

1078 0.25 0 0 0 0.075 0.0125

Some other operations only involve a single database, and hence could be de�ned in a more
simple way. In this case we could use an unique function for updating the tensors

72

5.1 hypergraph definition over the three worlds

De�nition 5.1.9 (Update Tensors for Data Unary Operations). Given a DHImp h “ pdb, Tq
and an unary operation B over a database, if we perform 9Bpdbq we could update T with the
UpdatepTq function as follows:

UpdatepTqri, j, ks “ avg
!

Tra, b, ks
ˇ

ˇ

ˇ
a P
ÝÝÑ
dt´1piq, b P

ÝÝÑ
dt´1pjq

)

De�nition 5.1.10 (Data Projection). The projection operation over a DHImp h “ pdb, Tq is
de�ned as follows:

πD
L phq “ p 9πLpdbq, UpdatepTqq

Example

16. Given a DHImp h de�ned with a database db “ tt1u where t1 is de�ned as follows:

Num1 Num2 Num3 w ϕ

A 2 4 0.1 1

B 8 10 0.2 2

C 15 20 0.3 3

A 28 3 0.4 4

C 1 3 0.5 5

and a tensor T with only one layer k:

1 2 3 4 5

1 0.1 0 0.3 0 0

2 0 0.2 0 0.5 0.1

3 0 0 0.5 0.6 0

4 0.1 0 0 0.2 0

5 0 0.3 0 0 0.5

the projection operation πNum1phq provides the following result:

Num1 w ϕ

A 2 250

B 28 8

C 28 987

250 8 987

250 0.4 0 0.075

8 0.25 0.2 0.05

987 0.2 0.15 0.25

73

hypergraph operators

De�nition 5.1.11 (Data Group by). The group by operation over a DHImp h “ pdb, Tq is
de�ned as follows:

ΓOppLiqas X|D
~LztLiu

phq “ p 9ΓOppLiqas X

~LztLiu
pdbq, UpdatepTqq

Concerning the embedding operation, it is not useful to de�ne it as a database operation,
since it is more useful to modify only a group of hyperedges at a time. Moreover, the DHImp
de�nition doesn’t require to modify the correlation hyperedges when data is extended or re-
moved inside the hyperedge. We also suppose that the following operations won’t change the
weight of uncertain data.

De�nition 5.1.12 (Data Calc). The Calc operation over a DHImp h “ pdb, Tq is de�ned as an
update over the database, and hence: CalcD

Opp~Lq as S
phq “ pCalcOpp~Lq as Spdbq, Tq.

De�nition 5.1.13 (Data Rename). The rename operation over a DHImp h “ pdb, Tq is de�ned
as the combination of the Calc and Projection operation for relational databases, and hence even
in this time:

ρD
RÐXphq “ pρRÐXpdbq, π̃SpdbqztXupTqq

5.1.3 D/I-Hypergraphs algebraic operations - Relational operations

Now we want to perform some other relational operators over binary relations represented
in a tensor-like form. We could see that we cant’ simply state to merge two EE sets from two
di�erent databases, since it doesn’t make sense to import relations without importing the data,
too. In this case the union over ED will be the more appropriate decision to follow.

It doesn’t make sense either to rename EE relations, since we rename only data properties
and, as a side e�ect, we obtain that even the EE relations will be renamed, too. Even projection
over binary EE is not meaningful, since that operation will reduce binary relations to unary
relations.

If we want to select only some other properties among the others, then we could rede�ne
the select operation

De�nition 5.1.14 (Correlational Selection). The correlational selection operation over a DHImp
h “ pdb, Tq is de�ned as:

σE
P phq “ pdb, σ̃PpTqq

where the σ̃P selection function for the tensor is de�ned as:

@i, j, k.pσ̃PpTqqri, j, ks “

$

&

%

Tri, j, ks Eri, j, k, T, Ps

0 oth.

74

5.1 hypergraph definition over the three worlds

Discussing joining correlations

We could at this point discuss the meaning of performing the join operation over two table
inside a same database. We could think that a a<k ˙<hb i�. Dc.a<kc^ c<hb, and hence we
could think that @a, b.

ř

c Tra, c, ksTrc, b, hs solves our problem, that is Tk ˆ Th.
Similarly we could de�ne a<k¸<hb ô b<k˙<ha and a<k ’ <hb ô a<k˙<hb^ a<k¸

<hb.
We could see that ¸ or ˙ doesn’t express in this case semi-joins but only how relations are

oriented.
We could see that is not possible to de�ne join operations between two di�erent databases,

as di�erent DHImp don’t have shared links among them.

De�nition 5.1.15 (Correlational Join). The correlational join operation over a DHImp h “
pdb, Tq between two tensor layers k and j for “oriented relations” is de�ned as follows:

hk˙h “ pdb, TkˆThq hk¸h “ pdb, Th¸kq hk’h “ pdb, Tk’hq^@i, j.Tk’hri, js fi Tk˙hri, jsTk¸hri, js

At this point, let’s ponder how to mantain relations among the data types even when some
of the data are removed, and then some of the links are removed.

Yet Another Maieutic Dialog

Q: Excuse me if I interrupt your thesis. . . I expect that the ED transformations won’t change
any correlational relation (the hyperedges in EE). Let me explain: if I know that:

Da, b, c, t. TDIpHqra, b, ts ‰ 0^ TDIrb, c, ts ‰ 0

then I could infer that there is some kind of correlation between entities a and c; hence
I want to know that TDIpHqra, c, ts ‰ 0 if b is removed from my dataset, and hence I
would like that all the transformations will be “path-invariant”.

A: Well, you haven’t explicitly stated if t is a transitive relation or not.

Q: But why that’s so important to you?

A: Remember? We want to keep track of which is the type of the relation that links the nodes,
and so we want to know “how” my data is connected. So in this case, if t is not a transitive
relation, we cannot directly infer that TDIpHqra, c, ts ‰ 0. . .Do you remember that each
relation could be represented in a tabular form?

75

hypergraph operators

Q: Yes.

A: Well, we could think to use a join relation between the two t relations in order to avoid
that, by removing the b edge, the path between a and c will be broken.

Q: But this wouldn’t solve a more general problem where is unfeasable to keep track of all
the edges involved in such join operations. Isn’t there something more general? I want
to keep track of this information without necessairly applying the Nuutila algorithm (ed.
See [Nuu95].) for transitive closures.

A: Well, there could be two possible ways. . .The �rst uses the correlation relation in order to
mine general properties over data. At this point we could assume tat these properties
are always true, whether the actual data was removed or not. The second choice could
involve the seek of correlation among the data or the preexistent operations, by using
MCL purely as a matrix multiplication algorithm, in order to detect TDIpHqk`2 where
k “ maxg t degpgq | g P σ PpHq u and hence �nd the correlation among the remaining
nodes.

Q: I prefer the second method, is more straightforward.

A: Keep in mind that this second choice we obtain some relations that don’t necessairly man-
tain the same original scheme.

Q: Who cares!

A: We do! Well, we won’t use that in my real-world data, since we won’t no more know how
the data is correlated, and we won’t know if the �nal result is meaningful or not.

Let’s �rst analyze those straightforward methodologies: at �rst we would like to collapse all
the binary relations into a single relation, and then use the MCL algorithm with some parame-
ters, in order to fasten the process of matrix multiplication and detect the correlation between
data in more than one step.
De�nition 5.1.16 (Summarize). The summarize operator over all the relations of the DHImp
h “ pdb, Tq updates T by adding the following relation with a fresh index:

Summarizeα,βpTq “ MCLα,β

¨

˚

˝

norm

¨

˚

˝

$

&

%

ÿ

lPTpEEq

Tri, j, ls

,

.

-

pi,jqPT

˛

‹

‚

˛

‹

‚

In this way we have that some data are related with a given uncertainty measure, but we
cannot say “how” these data are related: this operations could be useful in order to analyze

76

5.1 hypergraph definition over the three worlds

how the information could be spread inside a network [Kim+13] and hence useful to detect the
active state of a network, but is not useful to mine and detect new relations from our data, and
hence to obtain new informations.

We could get an improvement by slightly modifying the data join de�ned in De�nition 5.1.17,
in order to join only that data that are related within a link. We could assume that the weight
wpa, bq of an arc pa, bq represents the probability that b is true assuming that a is true (with a
certain probability). Hence by Bayes’s theorem we have that:

Ppb|aq “
Ppa^ bq

Ppaq

and hence we obtain that Ppa^ bq could be the probability that the two data are both true, and
that happens when both data are joined together. If we assume that Ppaq is the weight wpaq,
we obtain that:

wpa ’ bq “ wpa, bqwpaq

Since the use of wpa, bq implies that we have oriented arcs from a to b, we could point out this
speci�cation by adding the “left” term in order to remember the directionality of the de�nition.

De�nition 5.1.17 (Data θ-Join for left-tied data). The θ-join for tied data operation over a
DHImp h “ pdb, Tq is de�ned as follows:

Tiepθ, hq “ pdb 9̇ x,y ÞÑθpx,yq^Dk.Trx,y,ks‰0db, T’̃Tie
θ Tq

where the ’̃θ function for the two tensors is de�ned as:

@i, j, k.pT’̃Tie
θ Tqri, j, ks “ avg

!

i
ˇ

ˇ

ˇ
i “ avgtTira, b, ks|a P dt´1piq ^ b P dt´1pjqu0^ Ti P tT, T1u

)

and the 9̇ operator over databases rede�nes theweight function of 9’ (DB1 9̇ θ DB2 “ t d1 ˙θ d2 | d1 P DB1 ^ d2 P DB2 u),
and hence the table relational operation is de�ned as follows:

t ’Tie
θ t “

 @

Speq Y Spe1q, Tpeq ¨Tpe1q, eY e1, wpeq avgktTre, e1, ksu, dtpϕpeq, ϕpe1qq
D
ˇ

ˇ e P t, e1 P t1, θpe, e1q
(

Example

17. Drawing on Example 14 on page 70, we could see that this new operator applied to the same
DHImp will return an empty DHImp, since no join is possible as for each entity there is no entity
linking the two databases via tensors.

77

hypergraph operators

euser

epos

eid

fuser

fpos

fid

{e}

{f}

{e, f}

Figure 5.2: Hypergraph over a data layer (the lower one) and of the mined relations (the upper one). The
edges that link the two layers correlate data with its properties.

78

5.1 hypergraph definition over the three worlds

5.1.4 Pure I-Hypergraph for non data-driven relations

We want to show how in some cases we would like to introduce other relations, that couldn’t
be necessairly represented as binary relations between databases’ entries.

Example

18. Let’s escape from the usual social network domain and let’s discuss about an imaginary table
of people who survived to the Titanic’s shipwreck. Suppose that each entry of this table represent
the complete information of the passengers, that is age, gender, cabin’s class and if they’ve sur-
vived or not, and to establish that all the people belonging to a certain age interval and that were
accommodate in a given class cabin survived.
In order to do this we have the need to express properties over the data, and hence abstract from

the data values, and to collect all the signi�cant values. Moreover, we would like to express a
trinary relation that doesn’t belong to the data, but that is mined and hence hasn’t to be confused
with the original correlations.

Let’s see now a more abstract example involving some real data hypergraphs.

Example

19. Suppose that, given a graph data set expressed in a hypergraph form (see Subsection 2.1.2 on
page 27), we want to de�ne some clusters over the data hyperedges. If we want to use hierarchical
clustering, we would like do be able to do the following things:

• We would like to abstract over the data, in order to say that e P ED forms by itself a base
sub-cluster that is formed by the only element e, and moreover t e u. Hence we would like
to:

– place all the data and the data relations in a DHImpl hypergraph layer

– extend our datatypes with datasets

– perform an abstraction relation between e and t e u

• We want to make clear that the cluster te, f u is made from merging the singlets teu and
t f u altogether, and that such relation does not belong to our initial data. For this purpose,
the second layer will be de�ned as a Pure I-Hypergraph, formed by hyperedges that could

79

hypergraph operators

be interpreted as a set of correlated clauses that de�ne general properties over data. Conse-
quently this layer’s hyperedges won’t satisfy the property (HG2) on page 28, since it won’t
contain any ED hyperedges.

• Given that we’ve de�ned two distinct layers, the abstraction relation between the data e and
t e u will link vertices from di�erent layers: those edges will belong to the so called EL set.

De�nition 5.1.18 (Pure I-Hypergraph). A Pure I-Hypergraph is a simple hypergraphHwhere
all the hyperedges are EE.

De�nition 5.1.19 (Hypergraph for Data Mining). An hypergraph for data mining is de�ned as
the following triple:

HDM “ ph,H, ELq

where h “ pdb, Tq is a DHImpl, H2 is a Pure I-Hypergraph and EL are edges that, given H “

pV , Eq and DBHpdbq “ pED, EEq:

@e P EL.p@p P prevpeq.p P ED Y EEq ^ p@p P nextpeq.p P Eq

5.2 promoting data relations

In this section we want to investigate how we could extract informations from data and “pro-
mote” it to relations among the data.

5.2.1 Expliciting Laplacian data correlation into a matrix form

In Subsection 4.2.1 on page 61 we’ve analyzed the Laplacian form for numerical and non
categorical data: our aim is to extend such operations even for categorical data: this is possible
like showed in [Fre05] whether it is possible to convert it into a index measure that suppose
to have a total ordering over the data2. That is for any categorical data T P T it should be
possible to �nd a “numericizing” function f : T Ñ R such that:

@a, b P T. f paq ď f pbq ô a ĺ b

De�nition 5.2.1 (Numericize). Given a list of numericizing functions t fti uiďn where t ti uiďn Ď

T , we could convert all the categorical types t ti uiďn into numerical types with the same name in
the whole database as follows:

2 See the example of the “occupation” �eld that is used with the Duncan’s prestige scale.

80

5.3 hypergraph databases: a superfluous definition

Numericizet1,...,tnphq “ ρttiuiďnÐttmpiuiďn
pπD

T zt ti uiďn
pCalcD

ftn as tmpn
p. . . CalcD

ft1 as tmp1
phqqqq

Now we could de�ne a correlation function among all the data: we should notice how even
in this case this similarity binary hyperedges EE will have a tED, EDu schema, and then use
the VertexClust function de�ned in Algorithm 4.5 on page 62:

De�nition 5.2.2 (Data correlation layer). The data correlation relation in the tensor T of a
DHImpl h “ pdb, Tq could be expressed as follows:

Tcorrp ft1 , . . . , ftnq “ VertexClustpNumericize ft1 ,..., ftn
pdbApdbqqq

5.3 hypergraph databases: a superfluous definition

At this point, we could be interested in de�ning some operations over hypergraph databases,
as in literature graph-databases are oftenly used (see De�nition 4.1.2 on page 52). Given an
Hypergraph Database HDB “ t dbi, Ti uiďn described as a collection of DHImps, we would
like to de�ne transformations A that provide another HDB as a result:

Apt dbi, Ti uiďnq “ t dbi, Ti uiďm

Since we would like to avoid the repeated data inside each dbi, we would like to de�ne such
database as a p 9

Ť

iďndbi, t Ti uiďnqwhere t Ti uiďn are collections of tensors for binary relations.
At this point, we could collapse all the tensors Ti in a new tensor HT de�ned as follows:

HTri, j, ks “ Tsndpdt´1pkqqri, j, fstpdt´1pkqqs

We could easily see that an HDB could be simply mapped into a DHImp, where the type �eld
k P T could be interpreted as a couple xG, ty which points out the type of the relation and the
graph to which the relation belongs. As a �nal remark, we could be not interested in de�ning
hypergraph databases, since we could map all the information in a single hypergraph.

This brings as a primary result that the de�nition of brand new hypergraph database opera-
tions is avoidable. A similar discussion could be carried out also for HDMs.

81

Part II

H Y P E R G R A P H A P P L I C AT I O N S

6
G S PA N E X PA N S I O N - U S I N G S U B G R A P H M I N I N G F O R O U R G R A P H
D ATA B A S E D E F I N I T I O N

Contents
6.1 Targeting the Subragrph Isomorphism over DHImp 85
6.2 gSpan over DHImp . 87
6.3 gSpan Extended: an implementation . 88

We’ve already seen in Subsubsection 4.1.1.2 on page 54 that gSpan is an algorithm that could
detect the frequent subgraphs t γi uiďn,nPN of a graph database DB “ t Gi uiďm,mPN. We want
to check if we could improve this algorithm by specializing it over our DHImp set of data, since
we’ve already observed that a graph database could be easily mapped to such DHImp.

6.1 targeting the subragrph isomorphism over dhimp

First of all we should consider that we’ve de�ned our graph relations, represented as tensors,
in order to avoid data replication, and hence we have that all the vertices have di�erent values.

De�nition 6.1.1 (Lexicographic Order). Given two tuples ~x,~y : D1 ˆ ¨ ¨ ¨ ˆ Dn, we de�ne the
ĺ lexicographic order ordering as follows:

~x ĺ ~y ô Dk P r1, ns.
`

@j P r1, kq.xj “j yj
˘

^ xk ăk yk

De�nition 6.1.2 (ERTriple). A triple pa, λpbq, cq : ED ˆ TpEEq ˆ ED is an ERTriple for the
DHImp h “ pdb, Tq i�. Tλpbqra, cs ‰ 0. The set of h’s ERTriples is noted as ecodephq.
Considering that for each ERTriple pa, b, cq each component could be represented as a string,

we could de�ne a lexicographic ordering ďc among two ERTriples that is induced by the string
ordering.

We could also see that, given the actual de�nition of DHImp, we cannot have di�erent
edges with the same type k P T , and hence each DHImp’s ERTriple is unique. At this point
we are no more interested in the subgraph isomorphism formulation given in De�nition 4.1.3

85

gspan expansion - using subgraph mining for our graph database definition

on page 52, but we could give the following preliminary de�nition: Given two DHImp h and
h1, we say that h is a subhypergrpah of f 1 (h Ď h1) i�.:

EDphq Ď EDph1q ^ ecodephq Ď ecodeph1q

where in this case EDpdb, Tq fi
Ť

tPdb t.
Drawing on De�nition 4.1.3 on page 52, we would like to map a relation in ecodephq to

its twin one in h1: no other isomorphisms are considered interesting, since we are concerned
in �nding a subgraph of a given graph where, in both representations, all the vertices are
unique and where only a single instance of an edge between the same two vertices and with
a given type k is allowed. Moreover, this implies that the mapping function f of the subgraph
isomorphism in which we are interested is simply de�ned as an identity function (f pvq “ v).

Since for each DHImpl h’s admissible ERTriple pa, b, cq P ecodephq we have that a, b P
EDphq, we have that, if ecodephq Ď ecodeph1q for some other DHImpl h1, we could have by
de�nition that EDphq Ď EDph1q.

Hereby we could reduce the previous narrow de�nition in this more compact result:

Lemma 6.1 (Narrow DHImpl Subhypergraph isomorphism). Given two DHImp h and h1, we
say that h is a subhypergrpah of f 1 (h Ď h1) i�. ecodephq Ď ecodeph1q.

At this point we could reduce the ecodephq Ď ecodephq check cost to a string matching if
we consider ecodephq and ecodeph1q as ordered sets. We could hereby de�ne the following
simple Java algorithm:�
public boolean subgraphOf(List<ERTriple> sub, List<ERTriple> sup) {

if (sub == null)

return true;

else if (sup == null)

5 return false;

while (!sub.isEmpty()) {

while ((!sup.isEmpty()) && (!sub.get(0).equals(sup.get(0)))){

if (sup.size()>1)

sup = sup.subList(1, sup.size());

10 else

sup = new LinkedList<>();

}

if ((sup.isEmpty()) && (!sub.isEmpty()))

return false;

15 //System.out.println(subI.hasNext()+" "+supI.hasNext());

while ((!sub.isEmpty()) && (!sup.isEmpty()) && sub.get(0).equals(sup.get(0))){

if (sub.size()>1)

sub = sub.subList(1, sub.size());

else

20 sub = new LinkedList<>();

if (sup.size()>1)

sup = sup.subList(1, sup.size());

else

86

6.2 gspan over dhimp

25 sup = new LinkedList<>();

}

}

return true; // sub == empty is a subgraph

}� �
This algorithm has optimal complexity, since it could be computed in linear time (Op|sup|q).

This means that the frequency support function given in De�nition 4.1.4 on page 54 could be
computed with a time complexity linear in the size of the graph database (Op|DB|q) that, in
this case, could be directly mapped in a single DHImp. As we are reduced to a particular case of
graphs over which perform the subgraph mining, we cut the time complexity of a potentially
NP-complete problem to a linear one.

6.2 gspan over dhimp

We’ve already seen that the previous considerations reduced the overall complexity of sub-
graph isomorphism to a simple ordered string matching problem via the DHImp de�nition.

Algorithm C.9 on page 157 provides a partial Java implementation of the pseudocode pro-
vided in Algorithm 4.2 on page 55: we could see that we didn’t implement the n ‰ minD f sCodepnq
test because we preferred to provide such pruning check in getRightmostExpansions (see
Algorithm C.10 on page 158). In this method we perform a DFS visit of the rightmost path
of the graph (Opdq, where d is the maximum depth reachable explorign the graph) and then
filterTriplesForExpansion removes the edges that could break the rightmost path. This
check is necessary as it provides the creation of isomorphic subgraphs, as explained in [Sam+13].
The introduction of the depth_search parameter is also useful to de�ne the upper bound of
the size of the mined frequent subgraphs.

We could now analyze the theorical time complexity of the proposed solution in the light of
new knowledge and of the previous results; drawing on the theorical implementation o�ered
in Algorithm 4.2 on page 55, we have that the most extern cycle iterates over |Ξ| elements,
while the rightmost expansion has the computational cost of:

inpiq “

$

&

%

|Ξ|p|DB| ` inpi´ 1qq i ą 1

|Ξ||DB| ` c i “ 1.

that is Op|Ξ|i|DB|q: this provides an overall time complexity of Op|Ξ|i`1|DB|q.

We could observe that this result couldn’t be applied to all the data structures that could be
represented as graphs, since not all the data could be represented with unique labels (i. e. chemical
databases, where each atom could be can appear multiple times within the same molecule). By
the way, we’ve developed this solution not for some other general contexts, but for a speci�c
scenario, that is the representation of the OSN data in an informatic context. It is our opinion
that other speci�c contexts could require di�erent data structures where the optimizations here
presented are not necessarily possible.

87

gspan expansion - using subgraph mining for our graph database definition

6.3 gspan extended: an implementation

Our gSpanExtended library (https://github.com/jackbergus/gSpanExtended) provides
an implementation of the previously de�ned algorithm. An overview of this algorithm is pro-
vided by Algorithm C.7 on page 151.

88

https://github.com/jackbergus/gSpanExtended

7

H Y P E R G R A P H F O R D ATA M I N I N G I M P L E M E N TAT I O N S

Contents
7.1 De�ning the data structures in R . 89

7.1.1 Tables and Table Records . 89
7.1.2 Implementing the operators . 91
7.1.3 Some examples . 91

7.2 De�ning the whole DHImp in Java . 92
7.2.1 A brief example . 95

After having showed the proposed implementation of the hypergraphs for data mining, we
want to suggest an implementation in R. We suggest to read Chapter B on page 135, since this
implementation uses a simple R extension of our design in order to add a simple type system inside
the language.

7.1 defining the data structures in r

7.1.1 Tables and Table Records

Let’s de�ne the e “ xSpeq, Tpeq, Dpeq, wpeq, ϕpeqy structure for a record.

• Speq: A schema is a list of types, and then it could be simply de�ned as:�
Schema <- new.Subtype("Schema",function(ls) prod(sapply(ls,function(x) is.Kind(x)))

,List)� �
• Tpeq: A type is de�ned as a string, and hence we could easily extend the de�nition of

the String type as follows:�
DType <- new.Subtype("DType",function(ls) T,String)� �

• Dpeq: The data is simply de�ned as a list of values. In order to check if the data re�ects
the schema, we have to de�ne the isInSchema in order to de�ne the consistency of the
record as follows:

89

hypergraph for data mining implementations

�
isInSchema <- function(ls,S) prod(mapply(function(x,y) x$isType(y),S,ls))

is.Record <- function(r) {

if (!Schema$isType(r$S))

print("Not a Schema")

5 if (!DType$isType(r$Ty))

print("Not in Type")

if (!isInSchema(rD,rS))

print("Data not in schema")

if (!is.numeric(r$w))

10 print("Weight is not numeric")

if (!is.bigz(r$phi))

print("Phi is not big int")

return(Schema$isType(r$S) && DType$isType(r$Ty) && isInSchema(rD,rS) &&

is.numeric(r$w) && is.bigz(r$phi))

}

15

Record <- new.Type("Record",is.Record)

Creates a new record if the type is correct

initList <- function(S,Ty,D,w,i) list(S=S,Ty=Ty,D=D,w=w,phi=i)

20 new.Record <- function(S,Ty,D,w,i) {

ls <- initList(S,Ty,D,w,i);

if (Record$isType(ls)) {

return(ls)

} else {

25 return(NULL)

}

}� �
• wpeq: the weight is implemented for the moment as a simple numeric value, that could

be extended in the future as a vector storing di�erent kind of values.

• ϕpeqThe indexing value of each table entry is implemented using an R wrapping [Luc+13]
for the gmp library for de�ning integers with arbitrary precision and another wrapping
[Mae13] over mpfr that makes some operations (such as square roots with numbers with
arbitrary precision) available.

A table t is here de�ned as a xSptq, Tptq, Dptqywhere Dptq is a list of rows with all the same
schema Sptq and type Tptq:�
Table <- new.Type("Table",function(x) {

Schema$isType(x$S) &&

DType$isType(x$Ty) &&

#Heavy check: problem: i have to do lapply and then unlist... :(

5 prod(unlist(lapply(x$dTable,function(row) {

is.Record(row) && (row$S %==% x$S) && (row$Ty %==% x$Ty)

}))) }

)

new.Table <- function(S,Ty,lis) {

90

7.1 defining the data structures in r

10 ls <- list(S=S,Ty=Ty,dTable=lis)

if (Table$isType(ls))

return(ls)

else

return(NULL)� �
In the R algebra implementation we stop at the DHImp, that is the tensor-database rep-

resentation of an hypergraph with only binary relations. The tensor is simply de�ned as a
three-dimensional array, and hence we could provide the �nal data structure implementation
as:�
new.Tensor <- function(ndata,layers) {

return(array(0,dim=c(ndata,ndata,layers)))

}

5 new.DHimpl <- function(db,ten) {

return(list(db=db,t=ten))

}� �
7.1.2 Implementing the operators

Given these �rst de�nitions, we could implemented as done in Algorithm C.3 on page 143
the operations for lists of rows: these de�nition are the base for the table de�nitions provided
next in Algorithm ?? on page ??. By the way R doesn’t seem a very good language over which
implement complex data structures and algorithms, since its typecast and the collection un-
listing utilities are so naïve that became hard to handle for nested structures. Moreover, the
resulting code becomes very hard to read and handle.

7.1.3 Some examples

Lets de�ne a siple hypergraph database where we use some basic numeric types:�
Num1 <- new.Subtype("num1",function(x) T,Numeric)

Num2 <- new.Subtype("num2",function(x) T,Numeric)

Num3 <- new.Subtype("num3",function(x) T,Numeric)

Num4 <- new.Subtype("num4",function(x) T,Numeric)

5 Num5 <- new.Subtype("num5",function(x) T,Numeric)

Num6 <- new.Subtype("num6",function(x) T,Numeric)� �
As a second step, we could de�ne a table named dtable1, where the third �eld of new.Record

de�nes the data that should be stored inside the data row. The last �eld is the row id, where
each row is seen as an single entity inside the whole database.�
Defining table dTable1

r1 <- new.Record(list(Num1,Num2,Num3),"Elem",list(1,2,3),1,as.bigz(1))

r2 <- new.Record(list(Num1,Num2,Num3),"Elem",list(1,2,6),1,as.bigz(2))

91

hypergraph for data mining implementations

r3 <- new.Record(list(Num1,Num2,Num3),"Elem",list(1,4,3),1,as.bigz(3))

5 dtable1 <- list(r1,r2,r3)

tab1 <- new.Table(list(Num1,Num2,Num3),"Elem",dtable1)

db1 <- list(tab1)� �

that is:

Num1 Num2 Num3

1 2 3
1 2 6
1 4 3

We could also another table which is formed by only one entity:�
r1b<- new.Record(list(Num4,Num5,Num6),"Ele2",list(1,2,3),1,as.bigz(4))

tab2 <- new.Table(list(Num4,Num5,Num6),"Ele2",list(r1b))

db2 <- list(tab2)� �

that is:

Num4 Num5 Num6

1 2 3
1 2 6
1 4 3

Now we could de�ne two tension layers, ten and nal, as follows:�
ten <- new.Tensor(4,1)

ten[1,2,1] <- 0.5

ten[1,1,1] <- 0.8

ten[3,1,1] <- 1

5 ten[3,1,1] <- 0.6

ten[3,3,1] <- 0.4

nal <- new.Tensor(4,1)

nal[4,4,1] <- 1� �
In this simple R implementation we suppose to provide a single tensor to each DHImp, and

hence we could provide the following simple implementation:�
h1 <- new.DHimpl(db1,ten)

h2 <- new.DHimpl(db2,nal)� �
7.2 defining the whole dhimp in java

Our library hypergraphalgebra (https://github.com/jackbergus/hypergraphalgebra)
provides an implementation of the previously de�ned algebra, in order to give a proof of con-
cept of how the hypergraph computation could be carried out. In this case each tuple has an
associated schema which is de�ned by the classes of the objects used inside the tuple.

92

https://github.com/jackbergus/hypergraphalgebra

7.2 defining the whole dhimp in java

�
public class Tuple {

private Class classes[];

private Object elems[];

5 double w;

BigInteger index;

public Tuple(Class... clazzes) {

classes = clazzes;

10 elems = new Object[clazzes.length];

}

public double getWeight() {return w;}

public void setWeight(double d) { w = d; }

15 public BigInteger getIndex() { return index; }

public void setIndex(BigInteger i) { this.index = i; }

public Class[] getSchema() { return classes; }

public Tuple(double weight, BigInteger index, Object... objs) {

20 elems = objs;

classes = new Class[objs.length];

for (int i=0; i<objs.length; i++) {

classes[i] = objs[i].getClass();

}

25 w = weight;

this.index = index;

}

/* missing code */

30

}� �
Each table is de�ned is viewed from the programmer point of view as a List<Tuple> with a

same schema classes, even if the underlying implementation uses a Map to provide a prompt
access to each entry.�
public class Table implements List<Tuple> {

private Class classes[];

private String tName;

5 private BigInteger countFrom;

private Map<BigInteger,Tuple> tupz;

public static BigInteger ERROR = new BigInteger(Integer.toString(-1));

public Set<BigInteger> getAllKeys() {

10 return tupz.keySet();

}

public Table(String name, Class ... clazzes) {

this.classes = clazzes;

93

hypergraph for data mining implementations

15 tupz = new HashMap<>();

tName = name;

countFrom = BigInteger.ZERO;

}

20 public Table(String name, BigInteger startIndex, Class ... clazzes) {

this.classes = clazzes;

tupz = new HashMap<>();

tName = name;

countFrom = startIndex;

25 }

/*missing code*/

}� �
The database is implemented as a simple Map between relation names and their tables:�

public class Database implements Map<String,Table> {

private Map<String,Table> db;

5 public Database() {

db = new HashMap<>();

}

public Database(Map<String,Table> database) {

10 db = database;

}

/* missing code */

}� �
Even the tensors are implemented with a Map between the layer name and the actual ITensorLayer

layer implementation; in our code we implemeted the binary relations via Guava1 Tables, that
permit a sparse representation of the matrices. DHImp is simply implemented as a couple
between a relational database and a tensor:�
public class DHImp<T extends ITensorLayer> {

private Database first;

private final Tensor<T> second;

5

public DHImp(Database db, Tensor<T> tensor) {

first = db;

second = tensor;

}

10

public Database getDB() {

return first;

1 https://code.google.com/p/guava-libraries/

94

https://code.google.com/p/guava-libraries/

7.2 defining the whole dhimp in java

}

public Tensor<T> getT() {

15 return second;

}

public Class<T> getTClass() {

return second.getLayersClass();

20 }

}� �
At this point we could de�ne some interfaces in order to de�ne the functional behaviour

of our operators:

• IPhi interface provides the f function for the reindexing function Φ (see De�nition 3.3.1
on page 44).

• IMapFunction interface provides the implementation of the
À

function used in Γ (see
De�nition 3.2.1 on page 39).

• IJoinProperty interface provides the implementation of the binary property used in ’

operations.

• ICalc<Return> interface permits to calculate the value to be nested inside each database
entry as required by Calc de�nition (see De�nition 3.2.1 on page 39).

Section C.3 on page 146 shows how some relational operators are implemented.

7.2.1 A brief example

The code needed for check the result in Example 17 on page 77 could be simply reproduced
using this library by executing the following code.�

Table one = new Table("t1",Dovetailing.index(1),String.class, Integer.class,Double.

class);

one.addRow(0.1, "A",2,4.0);

one.addRow(0.2, "B",8,10.0);

one.addRow(0.3, "C",15,20.0);

5 one.addRow(0.4, "A",28,3.0);

one.addRow(0.5, "C",1,3.0);

Table two = new Table("t1",Dovetailing.index(6),String.class, Integer.class,Double.

class);

two.addRow(0.2, "A",7,11.0);

10 two.addRow(0.1,"A",2,4.0);

Database db1 = new Database();

db1.add(one);

Database db2 = new Database();

95

hypergraph for data mining implementations

15 db2.add(two);

BinaryRelationsTensor tensor1 = new BinaryRelationsTensor();

tensor1.set(1, 1, "A", 0.1);

tensor1.set(1, 3, "A", 0.3);

20 tensor1.set(2, 2, "A", 0.2);

tensor1.set(2, 4, "A", 0.5);

tensor1.set(2, 5, "A", 0.1);

tensor1.set(3, 3, "A", 0.5);

tensor1.set(3, 4, "A", 0.6);

25 tensor1.set(4, 1, "A", 0.1);

tensor1.set(4, 4, "A", 0.2);

tensor1.set(5, 2, "A", 0.3);

tensor1.set(5, 5, "A", 0.5);

30 BinaryRelationsTensor tensor2 = new BinaryRelationsTensor();

tensor2.set(6,7,"A",1);

tensor2.set(7,6,"A",1);

DHImp<GuavaBinaryTensorLayer> dh1 = new DHImp<>(db1,tensor1);

35 DHImp<GuavaBinaryTensorLayer> dh2 = new DHImp<>(db2,tensor2);

HypergraphOperations<GuavaBinaryTensorLayer> go = new HypergraphOperations<>();

result = go.HLeftTiedJoin(dh1, new IJoinProperty() {

@Override

40 public boolean property(Tuple left, Tuple right) {

return (left.get(0).equals(right.get(0)));

}

}, dh2);

45 for (com.google.common.collect.Table.Cell<BigInteger, BigInteger, Double> cell:

result.getT().get("A").getValueRange()) {

System.out.println(cell);

}

for (Tuple x:result.getDB().get("t1|><|t1")) {

System.out.println(x);

50 }

System.out.println("~~");� �

96

8

S E N T I M E N T A N A LY S I S O V E R T I M E

Contents
8.1 De�nitions . 97
8.2 Twitter Data Extraction . 99

8.2.1 Trend Mining . 103
8.2.2 Users and Users’ timeline . 103

8.3 Data Manipulation . 104
8.3.1 Analyzing small datasets (movie reviews) 104
8.3.2 Data Mining “in the large” (or, Training the algorithm with Twit-

ter datasets) . 104

Sentiment Analysis is “ the computational study of people’s opinions, appraisals, attitudes,
and emotions toward entities, individuals, issues, events, topics and their attributes ” [LZ12], and
more speci�cally a Data Mining �eld of study. Its aim is to use text mining techniques, such
as Supervised 1 or Unsupervised 2 learning for arti�cial intelligence techniques, compile
a opinion lexicon via a dictionary-based (i. e. using an online dictionary) or a corpus-bases
(i. e. �nding syntactic or cooccurrence patterns over a large corpus of documents), and also
some spam detection techniques.

In the current chapter, we’ll study how to implement the logical overview provided by [LZ12]
in a hypergraph implementation.

8.1 definitions

De�nition 8.1.1 (Entity). A sentiment analysis’s entity[LZ12] is the subject of investigation for
which it is interesting to gather some opinions. It’s de�ned by a hierarchy of components and
subcomponents T and a set of attributes E.

1 Supervised learning uses “algorithms that guide the training process of the [neural] network by taking in account the
desired answer that the network should provide for a given set of training patterns” [FM08].

2 Supervised learning uses “algorithms that allow the network to extract statistically signi�cant information from the
distribution of the input patterns or to memorize and reconstruct those input patterns” [FM08].

97

sentiment analysis over time

Given this, we must express T and E in a hypergraph database. Given the considerations
provided in Subsection ?? on page ??, we could observe that the taxonomy T of a given entity
should be implemented with hypergraph relations that express the subtyping relation ă : .

De�nition 8.1.2 (Entity Hierarchy over Hypergraphs). Given an entity e based of components
c (c ă : e) and subcomponents (Dc.c ă : e ñ s ă : c) expressed with relations τpa ă : bq “ r
where:

˛ r “ t a, b u

˛ T prq “ part-of

The attributes over each entity and its components or subcomponents are expressed with relations
τpa.µq “ r where:

˛ r “ t µ, a u

˛ T prq “ attribute-of

The entity e is collcated at the center of this hierarchy.

From this de�nition, we must also see that the entities must be implemented as ordered sets,
otherwise we could state that both a ă : b and b ă : a hold. Similar observations could be
given for the a.µ implementation.

At this point, given a generic document (e. g. a tweet), we are interested to implement a
opinion relation drawing on the one provided by [LZ12]:

De�nition 8.1.3 (Opinion). An opinion is expressed as a quintuple

pei, aij, ooijkl , hk, tlq

where ei is the name of an entity, aij is an aspect of ei , ooijkl is the orientation of the opinion about
aspect aij of entity ei , hk is the opinion holder, and tl is the time when the opinion is expressed
by hk . The opinion orientation ooijkl can be positive, negative or neutral, or be expressed with
di�erent strength/intensity levels. When an opinion is on the entity itself as a whole, we use the
special aspect GENERAL to denote it.

Given the De�nition 8.1.2, we could see that is not necessary to specify that aij belongs
to ei, inasmuch as the part-of and attribute-of carry out this task. We consequently assume
that di�erent entities have di�erent attributes or components/subcomponents, otherwise some
opinions on certain entities could be wrongly inherited by entities with same subcomponents.
We can therefore establish that two entities can share the same components, sub-components or
attributes if and only if these are exactly the same elements (e. g. they are of the same trademark
and model), and do not only perform the same task (e. g. they are both camera lens).

At this point, we could model what a general document instance d is:

98

8.2 twitter data extraction

De�nition 8.1.4 (Document over Hypergraphs). A document hyperedge is an entity d of id
did which contains some information i, it has been produced in a time t and belongs to an user h:

d “ pi, t, h, didq T pdq “ document

This relation could be arbitrarly extended with some geolocation information or other attributes.
In particular, i could be a common vertex (e. g. an id vertex) that links the document to an contents
hyperedge.

Hereby, we could easily provide an opinion implementation over hypergraphs:

De�nition 8.1.5 (Opinion relation over Hypergraphs). An opinion hyperedge is a relation:

o “ pe, oo, didq T poq “ opinion

where e is an entity, oo is an opinion value, and did is the document’s id where such opinion is
expressed.

Given the latter de�nition, we could easily accomplish the desired and described implemen-
tation of an opinion summary in [LZ12], by showing the hypergraph of the entity hierarchy
enriched with its related opinions.

8.2 twitter data extraction

R is a tool used by data miners3 in order to obtain statistical reports and analyze the data.
Recenlty a book on this subject ([Zha13]) has been published on this subject, which points out
how this tool could be also used for dowload Twitter data, and also to process the tweets with
Text Mining tools: all this is possible via libraries, that extend the programming language.

Given that R has some libraries that implement relational algebra [MH13] over data frames4,
provides a library (twitteR [Gen13]) for download data from Twitter, for carrying out Senti-
ment Analysis (sentiment [LZ12]) and to implement and visualize hypergraphs (hyperdraw
[Mur13]), we choose to analyze in depth this tool, in order to have subsequently a common
language over witch operate benchmarking over operation’s execution.

Since the library twitteR that download Twitter data uses the libcurl native library, in
order to install R, we should provide the following shell command:�
sudo apt-get install R libcurl4-gnutls-dev� �

After that, we could open the R interpreter with superuser privileges, and then install some
useful R libraries.

3 See http://www.rexeranalytics.com/Data-Miner-Survey-Results-2011.html and http://java.

sys-con.com/node/2288420.
4 A data frame is a tabular representation a collection of instantiations of a same given relation. More precisely, “is
a list, with each component of the list being a vector corresponding to a column in our “matrix” of data” [Mat11].

99

http://www.rexeranalytics.com/Data-Miner-Survey-Results-2011.html
http://java.sys-con.com/node/2288420
http://java.sys-con.com/node/2288420

sentiment analysis over time

�
install.packages("twitteR") # Twitter Data download

install.packages("tm") # Text mining tools

install.packages("SnowballC") # Library needed by tm� �
With a second step, we could visit https://dev.twitter.com/ in order to create a new

application, in order to obtain some consumer Key and consumer Secret useful for the application
itself. After that, we could authenticate in R in order to access the Twitter database.�
library(RCurl)

library(twitteR)

library(ROAuth)

5 requestURL <- "https://api.twitter.com/oauth/request_token"

accessURL = "http://api.twitter.com/oauth/access_token"

authURL = "http://api.twitter.com/oauth/authorize"

consumerKey = "rMr3dUlgAzD52PWyrVxbZA"

consumerSecret = "U2QNmShCryW51OvAyv0PXA9hWsurXrCejkCq41Ec"

10 Cred <- OAuthFactory$new(consumerKey=consumerKey,

consumerSecret=consumerSecret,

requestURL=requestURL,

accessURL=accessURL,

authURL=authURL)

15 #The authentication procedure will provide a link, where to authorize the application to

using your twitter account, and hence provide the application a PIN number requested

accomplish the authentication.

Cred$handshake(cainfo = system.file("CurlSSL", "cacert.pem", package = "RCurl"))

registerTwitterOAuth(Cred)� �
After inserting the pin, we could query the database, and hence obtain all the tweets that

contain the word "Beethoven".�
tw <- searchTwitter("Beethoven",n=30)� �

At this point, we could export this twitter list in a tabular form like this:�
db <- twListToDF(tw)� �

This command could be useful to obtain also the data referring to the users, and we could
also export this data in a csv �le with the following command:�
write.csv(file="/path/to/file.csv",x=db)� �

From now on, we’ll assume that the default DBMS used will be a PostgreSQL one. At this
point, we could also de�ne a SQL table to store tweets with the following table:�
\begin{sql}

Create Table Users(

R_id INT NOT NULL,

text TEXT not null,

5 favorited boolean NOT NULL,

favoriteCount INT NOT NULL,

100

https://dev.twitter.com/

8.2 twitter data extraction

replyToSN INT,

truncated boolean not null,

replyToSID boolean,

10 id INT NOT NULL PRIMARY KEY,

replyToUID int,

statusSource TEXT not null,

screenName TEXT NOT NULL,

retweetCount INT NOT NULL,

15 isRetweet boolean not null,

retweeted boolean not null,

longitude float(24),

latitude float(24)

);� �
All the CSV could be imported in PostgreSQL via the following command:�

COPY Users FROM ’/home/gyankos/testcsv.csv’ DELIMITER ’,’ CSV;� �
In order to do some Text Analysis in R, we need to install the tm library and the SnowballC

for the Stemming. We could start to process the twitter data corpus by invoking the following
function:�
db$text <- Corpus(VectorSource(db$text))� �

At this point, before performing some stemming operations over the tweet data, we could
be interested to obtain all the links, the hashtags and the referrals that could be subsequently
removed. In order to do this, we could de�ne two functions, that could de�ne associations
between tweet id and links, hashtags and mentions that are contained.�
df1 = function(x,y) data.frame(post_id=c(x),has_url=c(y))

df2 = function(x,y) data.frame(post_id=c(x),has_reference=c(y))

df3 = function(x,y) data.frame(post_id=c(x),has_hashtag=c(y))� �
Subsequently, given a data frame5 x and a Twitter data frame db, we could provide the

following function that doesn’t update x, but provides as a return value an updated version of
the previous.�
has_links_relation <- function(x,db) {

for (i in 1:length(db$id)) { # For each post...

regex <- gregexpr("http://(\\S+)",db$text) # ... extract the url position

if (regex[[i]][1] != -1) # If a url was found ...

5 for (j in 1:length(regex[[i]])) { # ... For each url found

#get the string termination index

getattr <- attr(regex[[i]],"match.length")[j]

getsubstr <- substr(db$text[[i]],regex[[i]][j],regex[[i]][j]+getattr-1)

Update the x copy with a new data frame, i.e. a new relation between url and tweet

id

10 x <- rbind(x,df1(db$id[[i]],getsubstr))

5 A data frame “is used for storing data tables” via “a list of vectors of equal length”. http://www.r-tutor.com/
r-introduction/data-frame

101

http://www.r-tutor.com/r-introduction/data-frame
http://www.r-tutor.com/r-introduction/data-frame

sentiment analysis over time

}

}

x

}� �
We could de�ne similar functions for retreiving user mentions and hashtags by simply chang-

ing the regular expression.�
has_communication_with <- function(x,db)

{

for (i in 1:length(db$id)) {

regex <- gregexpr("@(\\S+)",db$text)

5 if (regex[[i]][1] != -1)

for (j in 1:length(regex[[i]])) {

getattr <- attr(regex[[i]],"match.length")[j]

getsubstr <- substr(db$text[[i]],regex[[i]][j],regex[[i]][j]+getattr-1)

x <- rbind(x,df2(db$id[[i]],getsubstr))

10 }

}

x

}

15 has_hashtag <- function(x,db)

{

for (i in 1:length(db$id)) {

regex <- gregexpr("#(\\S+)",db$text)

if (regex[[i]][1] != -1)

20 for (j in 1:length(regex[[i]])) {

getattr <- attr(regex[[i]],"match.length")[j]

getsubstr <- substr(db$text[[i]],regex[[i]][j],regex[[i]][j]+getattr-1)

x <- rbind(x,df3(db$id[[i]],getsubstr))

}

25 }

x

}� �
All this data frames are exportable as CSV tables by the previously given command�

write.csv(file="/path/to/file.csv",x=df)� �
where df is the exported data frame.

It is also possible to obtain tweets from a given user id, by invoking the following function:�
userTimeline("gyankos",n=100)� �
where n stands for the number of tweets that should be used.

102

8.2 twitter data extraction

8.2.1 Trend Mining

twitteR gives also some facilities to perform some trend mining. For example, we could be
interested to �nd which trends are available in a given area. For example, we could provide
some geographic coordinates in order to obtain the woeid6 and next obtain the desired trends:�
t <- closestTrendLocations(44.49428,11.34677)

print(t$woeid)

getTrends(t$woeid)� �
with the function availableTrendLocations(), could provide the locations of some places
around the world that have some trends, in order to subsequently use the getTrends with the
region’s woeid.

8.2.2 Users and Users’ timeline

It is also possible to retreive data from a user’s timeline. We could use the function userTimeline

in order to retreive all the tweets of a given user.�
t <- userTimeline("gyankos",n=100, includeRts=TRUE)� �
Similarly, all this tweets are collected in data frames, which could be exported in a csv format.
By the getUser function, we could also retreive some informations about the Twitter users,
which SQL table could be represented as follows:�
Create Table Users(

R_id INT NOT NULL,

description TEXT not null,

statusesCount INT NOT NULL,

5 followersCount INT NOT NULL,

favoritesCount INT NOT NULL,

friendsCount INT NOT NULL,

url TEXT not null,

name TEXT not null,

10 created TEXT not null,

protected boolean not null,

verified boolean not null,

screenName TEXT not null,

location TEXT not null,

15 ID INT NOT NULL PRIMARY KEY,

listedCount INT NOT NULL,

followRequestSent boolean not null,

profileImageUrl TEXT not null

);� �
6 woeids are geographical identi�cations assigned by Yahoo! http://developer.yahoo.com/geo/geoplanet/

guide/concepts.html

103

http://developer.yahoo.com/geo/geoplanet/guide/concepts.html
http://developer.yahoo.com/geo/geoplanet/guide/concepts.html

sentiment analysis over time

5 10 15 20 25

0.
70

0.
73

0.
76

tests

ac
cu

ra
cy

Figure 8.1: Accuracy testing over Algorithm C.13 on page 163.

8.3 data manipulation

8.3.1 Analyzing small datasets (movie reviews)

Let’s analyze the following algorythm: it uses a simple algorithm that, after stemming all
the document set of positive and negative posts7, collects the positive and negative lexicon
vocabulary8 and then tries to check if the �rst positive document has more positive words
than negative ones, and vice versa (see Algorithm C.11 on page 160).

By using a slightly di�erent version, that is using a dictionary (AFINN-111.txt) with ranked
words basing on their negativity or positivity9, the reliability slightly decreases (see Algo-
rithm C.12 on page 161).

At this point, we could use the k-nearest neighbor algorithm to train the corpus, and ignoring
the vocabulary set. In this case, the accuracy increases from 62% to 76%, as showed in Figure 8.1.

With this other implementation, where we remove those data columns that don’t appear
in the AFINN-96.txt weighted dictionary, obtaining as a best result an accuracy of 82.7%. If
we change the dictionary with the AFINN-111.txt, a slight and negligible variation on the
accuracy is acheived (82.83%. See Figure 8.2 on the next page).

8.3.2 Data Mining “in the large” (or, Training the algorithm with Twitter datasets)

In real case data, we want to detect the following situations:

7 The data used is the one provided for movie reviews downloadable at http://www.cs.cornell.edu/people/
pabo/movie-review-data.

8 http://www.cs.uic.edu/~liub/FBS/opinion-lexicon-English.rar

9 http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6010. This Url provides also the
AFINN-96.txt database.

104

http://www.cs.cornell.edu/people/pabo/movie-review-data
http://www.cs.cornell.edu/people/pabo/movie-review-data
http://www.cs.uic.edu/~liub/FBS/opinion-lexicon-English.rar
http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6010

8.3 data manipulation

5 10 15 20 25

0.
78

0.
81

tests

ac
cu

ra
cy

(a) Results with AFINN-96 dictionary

5 10 15 20 25

0.
77

0.
80

0.
83

tests

ac
cu

ra
cy

(b) Results with AFINN-111 dictionary

Figure 8.2: Accuracy testing over Algorithm C.14 on page 165 with AFINN-96 dictionary and AFINN-111.

105

sentiment analysis over time

˛ We should check if the �ltered data becomes a signi�cant training set or not (e. g. ig the
resulting data set is formed of all positive or negative valuations)

˛ We should detect not also positive or negative thoughts, but also posts

106

9

S O C I A L N E T W O R K F O R E N S I C S

Contents
9.1 Data Localization . 107

At this point, we could also provide another case study where this relational algebra over
hypergraphs could be useful. In particular, we could be interested to analize Social Network
data in order to retreive some informations that could be used by investigators in order to
solve (e. g.) a crime. In this chapter, we will hereby show how this information could be mined
through the R language, by using some already existing libraries.

9.1 data localization

Given a generic Tweet database db, we could easily plot our data by using the following
script, which produces the map showed in Figure 9.1 on the following page:�
library(maps) #load the libraries

library(mapdata)

svg(filename="svg_plot.svg",width=8,height=8,pointsize=12) #prepares a svg output

map("italy",fill=TRUE,col="green") #Italian geolocation

5 points(db$longitude,db$latitude,col="red") #plot the points

dev.off() #closes the svg device� �
At this point, it could be possible to cluster all the data using some clustering algorithms

that are implemented as libraries for the R language. There could be many possible ways to
cluster such data:
˛ Identifying regions (i. e. geographical clusters) by criteria of proximity.

˛ Identifying regions for k clusters.
At this point, it could be more useful to retreive data by invoking a simple query, inasmuch

as we could potentially not know how this data is distributed over the space.
Identifying regions by proximity could be used to collect all the servicies that could be pro-

vided in a region of radius θ from an user p current location expressed in geographical coordi-
nates plat, longq.

107

social network forensics

Figure 9.1: Plotting Twitter geolocations drawing on tweets’ geotagging.

108

9.1 data localization

Since the dbscan algorithm([Zha13; TSK05]) uses also a µ parameter, which expresses that
in a given area of θ radius there must be at least µ points, it would be more interesting to obtain
even a small set ă µ points: this request will trivially satisfy the query that an object u must
be at most distance θ from p:

σD
u ÞÑρpp,uqďθpdhimpq

We could also update the original graph by operating:

σD
u ÞÑρpp,uqďθpdhimpq ’ dhimp

At this point, we would also like to obtain this cluster for a set of P users, in order to �nd
their most θ-near points. In particular, we could see that we could express a more general form
of this query in this way:

ρT
rulatÐlat,ulongÐlongspσe ÞÑTpeq“userspdhimpqq ’p,u ÞÑρppp.ulat,p.ulongq,pu.lat,u.longqqďθ σe ÞÑTpeq“objectspdhimpq

This particolar query doesn’t need any clustering algorithm, given that we don’t need to
discover new data, but to �nd the most proximate values to a given point.

At this point, we could be interested to retreive some data which could be retreived in a given
geographical position, ad that could be posted until a given time. For that reason, we could
be interested to specify the following arguments with the searchTwitter function already
discussed on Section 8.2 on page 100:

˛ set the since and until parameters, in order to give a speci�c interval time;

˛ set the geocode parameter to choose only the tweets sended in a given region. In partic-
ular, as given by the [Gen13] guide:

For the geocode argument, the values are given in the format ‘latitude,longitude,radius’,
where the radius can have either mi (miles) or km (kilometers) as a unit. For ex-
ample geocode=’37.781157,-122.39720,1mi’.

For example, we could want to retreive all the tweets produced from the center of Bologna
in a radius of 20km:�
t <- searchTwitter("",geocode="44.49428,11.34677,20km")� �
Or even some genuine tweets about Ferrara’s Salama da Sugo:�
t <- searchTwitter("salama",geocode="44.83802,11.61948,20km")� �

109

Part III

E P I L O G U E

10
P O S T FA C E

The main aim of this thesis was to provide for the �rst time a systematic de�nition of hyper-
graph algebirc operators, that include querying and data modi�cation operations. There is not
a standard de�nition of those operators, and hence we’ve tried do give an implementation that
is similar to the classical relational operators de�nitions. At this point we could consider the
need of implementing all the datamining operations de�ned in [Cal+06], and then eventually
evaluate the expressive power of our language. It could be also interesting to analyse the time
complexity of those operations and to check how such operations could be parallelized.

Drawing on a pre-existing algebra for datamining, we’ve also �rstly introduced an algebra
for datamining over hypergraphs, by providing a partial implementation over this new kind of
data structure, that is the DHImp. We could observe that the de�nition of such hypergraphs
as a couple formed by a database and a set of matrices, makes possible in the near future to im-
plement such structure by using some preexistente technologies (standard relational databases
and matrix algorithms) and makes many graph problems embarrassingly parallel.

Although R provides a lot of statistical libraries for data mining and Java provides a system to
allow parallel computations via MapReduce (see Appendix A on page 115), we think it is more
useful to develop a system that could provide both statistical utilities and parallel computations
in a same environment.

Since we have the aim to implement the hypergraph data structure with a framework for
querying data, we should also evaluate which is the best language over which develop our
future code; functional programming languages allow a more simple implementation of rela-
tional operations and queries but are harder development environments: sometimes there is a
poor variety of libraries from which to choose the best one. Some functional libraries by the
way provide distributed facilities and implement the MapReduce programming model1.

A possible future expansion of this thesis could be the extension of the tensors for binary rela-
tions to tensors for general relations: this has the consequence that we will have to distinguish
the square matrices for binary relations from the rectangular ones that express correlations
between more than two entities, and that we have to represent via matrices the head and the
tail of such relations.

Another signi�cant improvement could be given by the review of the database indexing
process: the dovetailing functions could be very useful if we want to keep the information

1 http://plasma.camlcity.org/plasma/index.html

113

http://plasma.camlcity.org/plasma/index.html

postface

on which data the previous computations were made but, on the other hand, they are not
satisfactory for they require too much space after a signi�cant number of computations.

It would also be interesting to see if the result of data mining with relational data di�er from
the ones obtained by mining the latent correlations that could exist inside the data.

114

A
R A N D H A D O O P : A N O V E R V I E W

Nowadays MapReduce has become very popular since database queries, relational operations
such joins [LD10] or even graph problems [Rod12] could be easily parallelized with this paradigm.
In order to solve those problems, Yahoo! has developed with OpenSource licence Google’s distribu-
tion computation paradigm and HDFS within the Hadoop environment.

R is a statistical tool that it is very supported from the open source community. It has become
frequently used in data mining [Zha13; Sam+13] because absence of automatic reasoning tools
requires the use of such statistical techniques to measure on the goodness of the data.

By the way Hadoop has been developed in Java and hence we need to make interact the R
language, in which most of the statistical analysis is performed, with Java. The aim of this report
is to describe which possible adapter architectures could be realized in order to make two systems
developed in such di�erent languages interact.

a.1 data mining’s purposes

Nowadays “everything is data”: this means that everything is kept in store with the purpose
to analyse it later and to discover interesting facts that couldn’t be promptly inferred from the
raw data; this knowledge discovering process is also driven by the increasing computerisation,
that makes possible to collect huge amounts of data. All this data is meant to be analysed in
short times, and hence it is needed to parallelize all such computations over huge amount of
data:

«Powerful and versatile tools are badly needed to automatically uncover valuable informa-
tion from the tremendous amounts of data and to transform such data into organised knowl-
edge»[HKP12]

The most important problem of data mining is that all the data must be analysed in a very
short time via a performing distrbuted computation, and to obtain meaningful data via accurate
statistical techniques.

115

r and hadoop: an overview

a.1.1 R

R is a free software scripting language for statistical data manipulation and analysis and
graphical plotting [Mat11], that is supported in many operative systems and hence it provides
the possibility of de�ning scripts that are cross-platform. In some cases it could be also useful
to interface our R script with C or C++ in order to de�ne R wrapping over existing libraries:
this is possible since R is designed to call native code functions and because the Rcpp library
provides an interesting way to make a prompt wrapping between C++ and R data.

By the way R was designed before this “Big Data revolution” [MW11] and hence without
any native support for large-scale data analysis and high-performance computing: since R
was designed to be used only for statistical purposes, this language was designed to be single-
threaded and memory bound, as far as all the data have to be loaded in main memory to be
handled.

The interaction of R with the Hadoop system is seen as a desired utility as far as R is used
not only by computer scientists, but also by statistician or other users that haven’t got much
con�dence with programming languages. An adapter between the two systems could be very
useful in order to use Hadoop without explicitly starting processes via Hadoop direct invo-
cation. In this way we could start the whole distributed computation via R code, and hence
automate the whole remote process. These adapters are actually achievable since R permits to
develop add-ons and libraries.

Since R is multiplatform, we need to �nd a solution that has to be platform independent
(some other solutions like multicore are not supported in Windows) and it should be easy
to make the master node (the one that starts the computation) dialogue with the all workers
that need to be orchestrated. Moreover, we would like to analyse data as a whole, and not to
discover local properties that often don’t match with more general ones that could be retrieved
if we check all the data.

a.1.2 Hadoop

Hadoop (Figure A.1a) is a framework [MW11] which combines the bene�ts of the HDFS,
a free-software implementation of the Google File System (a distributed �le system opti-
mized for high throughput and especially designed for managing �les that are large for any
�le-systems commonly available - Figure A.2) and the MapReduce computation framework
described by Google, which has the aim of realising a distributed computation by data decom-
position in keys and values and their submission to so-called map and reduce workers.

«Hadoop [. . .] stores and provides computational capabilities over substantial amounts of
data. It’s a distributed system made up of a distributed �lesystem and it o�ers a way to paral-
lelize and execute programs on a cluster of machines» [Hol12]

In this report we’ll focus on the Hadoop Streaming 2.4.0 implementation of the MapReduce
paradigm, since it is the most recent stable version available. HadoopStreaming (Figure A.1b)

116

A.1 data mining’s purposes

(a) Hadoop High-Level architecture. [Hol12]

(b) HadoopStreaming Component View.

Figure A.1: Hadoop 2.4.0 Architecure.

117

r and hadoop: an overview

Figure A.2: Hadoop 0.20.0 HDFS Process View.[Hol12]

is a Batch Method 1 which accepts as parameters the Java classes or generic scripts to be
used for both map (rMapper) or reduce (rReducer) computation via system’s command-line
arguments (args) or method invocation. This con�guration prepares the JobClient [Whi09]
which submits the Job to the Cluster class (not showed in the Component Diagram): each
slave node with its LocalJobRunner will execute the MapTask or the ReduceTask. From now
on the mapper and the reducers will obtain the partial computations via HDFS where all the
temporary data is stored (Figure A.4c on page 123), since we suppose that di�erent slaves
don’t share a primary memory, and hence secondary memory has to be used for backup. More
details on how this computation is carried out from its subcomponents will be provided on
Section A.3.1 on page 122.

a.2 architectural targets

In this section, we’ll analyze which is the architectural context and which functional and
non functional relevant properties have to be kept in mind for evaluate the architectural design.
From now onwe’ll call the libraries that permit R’s statistical code to interact with Hadoop adapter
solutions.

1 See [BHS07] for more details on Pattern Oriented Software Architectures speci�cations.

118

A.2 architectural targets

a.2.1 Architectural Context

In order to describe in which context the adapter solutions are dipped, we’ve chosen to follow
the ISO/IEC/IEEE 42010:2011 standard [ISO11], and hence to describe through the following
essential components:

stakeholders: The only stakeholder which we’ll consider in our generic environment is the
user working with R or/and Hadoop at any abstraction level, since we want to focus more
on the bene�ts of the software architecture in its implementation than on the outcome of
the data-analysis. We could detect three possible kind of such users:

• The systems analyst, which has set only the Hadoop architecture and eventually pre-
pared the interaction of Hadoop software environment with R. This character could
be noticed only on big systems or in corporate contexts, or could be assimilated on
the developer of the whole adapter solution.

• The backend user is the programmer which is not aware of the Hadoop system, and
hence has to use the R system without any knowledge of how the interaction between
clusters and R is possible. This �gure is also very probable on both corporate contexts
or accademic ones, as far as we would like that even people that haven’t studied
computer science (e. g. statisticians) should be able to install and use such libraries
via R.

• The expert user sums up in a single individual the two previously de�ned charac-
ters. He/she could be found only on small systems, where the Hadoop environment
corresponds to a small home cluster.

We choose to describe the architecture from both the backend user’s point of view, since
we’re interested in how the architecture it re�ects on the R script code design, and from
the systems analyst’s, since we want to check how the R code interacts with the Hadoop
system. An overall view of the system could be perceived by the expert user.
If we want to analyse how our solution behaves in a business environment, we could also
mention the data architect, which is a backend user with some systems analyst skills that
de�nes how the data - that will be analysed - should be stored in order to ease the work
of the so-called data scientist. Another possible stakeholder is the business analyst which
could de�ne the company mission through the results that data have been previously
carried out.

mission and concerns: The mission of each adapter solution is to accomplish distributed
computations using the HDFS and the MapReduce paradigm over big quantities of data
and to eventually store the resulting computation in a distributed �le system. Some more
missions and concerns will be described within the Architectural Properties subsection
(subsection A.2.2 on page 121) using some stakeholders’ point of view.

components: Since a System is made of components that exists only to ful�l one or more
missions, these could be divided in hardware components and software components: the
hardware components will de�ne the infrastructure over which the Hadoop environment

119

r and hadoop: an overview

is set up, while the software ones are formed by the Hadoop software framework itself,
the R system, the packages for statistical analysis some adapter solutions and the data
mining code that interacts with them.

environment: It is de�ned as the set of the stakeholders, the system’s components and the
external ones with which the system interacts. In this case an external component could
be seen as a remote server from which the pieces of information are retrieved and given
to the map-reduce system to manipulate; this could be a possible scenario if the data we
want to analyse is not stored on the Hadoop HDFS or if a remote application accesses our
analysed data (Figure A.3 on the facing page).

a.2.1.1 Possible Scenarios

The analysis of the possible scenarios permits to check how the stakeholders interact with the
system, and hence it could be useful to de�ne their possible requirements.

[Ana11] provides some real-case scenarios that imply the use of R with an Hadoop infras-
tructure describing which are the possible applications where such interaction is required and
useful.

life sciences: In a human genomic study context, we could have datasets of 25GB using 3
million variables over 3000 subjects and splitted over 22 �les. This model could become
more computationally intensive if we want to analyse the genoma of all the people that
are visited inside an hospital. This measure could be useful if (e. g.) we want to prevent to
hospitalize more people than necessary: in this case the features “storing large amount of
data” and “speed and accuracy of data analysis” are important to make diagnosis succeed.
This scenario points out how such information retrieval models should be usable also for
doctors that don’t have a direct experience of computer science.

network analysis: The R packages igraph and statnet provide some useful features for
community detection and statistical analysis over networks: in this case we would like to
recreate the networks from data (e. g. from microblogging platform as twitter) that will
create semantic network of words and network of users.
Given that the graph properties could be checked via algorithms that are based upon the
MapReduce framework [Kat12; LD10], we would like to perform via parallel computations
our code by using a distributed version of the former sequential algorithm.
Since R supports many other libraries that permit statistical plotting (ggplot2) and that
some R code may have already been developed in the past using such libraries, it could
very di�cult to port all the existing code and libraries to Java.

reuse and knowledge sharing: Many nowadays tools make sharing and duplicating
data analysis very di�cult to perform: R could be used as a universal language for shar-
ing statistical analysis over the data (e. g.) via DeployR, which shares the computing
environment in a Platform as a Service and makes the analysis as realtime as possible
(see Figure A.3). This system is more versatile than standard Microsoft Excel [Ana11], as

120

A.2 architectural targets

Figure A.3: Example of an infrastructure for data analysis sharing. [Ana11]

in R we could already manipulate data and plot result without any direct interaction but
via batch computations and procedural computing languages.

a.2.2 Architectural Properties

The main requirement is that the R code should directly interact with the Hadoop MapRe-
duce framework. We have now to de�ne di�erent non-functional requirements in order to
make this interaction as “natural” and �uid as possible: let’s analyse the properties from an
backend user point of view; since we have a lot of data to analyse we would require that the
speed of the computation can be completed in a reasonable time, and hence we have that a
bad design could potentially slow our computations and the overall performance.

The interaction between R and Hadoop should be as simple as possible, that is we would
like to develop a code that is easily readable and easy to maintain, and we would like that the R
code could be developed without knowing the whole Hadoop infrastructure, in order to focus
more on the analysis and less on implementative details. Another concern of simplicity is the
client-side integration, by which we aspire to use our code on R IDEs such as RStudio.

From a systems analyst point of view we would like to solve some capacity issues, since Big
Data by de�nition requires lots of data to be stored: we would like to have enough nodes to

121

r and hadoop: an overview

store all our data, and to be stored in a way that could be easy to manage. These and other
conditions (like some security issues) are all naively solved by the HDFS implementations, and
hence doesn’t directly a�ect the requirements of the Adapter design, even if we have to keep
in mind that a lot of data could be possibly shared among di�erent users.

We would also like to have a system that is easy to install, so that this character could focus
more on the proper functioning of the cluster: those requirements don’t in�uence directly the
architecture structure, but could be a primary goal for optimising any business process.

a.3 adapter solutions’ architectural analysis

In this section we’ll �nally analyse the features of each adapter solution, and hence detect which
we could assume to be the best for industrial or smaller environments.
Since Hadoop, as said before, is developed in Java and hence it could be simply unfeasible to write

all the existing and the user’s R packages into Java, we have to implement an adapter between these
two systems, and hence to detect how is this possible. We’ll show for each proposed architecture
how R will interact with the Java code.
In the following analysis we by the way assume that Hadoop is secure. In this way we could

focus more on the possible security �aws that could happen in its interaction with the R script
when it submits the jobs to the system.

a.3.1 R+Streaming

structure: The Hadoop components (Figure A.4a) that are used in both MapTask and Re-
duceTask (Figure A.4b) are the following [Pra13]:

• R Script: two R scripts, one on the map side and the other on the reduce side,
will be executed by the map and the reduce task that interact with the Streaming

component via stdin and stdout connectors in order to receive the data that has to
be queried or manipulated.

• MapTask: «starts MapReduce operations by carrying input �les and splitting them into
several pieces. For each piece, it will emit a key-value data pair as the output value».

• RecordReader: Given a choosen InputFormat which speci�es how to transform data
into xkey, valuey, it acheives the iteration over such data that will be used in the
mapper job (that is here represented by the Streaming component).

• Streaming: This class [Whi09] outputs keys and values (including the map keys and
values) as text and, only in this case, it passes the data to a non Java program (e. g. R)
via stdin. Afterwards it collects the data that the script emits in stdout.

• Reducer: «it accepts key-based grouped data from the Mapper output, reduces it by
aggregation logic, and emits the xkey, valuey pair for the group of values».

• RecordWriter: this class will �nally store the computed data with the expected text
format as a consequence of the completion of the whole MapReduce process.

122

A.3 adapter solutions’ architectural analysis

(a) R and Streaming Component View.

(b) R and Streaming High-Level Data-Flow. [Whi09]

(c) R and Streaming Object-Level Data-Flow.

Figure A.4: R+Streaming Structure

123

r and hadoop: an overview

�
#! /usr/bin/env Rscript

options(warn=-1)

sink("/dev/null")

input <- file("stdin", "r")

5

while(length(currentLine <- readLines(input, n=1, warn=FALSE)) > 0) {

fields <- unlist(strsplit(currentLine, ","))

10 lowHigh <- c(as.double(fields[3]), as.double(fields[6]))

stock_mean <- mean(lowHigh)

sink()

15

cat(fields[1], fields[2], stock_mean, "\n", sep="\t")

sink("/dev/null")

20 }

close(input)� �
Algorithm A.1 R+Streaming Mapper code

behaviour: In the previous description we’ve already depicted each component’s behaviour.
Let’s take a look once again at Figure A.4: we could see that the �rst mapper job reads the
data, chunks it into xkey, valuey and then passes it to the R script that reads those tuples
as strings. After splitting and chunking the data, the R scrpit outputs the �ltered (Map,
Algorithm A.1) or summed-up data (Reduce, Algorithm A.2) and then process again the
handled values. Both kind of tasks are orchestrated by the Job itself, as already depicted
in the Hadoop Section.

functions: Even if this solution has a very low computational cost, since the Hadoop system
is called directly with the following command, it is not very simple for a backend user to
start the computation:�
${HADOOP_HOME}/bin/hadoop \

jar {$HADOOP_HOME}/contrib/streaming/*.jar \

-inputformat org.apache.hadoop.mapred.TextInputFormat \

-input inputDB.csv \

5 -output outputDB.csv \

-mapper my/R/mapScript.R \

-reducer my/R/redScript.R� �
This implementation makes also the non-Hadoop based code less reusable, as it has to
be chunked in two single algorithms for mapping and reducing the xkey, valuey couples.
Moreover in this way we would have no client-side integration since the whole computa-

124

A.3 adapter solutions’ architectural analysis

�
#! /usr/bin/env Rscript

options(warn=-1)

sink("/dev/null")

5 outputMean <- function(stock, means) {

stock_mean <- mean(means)

sink()

cat(stock, stock_mean, "\n", sep="\t")

sink("/dev/null")

10 }

input <- file("stdin", "r")

prevKey <- ""

15 means <- numeric(0)

while(length(currentLine <- readLines(input, n=1, warn=FALSE)) > 0) {

fields <- unlist(strsplit(currentLine, "\t"))

20

key <- fields[1]

mean <- as.double(fields[3])

if(identical(prevKey, "") || identical(prevKey, key)) {

25 prevKey <- key

means <- c(means, mean)

} else {

outputMean(prevKey, means)

prevKey <- key

30 means <- c(means, mean)

}

}

if(!identical(prevKey, "")) {

35 outputMean(prevKey, means)

}

close(input)� �
Algorithm A.2 R+Streaming Reducer code

125

r and hadoop: an overview

Figure A.5: RHadoop Component Diagram.

tion doesn’t start in the R environment, but uses such language only to implement the
tasks.

On the other hand the system is simple to install, since it is only necessary to have an
Hadoop and R support.

There are no security �aws since there is no adapter solution, and hence all the compu-
tation is direclty invoked by the user. As a direct consequence this approach computes
very quickly (there is no intermediate layout to initialize).

The produced code is not even very easy to develop, as we have always to parse the input
values from stdin and split them into keys and values and return all the output values
as Hadoop requires without using the R native datatypes.

All those considerations make the described solution OS independent.

rational: This solution couldn’t be considered as an adapter between R and the Hadoop
system, since Hadoop itself permits to interact with R code via a bash command; as a
direct consequence we only globally observe a a Batch Method pattern (Figure A.4a on
page 123), inside which the computation is carried out with a simple Pipes and Filter
architecture (Figure A.4c on page 123), where the pipes are the stdin and stdout of the
R script, and the �lters are the R scripts.

testing: A possible simple testing is depicted in [Hol12], where it is showed how the execu-
tion of the R script could be tested with GNU/Linux pipe commands:�
cat database.csv | mapScript.R | sort --key 1,1 | redScript.R� �

Since in the following solutions we’ll show scripts equivalent to the both proposed above,
we could perform some testing by comparing the output produced from this solution to
the one produced by the following ones, in order to check if the expected results are
provided.

126

A.3 adapter solutions’ architectural analysis

�
library(rmr)

map <- function(k,v) {

fields <- unlist(strsplit(v, ","))

5 keyval(fields[1], mean(as.double(c(fields[3], fields[6]))))

}

reduce <- function(k,vv) {

keyval(k, mean(as.numeric(unlist(vv))))

10 }

kvtextoutputformat = function(k,v) paste(c(k,v, "\n"), collapse = "\t")

mapreduce(

15 input = "stocks.txt",

output = "output",

textinputformat = rawtextinputformat,

textoutputformat = kvtextoutputformat,

map = map,

20 reduce = reduce)� �
Algorithm A.3 RHadoop MapReduce implementation

a.3.2 RHadoop (rmr2)

RHadoop is «a collection of four R packages that allow users to manage and analyze data with
Hadoop»2 developed by RevolutionAnalytics. We’ll focus on rmr2 which interacts with the
Hadoop’s MapReduce paradigm’s implementation.

structure: Let’s look at Figure A.5: in this case we could use a simple R script (RScript)
which implements both mapper and reducer (Algorithm A.3), which are the only two
external components that are needed to HadoopStream to carry out the computation.
After this interaction, the MapReduce computation will be performed as depicted before
for the R+Streaming solution.
Since mapreduce is a function provided by rmr2 that starts the distributed computation,
accordingly to [Pre08] it could be seen as an interface, and hence as a connector.
The Behaviour description will now explain why we choose to represent the system’s
args as a communication interface between rmr and the back-end component HadoopStreaming
instead of using rMapper and rReducer.

behaviour: A quick analysis of the rmr2 source code showed how it solely provides a wrap-
ping over the command line arguments by which con�gure the whole Hadoop: some
native functions are only provided for data conversion reasons (Hadoop MapReduce for-

2 https://github.com/RevolutionAnalytics/RHadoop/wiki

127

https://github.com/RevolutionAnalytics/RHadoop/wiki

r and hadoop: an overview

mat into standard R data types), while the provided Java classes are directly used by
HadoopStreaming for checking out which class to use to parse the input and output
stream data. Except for this wrapping features, this solution doesn’t show substantially
di�erent behaviours from the one depicted in the former solution.

functions: The data conversion from HadoopStreaming format to R mapper/reducers and
vice versa, jointly with the args wrapping functions, are the only and negligible compu-
tational costs added to the basic Hadoop MapReduce computation. Even if it is required
to only install the rmr2 package we have to perform this operation on each node that
starts and carries out the Job computation [Ana07].
The use of System environment’s variables for �nding and executing the Hadoop’s bina-
ries and jars creates a huge security �aw, since it is very simple to change the environment
variables in order to perform a MITM attack, or to deliberately exclude the Hadoop sys-
tem from the whole computation. This security issue could be easily resolved if the R
code was designed to invoke Java methods directly, as it will be showed in the following
solution.
Given that this Adapter permits to create a single script where to implement both mapper
and reducer without initialising or starting the Hadoop cluster directly via command line,
we could see how this solution provides a client-side integration and provides a whole
“functional unit” for encase the whole MapReduce computation speci�cation.
This library requires a simple interface for map and reduce arguments, as data is already
mapped to keys, values and list of values by a perliminar parsing procedure carried out
by the library.

Even in this case we have that rmr is trivially fully supported on all the OS.
rational: In this case theBatchMethod pattern is needed on the interaction between rmr2

and HadoopStream, where our library is used as a simple Adapter.
testing: A simple test to check to verify the library is working correctly could be carried

out using the Algorithm A.3 on the previous page.
If we want to test the sole rmr2 library, we could think of print as terminal output each
command that should be invoked as a system syscall: in this way we’ll check if the pro-
vided arguments are correct.

a.3.3 Rhipe

Rhipe is an acronym for R and Hadoop Integrated Processing Environment; this li-
brary provides a more well-designed integration between Java and R code, since it takes full
advantage of the possible integration between di�erent languages. Figure A.6a on the facing
page shows how these interactions are possible: since R can directly invoke native methods
and given that JNI is a Java framework that permits to invoke Java methods from native func-
tions and vice versa, we could invoke Java methods directly from an R environment via native

128

A.3 adapter solutions’ architectural analysis

RHipe

RHipe

rJava Hadoop

RCpp

R
Java

JNI

Hadoop

(+ protocol buffer)

Native code support

(a) Layer view on the interaction between R and Java code.

(b) Component Diagram of showing the interaction between R code and the Hadoop system via Rhipe library.

Figure A.6: Rhipe architectural overview.

code. This mechanism is provided by the rJava R library, which is hereby used by Rhipe. Sim-
ilarly to Java, R provides some utilities for invoking R code from native binaries, and hence it
could be also possible to perform the opposite invocation, that is invoking R code from a Java
environment.

structure: Figure A.6b shows that Rhipe is formed by three components, that are situated
in di�erent language environments: R-Rhipe is the R language part, J-Rhipe is the Java
implementation and Native-Rhipe is their native counterpart.
Analogously to the former solutions, a single R script (RScript) could provide both map
and reduce task implementations (Algorithm A.4 on the next page), and moreover even
in this case Rhipe provides a rhex function via which R-Rhipe could start the computa-

129

r and hadoop: an overview

�
#! /usr/bin/env Rscript

library(Rhipe)

rhinit(TRUE,TRUE)

5

map <- expression({

process_line <- function(currentLine) {

fields <- unlist(strsplit(currentLine, ","))

lowHigh <- c(as.double(fields[3]), as.double(fields[6]))

10 rhcollect(fields[1], toString(mean(lowHigh)))

}

lapply(map.values, process_line)

})

15 reduce <- expression(

pre = {

means <- numeric(0)

},

reduce = {

20 means <- c(means, as.numeric(unlist(reduce.values)))

},

post = {

rhcollect(reduce.key, toString(mean(means)))

}

25)

input_file <- "/tmp/stocks.txt"

output_dir <- "/tmp/output"

30 job <- rhmr(

jobname = "Rhipe CMA",

map = map,

reduce = reduce,

ifolder = input_file,

35 ofolder = output_dir,

inout = c("text", "sequence")

)

rhex(job)� �
Algorithm A.4 Rhipe MapReduce implementation

130

A.3 adapter solutions’ architectural analysis

tion. R-Rhipe also initializes J-Rhipe via rJava, that will later direclty interact with the
Hadoop’s Java classes in HadoopStreaming, and Native-Rhipe which will provide the
environment for running the R map and reduce computations. The whole computation
is started via a run-like function.
The mechanism that permits J-Rhipe to interact with Native-Rhipe is provided by
Google’s ProtocolBu�er connector, by which we change the standard stdin and stdout

that are used to interact with R scripts.

behaviour: Figure A.7 on page 133 deepens the interaction between the Java and Native
components which carry out the MapReduce computation orchestrated by HadoopStreaming.
We could see how a single binary, that is executed in each slave node, could handle all
the key-value elements sequentially and hereby handle each request one at a time.

functions: Concerning the computational time, ProtocolBuffer permits to quicken the
data transfer between the Java orchestrator and the task implementations, since the li-
brary provided pipes are expressly designed to carry messages within a large data set:

«Protocol Bu�ers are great for handling individual messages within a large data
set. Usually, large data sets are really just a collection of small pieces, where each
small piece may be a structured piece of data. Even though Protocol Bu�ers cannot
handle the entire set at once, using Protocol Bu�ers to encode each piece greatly
simpli�es your problem: now all you need is to handle a set of byte strings rather
than a set of structures.»3

Rhipe reduces the number of possible security �aws from the rmr2’s, since in this case
only Native-Rhipe is directly called via system syscall. Even in this case we have a
naïve client-side integration, even if the incoming MapTask implementation arguments
have to be parsed similarly to how it is done in R+Hadoop and the all the map-reduce
function interfaces are slightly more complicated than in RHadoop. Some demerits of
this architecture are the inability to use it on MacOS and the requirement of installing
Rhipe on each slave and client node [MW11].

rational: Beyond the usualPipe and Filter andAdapter POSA4 architectural patterns, we
could see that rJava acts as a Builder for Java objects and as a Mediator, since thanks
to this library we could create R object that represent Java objects over which invoke the
desired methods. R-Rhipe serves as a Builder for Native-Rhipe or also as an Adapter
between the other Rhipe subcomponents developed in di�erent languages, and hence
running on di�erent environments.

testing: As already done before, we could think of compare as a test the output of Algorithm
A.4’s computation with the one produced by the R+Streaming code (Algorithm A.1 on
page 124 and A.2).
In this bridge solution is very hard to develop separate testings for each Rhipe subcom-
ponent, since there is a very tight interdependence between those. By the way we could

3 https://developers.google.com/protocol-buffers/docs/techniques

131

https://developers.google.com/protocol-buffers/docs/techniques

r and hadoop: an overview

test the interaction between J-Rhipe and Native-Rhipe and hence check if the data that
is passed through the ProtocolBuffer is always parsed and used with same semantics
from both sides of the connector: since the messages that have to pass inside the con-
nector have to be formatted as the ProtocolBu�er expects, we have to check if the data
meaning is preserved in both encoding and decoding phases.

a.4 final remarks

Given the previous architectural analysis, we could exclude from the desired solutions the
R+Streaming one, since it doesn’t provide client-side integration and because it doesn’t facili-
tate R scripts maintainability and reuse, as they cannot be directly invoked by other R scripts
and all the computation is carried out in batch mode. If MacOS support is not required, we
could consider to use Rhipe since it is more secure, even if in this case we still have to parse
the incoming data like in the R+Streaming approach.

Even if we would have to choose a library in order to extend for meeting our architectural
requirements, we’ll chose in any case the Rhipe library. If we want to avoid to pass th edata
to Native-Rhipe, we could use the JRI library that permits to call R code from Java. In this
way we don’t need to use Google’s non-free implementation of ProtocolBu�er, and we could
keep all the slave tasks in the same process, as already done in standard HadoopStream support.
These modi�cations could also quicken the computation of the map or reduce task, since we
won’t have the need to transfer data between di�erent processes. We could also make the Rhipe
R map-reduce interface more easy to handle by extending R-Rhipe similarly as already imple-
mented in RHadoop. If we had choosen to modify RHadoop solution we had to re-implement
the communication between R and Java, and hence we would have to rewrite most part of the
library.

Since the only advantage of RHadoop is to provide a very simple function interfaces for R
mappers and reducers, we �nally state that the solution that best meets our expectations that
is also best designed is Rhipe, since we prefer to have a more secure library than to have a more
easy to use one.

132

A.4 final remarks

(a) Layer view on the interaction between R and Java code.

(b) Component Diagram of showing the interaction between R code and the
Hadoop system via Rhipe library.

Figure A.7: Rhipe Behaviour and interaction between Java and Native components. Note that in the current implementation
mapper.cc and reducer.cc are replaced by mapreduce.cc. [Hol12]

133

B
I M P L E M E N T I N G A S I M P L E T Y P E S Y S T E M I N R

In order to make the implementation of R code more easy to check and manage, we’ve intro-
duced in R a simple type system, in order to check the coehernce of the data schema. It is our
personal opinion that type safe systems could also quicken the developing of code.

This code was produced on the �rst attempt to implementation of the hypergraph mining
algebra on R.

The �rst Listing provides how to de�ne a de�nition of Type, that is a name with a property
that data should satisfy. We have to reimplement the comparison operator as %==%, since it is
not possible to do so for basic R types.�
I need to redefine the operator == since == couldn’t be extended for generic lists

setGeneric("%==%", function (e1,e2) {

e1==e2;

})

5

This is the kind, au vrais the meta-type

Kind <- setRefClass(

"Type",

10 fields=list(name="character",prop="function"),

methods = list(isType=function(x){

prop(x);

},

valid=function() {

15 #Autogen

if (!is.character(name)) {

return (FALSE);

}

if (!is.function(prop)) {

20 return (FALSE);

}

return (TRUE);

}

)

25)

Unfortunate choice (comparing only by name)

setMethod("==", signature(e1 = "Type", e2 = "Type"), function (e1, e2) {

135

implementing a simple type system in r

e1$name == e2$name

30 })

setMethod("%==%", signature(e1 = "Type", e2 = "Type"), function (e1, e2) {

e1 == e2

})

35 ## Checks if it is a correctly defined Type

is.Kind <- function(t) {

if (!((attr(t,"class")[[1]]=="Type"))) {

return(FALSE);

} else {

40 return(t$valid());

}

}

Creates a new Type

45 new.Type <- function(name,test) {

toret <- Kind$new(name=name,prop=test);

if (toret$valid()) {

return(toret);

} else

50 stop("Invalid Type Format")

}

###

Checks if a type is in the current list

55 Type.in.list <- function (x, table) {

for (i in table) {

if (x %==% i) # comparing also lists

return(TRUE);

}

60 return(FALSE);

}

setMethod("%in%", signature(x = "Type", table = "list"), Type.in.list)

###

65 ## Defines a Subtype as a Type that has additional features from the base type

new.Subtype <- function(name,test,Type) {

toret <- Kind$new(name=name, prop=function(x) { (Type$isType(x))&&(test(x)) });

if (toret$valid()) {

return (toret);

70 } else

stop("Invalid Sub-Type Format")

}� �
Algorithm B.1: Implementing Types

We could provide some examples of simple data types, that could be successively extended
into our schema types.�

136

implementing a simple type system in r

hd <- function(l) {

head(l,1)[[1]]

}

5 tl <- function(l) {

tail(l,length(l)-1)

}

empty <- function(l) length(l)==0

10

Comparing lists

setMethod("%==%", signature(e1 = "list", e2 = "list"), function (e1, e2) {

if (length(e1)==length(e2)) {

tmp2 <- e2

15 for (elem in e1) {

if (!elem %in% tmp2)

return(FALSE)

else

tmp2 <- tl(tmp2)

20 }

return(TRUE)

} else

return(FALSE)

})

25

has_not_duplicated <- function(l) {

if (length(l)<=1)

return(TRUE)

else {

30 tmp <- tl(l);

elem <- hd(l);

if (elem %in% tmp)

return (FALSE)

else

35 return (has_not_duplicated(tmp))

}

}

40 ## Defines Numeric DataTypes

Numeric <- new.Type("Numeric",is.numeric)

Defines Characters

String <- new.Type("String",is.character)

45

Defines Vector DataTypes

Vector <- new.Type("Vector",is.vector)

Defines Lists

50 List <- new.Type("List",is.list)

137

implementing a simple type system in r

Define sets as lists of unique elements

Set <- new.Subtype("Set", has_not_duplicated ,List)

55 # Comparing sets or lists

setMethod("%==%", signature(e1 = "Value", e2 = "Value"), function (e1, e2) {

if ((e1$typeName() == "List" && e2$typeName() == "List")||

(e1$typeName() == "Set" && e2$typeName() == "Set")) {

return(e1$get() %==% e2$get())

60 } else

return(FALSE)

})

65

Defines a Typed List

ListX <- function(X) {

Otherwise, i must declare different in and == methods

new.Type("List",function(l) {

70 if (!is.list(l)){

return(FALSE);

} else

return(prod(unlist(lapply(l,function(x) X$isType(x)))));

})

75 }

ListString <- ListX(String)

80 setMethod("%in%", signature(x = "Type", table = "Type"), function (x, table) {

if (table$type$name=="List" || table$type$name=="Set")

Type.in.list(x,table$get())

else

stop("ERROR: the table is not a List nor a Set")

85 })� �
Algorithm B.2: Implementing Types

At this point, we could implement our data types: we could de�ne a value as a R object where
both values and types are casted. This could be useful for small data types but, in our case, we
prefer to use the check system for small data types and implement them as the previously
described R object for more relevant structures. We could de�ne an object with a certain type
with the a%:% T operator, where a is a standard R value and T is a type. with the a%?% T

operator we could ask if a is of the correct type.�
Value <- setRefClass(

"Value",

fields=list(typeof="Type",ival="ANY"),

methods = list(valid=function() {

5 #Autogen

138

implementing a simple type system in r

if (!is.Kind(typeof)) {

return (FALSE);

}

if (!typeof$isType(ival)) {

10 return (FALSE);

}

return (TRUE);

},

get=function() { ival; },

15 set=function(v) {

if (!typeof$isType(v)) {

stop(paste(c(as.character(v),"has not type",typeof$name),collapse=" ",

sep=""));

return(NULL);

} else

20 ival <<- v;

},

type=function() { typeof; },

typeName = function() { typeof$name; }

)

25)

Comparing two elements

setMethod("==", signature(e1 = "Value", e2 = "Value"), function (e1, e2) e1$get() %==% e2$

get() && e1$type() == e2$type())

setMethod("%==%", signature(e1 = "Value", e2 = "Value"), function (e1, e2) e1 == e2)

30

flattenValueList <- function(x) {

if (is.list(x)) {

lapply(x,function(z) z$get())

}

35 }

is.Value <- function(x) class(x)=="Value"

This definition doesn’t allow to define List<Value>

40 Value.in.list <- function (x, table) {

for (i in table) {

if (x %==% i)

return(TRUE);

}

45 return(FALSE);

}

setMethod("%in%", signature(x = "Value", table = "list"), Value.in.list)

50 setMethod("%in%", signature(x = "Value", table = "Type"), function (x, table) {

if (table$type$name=="List" || table$type$name=="Set")

Value.in.list(x,table$get())

else

stop("ERROR: the table is not a List nor a Set")

139

implementing a simple type system in r

55 })

Binary Operator that creates an type-guarded object

"%:%" <- function(valu,type) {

if ((!type$isType(valu))||(!is.Kind(type))) {

60 if ((!type$isType(valu$get()))||(!is.Kind(type))) {

stop(paste(c(as.character(valu),"has not type",type$name),collapse=" ",sep=""));

return(NULL);

} else

return(Value$new(typeof=type,ival=valu$get()));

65 } else

return(Value$new(typeof=type,ival=valu));

}

"%?%" <- function(val,type) {

70 type$isType(val$ival)

}� �
Algorithm B.3: Implementing values with Types

140

C
A L G O R I T H M S

c.1 hypergraphs in r

In order to produce the hypergraph representation on Chapter 2, we used the following code.�
#Loading the required libraries

library(hyperdraw)

library(hypergraph)

5 # Changes the color property to all the hyperedges

setProp <- function(gl,dh1,param,val) {

for (x in dh1@head) {

for (y in dh1@tail) {

edgeData(gl,c(x,dh1@label),c(dh1@label,y),param) <- val

10 }

}

}

Sets the list of the vertices used for the hypergraph representation

15 vertices <- c("tom","sam","pos1","pos2","id1","id2","id3","id4","content1","content2","

geopos2","geopos1")

Defining the hyperedges as header and tail

dh1 <- DirectedHyperedge(c("tom","pos1"),"id1","User2")

dh2 <- DirectedHyperedge(c("sam","pos2"),"id2","User1")

dh3 <- DirectedHyperedge(c("content1","geopos1","id1"),"id3","Post1")

20 dh4 <- DirectedHyperedge(c("content2","geopos2","id2"),"id4","Post2")

hg <- Hypergraph(vertices,list(dh1,dh2,dh3,dh4))

Preparing the hypergraph visualization

gl <- graphLayout(graphBPH(hg))

setProp(gl,dh1,"color","blue")

25 setProp(gl,dh2,"color","blue")

Saving the hypergraph plotting into a pdf file

pdf("/home/gyankos/EDropbox2/Tesi/src/image/hgs/figure01.pdf")

plot(gl)

30 dev.off()� �
Algorithm C.1: R code used for generating Figure 2.1.

141

algorithms

c.2 dhimp implementation in r

�
require(gmp)

require(Rmpfr)

dsum <- function(x) as.bigz(x*(x+1)/2)

5 dt <- function(i,j) as.bigz(as.bigz(j)+as.bigz(dsum(i+j)))

lhd <- function(l) unname(unlist(head(l,1)))

ltl <- function(l) tail(l,length(l)-1)

gmp_sqrt <- function(x) .mpfr2bigz(sqrt(.bigz2mpfr(x)))

10

dmax <- function(c) .mpfr2bigz(floor((.bigz2mpfr(gmp_sqrt(1+8*c)-1)/2))) ##TODO: sqrt

dtInv <- function(co) {

dmx <- as.bigz(dmax(co))

sdmax <- as.bigz(dsum(dmx))

15 return(c(dmx-(co-sdmax),co-sdmax))

}

dtvec <- function(l) {

R <- function(ls) {

20 if (length(ls)==0)

return(0)

else if (length(ls)==1) {

return(lhd(ls))

} else {

25 return(dt(lhd(ls),R(ltl(ls))))

}

}

return(dt(length(l),R(l)))

30 }

dtvecInv <- function(l) {

ij <- dtInv(l)

n <- ij[[1]]

35 cl <- ij[[2]]

lis <- list()

while(T) {

ij <- dtInv(cl)

if (n==0)

40 return(lis)

else if (n==1)

return(c(lis,cl))

else {

#print(ij[[1]])

45 if (length(lis)==0)

lis <- c(ij[[1]])

else

lis <- c(lis,ij[[1]])

142

C.2 dhimp implementation in r

n <- n-1

50 cl <- ij[[2]]

}

}

}� �
Algorithm C.2: R code used for implementing the Dovetailing functions.

�
The selection property is a trinary one which accepts the data, the database

and the tensor itself

select <- function(db,Tensor,table,prop) {

return(do.filter(table,function(x) prop(db,Tensor,x)))

5 }

PHI <- function(table) {

lapply(table,function(x) new.Record(xS,xTy,xD,xw,dtvec(x$phi)))

10 }

Extends each record with the data computed

calc <- function(db,Tensor,table,Fun,Over,asR) {

lapply(table,function(r){

15 s<- r$S # Gets the schema

li<- sapply(s,function(x) x %in% Over) # Gets the positions

d <- r$D

val <- Fun(db,Tensor,unlist(d[li]))

TODO: rename r

20 return(new.Record(c(s,asR),r$Ty,c(d,val),r$w,r$phi))

})

}

Embedding the function

25 embed <- function(table,val,asR) {

lapply(table,function(r){

TODO: rename r$T

return(new.Record(c(r$S,asR),r$Ty,c(r$D,val),r$w,r$phi))

})

30 }

project <- function(L,Lvec) {

This list memorizes the data that has been already seen in the linear scan of L

lis <- list()

35 # For each similar entry in Lvec, I memorize all the different weights

pesi <- list()

For each similar entry in Lvec, I memorize their indices in a list

inde <- list()

s <- list()

40 t <- ""

if (length(L)==0)

return(L)

143

algorithms

Apply the projection over the data (linear time)

45 L <- lapply(L,function(r) {

d <- r$D

s <<- r$S

li<- sapply(s,function(x) x %in% Lvec)

t <<- r$Ty

50 d <- d[li]

s <<- s[li]

return(new.Record(s,rTy,d,rw,r$phi))

})

55 ## Collect all the data to be returned

L <- lapply(L,function(elem) {

if (elem$D %in% lis) {

#If I’ve already passed some data with the same projected values, I append the values

where <- elem$D %==% lis

60 pesi[where] <<- lapply(pesi[where],function(x) c(x,(elem$w)))

inde[where] <<- lapply(inde[where],function(x) c(x,(elem$phi)))

} else {

lis <<- c(lis, list(elem$D))

pesi <<- c(pesi,list(elem$w))

65 inde <<- c(inde,list(elem$phi))

}

return(elem)

})

70 inde <- unique(inde)

Creates the list of records to return, where dtvec is the dovetailing for lists

LL <- mapply(function(d,w,i){

list(new.Record(s,t,d,mean(w),dtvec(i)))

75 }, lis,pesi,inde)

return(LL)

}

80 ## L: table (list of records)

Aggr: list data to aggregate

Xi: data to compute (Type)

OpXi: function over a vector of Xi where the Aggr values are equal

asR: type of the generated data

85 groupby <- function(L,Aggr,Xi,OpXi,asR) {

lis <- list()

pesi <- list()

inde <- list()

valu <- list()

90 Lvec <- c(Aggr,Xi)

s <- list()

t <- ""

li <- list()

144

C.2 dhimp implementation in r

liSec <- list()

95 XiPos <- list()

toRET <- list()

Apply the projection over the selecting data

L <- lapply(L,function(r) {

100 d <- r$D

s <<- r$S

li<<- sapply(s,function(x) x %in% Lvec)

liSec<<- sapply(s,function(x) x %in% Aggr)

XiPos<<- sapply(s,function(x) x %==% Xi)

105 t <<- r$Ty

d <- d[li]

s <<- s[li]

toRET <<- sapply(s,function(x) x %in% Aggr)

return(new.Record(s,rTy,d,rw,r$phi))

110 })

Collect all the data to be returned

L <- lapply(L,function(elem) {

115

dAggr <- elem$D

dAggr <- dAggr[liSec]

if (dAggr %in% lis) {

120 where <- dAggr %==% lis

pesi[where] <<- lapply(pesi[where],function(x) c(x,(elem$w)))

inde[where] <<- lapply(inde[where],function(x) c(x,(elem$phi)))

valu[where] <<- lapply(valu[where],function(x) {

va <- elem$D

125 va <- unlist(va[XiPos])

return(c(x,(va)))

})

} else {

lis <<- c(lis, list(dAggr))

130 pesi <<- c(pesi,list(elem$w))

inde <<- c(inde,list(elem$phi))

va <- elem$D

va <- unlist(va[XiPos])

valu <<- c(valu,list(va))

135 }

return(elem)

})

s <- s[toRET]

140 ## TODO: t = t with Xi over Aggr

Check if Op(v) is asR

LL <- mapply(function(d,w,i,v){

list(new.Record(c(s,asR),t,c(d[toRET],OpXi(unlist(v))),mean(w),dtvec(i)))

}, lis,pesi,inde,valu)

145

algorithms

145

return(LL)

}

join <- function(table1,table2,db,Tensor,theta) {

150 toret <- list()

for (x in table1) {

for (y in table2) {

if (theta(db,Tensor,x,y)) {

s <- c(xS,yS)

155 t <- paste0(c(xTy,yTy),collapse="|><|")

d <- c(xD,yD)

w <- prod(xw,yw)

i <- dt(xphi,yphi)

toret <- c(toret,list(new.Record(s,t,d,w,i)))

160 }

}

}

return(toret)

}

165

Renames Xfrom into Rto, and Rto will be the last column

rename <- function(table,Xfrom,Rto) {

if (length(table)==0)

return(table)

170 ##TODO: assuming that all the tables have the same size and that Rto is not in schema

s <- table[[1]]$S

sS <- sapply(s,function(x) !(x%==%Xfrom))

s <- c(s[sS],Rto)

return(project(calc(NULL,NULL,table,function(a,b,x) x,list(Xfrom),Rto),s))

175 }� �
Algorithm C.3: R implementation for “list of rows”.

c.3 hypergraphs and gspan extended in java

�
public class Dovetailing {

public static final BigInteger TWO = BigInteger.ONE.add(BigInteger.ONE);

public static final BigInteger EIGHT = BigInteger.TEN.subtract(TWO);

5

public static BigInteger summate(BigInteger k) {

return k.multiply(k.add(BigInteger.ONE)).divide(TWO);

}

10 public static BigInteger dt(BigInteger i, BigInteger j) {

BigInteger ij = i.add(j);

return summate(ij).add(j);

146

C.3 hypergraphs and gspan extended in java

}

15 public static BigInteger index(int i) {

return new BigInteger(Integer.toString(i));

}

private static final BigDecimal SQRT_DIG = new BigDecimal(150);

20 private static final BigDecimal SQRT_PRE = new BigDecimal(10).pow(SQRT_DIG.intValue());

/**

* Private utility method used to compute the square root of a BigDecimal.

*
25 * @author Luciano Culacciatti

* @url http://www.codeproject.com/Tips/257031/Implementing-SqrtRoot-in-BigDecimal

*/

private static BigDecimal sqrtNewtonRaphson (BigDecimal c, BigDecimal xn, BigDecimal

precision){

BigDecimal fx = xn.pow(2).add(c.negate());

30 BigDecimal fpx = xn.multiply(new BigDecimal(2));

BigDecimal xn1 = fx.divide(fpx,2*SQRT_DIG.intValue(),RoundingMode.HALF_DOWN);

xn1 = xn.add(xn1.negate());

BigDecimal currentSquare = xn1.pow(2);

BigDecimal currentPrecision = currentSquare.subtract(c);

35 currentPrecision = currentPrecision.abs();

if (currentPrecision.compareTo(precision) <= -1){

return xn1;

}

return sqrtNewtonRaphson(c, xn1, precision);

40 }

/**

* Uses Newton Raphson to compute the square root of a BigDecimal.

*
45 * @author Luciano Culacciatti

* @url http://www.codeproject.com/Tips/257031/Implementing-SqrtRoot-in-BigDecimal

*/

public static BigDecimal bigSqrt(BigDecimal c){

return sqrtNewtonRaphson(c,new BigDecimal(1),new BigDecimal(1).divide(SQRT_PRE));

50 }

public static BigInteger[] dtInv(BigInteger couple) {

BigInteger toret[] = new BigInteger[2];

BigInteger tosquare = BigInteger.ONE.add(EIGHT.multiply(couple));

55 BigDecimal sq = bigSqrt(new BigDecimal(tosquare)).subtract(BigDecimal.ONE).divide(

BigDecimal.ONE.add(BigDecimal.ONE),RoundingMode.FLOOR);

BigInteger dmax = sq.toBigInteger();

toret[1] = couple.subtract(summate(dmax));

toret[0] = dmax.subtract(toret[1]);

return toret;

60 }

147

algorithms

private static BigInteger dtvecr(List<BigInteger> r) {

if (r==null)

return index(0);

65 if (r.isEmpty())

return index(0);

if (r.size()==1)

return r.get(0);

else {

70 Stack<BigInteger> s = new Stack<>();

for (int j = r.size()-1; j>=0; j--) {

BigInteger toadd = r.get(j);

s.push(toadd);

if (s.size()==2) {

75 BigInteger first = s.pop();

BigInteger last = s.pop();

s.push(dt(first,last));

}

}

80 return s.pop();

}

}

85 public static BigInteger dtVec(List<BigInteger> l) {

return dt(index(l.size()),dtvecr(l));

}

public static List<BigInteger> dtVecInv(BigInteger bi) {

90 BigInteger sl[] = dtInv(bi);

int size = sl[0].intValue();

List<BigInteger> lbi = new LinkedList<>();

BigInteger prev = sl[1];

for (int n=size; n>0; n--) {

95 if (n==1)

lbi.add(prev);

else {

BigInteger asl[] = dtInv(prev);

lbi.add(asl[0]);

100 prev = asl[1];

}

}

return lbi;

}

105

}� �
Algorithm C.4: Java code used for implementing the Dovetailing functions.

�
public class TableOperations {

148

C.3 hypergraphs and gspan extended in java

/* missing code */

5 public static Table project(Table t,Class... L) {

Table toret = new Table(t.getName()+" over L", L);

Map<Integer,List<Double>> wmap = new HashMap<>();

Map<Integer,List<BigInteger>> imap = new HashMap<>();

10 int i = 0;

for (Tuple y : t) {

Tuple x = projectTuple(y, L);

int pos = toret.containsValuesPos(x);

15 if (pos==-1) {

toret.addRow(1,x.get().clone());

LinkedList<Double> weight = new LinkedList<>();

weight.add(x.getWeight());

wmap.put(i,weight);

20 LinkedList<BigInteger> index = new LinkedList<>();

index.add(x.getIndex());

imap.put(i,index);

i++;

} else {

25 wmap.get(pos).add(x.getWeight());

imap.get(pos).add(x.getIndex());

}

}

30 for (int j=0; j<toret.size(); j++) {

double size = wmap.get(j).size();

double avg = 0;

for (double d : wmap.get(j))

avg += d;

35 avg = avg / size;

toret.get(j).setWeight(avg);

//System.out.println("~~~~~");

/*for (BigInteger x: imap.get(j)) {

System.out.println(x);

40 }*/

//System.out.println("~~~~~");

toret.get(j).setIndex(Dovetailing.dtVec(imap.get(j)));

toret.add(toret.remove(j));

}

45

return toret;

}

public static Table select(Table t, IProperty prop){

50 Table toret = new Table(t.getName(),t.getSchema());

Iterator<Tuple> li = t.iterator();

while (li.hasNext()) {

149

algorithms

Tuple current = li.next();

if (prop.prop(current))

55 toret.add(current);

}

return toret;

}

60 public static Table union(Collection<Table> lt) {

if (lt==null)

return null;

if (lt.isEmpty())

return new Table("empty table on union"); //with no size

65 Class cls[] = null;

String name = "";

for (Table t : lt) {

if (cls==null)

cls = t.getSchema();

70 else

if (!Arrays.equals(cls, t.getSchema()))

throw new RuntimeException("Tables have different schemas");

name = name + t.getName() + " v ";

}

75 name = name.substring(0,name.length()-2);

Table toret = new Table(name, cls);

for (Table t : lt) {

for (BigInteger i : t.getAllKeys())

toret.add(t.get(i));

80 }

return project(toret,cls);

}

/* missing code */

85

}� �
Algorithm C.5: Java code used for implementing π, σ and

Ť

over tables.

�
public class TensorOperations {

public static <T extends ITensorLayer> Tensor<T> TUpdate(Database updatedOne, Tensor<T>

tensor) {

Tensor<T> toret = new Tensor<>(tensor.getLayersClass());

5 Set<BigInteger> allKeys = updatedOne.getAllKeys();

for (BigInteger x: allKeys) {

System.out.println(x);

}

for (String layer : tensor.keySet()) {

10 for (BigInteger dtx : allKeys) {

List<BigInteger> vx = Dovetailing.dtVecInv(dtx);

for (BigInteger dty : allKeys) {

150

C.3 hypergraphs and gspan extended in java

List<BigInteger> vy = Dovetailing.dtVecInv(dty);

double size = vx.size() * vy.size();

15 if (size == 0)

continue;

double avg = 0;

for (BigInteger x : vx)

for (BigInteger y : vy)

20 avg = avg+tensor.get(layer).get(x, y);

avg = avg / size;

toret.set(dtx, dty, layer, avg);

}

}

25 }

return toret;

}

public static <T extends ITensorLayer> Tensor<T> TJoin(Database ndb, Collection<String>

commonLayers, Tensor<T> tLeft, Tensor<T> tRight) {

30 Tensor<T> nt = new Tensor<>(tLeft.getLayersClass());

Set<BigInteger> allKeys = ndb.getAllKeys();

for (String x : commonLayers) {

T xtLeft = tLeft.get(x);

T xtRight = tRight.get(x);

35 for (BigInteger idx : allKeys) {

BigInteger dtx[] = Dovetailing.dtInv(idx);

for (BigInteger idy : allKeys) {

BigInteger dty[] = Dovetailing.dtInv(idy);

double avg = 0;

40 for (int i = 0; i < 2; i++) {

for (int j = 0; j < 2; j++) {

avg = avg + xtLeft.get(dtx[i], dty[j]) + xtRight.get(dtx[i],

dty[j]);

}

}

45 avg = avg / 8.0;

nt.set(idx, idy, x, avg);

}

}

}

50 return nt;

}

}� �
Algorithm C.6: Java code used for implementing Update and Union tensor update functions.

�
public abstract class Abstract_gSpan<CodeType extends ICode> {

//private SerializableList<IgSpanGraphs<CodeType>> database = null;

private List<MultiLayerGraph> new_database = null;

151

algorithms

5 private AbstractSubgraphOf<CodeType> subgraphIsomorphismAlgorithm;

/**

* Filters the triples that could be added for rightmost expansion

* @param mlg

10 * @param ert

* @param right_path

* @return

*/

public Collection<ERTriple> filterTriplesForExpansion(final IgSpanGraphs<CodeType> mlg,

Collection<ERTriple> ert, final List<Entity> right_path) {

15 return Collections2.filter(ert, new Predicate<ERTriple>() {

@Override

public boolean apply(ERTriple input) {

//Keep the rightmost path (don’t break it)

if (input == null) {

20 return false;

}

//Remove errors ~ belts and suspenders

if (input.hasNull())

return false;

25

if (mlg.getRepresentation() != null) {

//get the graph

MultiLayerGraph tmp = mlg.getRepresentation();

//for all the outgoing vertices from input.source();

30 for (Entity x : tmp.getOutSet(input.getSource(), null)) {

//remove the triple if this could break the integrity of the

rightmost path

if (input.getDestination().compareTo(x) > 0) {

return false;

}

35 }

}

return right_path.contains(input.getSource());

}

40 });

}

/**

* Forcing the implementation of an algorithm

45 * @param subIso Subgraph Algorithm Implementation

*/

protected Abstract_gSpan(AbstractSubgraphOf<CodeType> subIso) {

subgraphIsomorphismAlgorithm = subIso;

}

50

public abstract IgSpanGraphs<CodeType> createCodeGraph(MultiLayerGraph m);

152

C.3 hypergraphs and gspan extended in java

/*public Collection<IgSpanGraphs<CodeType>> getDatabase() {

55 return database;

}*/

public void setDatabase(List<MultiLayerGraph> mlgdb) {

new_database = mlgdb;

60 }

public double support(MultiLayerGraph g) {

double n = 0;

for (MultiLayerGraph x : new_database) {

65 if (subgraphIsomorphismAlgorithm.subgraphOf(g, x)) {

n++;

}

}

n = n / ((double) new_database.size());

70 return n;

}

public Collection<ERTriple> getMostFrequentEdges(double thereshold) {

75 HashMap<ERTriple, Double> count = new HashMap<>();

if (thereshold <= 0) {

thereshold = Double.MIN_VALUE;

}

final double tmpt = thereshold;

80

int i = 1;

Iterator<MultiLayerGraph> mlgi = new_database.iterator();

//Initializing count, that is counting the occurrence of the edges inside the

database

while (mlgi.hasNext()) {

85 MultiLayerGraph x = mlgi.next();

System.out.print(i+ ", ");

i++;

if (x==null)

System.out.println("ERROR");

90 IgSpanGraphs<CodeType> old = createCodeGraph(x);

for (ERTriple y : old.getAllEdges()) {

if (!count.containsKey(y)) {

/*
//TEST

95 for (ERTriple z:count.keySet())

if (z.equals(y))

throw new RuntimeException("ERROR: equal but not incremented");

*/

count.put(y, (double) 1);

100 } else {

count.put(y, count.get(y) + 1);

}

}

153

algorithms

}

105

//Normalizing factor

final double size = new_database.size();

//Filters the entries by their frequency

110 Collection<Map.Entry<ERTriple, Double>> frequentOnes = Collections2.filter(count.

entrySet(), new Predicate<Map.Entry<ERTriple, Double>>() {

@Override

public boolean apply(Map.Entry<ERTriple, Double> t) {

return ((t.getValue() / size) >= tmpt);

}

115 });

//Given the entry, returns only the key, that is the triple ~~~ Vonlenska/

Hopelandic

return Collections2.transform(frequentOnes, new Function<Map.Entry<ERTriple, Double

>, ERTriple>() {

@Override

120 public ERTriple apply(Map.Entry<ERTriple, Double> f) {

return f.getKey();

}

});

125 }

public static MultiLayerGraph toMLG(ERTriple input) {

LinkedList<ERTriple> e = new LinkedList<>();

e.add(input);

130 return MultiLayerGraph.create(e);

}

public abstract List<Entity> getEntities(final IgSpanGraphs<CodeType> mlg);

135

/**

* Given a base graph and a set of possible edge extensions, it returns the

* set of all the possible rightmost-extensions of such graph

*
140 * @param mlg basic graph

* @param ert List of possible edge-right extensions

* @return

*/

public Collection<IgSpanGraphs<CodeType>> getRightmostExpansions(final IgSpanGraphs<

CodeType> mlg, Collection<ERTriple> ert) {

145

Collection<IgSpanGraphs<CodeType>> toret;

if (ert.isEmpty()) {

return new LinkedList<>();

}

150

154

C.3 hypergraphs and gspan extended in java

///

//Returns the sequence of the entities encountered on the rightmostpath

AbstractDBVisit<List<Entity>> adbv_rightmost = new SimpleRightmostExpansion();

DFS<List<Entity>> d = new DFS<List<Entity>>(mlg.getRepresentation(), adbv_rightmost

);

155 final List<Entity> right_path = d.start();

///

//Returns the possible rightmost extensions

ert = filterTriplesForExpansion(mlg, ert, right_path);

160

//Add the rightmost extension to the graph itself

toret = Collections2.transform(ert, new Function<ERTriple, IgSpanGraphs<CodeType

>>() {

@Override

public IgSpanGraphs<CodeType> apply(ERTriple input) {

165 CodeType ls = mlg.getACode();

ls.add(input);

return createCodeGraph(MultiLayerGraph.create(ls));

}

});

170

return toret;

}

public void gSpan(double edge_t, int depth, List<MultiLayerGraph> returned) {

175 gSpan(edge_t, depth,Double.MIN_VALUE,returned);

}

public void gSpan(double edge_threshold, int depth_search, double support_thereshold,

List<MultiLayerGraph> returned) {

//Candidates for rightmost expansion

180 System.out.println("getting frequent edges... ");

LinkedList<ERTriple> N = new LinkedList<>(getMostFrequentEdges(edge_threshold));

System.out.print("Done.");

//HashSet<SortedSet<ERTriple>> S = new HashSet<>();

185

for (ERTriple n : N) {

System.out.println("Triple ~ " + n.toString());

int depth;

returned.add(toMLG(n)); //adds first element

190 LinkedList<IgSpanGraphs<CodeType>> gsgs = new LinkedList<>();

Stack<Integer> layer = new Stack<>();

gsgs.push(createCodeGraph(toMLG(n)));

layer.push(0);

while (!gsgs.isEmpty()) {

195 final IgSpanGraphs<CodeType> candidate = gsgs.get(0); //double-checking

staticity of the result

gsgs.remove();

depth = layer.pop();

155

algorithms

if ((depth < depth_search)

&& (support(candidate.getRepresentation()) >= support_thereshold)

200) {

List<IgSpanGraphs<CodeType>> gsl = new LinkedList<>(

getRightmostExpansions(candidate, N));

SortedSet<ERTriple> tmpEdges = candidate.getAllEdges();

205 if (!tmpEdges.isEmpty())

returned.add(MultiLayerGraph.create(tmpEdges));

int hasNull = 0;

for (IgSpanGraphs<CodeType> kt : gsl) {

210 if (kt!=null)

gsgs.push(kt);

else

hasNull += 1;

}

215

for (int j = 0; j < gsl.size()-hasNull; j++) {

layer.push(depth + 1);

}

}

220

}

}

/* missing code */

225

}� �
Algorithm C.7: Java abstract code implementing the general version of the gSpan Algorithm over

DHImp-s.

c.4 graph mining algorithms

�
##

MCL

Inflation step of MCL

5 mcl.inflate <- function (M,

inf) {

M <- M^(inf);

return (M);

}

10

Normalize the matrix by column

156

C.4 graph mining algorithms

mcl.norm <- function (M) {

colum.sum <- apply(M,2,sum)

M <- t(M) / colum.sum

15 return (t(M))

}

MCL procedure

mcl <- function (M, # Matrix

20 inf, # Inflation value

iter, # Number of iterations

verbose = F

) {

for (i in 1:iter) {

25 old.M <- M;

M.norm <- mcl.norm(M);

M <- M.norm%*%M.norm;

M <- mcl.inflate(M, inf);

M <- mcl.norm(M);

30 if (sum(old.M == M) == dim(M)[1]*dim(M)[2]) {

break;

}

if (verbose) {

print (paste ("iteration", i));

35 }

}

return (M);

}

40

collect.mcl.clusters <- function (M # Matrix (mcl result)

) {

M.names <- 1:nrow(M);

l <- list()

45 clustered.nodes <- vector(mode = "logical", length = dim(M)[1])

for (i in 1:dim(M)[1]) {

nodes <- M.names[which(M[i,] != 0)];

if (length(nodes) > 0 && !clustered.nodes[which(M[i,] != 0)]) {

l <- c(l,list(nodes))

50 clustered.nodes[which(M[i,] != 0)] = T;

}

}

return(l);

}� �
Algorithm C.8: Markov Clustering Algorithm, slightly modi�ed from http://www.bigre.ulb.ac.be/

Users/jvanheld/BMOL-F-501/practicals/r_scripts/mcl.R.

�
public void gSpan(double edge_threshold, int depth_search, double support_thereshold, List<

MultiLayerGraph> Solution) {

//Candidates for rightmost expansion

157

http://www.bigre.ulb.ac.be/Users/jvanheld/BMOL-F-501/practicals/r_scripts/mcl.R
http://www.bigre.ulb.ac.be/Users/jvanheld/BMOL-F-501/practicals/r_scripts/mcl.R

algorithms

LinkedList<ERTriple> N = new LinkedList<>(getMostFrequentEdges(edge_threshold));

5 for (ERTriple n : N) {

System.out.println("Triple ~ " + n.toString()); //Current examined triple

int depth; //Depth of the DFS Search tree

Solution.add(toMLG(n)); //Adds first element as graph

LinkedList<IgSpanGraphs<CodeType>> gsgs = new LinkedList<>();

10 Stack<Integer> layer = new Stack<>(); //Defines a stack for the current DFS tree

layer depth

gsgs.push(createCodeGraph(toMLG(n))); //Pushes the triple to the DFS subtree

departing from n

layer.push(0); //Start layer

while (!gsgs.isEmpty()) {

//Pop the first element and the layer information

15 final IgSpanGraphs<CodeType> candidate = gsgs.get(0);

gsgs.remove();

depth = layer.pop();

if ((depth < depth_search) //If I’ve reached the search depth and if it is

supported

&& (support(candidate.getRepresentation()) >= support_thereshold)

20) {

//Returns the list of the overall possible rightmost expansions

List<IgSpanGraphs<CodeType>> gsl = new LinkedList<>(

getRightmostExpansions(candidate, N));

SortedSet<ERTriple> tmpEdges = candidate.getAllEdges();

25 if (!tmpEdges.isEmpty())

Solution.add(MultiLayerGraph.create(tmpEdges));

int hasNull = 0;

//For each possible next expansion

30 for (IgSpanGraphs<CodeType> kt : gsl) {

if (kt!=null)

gsgs.push(kt);

else

hasNull += 1;

35 }

for (int j = 0; j < gsl.size()-hasNull; j++) {

layer.push(depth + 1);

}

40 }

}

}� �
Algorithm C.9: gSpan Java Implementation

�
/**

* Given a base graph and a set of possible edge extensions, it returns the

158

C.4 graph mining algorithms

* set of all the possible rightmost-extensions of such graph

*
5 * @param mlg basic graph

* @param ert List of possible edge-right extensions

* @return

*/

public Collection<IgSpanGraphs<CodeType>> getRightmostExpansions(final IgSpanGraphs<

CodeType> mlg, Collection<ERTriple> ert) {

10 Collection<IgSpanGraphs<CodeType>> toret;

if (ert.isEmpty()) {

return new LinkedList<>();

}

15 ///

//Returns the sequence of the entities encountered on the rightmostpath

AbstractDBVisit<List<ERTriple>> adbv_rightmost = new SimpleRightmostExpansion();

DFS<List<ERTriple>> d = new DFS<List<ERTriple>>(mlg.getRepresentation(), adbv_rightmost

);

final List<ERTriple> right_path = d.start();

20 ///

//Returns the possible rightmost extensions

ert = filterTriplesForExpansion(ert, right_path);

25 //Add the rightmost extension to the graph itself

toret = Collections2.transform(ert, new Function<ERTriple, IgSpanGraphs<CodeType>>() {

@Override

public IgSpanGraphs<CodeType> apply(ERTriple input) {

CodeType ls = mlg.getACode();

30 ls.add(input);

return createCodeGraph(MultiLayerGraph.create(ls));

}

});

35 return toret;

}

/**

* Filters the triples that could be added for rightmost expansion

40 */

public Collection<ERTriple> filterTriplesForExpansion(Collection<ERTriple> ert, final List<

ERTriple> right_path) {

return Collections2.filter(ert, new Predicate<ERTriple>() {

@Override

public boolean apply(ERTriple input) {

45 //Keep the rightmost path (don’t break it)

if (input == null) {

return false;

}

//Remove errors ~ belts and suspenders

50 if (input.hasNull())

159

algorithms

return false;

//for all the outgoing vertices from input.source();

for (ERTriple x : right_path) {

//remove the triple if this could break the integrity of the rightmost path

55 if (input.compareTo(x) > 0) {

return false;

}

}

60 return right_path.contains(input.getSource());

}

});

}� �
Algorithm C.10: getRightmostExpansions implementation

c.5 text mining algorithms

�
#install.packages("stringr") (requires)

library(tm)

pos <- Corpus(DirSource("/home/gyankos/Scrivania/sentiment/pos")) #Loading the positive

documents

5 neg <- Corpus(DirSource("/home/gyankos/Scrivania/sentiment/neg")) #Loading the negative

documents

#Modifying the documents

rempunct <- function (x) { gsub("[[:punct:]]", "", x) }

remdigit <- function (x) { gsub("\\d+", "", x) }

10 pos <- tm_map(pos, rempunct) #Removes punctuation

neg <- tm_map(neg, rempunct)

pos <- tm_map(pos, stripWhitespace) #Removes white spaces

neg <- tm_map(neg, stripWhitespace)

pos <- tm_map(pos, tolower) #all the words in lowercase

15 neg <- tm_map(neg, tolower)

pos <- tm_map(pos, removeWords,stopwords("english")) #removing stop words

neg <- tm_map(neg, removeWords,stopwords("english"))

pos <- tm_map(pos, stemDocument) #Stemming the documents

neg <- tm_map(neg, stemDocument)

20 pos <- tm_map(pos, remdigit) #Removing the numbers

neg <- tm_map(neg, remdigit)

pos <- tm_map(pos, stripWhitespace) #Removing white spaces again

neg <- tm_map(neg, stripWhitespace)

25 #Loading the positive and negative dictionary

posw <- as.list(readLines("/home/gyankos/Scrivania/sentiment/positivew.txt"))

negw <- readLines("/home/gyankos/Scrivania/sentiment/negativew.txt")

posw <- unique(rapply(list(posw),stemDocument))

160

C.5 text mining algorithms

negw <- unique(rapply(list(negw),stemDocument))

30

#Test

#dtm <- DocumentTermMatrix(pos,posw)

#rst_dtm <- (removeSparseTerms(dtm, 0.4))

35 library(stringr)

splitwords <- function(x) str_split(x, ’\\s+’)

pos <- tm_map(pos, splitwords) #Splitting each document in word lists

neg <- tm_map(neg, splitwords)

reify <- function (y) {

40 x = list()

for (i in 1:length(pos)) x[[i]] <- unlist(unique(unlist(y[[i]])))

x

}

pos <- reify(pos) #merge all the subslists caused by \n

45 neg <- reify(neg)

pos_result = list()

for (j in 1:length(pos)) {

50 pos_result[j] = (sum(!is.na(match(unlist(pos[j]),posw)))-sum(!is.na(match(unlist(pos[j]),

negw)))>0)

}

pos_ok <- sum(unlist(pos_result))/length(pos_result)

#And paradoxally, a negative document could acheive a positive score

55 neg_result = list()

for (j in 1:length(neg)) {

neg_result[j] = (sum(!is.na(match(unlist(neg[j]),posw)))-sum(!is.na(match(unlist(neg[j]),

negw)))<0)

}

neg_ok <- sum(unlist(neg_result))/length(neg_result)

60

reliability <- (sum(unlist(pos_result))+sum(unlist(neg_result)))/(length(pos_result)+length

(neg_result))

print(reliability) # [1] 0.6275� �
Algorithm C.11: First sentiment analysis algorithm with unweighted vocabulary and �lm-review

corpus.

�
#install.packages("stringr") (requires)

library(tm)

pos <- Corpus(DirSource("/home/gyankos/Scrivania/sentiment/pos")) #Loading the positive

documents

5 neg <- Corpus(DirSource("/home/gyankos/Scrivania/sentiment/neg")) #Loading the negative

documents

161

algorithms

#Modifying the documents

rempunct <- function (x) { gsub("[[:punct:]]", "", x) }

remdigit <- function (x) { gsub("\\d+", "", x) }

10 pos <- tm_map(pos, rempunct) #Removes punctuation

neg <- tm_map(neg, rempunct)

pos <- tm_map(pos, stripWhitespace) #Removes white spaces

neg <- tm_map(neg, stripWhitespace)

pos <- tm_map(pos, tolower) #all the words in lowercase

15 neg <- tm_map(neg, tolower)

pos <- tm_map(pos, removeWords,stopwords("english")) #removing stop words

neg <- tm_map(neg, removeWords,stopwords("english"))

pos <- tm_map(pos, stemDocument) #Stemming the documents

neg <- tm_map(neg, stemDocument)

20 pos <- tm_map(pos, remdigit) #Removing the numbers

neg <- tm_map(neg, remdigit)

pos <- tm_map(pos, stripWhitespace) #Removing white spaces again

neg <- tm_map(neg, stripWhitespace)

25 #Loading the positive and negative dictionary

posneg <- read.delim(file=’/home/gyankos/Scrivania/sentiment/AFINN-111.txt’, header=FALSE,

stringsAsFactors=FALSE)

names(posneg) <- c(’word’, ’score’)

posneg$word <- tolower(posneg$word)

posneg$word <- stemDocument(posneg$word) #Stemming similar words

30 posneg <- posneg[!duplicated(posneg),] #Removing duplicated

getrowscore <- function(x,y) x[i,2]

#Test

#dtm <- DocumentTermMatrix(pos,posw)

35 #rst_dtm <- (removeSparseTerms(dtm, 0.4))

library(stringr)

splitwords <- function(x) str_split(x, ’\\s+’)

pos <- tm_map(pos, splitwords) #Splitting each document in word lists

40 neg <- tm_map(neg, splitwords)

reify <- function (y) {

x = list()

for (i in 1:length(pos)) x[[i]] <- unlist(unique(unlist(y[[i]])))

x

45 }

pos <- reify(pos) #merge all the subslists caused by \n

neg <- reify(neg)

#ERROR: in this case I score -1 on a positive document

50

pos_result = list()

for (j in 1:length(pos)) {

pos_result[j] = (sum(na.omit(unlist(lapply(match(unlist(pos[j]),posneg$word),function (x)

posneg[x,2])))) > 0)

162

C.5 text mining algorithms

55 }

pos_ok <- sum(unlist(pos_result))/length(pos_result)

#And paradoxally, a negative document could acheive a positive score

neg_result = list()

60 for (j in 1:length(neg)) {

neg_result[j] = (sum(na.omit(unlist(lapply(match(unlist(neg[j]),posneg$word),function (x)

posneg[x,2])))) < 0)

}

neg_ok <- sum(unlist(neg_result))/length(neg_result)

65 reliability <- (sum(unlist(pos_result))+sum(unlist(neg_result)))/(length(pos_result)+length

(neg_result))

print(reliability) # [1] 0.6225� �
Algorithm C.12: Second sentiment analysis algorithm with weighted vocabulary and �lm-review

corpus.

�
required libraries

http://www.youtube.com/watch?v=j1V2McKbkLo

library(tm)

library(plyr)

5 library(class)

remdigit <- function (x) { gsub("\\d+", "", x) }

stemOut <- function (pos) {

10 pos <- tm_map(pos, removePunctuation)

pos <- tm_map(pos, stripWhitespace)

pos <- tm_map(pos, tolower)

pos <- tm_map(pos, removeWords,stopwords("english"))

pos <- tm_map(pos, stemDocument)

15 pos <- tm_map(pos, remdigit)

pos <- tm_map(pos, stripWhitespace)

pos

}

20 genTermDocumentMatrix <- function (clas,path,sparsness) {

apath <- sprintf("%s/%s",path,clas)

x <- Corpus(DirSource(directory = apath))

x <- stemOut(x)

x <- TermDocumentMatrix(x)

25 tdm_cor <- removeSparseTerms(x,sparsness)

#By transposing the matrix, each term will be a columns and the other way around for

documents

tdm_cor <- as.data.frame(t(data.matrix(tdm_cor)))

tdm_cor <- cbind(tdm_cor, rep(clas,nrow(tdm_cor)))

30 colnames(tdm_cor)[ncol(tdm_cor)] = "targetClass"

163

algorithms

return(tdm_cor)

}

35

allTDM <- function (classvec,path,sparsness) {

x <- do.call(rbind.fill,lapply(classvec,genTermDocumentMatrix,path,sparsness))

x[is.na(x)] = 0

40 return(x)

}

doDataSet <- function (classvec,path,sparsness,trainperc) {

tdm <- allTDM(classvec,path,sparsness)

45

tdm_train <- sample(nrow(tdm),ceiling(nrow(tdm) * trainperc))

tdm_test <- (1:nrow(tdm)) [-tdm_train]

Projection over targetClass attrs

50 classes <- tdm[, "targetClass"]

Projection over the other columns (except targetClass) attrs

datas <- tdm[, !colnames(tdm) %in% "targetClass"]

#KNN algorithm

55 pred <- knn(datas[tdm_train,],datas[tdm_test,],classes[tdm_train])

conf <- table(Prediction=pred,Actual=classes[tdm_test])

acc <- sum(diag(conf)/ length(tdm_test))

calc <- function(x) knn(datas[tdm_train,],x,classes[tdm_train])

60 return(list(prediction=pred,confusion_matrix=conf,accuracy=acc,calculate=calc))

}

data_class <- c("neg","pos")

cpath <- "/home/gyankos/Scrivania/sentiment"

65 tspar = 0.7

trainp = 0.7

x = list()

dds <- doDataSet(data_class,cpath,tspar,trainp)

70 best <- dds$accuracy

x[1] <- best

print(best)

for (i in 1:24) {

tmp <- doDataSet(data_class,cpath,tspar,trainp)

75 if (tmp$accuracy > best) {

dds <- tmp

best <- tmp$accuracy

print("best found")

print(best)

80 }

x[i+1] <- tmp$accuracy

164

C.5 text mining algorithms

print(i)

}

85 print(best)

plot(1:25,unlist(x),xlab="tests",ylab="accuracy")

lines(1:25,unlist(x))� �
Algorithm C.13: Second sentiment analysis algorithm with k-nearest neighbor algorithm training over

�lm-review corpus.

�
required libraries

http://www.youtube.com/watch?v=j1V2McKbkLo

library(tm)

library(plyr)

5 library(class)

remdigit <- function (x) { gsub("\\d+", "", x) }

stemOut <- function (pos) {

10 pos <- tm_map(pos, removePunctuation)

pos <- tm_map(pos, stripWhitespace)

pos <- tm_map(pos, tolower)

pos <- tm_map(pos, removeWords,stopwords("english"))

pos <- tm_map(pos, stemDocument)

15 pos <- tm_map(pos, remdigit)

pos <- tm_map(pos, stripWhitespace)

pos

}

20 genTermDocumentMatrix <- function (clas,path,sparsness) {

apath <- sprintf("%s/%s",path,clas)

x <- Corpus(DirSource(directory = apath))

x <- stemOut(x)

x <- TermDocumentMatrix(x)

25 tdm_cor <- removeSparseTerms(x,sparsness)

#By transposing the matrix, each term will be a columns and the other way around for

documents

tdm_cor <- as.data.frame(t(data.matrix(tdm_cor)))

tdm_cor <- cbind(tdm_cor, rep(clas,nrow(tdm_cor)))

30 colnames(tdm_cor)[ncol(tdm_cor)] = "targetClass"

return(tdm_cor)

}

35

allTDM <- function (classvec,path,sparsness) {

x <- do.call(rbind.fill,lapply(classvec,genTermDocumentMatrix,path,sparsness))

x[is.na(x)] = 0

165

algorithms

40 return(x)

}

doDataSet <- function (classvec,path,sparsness,trainperc) {

tdm <- allTDM(classvec,path,sparsness)

45 tdm_train <- sample(nrow(tdm),ceiling(nrow(tdm) * trainperc))

tdm_test <- (1:nrow(tdm)) [-tdm_train]

#Loading the positive and negative dictionary (with less words)

posneg <- read.delim(file=’/home/gyankos/Scrivania/sentiment/AFINN-111.txt’, header=FALSE

, stringsAsFactors=FALSE)

50 names(posneg) <- c(’word’, ’score’)

posneg$word <- tolower(posneg$word)

posneg$word <- stemDocument(posneg$word) #Stemming similar words

posneg <- posneg[!duplicated(posneg),] #Removing duplicated

getrowscore <- function(x,y) x[i,2]

55

Removing not semantic words

words <- match(colnames(tdm),posneg$word)

Projection over targetClass attrs

classes <- tdm[, "targetClass"]

60

Projection over the other columns of names present in words

tdm <- tdm[!is.na(words)]

datas <- tdm[, !colnames(tdm) %in% "targetClass"]

65

#KNN algorithm

pred <- knn(datas[tdm_train,],datas[tdm_test,],classes[tdm_train])

conf <- table(Prediction=pred,Actual=classes[tdm_test])

acc <- sum(diag(conf)/ length(tdm_test))

70 calc <- function(x) knn(datas[tdm_train,],x,classes[tdm_train])

return(list(prediction=pred,confusion_matrix=conf,accuracy=acc,calculate=calc))

}

75 data_class <- c("neg","pos")

cpath <- "/home/gyankos/Scrivania/sentiment"

tspar = 0.7

trainp = 0.7

80 x = list()

dds <- doDataSet(data_class,cpath,tspar,trainp)

best <- dds$accuracy

x[1] <- best

print(best)

85 for (i in 1:24) {

tmp <- doDataSet(data_class,cpath,tspar,trainp)

if (tmp$accuracy > best) {

dds <- tmp

best <- tmp$accuracy

166

C.6 proofs

90 print("best found")

print(best)

}

x[i+1] <- tmp$accuracy

print(i)

95 }

print(best)

plot(1:25,unlist(x),xlab="tests",ylab="accuracy")

lines(1:25,unlist(x))� �
Algorithm C.14: Second sentiment analysis algorithm with k-nearest neighbor algorithm training over

�lm-review corpus.

c.6 proofs

�
include "arithmetics/nat.ma".

include "basics/bool.ma".

include "basics/lists/listb.ma".

5 axiom dt: nat Ñnat Ñnat.

axiom dt_equiv: @a,b,c,d. dt a b = dt c d Ñ a = c ^ b = d.

let rec R (l:list nat) := match l with

[nil ñ O

10 | cons a b ñ match b with

[nil ñ a

| cons c d ñ dt a (R b)]].

definition dtl := λl. dt (length nat l) (R l).

15

lemma rw_dtl: @l. dtl l = dt (length nat l) (R l). // qed.

lemma R_0: R [] = O. // qed.

lemma R_cons: @a. R (a::[])=a. // qed.

lemma R_ccons: @a,b,c. R (a::b::c) = dt a (R (b::c)). // qed.

20

lemma lis_emp: @m:list nat. 0=|m|Ñm=[]. #m

elim m // #A #B #Abs #A1 @False_ind normalize in A1; @(absurd . . . A1 (not_eq_O_S (|B|)))

qed.

25

lemma Sx: @x,y. (S x)=(S y)Ñx=y. // qed.

lemma Hdx:@a,c:nat.@b,d:list nat. |a::b|=|c::d|ÑS(|b|)=S(|d|). #H5 #H6 #H7 #H8 #H9

normalize in H9; @H9 qed.

theorem Lnat_elim2 :

30 @R:list nat Ñ list nat Ñ Prop.

167

algorithms

(@n:list nat. R [] n)

Ñ (@n,m. R (n::m) [])

Ñ (@n,m,o,p. R m p Ñ R (n::m) (o::p))

Ñ @n,m. R n m.

35 #R #ROn #RSO #RSS #n (elim n) -n // #n0 #Rn0m #H #m (cases m)

[@RSO | #n1 #ls @RSS @H] qed.

lemma testa: @l,m. dtl l = dtl m Ñ l = m.

40 #l #m >rw_dtl >rw_dtl #H lapply(dt_equiv . . . H) -H * @(Lnat_elim2 . . . l m)

[#L normalize #H1 lapply(lis_emp . . .H1) -H1 #Finish * @sym_eq @Finish

| #N #L #A1 normalize in A1; #A2 -A2 @False_ind

lapply(sym_eq nat . . .A1) -A1 #A1 @(absurd . . . A1 (not_eq_O_S (?)))

| -l -m #A #B #C #D

45 @(Lnat_elim2 . . . B D)

[#N #IH normalize in IH; #Elem normalize in Elem; lapply(Sx . . . Elem) -Elem #Elem

lapply(IH . . . Elem) -IH #IH lapply(lis_emp . . . Elem) -Elem #H1 >H1 normalize #rw >rw

//

| #E #F #A1 -A1 #A2 normalize in A2; lapply(Sx . . . A2) -A2 #A2 lapply(sym_eq nat . . . A2)

-A2

#A2 #A1 -A1 @False_ind @(absurd . . . A2 (not_eq_O_S (|F|)))

50 | #E #F #G #H

#IH1 #IH2 #H1 lapply(Hdx . . . H1) -H1 #H1 lapply(Sx . . . H1) -H1 #H1 lapply(IH2 . . . H1) -

IH2 #IH2

>R_ccons >R_ccons #H1 lapply(dt_equiv. . . H1) -H1 * #H1 >H1 in IH1; #IH1 #H2

lapply(IH2. . . H2) -IH2 #H3 >H3 //] qed.

55

lemma coda: @l,m. l = m Ñdtl l = dtl m .

#l #m #rw >rw //� �
Algorithm C.15: Proof of a preliminar lemma.

168

D
R E F E R E N C E S

d.1 bibliography

[ABB06] Sameer Agarwal, Kristin Branson, and Serge Belongie. “HigherOrder Learn-
ingwithGraphs”. In: Proceedings of the 23rd International Conference onMachine
Learning. ICML ’06. Pittsburgh, Pennsylvania: ACM, 2006, pp. 17–24 (cit. on pp. 28,
51, 62).

[Ace+07] Luca Aceto et al. Reactive Systems: Modelling, Speci�cation and Veri�ca-
tion. New York, NY, USA: Cambridge University Press, 2007 (cit. on p. 55).

[Ana07] Revolution Analytics. RHadoop and MapR: Accessing Enterprise-Grade
Hadoop from R. 2007 (cit. on p. 128).

[Ana11] Revolution Analytics. Big Data Analytics in R. Big Opportunity, Big Chal-
lenge. 2011 (cit. on pp. 120, 121).

[Ber+11] Michele Berlingerio et al. “Foundations of Multidimensional Network
Analysis.” In: ASONAM. IEEE Computer Society, 2011, pp. 485–489 (cit. on p. 12).

[BH09] Sylvain Brohée and Jacqes van Helden. “Evaluation of clustering algo-
rithms for protein-protein interaction networks.” In: BMC Bioinformatics 7
(Nov. 10, 2009), p. 488 (cit. on pp. 14, 54).

[BHS07] Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt.Pa�ern-Oriented
So�ware Architecture, Volume 4: A Pa�ern Language for Distributed Com-
puting. Chichester, UK: Wiley, 2007 (cit. on p. 118).

[BM10] Alan Bertossi and Alberto Montresor. Algoritmi e Stru�ure di Dati. De
Agostini, CittàStudi Edizioni, May 2010 (cit. on p. 28).

[Cal+06] Toon Calders et al. “Expressive power of an algebra for data mining”. In:
ACM Trans. Database Syst. 31.4 (Dec. 2006), pp. 1169–1214 (cit. on pp. 35, 38–43,
113).

[CH06a] Diane J. Cook and Lawrence B. Holder. Mining Graph Data. John Wiley &
Sons, 2006 (cit. on pp. 55, 61).

169

references

[Deb+99] J.C.W. Debuse et al.Amethodology for knowledge discovery: aKDD roadmap.
Tech. rep. SYS Technical Report SYS-C99-01, 1999 (cit. on p. 35).

[Des+05] Mukund Deshpande et al. “Frequent Substructure-Based Approaches for
Classifying Chemical Compounds”. In: IEEE Transactions on Knowledge and
Data Engineering 17 (8 2005). Ed. by Beng Chin Ooi, pp. 1036–1050 (cit. on pp. 14,
57).

[Don00] Stijn van Dongen. “Graph Clustering by Flow Simulation”. PhD thesis. Uni-
versity of Utrecht, 2000 (cit. on pp. 52, 54).

[DVMT13] Roberto De Virgilio, Antonio Maccioni, and Riccardo Torlone. “Convert-
ing Relational to Graph Databases”. In: First International Workshop on Graph
Data Management Experiences and Systems. GRADES ’13. New York, New York:
ACM, 2013, 1:1–1:6 (cit. on p. 27).

[ERV05] Ernesto Estrada and Juan A. Rodríguez-Velázqez. Complex Networks as
Hypergraphs. 2005 (cit. on p. 12).

[Fag83] Ronald Fagin. “Degrees of acyclicity for hypergraphs and relational database
schemes”. In: J. ACM 30.3 (July 1983), pp. 514–550 (cit. on p. 11).

[Fan+11] Wenfei Fan et al. “Adding regular expressions to graph reachability and
pattern queries.” In: ICDE. Ed. by Serge Abiteboul et al. IEEE Computer Society,
2011, pp. 39–50 (cit. on p. 55).

[Fis36] R. A. Fisher. “The use of multiple measurements in taxonomic problems”.
In: Annals of Eugenics 07 (July 1936) (cit. on p. 62).

[FM08] Dario Floreano and Claudio Mattiussi.Bio-InspiredArti�cial Intelligence:
Theories, Methods, and Technologies. The MIT Press, 2008 (cit. on p. 97).

[For10] Santo Fortunato. “Community detection in graphs”. In: Physics Reports
486.3-5 (2010), pp. 75 –174 (cit. on p. 14).

[Fre05] David Freedman. Statistical Models: Theory and Practice. Cambridge Univer-
sity Press, Aug. 2005 (cit. on pp. 11, 80).

[Gal+93] Giorgio Gallo et al. “DirectedHypergraphs and Applications”. In: Discrete
Appl. Math. 42.2-3 (Apr. 1993), pp. 177–201 (cit. on pp. 11, 21, 29).

[Gen13] Jeff Gentry. twi�eR: R based Twi�er client. R package version 1.1.7. 2013 (cit.
on pp. 99, 109).

[GJ90] Michael R. Garey and David S. Johnson. Computers and Intractability; A
Guide to the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman
& Co., 1990 (cit. on pp. 52, 55).

[HKP12] Jiawei Han, Micheline Kamber, and Jian Pei. Data mining: Concepts and
techniques, Third edition. Waltham, Mass.: Morgan Kaufmann Publishers, 2012
(cit. on pp. 44, 115).

170

D.1 bibliography

[Hol12] Alex Holmes.Hadoop inPractice. Manning Publications Co., 2012 (cit. on pp. 116–
118, 126, 133).

[ISO11] ISO/IEC/IEEE. “Systems and software engineering – Architecture descrip-
tion”. In: ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std
1471-2000) (Jan. 2011), pp. 1 –46 (cit. on p. 119).

[JLN00] Theodore Johnson, Laks V. S. Lakshmanan, and Raymond T. Ng. The 3W
Model and Algebra for Uni�ed Data Mining. 2000 (cit. on p. 38).

[Kat12] Ilya Katsov.MapReduce Pa�erns, Algorithms, and Use Cases. Feb. 2012 (cit.
on p. 120).

[Kim+13] Chungrim Kim et al. “In�uence Maximization Algorithm Using Markov
Clustering”. In: Database Systems for Advanced Applications. Ed. by Bonghee
Hong et al. Vol. 7827. Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2013, pp. 112–126 (cit. on pp. 13, 14, 77).

[LD10] Jimmy Lin and Chris Dyer. Data-Intensive Text Processing with MapReduce.
Synthesis Lectures on Human Language Technologies. Morgan & Claypool Pub-
lishers, 2010 (cit. on pp. 115, 120).

[Luc+13] Antoine Lucas et al. gmp: Multiple Precision Arithmetic. R package version
0.5-11. 2013 (cit. on p. 90).

[LY10] Liang Liu and Lili Yu. “Phybase: an R package for species tree analysis.”
In: Bioinformatics 26.7 (Apr. 13, 2010), pp. 962–963 (cit. on p. 58).

[LZ12] Bing Liu and Lei Zhang. “A Survey ofOpinionMining and SentimentAnal-
ysis”. English. In: Mining Text Data. Ed. by Charu C. Aggarwal and ChengXiang
Zhai. Springer US, 2012, pp. 415–463 (cit. on pp. 97–99).

[Mae13] Martin Maechler. Rmpfr: R MPFR - Multiple Precision Floating-Point Re-
liable. R package version 0.5-4. 2013 (cit. on p. 90).

[Mat11] Norman S. Matloff. Art of R programming: A Tour of Statistical So�ware
Design. San Francisco, Calif.: No Starch Press, 2011 (cit. on pp. 14, 99, 116).

[MH13] David Meyer and Kurt Hornik. relations: Data Structures and Algorithms
for Relations. R package version 0.6-2. 2013 (cit. on p. 99).

[MM06] Matteo Magnani and Danilo Montesi. “A uni�ed approach to structured
and XML data modeling and manipulation”. In: Data Knowl. Eng. 59.1 (Oct.
2006), pp. 25–62 (cit. on pp. 26, 38).

[MM12] Matteo Magnani and Danilo Montesi. “Joining relations under discrete
uncertainty”. In: CoRR abs/1211.0176 (2012) (cit. on p. 36).

[MR13a] Matteo Magnani and Luca Rossi. “Formation of Multiple Networks”. In:
Social Computing, Behavioral-CulturalModeling and Prediction. Ed. by ArielM Green-
berg, WilliamG Kennedy, and NathanD Bos. Vol. 7812. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2013, pp. 257–264 (cit. on p. 12).

171

references

[MR13b] Matteo Magnani and Luca Rossi. “Pareto Distance for Multi-layer Net-
work Analysis”. In: Social Computing, Behavioral-Cultural Modeling and Predic-
tion. Ed. by ArielM Greenberg, WilliamG Kennedy, and NathanD Bos. Vol. 7812.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013, pp. 249–
256 (cit. on p. 12).

[Mur13] Paul Murrell. hyperdraw: Visualizing Hypergaphs. R package version 1.10.0.
2013 (cit. on p. 99).

[MW11] Q. Ethan McCallum and Stephen Weston. Parallel R. O’Reilly Media, Inc.,
2011 (cit. on pp. 116, 131).

[NTK11] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. “A Three-Way
Model for Collective Learning on Multi-Relational Data.” In: ICML. Ed. by
Lise Getoor and Tobias Sche�er. Omnipress, 2011, pp. 809–816 (cit. on p. 66).

[Nuu95] Esko Nuutila. “E�cient TransitiveClosureComputation in LargeDigraphs”.
PhD thesis. Helsinki University of Technology, 1995 (cit. on p. 76).

[Odi92] P. Odifreddi.Classical Recursion Theory: The Theory of Functions and Sets
of Natural Numbers (Studies in Logic and the Foundations of Mathemat-
ics). New Ed. North Holland, Feb. 1992 (cit. on p. 15).

[Pra13] Vignesh Prajapati. Big Data Analytics with R and Hadoop. Packt Publishing,
2013 (cit. on p. 122).

[Pre08] Roger S. Pressman. Principi di Ingegneria del so�ware. McGraw-Hill, 2008
(cit. on p. 127).

[Rod12] Marko A. Rodriguez. Graph Degree Distributions using R over Hadoop. Feb.
2012 (cit. on p. 115).

[Sam+13] Nagiza F. Samatova et al. Practical Graph Mining With R. CRC Press, 2013
(cit. on pp. 52, 55, 56, 61, 62, 87, 115).

[Sha13] Cosma Rohilla Shalizi. “AdvancedDataAnalysis fromanElementaryPoint
of View”. http://www.stat.cmu.edu/c̃shalizi/ADAfaEPoV/. 2013 (cit. on p. 60).

[SJY08] Liang Sun, Shuiwang Ji, and Jieping Ye. “Hypergraph Spectral Learning
for Multi-label Classi�cation”. In: Proceedings of the 14th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining. KDD ’08. Las Vegas,
Nevada, USA: ACM, 2008, pp. 668–676 (cit. on pp. 28, 61, 62).

[SM58] R. R. Sokal and C. D. Michener. “A statistical method for evaluating sys-
tematic relationships”. In:University of Kansas Scienti�c Bulletin 28 (1958), pp. 1409–
1438 (cit. on p. 58).

[TSK05] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data
Mining. 1st. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
2005 (cit. on pp. 12, 13, 45, 109).

172

D.1 bibliography

[TTM11] Ichigaku Takigawa, Koji Tsuda, and Hiroshi Mamitsuka. “Mining Signi�-
cant Substructure Pairs for InterpretingPolypharmacology inDrug-Target
Network”. In: PLoS ONE 6.2 (Feb. 2011), e16999+ (cit. on pp. 14, 60).

[Van09] Ashlee Vance. “Data Analysts Captivated by R’s Power”. In: New York Times
(Jan. 2009) (cit. on p. 14).

[Vaz09] Alexei Vazqez. “Finding hypergraph communities: a Bayesian approach
and variational solution”. In: Journal of Statistical Mechanics: Theory and Ex-
periment 2009.07 (July 2009), P07006+ (cit. on pp. 27, 61).

[W+̈05] Marc Wörlein et al. “A Quantitative Comparison of the Subgraph Min-
ers Mofa, Gspan, FFSM, and Gaston”. In: Proceedings of the 9th European Con-
ference on Principles and Practice of Knowledge Discovery in Databases. PKDD’05.
Porto, Portugal: Springer-Verlag, 2005, pp. 392–403 (cit. on p. 55).

[Whi09] Tom White. Hadoop: The De�nitive Guide. 1st. O’Reilly Media, Inc., 2009 (cit.
on pp. 118, 122, 123).

[WNK10] Nikil Wale, Xia Ning, and George Karypis. “Trends in Chemical Graph
Data Mining.” In: Managing and Mining Graph Data. Ed. by Charu C. Aggar-
wal and Haixun Wang. Vol. 40. Advances in Database Systems. Springer, 2010,
pp. 581–606 (cit. on pp. 52, 58).

[Woo12] Peter T. Wood. “Query languages for graph databases”. In: SIGMOD Rec. 41.1
(Apr. 2012), pp. 50–60 (cit. on p. 40).

[Wu+07] Xindong Wu et al. “Top 10 Algorithms in Data Mining”. In: Knowl. Inf. Syst.
14.1 (Dec. 2007), pp. 1–37 (cit. on p. 44).

[YH02] Xifeng Yan and Jiawei Han. “gSpan: Graph-Based Substructure Pattern
Mining.” In: ICDM. IEEE Computer Society, 2002, pp. 721–724 (cit. on pp. 52,
54, 55).

[YKSP13] Tao Shi Yu-Keng Shih Sungmin Kim and Srinivasan Parthasarathy. “Di-
rectional Component Detection via Markov Clustering in Directed Net-
works”. In: Eleventh Workshop on Mining and Learning with Graphs. 2013 (cit. on
p. 54).

[Zac77] W.W. Zachary. “An information �ow model for con�ict and �ssion in
small groups”. In: Journal of Anthropological Research 33 (1977), pp. 452–473
(cit. on pp. 13, 53).

[Zha13] Yanchang Zhao. R and Data Mining: Examples and Case Studies. 1st. Else-
vier, 2013 (cit. on pp. 14, 99, 109, 115).

173

references

d.2 further reading

[AH08] Dean Allemang and James Hendler. Semantic Web for the Working Ontol-
ogist: E�ective Modeling in RDFS and OWL. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2008.

[AJ11] Jesús M. Almendros-Jiménez. “A Prolog-based Query Language for OWL”.
In: Electron. Notes Theor. Comput. Sci. 271 (Mar. 2011), pp. 3–22.

[AW10] Charu C. Aggarwal and Haixun Wang.Managing andMining Graph Data.
1st. Springer Publishing Company, Incorporated, 2010.

[Baa+03] Franz Baader et al., eds. The description logic handbook: theory, implementa-
tion, and applications. 2nd. New York, NY, USA: Cambridge University Press,
2003.

[Ben+08] M. Bender et al. “Exploiting social relations for query expansion and re-
sult ranking”. In: Data Engineering for Blogs, Social Media, and Web 2.0, ICDE
2008 Workshops. 2008, pp. 501–506.

[CH06b] Diane J. Cook and Lawrence B. Holder. Mining Graph Data. John Wiley &
Sons, 2006.

[Col12] Marco Colombetti. “The Description Logic SROIQ(D)”. Lecture Notes for
the Knowledge Enginerring Course. 2012.

[CYH10] Hong Cheng, Xifeng Yan, and Jiawei Han. “Mining Graph Patterns”. En-
glish. In:Managing andMiningGraphData. Ed. by Charu C. Aggarwal and Haixun
Wang. Vol. 40. Advances in Database Systems. Springer US, 2010, pp. 365–392.

[DGK09] Mike Dean, Benjamin Grosof, and MIchael Kifer.The SILK Language. Dean,
Mike, 2009.

[Dun02] M.H. Dunham. “Data Mining: Introductory and Advanced Topics”. In: Pren-
tice Hall, 2002. Chap. 5, pp. 125–145.

[FG] Seth Falcon and Robert Gentleman. hypergraph: A package providing hy-
pergraph data structures. R package version 1.34.0.

[GSP13] Steve H. Garlik, Andy Seaborne, and Eric Prud’hommeaux. SPARQL 1.1
Query Language. http://www.w3.org/TR/2013/REC-sparql11-query-20130321/. 2013.

[HKS06] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. “The evenmore irresistible
SROIQ”. In: In KR. AAAI Press, 2006, pp. 57–67.

[Hua98] Zhexue Huang. “Extensions to thek-MeansAlgorithm forClustering Large
Data Sets with Categorical Values”. In: Data Min. Knowl. Discov. 2.3 (Sept.
1998), pp. 283–304.

[Jin+11] Ruoming Jin et al. “Path-tree: An e�cient reachability indexing scheme
for large directed graphs”. In: ACM Trans. Database Syst. 36.1 (Mar. 2011), 7:1–
7:44.

174

D.2 further reading

[KJ07] Krys J. Kochut and Maciej Janik. “SPARQLeR: Extended SPARQL for Se-
mantic Association Discovery”. In: Proc. of the 4th European Semantic Web
Conference (ESWC. 2007, pp. 145–159.

[MM10] Matteo Magnani and Danilo Montesi. “A Survey on UncertaintyManage-
ment in Data Integration”. In: J. Data and Information Quality 2.1 (2010).

[NM95] Ulf Nilsson and Jan Maluszynski. Logic, Programming, and PROLOG. 2nd.
New York, NY, USA: John Wiley & Sons, Inc., 1995.

[Rud11] Sebastian Rudolph. “Foundations of Description Logics”. In: ReasoningWeb.
Semantic Technologies for the Web of Data. Ed. by Axel Polleres et al. Vol. 6848.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2011, pp. 76–136.

[Sce+10] Salvatore Scellato et al. “Distance Matters: Geo-social Metrics for On-
line Social Networks”. In: Proceedings of the 3rd Conference on Online Social
Networks. WOSN’10. Boston, MA: USENIX Association, 2010, pp. 8–8.

[Spi12] Daniel Spielman. “Spectral Graph Theory”. In: Combinatorial Scienti�c Com-
puting. Ed. by Uwe Naumann and Olaf Schenk. CRC Press, 2012. Chap. 18, pp. 495–
524.

[SS09] Steffen Staab and Rudi Studer.Handbook on Ontologies. 2nd. Springer Pub-
lishing Company, Incorporated, 2009.

[TL07] Silke Trissl and Ulf Leser. “Fast and practical indexing and querying of
very large graphs”. In: Proceedings of the 2007 ACM SIGMOD international con-
ference on Management of data. SIGMOD ’07. Beijing, China: ACM, 2007, pp. 845–
856.

[WRF13] Yuyi Wang, Jan Ramon, and Thomas Fannes. “An e�ciently computable
subgraph pattern support measure: counting independent observations.”
In: Data Min. Knowl. Discov. 27.3 (2013), pp. 444–477.

[YYH04] Xifeng Yan, Philip S. Yu, and Jiawei Han. “Graph indexing: a frequent structure-
based approach”. In: Proceedings of the 2004 ACM SIGMOD international confer-
ence on Management of data. SIGMOD ’04. Paris, France: ACM, 2004, pp. 335–346.

[ZA03] Mohammed J. Zaki and Charu C. Aggarwal. “XRules: an e�ective struc-
tural classi�er for XML data”. In: Proceedings of the ninth ACM SIGKDD inter-
national conference on Knowledge discovery and data mining. KDD ’03. Washing-
ton, D.C.: ACM, 2003, pp. 316–325.

[Has+07] Mohammad Hasan et al. “ORIGAMI: Mining Representative Orthogonal
Graph Patterns”. en. In: Proc. IEEE Int. Conf. on Data Mining ICDM’07. Ed. by
IEEE Computer Society Press. Oct. 2007, pp. 153–163.

175

I N D E X

κ fA...Z as R, 42
πA, 42
πRDA, 42

adj, 28

classi�cation, 40
Naïve Bayes, 44

COE framework, 26

D-World, 38
Calc f as S

over relations, 39
Γ‘pXiqasS
xX1,...,Xi´1,Xi`1,...,Xny

over relations, 39
data model

Graph„ 51
Hypergraph, 23

data-hyperedge, 23
database, 26

graph d. model, 52
with uncertain data, 30

DHImp, see also D/I-Hypergraph
document, 99
dovetailing, 15

reverse, 16
reverse vectorial, 16
vectorial, 16

E-World, 38, 40
embedding, 38
entity

in Sentiment Analysis, 97
over Hypergraphs, 98

environment, 15
ERTriple, 85
Extraworld (TDM)

PoppD, Rq
for relations, 42

regionizing (function)
over relations, 42

�lter, 14
function

frequency support, 54
support, 54

graph, 27
subgraph isomorphism, 52

hypergraph, 65
adjacency matrix, 26
adjacency matrix, typed, 26, 30
basic, 21
D/I-Hypergraph, 67
D/I-Hypergraph tensor, 66

I-World, 38
index, 15
index-consistency, 36, 46

join, 37

learning
supervised, 97
unsupervised, 97

map, 15

next, 28

opinion, 98
over Hypergraphs, 99

prev, 28
projection, 37

R, 99

177

Index

reindexing, 44
rename, 38

satis�ability
for clauses (TDM), 40

selection, 37
Sentiment Analysis, 97
subtype, 15

summarize, 76

TDM, 38
type, 15

union, 36

woeid, 103
work environment, see also environment

178

Index

179

	1 Preface
	1.1 Why to define an Algebra over hypergraphs?
	1.2 Introduction to Data Mining
	1.2.1 Relational Data
	1.2.2 Graph Mining: Problems

	1.3 R and statistical analysis
	1.4 Notation
	1.4.1 Dovetailing

	Data Modelling
	2 Data Model
	2.1 Basic Hypergraph
	2.1.1 Databases vs. Hypergraphs
	2.1.2 Graph vs. Hypergraph
	2.1.2.1 On Graph and Hypergraph visit algorithms

	2.1.3 Database with Uncertain Data vs. Typed Adjacency Matrix

	2.2 Some proofs
	2.2.1 Database and ED-Hypergraph isomorphism
	2.2.2 The A,A-1 isomorphism
	2.2.3 The Adb,dbA isomorphism

	3 Relational Data Mining
	3.1 Preliminary relational algebraic operations over data tables with uncertain data
	3.2 Preface on Threefolded Data Mining (TDM)
	3.3 Database operations
	3.4 Other relational statistical techniques
	3.4.1 Classification: Naïve Bayes

	3.5 Indexing consistency of relational operations
	3.5.1 Preliminar lemmas
	3.5.2 Proofs for algebraic operations

	4 A Survey on (Hyper)Graph Mining Techniques
	4.1 Graph Mining
	4.1.1 Graph Clustering
	4.1.1.1 Intra-Graph clustering
	4.1.1.2 Graph Descriptors
	4.1.1.3 Hierarchical Intra-Database clustering

	4.1.2 Association Analysis
	4.1.3 Graph Classification Rules

	4.2 Hypergraph Mining
	4.2.1 Vertex Clustering via Regularized Laplacian

	5 Hypergraph Operators
	5.1 Hypergraph definition over the three worlds
	5.1.1 Tensors for binary relations
	5.1.2 D/I-Hypergraphs algebraic operations - Data operations
	5.1.3 D/I-Hypergraphs algebraic operations - Relational operations
	5.1.4 Pure I-Hypergraph for non data-driven relations

	5.2 Promoting data relations
	5.2.1 Expliciting Laplacian data correlation into a matrix form

	5.3 Hypergraph Databases: a superfluous definition

	Hypergraph applications
	6 gSpan Expansion - using subgraph mining for our graph database definition
	6.1 Targeting the Subragrph Isomorphism over DHImp
	6.2 gSpan over DHImp
	6.3 gSpan Extended: an implementation

	7 Hypergraph for Data Mining Implementations
	7.1 Defining the data structures in R
	7.1.1 Tables and Table Records
	7.1.2 Implementing the operators
	7.1.3 Some examples

	7.2 Defining the whole DHImp in Java
	7.2.1 A brief example

	8 Sentiment Analysis over time
	8.1 Definitions
	8.2 Twitter Data Extraction
	8.2.1 Trend Mining
	8.2.2 Users and Users' timeline

	8.3 Data Manipulation
	8.3.1 Analyzing small datasets (movie reviews)
	8.3.2 Data Mining ``in the large'' (or, Training the algorithm with Twitter datasets)

	9 Social Network Forensics
	9.1 Data Localization

	Epilogue
	10 Postface
	A R and Hadoop: an overview
	A.1 Data Mining's purposes
	A.1.1 R
	A.1.2 Hadoop

	A.2 Architectural Targets
	A.2.1 Architectural Context
	A.2.1.1 Possible Scenarios

	A.2.2 Architectural Properties

	A.3 Adapter Solutions' Architectural Analysis
	A.3.1 R+Streaming
	A.3.2 RHadoop (rmr2)
	A.3.3 Rhipe

	A.4 Final Remarks

	B Implementing a simple Type system in R
	C Algorithms
	C.1 Hypergraphs in R
	C.2 DHImp implementation in R
	C.3 Hypergraphs and gSpan Extended in Java
	C.4 Graph Mining algorithms
	C.5 Text Mining algorithms
	C.6 Proofs

	D References
	D.1 Bibliography
	D.2 Further Reading

	Index

