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Abstract

La Relatività Generale e la Meccanica Quantistica sono state le due piú
grandi rivoluzioni scientifiche del ventesimo secolo.
Entrambe le teorie sono estremamente eleganti e verificate sperimentalmente in
numerose situazioni. Apparentemente però, esse sono tra loro incompatibili.
Alcuni indizi per comprendere queste difficoltà possono essere scoperti studiando
i buchi neri.
Essi infatti sono sistemi in cui sia la gravità, sia la meccanica quantistica sono
ugualmente importanti.
L’argomento principale di questa tesi magistrale è lo studio degli effetti quantis-
tici nella fisica dei buchi neri, in particolare l’analisi della radiazione Hawking.
Dopo una breve introduzione alla Relatività Generale, è studiata in dettaglio la
metrica di Schwarzschild. Particolare attenzione viene data ai sistemi di coor-
dinate utilizzati ed alla dimostrazione delle leggi della meccanica dei buchi neri.
Successivamente è introdotta la teoria dei campi in spaziotempo curvo, con par-
ticolare enfasi sulle trasformazioni di Bogolubov e sull’espansione di Schwinger-
De Witt. Quest’ultima in particolare sarà fondamentale nel processo di rinor-
malizzazione del tensore energia impulso.
Viene quindi introdotto un modello di collasso gravitazionale bidimensionale.
Dimostrata l’emissione di un flusso termico di particelle a grandi tempi da parte
del buco nero, vengono analizzati in dettaglio gli stati quantistici utilizzati, le
correlazioni e le implicazioni fisiche di questo effetto (termodinamica dei buchi
neri, paradosso dell’informazione).
Successivamente viene introdotto il tensore energia impulso rinormalizzato e
viene calcolata un’espressione esplicita di quest’ultimo per i vari stati quantis-
tici del buco nero.
Infine vengono studiate le correlazioni di questi oggetti. Queste sono molto in-
teressanti anche dal punto di vista sperimentale: le correlazioni tra punti interni
ed esterni all’orizzonte degli eventi mostrano dei picchi, i quali potrebbero presto
essere misurabili nei modelli analoghi di buco nero, quali i BEC in configurazione
supersonica.
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Abstract

General Relativity is one of the greatest scientific achievementes of the 20th century
along with quantum theory.
These two theories are extremely beautiful and they are well verified by experiments, but
they are apparently incompatible.
Hints towards understanding these problems can be derived studying Black Holes, some the
most puzzling solutions of General Relativity.
The main topic of this Master Thesis is the study of Black Holes, in particular the Physics
of Hawking Radiation.
After a short review of General Relativity, I study in detail the Schwarzschild solution with
particular emphasis on the coordinates systems used and the mathematical proof of the
classical laws of Black Hole “Thermodynamics”.
Then I introduce the theory of Quantum Fields in Curved Spacetime, from Bogolubov trans-
formations to the Schwinger-De Witt expansion, useful for the renormalization of the stress
energy tensor.
After that I introduce a 2D model of gravitational collapse to study the Hawking radiation
phenomenon.
Particular emphasis is given to the analysis of the quantum states, from correlations to the
physical implication of this quantum effect (e.g. Information Paradox, Black Hole Thermo-
dynamics).
Then I introduce the renormalized stress energy tensor.
Using the Schwinger-De Witt expansion I renormalize this object and I compute it analiti-
cally in the various quantum states of interest.
Moreover, I study the correlations between these objects. They are interesting because they
are linked to the Hawking radiation experimental search in acoustic Black Hole models. In
particular I find that there is a characteristic peak in correlations between points inside and
outside the Black Hole region, which correpsonds to entangled excitations inside and outside
the Black Hole.
These peaks hopefully will be measurable soon in supersonic BEC.

In this Thesis I use c = GN = 1, the sign convenction (-,+,+,+) and the Reimann ten-
sor

R σ
µνρ = +

∂Γσµρ
∂xν

−
∂Γσνρ
∂xµ

+ ΓηµρΓ
σ
κν − ΓηνρΓ

σ
µη
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Chapter 1

General Relativity

The General Theory of Relativity formulated by Albert Einstein in 1915 is a very beau-
tiful theory which describe gravity as a property of spacetime.
Einstein’ s special relativity rejected the ether concept of a privileged inertial frame of ref-
erence, but still depends on the concept of inertial frames.
General Relativity goes beyond this concept, too: it is possible to describe the physics of a
system using an arbitrary reference frame.
In this chapter, we are now going to give a short overview of General Relativity.
Firstly, we discuss the first principles of General Relativity with particular emphasis on their
importance in the construction of the theory, then we study some mathematical aspects use-
ful in the next chapters.

1.1 The Equivalence Principle

The Equivalence Principle is one of the corner stones of Einstein’s theory.
It is based on the equality of the inertial mass and the gravitational mass experimentally
proved for the first time by Galileo. This simple statement is very profound and it has far
reaching conseguences. Einstein himself had argued that the Principle of Equivalence is his
major contribute to Physics.
Let us consider the famous freely falling elevator thought experiment. If we are in an
homogeneous gravitational field and we want to describe a system composed by a certain
number of particle we can write:

min
d2x

dt2
= ΣnFn(x− x′) +mgg

where g is the gravitational acceleration, Fn the non gravitational force which acts on the
n-particle, min the inertial mass and mg the gravitational mass. If we perform this change
of coordinates

x⇒ x
′

= x− 1

2
gt2

t
′

= t

we find:

min
d2x

′

dt2
=
∑
n

Fn(x− x
′
)

7



8 CHAPTER 1. GENERAL RELATIVITY

since min = mgrav.
Clearly, the observer in the system of reference S’ (the freely falling elevator) does not
measure any gravitational field.
Therefore, we understand from these equations that the gravitational force is equal to an
inertial force. In particular when g is constant we can eliminate the gravitational force
through a change of coordinates.
If we are in a generic gravitational field obviously we cannot simply eliminate the effects
of gravity globally throught a change of coordinates but for every point we can consider a
neighborhood in which g can be considered constant. Therefore we can always find locally
a class of inertial system of references in which the Laws of Physics are those of Special
Relativity.
It is important to underline that these system of reference are local, not global.
From the geometrical point of view the Principle of Equivalence is the analogue of the well
known differential geometry theorem which states that it is always possible to approximate
locally a curved manifold with a plane.
Now we are going to find the equations of motion for a generic point particle in a gravitational
field. The special relativistic equation which is true in the freely falling elevator’s reference
frame is:

dpα

ds
= 0⇒ d2χα

ds2
= 0

with:

ds2 = ηαβdχ
αdχβ

where ηαβ = diag(−1,+1,+1,+1) and pα = mdχα/ds.
These equations describe the motion of a free particle in an inertial reference system.
If we perform a general change of coordinates to a non intertial system (χ⇒ x(χ)) we find:

d2xλ

ds2
+ Γλµν

dxµ

ds

dxν

ds
= 0

where:

Γλµν =
∂xλ

∂χα
∂2χα

∂xµ∂xν

This is the Geodesics Equation that describe the motion of a test particle subjected to a
generic gravitational field.
The line element in the second reference system is:

ds2 = gµνdx
µdxν

where:

gµν = ηαβ
∂χα

∂xµ
∂χβ

∂xν

The metric tensor describes how to measure temporal and spatial intervals.
Thus, the presence of gravity modifies the simple Minkowkian intuitive notion of distance
between events.
It is important to underline that the geometry has not to be simply flat: in the General
Theory of Relativity the geometry of spacetime is determined by the Einstein’s Equations.
It is possible to write:

Γσλµ =
1

2
gνσ

(
∂gµν
∂xλ

+
∂gλν
∂xµ

− ∂gµλ
∂xν

)
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Recalling that Γσλµ is the gravitational force we can interpret the metric as the gravitational
potential. Since it is a symmetric tensor in four dimension it has got 10 independent com-
ponents.
The same reasoning can be applied to massless particles.
Thus, massless particles do not follow simply straight line in a graviational field.
We can define the causal structure as the set of events which can be connected by null or
timelike curves.
Since nothing can travel faster than light, the null trajectories determine the causal struc-
ture of spacetime.
At every point the light cone is equal to that of special relativity locally because of the
Equivalence Principle, but globally there can be very different causal configurations. Thus,
in principle we can have regions in which the gravitational field is so strong that creates
interesting and non obvious structures (eg. Black Holes).
Note in particular that in the first system of reference the particle moves in a straight way,
in the second it is subjected to acceleration. Thus we can interpret Γλµν as the gravitational
force. Now we can give another mathematical statement of the Equivalence Principle:
It is always possible to find locally an inertial system in which:

gµν(x) = ηµν

Γσλµ(x) = 0

The equation of the geodesics can be derived also from the minimization of the proper time
between events:

s =
1

2

∫ b

a

√
−gµν

dxµ

dτ

dxν

dτ
dτ

A simple calculation shows that the solution to this problem is the geodesics equation which
generalizes to curved spacetime the notion of straight lines.

1.2 The Principle of General Covariance

The principle of General Covariance (see ref. [1]) also known as diffeomorphism covari-
ance, is another fundamental principle of the General Theory of Relativity.
The essential idea is that coordinates do not exist a priori in nature, but are only artifices
used in describing it, and hence they should not play any role in the formulation of funda-
mental physical laws.
A physical law expressed in a generally covariant fashion takes the same mathematical form
in all coordinate systems and is usually expressed in terms of tensor fields.
The Principle of General Covariance says:

1. the form of physical laws under arbitrary differentiable coordinate transformations
doesn’t change.

2. an equation which holds in presence of gravitation agrees with the law of special
relativity when the metric tensor equals the Minkoskian metric tensor and Γλµν = 0

Let us suppose that we are in a general gravitational field and consider any equation of
motion that verify the above conditions.
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Since these equations have to be true in every coordinate system we can consider a class of
locally intertial systems in which the effects of gravity are absent. In this coordinate frame
the equations of motion are those of Special Relativity.
But the first condition implies that the equations which holds in these systems are true in
every other coordinate system.
Hence if we know the Special Relativisic Equation of motion we can write the equation in
presence of gravity with the substitutions:

∂µ ⇒ ∇µ

and
ηµν ⇒ gµν

where ∇µ is the covariant derivative that acts eg. on vectors:

V µ;λ =
∂V µ

∂xλ
+ ΓµλκV

κ

It is instructive to make a comparison between the Lorentz invariance Principle and the
General Covariance Principle.
Any equation can be made Lorentz invariant, eg. the Newtonian second law. But the equa-
tion in the transformed system would contain the velocity of the second coordinate frame.
Lorentz invariance is the requirement that these quantities cannot appear in the equations
of Physics.
Let us consider now the Principle of General Covariance. Every equation can be written in
a general covariant manner and two new terms enter in the discussion: the metric tensor
and the affine connection. But we do not require that these quantities drop out at the end.
Any Physical Principle, such as General Covariance, whose content is a limitation on the
possible interactions of a particular field is called a dynamical symmetry (note the similar-
ity with gauge invariance).

1.3 Curvature

We have seen in the previous sections that the metric gµν contains information about
the gravitational field.
We know from the Principle of General Covariance that two metric g

′

µν and gµν linked by a
differentiable coordinate transformation describe the same physical field.
It is so of fundamental importance to find an object that describes the curvature of our
spacetime and which tell us if a metric describe a gravitational field: the Reimann tensor.
Indeed, if every componentRµνλσ = 0 a manifold is flat and exists a coordinate trasformation
which maps globally gµν in the Minkoskian metric ηµν .
It can be demonstrated that the Riemann tensor is the only quantity which is nonlinear in
the first derivatives, linear in the second derivative and is a tensor under general coordinate
transformations. In a particular coordinate frame we can write (see ref. [2]):

Rλµνκ = −
∂Γλµν
∂xκ

+
∂Γλµκ
∂xν

− ΓηµνΓλκη + ΓηµκΓλνη

We can always put to 0 with a choice of a locally intertial frame the first derivative of the
metric contained in Γ. Not such an operation is possible for the second derivatives in ∂Γ.
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From the Riemann tensor we can define the Ricci tensor which appear in the Einstein’s
equations in this manner:

Rνµνλ = Rµλ

and the Ricci scalar:
R µ
µ = R

With these tensors we can build a symmetric tensor that is covariantly conserved: the
Einstein tensor:

Gµν = Rµν −
1

2
Rgµν

∇µGµν = 0

which will appear in the Einstein’s equations which describe the dynamics of the gravi-
tational field.

1.4 The stress-energy tensor

The stress energy tensor (sometimes stress energy momentum tensor or energy momen-
tum tensor) is a tensor quantity that describes the density and flux of energy and momentum
in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of mat-
ter, radiation, and non-gravitational force fields.
Moreover the stress energy tensor is the source of the gravitational field in the Einstein’s
field equations of General Relativity, just as mass density is the source of such a field in
Newtonian gravity. Thus it is of fundamental importance to understand correctly its prop-
erties.
In special relativity it obeys the conservation equation:

∂αT
αβ = 0

From the Principle of general covariance we know that in presence of gravity we would have:

∇αTαβ = 0

which contains also the information about the energy exchanged between the different fields
and the gravitational field.
We stated previously that the stress energy tensor is an attribute of matter, radiation, and
non-gravitational force fields. Infact we cannot define an energy momentum tensor for the
gravitational field since it is a local object and we know from the Equivalence Principle that
we could find a class of locally inertial systems in which gravity is absent.
We are now ready to interpret what an observer with 4-velocity vµ would measure:

1. Tµνv
µvν is the energy density that is non negative: Tµνv

µvµ ≥ 0

2. Tµνv
µnν is interpreted as the momentum density of matter.

3. Tµνn
µnν is interpreted as the stress in a particular direction.

where nµ is a unit vector normal to the surface of interest and it verifies uµnµ = 0. It
is fundamental to understand that a physical observer measure only the full stress energy
tensor, not only one component.
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1.5 The Einstein’s Equations

From the Newtonian theory of gravity we know that matter density creates the gravita-
tional field.
This theory is not correct because it predicts an instantaneous action at distance which is
forbidden by the Laws of Special Relativity.
We know that the matter density ρ is the T00 component of the stress energy tensor and
so it is reasonable to hypotize that the stress-energy tensor is the relativistic source of the
gravitational field.
We need another tensorial quantity Gµν that describes the dynamics of the gravitational
field.
Since not only the matter density but also the energy density ecc. creates a gravitational
field we expect that the equations which describe the dynamics of the gravitational field
will be non linear. This because the gravitational field transports these quantities and so
“gravity gravitates”. From the discussion above we know that the only quantity that in
non linear in the first derivative and linear in the second derivative of the metric (the grav-
itational potential) is the Riemann’s tensor.
Moreover we know that the conservation of the stress energy tensor is given by ∇µTµν = 0
But the Riemann tensor is not conserved covariantly.
The Bianchi Identity teaches that the only quantity that is covariantly conserved is:(

Rµν −
1

2
Rgµν

)
;µ

= 0

This is called the Einstein’s tensor.
Now we can write the famous Einstein’s Equation:

Rµν −
1

2
Rgµν = 8πGNTµν

The content of these equations can be reasumed in this statement:

“matter tells space how to curve and space tells matter how to move”.

These equations can be more formally derived from the generally covariant Einstein-Hilbert
action:

S =
1

8πGN

∫
dnx
√
−g (R+ Lmatter)

where R is the Ricci scalar.
If we consider the Einstein’s theory with cosmological constant we can add the term Λgµν
which is permitted since it is covariantly conserved (∇µgµν = 0).

Rµν −
1

2
Rgµν + Λgµν = 8πGNTµν

It is also interesting to note that the the stress energy tensor’s conservation law contains a
great deal of information about the behaviour of matter.
It can be proved that for a perfect fluid ∇µTµν = 0 implies the geodesics equation.
The resolution of the Einstein’s field equations is a very difficult problem: it is a system of
second order non linear equations.
Moreover one has to solve simultaneously for the metric and Tµν .
It is usually possible to find exact solutions only if the symmetries are strong, for example
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spherical symmetry in vacuum.
In the next chapter we study the well known Schwarzsdchild Solution of the Einstein’s Equa-
tions describing a spherically symmetric graviational field.

1.6 Causal Structure

As we have already noticed, gravity affects also the motion of massless particles.
Since the causal structure is determined by the light cones, the causal structure in presence
of gravity can be very different from the intuitive Minkowkian structure.
The possible emergence of horizons will turn out to be a very important new feature of
gravitational fields. Under normal circumstances gravity is so weak that no horizon will
be seen, but some physical systems, like a star which undergoes gravitational collapse, may
produce horizons.
If this happens there will be regions in space-time from which no signals can be observed.
Another important concept that will be very important in our future discussion is related
to the possibility to define in a unique manner the future evolution of a system.
Consider a surface S, we call future domain of dependence, denoted by D+(S) :

D+(S) = [p ∈M : every past causal curve pass through p interesects S]

The past domain of dependence D−(S) is defined by interchanging past with future.
The full domain of depence is denoted by

D(S) = D+(S)
⋃
D−(S)

If it verifies
D(S) = M

where M is the entire spacetime manifold, S is a Cauchy Surface.
D(S) represents the complete set of events for which all conditions shoud be determined by
the knowledge of conditions on S.
A spacetime which possesses a Cauchy surface S is said to be globally hyperbolic.

1.7 Killing Vectors

In this section we want to define a way of describing symmetries in a covariant language,
which does not depend on any particular choice of the coordinate system.
Consider now a general metric gµν(x). It is said to be form-invariant under a general

coordinate transformation x⇒ x
′

if:

g
′

µν(x) = gµν(x)

for every point x.
It is obvious from the tensor trasformation rule that we can write:

gµν(x) =
∂x
′ρ

∂xµ
∂x
′σ

∂xν
g
′

ρσ(x′)

If the metric gµν is form invariant it is possible to write:

gµν(x) =
∂x
′ρ

∂xµ
∂x
′σ

∂xν
gρσ(x′) (1.1)
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Any transformation which verifies the above equation is called an isometry.
Now if we take the infinitesimal trasformation

x
′µ = xµ + εξµ

it is simple to expand Eq 1.1 to the first order in ε (see ref [1]):

∇νξµ +∇µξν = 0

A vector which verifies the above equation is called a Killing vector.
It is easy to demonstrate that the quantity (the Killing Energy):

EK = −uµξµ

is conserved along a geodesic.
Indeed

d

dλ
(−uµξµ) = − D

Dλ
(uµξµ) = −

(
Duµ

Dλ

)
ξµ − uµ

(
Dξµ
Dλ

)
= 0

since Duµ

Dλ is the geodesics equation and

Dξµ
Dλ

= ξµ;βu
β ⇒ uµξµ;βu

β = 0

because from the Killing equation we know that ξµ;β is antisymmetric.
EK will be of fundamental importance in the next chapters.



Chapter 2

The Schwarzschild Solution

In this Chapter we introduce the famous General Relativistic Schwarzschild Solution.
After an analysis of its symmetries and singularities we introduce several coordinate systems
and we study the global properties of this solution.
Finally we discuss the classical laws of Black Hole Mechanics.

2.1 Schwarzschild Coordinates and Basic Features

We are going to study one of the most important exact solution of the Einstein’s Equa-
tions.

Rµν −
1

2
Rgµν = 8πGNTµν (2.1)

We are interested in a vacuum solution so every component of the stress energy tensor
vanishes.
It is simple to restate Einstein’s Equations as:

Rµν = 0

since the Ricci scalar R is 0 because of the trace of Eq. 2.1 when Tµν = 0.
Let us take the most general manifest spherically symmetric and time independent line
element:

ds2 = −eµ(r)dt2 + eν(r)dr2 + r2(dθ2 + sin2 θdφ2)

where µ(r) and ν(r) are the functions which we want to fix.
Using the vacuum Einstein’s Equations we find the famous Schwarzschild solution:

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2)

The only parameter present in the Schwarzschild solution is M which represents the mass
of the source of the gravitational field measured at infinity.
In General Relativity it is very important to understand correctly the meaning of the coor-
dinates which are used since, as we are going to see, they are only labels for the events and
they do not usually have the clear intuitive meaning which they possess in flat spacetime.
Taking

ds2|r,t=const = +r2
0(dθ2 + sin2 θdφ2)

15
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we understand that θ and φ are angular coordinates of a S2 sphere (symmetric surfaces).
The r coordinate is not a common a radial coordinate: it is related to the area of the S2

spheres

r =

√
A

4π

and it approach the intuitive notion of a radial coordinate only when r →∞.
The time coordinate t is related to the clock of a static observer at r → ∞ since a static
observer at r = r0 measure with his clock:

dτ2 =

(
1− 2M

r0

)
dt2

and so dτ < dt. It means that a static observer in r = r0 sees the clock of an asympotic
observer running faster than his.
It can be shown that the Schwarzschild solution is the only spherically symmetric vacuum
solution of the Einstein’s Equations (this result is called Birkohff Theorem) and thus spher-
ical oscillations of the source do not produce gravitational radiation.
The Schwarzschild solution is asymptotically flat as the metric has the form gµν = ηµν +
O(1/r2) for large r and so will be possible to define several quantities of interest as we are
going to see.
This spacetime does not depend on t (and it is invariant under time inversion) and thus
ξµ = ∂/∂t is a timelike Killing vector. Therefore we have the conserved quantity along a
geodesic:

E = −gµνξµuν =

(
1− 2M

r

)
dt

dτ

where ξµ = (1, 0, 0, 0) in Schwarzschild coodinates.
Note that at infinity it reduces to the usual special relativistic formula for the total energy
per unit mass as measured by a static observer. From the rotational invariance we know
that also χµ = ∂/∂φ (in Schwarzschild coordinates χµ = (0, 0, 0, 1)) is a Killing Vector with
the associated conserved quantity (choosing θ = π/2):

L = gµνχ
µuν = r2 ∂φ

dτ

where L is interpreted as the angular momentum/unit mass.
Note that the Schwarzschild line element is not well defined in r = 0 and r = 2M . It is
simple but tedious to verify that the curvature invariant is (see ref. [3])

RµναβRµναβ =
48M2

r6

From this expression we understand that r = 0 is a true singularity of spacetime in which
curvature blows up, while r = 2m is only a coordinate singularity which can be eliminated
by a coordinate tranformation.
Let us consider the causal structure of our spacetime. We want to find the radial null
geodesics in the Schwarzschild coordinates (t, r, θ, φ)

0 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2

and so
dr

dt
= ±

(
1− 2M

r

)
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Figure 2.1: Light Cones: The Schwarzschild Spacetime

where the ± is related to the outgoing and ingoing geodesics.

From Figure 1 we can see that the light cones assume the Minkowkian form as r → ∞
as expected since but have a pathological behaviour at r = 2M since that past directed and
future directed light rays coincide.
Inside this surface we have that the exterior spacelike coordinate r and the exterior timelike
coordinate t are exchanged.
Thus it is impossible to remain static at r = const and the only physical motion is along
decreasing r. Every physical motion ends at the singularity r = 0.
Consider now a parametric line in r (we are considering only displacement in r). Outside it
is a spacelike geodesic while in the interior region it is timelike.
But the tangent vector has to be paralleled propagated along a geodesic and thus it cannot
change its character.
We understand from these results that the strange singular behaviour of the light cones at
r = 2M is an artifact of a bad choice of coordinates and it has to be improved by a coordi-
nate transformation in order to understand the characteristics of our spacetime in this point.

2.2 Gravitational Redschift

Consider now two static observer at radius r1 and r2. Suppose that the observer 1 sends
a signal, for example a photon with frequency ν to the second observer.
The energy measured by an observer with four velocity uµ is

E = −pµuµ

where pµ is the four momentum of the photon. Since every observer follows timelike trajec-
tories we have:

uµuµ = gµνu
µuν = g00u

0u0 = −1
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because uµ = (u0, 0, 0, 0). From the above equation we find

u0 =
1√

1− 2M
r

and so it is easy to find

ν1

ν2
=

√
1− 2M

r2√
1− 2M

r1

in particular if we take the observer 1 at infinity

ν1 =

√
1− 2M

r2
ν2 < ν2

So a photon send by the observer 2 arrives at infinity redshifted. Note in particular that
the Schwarzschild radius r = 2M is an infinite redschift surface.

2.3 The Eddington-Filkenstein Coordinates

Normally one would regard the Schwarzschild Solution for r > r0 (with r0 > 2M) as
being the solution outside some spherical object of radius r0, which is described internally
by some other solution of the Einstein’s equations.
But we know that sufficiently massive bodies will undergo complete gravitational collapse,
therefore the region r ≤ 2M is physically relevant.
As we have already stated r = 2M is only a coordinate singularity where no curvature
invariants diverge. It would be useful to find new coordinates which are well defined there.
It is easy to find the reason because the Schwarzschild coordinates fail to cover r = 2M :
they are associated to static observers but no one can remain static there because the scalar
aµaµ (aµ is the four accelleration) diverges when r → 2M .
Consider now a radial null geodesic. It is defined by:

0 = −
(

1− 2M

r

)
dt2 +

dr2(
1− 2M

r

)
and thus

dr(
1− 2M

r

) = ±dt

where the ± is related to the outgoing and ingoing geodesics.
We call

dr(
1− 2M

r

) = dr∗ ⇒ r∗ =

∫
dr(

1− 2M
r

) = r + 2M ln
( r

2M
− 1
)

the Regge-Wheeler tortoise coordinate.
It is now useful to introduce two radial null coordinates which are constant along the outgoing
(u) and ingoing null geodesics (v):

u = t− r∗

v = t+ r∗
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Note that they reduce to the usual Minkowkian null coordinates when r →∞.
Using the coordinates (v, r, θ, φ) the metric takes the advanced Eddington-Filkenstein form:

ds2 = −
(

1− 2M

r

)
dv2 + 2dvdr + r2(dθ2 + sin2 θdφ2)

which is obviously non singular at r = 2M . Thus using different coordinates we have
extended the Schwarzschild metric so that it is no longer singular at r = 2M .
If we introduce for semplicity

t
′

= v − r

we obtain

ds2 = −
(

1− 2M

r

)
dt
′2 +

4M

r
dt
′
dr +

(
1 +

2M

r

)
dr2 + r2(dθ2 + sin2 θdφ2)

and we can understand the causal structure of this representation of the Schwarzschild
Solution with Figure 2.2.
In the region r 6= 2M we have the same causal structure already founded in the (t, r, θ, φ)

Figure 2.2: Causal Structure: Eddington Filkenstein Advanced Coordinates

diagram.
But now r = 2M is locally depicted as every other point: it has no local strange behaviour.
Only from a global point of view we have that it has got some interesting properties.
Note that with this change of coordinates we have lost the time reverse symmetry. The
most obvious asymmetry is that of the surface r = 2M which acts as a one-way membrane:
null or timelike future directed geodesics cross this surface only from the outside (r > 2M)
to the inside (r < 2M).
Let us note that the surface r = const has the signature

1. r > 2M ⇒ (−,+,+) and so it is timelike and an observer can remain at r = const.

2. r < 2M ⇒ (+,+,+) and so it is spacelike and an observer cannot remain at r = const.
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3. r = 2M ⇒ (0,+,+) which a null like surface, only a massless particle can remain at
r = 2m.

From these results we understand that r = 2M forms the event horizon: every particle
which passes this surface can never return to the exterior region and can only go towards
the singularity.
In particular it is possible to demonstrate with a simple calculation that a geodesic entering
the black hole arrives at the singularity r = 0 in a finite proper time.
We can also use the coordinate u instead of v. We obtain the retarded Eddington Filkenstein
metric:

ds2 = −
(

1− 2M

r

)
du2 − 2dudr + r2(dθ2 + sin2 θdφ2)

Figure 2.3: Causal Structure: Retarded Eddington Filkenstein coordinates

But this coordinate transformation seems to reverse the direction of time with respect
to the retarded Eddington Filkenstein form.
Infact the r = 2M surface is again a null surface which acts as a one-way membrane but it
let only past directed timelike or null curves to cross itself from the outside to the inside as
we can see from the Figure 2.3.
In order to understand the strange relation between the advanced and the retarded Eddington-
Filkenstein metric we have to introduce the Kruskal Coordinates.

2.4 The Kruskal Coordinates

We want now to obtain the maximally extended Schwarzschild solution.
Consider (M, gµν) in the coordinates (u, v, θ, φ):

ds2 = −
(

1− 2M

r

)
dvdu+ r2(dθ2 + sin2 θdφ2)

In this form the two space (θ, φ const) is in null conformally flat coordinates, since ds2 =
−dudv is flat.
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The most general tranformation which leaves this space conformally flat is V = V (v) and
U = U(u). The resulting metric:

ds2 = −
(

1− 2M

r

)
dv

dV

du

dU
dV dU + r2(dθ2 + sin2 θdφ2)

and taking

X =
V − U

2
T =

V + U

2

we find
ds2 = F 2(t′, x′)(−dT 2 + dX2) + r2(T,X)(dθ2 + sin2 θφ2)

The Kruskal choice (see ref. [3]) V = ev/4M , U = e−u/4m determines the form of the metric:

ds2 =
32m3

r
e−r/2m(−dT 2 + dX2) + r2(T,X)(dθ2 + sin2 θφ2)

The coordinate T is always timelike and X spacelike and r is determined by

T 2 −X2 = −(r − 2M)er/2M

The Kruskal extension is the unique analytic and locally inextendible extension of the
Schwarzschild solution. A spacetime diagram is depicted in Fig. 2.4.
If we consider the light cone for r > 2M we find that the outgoing light rays escape to
infinity while the ingoing ones go towards the singularity.
Inside r = 2M every null or timelike geodesic fall into the singularity and so r < 2M is a
region of no escape: the Black Hole. In the next section we will give a more formal and
precise notion of such an object.
Each point inside the region II represent a 2-sphere that is a closed trapped surface.
Infact consider a 2-sphere p and other two 2-spheres formed by photons emitted (outogoing
q and ingoing s) at one istant from p. If all the spheres are outside the event horizon we
have that the area of q is greater than p which is greater than s.
But if p is inside the event horizon the areas of both q and s are less than the area of p and
so r < 2M forms a closed trapped surface.

Note that in the Kruskal coordinates the light cones take the usual minkowkian form
dT 2−dX2 = 0. While the region I and II are the region of the manifold covered by the ad-
vanced Eddington-Filkenstein coordinates, the region I

′
and II

′
are related to the retarded

Eddington Filkenstein coordinates: it is clear that nothing can enter in the region II ′ from
the asympotically flat region I

′
. Thus region II

′
descrive the White Hole region.

It is very important to note that only a part of the region I and II is important physi-
cally in a gravitational collapse. Let us consider a spherically symmetric star. Its exterior
gravitational field is described by the Schwarzschild solution. If the spherical star undergo
gravitational collapse, then its surface has to follow a timelike trajectory in the Schwarzschild
spacetime and so only a part of the regions I and II are physically relevant for our discussion
as clearly depicted in the Penrose Diagram in Figure 2.5.
It is important to recall the relations between the Kruskal and the Eddington-Filkenstein

coordinates in regions I and II:

U = −e−u/4m r > 2M

U = +e−u/4m r < 2M

V = ev/4m ∀r
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Figure 2.4: Kruskal Diagram

2.5 The Redshift Factor

It is useful to introduce an object which naturally appear when we compare the locally
inertial coordinates at the future horizon with the Eddington Filkenstein coordinates.
It is possible to find (see ref [4]) that at the future horizon H+ = (U = 0, V = V0) the
locally inertial coordinates are defined by:

ξ+
H+ = b+V [(V − V0) +O((V − V0)3)]

ξ−H+ =
1

eb+V
[U +

V0

16M2e
U2 +O(U3)]

where b+V reflects the possibility of performing arbitrary Lorentz transformations.
The comparison between the pair of inertial coordinates ξ−H+ and u is given by

dξ−H+

du
=

1

eb+V
e−u/4M +O((e−u/4M )2)

which is related to the redshift factor for outgoing radiation. Note that it is exponentially
decreasing.
Therefore a light ray emitted near the horizon arrives at infinity at late time u → ∞ with
an highly redshifted frequency w′ ∝ we−u/4M .

2.6 Black Hole

We have defined in the previous section a Black Hole as a region of spacetime where
gravity is so strong that any particle or light ray entering that region can never escape from
it.



2.7. THE KILLING ENERGY 23

Figure 2.5: Penrose Diagram, Gravitational Collapse

It is an intuitive notion but the essence of a Black Hole is not properly captured defining
a black hole in a spacetime (M, gµν) as a subsect A such that we have J+(p) ⊂ A (for the
definition of J+(p) see Appendix B ). With this definition the causal future of any set in
any spacetime would be called Black Hole.
For asympotically flat spacetimes, the impossibility of escaping to future null infinity Π+ is
an appropriate characterization of a Black Hole.
From the Penrose diagram of the Schwarzschild Spacetime it is easy to understand that the
causal past of future null infinity J−(Π+) (see Appendix B) does not contain the entire
spacetime: the region II is not contained in J−(Π+).
Let (M, gµν) be an asympotically flat spacetime with an associated Penrose diagram (M ′, g

′

µν).
We say that (M, gµν) is strongly asymptotically predictable if the unphysical spacetime

(M ′, g
′

µν) there is a region V ′ ⊂ M ′ with M ∩ J−(Π+) ⊂ V
′

such that (V
′
, g
′

µν) is globally
hyperbolic.

A strongly asymptotically predictable spacetime contains a Black Hole if M is not con-
tained in J−(Π+).
The black hole region B of such spacetime is defined to be

B =
[
M − J−(Π+)

]
and the boundary of B in M

H = J̇−(Π+) ∩M˙

is called the event horizon.

2.7 The Killing Energy

In the first chapter we argued that

EK = −uµξµ

where ξµ is a Killing vector, is conserved along the geodesic of our spacetime.
We want now to investigate the sign of this quantity. The norm of the Killing vector is
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Figure 2.6: Killing Energy: nα is a positive frequency mode, while lα has EK < 0

ξµξµ = gµνξ
µξν = g00 = −

(
1− 2M

r

)
which is

1. r > 2M timelike (this means that r = const is a physical motion)

2. r = 2M null like (only a massless particle can remain static at the event horizon)

3. r < 2M spacelike (the only possible physical motion is decreasing r)

Moreover

uµ = gµνuµ =
E(

1− 2M
r

) =
dt

dλ

where λ is the parameter of our null geodesic.
Consider now the region outside the event hotizon. We have

dt

dλ
> 0 and −

(
1− 2M

r

)
> 0 ⇒ EK > 0

If we consider the region II (the Black Hole region) we find:

1. for the u outgoing geodesic

dt

dλ
> 0 and

(
1− 2M

r

)
< 0 ⇒ EK < 0

2. for the v ingoing geodesic

dt

dλ
< 0

(
1− 2M

r

)
< 0 ⇒ EK > 0

where u = t− r∗ and v = t+ r∗as we have already defined.
We recall that u are the outogoing modes. Therefore it is possible to have states with neg-
ative energy inside the Black Hole region.
But these states have to be created in the interior region since (as we have already discussed)
the Killing Energy EK is conserved along the geodesics.
This observations will be very important in the discussion on the Hawking Effect.
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2.8 The Laws of Black Holes “Thermodynamics”

In this section we are going to study the classical laws of Black Hole “Thermodynamics”.
This laws are rigorous theorem of General Relativity and despite of their name classically
are not related to thermodynamics.
The phenomenon of Black Hole evaporation which we are going to study in the next chap-
ters will demonstrate that this analogy between thermodynamics and Black Holes is a real
profound and beautiful physical result.

2.8.1 The Zertoh Law

Firstly we have to define on the horizon a quantity called κ which will be interpreted as
the Black Hole surface gravity.
Consider the Killing vector ∂/∂t. We have on the horizon:

ξµξµ = 0 (2.2)

so in particular ξµ is constant on the horizon.
Thus ∇ν(ξµξµ) is normal to the horizon. Therefore it exists a function κ such that

∇ν(ξµξµ) = −2κξν (2.3)

For the Schwarzschild Black Hole we have

κ =
1

4M
(2.4)

We can rewrite the above Eq. 2.3 using the Killing Equation

ξµ∇νξµ = −ξµ∇µξν = −kξν (2.5)

This is the geodesic equation in a non affine parametrization.
So in the above Eq. 2.5 we have found that κ measures the failure of the Killing parameter
v (i.e. ξµ = (∂/∂v)) to agree with the affine parameter λ along the null generator of the
horizon.
We define on the horizon

kµ = e−kvξµ (2.6)

and it verifies (using the previous equations)

kµ∇µkν = e−2kv [ξµ∇µξν − ξµξν∇µ(κv)] = 0 (2.7)

so kµ is the affinely parametrized tangent to the null geodesic generator of the horizon.
Thus we have:

dλ

dv
∝ eκv ⇒ λ ∝ eκv (2.8)

Since ξµ is and hypersurface orthogonal to the horizon we have (Froubenious Theorem):

ξ[µ∇νξλ] = 0 (2.9)

where w[ab] = 1/2![wab − wba] and so on. Using the Killing Equation ∇µξν = −∇νξµ we
find

ξµ∇νξλ = −2ξ[ν∇λ]ξµ (2.10)
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which is valid on the horizon. Contracting with ∇νξλ

ξµ(∇νξλ)(∇νξλ) = −2(ξν∇νξλ)(∇νξµ) = −2κ2ξµ (2.11)

and finally we obtain a simple formula for κ

κ2 = −1

2
(∇µξν)(∇µξν)|H (2.12)

We can interpret the physical meaning of the surface gravity as the force which an observer
at infinity must exert on a unit mass particle to mantain it stationary at the event horizon.

Having defined correctly the surface gravity κ we want now to demonstrate that κ is
constant all over the horizon.
Let us recall that

ξµ∇µξν = κξν (2.13)

If we multiply
ξµξ[β∇α]κ+ κξ[β∇α]ξµ = ξ[β∇α](ξ

ν∇νξµ) = (2.14)

= (ξ[β∇α]ξ
ν)(∇νξµ) + ξνξ[β∇α]∇νξµ (2.15)

= (ξ[β∇α]ξ
ν)(∇νξµ)− ξνR λ

νµ[αξβ]ξλ (2.16)

where we have used the identity

∇µ∇νξα = −R β
ναµ ξβ (2.17)

Now, using Eq 2.10 and Eq 2.5 we can write

(ξ[β∇α]ξ
ν)(∇νξµ) = −1

2
(ξν∇βξα)(∇νξµ) = −1

2
κξµ∇βξα = (2.18)

= κξ[β∇α]ξµ (2.19)

which is equal to the second term of the above Eq 2.14. Therefore using this result we can
write:

ξµξ[β∇α]κ = ξνR λ
µν[αξβ]ξλ (2.20)

Moreover if we multiply ξα∇µξν = −2ξ[µ∇ν]ξα by ξ[β∇λ] we find

(ξ[β∇λ]ξα)∇µξν + ξαξ[β∇λ]∇µξν = (2.21)

−2(ξ[β∇λ]ξ[µ)∇ν]ξα − 2(ξ[β∇λ]∇[νξα)ξµ] (2.22)

using repeatedly ξα∇µξν = −2ξ[µ∇ν]ξα the first term of Eq. 2.21 cancels with the first term

in Eq. 2.22 and, using ∇µ∇νξα = −Rβναµξβ we reduce the above equation in the form

−ξαR σ
µν[λ ξβ]ξσ = 2ξ[µR

σ
ν]α[λ ξβ]ξσ (2.23)

and multiplying for gαλ

−ξ[µR σ
ν] ξσξβ = ξ[µR

σ
ν]αβ ξ

αξσ (2.24)
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recalling Eq. 2.20:

ξµξ[β∇α]κ = ξνR λ
µν[αξβ]ξλ (2.25)

we can find finally:

ξ[β∇α]κ = −ξ[βR σ
α] ξσ (2.26)

Now we have to use the Einstein Equation plus the dominant energy condition (see appendix
B).
The dominant energy condition says that the current Tµνξ

ν must be null like or timelike for
every physically relevant system.
Recalling kµ = e−κvξµ we have

k[µ∇ν]kα = −e−2κv

[
1

2
∇µξν + ξ[µ∇ν](κv)

]
ξα (2.27)

contracting the above equation with two vectors mν and nα tangent to the horizon (so
ξµmµ = ξµnν = 0) we obtain

mνnµ∇νkµ = 0 (2.28)

and, in the notation of appendix B ∇̂µkν = 0.
Thus from the Raychaudri’s Equation (see Appendix B) the expansion θ, the twist wµν
and the shear σµν of the null geodesic generators of the horizon vanish. From Eq. B.26 of
appendix B we find:

Rµνk
µkν = 0 (2.29)

Using the Einstein’s Equations together with the dominant energy condition implies

Rµνξ
µξν = 8πGN

[
Tµν −

1

2
Tgµν

]
ξµξν ⇒ Rµνξ

µξν = 8πGNTµνξ
µξν (2.30)

since ξµξµ = 0 on the horizon, and then we finally find

Tµνξ
νξµ = 0 (2.31)

Because of this relation we have that Tµν ξ
ν points in the ξµ direction and it implies

ξ[αTµ]νξ
ν = 0 (2.32)

Finally we find the zeroth law of Black Hole Thermodynamics:

ξ[β∇α]κ = 0 (2.33)

which states that the surface gravity κ is constant on the horizon.
Note the similarity with the zeroth law of thermodynamics which says that the temperature
is constant throughtout a body in thermal equilibrium.

2.8.2 The First Law

Let be Σ an asymptotically flat spacelike hypersurface which intersect the horizon H on
a 2-sphere which forms the boundary of Σ. It is possible to find (see ref.[5]) a simple formla
for the mass of the Black Hole in a stationary, axisimmetric spacetime.
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Consider a static observer. Since it is in a static spacetime the notion of stay in a place is
well defined and it means to follow an orbit of the Killing vector field ξµ.

uµ =
ξµ

V
(2.34)

where
V = (−ξµξµ)1/2 (2.35)

is the redschift factor. The 4-accelleration is

aµ =
Duµ

ds
= (ξν/V )∇ν(ξµ/V ) =

1

V 2
ξν∇νξµ (2.36)

This is the force applied on a unit mass particle by a local observer.
It is possible to prove (see ref. [5]) that an asympotic observer must exert a force which
differs for a factor of V with respect to the local force.

F =

∫
S

Nν(ξµ/V )∇µξνdA (2.37)

where Nν is the normal “outward pointing” normal to S, can be interpreted as the total
outward force that must be applied to a unit surface mass density distribuited on a 2-sphere
lying in the hypersurface orthogonal to ξµ.
Using the Killing equation ∇µξν = ∇[µξν]

F =
1

2

∫
S

Nµν∇µξνdA = −1

2

∫
S

εµναβ∇αξβ (2.38)

where Nµν = 2V −1ξ[µNν] is the normal bivector to the surface S and εµναβ is the volume
element associated with the metric. The integrand is viewed as a 2-form to be integrated
on the submanifold S.
If we recall the Newtonian equation for the mass

M =
1

4π

∫
S

(~∇φ · ~NdA) (2.39)

we find that F = 4πM . Since these 2 expression do not depend on the surfaces S and they
represent the same physical quantity we can identitify the same physical quantity.

M = − 1

8π

∫
S

εµναβ∇αξβ (2.40)

This is theKomar′s equation for the gravitational field source’s mass in a static gravitational
field.
Moreover

M = − 1

8π

∫
S

α = − 1

8π

∫
Σ

dα = (2.41)

= − 3

8π

∫
Σ

∇[λεµν]αβ∇αξβ = − 1

4π

∫
Σ

Rβσξ
σεβλµν (2.42)

=
1

4π

∫
Σ

Rµνn
µξνdV = 2

∫
Σ

(
Tµν −

1

2
Tgµν

)
nµξνdV (2.43)
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where we have used the identity ∇[l(εmn]cd∇cξd) = 2
3R

e
fξ
f εelmn:

εωγµν∇γ [εµνλσ∇λξσ] = εωγµνεµνλσ∇γ∇λξσ = (2.44)

= 4∇γ∇γξω = −4Rωγ ξ
γ (2.45)

contracting with εωlmn. Moreover recalling that there is the boundary Π the final formula
for the mass in a static asympotically flat spacetime is

M = 2

∫
Σ

(
Tµν −

1

2
Tgµν

)
nµξνdV − 1

8π

∫
Π

εµναβ∇αξβ (2.46)

where ξµ is the Killing vector, nµ is a unit vector perpendicular to the surface Σ and εµναβ
is the volume element.
The first integral can be regarded as the contribution to the total mass of the matter outside
the event horizon while the second integral can be regarded as the mass of the Black Hole.
Since we are interested in the vacuum state solution Tµν = 0 the only interesting element is
the boundary integral.
We may evaluate it: ∫

Π

εµναβ∇αξβ (2.47)

We may express the volume element εµν on H as

εµν = εµναβN
αξβ (2.48)

where Nα is the ingoing future directed null normal to Π, which verifies Nµξµ = −1. This
normalization means that if ξµ is tangent to a radial null outgoing geodesic then nµ is
tangent to the ingoing geodesic.
Thus:

εµνεµναβ∇αξβ = Nλξσε
µνλσεµναβ∇αξβ = −4Nαξβ∇αξβ = −4κ (2.49)

and so ∫
Π

εµναβ∇αξβ =
1

2

∫
Π

(ελσελσµν∇αξβ)εµν = −2κA (2.50)

where we have used ∫
Π

εµν = A (2.51)

which is the area of the event horizon.
We are interested in a law similar to the first law of thermodynamics, so it is useful to find
a differential formula for M .

δM =
1

4π
(Aδκ+ κδA) (2.52)

It can be demonstrated (ref.[7]) that for a Schwarzschild Black Hole holds the relation:

8πδM = −2Aδκ⇒ δκ = − 4π

δMA
(2.53)

Now we can subsistute the expression for δκ in the Eq. 2.52 and we finally find

δM =
1

8π
κδA (2.54)
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which is the first law of Black Hole Thermodynamics for a Schwarzschild Black Hole. Note
the similarity with

dE = TdS (2.55)

which is the first law of thermodynamics: M represents the same quantity since it is the
total energy of the system.
Classically even if the mathematical analogy is manifest, it seems only a curious result since
nothing can be emitted by a Black Hole and so it has formally temperature T = 0.
When we will include in the next chapters quantum effects in the discussion the situation
will change.

2.8.3 The Second Law

Let (M, gµν) be a strongly asymptotically predictable spacetime satisfying Rµνk
µkν ≥ 0

for all null kµ. Let Σ1 and Σ2 be spacelike Cauchy surfaces for the globally hyperbolic region

V
′

with Σ2 ⊂ I+
Σ1

and let Π1 = H ∩Σ1 and Π2 = H ∩Σ2 where H denotes the event horizon
(the boundary of the Black Hole region of (M, gµν)).
Then the area of Π2 is greater than or equal to the area of Π1.

Firstly we establish that the expansion θ of the null geodesics generators of H is non-
negative everywhere θ ≥ 0.
Suppose θ < 0 at p ∈ H. Let Σ be a spacelike Cauchy surface for V

′
passing throught

p and consider the two-surface Π = H ∩ Σ. Since θ < 0 at p we can deform Π outward
in a neightborhood of p to obtain a surface Π

′
on Σ which enters J−(Π+) and has θ < 0

everywhere in J−(Π+). However let K ⊂ Σ be a closed region lying between Π and Π
′

and
let q ∈ Π+ with q ∈ J̇+(K).
According to theorem 2, appendix B, the null geodesic generator of J̇+(K) on which q lies
must meet Π

′
orthogonally.

But this is not possible since θ < 0 on Π
′

and thus this generator will have a conjugate point
before reaching q (see Theorem 1, appendix B). Thus we must have θ ≥ 0 everywhere on H.
So each p ∈ Π1 lies on a future inextendible null geodesic γ contained in H. Since Σ2 is a
Cauchy surface γ must intersect it at the point q ∈ Π2.
In this manner we obtain a map from Π1 to Π2. Since θ ≥ 0 the area of the portion of Π2

is greater than or at least equal to the area of Π1.
Moreover since the map need not be onto we have that new black holes may formed between
Σ1 and Σ2 the area of Π2 may be even larger.

This law of Black Hole Thermodynamics is very similar to the second law of thermody-
namics

δS ≥ 0 (2.56)

where S is the entropy.
This equation means that the entropy has to increase for every irreversible process.

2.8.4 The Third Law

The third law of Black Hole Thermodynamics states that it is impossible to achive κ = 0
by a physical process.
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The surface gravity of a Kerr-Newmann Black Hole is

κ =
(M2 − a2 − e2)1/2

2M [M + (M2 − a2 − e2)1/2]− e2
(2.57)

where e is the electric charge and a the angular momentum/unit mass. It is simple to see
that this quantity vanishes only for M2 = e2 + a2 which is the extremal case.
Explicit calculations show that the closer one gets to and extremal Black Hole, the harder
it is to get a further step, situation similar to the third law of thermodynamics.

In the next chapters we will se that quantum mechanics will make this mathematical
analogy also a physical reality.
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Chapter 3

Quantum Field Theory in
Curved Spacetime

After a short review of the Quantum Field Theory of a scalar field in the usual flat
Minkowskian spacetime, we generalize the formalism to curved spacetime and we analize
the main differences and the new characteristics.

3.1 Scalar field in flat spacetime

We start our discussion from the scalar action

S =

∫
d4x

(
−1

2
∂µφ∂

µφ− 1

2
m2φ2

)
(3.1)

The Euler-Lagrangian Equation of Motion is:(
∂µ∂

µ −m2
)
φ = 0 (3.2)

We can expand the classical Klein Gordon field in the momentum representation

φ(x) =

∫
d4p

(2π)3/2
eip·xφ(p) (3.3)

where p is the four momentum and φ∗(p)=φ(−p) as φ is real field. Using the Klein Gordon
equation

(p2 +m2)φ(p) = 0⇒ φ(p) = δ(p2 +m2)f(k) (3.4)

and thus we find the most general solution

φ(x) =

∫
d3k

[2ωk(2π)3]1/2
[fkuk(x) + f∗ku

∗
k(x)] (3.5)

where f are arbitrary complex functions, regular on the hyperbolic manifold k2 = −m2

which fulfills the reality condition f(k) = f(−k) and

uk(x) = (
√

2ωk(2π)3)−1 exp (−iωkx
0 + ikx)) (3.6)

33
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with ωk =
√
k2 +m2. These are eigenfunctions of the Minkowskian Killing vector ∂/∂t with

eigenvalue −iω with ω > 0.
The surfaces t = const are Cauchy surfaces for the Minkowski spacetime and so, using the
scalar product we find the relations:

(uh, uk) =

∫
d3xu∗hi

↔
∂0 uk = δ(h− k) (3.7)

(u∗h, u
∗
k) =

∫
d3xuhi

↔
∂0 u

∗
k = −δ(h− k) (3.8)

Moreover

(uh, u
∗
k) =

∫
d3xuhi

↔
∂0 uk = 0 = (u∗h, uk) (3.9)

From these expression we find that these normalized plane waves form a complete set of
orthonormal modes with positive (uk) and negative (u∗k) norm.
The coniugate momentum is:

π = − δL

δ∂0φ
= ∂0φ (3.10)

We are now ready to quantize the system using the canonical commutation relation:

[φ(t,x), π(t,x′)] = i~δ3(x− x′) (3.11)

We can now expand the quantum field

φ(t,x) =

∫
d3k

[2ωk(2π)3]1/2
[akuk(x) + a†ku

∗
k(x)] (3.12)

where the equal time commutation relations for φ and π are equivalent to

[ah, a
†
p] = δ(k− k′) (3.13)

[ah, ap] = 0 (3.14)

[a†h, a
†
p] = 0 (3.15)

The operator ak is called destruction operator since it annihilates a quantum with momen-
tum k while a†k is called creation operator since it creates a quantum with momentum k.
In the Heisenberg picture the quantum states span a Hilbert space. A convenient basis in
this Hilbert space is the Fock representation.
We can now define the vacuum of the theory as the state annihilated by the destruction
operator ak

ak|0 >= 0 ∀k (3.16)

The one particle state can be generated with the use of the creation operator a†k

a†k|0 >= |1k > (3.17)

and so one for the multiparticle states.
In the Minkowskian Theory, different inertial observer’s states are linked by unitary trans-
formation U which preserve the particle number. In particular the vacuum does not change
under Poincarrè transformations

U |0 >= |0 > (3.18)
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where if we call Lµν the angular momentum operator, ωµν the matrix which contains the
various parameter of the Lorentz transformation, Pµ the four momentum operator and aµ

the 4 vector of the translation:

U = exp

(
iaµPµ +

i

2
wµνLµν

)
(3.19)

Moreover a Poincarré transformation links positive/negative modes to modes with the same
sign of the energy.
The particle number operator is defined as:

Nk = a†kak (3.20)

and, once applied to a state, it gives the number of particles present in the state, which is
equal for every inertial observer.
Note that the Fock space states are eigenvectors of the number operator.
Another very important object is the Feyman propagator (see ref. [6]). It is defined as

GF (x, x′) =< 0|T (φ(x)φ(x′))|0 > (3.21)

and verifies

(2x −m2)GF (x− x′) = −i~δ(x− x′) (3.22)

where it depends on the difference x− x′ because of translation invariance.
It is easy to find

GF (x− x′) = i

∫
d4k

(2π)4

e+ik·(x−x′)

k2 +m2 + iε
(3.23)

3.1.1 The vacuum energy

It is easy to find, using the Noëther theorem that the stress energy tensor is

Tµν = − δL

δ∂µφ
∂νφ+ gµνL = (3.24)

=
1

2
∂µφ∂νφ+ gµνL (3.25)

and thus the Hamiltonian

H = T00 =

∫
d3x

1

2

(
π2(x) + (∇φ)2 +m2φ2

)
(3.26)

Substituting the normal mode expansion we find

H =
∑
ωk

1

2
~ω[a†kak + aka

†
k] (3.27)

It is simple, using the commutation rules to find that

< 0|H|0 >=
∑
ωk

~ωk

(
1

2
δ(0)

)
(3.28)
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which is clearly divergent.
This divergence, in the Minkowskian theory can be eliminated by the normal ordering pre-
scription (: aka

†
k := a†kak) and thus we have:

H =
∑
ωk

~ω[a†kak] (3.29)

which is clearly finite when it acts on a multiparticle quantum state.
This is the first example of renormalization.
This reasoning can only apply in the Minkowskian theory because in a non gravitational
theory we measure only the energy differences. We will see in the next chapters that the
situation will change in presence of gravity.

3.2 Scalar field in curved spacetime

Let us start with the generally covariant scalar field action in curved spacetime (see ref
[7]):

S =
1

2

∫
d4x
√
−g
[
−gµν(x)∂µφ(x)∂νφ(x)− (m2 + ξR(x))φ2

]
(3.30)

where the non minimal coupling between the scalar field and the gravitational field repre-
sented by ξRφ2 is the only possible local scalar coupling with the correct dimensions.
The equation of motion is

(2−m2 − ξR(x))φ = 0 (3.31)

where

2φ =
1√
−g

∂µ[
√
−ggµν∂νφ] (3.32)

In particular if we take

ξ =
1

4
[(n− 2)/(n− 1)] (3.33)

where n is the number of spacetime dimesions, we have that the theory with m = 0 is
conformally invariant.
This means that, under a conformal transformation

gµν → ḡµν = Ω2(x)gµν (3.34)

we have
2φ→ 2̄φ̄ = 0 (3.35)

We generalize the Minkowskian scalar product to

(φ1, φ2) = −i
∫

Σ

dΣnµ
√
−gΣφ1

↔
∂µ φ

∗
2 (3.36)

where nµ is a unit vector normal to the spacelike Cauchy Σ surface in the globally hyperbolic
spacetime and gΣ is the determinant of the induced metric on the Caucly surface.
There exists a complete set of mode solutions which verify

(uk, uk′) = δk,k′ (u∗k, u
∗
k′) = −δk,k′ (uk, u

∗
k′) = 0 (3.37)
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In this basis we can expand the quantum field as in the Minkowskian theory

φ(t,x) =
∑
k

[akuk(x) + a†ku
∗
k(x)] (3.38)

where
[ak, a

†
k′ ] = δkk′ (3.39)

while the others are 0. Moreover

ak|0 >= 0 ∀k (3.40)

is the vacuum state related to this quantization scheme. From this we can build the usual
Fock space throught the action of the creation operator a†k.
While in flat spacetime there is a natural set of modes associated with the Poincarrè group,
in curved spacetime the situation is not so simple.
In fact in curved spacetime the Poincarré group is no longer a symmetry group of the space-
time and thus in general there will not be Killing vectors which to define positive frequency
modes.
Even if in certain spacetimes there could be “natural” coordinates associated with Killing
vectors, these do not enjoy the same role as their Minkowski counterparts.
Moreover we know from the General Relativistic Principle of Covariance that the coordi-
nate system is physically irrilevant. Therefore we can now expand in another complete
orthonormal set of modes vp(x) our scalar field

φ(t,x) =
∑
p

[bpvp(x) + b†pv
∗
p(x)] (3.41)

where the creation operator b† and the annihilation operator b verifies the same commutation
relation of a† and a.
We can now define a new vacuum

bp|0 >= 0 ∀p (3.42)

and a new Fock space.
We want now to understand the relations between these two different quantization schemes.

3.3 Bogolubov Transformations

Since the two sets considered in the obove section are complete we can expand the modes
vp in the first basis

vp =
∑
k

(αkpuk + βkpu
∗
k) (3.43)

and controversely

uk =
∑
p

(α∗kpvp − βkpv∗p) (3.44)

These relations are called Bogolubov Transformations. The matrices αkp and βkp are
called Bogolubov coefficients and they can be evaluated using the scalar product

αkp = (vk, up) (3.45)
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βkp = −(vk, u
∗
p) (3.46)

It is easy to find (substituting the Bogolubov transformed modes in the scalar field expan-
sion)

ak =
∑
p

(αpkbp + β∗pkb
†
p) (3.47)

and

b†p =
∑
k

(α∗pkak − β∗pka
†
k) (3.48)

The Bogolubov coefficients verifies also:∑
k

(αpkα
∗
qk − βpkβ∗qk) = δpq (3.49)

∑
k

(αpkβqk − βpkαqk) = 0 (3.50)

expression derivable from the orthonormality relations.
Obviously, as long as βkp 6= 0 the two Fock spaces based on the choice of modes uk and vp
are different.
For example, if we consider the action of the annihilation operator a†k on the vacuum of the
second quantization scheme we find

ak|0′ >=
∑
p

β∗pk|1p > 6= |0′ > (3.51)

and the expectation value of the number operator a†kak is

< 0′|Np|0′ >=
∑
k

|βkp|2 (3.52)

and thus the vacuum state of the vp modes contain
∑

k |βkp|2 particles in the up mode.
Note that if uk are positive frequency modes with respect to some general Killing vector
field ξµ

ξµ∂µuk = −iωuk (3.53)

and the vp are a linear combination of only positive frequency modes uk (βkp = 0), thus
bk|0 >= ak|0 >= 0 which means that the vacuum state is shared by the two set of modes).
But if βkp 6= 0 the vp will contain positive (u) and negative (u∗) frequency contributions
from the uk modes.
It is interesting to write the vacuum state |0 > in the |0′ > basis. Using the Bogolubov
transformation we have

ak|0 >= 0 (3.54)

and thus ∑
p

(αpkbp + βpkb
†
p)|0 >= 0 (3.55)
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Multiplying for α−1
kp we find bq +

∑
kp

βkpα
−1
kpb
†
p

 |0 >= 0 (3.56)

and calling −Vpk = βkpα
−1
kp we finally findbq −∑

kp

Vpkb
†
p

 |0 >= 0 (3.57)

The solution of this equation is

|0 >= exp

 1

2~
∑
kp

Vkpb
†
kb
†
p

|0′ > (3.58)

This is a very important result: the vacuum state |0 > appear to be a collection of an even
number of particles in the second quantization scheme.
More precisely if we would condider a charged scalar field the second quantization scheme
measures a collection of particle-antiparticle states (in the case of a neutral field obviously
particle and antiparticle coincides).

It is important to note that the particle concept is global: the particle modes are defined
on the whole spacetime and so a particular oberver’s specification of the field mode decom-
position, and hence the particle number operator, will depend in general on the observer’s
past history.
This is the motivation for the introduction of local objects in our future discussion.
Moreover will be important also the concept of Green function.
As in the flat spacetime case the definition for a scalar field φ is

iGF (x, x′) =< 0|T (φ(x)φ(x′))|0 > (3.59)

but now is important the choice of the quantum state.

3.4 The Schwinger-De Witt Expansion

In this section we study the Schwinger-De Witt expansion of Green Functions.
This would be of fundamental importance in the calculation of the mean value quantum
stress energy tensor in Chapter 5.
We know that in the regularization process of ultraviolet divergences, only the high energy
behaviour of the field is important. Since high frequency probes only short distances one is
led to study short distance approximations.
Let us introduce normal Reimann coordinates with respect to an origin placed at the point
x.
Suppose there exists a neightborhood of this point in which there is an unique geodesic
joining any point of the neightborhood of x. This is called a normal neightborhood of x.
The Reimann coordinates (see ref. [8]) yµ at x are given by

yµ = λξµ (3.60)
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where λ is the value at x of an affine parameter of the geodesic joining x to x′ and ξµ is the
tangent vector.
We choose the parameter to be λ = 0 at the origin x = 0.
The tangent vector in x is

ξµ =

(
dxµ

dλ

)
|x (3.61)

Along any geodesic throught x, the tangent vector is constant or independent of λ. Therefore
the geodesic equation becomes

d2yµ

dλ2
= 0 (3.62)

which implies that in normal coordinates we have

Γµαβ(y)
dyα

dλ

dyβ

dλ
= Γµαβ(y)ξα(y)ξβ(y) = 0 (3.63)

Multiplying by λ2 we find
Γµαβ(y)yβyα = 0 (3.64)

We have at the point x itself Γµαβ(x)ξβξα = 0 for every ξµ pointing along any geodesic
throught x and, in these coordinates

Γµαβ(x) = 0 (3.65)

and we can write at the point x
gµν(x) = ηµν (3.66)

where ηµν is the Minkowski metric. With these coordinates we can expand the metric near
the point x (see ref.[7])

gµν(x′) = ηµν +
1

3
Rµανβy

µyαyβ + · · · (3.67)

where all the coefficients are evaluated at y = 0.
Let us define

Ģ(x, x′) =
√
−gGF (x, x′) (3.68)

and the Fourier transform

ĢF (x, x′) =

∫
dnk

(2π)n
e−ik·yĢF (k) (3.69)

where k · y = ηαβkαyβ . In this manner we are are working in a localized momentum space.
Expanding in normal coordinates and converting in the k space we can find the solution at
each adiabatic order. Thus, it can be demonstrate that (see ref.[7] and ref. [8])

ĢF (k) ≈ (k2 +m2)−1 +

(
1

6
− ξ
)
R(k2 +m2)−2 + · · · (3.70)

where ∂α = ∂/∂kα.
Substituting the above expression in the Fourier expansion we find

ĢF (x, x′) ≈
∫

dnk

(2π)n
e−ik·y

[
a0(x, x′) + a1(x, x′)

(
− ∂

∂m2

)
+ a2(x, x′)

(
∂

∂m2

)]
(k2−m2)−1

(3.71)
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where ≈ indicate an asymptotic expansion and (see ref. [7])

a0(x, x′) = 1 (3.72)

a1(x, x′) =

(
1

6
− ξ
)
R− 1

2

(
1

6
− ξ
)
R;αy

α − 1

3
aαβy

αyβ (3.73)

with the R and its derivative are evaluated at x′.
Using the representation

(k2 +m2 − iε)−1 = −i
∫
dse−is(k

2+m2−iε) (3.74)

Interchanging the integrations and performing explicitly the integration in dk we find

ĢF (x, x′) = −i(4π)−n/2
∫ ∞

0

ids(is)−n/2 exp [−im2s+ (σ/2is)]F (x, x′; is) (3.75)

where

σ(x, x′) = −1

2
yαy

α (3.76)

which is an half of the proper distance between x and x′ and

F (x, x′; is) ≈ a0(x, x′) + a1(x, x′)(is) + a2(x, x′)(is)2 + · · · (3.77)

Using ĢF (x, x′) =
√
−gGF (x, x′) we find a representation for the Green Function called the

Schwinger-De Witt expansion:

GDSF (x, x′) = −i∆ 1
2 (x, x′)(4π)−n/2

∫ ∞
0

ids(is)−n/2 exp [−im2s+ (σ/2is)]F (x, x′; is)

(3.78)
where ∆ is the Van Vleck determinant (necessary for the General Covariance of the expres-
sion):

∆(x, x′) = − det[∂µ∂νσ(x, x′)][g(x)g(x′)]−
1
2 (3.79)

In normal coordinates this reduces to the simple form

∆(x, x′) = (
√
−g(x))−1 (3.80)

because

σ(x, x′) =
1

2
ηµν(yµ − y

′µ)(yν − y
′ν) (3.81)

and thus

∂µ∂
′

νσ = −ηµν (3.82)

and taking normal coordinates with the origin in x′ we find the previous result.
In the treatment of DeWitt, the extension of the asymptotic expansion of F to all adiabatic
order is written as

F (x, x′; is) =
∑
j

aj(x, x
′)(is)j (3.83)
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with a0(x, x′) = 1, the other aj derived by recursion relation.
The integral can be performed to give the adiabatic expansion of the Feynman propagator
in coordinate space:

GDSF ≈ −iπ∆
1
2 (x, x′)

(4πi)n/2

∞∑
j=0

aj(x, x
′)

(
− ∂

∂m2

)
(3.84)

[(
2m2

−σ

)(n−2)/4

H
(2)
(n−2)/2((2m2σ)1/2)

]
(3.85)

where H are the Haenkels functions of the second order and in which a small imaginary part
should be substracted from σ (eg. Feymann prescription).
Note that this expansion does not determine a particular vacuum state since we did not use
any global boundary condition. This means that the high energy behaviour is the same for
almost all choice of vacuum state, a fact of considerable importance as we will see in the
next chapters.



Chapter 4

Hawking Radiation

In this Chapter we apply to a 2D model of gravitational collapse the previously discussed
Quantum Field Theory in Curved Spacetime.
We prove that Black Holes emitt quantum mechanically a thermal spectrum of particles.
Then we analyze the physical aspects of this process, from correlations to the information
paradox.

4.1 Gravitational Collapse

Let us consider a massless scalar field in the Schwarzschild background.
The state |0in > corresponds to the absence of particles at t = −∞.
Since we are working in the Heinsenberg picture the physical state will be always described
by this quantum state.
Our first task is to compute

< Oin|Nout
p |0in >=

∑
k

|βkp|2 (4.1)

where Nout
p = a†outp aoutp at late times.

We start from the V aidya class of spacetimes

ds2 = −
(

1− 2M(v)

r

)
dv2 − 2dvdr + r2(dθ2 + sin2 θ + dφ2) (4.2)

With the stress energy tensor defined as

Tvv =
L(v)

4πr2
(4.3)

where
dM(v)

dv
= L(v) (4.4)

We can interpret it as an flux of ingoing radiation. In order to simplify our discussion we
discard some of gravitational collapse’s realistic feature and we can take

L(v) = δ(v − v0) (4.5)

43
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Figure 4.1: Gravitational Collapse

which describes an ingoing wave located at v = v0. This gives M(v) = Mθ(v − v0).
In this model the spacetime geometry can be divided in two regions:

1. v < v0 A Minkowski vacuum region

ds2 = −duindvin + r2(uin, vin)(dθ2 + sin2 θdφ2) (4.6)

where u = t− r and v = t+ r as always. The Klein Gordon equation reads

∂µ∂
µφ = 0 (4.7)

whose solution is

f(xµ) =
∑
l,m

fl(tin, r)

r
Ylm(θ, φ) (4.8)

where Ylm are the spherical harmonics.
For each angular momentum the Klein-Gordon equation for f(xµ) is converted to a
two dimensional wave equation for fl(t, r) with a non vanishing potential:(

− ∂2

∂t2
+

∂2

∂r2
− l(l + 1)

r2

)
fl(tin, r) = 0 (4.9)

2. v > v0 The Schwarzschild Black Hole region

ds2 = −
(

1− 2M

r

)
duoutdvout + r2(uout, vout)(dθ

2 + sin2 θdφ2) (4.10)

where as already defined in Chapter II uout = tout − r∗ and vout = tout + r∗.
The Klein Gordon equation reads

1√
−g

∂µ(
√
−g∂µφ) = 0 (4.11)
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and for every l we have(
− ∂2

∂t2
+

∂2

∂r∗2
− Vl(r)

)
fl(tout, r) = 0 (4.12)

where

Vl(r) =

(
1− 2M

r

)[
l(l + 1)

r2
+

2M

r3

]
(4.13)

We note that the potential vanishes at both r = 2M and r = +∞.
Since the important physics happens near the horizon and the s-wave is less affected
by the potential (V0 < Vl ∀l) than the l 6= 0 waves we can take Vl(r) = 0.
This assumption simplifies our discussion without changing the key ideas and results.
Having discarted the potential term Vl, the outgoing and the ingoing modes are
disaccoppiate. In particular we have no backscattering of the modes due to the cur-
vature of spacetime and the ingoing v modes directly fall into the Black Hole.
With these approximations we have for v < v0(

− ∂2

∂t2in
+

∂2

∂r2

)
f(t, r) = 0⇒ ∂uin∂vinf = 0 (4.14)

with the regularity condition φ(t, r = 0) = 0.
In the Schwarzschild region v > v0 we find(

− ∂2

∂t2out
+

∂2

∂r∗2

)
f(t, r) = 0⇒ ∂uout∂voutf = 0 (4.15)

Motivated by the fact that the past null infinities Π− coincide in the two different spacetime
regions we have vin = vout and, if we consider v = v0 the matching condition reads

ds2|v0 = +r2
in(dθ2 + sin2 θdφ2) = +r2

out(dθ
2 + sin2 θdφ2) (4.16)

which means rin = rout.
The solutions the Klein Gordon equations in the different background are:

1

4π
√
ω

exp {−iωuin}
r

1

4π
√
ω

exp {−iωv}
r

(4.17)

and for the Schwarzschild region

1

4π
√
ω

exp {−iωuout}
r

1

4π
√
ω

exp {−iωv}
r

(4.18)

In particular we are interested in the two dimensional model depending only on the (t, r)
variables these modes become

1√
4πω

exp {−iωuin}
1√
4πω

exp {−iωv} (4.19)

and for the Schwarzschild region

1√
4πω

exp {±iωuout}
1√
4πω

exp {−iωv} (4.20)

The normalization coefficients will be justified throught the introduction of a scalar product
(next sections).
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4.2 The fundamental relation

At v = v0

r(v0, uout) = r(v0, uin) (4.21)

Moreover
r∗ = r + 2M ln

( r

2M
− 1
)

(4.22)

From this relation, substituting the expression in the null radial coordinates for these quan-
tities we find

v0 − uout
2

= r(v0, uin) + 2M ln

r(v0, u)

2M
− 1

 (4.23)

and so
v0 − uout

2
=
v0 − uin

2
+ 2M ln

v0 − uin
4M

− 1

 (4.24)

calling vH = v0
4M − 1 we find

uout = uin − 4M ln
 vH

4M
− uin

4M

 (4.25)

We are interested in the asymptotic behaviour of this expression:

1. r →∞

uout ∼ uin (4.26)

At large r there is no difference between uin modes and u modes.
A mode with positive frequency with respect to the Killing vector ξµtin∂µ = ∂tin is
described in the out basis as a positive frequency mode with respect to the Killing
vector ξµS∂µ = ∂t where t is the Schwarzschild time.
Therefore the Bogolubov coefficient β is equal to 0 which means that there is no par-
ticle production for large values of r.

2. r → 2M
The argument of the logarithm vanishes

vH
4M

=
uin
4M

(4.27)

Taking the free parameter v0 = 4M we find as r → 2M

uout ∼ −4M ln
− uin

4M

 (4.28)

and so
uin
4M

= exp {−uout/4M} (4.29)

This is the definition of the Kruskal outgoing coordinate. It is important to underline
that this is an model independent prediction.
From this equation we find that a positive mode with respect to the Minkowskian
Killing vector ξµtin∂µ = ∂tin becomes a mode with positive frequency with respect to
the Kruskal time TK and not the Schwarzschild time tout.
Thus we expect that the Bougoliubov coefficient β 6= 0.
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Moreover the modes near the Event Horizon will have high frequencies and, considering the
geometric optic approximation, they are those arriving to the asymptotic infinity at late
times.
Computing the Bogolubov coefficients between the Kruskal modes and the Eddington Filken-
stein modes we will find the particle spectrum for late time radiation.

4.3 Quantization in the Schwarzschild Metric and vac-
uum states

Let us consider the curved spacetime metric in out 2D model:

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 (4.30)

As we can see from the Kruskal diagram (Figure 3, Chapter II), the surface t = const is a
Cauchy surface for the outer region of spacetime. Recalling the definition of scalar product

(φ1, φ2) = −i
∫

Σ

dΣnµ
√
−gΣφ1

↔
∂µ φ

∗
2 (4.31)

it easy to find

nµ = α(x)(1, 0)⇒ nµ∂µ =
1√

1− 2M
r

∂t (4.32)

where α(x) is a normalization constant, determined by gµνnµnν = −1 and

√
g|t=const =

1√
1− 2M

r

(4.33)

Therefore we find ∫ ∞
2M

dr(
1− 2M

r

) =

∫ ∞
−∞

dr∗ (4.34)

and thus finally

(u1, u2) = −i
∫ ∞
−∞

dr∗[u1(t, r∗)
↔
∂t u

∗
2(t, r∗)] (4.35)

It can be easyly verified that the basis with positive norm is

uR out
ω =

1√
4πω

e−iωu v =
1√
4πω

e−iωv (4.36)

These modes verify
ξµt ∂µu = ∂tu = −iωu (4.37)

and so this basis is composed by positive norm and positive energy modes.
A similar analysis can be carried out for the Black Hole region, with Cauchy surface r =
const.
The scalar product is now

(u1, u2) = −i
∫ 2M

0

dr(u1(t, r∗)
↔
∂r∗ u

∗
2(t, r∗))(4.38)
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and the positive norm modes are

uL outω =
1√
4πω

e+iωu v =
1√
4πω

e−iωv (4.39)

but now
ξtµ∂µu

out
ω = ∂tu

out
ω = +iωuoutω (4.40)

is a negative frequency mode.
This means that an outgoing exicitation of the field created inside the Black Hole region
decreases the energy of the system.
The massless scalar field can be expanded is this basis as

φ(r, t) =

∫
dω[aLωu

L
ω + aRωu

R
ω + aIωu

I
ω + h.c.] (4.41)

where uR is the outgoing modes in the asymptotically flat spacetime region, uL the outgoing
modes in the Black Hole region and uI the ingoing modes.

4.4 Vacuum States

4.4.1 Boulware Vacuum

The vacuum state associated with these modes is the Boulware vacuum

aiω|B >= 0 i = L,R, I (4.42)

This construction coincides asymptotically with the Minkowski quantization and corresponds
to the absence of particles as measured by an obsever at infinity.
We will see in the next chapter that it is not the real physical Black Hole’s quantum state:
it describes the vacuum polarization outside a spherical star.
In fact, as we will compute in the next chapter, the mean value of the stress energy tensor
diverges at the horizon and thus we would have a large gravitational backreaction which
would modify the causal structure of our spacetime.

4.4.2 Unruh Vacuum

We are now interested in another quantization scheme motivated by the fact that near
the horizon uin → UK . We consider ingoing modes described by

uIω =
1√
4πω

e−iωv (4.43)

and outgoing modes

uKω =
1√

4πωK
e−iωUK (4.44)

which are positive frequency and positive norm modes with respect to the scalar product
defined here.
These modes are defined on the maximally extended spacetime.
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A Cauchy surface for the outgoing modes for both the Black Hole region and the asymptot-
ically flat region is the past Event Horizon H− defined by V = 0.
Now the scalar product reads

(u1, u2) = −i
∫
<
dUK(uK1

→
∂UK u∗K2 ) (4.45)

We can expand the field in this basis

φ(r, t) =

∫
dω[aKωKuK + aIωuI + h.c.] (4.46)

As we are going to see the Hilbert space of the two quantization schemes (Boulware and
Unruh) are not unitarily equivalent.
We can define the Unruh vacuum as

aIω|U >= aKωK |U >= 0 (4.47)

This state describes well the evaporation process for late times t� 1/4M .

4.4.3 The Hartle Hawking vacuum

It is natural to consider also the vacuum state with respect to the Kruskal modes (U, V )

1√
4πωK

e−iωKUK
1√

4πωK
e−iωKVK (4.48)

which are defined in the maximally extended spacetime.
In this basis the field’s expansion reads

φ(r, t) =

∫
dω[aoutωKu

out
K + aingωKu

ing
K + h.c.] (4.49)

The vacuum associated with this construction is called the Hartle-Hawking vacuum, defined
by

aIωK |U >= aoutωK |U >= 0 (4.50)

where aoutωK destroys an outgoing U particle and aIωK destroys an ingoing V particle.
This state describe a Black Hole in a box in thermal equilibrium with the environment.

4.5 Bogolubov Transformations

Consider a star which collapses and forms a Black Hole. A photon which starts from the
past null infinity with positive frequency with respect to the Killing vector ∂tin , because of
the changing of the background metric during the gravitational collapse, will arrive to the
future null infinity with a modified frequency, which is a mixture of positive and negative
frequency modes at I−.
From this intuitive physical example we expect that the phenomenon of particle production
will be present in this physical system.
We are interested in late time radiation, when the Black Hole has settled down. As we
have already proved uin → UK near the horizon (which means late times for an asymptotic
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observer, see Eddington Filkenstein diagram).
If we consider the maximally extended spacetime we can expand in the complete basis
uL/R, v the mode uK as

uK(wK , x) =

∫ ∞
0

dω[αLωKωu
L(ω, x) + βLωKωu

∗L(ω, x)] (4.51)

+

∫ ∞
0

dω[αRωKωu
R(ω, x) + βRωKωu

∗R(ω, x)] (4.52)

where L and R are referred to the Black Hole region and the asymptotically flat region
respectively.
The scalar product does not depend on the choice of the Cauchy surface. Therefore we can
choose H− as Cauchy surface for the outgoing modes.
We are searching for the number of particles in the out state and thus we have to compute
the coefficient βωKω

< in|Nout
ω |in >=

∫ +∞

0

dω
′
|βωω′ |2 (4.53)

However this is not a physically measurable result: there is no uncertainty in the frequency
and this implies an absolute uncertain in time because of the Heinsenberg uncertain relation.
As we already state, we want to evaluate the particle production at late times when, in a
realistic situation, the Black Hole has settled down to a stationary configuration.
To obtain this result we have to superpose plane waves

uoutjn =
1√
ε

∫ (j+1)ε

jε

dωe2πiωn/εuoutω (4.54)

where j ≥ 0 and n are integers.
These represent wave packets peacked about uout = 2πn/ε with width 2π/ε as easily seen
from the above expression.
If we take ε to be small the modes are centered around ω = ωj = jε.
Therefore < in|Nout

ω |in > gives the counts of a particle detector sensitive to frequencies
within ε of ωj which is turned on for a time interval 2π/ε at time uout = 2πn/ε.
Recalling that in the region r > 2M u = − 1

κ ln(−UK) we find

αRωKjn = (uK(ωK , x), uRjn(ω, x)) = (4.55)

−i
∫ 0

−∞
dUK

(
e−iωKUK√

4πωK

)
←→
∂UK

(
1√
ε

∫ (j+1)ε

jε

dω
1√
4πω

e2πinω/εe
+iω
κ ln (−UK)

)∗
(4.56)

= i

∫ 0

−∞
dUK

(
e−iωKUK

4π
√
ωK

)(
1√
ε

∫ (j+1)ε

jε

dω
1√
ω
e−iω( 2πn

ε + 1
κ ln (−UK))

)
(4.57)

(
− iω

UK
+ iωK

)
(4.58)

calling

L =
2πn

ε
+

1

κ
ln (−UK) (4.59)
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the integral over the frequencies can be computed since ω varies in a small interval

αωK ,jn = i

∫ 0

−∞
dUK

(
e−iωKUK

4π
√
ωK

)(
1√
ε

1
√
ωjL

e−iωjLj sin
εLj
2

)(
− iωj
UK

+ iωK

)
(4.60)

where ωj = jε ≈ (j + 1/2)ε.
If the branch cut of the ln appearing in L lies on the negative real axis the integrand is
analytic in the entire complex plane with expection to the negative real axis.
This makes us able to perform a Wick rotation (see ref. [4]).
If we Wick rotate UK → iUK we find

αωK ,jn = −
∫ 0

−∞
dUK

(
eωKUK

4π
√
ωK

)(
1√
ε

1
√
ωjL

e−iωjLj sin
εLj
2

)(
ω

UK
− iωK

)
(4.61)

Since i = ei
π
2

L =
2πn

ε
+

1

κ
ln (−iUK) =

2πn

ε
+

1

κ
ln (−UK) +

(
i
π

2

)
(4.62)

The last term, when multiplied by −iω/κ gives

exp
(πω

2κ

)
(4.63)

In the same manner we can be calculate the coefficient βωK ,jn in which appear an exponential

exp
(
−πω

2κ

)
(4.64)

More explictly the Wick rotated β coefficient is

βωKω = −(uK , u
∗
ω) = −

∫ 0

−∞
dUK

(
eωKUK√
4πωKωε

)
sin

εLj
2

L
e+iωj( 2πn

ε )−
πωj
2κ +iωj ln (−UK) (4.65)

(
ω

UK + iωK

)
(4.66)

Finally we find the fundamental relation

|αRωKω|
2 = e8πMω|βRωKω|

2 (4.67)

Using the relation ∫
dωK(|αRωKω|

2 − |βRωKω|
2) = 1 (4.68)

which is given in Chapter 3 and substituting Eq. 4.67 we find∫
dωK

(
e8πMω − 1

)
|βRωKω|

2 = 1(4.69)

and so

NR
ω =

∑
ωK

|βRωKω|
2 =

1

e8πMω − 1
(4.70)

which is a thermal distribution of Bose Einstein particles. This results describe what a
particle detector measures physically at great time t.
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Figure 4.2: Hawking Radiation: particle pairs creation near the Black Hole horizon

This distribution corresponds to a thermal distribution of particles at theHawking temperature

TH =
~c2

8πkBGNM
(4.71)

In this beautiful expression: it appears to be a great synthesis of all the physical knowledge.
The Hawking temperature of a Black Hole is approximately TH ∼ 10−7Msun

M K (see ref. [9])
.
Moreover it can be verified with the same calculation for the Black Hole region that∑

ωK

|βLωKω| =
∑
ωK

|βRωKω| (4.72)

Therefore, for every outgoing particle created in the asymptotically flat region there is an
outgoing particle created in the Black Hole region.
The inside outgoing particle has clearly EK < 0 (see Chapter 2) and it decreases the energy
of the Black Hole as required by the energy conservation principle.

4.6 Thermal Radiation

We want to investigate the Hawking radiation’s physical features. If it is a thermal
radiation as it seems from the previous results, the probabilities for the emission of the
various particles must agree with those of thermal radiation.
We compute now

< in|Nout
jn Nout

jn |in >=< in|aout†jn aoutjn a
out†
jn aoutjn |in > (4.73)

Using the Bougoliubov transformations we find

< in|Nout
jn Nout

jn |in >=

∫ ∞
0

dω′|βjn,ω′ |2 + 2

(∫ +∞

0

dω′|βjn,ω′ |2
)2

(4.74)
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+

∫ +∞

0

dω′αjn,ω′βjn,ω′

2

(4.75)

where

αjn,ω′ =
1√
ε

∫ (j+1)ε

jε

dωe2πiωn/εαωω′(4.76)

In this manner∫ +∞

0

dω′αjn,ω′βjn,ω′ =
1

ε

∫ (j+1)ε

jε

dω1e
2πiω1n/ε

∫ (j+1)ε

jε

dω1e
2πiω2n/ε

∫ +∞

0

dω′αω1ω′βω2ω′

(4.77)
It is now necessary to compute, taking I− as Cauchy surface∫ +∞

0

dω′αω1ω′βω2ω′ ∝ δ(ω1 + ω2) (4.78)

Since both ω1 and ω2 are positive the integral is equal to 0:∫ +∞

0

dω′αjn,ω′βjn,ω′ = 0(4.79)

Therefore we can write

< in|Nout
jn Nout

jn |in >=
e−8πMωj (1 + e−8πMωj )

(1− e−8πMωj )2
(4.80)

which is a thermal distribution for the expectation value of < in|Nout
jn Nout

jn |in >. The
thermal probability is given by

P (Njn) = (1− e−8πMωj )e−8πNMωj (4.81)

Therefore the probability to emit N particles in the mode (jn) is

< in|Nout
jn Nout

jn |in >=

+∞∑
N=0

N2P (Njn) (4.82)

We can also compute

< in|Nout
jn Nout

kn |in >=

(∫ +∞

0

dω′|βjn,ω′ |2
)(∫ +∞

0

dω′|βkn,ω′ |2
)

(4.83)

+

∫ +∞

0

dω′βjn,ω′β
∗
kn,ω′

2

+

∫ +∞

0

dω′αjn,ω′βkn,ω′

 (4.84)

where j 6= k. This results is obtained throught the use of Bougoliubov transformations.
It can be demonstated that the last two integrals are 0 (see ref.[4]) and thus the only
contribution left is

< in|Nout
jn Nout

kn |in >=
1

e8πMωj − 1

1

e8πMωk − 1
(4.85)

which corresponds to the product of the two expectation values < in|Nout
jn |in > and <

in|Nout
kn |in >.
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This corresponds to the complete absence of correlations between different modes as typ-
ically happens in thermal radiation.
The late time radiation at I+ is described exactly by a thermal density matrix with the
temperature given by TH :

ρthermal =
∏
jn

+∞∑
N=0

P (Njn)|Nout
jn >< Nout

jn | (4.86)

=
∏
jn

(
1− e

−~ωj
kBTH

) +∞∑
N=0

e
−
N~ωj
kBTH |Nout

jn >< Nout
jn | (4.87)

where |Nout
jn > is the N particles state at I+. As we will see in the next sections every

results of a measurement at I+ is computed using a thermal density matrix. The fact that
the quantum state at I+ is not a pure state seems to be surprising. But we have to include
in our analisis the correlations between the modes across the horizon that should restore the
purity of the |in > quantum state.

4.7 Correlations

In this section we consider both the outgoing modes and the incoming modes at H+

because we want to understand correctly the correlations between the different modes to get
a full picture of the Hawking effect.
In the Unruh basis

φ =

∫ +∞

0

dω[aKωKuωK + ainω u
in
ω + h.c.] (4.88)

while in the out Boulware basis

φ =

∫ +∞

0

dω(aRω
outuRω

out + +aLω
outuLω

∗
ω
intuintω + aIωu

ingoing
ω + h.c.) (4.89)

where aintω and a†intω are destruction and creation operators of incoming particles at H+.
Since we are looking for correlations between emitted quanta at I+ and quanta at H+

we need to know the form of uintω . Recalling the previous discussion on the Boulware
quantization scheme

uintω =
1√
4πω

e+iωu (4.90)

Tracing back to I− the emitted quanta at I+ (see Fig. 4.1) it is easy to understand, using
the Penrose Diagram technique, that the uoutω have support only in the portion of I− v < vH
and thus the emitted quanta at I+ cannot see the correlations of the |in > state between
those points

< in|φ(v < vH)φ(v > vH)|in >6= 0 (4.91)

Since in the Black Hole region UK = 1/κ exp {−κu} the modes ca be rewrite as

uintω = − 1√
4πω

e−
iω
κ lnκu (4.92)
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In this manner we can define two new Bougoliubov coefficients γωω′ and ηωω′ relating the
int modes to the uK modes (recall uin → uK at late times as already proved)

uintω =

∫ +∞

0

dω
′
(γωω′u

K
ω′

+ ηωω′u
∗K
ω′

) (4.93)

uoutω =

∫ +∞

0

dω
′
(αωω′u

K
ω′

+ βωω′u
∗K
ω′

) (4.94)

where the coefficients are given by

ηωω′ = −(uintω , u∗K
ω′

) = −i
∫ +∞

0

dUKu
int
ω

←→
∂UK uK

ω′
(4.95)

γωω′ = (uintω , uK
ω′

) = −i
∫ +∞

0

dUKu
int
ω

←→
∂UK u∗K

ω′
(4.96)

Let us calculate ηωω′

ηωω′ = −(uintω , uK∗) = +i

∫ +∞

0

dUK

(
e−

iω
κ ln (UK)

4π
√
ωK

↔
∂UK

(
e−iωKUK
√
ωK

))
(4.97)

= +i

∫ +∞

0

dUK

(
e−

iω
κ ln (UK)

4π
√
ωK

)(
e−iωKUK
√
ωK

)(
−iωK +

iω

κUK

)
(4.98)

and Wick rotating U → −iUK∫ +∞

0

dUK

(
e−

iω
κ ln (−iUK)

4π
√
ωK

)(
e−ωKUK
√
ωK

)(
−iωK −

ω

κUK

)
(4.99)

As we have done in the previous section we can write∫ +∞

0

dUK

(
e−

πω
2κ e−

iω
κ ln (UK)

4π
√
ωK

(
e−ωKUK
√
ωK

))(
−iωK −

ω

κUK

)
(4.100)

The same calculation can be done for αωω′ = (uoutω , uKωK ) and we obtain

αωω′ = −
∫ +∞

0

dUK

(
e+πω

2κ e+ iω
κ ln (UK)

4π
√
ωK

(
e−ωKUK
√
ωK

))(
iωK −

ω

κUK

)
(4.101)

Thus we can write
ηωω′ = −e−4πMωα∗ωω′ (4.102)

and, the same holds for
βωω′ = −e−4πMωγ∗ωω′ (4.103)

For the operators

aoutω =

∫ +∞

0

dω
′
(α∗ωω′a

K
ω′
− β∗ωω′a

†K
ω′

) (4.104)

aintω =

∫ +∞

0

dω
′
(γ∗ωω′a

K
ω′
− η∗ωω′a

†K
ω′

) (4.105)
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Thus, recalling that the Unruh vacuum for late time coincide with |in >

aoutω |in >= −
∫ +∞

0

dω
′
β∗
ωω′

a†K
ω′
|in > (4.106)

aintω |in >=

∫ +∞

0

dω
′
η∗
ωω′

a†K
ω′
|in > (4.107)

and

a†outω |in >=

∫ +∞

0

dω
′
αωω′a

†K
ω′
|in > (4.108)

a†intω |in >=

∫ +∞

0

dω
′
γωω′a

†K
ω′
|in > (4.109)

Using Eq 4.103 we finally find

aoutω |in >= −
∫ +∞

0

dω
′
β∗
ωω′

a†K
ω′
|in >=

∫ +∞

0

dω
′
e−4πMωγωω′a

†K
ω′
|in >= (4.110)

= e−4πMωa†intω |in > (4.111)

Therefore

(aoutω − e−4πMωa†intω )|in >= 0 (4.112)

(aintω − e−4πMωa†outω )|in >= 0 (4.113)

These equations allows to write the in state in the out Fock space. We can write since from
Eq. 4.112 and Eq. 4.113 Vij = e−4πMω

|in >=< out|in > exp

(∑
ω

~−1e−4πMωa†intω a†outω

)
|out > (4.114)

=< out|in >
∏
ω

∑
N

e−4πNMω 1

N !~N
(a†intω )N (a†outω )N |out > (4.115)

=< out|in >
∏
ω

∑
N

e−4πNMω|Nout
ω > ⊗|N int

ω > (4.116)

where |Nout
ω > and |N int

ω > are the N -particles state with frequency ω at I+ and H+

rispectively. Requiring that < in|in >= 1 we find

< out|in >=
∏
ω

√
1− e−8πMω (4.117)

and so finally

|in >=
∏
ω

√
1− e−8πMω

+∞∑
N

e−4πNMω|Nout
ω > ⊗|N int

ω > (4.118)
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This expression is given for continuum normalization states. If we consider wave packets

|in >=
∏
jn

√
1− e−8πMωj

+∞∑
N

e−4πNMωj |Nout
jn > ⊗|N int

jn > (4.119)

From this equation we understand that we have an independent emission in frequency of
entangled quantum states representing outgoing and ingoing radiation. There are no corre-
lations between particles emitted in different modes.
Moreover late times for the asymptotic observer (n → ∞) means early time for horizon
states |N int

jn >.
Therefore the correlations ensuring the purity of the in vacuum state take place between
the late time outgoing quanta and the early time incoming quanta entering the horizon.
The probabilities of occupation of each state are independent and are of the form

P (Njn) = | < in|(|Nout
jn > ⊗|N int

jn >)|2 (4.120)

= (1− e−8πMωj )e−8πNMωj (4.121)

which agrees with the thermal results.

4.8 Thermal Density Matrix

Let us consider the mean value of the operator O at future null infinity I+

< in|O|in >=
∏
jnj′n′

√
1− e−8πNMωj

√
1− e−8πN ′Mωj

∑
NN ′

e
−4πN

′
Mω

j
′ e
−4πNMω

j
′ (4.122)

< N
′out
j′n′
|O|N

′out
jn >< N

′int
j′n′
|Nout

jn > (4.123)

and since < N
′int
j′n′
|N ′outjn >= δN ′Nδj′ jδn′n we find

< in|O|in >=
∏
jn

(1− e−8πNMωj )

+∞∑
N=0

e−8πNMωj < Nout
j′n′
|O|Nout

jn > (4.124)

= Tr{ρthermalO} (4.125)

Therefore the |in > vacuum state is described as a thermal state for every physical mea-
surement at I+.
Tracing the degrees of freedom going down the Black Hole the pure quantum state |in > is
described by a thermal density matrix:

ρthermal = Trint|in >< in| =
∏
jn

(1− e−8πMωj )

+∞∑
N=0

e−8πMNωj |Nout
jn >< Nout

jn | (4.126)
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4.8.1 Motivating the Exactly Black Body Radiation

There are two very important elements which carry us to this result:

1. divergent redshift property of the Black Hole Horizon

|αjn,ω′ | = e4πMωj |βjn,ω′ | (4.127)

which derive from
uout(uin) ≈ −4M ln (−uin/4M) (4.128)

2. The exponential appearing in the expression of the |in > vacuum state in the out basis

|in >=< out|in > exp

 1

2~
∑
ij

Vija
†out
i a†outj

|out > (4.129)

with the factor Vij = e−4πMωj which is responsible of the black body factor exp (−N~ωj/kBTH)
which carry to the thermal probability distribution at the temperature TH .

4.9 The Vacuum States Physical Interpretation

We want now to understand the structure of the vacuum states previously defined

1. Bolware V acuum
As we have put Vl = 0 the ingoing and the outgoing modes are disaccoppiate:

|B >= |B >in ⊗|B >out (4.130)

If a photon is sent from past null infinity to the future null infinity in the spacetime
of a static star it would not modify its frequency, thus it arrive at I+ without any
contribution from the negative norm modes at I−. This means β = 0.
Therefore, as previously stated, it describe the vacuum outside a static spherical star.

2. Unruh V acuum
The Unruh vacuum is defined in the maximally extended spacetime

|U >= |U >in ⊗|U >out (4.131)

with |U >out= |B >in. This condion means that there are no particles at I− as in the
Boulware case.
As we have proved in the above sections the Unruh state represent a thermal flux of
particles at I+. Therefore it describes the gravitational collapse state at late times.

3. Hartle-Hawking state
The Hartle-Hawking state is defined on the maximally extended spacetime, too.

|HH >= |HH >out ⊗|HH >in (4.132)

with the propriety |HH >out= |U >out.
This condition means that |HH >out describe a thermal flux of particles at I+. More-
over |HH >in describes a thermal flux of particles entering the Black Hole. Thus,
as previously stated this vacuum state describes a Black Hole in a box in equilibrium
with its environment.
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4.10 Black Hole Thermodynamics

In Chapter 2 we proved mathematically the classical Laws of Black Holes Thermodynam-
ics. They are only mathematically related to the ordinary law of Thermodynamics because
classically a Black Hole only absorbs particles and so its formal temperature is equal to 0.
Moreover with the introduction of quantum effects we have found that a Black Hole emits
particles just a Black Body with temperature TH

TH =
~κ

ckB2π
(4.133)

and this implies the beautiful exact relation between entropy and the area of a Black Hole

SBH =
kBc

3A

GN~4
(4.134)

which is called the Beckenstein-Hawking entropy.
While we have a clear physical understanding of the Hawking Temperature we have not a
clear and direct derivation of the entropy of a Black Hole based on first principles.
This derivation has to be done counting the quantum degrees of freedom of the Black Hole.
There are a good number of derivations (eg. String Theory, Loop Quantum Gravity...) but
none of them is complete.
There are also physical reasons in favor of the interpretation of SBH as the ordinary entropy
of the Black Hole.
Beckenstein proposed a generalized second law of thermodynamics: in presence of a Black
Hole

S
′

= S + SBH (4.135)

cannot decreases in a physical process, where S is the entropy of the matter fields.
This relation has never been proved but there are no known counterexample.
Note that

SBH
kB

=
A

4l2P
≈ 10+77 (4.136)

where l2P ≈ 10−66 cm2 is the squared Planck lenght. SBH is much bigger than the entropy
of the star which produces a Black Hole.

4.11 The Transplanckian Problem

We proved in chapter II that a modes with asymptotic frequency ω′ would start near
the horizon with a frequency ωLI as measured by a locally inertial observer related to the
asymptotic measurement as

ω ≈ ωLIe−u/4M (4.137)

Our derivation is thus mathematically and physically not coerent: our theory is a good
approximation to quantum gravity only for energy E � MP , but this derivation involves
modes which have arbitrarily large transplanckian frequencies with respect to freely falling
observers.
However the Hawking evaporation process can be derived using different methods and in
different physical situations.
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A particular mention to the Bose Einstein Condensates which, under certain physical con-
ditions (supersonic flow) can simulate a Black Hole (see Chapter 6). The equation which
the sonic perturbations waves obey are the same of the gravitational setting. Moreover in
these systems we have a clear understanding of the microscopic quantum theory.
It has been proved that Hawking Radiation exists theoretically also in these systems.
These models are very important also from the experimental point of view: throught the
measurement of the correlations between the modes in the outer region and inside the Sonic
Black Hole region physicists are trying to experimentally prove the existence of the Hawking
Radiation.

4.12 Black Hole Evaporation

The derivation of the Black Hole evaporation process given in the above sections has
got a strong limitation: it is based on the fixed background approximation. This is not
consistent with the energy conservation law. In fact the energy radiated by the Black Hole
must be balanced by a decreasing of the mass and a correction to the background metric.
The lifetime of a Schwarzschild Black Hole can be estimated

dM

dt
= −βm

3
P

tP

1

M2
(4.138)

where β ≈ 10−5 is a dimensionless constant. This leads to

M(t) =

(
M3

0 − 3β
m3
P

tP
t

)
(4.139)

where M0 is the initial mass. The Black Hole undergoes a complete evaporation after a time
interval

∆t =
tP
3β

(
M0

mP

)
(4.140)

where M0 is the initial Black Hole mass and mP the Planck mass. The semiclassical ap-
proximation cannot be used where m ' mP is the Planck mass and so the final state of the
Black Hole is actually not known.
Note that the Black Hole Evaporation process causes a great violation of the Barion Num-
ber: the energy radiated by the Black Hole carries 0 baryon number since kBTH is much
less than the mass of any barion until the final stage of the evaporation .

4.13 The Information Paradox

There is a very important paradox related to the phaenomenon of Black Hole evaporation:
the information paradox (see ref. [4] and ref. [10]).
Classically the existence of the event horizon does not permit to an external observer to
know the full detail of the star which forms a Black Hole since the only parameter accessible
to him are the energy E, the angular momentum J and the charge Q.
However this information is not lost, it is only inside the Black Hole.
If we consider quantum effects the situation is worst. A state |in > with Cauchy surface
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Σin in Minkowski spacetime is mapped by an unitary operator to a final state |out > with
Cauchy surface Σout. If we write

|in >=
∑
k

cink |ψk > (4.141)

where |ψk > are the basis vectors, we can determine exactly

|out >=
∑
j

coutj |ψj > (4.142)

from the coefficients of the |in > state.
This discussion is changed if the causal structure is not simple as in the Minkowskian theory.
Consider for example the Schwarzschild Black Hole metric. The final Cauchy surface is
splitted:

Σout = Σint ∪ Σext (4.143)

where Σint is placed inside the Black Hole. We can repeat the above discussion and the
initial state |in > is unitarily mapped in the final state |out > but, considering measures
performed by external observers a new phenomenon emerges.
From the previous analysis we know that the |in > state can be regarded as a flux of pairs
of entangled particles, one falling into the Black Hole and the other emitted to future null
infinity.
The outgoing flux at late times approach a thermal radiation flux.
If we consider only the exterior region we cannot describe this state as a pure state of the
form |out >=

∑
j c
out
j |ψj > because we cannot know the value of coutj . We can only know

the probabilities for finding a state |ψk >. Thus the only thing that we can compute is the
probability distribution P (N) and we cannot define a pure state in the exterior region.
It is the causal structure of the Black Hole the ultimate responsible of this breackdown of
quantum predictability.
Recalling that

ρthermal = Trint|in >< in| =
∏
jn

(1− e−8πMωj )

+∞∑
N=0

e−8πMNωj |Nout
jn >< Nout

jn | (4.144)

we understand that for an external observer the correlations between the interior and the
exterior region are lost because of the tracing over the internal degrees of freedom (althought
these correlations exists).
The initial state does not determine an unique final state as expressed by the expansion of
the density matrix.
Therefore we can only assign probabilities P (ξi) to each possible final state |ξi > as given
by the density matrix ρ

ρ =
∑
i

P (ξi)|ξi >< ξi| (4.145)

Finally the correlations are necessarily are lost in the singularity when the Black Hole ceases
to exist.
The above problem is called information paradox because on the basis of the principles of
General Relativity and Quantum Mechanics we arrive to a conclusion which contradicts one
of the fundamental rules of quantum mechanics: the unitary evolution of quantum systems.
Nowadays there is no full satisfactory solution to this paradox.
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Chapter 5

The renormalized stress energy
tensor

In the previous chapters we pointed out that the particle concept in curved spacetime is
not usually related to the intuitive notion of subatomic particle.
In fact, particles are globally definited objects while the instruments used to perform mea-
surements are local.
It is so very interesting to study objects like the stress energy tensor which are defined locally
(i.e. at a point), in order to understand the physical features of an Evaporating Black Hole.
Moreover the stress-energy tensor is also the source of gravitation. We will find that this
object suffers divergences which have to be renormalized in order to find definite physical
predictions.
After that we will compute the renormalized stress energy tensor in the quantum states of
interest for describing Black Holes.

5.1 The stress energy tensor

As we have computed in Chapter 3, the vacuum energy in Minkowski spacetime is di-
vergent.
This is not a real problem in a non gravitational theory since in these we measure only
energy differences.
When the theory involves also gravitation the situation is worst. In a gravitational theory
energy is source of gravitation and it will contain information about the spacetime curvature.
Moreover, we cannot simply substract the Minkowski zero point energy from the stress en-
ergy tensor in our curved spacetime since this difference is infinite, too.
Therefore we need more involved procedures to find physical sensible results.
In the semiclassical theory studied in this thesis, the gravitational force is described by Gen-
eral Relativity while the matter fields obey to the rules of Quantum Field Theory.
It would be very interesting to couple the Einstein tensor to the expectation value of the
stress energy tensor in the quantum state obtaining the semiclassical field equations

Rµν −
1

2
Rgµν + Λgµν = 8πGN < Tµν > (5.1)

63



64 CHAPTER 5. THE RENORMALIZED STRESS ENERGY TENSOR

where Λ is the cosmological constant.
This theory is a good approximation to quantum gravity at scales � LP .
The classical Einstein action n-dimesions is

SE.H. =

∫
dnx
√
−g
(

1

16πGN
(R− 2Λ) + Smatter

)
(5.2)

We have

− 2√
−g

δSg
δgµν

= (Rµν −
1

2
Rgµν + Λgµν) (5.3)

− 2√
−g

δSmatter
δgµν

= Tµν (5.4)

Since we are in search of the expectation value of Tµν we postulate the existence of an object
W such that

− 2√
−g

δW

δgµν
=< Tµν > (5.5)

We define in the Minkowskian theory the generating functional

Z[J ] =

∫
Dφ exp {+iSmatter[φ] + i

∫
J(x)φ(x)dnx} (5.6)

which is interpreted physically as the vacuum persistence amplitude < 0, out|0, in >. If the
classical source J is equal to 0

Z[0] =< 0, out|0, in >=< 0|0 >= 1 (5.7)

Path integral quatization works in curved spacetime, too, but in this case we can have
< 0, out|0, in > 6= 0 also if J = 0.
We have clearly

δZ[0] = i

∫
DφδSmattere

iSmatter[φ] (5.8)

= i < 0, out|δSmatter|0, in > (5.9)

Therefore

− 2√
−g

δZ[0]

δgµν
= i < 0, out|Tµν |0, in > (5.10)

If we define W as
Z[0] = e+iW ⇒W = −i ln< 0, out|0, in > (5.11)

we finally find

− 2√
−g

δW

δgµν
=
< 0, out|Tµν |0, in >
< 0, out|0, in >

(5.12)

Since

Z[0] =

∫
Dφ exp {i

∫
{1

2
φ(∂µ∂

µ −m2)φ}} = N(det(K))−
1
2 (5.13)

where K is the kinetic element and N is a normalization constant.
We know that K−1

xy = −GF (x, z)

Z[0] ∝ det(GF )
1
2 (5.14)
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where the proportionality constant is metric independent and so we can ignore it

W = −i lnZ[0] = −1

2
tr[ln (−GF )] (5.15)

GF , the Feynman propagator, can be interpreted as an operator acting on the vectors |x >
normalized

< x|x
′
>= δn(x− x

′
)

1√
−g

(5.16)

and thus
GF (x, x′) =< x|GF |x

′
> (5.17)

The trace in this space is

tr(GF ) =

∫
dnx
√
−g < x|GF |x > (5.18)

We can use the proper time representation

GF = −K−1 = −i
∫ +∞

0

e−iKsds (5.19)

Using the Schwinger-De Witt expansion (see Chapter 3) we find

< x|e−iKs|x
′
>= +i(4π)−n/2∆1/2(x, x

′
)e−im

2s+σ/2isF (x, x
′
, is)(is)−n/2 (5.20)

If K has got a small imaginary part∫ +∞

Λ

e−iKs(is)−1ids = γ + ln(−iΛK) +O(x) (5.21)

where γ is the Euler constant.
In this manner we find

ln(−GF ) = − ln(K) =

∫ +∞

0

e−iKs(is)−1ids (5.22)

that is a correct results up to the addiction of a metric independent and infinite constant
that we can ignore.
Thus we finally obtain

< x| ln(−GF )|x
′
>= −

∫ +∞

m2

GF (x, x
′
)dm2 (5.23)

where the integral with respect to m2 brings the power (is)−1.
Finally we can write

W =
i

2

∫
dnx
√
−g

1
2 lim
x′→x

∫ +∞

m2

dm2GDSF (x, x
′
) (5.24)

If we exchange the two integrals we obtain

W =
i

2

∫ +∞

m2

dm2

∫
dnx
√
−g

1
2GDSF (x, x) (5.25)
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Note that the second integral is a one-loop Feynman diagram. This is the motivation for
the W ’s name one-loop effective action.
From the above quantity we can find the effective Lagrangian density Leff

W =

∫ √
−gLeffdnx (5.26)

where

Leff =
i

2
lim
x′→x

∫ +∞

m2

dm2GDSF (x, x
′
)(5.27)

and

GDSF (x, x′) = −i∆ 1
2 (x, x′)(4π)−n/2

∫ ∞
0

ids(is)−n/2 exp [−im2s+ (σ/2is)]F (x, x′; is)

(5.28)
where

F (x, x′; is) ≈ a0(x, x′) + a1(x, x′)(is) + a2(x, x′)(is)2 + · · · (5.29)

Inspection of the above quantities shows that Leff diverges at lower end of the s integral

because σ/2s goes to 0 when x
′ → x.

The divergent term of the Lagrangian is

Ldiv = − lim
x′→x

∆(x, x
′
)

1
2

8π

∫ +∞

0

ds

s2
e−i(m

2s+ σ
2s )[a0 + a1(is) + a2(is)2] (5.30)

Using dimensional regularization, in n dimension this is equal to

=
1

2
(4π)−n/2

(
m

µ

)n−4 +∞∑
j=0

aj(x)m4−2jΓ(j − n

2
) (5.31)

where µ is an arbitrary mass scale µ, necessary to mantain the correct dimensionality of this
object away from d = 4.
Obviously these divergences are the same which afflict < Tµν >.

The terms a0, a1 and a2 are purely geometrical and local in the limit x→ x
′
. As we already

proved in Chapter 3, these coefficients are built from Rµναβ and its contraction.
Since the divergent terms are purely geometrical and local they can be viewed as a contri-
bution to the gravitational Lagrangian.
These divergences appear because of the ultraviolet behaviour of the field modes. High
energy means short distances and so these modes probe only the local geometry: they are
insensitive to the global features of the spacetime. Moreover they are independent also on
the quantum state of interest.
The divergences, once renormalized, are not present in the effective action Leff , which in-
cludes the contributions from the long wavelenght part which also probes the global structure
of spacetime.

5.2 Wald’s axioms

The renormalization method used there to find < Tµν > has to verify the Wald Axioms
(see ref. [7])
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1. Preserve general covariance ∇µ < Tµν >= 0

2. Satisfy causality requirements

3. standard results for off-diagonal elements

4. Agree with the standard procedure of normal ordering in flat spacetime

The first condition is necessary for being the right hand side of the semiclassical Einstein
Equations.
The causality requirement means that the metric changes of spacetime outside the past light
cone cannot affect < Tµν >.
Consider two renormalized stress energy tensors satisfying the conditions 1-3. We want to
prove that

Uµν = Tµν − T̄µν (5.32)

is a local conserved tensor.
Moreover if |Π± >= 1/

√
2(|ψ > ±|φ >)

< Π+|Uµν |Π− >= 0 (5.33)

because< Tµν >must gives standard results for off-diagonal elements and thus< π|Tµν |ψ >=<
π|T̄µν |ψ >. In this way

< φ|Uµν |φ > − < ψ|Uµν |ψ >= 0 ∀ψ, φ (5.34)

and thus the diagonal elements expectation values are equal.
This condition implies

Uµν = uµν1 (5.35)

where 1 is the identity operator and uµν a c-number tensor field.
Therefore uµν must be a local tensor. If we take

< in|Uµν(p)|in >= uµν (5.36)

and

< out|Uµν(p)|out >= uµν (5.37)

The condition 2 requires that it has to depend only on the geometry in the causal past of p,
while uµν(p) in the last equation is similarly restricted by the geometry in the causal future.
Hence these two objects have to depend only on the intersection of past and future null
cones: uµν(p) is a local tensor at p.
The convarince conservation reads

uµν;ν = 0 (5.38)

We have proved that the renormalized stress energy tensor < Tµν > is unique to within a
local conserved tensor.
This tensor is a function of the local geometry and it more properly belongs to the left hand
of the gravitational field equations.
A physical measurement can resolve the ambiguity related to its coefficients, which is found
to be zero.
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5.3 Conformal Anomalies

Let us consider a classical action invariant under conformal transformation

gµν(x)→ ḡµν = Ω2(x)gµν(x) (5.39)

The definition of functional differentiation gives

S[ḡµν ]− S[gµν ] =

∫
δS[ḡµν ]

δḡρσ
δḡρσdnx (5.40)

Using the identity
δḡµν = −2ḡµνΩ−1(x)δΩ(x) (5.41)

we find

S[ḡµν ]− S[gµν ] = −
∫ √

−gT ρρ [ḡµν ]Ω−1(x)δΩ(x)dnx (5.42)

and thus we finally obtain

T ρρ = −Ω(x)√
−g

δS[ḡµν ]

δΩ(x)
|Ω=1 (5.43)

It is clear that if the classical action is invariant under conformal transformations then the
classical stress energy tensor is traceless.
When we consider the quantum theory this reasoning no longer applies as we are going to
see below.
We study the model described by this action

S =
1

8πGN

∫
d2x
√
−gR−

∫
d2x
√
−g 1

2
gµν∂µφ∂νφ (5.44)

The variation of the gravitational lagrangian in 2D gives a null value. Thus in 2D the
Einstein Hilbert action produces a non dynamical theory.
The model which we are studying is conformally invariant. Indeed, the scalar field’s mass
is equal to 0. Mass introduces a fixed lenghts in the theory and conformal transformations
are rescaling of lenghts, therefore m = 0 is a necessary condition for a conformally invariant
model.
We can put m → 0 in the expansion in the j = 0 term of the expansion since it is positive
in the two dimensional case. These term therefore vanishes.
The divergence is

1

2

1

(4π)n−2
a1(x)Γ(1− n

2
) (5.45)

The divergent part of the effective action is

Wdiv =
1

2

1

(4π)n−2
Γ(1− n

2
)

∫
dnx
√
−ga1(x) (5.46)

=
1

2

1

(4π)n−2
Γ(1− n

2
)

∫
dnx
√
−g
(
−R

6

)
(5.47)

since a1(x) = R
6 in the conformally invariant case since the non minimal coupling ξ = 0.

Using dimensional regularization (µ is an arbitrary mass parameter necessary to mantain
the correct dimensions)

< Tµµ >div= −
2√
−g

gµν
δWdiv

δgµν
= (5.48)
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= − 2√
−g

gµν

(
1

12

(
m

µ

)n−2
1

(4π)n−2
Γ(1− n

2
)
δ

δgµν

∫
dnx
√
−gR

)
= (5.49)

= − 2√
−g

gµν

(
− 1

12

(
m

µ

)n−2
1

(4π)n−2

(
2

(n− 2)

)
(Rµν −

1

2
Rgµν)

)
= (5.50)

= − 2√
−g

(
− 1

12

(
m

µ

)n−2
1

(4π)n−2

(
2

(n− 2)

)
gµν(Rµν −

1

2
Rgµν)

)
= (5.51)

= − 2√
−g

(
− 1

12

(
m

µ

)n−2
1

(4π)n−2

(
2

(n− 2)

)
(R− 1

2
Rn)

)
= (5.52)

= − 1

24π

(
m

µ

)n−2

R (5.53)

If we return to the original dimension of our model D = 2 we finally find

< Tµµ >div= −
R

24π
(5.54)

Since W is conformally invariant in the massless case, and

Lren = Leff − Ldiv (5.55)

the expectation value of the total stress tensor is zero

< Tµµ > |m=0,ξ=0 = −Ω(x)√
−g

δW [ḡµν ]

δΩ(x)
|m=0,ξ=0 (5.56)

Therefore since < Tµµ >div has acquired a trace, also < Tµµ >ren is finite and non zero

< Tµµ >ren= − < Tµµ >div=
R

24π
(5.57)

which is called the trace anomaly. An anomaly is a classical symmetry which does not sur-
vive in the quantized theory. Thus the physical quantities, obtained using the dimensional
regularization with D 6= 2 mantain a non null value even if we put again D = 2 at the end
of calculation.
This is due to the non-conformality of Wdiv away from D = 2 which leaves a finite contri-
bution to the trace.
Note that the trace anomaly is local, quantum state independent and it depends only on
the geometry at x.

5.4 Computation of the renormalized stress energy ten-
sor

A two dimensional curved spacetime is conformally flat since we can always write its line
element as

ds2 = −C(t, x)(dt2 − dx2) (5.58)
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In this case turn out that from the trace anomaly we can compute the entire stress energy
tensor.
Recalling that

W [ḡµν ] = W [gµν ]−
∫ √

−ḡT ρρ [ḡµν ]Ω−1(x)δΩ(x)dnx (5.59)

which is obtained from Eq 5.42 with the substitution S →Wren. Using the identity

ḡνσ
δ

δḡµσ
= gνσ

δ

δgµσ
(5.60)

we find

< T νµ [ḡρσ] >ren=

(
g

ḡ

)1/2

< T νµ [gρσ] >div (5.61)

− 2√
−ḡ(x)

ḡνσ
δ

δḡ(x)µσ

∫ √
−ḡ(x′) < T ρρ [ḡρσ(x

′
)] >ren Ω−1(x

′
)δΩ(x

′
)dnx

′
(5.62)

The trace is totally anomalous, local and state independent.
Using dimensional regularization, since

< T ρρ [ḡκλ] >ren= − < T ρρ [ḡκλ] >div (5.63)

=
Ω√
−ḡ(x)

δWdiv[ḡκλ]

δΩ(x)
(5.64)

Therefore we can write (using δΩ(x
′
)/δΩ(x) = δ(x− x′))

< T νµ [ḡκλ] >ren=

(
g

ḡ

)1/2

< T νµ [gκλ] >ren (5.65)

− 2√
−ḡ(x)

ḡνσ
δ

δḡµσ(x)
Wdiv[ḡκλ] (5.66)

+
2√
−ḡ(x)

gνσ
δ

δgµσ(x)
Wdiv[gκλ] (5.67)

Recalling that

Wdiv = −
[

1

24π(n− 2)

] ∫ √
−g(x′)R(x

′
)dnx

′
(5.68)

It is easy now to find

< T ρρ [ḡκλ] >ren=

(
g

ḡ

)1/2

< T ρρ [gκλ] >ren (5.69)

+

[
1

12π(n− 2)

]
[(R̄νµ −

1

2
R̄δνµ)− (Rνµ −

1

2
Rδνµ)] (5.70)

and using the identities

R̄νµ = Ω−2Rνµ − (n− 2)Ω−1(Ω−1);µρg
ρν + (n− 2)−1Ω−n(Ωn−2);ρσg

ρσδνµ (5.71)
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R̄ = Ω−2R− 2(n− 1)Ω−3(Ω);µνg
µν + (n− 1)(n− 4)Ω−4Ω;µ(Ω);νg

µν (5.72)

we can easyly find

< T νµ [ḡκλ] >ren=

(
g

ḡ

)1/2

< T νµ [gκλ] >ren (5.73)

+
1

12π
[(Ω−3Ω;ρµ − 2Ω−4Ω;ρΩ;µ)gρν ] (5.74)

+δνµg
ρσ(

3

2
Ω−4Ω;ρΩ;σ − Ω−3Ω;ρσ)] (5.75)

Since all the two dimensional spacetime are conformally flat we can evaluate the renormalized
stress energy tensor in curved spacetime in a simple manner using the known results of
Minkowskian theory.
Writing in null coordinates

ds2 = −C(u, v)dudv (5.76)

and using the identity

R = ∇µ∇µ lnC(u, v) =
4

C
∂u∂v lnC (5.77)

< T νµ [ḡκλ] >ren=

(
g

ḡ

)1/2

< T νµ [ηκλ] >ren (5.78)

+θνµ −
1

48π
Rδνµ (5.79)

where

θuu = − 1

12π

√
C∂2

u

1√
C

(5.80)

θvv = − 1

12π

√
C∂2

v

1√
C

(5.81)

θuv = θvu = 0 (5.82)

Thus, in the next section, using the results founded in flat spacetime with the usual methods
we can find the stress energy tensors related to the various quantum states of interest in our
model.
The flat spacetime is the usual Minkowski vacuum if and only if the curved spacetime is
conformal to all, or only a part of the Minkowski spacetime. In the first case only θνµ would
give contributions to the expectation value of the stress energy tensor.

5.5 Boulware state

As already analized the Boulware state is defined by the modes

1

4π
√
ω
e±iωu

1

4π
√
ω
e−iωv (5.83)
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where ± is referred to the Black Hole region/asymptotically flat region’s modes.
Related to these modes there are the creation and the destruction operator which define the
Boulware Vacuum:

aiω|B >= 0 i = L,R, I (5.84)

By definition of normal ordering

< B| : Tuu(u) : |B >=< B| : Tvv(v) : |B >= 0 (5.85)

and thus, applying Eq. 5.77 we easily find the expression for the generally covariant stress
energy tensor mean value

< B|Tuu|B >=< B|Tvv(v)|B >=
~

24π

[
−M
r3

+
3

2

M2

r4

]
(5.86)

< B|Tuv|B >= − ~
24π

(
1− 2M

r

)
M

r3
(5.87)

These expressions are clearly time independent.
If r →∞ these expressions reduce to the usual Minkowski vacuum as expected.
Let us calculate the behaviour of these mean values at r = 2M :

< B|Tuu|B >=< B| : Tvv(v) : |B >≈ − ~
768πM2

(5.88)

< B|Tuv|B >≈ 0 (5.89)

These expressions are clealy finite but the coordinates used are ill defined at the event
horizon.
We expect that the measurement of a freely falling observer must be finite.
Let us consider a freely falling observer in our 2D model.

uµ =

(
E

1− 2M
r

,−

√
E2 −

(
2M

r

))
(5.90)

This observer would measure an energy density

E = Tµνu
µuν ∝ 1(

1− 2M
r

)2 → −∞ (5.91)

The vacuum polarization diverges at the event horizon.
Motivated by the fact that < Tµν > has to be finite with respect to the locally intertial
sistem such as the Kruskal frame (U, V ) and that the Eddington Filkenstein-Kruskal change
of coordinates is singular at the horizon

dv

dV
∼ 1

r − 2M
(5.92)

du

dU
∼ 1

r − 2M
(5.93)

we find the regularity condition which a well behaved stress energy tensor has to verify in
order to describe a regular physical state

< TV V >∝ | < Tvv > | <∞ (5.94)
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< TUV >∝ 1

r − 2M
| < Tuv > | <∞ (5.95)

< TUU >∝ 1

(r − 2M)2
| < Tuu > | <∞ (5.96)

The regularity condition for the past event horizon are similar with u↔ v.
Clearly the regularity conditions at the horizon are not fullfilled for the |B > state.
Therefore we can interpret it as the vacuum polarization outside a static spherical star
whose radius is bigger than 2M .
In this way the physical region of the Schwarzschild spacetime does not contain any causal
horizon.

5.6 The Hartle Hawking State

The Hartlee Hawking vacuum state is clearly regular at the horizon since it is associated
to the modes

1√
4πω

e−iωV
1√
4πω

e−iωU (5.97)

where U , V are the Kruskal coordinates.
This state is defined in the maximally extended spacetime. As we analized in the previous
chapter the restriction of this state to the external region implies a tracing on the interior
degrees of freedom.
This produce a mixed state which can be described by a thermal density matrix

|H >r>2M⇒ ρ =
→
ρ ⊗

←
ρ (5.98)

where
→
ρ=

∏
ω

(
1− e−8πMω

)∑
N

e−8πNMω|Nω >< Nω| (5.99)

as previously proved and |Nω > is the Fock state with N outgoing particles with frequency
ω constructed from |B >

|Nω >= ~−N/2(N)−1/2(a†ω)N |B > (5.100)

In the same manner we can define the ingoing density matrix
←
ρ .

Let us compute the normal ordered stress energy tensor components.
Recalling that Tuu = ∂uφ∂uφ we find

< H| : Tuu : |H >=
∑
ωω′

< H|−
√
ωω′

4π
e−i(ω

′
+ω)uaωaω′ |H > + (5.101)

+ < H|
∑
ωω′

−
√
ωω′

4π
e−i(ω−ω

′
)ua†

ω′
aω|H > +h.c. (5.102)

Using the Bougoliubov transformation on the creation and desctruction operators defined
in Chapter 3 we can easily find that the only non vanishing elements (

∑
i αijβik = 0) are
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those deriving from the a†
ω′
aω and its hermitian conjugate.

We find ∑
ωω′

√
ωω′

4π

∑
i

e−i(ω−ω
′
)uβ∗

ω′ i
βωi (5.103)

Using the definition of scalar product and taking I− as Cauchy surface it is easy to find that∑
i

βωiβ
∗
ω′ i

=
1

e8πMω − 1
δ(ω − ω

′
) (5.104)

Therefore we finally find

< H| : Tuu : |H >=
1

2π

∑
ω

(
ωe−8πMω

1− e−8πMω

)
=

~
768πM2

(5.105)

The same reasoning can be applied to < H| : Tvv : |H > and we find

< H| : Tvv : |H >=
~

768πM2
(5.106)

Adding the vacuum polarization terms we find

< H|Tuu|H >=< H|Tvv|H >=
~

768πM2

(
1− 2M

r

)[
1 +

4M

r
+

12M2

r

]
(5.107)

< H|Tuv|H >= − ~
24π

(
1− 2M

r

)
M

r3
(5.108)

The normal ordered quantities on the horizon cancel with the vacuum polarization terms.
Asymptotically we have

< H|Tuu|H >=< H|Tvv|H >≈ ~
768πM2

(5.109)

< H|Tuu|H >≈ 0 (5.110)

Therefore |H > is a thermal state and at I+ it describe radiation at the temperature TH

TH =
~

8πkBM
(5.111)

In fact since the mean value of the stress energy tensor at infinity can be found using the
thermal density matrix

Tr[Tuu
→
ρ ] = Tr[: Tuu :

→
ρ ] =

∫ +∞

0

dω

+∞∑
N=0

<
→
Nω | : Tuu :

→
ρ |

→
Nω> (5.112)

since when r → +∞ the vacuum polarization terms go to 0.
In this manner

<
→
Nω |

→
ρ |

→
N
′

ω′
>= (1− e−8πMω)e−8NπωδNN ′ δ(ω − ω

′
) (5.113)
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and thus

Tr[: Tuu :
→
ρ ] =

∫ +∞

0

dω

+∞∑
N=0

<
→
Nω | : Tuu : |

→
Nω > (1− e−8πMω)e−8NπMω (5.114)

It is easy to verify using the canonical commutation relations that

<
→
Nω | : Tuu : |

→
Nω>=

~Nω
2π

(5.115)

and using the identity
+∞∑
N=0

Ne−8NπMω =
e−8πMω

(1− e−8πMω)2
(5.116)

we finally find the expected result

Tr[: Tuu :
→
ρ ] =

~
2π

∫ +∞

0

dω
ωe−8πMω

(1− e−8πMω)
=

~
768πM2

(5.117)

Moreover, the scalar Green Function reads (see next Chapter for an explicit calculation of
G+ which differs by a 2 factor)

DK = − 1

2π
ln [∆UK∆VK ] (5.118)

Transforming in Schwarzschild coordinates we find

DK(x
′′
, x
′
) = − 1

2π
ln[coshκ(t

′′
− t

′
)− coshκ(r

′′
− r

′
)] + · · · (5.119)

This expression is invariant under the transformation

t
′′
→ t

′′
+

2πin

κ
(5.120)

where n is an integer number and κ is the surface gravity.
Thus, DK is periodic in imaginary time with period 2π/κ. This is a feature of thermal
Green Function with temperature κ/2πkB , the Hawking temperature.
With this analysis we prove that the Hartle-Hawking vacuum is a thermal state at temper-
ature TH .
This state describes a Black Hole in a box in thermal equilibrium with his own radiation. We
have chosen these coordinate system and not another with the same asymptotic behaviour
of Kruskal’s because these are the only coordinates which make the mean values of the stress
energy tensors time independent.

5.7 The Unruh state

The Unruh state was introduced in the previous chapter to reproduce late time radiation
since, at late time a mode with positive frequency with respect to the inertial time tin
becomes a modes with positive frequency with respect to the Kruskal time TK near the
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horizon.
It is constructed from the modes

1√
4πω

e−iωv
1√

4πωK
e−iωU (5.121)

Like the Hartle Hawking state it is defined in the maximally extended spacetime. The
restriction of the Unruh vacuum to the asymptotically flat region is described by a mixed
state and again

|U > |r>2M ⇔
→
ρ (5.122)

where again
→
ρ=

∏
ω

(
1− e−8πMω

)∑
N

e−8πNMω|Nω >< Nω| (5.123)

The time orderd components are, as easily verified

< U | : Tuu(u) : |U >=
~

768πM2
(5.124)

< U | : Tvv(v) : |U >= 0 (5.125)

Adding the vacuum polarization terms

< U |Tuu(u)|U >=
~

768πM2

(
1− 2M

r

)2 [
1 +

4M

r
+

12M2

r

]
(5.126)

< U |Tvv|U >=
~

24π

[
−M
r3

+
3M2

2r4

]
(5.127)

which is equal to < B|Tvv|B >. Finally

< U |Tuv|U >= − ~
24π

(
1− 2M

r

)
M

r3
(5.128)

which is equal to < B|Tuv|B >.
Again the regularity conditions are fully satisfied by these expressions on the future event
horizon while we have a divergence if we consider the past horizon. Since this state is
physical only at late times, this divergence is not physically relevant.
Therefore we interpret the Unruh state as the state which describe the quantum state of
matter in the gravitational collapse in the late time and near horizon limit (since uin → uK
if r → 2M and thus |in >≈ |U >).
If r → +∞

< U |Tuu|U >=
~

768πM2
= +

~κ2

48π
(5.129)

which represents a constant thermal flux with temperature

TH =
~

8πkBM
(5.130)

Moreover, at the event horizon

< U |Tvv|U >= − ~
768πM2

= −~κ2

48π
(5.131)
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This is a negative and equal to minus the Hawking flux at infinity.
It represent a null flux of negative energy entering the Black Hole. Thus the Black Hole
loses mass not emitting particles but throught this negative energy flux.
As the Black Hole loses mass, it becomes hotter (because of its negative specifit heat) and
it will radiate particles with greater mass until the possible disappearing.
Note that when the Black Hole’s area shrinks there is no violation of the second law of Black
Hole mechanics since the expectation value of the stress energy tensor is negative and so it
does not satisfy the energy condition necessary (see chapter II).
Moreover this does not imply a violation of the second law of Thermodynamics since

∆STot = ∆SBH + ∆SHR ≥ 0 (5.132)

Therefore, even if the area of the Black Hole shrinks, and so ∆SBH < 0, the total entropy
increases because of the contribution of the Hawking Radiation ∆SHR > 0.

5.8 Infalling observer

It is interesting to consider an infalling observer. For an asymptotic observer, if we ignore
backreaction effects, the Black Hole emits an infinite number of particles during the infinite
time the observer uses to reach the horizon.
Intuitively it appear that the infalling observer would meet an infinite amount of radiation
which has to destroy it.
This is resolved considering the differences between the particle number and the energy
density.
When the observer approaches the Black Hole, the well definite concept of particle breaks
down.
Morever, the observer would be inside the characteristic wavelenght of a particle.
Therefore we do not need to worry about the number of particle measured by the infalling
observer.
The energy density however has a local significance.
The Hawking radiation flux is divergent at the horizon but there is also a contribution from
the gravitational vacuum polarization which is negatively divergent, too.
An infalling observer cannot distinguish operationally between these two contributions. The
difference between these two infinities gives a finite result at the Event Horizon.



78 CHAPTER 5. THE RENORMALIZED STRESS ENERGY TENSOR



Chapter 6

Stress Energy Tensor
Correlations

6.1 Introduction

In this chapter we compute an explicit expression of the Stress Energy Tensor 2 point
function, which describes the fluctuations of quantum fields in curved spacetime.
There are various motivations for studying this quantity. On the one hand it contains impor-
tant information regarding the quantum fields, on the other hand the fluctuations described
by the stress energy 2 point function are related to the search on an experiamental proof in
the analogue models of Black Holes.

6.2 Black Hole Analogue Models

In this section we prove that, under certain physical conditions, the behaviour of a
condensed matter system can simulate a Black Hole (see ref. [12]).
Let us consider a simple fluid model, irrotational such that v = ∇ψ (where v is the velocity
and ψ a scalar function) and homentropic (P = P (ρ) where P is the pressure and ρ is the
density).
The action reads

S = −
∫
d4x

[
ρ
dψ

dt
+

1

2
ρ(∇ψ)2 + u(ρ)

]
(6.1)

where u is the internal energy.
The variations of the action give the two fundamental laws of fluid dynamics which are the
continuity equation

∂tρ+∇ · (ρv) = 0 (6.2)

and the Bernulli Equation

∂tψ +
1

2
v2 + +µ(ρ) = 0 (6.3)

where µ = du
dρ .

Once applied the gradient operator to the above equation, we find the Euler’s equation

dv

dt
+ (v · ∇)v +

1

ρ
∇P = 0 (6.4)

79
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where P =
∫
ρdµ.

In order to study the fluctuations we expand the equation of motion at the first order around
the stationary configurations

ρ→ ρ0 + ρ1 (6.5)

v→ v0 + v1 (6.6)

ψ → ψ0 + ψ1 (6.7)

This describe a mean flow configuration, which is the unperturbed solutions (ρ0,v0, ψ0) ,
with perturbations (ρ1,v1, ψ1).
Expanding the action to the linear order, discarting the higher orders contributions we find

S = S0 + S2 = S0 −
∫
d4x

[
1

2
ρ0(∇ψ1)2 +

ρ0

2c2
(∂tψ1 + v · ∇ψ1)2

]
(6.8)

where c is the speed of sound and is defined as c = dµ/dρ|ρ0 .
The above action gives the equation of motion for the perturbation of the velocity potential

−∂t
[ ρ0

2c2
(∂ψ1 + v0 · ∇ψ1)

]
+∇ ·

{
v0

[
−ρ0

c2
(∂tψ1 + v0 · ∇ψ1) + ρ0∇ψ1

]}
= 0 (6.9)

Rewritting the obove equation with a four dimensional notation we find

∂µ(fµν∂νψ1) = 0 (6.10)

fµν = − ρ

c2

(
+1 +vj0
vi0 c2 − (δij − vi0v

j
0)

)
Setting

fµν =
√
−ggµν (6.11)

we finally obtain the action

S2 = −1

2

∫
d4x
√
−ggµν∂µψ1∂νψ2 (6.12)

and the related equation of motion

1√
−g

∂µ(
√
−ggµν∂νψ) = 0 (6.13)

This is clearly the Klein Gordon equation for a massless field in an effective spacetime metric
gµν . The acoustic line element can be rewritten as

ds2 = gµνdx
µdxν = −ρ0

c
[(c2 − v0)2dt2 + 2vi0dtdx

i − δij(dxidxj)] (6.14)

where we have used the acoustic metric

gµν =
ρ

c2

(
−(c2 − v2

0) −vj0
−vi0 +1

)
which resembles the Schwarzschild solution expressed in the Painleve-Gullstrand coordinates
multiplied by a conformal factor which does not modify the causal structure and hence, in
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Figure 6.1: Acoustic Black Hole

this case, it does not affect the propagation of sound waves.
In particular, note that the spatial sections obtained through the condition dt = 0 are flat.
It is quite remarkable that even though the underlying fluid dynamics is Newtonian, so
nonrelativistic, and takes place in flat space-plus-time, the fluctuations (sound waves) are
governed by a curved (3+1)-dimensional Lorentzian (pseudo-Riemannian) spacetime geom-
etry.
For general relativists this observation describes a very simple and concrete physical model
for certain classes of Lorentzian spacetimes, including Black Holes.
Let us analyze the behaviour of the soundwaves in this simple model.
On one hand if c2 > v2

0 the perturbations behaves normally and gtt > 0. On the other hand,
if c2 < v2

0 the fluid exihibits a supersonic behaviour and gtt < 0.
The similarity with the Black Hole behaviour is manifest: the perturbation in the region in
which v2

0 < c2 can be propagated in both direction, upstream and downstram, while in the
v2

0 > c2 region they are forced to follow a downstream direction, similarly to a particle in
the Black Hole Region.
The surface in which v2

0 = c2 is called Acoustic Event Horizon.

These model exhibits an emission of thermal spectrum of phonons with the same char-
acteristics of the gravitational counterpart (see ref. [11]). In particular they have a thermal
spectrum at the acusting Hawking temperature TH proportional to the acoustic surface
gravity

κ =
1

2

d(c2 − v2)

dx
|Horizon (6.15)

evaluated on the horizon.

Indeed, there is a production of couples of phonons, one going downstram and the other
going upstream, a situation very similar to that in Capter 4, section Correlations.
Moreover, in these models it is possible to study in detail problems related to the quantum
field theoretical derivation of the Hawking effect, as the Transplankian problem.
Indeed, the fluid approximation breacks down at lenghts comparable with the atomic spac-
ing.
But in the analogue models we clearly understand the underlying microscopical quantum
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theory while we do not know the microscopic quantum gravity theory. If we do not use the
fluid approximation, it is possible to find that the emission of phonons is still present.
Therefore, thorugh this studies physicists have understood that Hawking Radiation is a very
robust result and modifications to the dispersion relations do not change the main result as
can be verified.

6.3 Point separation

The product of two tempered distribution φ(x)2 at the same spacetime point is not well
defined. Therefore, to obtain a well defined and physically meaningfull expression of the
stress energy tensor expectation value we have to use some regularization process in order
to identify the divergences.
Point separation regularization is well suited for the present analysis.
Since φ(x)φ(x

′
) is a well defined quantity if x 6= x

′
we can consider the expecatation value

of this expression and after that we can take the limit x→ x
′

to find the divergences present
in this expression.
It is interesting to note that in the calculation of the main object of this chapter, the stress
energy 2 point function, the divergences cancel and therefore there is no need to renormalize.

6.3.1 The Stress Energy Tensor

The matter action for our model is

Sm = −
∫
d2x
√
−g
(

1

2
gµν∂µφ(x)∂νφ(x)

)
(6.16)

The stress energy tensor can be derived using

Tµν = − 2√
−g

δSm
δgµν

(6.17)

Using the identity

δ
√
−g = −1

2

√
−ggµνδgµν (6.18)

it is easy to compute

− 2√
−g

δSm
δgµν

=
2√
−g(x)

∫
d2y

1

4

√
−g(y)gαβ

δgαβ(y)

gµν(x)
gρσ∂ρφ(y)∂σφ(y)(6.19)

− 2√
−g(x)

∫
d2y

1

4

√
−g(y)

(
+

1

2
gµν

δgρσ(y)

δgµν(x)
∂ρφ(y)∂σφ(y)

)
(6.20)

Using ∂gαβ(y)
∂gµν(x) = δαρ δ

β
σδ

(2)(x− y) we finally find

2√
−g(x)

∫
d2y

1

4

√
−g(y)gµνδ

(2)(x− y)gρσ(y)∂ρφ(y)∂σφ(y) (6.21)

− 2√
−g(x)

∫
d2y

1

4

√
−g(y)

1

2
gµνδ

(2)(x− y)∂ρφ(y)∂σφ(y)(6.22)

Therefore the final expression reads

Tµν = ∂µφ(x)∂νφ(x)− 1

2
gµν∂

ρφ(x)∂ρφ(x) (6.23)
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6.4 The Stress Energy 2 points function

In this section we derive a formula which make us able to find a well defined quantity
for the stress energy 2 point function defined

< T̃µν(x)T̃ρσ(y) >=< Tµν(x)− < Tµν(x) >, Tρσ(y)− < Tρσ(y) >> (6.24)

The mean value of the operator < T̃µν(x) > defined at one point, as we have already seen
in the previous chapter, is a divergent quantity. Instead, we will show that the stress energy
tensor 2 point function is well defined for every y 6= x.
To regularize the stress energy two point function we take the point separated expression
(see ref. [11])

(x, y)→ (x, x
′
, y, y

′
) (6.25)

After the computation of the main expression we take the limit x→ x
′

and y → y
′
.

This will allow us to express our quantity of interest as a differential operator acting on
a four point Green function. This can be reexpressed as a product of two point functions
through the Wick Theorem.
From the viewpoint of the stress energy tensor, the separation of points is an artificial
construct. This implies that, in the transition between classical field and the quantum one,
neither point should be favoured.
Therefore we choice to symmetrize the product of the operators.

φcl(x)φcl(y)⇒ 1

2
{φ̂(x), φ̂(y)} =

1

2
(φ̂(x)φ̂(y) + φ̂(y)φ̂(x)) (6.26)

Therefore, the point separated stress energy tensor operator can be defined as

Tµν =
1

2
Σµν{φ̂(x), φ̂(y)} (6.27)

where Σµν is the differential operator acting on the fields

Σµν = ∂xµ∂
y
ν −

1

2
gµν∂

xρ∂yρ (6.28)

This is a well defined and finite quantity.
The expectation value of the point-separated stress energy operator can be computed using

GSchwinger(x, y) =< {φ̂(x), φ̂(y)} > (6.29)

and thus

< Tµν >=
1

2
ΣµνG

Schwinger(x, y) (6.30)

Let us return to our main problem: the evaluation of the stress energy tensor 2 point
function.

< T̃µν(x)T̃ρσ(y) >= lim
x′→x

lim
y′→y

ΣµνΣρσG(x, x
′
, y, y

′
) (6.31)

where

G(x, x
′
, y, y

′
) =

1

4
[< {{φ̂(x), φ̂(x

′
)}, {φ̂(y), φ̂(y

′
)}} > (6.32)

−2 < {φ̂(x), φ(x
′
)}{φ̂(y), φ̂(y

′
)} >] (6.33)
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Applying the Wick Theorem for free fields we can to rexpress as a sum of product of Wight-
man functions Gxy =< φ(x)φ(y) >

< φ̂(x)φ̂(x
′
)φ̂(y)φ̂(y

′
) >= Gxy′Gyx′ +Gxx′Gyy′ +GxyGy′x′ (6.34)

Using these results we can compute the 4 point function G(x, x
′
, y, y

′
) and we find

G(x, x
′
, y, y

′
) = Gxy′Gx′y +GxyGx′y′ +Gyx′Gy′x +GxyGy′x′ (6.35)

Now, the limit (x
′
, y
′
)→ (x, y) is well defined and we finally find

< T̃µν(x)T̃ρσ(y) >= lim
x′→x

lim
y′→y

ΣµνΣρσ[Gxy′Gx′y+GxyGx′y′+Gyx′Gy′x+GyxGy′x′ ] (6.36)

Therefore the divergence in the left part of the stress energy tensor two point function cancels
with the second part’s divergence in Eq. 6.23 and we obtain a well defined object.

6.5 Calculation of Wightman functions

In this section we compute the Wightman function, defined by

G+(x, x
′
) =< 0|φ̂(x)φ̂(x

′
)|0 > (6.37)

As proved in the previous section, it is necessary for the computation of the stress energy 2
point function.

6.5.1 Unruh State

We use the field mode expansion to find the explicit expression for the Wightman function
in the coordinate space for the Unruh state:

φ̂(x) =
∑
ω

1√
4πω

[aKω e
−iωUK + a†Kω e+iωUK + aωe

−iωv + a†ωe
+iωv] (6.38)

where UK is the outgoing Kruskal coordinate and v is the ingoing Eddington-Filkenstein
coordinate.
Therefore we compute

< U |
∑
ω

1√
4πω

[aKω e
−iωUK + aωe

−iωv]
∑
ω′

[
1√

4πω′
a†K
ω′
e+iω

′
UK + a†

ω′
e+iωv

′
]=(6.39)

=

∫ +∞

0

dω

4πω

[
e−iω(UK−U

′
K) + e−iω(v−v

′
)
]

(6.40)

where we have used the canonical commutation relations between the creation and the
destruction operators.
This is clearly an infrared divergent quantity. Using an infrared regulator λ in order to
control the divergence we find∫ +∞

λ

dω

4πω

[
e−iω(UK−U

′
K) + e−iω(v−v

′
)
]

(6.41)
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= − ~
4π

(2γ) + ln[λ2|(∆UK∆v)|] (6.42)

where γ is the Euler constant and ∆UK = UK − U
′

K while ∆v = v − v′ .
We can rewrite the previous equation as

G+
U (x, x

′
) = C − ~

4π
ln[|(∆UK∆v)| (6.43)

where C is a divergent quantity. This infrared divergence is a feature of massless scalar
models in 2D. It is not a real problem for our purpuse since we are going to apply derivative
operators to this expression and thus we can be discard C.

6.5.2 Hartle-Hawking State

In the same way, in the Hartle-Hawking state, we can expand the state in the basis

φ̂(x) =
∑
ω

1√
4πω

[−→a Kω e−iωUK +−→a K†ωe+iωUK +−→a Kω e−iωVK +−→a K†ωe+iωVK ] (6.44)

where UK , VK are the Kruskal coordinates.
Following the Unruh State’s computation we find

G+
HH(x, x

′
) = C − ~

4π
ln[|(∆UK∆VK)| (6.45)

where ∆UK = UK−U
′

K and ∆VK = VK−V
′

K . Again, since we are going to apply derivative
operators to this expression the infrared divergent constant C is not a problem.

6.5.3 Boulware State

Expanding in the Boulware basis the field φ(x) we have found in Chapter IV

φ(r, t) =

∫
dω√
4πω

[aLωe
+iωu + aRω e

−iωu + aIωe
−iωv + h.c.] (6.46)

where aLω and aRω are the destruction operator for modes inside and outside the Event
Horizon.
In particular, using the same reasoning of the above discussion it is possible to find

G+
B(x, x

′
) = C − ~

4π
ln[|(∆u∆u∆v)| (6.47)

6.6 External Correlations - Boulware state

Obviously, since the Boulware state is physical only outside a spherical star and a freely
falling observer measures a divergent energy density at the Event Horizon, the computation
of the correlations between points in the Black Hole region and points outside it previously
described is not of physical intertest.
Indeed, the divergent energy density at the horizon would largely modify the causal structure
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Figure 6.2: In this Penrose Diagram is depicted the peak in the correlations between the
ougoing modes

of our spacetime because of the strong beackreaction.
Recalling that

G+
B(x, x

′
) = C − ~

4π
ln[|(∆u∆u∆v)| (6.48)

and applying Eq. 6.35 it is easy to find the explicit expression for the stress tensor 2 point
function

< B|Tuu(x)Tuu(x
′
)|B >=

(
~

2π

)2
1

(u− u′)4
(6.49)

Therefore, correlations decrease with distance as 1/x4 as expected.
The same behaviour for the vv component

< B|Tvv(x)Tvv(x
′
)|B >=

(
~

2π

)2
1

(v − v′)4
(6.50)

6.7 Correlations - Unruh State

It is now simple to find the expression for the stress energy 2 point function in the Unruh
state applying Eq. 6.35.
In particular, we are interested in the correlations between points inside and outside the
Black Hole region.
Indeed, this correlations will be very different from the usual decreasing law as we are going
to prove.
This analysis shows us a peak related to the outgoing particles inside and outside the Black
Hole.
The measurement of these correlations is very important for an experimental proof of the
Hawking Radiation in condensed matter systems since the exact spectrum of the phonons
emitted by the acoustic Black Hole is difficult to measure because of the great noise present.
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In the gravitational setting this measurement is clearly impossible and moreover it not
physical since it does not exist any observer able to perform at the same time measurements
inside and outside the Black Hole region.
We want to compute

< U |T̃µν(x)T̃ρσ(y)|U > (6.51)

The differential operator related to the stress energy tensor found above is

Σµν = ∂(x)
µ ∂(x)

ν − 1

2
gµν(∂(x)ρ∂(x)

ρ ) (6.52)

In particular the point separated component uu is

Σuu = ∂(x)
u ∂(x

′
)

u (6.53)

because guu = 0.
In this manner

< Tuu(x)Tuu(y) >= lim
x′→x

lim
y′→y

∂xu∂
x
′

u′
∂yu∂

y
′

u [Gxy′Gx′y +GxyGx′y′ +Gyx′Gy′x +GxyGy′x′ ]

(6.54)
Recalling the previously found Green Function in the Unruh state

G+
U (x, x

′
) = − ~

4π
ln[|(∆UK∆v)| = − ~

4π
ln[|(e−κu + e−κu

′

)(v − v
′
)| (6.55)

with u = t− r∗ placed outside the horizon and u
′

inside.
We have discarted the infrared divergent constant and we used the definition of the Kruskal
coordinate

UK = −e−κu r > 2M (6.56)

U
′

K = e−κu r < 2M (6.57)

It is easy to verify that, considering x inside the Black Hole region and x
′

in the Asymptot-
ically flat region

G+
U (x

′
, x) = − ~

4π
ln[| − (e−κu

′

+ e−κu)(v
′
− v)| = (6.58)

= − ~
4π

ln[|(e−κu
′

+ e−κu)(v − v
′
)| = G+

U (x, x
′
) (6.59)

Therefore, using
∂

∂u
=
∂UK
∂u

∂

∂UK
= −κUK

∂

∂UK
(6.60)

and applying Eq. 6.46 we find

< U |Tuu(x)Tuu(x
′
)|U >=

(
~κ2

2π

)2
U2
KU

′2
K

(UK − U
′
K)4

(6.61)

Transforming to the Eddington Filkenstein coordinates we find the beautiful result

< U |Tuu(x)Tuu(x
′
)|U >=

(
~κ2

8π2

)2
1

cosh4(κ(u−u′ )
2 )

(6.62)
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Figure 6.3: Correlations, component < Tuu(x)Tuu(x
′
) >, peak in the correlations between

interior and exterior points
The z axis has to be multiplied by (~k2/8π)2

Firstly we note the presence of the ultraviolet divergence in U
′

= U where inside the
Event Horizon U

′
= −U = e−κu.

From Eq. 6.56 we find a strong peak as we can see from Figure 6.3.
This peak in the correlations between the stress energy tensors describes two massless par-
ticles, one going to infinity, the other falling towards the singularity as expected.
Indeed, this is related to the representation of the |U > state in the Boulware basis, and
thus to the analysis in Chapter IV , section : Correlations.
If we consider points outside the Event Horizon, since

UK = −e−κu (6.63)

and so, using the result in Eq. 6.60 we find

< U |Tuu(x)Tuu(x
′
)|U >=

(
~κ2

8π2

)2
1

sinh4(κ(u−u′ )
2 )

(6.64)

which does not show any peak.
Thus the peak in the stress energy correlations is a characteristic feature of the entangled
outgoing particles inside and outside the Black Hole (see Eq. 4.114).
Indeed, these correlations are searched experimentally in the Black Hole analogue models.
It is interesting to study also the correlation between the ingoing components of the stress
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Figure 6.4: Correlations, component < Tvv(x)Tvv(x
′
) >

The z axis has to be multiplied by (~/2π2)

energy tensors which is, using the same above reasoning

< U |Tvv(x)Tvv(x
′
)|U >=

(
~2

4π2

)
1

(v − v′)4
(6.65)

Note again the presence of the ultraviolet divergence v = v
′
. The correlations falls as 1/x4

as it can be seen from Figure 6.4.
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6.8 Correlations - Hartle Hawking State

In this section we compute the 2 point stress energy function in the Hartle-Hawking
vacuum.
We recall the previously computed Wightman Function in the Hartle-Hawking state

G+
HH(x, x

′
) = − ~

4π
ln[|(∆UK∆VK)| (6.66)

it is easy to verify that
G+
HH(x, x

′
) = G+

HH(x
′
, x) (6.67)

where x is placed inside the horizon and x
′

outside the horizon.
Recalling the previously found green function in the Unruh state we can rewrite it in the
Eddington Filkenstein coordinates

G+
HH(x, x

′
) = − ~

4π
ln[|(e−κu + e−κu

′

)(eκv − eκv
′

)| (6.68)

where we have discarted the infrared divergent constant and we used the definition of the
Kruskal coordinate

UK = −e−κu r > 2M (6.69)

U
′

K = e−κu r < 2M (6.70)

VK = +eκv ∀r (6.71)

The general equation for the 2 point stress energy correlations is

< T̃µν(x)T̃ρσ(y) >= lim
x′→x

lim
y′→y

ΣµνΣρσG(x, x
′
, y, y

′
) (6.72)

Again the uu component of the point separated differential operator Σµν is

Σuu = ∂xu∂
x
′

u (6.73)

Thus

< Tuu(x)Tuu(x
′
) >= lim

x′→x
lim
y′→y

∂xu∂
x
′

u′
∂yu∂

y
′

u [Gxy′Gx′y +GxyGx′y′ +Gyx′Gy′x +GxyGy′x′ ]

(6.74)
This gives

< HH|T̃uu(x)T̃uu(x
′
)|HH >=

(
~κ2

2π

)2
U2
KU

2′

K

(UK − U
′
K)4

(6.75)

Again in the Eddington Filkenstein coordinates

< HH|T̃uu(x)T̃uu(x
′
)|HH >=

(
~κ2

8π2

)2
1

cosh4(κ(u−u′ )
2 )

(6.76)

Therefore this result is equal to the the previously computed Unruh’s case (see Figure 6.3).
The peak describes the outgoing entangled exctitations inside and outside the Black Hole
region.
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As in the Unruh’s case, this is related to the representation of the |U > state in the Boulware
basis, and thus to the analysis in Chapter IV , section : Correlations.

If we consider points outside the Event Horizon, since

UK = −e−κu (6.77)

and so, using the result in Eq. 6.68 we find

< HH|Tuu(x)Tuu(x
′
)|HH >=

(
~κ2

8π2

)2
1

sinh4(κ(u−u′ )
2 )

(6.78)

which does not describe any peak.

6.9 Analysis of the correlations

In this Chapter we computed the stress energy tensor correlations between points inside
and outside the Black Hole region.
This analysis shows a rich and elegant correlations structure.
The main result is the peak present in the expression for < Tuu(x)Tuu(x

′
) > in the Unruh

State and in the Hartle-Hawking state. These maxima in the two expressions correspond to
the outgoing entangled particles.
Moreover, we find the presence of an ultraviolet divergence placed at U = U

′
. This is related

to the coincidence point limit. In addiction, it would be really interesting to find a way to
renormalize < T 2

uu(x) > in order to study the behaviour of the quantum fields at the same
point.
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Conclusion

In this thesis we have analyzed the Physics of Black Holes and Hawking Radiation.
We have found that Black Holes obey classical laws mathematically very similar to those of
Thermodynamics. Adding quantum effects, through the use of the semiclassical theory of
Quantum Field in Curved Spacetime, we have found that Black Holes emitt particles with
a thermal spectrum. In particular there are no correlations between particles with different
frequency.
Moreover, we have found that a measurement performed by an external observer can be
described by a thermal density matrix because of the tracing over the interior degrees of
freedom.
This is due to the causal structure of the Black Hole spacetime and has a very important
implication: the Information Paradox.
This states that an initial pure state evolves in a mixed state, in presence of an evaporating
Black Hole. This obviously is in contrast with the Quantum Mechanics principle of unitary
evolution.
Then, in order to understand better the meaning of the quantum states of interest, we study
the mean value of the stress energy tensor.
Finally we have studied the correlations between these objects, with particular emphasis on
the correlations between points inside and outside the horizon. Indeed, they are related to
the Acoustic Models of Black Holes and they exhibit a peak that, hopefully soon, could be
measured and this would be the proof of the existence of Hawking radiation.
Moreover, it would be interesting to study the coincidence limit of the stress energy corre-
lations. To study this object, it would be necessary to renormalize < T 2(x) >, because of
the presence of the ultraviolet divergence limx→x′ < T (x)T (x

′
) >.
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Appendix A

Penrose Diagrams

In order to understand correctly the meaning of a General Relativistic solution, it is of
fundamental importance to find a technique which permits us to understand intuitively the
causal structure of a spacetime geometry: the Penrose Diagram.
The main idea is to codificate the entire spacetime structure in an unphysical spacetime g

′

µν

which conserves the causal properties of the true physical solution.
This can be done throught the use of a conformal transformation

ds2 → ds
′2 = Ω2(xµ)ds2 (A.1)

Note that Ω depends on the spacetime point and it is in general not vanishing and positive.
This mathematical transformation changes the distance between points but the character
(timelike, spacelike or null) is not modified.
The geodesic equation

dxµ

dλ
∇µ

dxν

dλ
= 0 (A.2)

becomes

dxµ

dλ
∇
′

µ

dxν

dλ
= 2

dxν

dλ

dxα

dλ
∇α ln Ω−

(
gαβ

dxα

dλ

dxβ

dλ

)
gνµ∇µ ln Ω (A.3)

where ∇′ is the covariant derivative with respect to the unphysical metric g
′
.

In the null case this is the geodesic equation in a non affine parametrization λ.
It can be verified that the new affine parameter is

dλ′

dλ
= cΩ2 (A.4)

where c = const.
In particular we can represent points at infinity within a finite diagram using

Ω2 → 0 (A.5)

asymptotically. In this manner an infinite distance in the physical metric is codified in a
finite distance in the unphysical metric g

′

µν .

95



96 APPENDIX A. PENROSE DIAGRAMS

Figure A.1: Penrose Diagram: Minkowski Spacetime

A.1 The Minkowskian Penrose diagram

Let us consider the Minkowski metric

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2) (A.6)

which, using the null coordinates u = t− r and v = t+ r can be rewritten as

ds2 = −dudv + r2(u, v)(dθ2 + sin2 θdφ2) (A.7)

With the substitution
u = tan ū v = tan v̄ (A.8)

and thus

ds2 = − 1

(2 cos ū cos v̄)2
(dūdv̄ + r2(dθ2 + sin2 θdφ2)) (A.9)

and taking Ω = (2 cos ū cos v̄)2

ds̄2 = −dūdv̄ + r2(dθ2 + sin2 θdφ2) (A.10)

Let us define t′ = (v̄+ ū)/2 and r′ = (v̄− ū)/2. We can define five different types of infinity:

1. timelike future i+

t→∞, r = const ⇒ u, v →∞ ⇒ ū, v̄ = π/2 ⇒ t
′

= π
2 , r

′
= 0

2. timelike past i−

t→ −∞, r = const ⇒ u, v → −∞ ⇒ ū, v̄ = −π/2 ⇒ t
′

= −π2 , r
′

= 0

3. spacelike infinity i0

t = const, r →∞ ⇒ u→ −∞, , v → +∞ ⇒ ū = −π/2, v̄ = +π/2 ⇒ t
′

= 0, r
′

= π/2

4. null future infinity I+

t→∞, r →∞ with t− r = const ⇒ u = const, , v → +∞ ⇒ ū = const, v̄ = +π/2 ⇒
t
′

= −r′ + π/2

5. null past infinity I−

t→ −∞, r →∞ with t+ r = const ⇒ v = const, , u→ −∞ ⇒ v̄ = const, ū = −π/2
⇒ t

′
= +r

′ − π/2 = 0
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Figure A.2: Penrose Diagram: Schwarzschild Diagram

The Penrose Diagram of the Minkowski spacetime is depicted in Figure A.1.
Note that an uniformely accellerated observer cannot see a part of the Minkowski spacetime
and, in this case, there is the presence of an event horizon, the Rindler horizon.

A.2 The Penrose Diagram for the Schwarzschild space-
time

We are now ready to find the Pensore diagram for the Schwarzschild spacetime. Recalling
the line element

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2) (A.11)

Using the previously defined Kruskal Coordinates (see Chapter II) U and V we can rewrite

ds2 = −32m2e−r/4M

r
dUdV + r2(dθ2 + sin2 θdφ2) (A.12)

Again
Ū = 4M tanU V̄ = 4M tanV (A.13)

This leads to

ds̄2 = − 32M3e−r/2M

r(cos Ū cos V̄ )2
dŪdV̄ + r2(Ū V̄ )(dθ2 + sin2 θdφ2) (A.14)

and, if we choose

Ω2 =
rer/2M (cos Ū cos V̄ )2

8M3
(A.15)

and we find the unphysical line element

ds̄ = −4dŪdV̄ +
r3er/2M (cos Ū cos V̄ )2

8M3
(dθ2 + sin2 θdφ2) (A.16)

We note that, from the relation between the Krusckal coordinates and the Schwarzschild
coordinates ( r

2M
− 1
)
er/2M = − tan Ū tan V̄ (A.17)
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and so the point r = 0 is made of two disconnected vertial horizontal curves

tan Ū tan V̄ = 1 =⇒ Ū + V̄ = ±π
2

(A.18)

Defining T ′ = (Ū + V̄ )/2 we have r = 0⇒ T ′ = π
4 .

Morover the condition r > 0 becomes

−π
2
≤ Ū + V̄ ≤ +

π

2
(A.19)

The Schwarzschild Penrose diagram is depicted in Figure A.2.
Note that the horizons are formed by null geodesics and are located at Ū = 0 (H+ the future
horizon) and V̄ = 0 (H− the past horizon).
Moreover the singularity r = 0 is clearly spacelike, and so every observer falling in the region
II must encounter it in a finite proper time.
The surfaces divede the diagram in 4 region:

1. I Asympotically flat spacetime
Asympotically the structure is equal to Minkowski’s.

2. II Black Hole Region
The region of no escape. It contains the Black Hole singularity r = 0.

3. III White Hole region It contains the White Hole singularity r = 0

4. IV Asympotically flat spacetime
It is causally disconnected from the region I.



Appendix B

Global Methods

B.1 Future and Past

We define λ to be a future directed timelike curve if at each p ∈ λ the tangent vector is
a future directed timelike vector.
The same definition applies to a future directed causal curve, but now the tangent vector
can be also null like.
The chronological future of p ∈M is defined

I+(p) = [p ∈M : ∃ a future directed timelike curve : λ(0) = p, λ(1) = q](B.1)

where q is the final point of the curve.
If we consider a subset S ⊂M we define I+(S) as

I+(S) = ∪p∈SI+(p) (B.2)

The causal future of p is defined as the chronological future with the substitution of the
words timelike curve with causal curve. In particular, for a subset S ⊂M we have

J+(S) = ∪p∈SJ+(p) (B.3)

The definition for the past are obvious.

We want now to define the notion of extendibility of a continuous curve.
Consider a future directed causal curve λ(t). We say that p ∈M is a future endpoint of λ
if for every neightborhood O of p there exists a t0 such that λ(t) ∈ O ∀t > t0.
A curve is called future inextendible if it has no future endpoint.

B.2 Timelike and null like congruences

Let M be a manifold and O ⊂ M be open subset. A congruence is a family of curves
such that throught each p ∈ O passes precisely one curve of this family.
Consider now a smooth congruence of timelike geodesics. Consider now the tangents nor-
malized to unit lenghts ξµξµ = −1. Then we define

Bµν = ∇µξν (B.4)
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which is purely spatial
Bµνξ

µ = Bµνξ
ν = 0 (B.5)

Let us define
hµν = gµν + ξµξν (B.6)

which is a spatial metric since ξµhµν = ξνhµν = 0. Thus hµν = gµλhνλ is the projection
operator onto the subspace of the tangent vectors perpendicular to ξµ. We define the
expansion θ, the shear σµν and the twist ωµν :

θ = Bµνhµν (B.7)

σµν = B(µν) −
1

3
θhµν (B.8)

ωµν = B[µν] (B.9)

and so

Bµν =
1

3
θhµν + σµν + ωµν (B.10)

θ measures the average expansion of 2 nearby geodesics, while ωµν theri rotation and σµν
their shear.
We can find

ξλ∇λBµν = ξλ∇λ∇νξµ = ξλ∇ν∇λξµ +R σ
λνµ ξ

λξσ = (B.11)

= ∇ν(ξλ∇λξµ)− (∇νξλ)(∇λξµ) +Rσλνµξ
λξσ = (B.12)

= −BλνBµλ +Rσλνµξ
λξσ (B.13)

and taking the trace we find the Raychaudhuri′s equation:

ξλ∇λθ =
dθ

dτ
= −1

3
θ2 − σµνσµν + ωµνω

µν −Rµνξµξν (B.14)

Consider now the last term of the equation, we find

Rµνξ
µξν = 8π

[
Tµν −

1

2
Tgµν

]
ξµξν = 8π

[
Tµνξ

µξν +
1

2
T

]
(B.15)

Note that Tµνξ
µξν is the energy density measured by an observer with 4-velocity ξµ.

It is belived that, for any physically realistic classical matter we have

Tµνξ
µξν ≥ 0 (B.16)

for all timelike ξµ, which means that the energy density is non negative.
This is called weak energy condition.
This condition means that the matter always has a converging effect on congruences of null
geodesics.
This property is very important in the demonstration of the Singularity Theorems that
prove the necessary presence of singularities in varius physical settings like cosmology and
gravitational collapse.
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Moreover it is also physically reasonable that the right hand of Eq. B.15 does not become
negative. This means

Tµνξ
µξν ≥ −1

2
T (B.17)

for all unit timelike vectors ξµ. This is known as the strong energy condition.
There is also another energy condition: the dominant energy condition. Consider an ob-
server with 4-velocity ξµ, then Tµν ξ

ν is a future directed timelike or null vector.
Tµν ξ

ν physically represent the energy momentum vector of matter as seen by him and this
condition can be interpreted as saying that the speed of the energy flow must be always less
than the speed of light.

B.3 Null congruences

Consider a congruence of null geodesics with tangent kµ.
For every deviation vector ηµ we have

ξµ∇µ(ξνη
ν) = 0 (B.18)

and thus kνην does not vary along the geodesic. This implies that we can decompose ην is
the sum of a vector not orthogonal to kν which is parallelly propagated along the geodesic
plus a vector perpendicular to kν . In our discussion only the perpendicular vector is useful
and thus we can consider ηµkµ = 0. Note that if a vector η

′

ν verifies ην − η
′

ν = constkν it
represents the same physical displacement.
Since this restriction is independent from the first, we have that the interesting space is 2
dimensional and it is composed by the class of equivalence of vectors satisfing η

′

ν−ην = ckν .
More generally the space of the tensors Tµ1···µn

ν1···νm which are equal to zero when they are
contracted with kµ or kµ forms a subspace called V̂p.
The tensor field

Bµν = ∇νkµ (B.19)

also satisfies the above propertiy, and thus gives rise to B̂µν . We can decompose B̂µν

B̂µν =
1

2
θĥµν + σ̂µν + ω̂µν (B.20)

θ = ĥµνB̂µν (B.21)

σ̂µν = B̂(µν) −
1

2
θĥµν (B.22)

ω̂µν = B̂[µν] (B.23)

and thus θ, σ̂µν and ω̂µν have the interpretation as the expansion, shear and twist of the
congruence.
The change of the numerical factor 1

2 with respect to the previous equation is due to the
two dimensionality of the vector space.
With the same derivation of the previous section we find

kλ∇λBµν +BλνBµλ = R σ
λνµ kσk

λ (B.24)
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and thus, since kµBµν = 0 we find

kλ∇λB̂µν + B̂λν B̂µλ = ̂Rλσµνkλkσ (B.25)

and taking the trace we find

dθ

dλ
= −1

2
θ2 − σ̂µν σ̂µν + ω̂µν ω̂µν −Rλσkλkσ (B.26)

If we take ∇̂µkµ = 0 and thus B̂µν = 0 we find

Rµνk
µkν = 0 (B.27)

which is the result used in Chapter 2. Note that the above equation is very similar to the
Raychaudhuri’s equation. Using the Einstein’s equations we find

Rµνk
µkν = 8πGNTµνk

µkν (B.28)

B.4 Conjugate Points

Consider now a manifold M and let be γ a geodesic with tangent vµ. A solution ηµ of
the geodesic deviation equation

vµ∇µ(vν∇νηλ) = −Rλµνσηνvµvσ (B.29)

is called a Jacoby field.
A pair of points p, q ∈ γ are called conjugate points if exists a Jacoby field which is not 0
everywhere but vanish at both p and q.
Intuitively p and q are conjugate if two nearby geodesics intersects γ at p and q.
We will enunciate two theorems, for the demonstration see eg. Wald.

Theorem 1.
Let (M, gµν) a spacetime which verifies Rµνk

µkν ≥ 0 for every null kµ.
Let µ be a null geodesic and p ∈ µ. Suppose the convergence θ of the null geodesics ema-
nating from p attains negative value θ0 at r ∈ µ. Then whitin affine lenght λ ≤ 2/|θ0| from
r, there exists a point q conjugate to p along µ assuming that µ extends that far.

Theorem 2.
Let (M, gµν) a globally hyperbolic spacetime and let K be a compact two dimensional space-
like submanifold of M .
Then every p ∈ İ+(K) lies on a future directed null geodesics starting from K which is
orthogonal to K and has no point conjugate to K between K and p.
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