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Introduction

Our goal in this thesis is to provide a result of existence of the degenerate

non-linear, non-divergence PDE which describes the mean curvature flow in

the Lie group SE(2) = R2 × S 1 equipped with a sub-Riemannian metric.

The research is motivated by problems of visual completion and models of

the visual cortex. Indeed the first layer of the mammalian visual cortex has

been modelled as the fiber bundle of SE(2) by Petitot and Tondut in [21],

Citti and Sarti in [4] [5]. The strongly anysotropic structure of the cortex

is described through a subriemannian metric, which is totally degenerate at

every point. In this setting perceptual phenomena such as the formation of

subjective surfaces are described as sub-Riemannian mean curvature flows

and minimal surfaces.

When we look to the image in Fig(1) we have the clear perception of a zebra

below the grating. This means that our visual system is able to integrate the

visual signals and completes the missing part of the image, partially occluded

by other objects.

According to the models proposed in [4] [5] the reconstruction process can

be modelled as a mean curvature motion which leads to the propagation of

the visual signal and fills the gap in the image.
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Figure 1: An example of visual completion

A sub-Riemannian metric in SE(2) is induced by the choice of two vector

fields X1 and X2 at every point, which, together with their commutator, span

the tangent space at every point. A riemannian metric g is defined on the

plane spanned by {X1, X2}, which is totally degenerate, since it is not defined

outside this plane. In this space a notion of control distance has been defined.

All the differential properties of the space have been defined in terms of the

vector fields X1 and X2. For example a function is of class C 1 with respects

to the metric g if its gradient ∇gf = (X1f,X2f) is continuous. Analogously

we can define second order operators as the sub-Riemannian Laplace opera-

tor. The notion of surface in this setting has been introduced around 2002 by

Franchi, Serapioni and Serra Cassano as 0-level set of a C 1-function f in [11].

The notion of mean curvature is known only at points where the gradient

∇f does not vanish. Just like in the euclidean setting it is possible to define

a surface flowing by curvature as a surface whose points (x, t) move along the

normal direction to the surface (with respect to the sub-Riemannian metric

g), with a speed which is proportional to the intrinsic mean curvature. This

problem has been studied in the Euclidean setting in the celebrated Evans
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and Spruck’s paper [8], who made a formalization of the model implemented

by Osher and Sethian. In the sub-Riemannian setting we quote the paper

of Capogna and Citti [3], Dirr, Dragoni and M. von Renesse [6] and Ferrari,

Liu and Manfredi [9] in which a probabilistic approach is used.

However the problem of existence of a solution of the mean curvature flow

was still open in the SE(2) space. Hence we focus on this fact and provide

an existence result for viscosity solution of the mean curvature flow in this

setting, using a Riemannian approximation of the sub-Riemannian problem.

The thesis is organized as follows:

• in chapter 1 we will introduce the main perceptual phenomena stud-

ied by Gestalt psychology and in particular the problem of completion.

Then we describe the structure of the primary visual cortex (V1), which

is the region of the brain responsible for these visual tasks. We will de-

scribe in particular the functional architecture of this layer of the cortex

and the aspect of the problem, which allows us to model the cortex as

a Lie group.

• In chapter 2 we introduce the notion of sub-Riemannian metric on a

Lie group: the definition of a sub-Riemannian manifold, the horizon-

tal tangent space, all the geometric properties and the distance of the

space. In this way we will build a geometric environment which will

models the functional architecture of V1. We conclude the chapter with

a detailed description of cortical properties which allows us to describe

the cortex as a sub-Riemannian manifold.

• In chapter 3 we will describe the differential geometry of a Riemannian

surface. We introduce the notion of affine connection, curvature, and

mean curvature. We also show that the analogous sub-Riemannian ob-

jects can be recovered as limit of the correspondent Riemannian ones.
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We also provide an overview of the mean curvature motion with the

level sets method and the associated PDE. In particular minimal sur-

faces arise as 0-level set of the viscosity solution u.

• Chapter 4 contains the main result of the thesis, and provide the proof

of the existence of a mean curvature flow. Since the PDE describing

the problem is non-linear and degenerate, we will look for viscosity

solutions. We first introduce a Riemannian non-degenerate approxi-

mation of the solution for which the existence of a smooth solution

uδ,ε,σ is known. However the solution depends on the approximating

parameters ε, δ and σ. We have now to establish estimates uniform

in these parameters. The non-commutativity of the vector fields Xi

does not allow us to repeat the classical prove of Evans and Spruck.

The main idea of the proof is to introduce a new family of vector fields

{Yi}i=1,2,3 which commute with {Xi}i=1,2,3 and to obtain a new equa-

tion for the gradient of the solution. The maximum principle leads to

estimates for the gradient of uδ,ε,σ, uniform in all parameters, and we

obtain a Lipshitz continous viscosity solution when we pass to the limit.

• Finally in chapter 5 we will study some applications to visual per-

ception: an algorithm of diffusion which will give us the possibility

to build minimal surfaces and simulate the behavior of V1 for what

concerns completion phenomena.



Contents

Introduction iv

1 Perceptual completion phenomena and the visual cortex 3

1.1 Gestalt psychology and perceptual completion phenomena . . 4

1.2 The visual cortex . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 The cerebral cortex and the visual pathway . . . . . . 6

1.2.2 V1: primary visual cortex . . . . . . . . . . . . . . . . 7

1.2.3 The functional architecture of V1 . . . . . . . . . . . . 8

2 Sub-Riemannian manifolds 11

2.1 Differentiable manifold theory . . . . . . . . . . . . . . . . . . 11

2.1.1 Topological manifolds, charts and smooth manifolds . . 12

2.1.2 Tangent spaces, differential of a map, vector fields and

integral curves . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Fiber bundles and tangent spaces as vector bundles . . 18

2.2 Lie groups and their properties . . . . . . . . . . . . . . . . . 21

2.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Sub-Riemannian manifold . . . . . . . . . . . . . . . . . . . . 23

2.4 V1 as the principle fiber bundle of SE(2) with a sub-Riemannian

structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 The group law . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 The principle fiber bundle of SE(2) . . . . . . . . . . . 29

v



vi CONTENTS

2.4.3 X1,X2,X3, vector fields which generate SE(2) principal

fiber bundle . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.4 Lie Algebra and Subriemannian Structure . . . . . . . 33

3 Mean curvature motion 35

3.1 Differential instruments for introducing the mean curvature of

an hypersurface . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Affine connection . . . . . . . . . . . . . . . . . . . . . 37

3.1.2 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.3 Submanifolds and Mean Curvature . . . . . . . . . . . 41

3.2 Mean curvature motion of hypersurfaces . . . . . . . . . . . . 44

3.2.1 The evolution of curves in R2 and the evolution of im-

plicit curves . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.2 Motion of level sets by horizontal mean curvature . . . 50

3.2.3 The motion of level sets in R2 × S 1 . . . . . . . . . . . 52

4 Existence of viscosity solutions 53

4.1 Viscosity solutions . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Existence of viscosity solutions . . . . . . . . . . . . . . . . . . 55

4.2.1 Analytical solution of the approximate equations . . . 57

4.2.2 Passage to the limit . . . . . . . . . . . . . . . . . . . . 63

5 Applications to visual perception 67

5.1 Citti and Sarti cortical model . . . . . . . . . . . . . . . . . . 67

5.2 Level set method for mean curvature flow . . . . . . . . . . . . 68

5.3 Experiments and results . . . . . . . . . . . . . . . . . . . . . 70

Bibliografia 73



List of Figures

1 An example of visual completion . . . . . . . . . . . . . . . . ii

1.1 Amodal and Modal completion . . . . . . . . . . . . . . . . . 5

1.2 The visual path of the brain . . . . . . . . . . . . . . . . . . . 6

1.3 Hypercolumnar structure . . . . . . . . . . . . . . . . . . . . . 9

1.4 Pinwheels configuration . . . . . . . . . . . . . . . . . . . . . . 10

2.1 A tangent vector as an arrow . . . . . . . . . . . . . . . . . . 13

2.2 The visual cortex as Rototraslation group . . . . . . . . . . . 28

2.3 A contour in a 2D image . . . . . . . . . . . . . . . . . . . . . 31

2.4 Lifting process of a contour . . . . . . . . . . . . . . . . . . . 32

3.1 Association fields and integral curves . . . . . . . . . . . . . . 36

3.2 Parametrization of the family of curves . . . . . . . . . . . . . 46

3.3 Representation of the curve Γ and of the function φ . . . . . . 47

3.4 Geometric interpretation of the curvature of a curve . . . . . . 48

3.5 Representation of the evolution of the curve Γ through the

function φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Representation of the evolution of the curve by mean curvature 50

4.1 Geometrical interpretation of the differential problem . . . . . 56

5.1 Foliation of a surface in its level sets . . . . . . . . . . . . . . 68

5.2 Lifted surface . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Surface with missing parts . . . . . . . . . . . . . . . . . . . . 70

vii



LIST OF FIGURES 1

5.4 Mean curvature flow performed with a Riemannian approxi-

mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.5 Mean curvature flow performed without a Riemannian approx-

imation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.6 Completed surface . . . . . . . . . . . . . . . . . . . . . . . . 72



2 LIST OF FIGURES



Chapter 1

Perceptual completion

phenomena and the visual

cortex

Our aim in this chapter is to introduce the concepts studied in Gestalt

psychology which result in the perceptual completion phenomena and to

present the basic structures of the functional architecture of the primary vi-

sual cortex (V1). The basic idea is that neural interaction strongly depends

on the organization and connectivity of neurons in the cortex. We will re-

strict our attention to the structures relevant to the model presented in the

later chapters, in other words those involved in boundary coding: receptive

fields and receptive profiles of simple cells in V1 are fundamental for this

process. Then we will give a description of the main structures involved in

the perceptual completion of the functional architecture of V1. Finally the

connectivity pattern between simple cells will be considered. This will lay

the foundation for correctly modelling the structures and connectivity from

a mathematical point of view and will enable us to show that these form the

basis for the perceptual completion of contours

3



4 1. Perceptual completion phenomena and the visual cortex

1.1 Gestalt psychology and perceptual com-

pletion phenomena

Visual perception is not a simple acquisition of the real stimulus, but is

the result of a series of complex processes which mediate between the physical

stimuli and the phenomenological organization of such stimuli. According to

Gaetano Kanizsa, one of the main exponents of the Gestalt psychology,

“Perception consists of an active construction by means of which sensory data

are selected, analyzed and integrated with properties not directly noticeable but

only hypothesized, deduced, or anticipated, according to available information

and intellectual capacities.” The basic idea of the Gestalt theory is that there

exist laws which allow figural emergence without any mediation by past ex-

perience. These characteristics are defined as laws that describe the influence

of global context in the perception of local features. Elements tend to be per-

ceptually grouped and made salient in case of proximity, similarity, closure,

good continuation and alignment. More than one grouping law at a time can

contribute to the perception of a complex object. For example phenomena in

which there is a phenomenological presence of boundaries without a physical

stimulus (such as in the famous Kanizsa-Triangle) describe the mechanisms

of modal and amodal completion, which are examples of grouping according

to good continuation and alignment. We will shortly consider in figure (1.1) a

clear example of amodal and modal completion, which was studied in depth

by Kanizsa.

A point underlined by these studies is that in both cases of completion

the occluding and the occluded objects are perceived at the same time in

the scene and therefore there are points in the input stimulus corresponding

to more than one figure at the perceptual level. This suggests that the

phenomenological space has a higher dimension than that of the physical

space, as in this example of a two dimensional image.
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Figure 1.1: (Left) An example of amodal completion. The figure is perceived

as a black circle occluded by a gray square. The circle is present in the

visual field, but the completion is performed without an illusory contour.

(Right) The Kanizsa triangle. A white triangle occluding three black disks is

phenomenologically perceived. There is an apparent contour separating the

triangle from the figure, indeed the interior looks whiter than the background.

There is also a stratification of figures, the triangle emerges and seems to be

above the disks. This type of phenomenon is classified by Kanizsa as modal

completion.

1.2 The visual cortex

In order to describe from a mathematical point of view the previous phe-

nomena in which we are interested, we first need to focus on the functional

architecture of the primary visual cortex and in its basic structures. We will

consider only the structures that are relevant to the model presented in the

later chapters, those involved in boundary coding. The main idea behind

this model is that neural computations strictly depend on the organization

and connectivity of neurons in the cortex.
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1.2.1 The cerebral cortex and the visual pathway

The cerebral cortex is the outermost layer of neural tissue in the two cere-

bral hemispheres. It plays a central role in sensory and cognitive processing

since most of the neurons responsible for these processes are located here. It

is commonly divided in three parts: sensory, motor, and association. We are

interested in the first of these, which is the part of the cortex that receives

sensory inputs. In particular the visual cortex is the area that serves the sense

of vision and receives the optical information from the visual path (see figure

(1.2)). Light enters the eyes and arrives to the retina, which is composed of

Figure 1.2: The visual path of the brain

ten thin layers of brain tissue where the neural processing of visual stimuli

begins. These layers are formed mainly of photoreceptors, and the final layer

consists of ganglion cells which have the role of sending the final output of

the retina (in the form of action potentials) away from the eyes using their
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long axons. These axons form the optic nerve, which transmits the visual

signals to the lateral geniculate nucleus (LGN) of the thalamus, a structure

in the middle of the brain which connects the sensory organs to their main

sensory processing cortical areas. From the LGN the signal goes to various

destinations: the most important is the visual cortex, situated in the back

of the head, where the larger part of the visual processing is performed. The

primary visual cortex (V1) is the area to which most of the retinal output

first arrives and is the most widely studied visual area.

1.2.2 V1: primary visual cortex

As the axons of the ganglion cells project a detailed spatial representation

of the retina to the LGN, the LGN projects a similar representation to the

primary visual cortex. More precisely each cell in V1 is characterized by

its receptive field, the portion of the retinal plane which responds to visual

stimulation: the action of light alters the firing of the neuron. Classically a

receptive field is subdivided into ON and OFF areas. The area is considered

ON if the cell spikes responding to a positive signal and OFF if it spikes

responding to a negative signal. Hence it is possible to define the receptive

profile of a neuron as a function ψ(x, y) measuring the response of the cell,

ψ : D → R where D is the receptive field and (x, y) are retinal coordinates.

This function models the neural output of the cell in response to a punctual

stimulus in the 2 dimensional point (x, y). The characterization given by

Hubel and Wiesel in ([14]),([15]) classifies the cells in V1 according to their

responses. Cells which have separate ON/OFF zones are called simple cells,

all the others complex cells. Simple cells have directional receptive profiles

(they respond to orientation) and they are sensitive to the boundaries of

images. To understand the processing of the image operated by these cells,

it is necessary to consider the functional structures of the primary visual

cortex: the layered, the retinotopic and the hypercolumnar structure.
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1.2.3 The functional architecture of V1

We refer to the functional architecture as the spatial organization and the

connectivity between neurons inside a cortical area. In V1 we can identify

three structures we mentioned before.

• The layered structure indicates that the cortex is formed of 6 horizontal

layers.

• The retinotopic structure has a particular kind of topographic organiza-

tion implying that there exists a topology preserving mapping between

the retina and the cortex. For this reason cells in each structure can

be seen as forming a map of the visual field: simple cell receptive fields

form a mosaic that covers the retina. In other words: what is near

in the visual field is near in the cortex. From the image processing

point of view retinotopic mapping introduces a simple deformation of

the stimulus image that we will not consider here.

• The hypercolumnar structure organizes the cortical cells in columns cor-

responding to parameters such as orientation, ocular dominance, color,

etc. For the simple cells, sensitive to orientation, columnar structure

means that to every retinal position is associated a set of cells (hyper-

column) sensitive to all the possible orientations.

At a certain scale and resolution, for each point of the retina (x, y) there ex-

ists a whole set of neurons in V1 which respond maximally to every possible

local orientation θ. Since ideally the position on the retina takes values in

the plane R2 and the orientation preference in the circle S 1, the visual cortex

can be locally modelled as the product space R2 × S 1. Each point (x, y, θ)

of this 3D space, represents a column of cells in the cortex associated to a

retinal position (x, y), all of which are tuned to the orientation given by the

angle θ.

Fig(1.3) shows a schematic representation of the visual cortex. The hyper-

columns are drawn vertically. The different colors represent different orien-

tations. The coordinates (x, y, θ) of this 3D space isomorphic to R2× S 1 are
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the parameters of the receptive fields (RPs): (x, y) is the retinotopic position

and θ the angle of tuning.

Figure 1.3: The visual cortex modelled as a set of hypercolumns. Over each

retinotopic point (x, y) there is a set of cells coded for the set of orientations

{θ ∈ S1} and generating the 3D space R2×S 1. Each bar represents a possible

orientation.

The fundamental consideration here is that V1 is modelled as a 3D space of

positions and orientations, while the cortex is infact a 2D layer. The struc-

ture of the cortex allows us to code 3D information in a 2D structure: this

dimensional collapse has been illustrated visually by the pinwheel structure,

a fascinating configuration observed by William Bosking et al. using optical

imaging techniques in which the cells’ orientation preference is color-coded

and every hypercolumn is represented by a pinwheel (see [2]). Figure (1.4)
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Figure 1.4: A marker is injected in the cortex, at a specific point, and it

diffuses mainly in regions with the same orientation as the point of injection

(marked with the same color in figure)

To conclude our study of the functional architecture of V1 we need to

discuss the connectivity between neurons inside the structure we have seen.

In the hypercolumnar structure we can identify two types of communication

between neurons which play a central role in the model we want to present:

• The intracortical circuitry is able to select the hypercolumns orientation

of maximum output in response to a visual stimulus and to suppress

all the others. The mechanism able to produce this selection is called

non-maximal suppression or orientation selection.

• The horizontal or cortical connectivity takes place in the connectivity

structure, the part of the visual cortex which ensures connectivity be-

tween hypercolumns. The horizontal connections connect cells with the

same orientation belonging to different hypercolumns.



Chapter 2

Sub-Riemannian manifolds

In this chapter we will introduce the mathematical instruments that will

allow us to model the cortical space introduced in the previous section. We

are mainly interested in the structure of the cortex, which we know is respon-

sible for the functionality of the cortex itself: the hypercolumnar structure of

the primary visual cortex has been modelled as the principle fiber bundle of

the Lie group SE(2) and its differential structure, crucial for explaining the

orientation selection of V1, is sub-Riemannian. Instruments of Lie groups

and differential geometry for the description of the visual cortex have been

introduced by Hoffmann in [13], Zucker in [27], Petitot and Tondut in [21]

and Duits and Franken in [7]. Before focusing on their models, we first need

to review the definition and basic properties of differentiable manifold the-

ory and Lie group theory, which are fundamental for explaining the simmetry

and the organization of simple cells in the cortex, and the construction and

the properties of a subriemannian manifold which explain the connectivity

we have introduced.

2.1 Differentiable manifold theory

In order to introduce Lie groups and Subriemannian structure we need

to first recall fundamental notions of differentiable manifold theory. All def-

11



12 2. Sub-Riemannian manifolds

initions and theorems can be found in [24].

2.1.1 Topological manifolds, charts and smooth mani-

folds

Definition 2.1. A topological space M is locally Euclidean of dimension n if

every point p ∈M has a neighborhood U such that there is a homeomorphism

φ from U onto an open subset Rn. We call the pair (U, φ : U → Rn) a chart,

where U is a coordinate neighborhood or a coordinate map or a coordinate

system on U . We say that a chart (U, φ) is centered at p ∈ U if φ(p) = 0.

Definition 2.2. A topological manifold is a Hausdorff (T2), second count-

able, locally Euclidean space. It is said to be of dimension n if it is locally

Euclidean of dimension n.

Suppose (U, φ : U → Rn) and (V, ψ : V → Rn) are two charts of a

topological manifold. Since U ∩ V is open in U and φ : U → Rn is a

homeomorphism onto an open subset of Rn, the image φ(U ∩ V ) will also be

an open subset of Rn. Similarly, ψ(U ∩ V ) is an open subset of Rn.

Definition 2.3. The two charts (U, φ : U → Rn) and (V, ψ : V → Rn) of a

topological manifold are C∞-compatible if the two maps:

φ ◦ ψ−1 : ψ(U ∩ V )→ φ(U ∩ V ) ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V )

are C∞. These two maps are called the transition functions between the

charts. If U ∩ V is empty, then the two charts are automatically C∞-

compatible. To simplify the notation, we sometimes write Uαβ for Uα ∩ Vβ.

Definition 2.4. A C∞ atlas or simply an atlas on a locally Euclidean space

M is a collection U = {(Uα), φα} of pairwise C∞-compatible charts that cover

M, i.e. M =
⋃
α Uα.

An atlas U on a locally Euclidean space is said to be maximal if it is not

contained in a larger atlas; in other words, if M is any other atlas containing

U, then U = M.
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Definition 2.5. A smooth or C∞ manifold is a topological manifold M to-

gether with a maximal atlas. Tha maximal atlas is also called a differentiable

structure on M. A manifold is said to have dimension n if all of its connected

components have dimension n. A 1-dimensional manifold is also called a

curve, a 2-dimensional manifold a surface, and a n-dimensional manifold is

an n-manifold.

2.1.2 Tangent spaces, differential of a map, vector fields

and integral curves

A basic principle in manifold theory is the linearization principle, accord-

ing to which a manifold can be approximated near a point by its tangent

space at that point. From mathematical literature we know that for any

point p in an open set U in Rn there are two equivalent ways to define a

tangent vector at p:

• as a column vector.1

Figure 2.1: A tangent vector as an arrow

• as a point-derivation of C∞p , the algebra of germs2 of C∞ functions at

p.

1Intuitively the tangent plane to a surface at p in Rn is the plane that just “touches”

the surface at p. A vector at p is tangent to a surface if it lies in the tangent plane at p.
2We define a germ of a C∞ function at p in Rn to be an equivalence class of smooth

functions defined in a neighborhood at p in Rn, the two functions being equivalent if they

agree on some, possibly smaller, neighborhood of p. The set of germs of smooth real-valued
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Both definitions generalize to a manifold. In the first approach, one defines a

tangent vector at p in a manifold M by first choosing a chart (U, φ) at p and

then denoting a tangent vector at p to be an arrow at φ(p) in φ(U). This

approach, while more visual, is complicated to work with, since a different

chart (V, ψ) at p would give rise to a different set of tangent vectors at p

and one would have to decide how to identify the arrows at φ(p) in U with

the arrows at ψ(p) in ψ(V ). The cleanest and most intrinsic definition of a

tangent vector at p in M is as a point-derivation, and this is the approach

we adopt.

Definition 2.6. Generalizing a derivation at a point p in Rn, we define a

derivation at a point in a manifold M, or a point-derivation of C∞p to be a

linear map D : C∞p (M)→ R such that

D(fg) = (Df)g(p) + f(p)Dg.3

functions at p in Rn is denoted by C∞
p (Rn), an unitary commutative ring. This concept

generalizes to a manifold M using the local coordinates given by the atlas, for each point

p in M
3The definition of tangent vector that we have seen in this chapter descends directly

from the characterization of a tangent vector in Rn. In calculus we visualize the tangent

space Tp(Rn) at p in Rn as the vector space of all arrows emanating from p.

If f is C∞ in a neighborhood of p in Rn and v is a tangent vector p, the directional

derivative of f in the direction v at p is defined to be

Dvf = lim
t→0

f(c(t))− f(p)

t
=

d

dt

∣∣∣∣
t=0

f(c(t))

where c(t) = (p1 + tv1, . . . , pn + tvn) is the parametrization of the line through a point

p = (p1, . . . , pn) with direction v = 〈v1, . . . , vn〉 in Rn. By the chain rule,

Dvf =

n∑
i=1

dci
dt

(0)
∂f

∂xi
(p) =

n∑
i=1

∂f

∂xi
(p).

In the notation Dvf it is to be understood that the partial derivatives are to be evaluated

at p, since v is a vector at p. So Dvf is a number, not a function. We write

Dv =
∑

vi
∂

∂xi

∣∣∣∣
p

for the map that sends a function f to the number Dvf . To simplify the notation we often
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Definition 2.7. A tangent vector at a point p in a manifold M is a derivation

at p.

Definition 2.8. The tangent vectors at p form a vector space Tp(M), called

the tangent space of M at p. We also write TpM .

Definition 2.9. A vector field on an open subset U of M is a function that

assigns to each point p in U a tangent vector Xp ∈ Tp(M). Since we can

assign a basis {∂/∂xi|p} to Tp(M)4, where the elements of the basis are the n

directional derivates which come from the local coordinates of U in Rn, the

vector Xp is a linear combination:

Xp =
∑

ai(p)
∂

∂xi

∣∣∣∣
p

p ∈ U, ai(p) ∈ R

where ai are smooth functions on U . The set of vector fields on a manifold

M is denoted by X(M).

omit the subscript p. The association v 7→ Dv of the directional derivative Dv to a tangent

vector v offers a way to characterize tangent vectors as certain operators on functions.

For each tangent vector v at a point p in Rn, the directional derivative at p gives a map

of real vector spaces:

Dv : C∞
p (Rn)→ R,

Dv is R-linear and satisfies the Leibniz rule:

Dv(fg) = (Dvf)g(p) + f(p)Dvg

In general, any linear map D : C∞
p (Rn) → R satisfying the Leibniz rule is called a

derivation at p. We can denote the set of all derivations at p by Dp(Rn). This is a vector

space, since the sum of the two derivations at p and a scalar multiple of a derivation at

p are again derivations at p. Thus far we know that directional derivatives at p are all

derivations at p so there is a map:

φ : Tp(M)→ Dp(M), v 7→ Dv =
∑

vi
∂

∂xi

∣∣∣∣
p

This map is linear and is an isomorphism of vector spaces: it represents the reason why

we can identify tangent vectors with derivations.

4This result is prooved in a theorem which states that { ∂
∂xi

∣∣∣∣
p

}i=1,...,n form a basis for

Tp(M).
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Observation 1. An equivalent definition is that a vector field X is a derivation

on C∞(M), i.e. D : C∞(M)→ C∞(M) R-linear which satisfies the Leibniz

rule. This equivalence can be proved.

We will now define the concept of a smooth map between two manifolds

in order to introduce the differential of a map:

Definition 2.10. Let N and M be manifolds of dimension n and m respec-

tively. A map F : N → M is C∞ at a point p in N if there are charts

(V, ψ) about F (p) in M and (U, φ) about p in N such that the composition

ψ ◦F ◦ φ−1, a map from the open subset φ(F−1(V )∩U) of Rn to Rm, is C∞

at φ(p). If F is C∞ at every point of N , F is said to be smooth (C∞).

Note that D denotes a derivation D, the differential of a smooth map.

Definition 2.11. Let F : N →M be a C∞ map between two manifolds. At

each point p ∈ N , the map F induces a linear map of tangent spaces called

its differential at p:

D : Tp(N)→ TF (p)M

If Xp ∈ TpN ,then D(Xp)is the tangent vector in TF (p)M defined by:

(D(Xp))f = Xp(f ◦ F ) ∈ R for f ∈ C∞F (p)(M).

Here f is a germ at F (p), represented by a C∞ function in a neighborhood

of F (p). Since the previous definition is independent of the representative

of the germ, in practice we can be relaxed about the distinction between a

germ and a representative function for the germ.

Observation 2. If f : M → R is a C∞-function, the differential of f is globally

defined as:

df =: X(M)→ C∞(M)

such that for each vector field X ∈ X(M):

df(X) := X(f)

It is clear that this definition descends directly from the general one.
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Observation 3. If instead of N and M we consider a map F between Rn

and Rm we discover with some computations that the matrix associated to

the linear map: D : Tp(Rn) → Tp(Rm) is precisely the Jacobian matrix of

the derivative of F at p. Thus, the differential of a map between manifolds

generalizes the derivative of a map between Euclidean spaces.

Definition 2.12. A smooth curve in a manifold M is by definition a smooth

map γ :]a, b[→M from some open interval ]a, b[ into M . Usually we assume

0 ∈]a, b[ and say that γ is a curve starting at p if γ(0) = p. The tangent

vector(or velocity vector) γ
′
(x) to the curve γ in x ∈ (a, b) is defined to be:

γ′(x) = D
(
d

dt

)
∈ Tγ(x)M

Definition 2.13. We call γ an integral curve of the vector field X on M

if γ
′
(x) = Xγ(x), ∀x ∈ (a, b), i.e. a smooth parametrized5 curve γ whose

tangent vector at any point coincides with the value of X at the same point.

In local coordinates this means:

γ : (a, b)→ φu(U) ∈ Rn

t 7→ (γ1(t), . . . , γn(t))

Observation 4. If we make some calculations we observe:(
Dγ

∂

∂t

)
(f(x1, . . . , xn)) =

∂

∂t
f(γ1(t), . . . , γn(t)) =

n∑
i=1

∂f

∂xi
γ

′

i(t)

Hence γ′(t) =
∑n

i=0 γ
′
i(t)

∂
∂xi

. With respect to the basis { ∂
∂x1
, . . . , ∂

∂xn
} we have

γ
′
(t) = (γ

′
1(t), . . . , γ

′
n(t)). Following the previous definition γ

′
(x) = Xγ(x) this

means
∑
γ

′
i(t)

∂
∂xi

=
∑
ai(γ1(t), . . . , γn(t)) ∂

∂xi
. Since { ∂

∂xi
} forms a basis, γ is

an integral curve iff γ
′
i(t) = ai(γ1(t), . . . , γn(t)) for all i, i.e. γ1, . . . , γn is the

solution of the previous system of autonomous ODEs of the first order.

5A parametrization is the process of deciding and defining the parameters necessary

for a complete or relevant specification (characterization) of a geometric object.
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2.1.3 Fiber bundles and tangent spaces as vector bun-

dles

The collection of tangent spaces in a manifold can be given the structure

of a vector bundle; it is then called the tangent bundle of the manifold.

Intuitively, a vector bundle over a manifold is a locally trivial family of vector

spaces parametrized by points of the manifold. Vector fields may be viewed

as sections of the tangent bundle over a manifold. A fiber bundle is intuitively

a demonstration that a space locally looks like a certain product space, but

globally may have a different topological structure.

Definition 2.14. A fiber bundle is a structure (E,B, π, F ) where E,B and

F are topological spaces and π : E → B is a continuous surjection satisfying

the local triviality condition outlined below. The space B is called the base

space of the bundle, E the total space, and F the fiber. The map π is called

the projection map. We require that ∀ x ∈ E there is an open neighborhood

U ⊂ B of π(x) (which will be called trivializing neighborhood) such that

π−1(U) is homeomorphic to the product space U × F , in such a way that π

agrees with the projection onto the first factor. Thus the following diagram

should commute:

π−1(U) U × F

U

.......................................................................................................................................... ............
φ

..............................................................................................................................................................................................................................................................................
....
............

proj1

.......................................................................................................................................................................................
.....
.......
.....

π

where proj1 : U ×F → U is the natural projection and φ : π−1(U)→ U ×F
is a homeomorphism. The set of all {(Ui, φi)} is called a local trivialization

of the bundle. Thus for any p in B, the preimage π−1({p}) is homeomorphic

to F × {p} (since proj−1
1 ({p}) clearly is p) and is called the fiber over p.

Every fiber bundle π : E → B is an open map, since projections of products

are open maps. Therefore B carries the quotient topology determined by the

map π.
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Example 2.1. The Moebius strip is the simplest example of a non-trivial

bundle E. The base B is the circle S 1 and the fiber F is a line segment.

Given x ∈ B, U is a small arc (neighborhood of x on the circle) and π−1(U)

is homeomorphic to the square U × F . Globally this is not true.

A special class of fiber bundles, called vector bundles, are those whose

fibers are vector spaces.

Definition 2.15. Let M be a smooth manifold. Recall that at each point

p ∈M , the tangent space TpM is the vector space of all point-derivations of

C∞p (M), the algebra of germs of C∞functions at p. The tangent bundle of

M is the disjoint union of all tangent spaces of M :

TM =
⊔
p∈M

TpM

In this definition the union is disjoint because for distinct points p and q

in M , the tangent spaces TpM and TqM are already disjoint. TM has the

structure of a differentiable manifold and the bundle structure is given by

the natural map π : TM →M where π−1(p) ,∀p ∈M , is the tangent space

of the manifold M at the point p (or equivalently π(v) = p if v ∈ TpM),

and this map does not depend on the choice of atlas or local coordinates for

M. As a matter of notation, sometimes a tangent vector v ∈ TpM can be

identified by the pair (p, v), to make explicit the point p ∈ M at which v is

a tangent vector.

Observation 5. We can observe that any fiber bundle is identified by the

couple (V, π : V → M) where V is a differentiable manifold and π induces

a diffeomorphism (and not only a homeomorphism) between π−1(U) and

U × Rn, where U ⊂M .

Another special class of fiber bundles, called principal bundles, are those

bundles on whose fibers there is a free and transitive action6 by a group G

6If G is a group and X is a set, then a (right) group action of G on X is a function

X ×G→ X

(x, g) 7→ x · xg
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is given. The bundle is often specified along with the group by referring to

it as a principal G-bundle. The group G is also the structure group of the

bundle. As we will see we are interested in this definition because principal

fiber bundles are used in our model to describe the visual cortex.

Definition 2.16. A principle fiber G-bundle, where G denotes any topolog-

ical group7, is a fiber bundle π : P → X together with a continuous right

action P ×G→ P such that G preserves the fibers of P and acts freely and

transitively on them. This implies that the fiber of the bundle is homeo-

morphic to the group G itself. Usually one requires the base space X to be

Hausdorff and possibly paracompact8.

An equivalent definition of a principal G-bundle is as a G-bundle π :

P → X with a fiber G where the structure group acts on the fiber by left

multiplication9. Since right multiplication by G on the fiber commutes with

that satisfies the following two axioms:

• Compatibility x · (gh) = (x · g) · h, for all g, h ∈ G, x ∈ X

• Identity x · e = x for all x ∈ X

An action is free if, given g, h ∈ G, the existence of an x ∈ X with x · g = x · h implies

g = h. Equivalently: if g is a group element and there exists an x ∈ X with x · g = x (that

is, if g has at least one fixed point), then g is the identity. An action is transitive if X is

non-empty and if for any x, y,∈ X there exists a g in G such that x · g = y.
7A topological group is a group G together with a topology on G such that the group’s

binary operation and the group’s inverse function are continuous functions with respect

to the topology. It is a mathematical object with both an algebraic structure and a

topological structure
8A paracompact space is a topological space in which every open cover has an open

refinement that is locally finite
9As we have seen before and we will see also for Lie groups in the next section, a group

G acts by left multiplication on an X set if there is a function

G×X → X

(g, x) 7→ g · xx

that satisfies the following two axioms:

• Compatibility (gh) · x = g · (h · x), for all g, h ∈ G, x ∈ X
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the action of the structure group, there exists an invariant notion of right

multiplication by G on P . The fibers of π then become right G-torsors10 for

this action.

Definition 2.17. Let π : E → M be a vector bundle on M . We call a

section of the vector bundle a map φ : M → E such that π ◦ φ = IdM

Definition 2.18. A vector field X on a manifold M is a function that assigns

a tangent vector Xp ∈ TpM to each point p ∈ M . In terms of the tangent

bundle, a vector field on M is simply a section of the tangent bundle π :

TM →M and the vector field is smooth if it is smooth as a map from M to

TM .

2.2 Lie groups and their properties

In this section we will provide some basic definitions of the Lie group

theory. Definitions and theorems can be found in [25].

2.2.1 Definition

Definition 2.19. A Lie Group is a group which also carries the structure of

a differentiable manifold in such a way that both the group operation

· : G×G→ G, (g, h) 7−→ g · h for g, h ∈ G

and the inversion

i : G→ G , i(g) = g−1, g ∈ G

are smooth maps.

Examples of Lie Groups are:

• The Euclidean space Rn, with the usual sum as group law.

• Identity x · e = x for all x ∈ X

10Let G be a group. A G-torsor is a set on which G acts freely and transitively.
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• The set of square matrices n× n, with the determinant different from

0. In this set we consider the standard product of matrices, and the

existence of an inverse is ensured by the condition on the determinant.

Note that this group is not commutative.

• The circle S 1 ⊂ C of angles mod 2π, with the standard sum of angles.

• The group of rotations and translations on the plane SE(2) which will

be described in detail in the following pages.

2.2.2 Properties

Definition 2.20. For two vector fields (or two derivations) X and Y in

X(M), their Lie bracket (or commutator) is defined by their action on func-

tions f : M → R:

[X, Y ](f) = X(Y (f))− Y (X(f))

Note that the Lie bracket is a measurement of the non-commutativity of the

operators; it is defined as the difference of appying them in reverse order. In

particular [X, Y ] is identically 0 if X and Y commute.

Definition 2.21. Let G be a Lie group. For any element g ∈ G, we define

the left-multiplication (or left-translation) Lg : G→ G by:

Lg(h) = g · h for all g ∈ G

where · denotes the group operation in G.

Definition 2.22. A vector field X on G is called left-invariant if:

X(f ◦ Lg) = (Xf) ◦ Lg for all g ∈ G

Definition 2.23. The Lie Algebra of a Lie group G is the vector space of

all left-invariant vector fields on G:

Lie(G) := {X ∈ X(M) : X is left invariant, i.e. X(f ◦ Lg) = (Xf) ◦ Lg}

for all g ∈ G and f smooth on M .
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Observation 6. A theorem states that the Lie algebra associated to a Lie

group encodes its differential structure, and it is identified as the tangent

space at the identity of the group e, i.e.

Lie(G) ∼= TeG

2.3 Sub-Riemannian manifold

So far we have dealt with differentiable objects. Now we will introduce

objects which depend on a metric (or inner product), an instrument which

allows to measure the length of any vector of the tangent space:

Definition 2.24. Let V be a vector space. An inner product (or metric) on

V is a bilinear form, symmetric and positively defined, i.e.

〈·, ·〉 : V × V → R such that:

(i) 〈u1 + u2, v〉 = 〈u1, v〉+ 〈u2, v〉 ∀u1, u2, v ∈ V ;

(ii) 〈λu, v〉 = λ〈u, v〉 ∀u, v ∈ V, ∀λ ∈ R;

(iii) 〈u, v〉 = 〈v, u〉 ∀u, v ∈ V .

(iv) 〈u, u〉 ≥ 0 ∀u ∈ V, con 〈u, u〉 = 0⇔ u = 0.

We will now establish a notation to introduce the concept of the sub-

Riemannian metric, a tool which allows us to describe the connections be-

tween the hypercolumns in our model. Let us start from the definition of

distribution, which is still an object which does not depend on the metric:

Definition 2.25. Let M be a C∞ manifold of dimension m, and let n 6 m.

Suppose that for each x ∈ M , we assign an n-dimensional subspace ∆x ⊂
Tx(M) of the tangent space in such a way that for a neighborhood Nx ⊂M

of x there exist n linearly independent smooth vector fields X1, . . . , Xn such

that for any point y ∈ Nx we have X1(y), . . . , Xn(y) span ∆y. We let ∆ refer

to the collection of all the ∆x for all x ∈M and we the call ∆ a distribution
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of dimension n on M . The set of smooth vector fields {X1, . . . , Xn} is called

a local basis of ∆

Definition 2.26. A sub-Riemannian manifold is a smooth manifold M , a

smooth constant rank distribution HM ⊂ TM and a smooth inner product

〈·, ·〉 on HM . The bundle HM is known as the horizontal bundle.

We remark here that we are not assuming any conditions about the hor-

izontal bundle other than the constant rank.

Definition 2.27. A sub-Riemannian manifold with a complement, hence-

forth a sRC manifold, is a sub-Riemannian manifold together with a smooth

bundle VM such that HM ⊕ VM = TM . The bundle VM is known as the

vertical bundle. The two sRC-manifolds M,N , are sRC-isometric if there

exists a diffeomorphism π : M → N such that π∗HM = HN , π∗VM = V N

and 〈π∗X, π∗Y 〉N = 〈X, Y 〉M for all horizontal vectors X, Y .

Observation 7. We can now recall the definition of a Riemannian manifold,

which is a smooth n-dimensional manifold with a Riemannian metric g, where

g is defined as a function which associates to each p ∈ M an inner product

gp, defined on the tangent space TpM , which smoothly depends on p (i.e. for

each couple of vector fields X, Y , the map p→ gp(Xp, Yp) is differentiable).

The definition of a sub-Riemannian manifold is more general and a Rieman-

nian manifold can be seen as a sub-Riemannian manifold in which the smooth

rank distribution has the same dimension as the manifold, i.e. HM = TM

(this implies that the vertical bundle is null). Equivalently a sub-Riemannian

manifold can be seen as a Riemannian manifold in which some generators of

the tangent bundle collapse, i.e. a sub-Riemannian metric can be seen as the

limit of a Riemannian metric.

Observation 8. If we consider a Riemannian manifold (M, gp) and f ∈ C 1(M)

a function, for each p ∈M we define the gradient of f in p as the vector field

∇f satisfying:

dpf(v) = gp(∇f, v) ∀ v ∈ TpM
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The Riemannian gradient has the same useful properties as the gradient of

the Euclidean calculus11, such as it vanishes in the extremal point for f . We

can also write the formula for the gradient in local coordinates:

∇f(x) =
n∑
i=1

( n∑
j=1

gij(x)
∂f

∂xi

)
∂

∂xi
(2.1)

where gij are the local expressions of the inverse of the matrix of the metric.

Definition 2.28. A sub-Riemannian manifold with a complement

(M,HM,VM, 〈·, ·〉) is r-graded if there are r smooth constant rank bundles

V (j), with 0 < j ≤ r, such that:

VM = V (1) ⊕ . . .⊕ V (r)

and we have:

HM ⊕ V (j) ⊕ [HM,V (j)] ⊆ HM ⊕ V (j) ⊕ V (j+1)

for each 0 ≤ j ≤ r. Here we have adopted the convention that V (0) = HM

and V (k) = 0 for k > r.

Definition 2.29. The grading is j-regular if

HM ⊕ V (j) ⊕ [HM,V (j)] = HM ⊕ V (j) ⊕ V (j+1)

and equiregular if it is j-regular for all 0 ≤ j ≤ r.

Let us now define a metric extension:

Definition 2.30. A metric extension for an r-graded vertical complement is

a Riemannian metric g of 〈·, ·〉 that makes the split

TM = HM
⊕

1≤j≤r

V (j)

orthogonal.

11The Euclidean gradient is defined as the vector of the partial derivatives of a function

f with respect to the set of coordinates.
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For convenience of notation, we shall denote a section V (k) by X(k) and

a set:

V̂ (j) =
⊕
k 6=j

V (k)

Definition 2.31. From the previous observations we can define the horizon-

tal gradient as ∇0 = (X1, . . . , Xm) where {X1, . . . , Xm} span the horizontal

bundle. In the same way if a metric extension (which is a Riemannian metric)

has been chosen we can denote the gradient as∇ = (X1, . . . , Xm, Xm+1, . . . , Xn)

where {Xm+1, . . . , Xn} span the vertical bundle.

Observation 9. If a metric extension has been chosen then V̂ (j) = (V (j))⊥

is the orthogonal complement of V (j). For convenience, we shall often also

extend the notation 〈·, ·〉 to the whole tangent space using it interchangeably

with g.

Observation 10. Every sRC-manifold that admits an r-grading also admits

k-gradings for all 1 ≤ k < r by setting:

Ṽ (j) = V (j) 0 ≤ j < k, Ṽ (k) =
⊕
j≥k

V (j)

Definition 2.32. The unique 1-grading on each sRC-manifold, V (1) = VM

is known as the basic grading.

Example 2.2. A Carnot group (of step r) is a Lie group, whose Lie algebra

g is stratified in the sense that:

g = g0 ⊕ g1 ⊕ . . .⊕ gr−1

and

[g0, gj] = gj+1 j = 1 . . . r, gr = 0

together with a left-invariant metric 〈·, ·〉 on HM . The vertical bundle VM

consists of the left translates of g1 ⊕ . . .⊕ gr−1.
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2.4 V1 as the principle fiber bundle of SE(2)

with a sub-Riemannian structure

If we recall the description of the functional architecture of the primary

visual cortex that we saw in the previous chapter and at the beginning of

this one, we underlined its symmetries and the organization of its cells. The

Rototranslation group is the fundamental mathematical structure used in

this thesis to model V1 and its physiological properties. In literature it is

also known as the 2D Euclidean motion group SE(2). It is the 3D group of

rigid motions in the plane or equivalently the group of elements invariant to

rotations and translations. The aim of this section is to show that the visual

cortex at a certain level is naturally modelled as the Rototranslation group,

which is a Lie group whose tangent bundle naturally assumes the structure

of the principal fiber bundle, with a sub-Riemannian metric.

2.4.1 The group law

In the previous chapter we saw that the visual cortex can be locally

modelled as the product space R2 × S 1, where (x, y) ∈ R2 represents the

position on the retina and the orientation preference takes values in S 1. A

way of visualizing this space is illustrated in Fig(2.2): the half-white/half-

black circles represent the oriented receptive profiles of odd simple cells,

where the angle of the axis is the angle of tuning. Every possible receptive

profile is obtained from the origin by translating it through the vector (x1, y1)

and rotating it over itself by an angle θ. We denote Tx1,y1 as the translation

of the vector (x1, y1) and Rθ a the rotation matrix of angle θ:

Rθ =

(
cosθ −sinθ
sinθ cosθ

)
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Figure 2.2: The visual cortex modelled as the group invariant under trans-

lations and rotations

A general element of the SE(2) group is of the form Ax1,y1,θ = Tx1,y1 ◦Rθ and

applied to a point (x, y) it yields:

Ax1,y1,θ1

(
x

y

)
=

(
x

y

)
+Rθ1

(
x1

y1

)

All the profiles can be interpreted as: φ(x1, y1, θ1) = φ0◦Ax1,y1,θ1 . The set

of all parameters {gi = (xi, yi, θi)} form a group with the operation induced

by the composition Ax1,y1,θ1 ◦ Ax2,y2,θ2 . This turns out to be:

g1 ◦ g2 = (x1, y1, θ1) +R (x2, y2, θ2) =

(( x1

y1

)
+Rθ1

(
x2

y2

))T

, θ1 + θ2


Being induced by the composition law, one can easily check that +R verifies

the group operation axioms, where the inverse of a point g1 = (x1, y1, θ) is

induced by the rototranslation

A−1
x1,y1,θ

= R−1
θ ◦ T

−1
x1,y1
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and the identity element is given by the trivial point e = (0, 0, 0). The group

generated by the operation +R in the space R2 × S 1 is called Rototransla-

tion group or equivalently SE(2). A structured space with the symmetries

described above allows for the cortex to be invariant to rotations and trans-

lations in the representation of a retinal image; the signals will be identical

no matter what their position or orientation in the phenomenological space.

2.4.2 The principle fiber bundle of SE(2)

What distinguishes a Lie group like SE(2) from a topological group is

the existence of a differential structure. The tangent space to SE(2) has the

structure of a principal fiber bundle: using the fundamental results of the

Lie groups theory we can characterize the local structure of a Lie group by

its associated Lie algebra, which a theorem we have seen states is identified

with the tangent space calculated in the identity e of the group. For this

reason in Citti and Sarti’s model proposed in [4],[5] the visual cortex is also

seen as the principle fiber bundle of SE(2), where the base space of the fibra-

tion is the retina and there is a map associating to each retinotopic position

(x, y) ∈ R2 a fiber, which is a copy of the whole possible set of orientations

(the hypercolumn). To be more specific: the base space is implemented in

the retinal space and the total space in the cortical space.

2.4.3 X1,X2,X3, vector fields which generate SE(2) prin-

cipal fiber bundle

If we consider a real stimulus, represented as an image I : D → R, we

can assume that cells over each point (x, y) ∈ D can code the direction of
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the level lines12 of I (which is so determined by its level lines), without a

preferred direction. Let us consider as example a contour in a 2D-image.

A contour could be represented in the 2D plane as a regular curve (Figure

2.3)

γ2D(t) = (x(t), y(t))

and almost everywhere we can assume that its tangent vector is non-vanishing,

so that it can be identified by an orientation θ(t) : D ⊂ R → S 1, (R is the

retinical plane, D the image domain.) i.e. we are able to parametrize the

curve by arc-length13:

(x′(t), y′(t)) = (cos(θ(t)), sin(θ(t))). (2.2)

This means that the vector field

X1(t) = cos(θ(t))∂x + sin(θ(t))∂y

is tangent to the level lines of I at the point (x(t), y(t)), and its normal di-

rection is given by the gradient ∇I/|∇I| = (− sin θ, cosθ).

The function θ takes values from the whole circle, in order to represent the

polarity of the contours: two contours with the same orientation but with

opposite contrasts are represented through opposite angles on the unit circle.

The action of the receptive profiles is to associate for every point (x(t), y(t))

the orientation θ(t) through the intracortical circuitry, which selects the hy-

percolumn’s orientation of maximum output in response to the visual stim-

ulus and supresses all the others, so that the variable associated to the hy-

percolumn will be an angle: the maximal response is our orientation θ(t).

In this way the two dimensional retinical curve γ2D is lifted to a new curve

12Mathematically a level set is defined as a set of the form

Γc(φ) = {(x1, . . . , xn)|φ(x1, . . . , xn) = c}

i.e. a set where the function takes on a given constant value c
13A curve is parametrized by arc-length if its velocity vector, given a metric, is constantly

equal to 1. It is always possible to give such a parametrization.
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Figure 2.3: A contour in a 2D image can be modelled as a curve whose

tangent is the vector (cos θ, sin θ) and its normal direction is ∇I/|∇I| =

(− sin θ, cosθ) as indicated in the figure.

γ(t) in the 3D cortical space:

(x(t), y(t))→ (x(t), y(t), θ(t)). (2.3)

We call an admissible curve a curve in R2×S 1 if it is the lifting of a contour

(identified by a planar curve). In Fig.(2.4) we can see an illustration of the

lifting process. By the parametrization we have chosen before in (2.2) for

the curve γ2D (the blue curve in Fig.(2.4)) we can immediately express the

value of θ:

θ = −arctan
( ẏ
ẋ

)
.

The tangent vector to the lifted curve can be represented as a linear combina-

tion of the vectors X1 = cos(θ)∂x+sin(θ)∂y given by the arc-parametrization

and

X2 = ∂θ
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Figure 2.4: A contour represented by the curve γ2D(t) is lifted into the ro-

totranslation group obtaining the red curve γ(t). The tangent space of the

rototranslation group is spanned by the vectors X1 and X2.

which descends from the orientation selectivity mechanism. For this reason

the lifting γ (red curve in Fig(2.4)) of the curve γ2D previously seen in (2.3)

can be also expressed by (x, y, θ) where

γ
′
= (x

′
, y

′
, θ

′
) = (cos(θ), sin(θ), θ

′
) = X1 + θ

′
X2

It immediately follows that γ
′
(t) has a non-vanishing component in the di-

rection X1 and a second component θ
′

in the direction of X2. In particular,

admissible curves are integral curves of the two vector fields in a 3D (cortical)

space, and cannot have components in the orthogonal direction given by the

gradient ∇I/|∇I|, which is X3 = − sin(θ)∂x + cos(θ)∂y. From biological and

neurophysiological evidence we have mathematically identified these three

directions, developing a model which can be extended to all retinical images.

In fact, as we can define a retinal image through its level lines (this is due
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to all parameters, such orientation, color, etc, involved in the construction

of a retinical image), the lifting of a surface can be performed repeating the

previous analysis for each level line.

2.4.4 Lie Algebra and Subriemannian Structure

We explicitly note that the vector fields X1, X2 and X3 are left invariant

with respect to the group law of rotations and translations, so that they

are the generators of the associated Lie algebra. Moreover, the algebra is

stratified in the sense we have seen in previous section in(2.2), i.e.

X3 = [X1, X2] = − sin(θ)∂x + cos(θ)∂y.

In other words, we can say that the Hörmander condition is satisfied:

Definition 2.33. We say that the Hörmander condition is satisfied if X1,X2

and their commutators of any order span the Euclidean tangent space at

every given point.

In fact in the present case X1,X2 and X3 = [X1, X2] are linearly indepen-

dent and span the tangent space to R2 × S 1 at each point.

In the standard Euclidean settings, the tangent bundle to R2 × S 1 has three

dimension at each point. Here the set of vectors

{a1X1 + a2X2}

defines a plane and every lifted curve is tangent to a vector of the plane, while

there is not a natural curve with a non-vanishing component in the direction

X3, which should not be considered as a tangent direction. This means that

only a two-dimensional subspace of the tangent space is selected as a model

of the connectivity in V1. This is the reason why Citti and Sarti in [4], [5]

proposed to endow the R2 × S 1 with a sub-Riemannian structure, where X1

and X2 generate the horizontal bundle (plane) of the principal fiber bundle

of SE(2).

A metric, as we have seen, is simply the choice of the length of any vector
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of the tangent space. Hence once we have defined our tangent space, we can

immediately perform a choice of the metric. We will call the norm of the

vector α1X1 + α2X2:

‖α1X1 + α2X2‖g =
√
α2

1 + α2
2

The metric is clearly sub-Riemannian so, as we have seen, we can perform a

Riemannian completion of the metric such as:

‖α1X1 + α2X2 + εα3X3‖g =
√
α2

1 + α2
2 + ε2α2

3

and it is clear that we obtain the previous expression, as ε→ 0. We can give

an expression for the inverse of the completed Riemannian metric which is

useful for our calculations, since it does not blow up for ε→ 0

(
gij
)

=


cos2(θ) cos(θ) sin(θ) 0

cos(θ) sin(θ) sin2(θ) 0

0 0 1

 .

This allows us to give an expression of the horizontal (and global) gradient

in coordinates, as we have seen in (2.1), which are fundamental tools for

modelling the completion phenomena as we will see in the next chapters.



Chapter 3

Mean curvature motion

In the previous chapter we built a geometric space inspired by the func-

tional geometry of the primary visual cortex. In the sub-Riemannian space of

the cortex the completion phenomena are accomplished in two main mech-

anisms, the first one extracting the existing information (real boundaries,

image gradients and complex features) and the second one completing the

missing information. The first process is carried out by simple cells in V1 and

extracts information about the orientation, as we have seen before. The sec-

ond mechanism propagated extracted information in an orientation specific

modality by means of long-range horizontal connections that were defined in

chapter 1. In this setting, the formation of subjective contours is explained as

the meeting of two neural activation flows shooted by the boundary inducers

and closing missing information between the existing boundaries. The speci-

ficity of this information propagation is described by the association fields

(see Field, Heyes and Hess in ([10])) that indicate boundary collinear direc-

tions as privileged diffusion directions to the detriment of orthogonal ones.

Furthermore they also describe the mechanism of local induction, which ex-

plains how in the cortical space the integrative process allows us to connect

local tangent vectors to form integral curves. (see Figure 3.1). The experi-

ments of Bosking ([2]) prove that the diffusion of a marker in the cortex are

in perfect agreement with the association fields. This means, in particular,

35
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Figure 3.1: The stimulus in the central position P can be joined with other

stimuli tangent to the lines in the figure, but cannot be joined with stimuli

with different directions.

that the diffusion of the visual signal occurs along these curves. The PDE

which describes the mean curvature flow shows a special diffusion along the

integral curves of the vector fields X1 and X2, which are responsible for the

phenomena of completion. 1 In particular, a minimal regular surface (with

respect to the sub-Riemannian metric) is a subset which can be locally repre-

sented as the zero level set of a function which we will identify as the solution

of the mean curvature flow.2

1The relation between diffusion and curvature equation goes back to paper of

Bence,Merriman and Osher in [1] who describes the evolution of surface by mean cur-

vature in terms of heat diffusion
2Let’s give a more specific overview: a model for perceptual completion of boundaries

has been provided by Citti and Sarti in [4] and [5]. They boundaries developped by the

primary visual cortex are described as integral curves of the geometric structure we have

built also in this work, in particular they are the geodesics of the sub-Riemannian manifold,

i.e. they are minimum of the length functional defined throgh the sub-Riemannian metric.

In this way they develop a model which is based on the functional architecture of the

cortex, which is in accord with the results obtained by Mumford who instead modelled

the countours of the completion phenomena as minimum of the elastica functional∫
γ

(1 + k2)ds
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3.1 Differential instruments for introducing

the mean curvature of an hypersurface

3.1.1 Affine connection

In order to introduce the notion of curvature we need to define deriva-

tives of an order higher than one on a manifold, which are expressed in the

concept of affine connection. For making this tractation more understand-

able, we will focus on the definition of affine connection on a Riemannian

manifold, which represents a particular case of the definition of a connec-

tion on a sub-Riemannian manifold. Details of this fact are discussed in

[12], where is proved the existence and uniqueness of a connection ∇(r) on a

sub-Riemannian manifold with an r-graded complement, in which a metric

extension (Riemannian) g is given. Furthermore ∇(r) will coincide on the

horizontal bundle(HM) with the Levi-Civita connection, the unique affine

connection compatible with the metric on a Riemannian manifold. Hence the

properties and the definition we will provide for the Levi-Civita connection

hold on the horizontal bundle, and since we are interested in integral curves

of vector fields in HM , showing results for the Levi-Civita connection on a

Riemannian manifold will be sufficient.

where k is the derivative of θ, the angle of the orientation (the curvature). Citti and

Sarti obtained their result modifying the elastica functional: in this way they reconduct

the problem of founding the minimum of elastica to the research of the geodesic of the

structure. It’s easy to understand that the problem of founding a minimal surface is a

generalization of the completion of boundaries, we just go higher with the dimension.

The problem of building a minimal surface is reconducted to a diffusion problem (which

is linked to the study of the evolution of the surface as we have said before), because

the diffusion problem satisfies the condition to be foliated by geodesic, which means we

want all the curves lying on the surface be geodesic, in order to respect the experimental

evidence. This also means that the PDE of mean curvature flow we are going to introduce

gives the solution to the research of minimal surfaces in two way: the first is solving the

diffusion problem of dimension 2, the second is solving the linearized equation associated

to the diffusion problem of dimension 2 in order to diffuse along the horizontal level lines

lying on the surface.
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Definition 3.1. An affine connection on an n-dimensional manifold M is a

map ∇M : X(M)× X(M)→ X(M) such that for each X, Y, Z ∈ X(M):

• ∇M is C∞(M) linear on the first argument, i.e. for all f, g ∈ C∞(M):

∇M
fX+gYZ = f∇M

X Z + g∇M
Y Z

• ∇M is R-linear on the second argument, i.e. for all α, β ∈ R:

∇M
X (αY + βZ) = α∇M

X Y + β∇M
X Z

• ∇M satisfies Leibniz’s rule on the second argument, i.e. for all f ∈
C∞(M):

∇M
X fY = df(X)Y + f∇M

X Y

Moreover, a connection is said to be torsion-free if it is well-behaved with

Lie parenthesis:

[X, Y ] = ∇M
X Y −∇M

Y X

Definition 3.2. A connection is said to be compatible with the Riemannian

metric g (or equivalently 〈·, ·〉) on M if it satisfies X〈Y, Z〉 = 〈∇M
X Y, Z〉 +

〈Y,∇M
X Z〉 for all X, Y, Z ∈ X(M).

An important result is that for a given a metric on a manifold, there is

precisely one torsion-free connection which is compatible with the metric.

Theorem 3.1.1. Given (M, 〈·, ·〉) a Riemannian manifold, there exists a

unique torsion-free connection compatible with the Riemannian metric. This

connection is called the Levi-Civita connection of M . Moreover, this connec-

tion satisfies for all X, Y, Z,W ∈ X(M):

2〈∇M
X Y, Z〉 = X〈Y, Z〉+Y 〈X,Z〉−Z〈X, Y 〉+〈[X, Y ], Z〉−〈[Y, Z], X〉+〈[Z,X], Y 〉

For the proof we refer, for example, to [20] [Chapter 2, Theorem 1.1].

This last theorem states that the metric of a manifold completely determines

its connection.

Since it is useful to write the Levi-Civita connection in local coordinates, we

introduce the Christoffel’s Symbols, which allow us to do this.
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Definition 3.3. Let p be a point in M with local coordinates (x1, . . . , xn)in

its neighborhood. For each 1 ≤ i, j ≤ n we define:

∇M
∂
∂xi

∂

∂xj
=

n∑
k=1

Γkij
∂

∂xk

The functions Γkij are the Christoffel’s symbols of the Levi-Civita connec-

tion ∇M in the basis given by (x1, . . . , xn). Since the connection is torsion-

free, these functions are symmetric in the lower indexes. Moreover, if gij

is the expression of the metric in local coordinates, we have the following

formula:

Γkij =
1

2

n∑
h=1

gkh
(
∂ghi
∂xj

+
∂ghj
∂xi
− ∂gij
∂xh

)
From now on when we consider a Riemannian manifold with its connection,

we will automatically imply that it is the Levi-Civita connection. The def-

inition of this connection is what we will use to define calculus objects on

Riemannian manifolds. We will now go through some definitions fundamen-

tal for introducing the concept of curvature.

Definition 3.4. Consider X ∈ X(M). We define the divergence3 of X as

the trace of the linear function Y → ∇M
Y X. The trace of a linear function

on a vector space does not depend on the base with respect to which it is

calculated. So we have:

div(X) =
n∑
i=1

〈∇M
Ei
X,Ei〉

provided Ei is a local orthonormal frame for the tangent bundle of M .

Definition 3.5. Consider f ∈ C∞(M). We define the laplacian4 of f as the

divergence of its gradient:

∆f = div(∇f)

3In the Euclidean space we define the divergence of a continously differentiable vector

field X =
∑n
i=1 ai

∂
∂xi

as the scalar-valued function div(X) = ∂a1
∂x1

+ . . .+ ∂an
∂xn

4In the Euclidean space we define the laplacian of a twice differentiable real-valued

function f as ∆f =
∑n
i=1

∂2f
∂x2

i
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One can easily check that the expression of the laplacian in local coordinates

is

∆f =
1√
det(g)

( n∑
i=1

∂

∂xi

(√
det(g)

n∑
j=1

gij
∂f

∂xj

))

3.1.2 Curvature

Intuitively curvature is the amount by which a geometric object deviates

from being flat.

Definition 3.6. If we consider a Riemannian manifold M and X, Y, Z ∈
X(M), one defines the Riemannian curvature function associated to M by

setting:

R(X, Y )Z = ∇M
Y ∇M

X Z −∇M
X∇M

Y Z +∇M
[X,Y ]Z

The Riemannian curvature function is actually a tensor since it can be proved

to be linear in each of its arguments and it is the only object related to the

curvature which does not depend on the metric. If we consider one more field

W we define the following notation involving the choice of a metric:

(X, Y, Z,W ) = 〈R(X, Y )Z,W 〉

The Riemannian curvature tensor satisfies some important properties

such as the Bianchi Identity, and details of these and the following facts

can be found in [26] and [23]. The important idea beyond the previous defi-

nition is that the curvature tensor can be understood by means of a simpler

curvature, the sectional curvature, which intuitively measures the curvature

of a Riemannian manifold along planes of the tangent space of M in p. The

sectional curvature is defined as follows:

Definition 3.7. If X, Y ∈ X(M) are two linearly independent vector fields,

for each p ∈ M we can denote as πp(X, Y ) ⊂ TpM the plane spanned by

X(p) and Y (p). Let p be in M and X, Y vector fields non-zero in p. Then

we define:

Ksect(X, Y )(p) =
(X, Y,X, Y )

|X|2|Y |2 − 〈X, Y 〉
(p)
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as the sectional curvature, which only depends on the plane spanned by X, Y

and not on the specific choice of X and Y .

This last statement is proved in a theorem, the same as the proposition

which proves that sectional curvature completely determines the Riemannian

curvature tensor, see [23] [Proposition 11, Theorem 4].

3.1.3 Submanifolds and Mean Curvature

In this subsection we will consider submanifolds with the Riemannian

structure induced from an ambient Riemannian manifold5. Let M be an

n-dimensional Riemannian manifold and S a m-dimensional differentiable

manifold, with m ≤ n.

Definition 3.8. A smooth map Φ : S → M is an immersion of S if its

differential is non-singular at each point of S. If, in addition, Φ is injective

and is an homeorphism onto its image, Φ is called an embedding of S. An

embedding naturally gives to S the structure of an embedded submanifold6

of M , which is a submanifold for which the inclusion map is a topological

embedding. This means that the topology on S is the same as the subspace

topology.

Definition 3.9. Suppose Φ : S → M is an immersion. Then if the Rie-

mannian structure of M is given by the metric g, Φ induces a Riemannian

structure on S defined as follows: considering p ∈ S, for each v, w ∈ TpS we

5Note that hypersurfaces, curves and level sets of a function φ, these last ones defined

as a set of the form

Γc(φ) = {(x1, . . . , xn)|φ(x1, . . . , xn) = c}

i.e. a set where the function takes on a given constant value c, can be considered as

submanifolds. We will use level sets also in the next section, which is why we recall them

and introduce the concept of submanifold.
6In general a submanifold S of M is a subset S of M which itself has the structure

of a manifold, and for which the inclusion map i : S → M induces a topology and a

differentiable structure on S
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define

hp(v, w) = gΦ(p)(dpΦ(v, dpΦ(w)))

It turns out that the Riemannian connection ∇S is the projection of ∇M

on the tangent bundle of S. From now on we shall assume that all the

hypersurfaces7 that we take into account are orientable8.

Definition 3.10. Let M be a Riemannian manifold and S an hypersurface

with unit normal field η. For each X, Y ∈ X(S) and p ∈ S we define:

∇S
XY (p) =

(
∇M
X̃
Ỹ

)tangent
(p) =

(
∇M
X̃
Ỹ

)
(p)− 〈∇M

X̃
Ỹ , η〉η(p)

where X̃ and Ỹ are extensions of X and Y to a neighborhood of p in M .

Proposition 3.1.2. Let us make some considerations about ∇S:

• ∇S is well-defined, i.e. it does not depend on the extension of X and

Y

• ∇S is the unique connection compatible with the metric induced on S

by M

This proof can be found in [20].

Definition 3.11. Let S ⊂ M be an orientable hypersurface with the unit

normal field η. Then for each p ∈ S one defines the shape operator :

A : TpS → TpS

v 7→
(
−∇M

v η
)

7Suppose a manifold M has n dimensions; then any submanifold of M of n-1 dimensions

is a hypersurface.
8Orientability is a property of surfaces in Euclidean space measuring whether it is

possible to make a consistent choice of surface normal vectors at every point. This choice

allows us to use the right-hand rule to define a “clockwise” direction of loops in the surface.

This concept can be generalized to a manifold.
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The operator we have just defined is linear. Since a proposition which

can be proved states it is self-adjoint, we can say that this operator is the

Riemannian generalization of the Euclidean differential of the Gauss map9.

Intuitively the shape operator gives information about the shape of the hy-

persurface, and the theory behind it states that the shape evolves according

to the curvature, see [23] [Chapter 1.5, Theorem 5]. We can finally introduce

the fundamental object which describes the evolution of hypersurfaces:

Definition 3.12. Consider S ⊂M , where M in an n-dimensional manifold,

and S is an orientable hypersurface with a unit normal field η. For each

p ∈ S we define the mean curvature of S in p with respect to η as:

H(p) = − 1

n− 1
tr(A)(p) = − 1

n− 1

n−1∑
i=1

〈∇M
Ei
η, Ei〉 (3.1)

= − 1

n− 1
div(η)(p) (3.2)

where {E1, . . . , En−1} is an orthonormal frame of TxS for x near p.

9In differential geometry the Gauss map maps a surface in Euclidean space R3 to the

unit sphere S 2, i.e. given a surface X lying in R3, the Gauss map is a continuous map

N : X → S 2 such thatN(p) is a unit vector orthogonal toX at p, namely the normal vector

to X at p. The Gauss map can always be defined locally, and its Jacobian determinant

is equal to the Gaussian curvature, which is the product of the principal curvatures of a

point on a surface. The Gaussian curvature is an intrinsic measure of curvature, since its

value depends only on how distances are measured on the surface and not on the way it

is isometrically embedded in space.

Let us give an idea recalling the example of a surface X in R3: at any point on a surface

we can find a normal vector which is at right angles to the surface. The intersection of

a plane containing the normal with the surface will form a curve called a normal section

and the curvature of this curve is the normal curvature(the equivalent generalization is the

sectional curvature we have defined before). For most points on most surfaces, different

sections will have different curvatures; the maximum and minimum values of these are

called principal curvatures, indicated by κ1 and κ2. The sign of the Gaussian curvature

K = κ1 · κ2 characterises the surfaces.
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3.2 Mean curvature motion of hypersurfaces

The problem of investigating the evolution of a hypersurface moving ac-

cording to its mean curvature has long been studied in the Euclidean setting

using parametric methods of differential geometry. In this classical approach,

we give at time 0 a smooth hypersurface Γ0 which is the connected boundary

of a bounded open subset of Rn: as time progresses we allow the surface to

evolve, by moving each point at a velocity ~v equal to (n− 1) times the mean

curvature vector at that point:

∂~p

∂t
= ~v = (n− 1)H(p) = div(η)

where η is the normal vector to the hypersurface and the second equality

is obtained applying the definition of mean curvature we have seen before.

Assuming the evolution is smooth, we define thereby for each t > 0 a new

hypersurface Γt. For n = 2 the analysis has been successfully carried out in

detail, but when n ≥ 3 even if the initial surface Γ0 is smooth, the smooth

evolution cannot exist beyond some initial time interval. For these reasons it

is necessary to study a different approach, examined by Osher and Sethian

in ([19]), which consists in considering the initial hypersurface Γ0 (as above)

as 0-level set of some continuous function g : Rn → R so that

Γ0 = {x ∈ Rn|g(x) = 0}.

If we consider the previous expression for the mean curvature flow, the

parabolic PDE10 is obtained deriving it as is shown in ([19]):

ut = (δij − uxiuxj/|∇u|2)uxixj in Rn × [0,∞) (3.3)

10A parabolic partial differential equation is a type of second-order partial differential

equation (PDE) of the form:

Auxx + 2Buxy + Cuyy +Dux + Euy + F = 0

which satisfies the condition

B2 −AC = 0

i.e. all the eigenvalues of the operator are positive or negative, except for one which is

equal to zero
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u = g on Rn × {t = 0}. (3.4)

For the unknown u = u(x, t), (x ∈ Rn,t ≥ 0), the PDE says that each level

set of u evolves according to its mean curvature, at least in regions where u is

smooth and its spacial gradient ∇u does not vanish. Consequently, focusing

our attention on the set {u = 0}, it seems reasonable in view of the previous

equations to define:

Γt = {x ∈ Rn|u(x, t) = 0} (3.5)

for each time t > 0. To resume: Osher and Sethian in ([19]) reconduct

the study of the mean curvature motion of hypersurface to the motion of

level sets by mean curvature. Evans and Spruck in [8] resolve the problem

in this Euclidean case, providing a theoretical justification for this approach

(existence and uniqueness of the weak solution to (3.3)(3.4)) and additionally

checking that {Γt}t≥0 so defined agrees with the classical notion of motion via

mean curvature[Section 6 of [8]], over any time interval for which the latter

exists. They also employ the PDE (3.3) to deduce geometric properties of

{Γt}t≥0. This level set approach has been extended by Ilmanen in ([16]) to

include the study of the generalized flow of subsets in Riemannian manifolds,

with the Riemannian notions we have provided in this chapter.

We are interested in studying the sub-Riemannian analogue of the mean

curvature motion of level sets in SE(2), the horizontal mean curvature flow, a

particular case of the result treated in [3]. Before going through this analysis

we will briefly discuss the evolution of curves in R2 focusing on what consists

the level sets method of Osher and Sethian, through a general analysis for a

sub-Riemannian manifold, which explains the introduction of the PDE object

of our studies, where we consider hypersurfaces and not only curves.

3.2.1 The evolution of curves in R2 and the evolution

of implicit curves

Consider a family of curves Γ(s, t) = (x(s, t), y(s, t)) : [0, L(t)] × [0, T [→
R2. We indicate with s the parametrization of the curve Γ at time t. Notice
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that the domain of the curve is characterized by the variables (s, t) and the

codomain by the variables (x, y). This family of curves can be interpreted as

the evolution of the curve Γ(s) = (x(s), y(s)) in time and can be described

by the differential equation:

Γt = ~v

where v(s, t) : [0, L]× [0, T [→ R2 is the velocity vector. To this equation we

add the initial conditions:

Γ(s, 0) = Γ0(s)

where Γ0(s) is the initial curve given. A generic point on the curve has

Figure 3.2: Parametrization of the family of curves Γ(s, t)

coordinates (x(s, t), y(s, t)) and it moves with velocity ~v = vn~n + vt~t where

vn and vt are the normal(versor ~n) and tangent(versor ~t) components of the

velocity vector. Hence it is possible to describe the evolution equation with

these versors:

Γt = (v · n)~n+ (v · t)~t, Γ(s, 0) = Γ0(s).

Epstein-Gage Lemma proves that the tangent component of the velocity

vector has effect only on the parametrization and not on the geometrical

structure of the curve (i.e. the shape), so since in the evolution equation we

are interested only in the shape evolution of the curve, we will consider only



3.2 Mean curvature motion of hypersurfaces 47

the normal component. For this reason we can reduce the evolution equation

to:

Γt = vn~n.

Consider a bi-dimensional space divided by the curve Γ in two sub-domains,

and call Ω the region in the curve. Γ can be defined as a 0-level set of an

implicit function φ(x, y):

Γ = φ−1(0).

If we observe the sign of φ calculated in a generic point (x0, y0) we can deter-

mine its position with respect to the region delimitated by Γ: if φ(x0, y0) < 0,

(x0, y0) is interior to Ω, if φ(x0, y0) > 0 it is outside, and if φ(x0, y0) = 0 this

point is on Γ. The gradient of an implicit function is defined as:

∇φ =
(∂φ
∂x
,
∂φ

∂y

)
is othogonal to the level sets of φ and it has direction along which φ grows.

Hence, if (x0, y0) is a point belonging to the 0-level set of φ, ∇φ evaluated in

Figure 3.3: Representation of the curve Γ and of the function φ

(x0, y0) is a vector which points in the same direction as the normal versor ~n

in the same point. The exterior normal can be expressed for each point in Γ
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as:

~n =
∇φ
|∇φ|

.

This equation can be used to define a normal function n in all our domain.

The mean curvature of Γ is defined as the divergence of the normal:

K = div(
∇φ
|∇φ|

).

For a curve the mean curvature is geometrical equivalent to the inverse of

the radius of curvature.

Figure 3.4: Geometric interpretation of the curvature of a curve

The motion of level sets, as we have said before, has been formulated by Osher

and Sethian in ([19]), in order to overcome the difficulties we have expressed

at the beginning of this section. The basic idea is to consider the curve Γ(s, t)

as implicitly represented by the level set function φ(x, y, t) : R2× [0, T )→ R.

In this way, the 0-level set of the level set function φ(x, y, t) = 0 is the set

of points which form the curve Γ(s, t). In other words, the evolution of the

curve Γ at time t is given by the 0-level set of the function φ at time t:

Γ(t) = φ(t)−1(0) (3.6)

The principal problem when we study an evolution equation is the way

in which we make the function φ evolving in time, such that its 0-level set

follows the movement of the curve Γ(t). The evolution of the implicit curve
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Figure 3.5: Representation of the evolution of the curve Γ through the func-

tion φ

φ is described by the following equation, also known as the motion’s level set

equation:

φt + ~v · ∇φ = 0.

If we express the velocity vector through its components, we obtain:

φt + (vn~n+ vt~t) · ∇φ = 0

Since the normal versor and the gradient point in the same direction, due to

our previous considerations ~t · ∇φ = 0 for each tangent vector to the curve.

Hence the level set equation becomes:

φt + vn~n · ∇φ = 0.

If we solve the inner product on R2

~n · ∇φ =
∇φ
|∇φ|

· ∇φ =
|∇φ|2

∇φ
= |∇φ|

and we assign a regular function φ0(x, y) such as φ−1
0 (0) = Γ0, we can rewrite

the level set equation as follows:

φt + vn|∇φ| = 0, φ(x, y, 0) = φ0(x, y).
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It is possible to present different kinds of evolution for the curve: the differ-

ence is represented by the expression of the normal component of the velocity

vector.

If the normal component of the velocity vector vn is equal to the mean cur-

vature K (with sign changed) we obtain an expression for the evolution of a

curve by curvature. The equation of motion is:

φt = K|∇φ|

Figure 3.6: Representation of the evolution of the curve by mean curvature

3.2.2 Motion of level sets by horizontal mean curva-

ture

Let M be a sub-Riemannian manifold and gε(〈·, ·〉ε) the Riemannian com-

pletion of the metric g0(〈·, ·〉0) as we have seen in Chapter 2. If we consider a

smooth hypersurface S ⊂M , we will denote now with ~nε the unit normal in

the metric gε and with ~n0 =
∑k

i=1(n0)iXi its projection in the gε norm onto

the horizontal plane, where k is the dimension of the horizontal bundle and

n the dimension of the tangent bundle completed. Note that this definition

does not depend on ε. The vector n0 is called the horizontal normal and its

horizontal divergence is:

K0 =
k∑
i=1

Xin
0
i ,
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also known from the previous considerations as horizontal mean curvature11

of S, which will be affected only by the horizontal bundle. We study the

flow t → Γt where a point x ∈ Γt evolves with velocity ∂tx = −K0n
0. The

level set approach consists in studying a PDE, describing the evolution of a

function u(x, t) such that12 Γt = {x ∈ M |u(x, t) = 0}. In this setting one

has nε = ∇εu/|∇εu| and n0 = ∇0u/|∇0u|. Consequently, on a formal level,

one has:

∂tu(x(t), t) = 〈∇0u(x(t)), ∂tx(t)〉0 + ∂tu(x, t) (3.7)

= −K0〈∇0u, n
0〉0 + ∂tu = −K0|∇0u|+ ∂tu = 0 (3.8)

This problem is well approximated by the Riemannian mean curvature flows

∂tx = −Kεn
ε, where Kε =

∑n
i=1X

ε
i n

ε
i is the gε mean curvature of M . The

corresponding evolution PDE for the level sets is ∂tu
ε = Kε|∇εu|. We observe

that for a given hypersurface, nε → n0 and Kε → K0 as ε→ 0 (see footnote

for explanations). The simple computation provided in the respective cases

by Osher and Sethian in ([19]) that we extend also to our case shows that

the mean curvature Kε of the manifold {u(x) = 0}, entirely represented by

the level sets of u as we have seen in the 2-dimensional case before, is given

by the identity:

Kε|∇εu| =
n∑

i,j=1

(
δi,j −

Xε
i uX

ε
ju

(|∇εu|)2

)
Xε
iX

ε
ju

The horizontal mean curvature K0 is expressed as:

K0|∇0u| =
k∑

i,j=1

(
δi,j −

XiuXju

(|∇0u|)2

)
XiXju

11The curvature has been defined also through the divergence with respect to the hor-

izontal vector fields. The observations made at the beginning of this chapter about the

affine connection on a sub-Riemannian manifold, which extends to the affine connection

on a Riemannian manifold, make it possible to restrict the definition seen for the diver-

gence to the horizontal bundle of a sub-Riemannian manifold. The passage to the limit we

are going to see is possible in virtue of this consideration, when we choose a Riemmanian

extention of the metric depending on a parameter ε.
12When a manifold is defined as a level set, we assume that the gradient of the defining

function does not vanish in a neighborhood of the manifold.



52 3. Mean curvature motion

Consequently (3.8) can be rewritten more explicity as:

ut =
k∑

i,j=1

(
δi,j −

XiuXju

(|∇0u|)2

)
XiXju for x ∈M, t > 0

Note that with {Xε
i }i=1,2,3 we denote vector fields which are made orthonor-

mal by the Riemannian metric extension.

3.2.3 The motion of level sets in R2 × S 1

The equations in the previous subsection can be presented also in our

Lie group SE(2) = R2 × S1, since it is equipped with a sub-Riemannian

structure. In the previous chapter we saw that X1 = cos(θ)∂x + sin(θ)∂y,

X2 = ∂θ and X3 = − sin(θ)∂x + cos(θ)∂y generate the principal fiber bundle

of the rototraslation group SE(2), where X1 and X2 belong to the horizontal

bundle HM and εX3 is the completion of the tangent bundle; X3 is generated

through the Lie bracket. For this reason we can describe the evolution of an

hypersurface in R2 × S 1 by the PDE:

ut =
3∑

i,j=1

(
δi,j −

Xε
i uX

ε
ju

(|∇εu|)2

)
Xε
iX

ε
ju

where the ε identifies the metric. In the same way, the horizontal mean

curvature is expressed as:

ut =
2∑

i,j=1

(
δi,j −

XiuXju

(|∇0u|)2

)
XiXju.

This last equation is the one we are interested in, since the evolving surface

can be represented as 0-level set of the viscosity solution u(x, t), obtained as

the limit of the viscosity solution uε(x, t) of the previous one (the PDE which

involves the Riemannian completion), when ε goes to 0. This evolved surface

we obtain is the minimal surface involved in completion phenomena. For

this reason, in the next chapters we will provide the definition of a viscosity

solution and its existence for the PDE which describes the horizontal mean

curvature flow in SE(2).



Chapter 4

Existence of viscosity solutions

4.1 Viscosity solutions

Our goal is to provide a generalized solution of the degenerate nonlinear,

non-divergence PDE:

ut =
3∑

i,j=1

(
δi,j −

Xε
i uX

ε
ju

|∇εu|2

)
Xε
iX

ε
ju (4.1)

u = g on R2 × S 1 × {t = 0} (4.2)

Note that with {Xε
i }i=1,2,3 we denote vector fields which are made orthonor-

mal by the Riemannian metric extension. The function g : R2 × S 1 7−→ R
given. To achieve our purpose as we have explained in the previous chapters

we need to pass through the solution of:

ut =
2∑

i,j=1

(
δi,j −

XiuXju

|∇0u|2

)
XiXju (4.3)

As we can immediately observe the PDE becomes degenerate in the sin-

gularities of the horizontal gradient of the solution u(. , t). Furthermore, just

as in the Euclidean space, we cannot expect the smoothness of the solution

to be preserved for all times. For this reason we need to introduce the analo-

gous of a weak solution, called a viscosity solution, but since the right-hand

53
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side of the PDE cannot be put into divergence form, we are not able to define

it in the classic sense by means of formal integration by parts of derivatives

onto a smooth test function. Hence we want to define a notion of viscosity

solutions to (4.3) in terms of pointwise behavior with respect to a smooth

test function, in order to cover the possibility that ∇0u may vanish.

Definition 4.1. A function u ∈ C (R2×S 1×[0,∞)) is a viscosity subsolution

of (4.3) in R2×S 1×[0,∞) if for any (x, t) in R2×S 1×[0,∞) and any function

φ ∈ C (R2× S 1× [0,∞)) such that u− φ has a local maximum at (x, t) then

∂tφ ≤


∑2

i,j=1(δij − XiφXjφ

|∇0φ|2 )XiXjφ, if |∇0φ| 6= 0∑2
i,j=1(δij − pipj)XiXjφ, for some p ∈ R2, |p| 6= 1, if |∇0φ| = 0

(4.4)

A function u ∈ C (R2 × S 1 × [0,∞)) is a viscosity supersolution of (4.3)

if:

∂tφ ≥


∑2

i,j=1(δij − XiφXjφ

|∇0φ|2 )XiXjφ if |∇0φ| 6= 0∑2
i,j=1(δij − pipj)XiXjφ for some p ∈ R2, |p| 6= 1, if |∇0φ| = 0

(4.5)

Definition 4.2. A viscosity solution of (4.3) is a function u which is both a

viscosity subsolution and a viscosity supersolution.

Definition 4.3. A function u ∈ C (R2×S 1×[0,∞))∩L∞(R2×S 1×[0,∞)) is

a viscosity subsolution of equation (4.3) if whenever (x, t) ∈ R2×S 1× [0,∞)

for every yX ∈ Lie(R2 × S 1) and s ∈ R

u(exp(yX)(x), t+ s) ≤ u(x, t) +
2∑
i=1

piyi +
1

2

3∑
i,j=1

rijyiyj + qs+ o((|y|)2 + s2)

(4.6)

for some p ∈ HM ⊕ VM , q ∈ R and R = (rij) ∈ R3,3 then:

q ≤


∑3

i,j=1

(
δij − pipj

|pH |2

)
rij if |pH | 6= 0∑3

i,j=1 (δij − ηiηj) rij for some |η| ≤ 1, if |pH | = 0
(4.7)
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Definition 4.4. An analogous definition is provided for a viscosity superso-

lution.

Theorem 4.1.1. The two definitions are equivalent.

4.2 Existence of viscosity solutions

In this section we will prove the existence of viscosity solutions for the

initial value problem of (4.3), (4.2):

ut =
2∑

i,j=1

(
δi,j −

XiuXju

|∇0u|2

)
XiXju

u = g on R2 × S 1 × {t = 0}

We assume that:

g is constant on {R2 × S 1} ∩ {|x| ≥ S} (4.8)

for some constant S > 0 and additionally, for the moment at least, g is

smooth. Our intention is to approximate (4.1),(4.2) by the PDE:

∂

∂t
uε,δ =

3∑
i,j=1

Aε,δij (∇εu
ε,δ)Xε

iX
ε
ju

ε,δ inx ∈ R2 × S 1, t > 0 (4.9)

uε,δ = g on R2 × S 1 × {t = 0} (4.10)

where Aε,δij (ξ) =

(
δij −

ξiξj
|ξ|2 + δ

)
for 0 < δ < 1, ε, σ > 0 for all ξ ∈ R2 × S 1 and 1 ≤ i, j ≤ 3. Note that Aε,δij (·)
are the coefficients of the approximating equations, and

Aε,δ,σij (ξ) = Aε,δij (ξ) + σδij

Our solution will result as the limit of solutions of this regularized parabolic

equation. We will now specify the meaning of the variables we will use:
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• ε referes to the metric; since we are working in a sub-Riemannian man-

ifold passing through this limit means we restrict ourselves to the hor-

izontal bundle, which is the result we are interested in as we have

pointed out in the previous chapters.

• δ is the parameter which regularises the PDE and is linked to the ge-

ometric interpretation of the differential problem: as has been pointed

out in the Euclidean case in ([8]) by Evans and Spruck the solution of

the regularised equation evolves according to its mean curvature and

depends on a factor δ, which influences the evolution of the level sets.

Γδt = {y = (x, xn+1) ∈ Rn+1|xn+1 = δ−1uδ(x, t)}

is a graph and if Γ0 is the boundary of a smooth, bounded, simply

connected open set we select a smooth function g with g = 0 on Γ0. So

Γδ0 is the graph {xn+1 = δ−1g(x)} as drawn in the next figure.

Figure 4.1: Geometrical interpretation of the regularisation through δ

For small δ, Γδ0 roughly approximates the cylinder Γ0×R, and the hope

is that for moderate t > 0 and small δ > 0 the smooth graph Γδt will

be close to the cylinder Γt × R, where Γt denotes the evolution of Γ0

via its mean curvature. The idea underlined in the Euclidean case by
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Evans and Spruck and that we will generalize here is that the possibly

singular behavior of {Γt}t≥0 in Rnwill be approximated by the smooth

evolution {Γδt}t≥0 in Rn+1.

• σ represents a further regularisation which makes the differential oper-

ator parabolic. This condition makes the coefficients satisfy the coer-

civity condition, i.e. they are smooth and parabolic (we can estimate

them from the low with the smaller eigenvalue, which is positive).

4.2.1 Analytical solution of the approximate equations

Before investigating the approximations (4.9),(4.10) analytically, we will

state and prove a result that we will need for the proof of the existence:

Lemma 4.2.1. Let X1, X2, X3 be three vector fields which generate the Lie

Algebra of SE(2) = R2 × S 1:

X1 = cos θ∂x + sin θ∂y

X2 = ∂θ

X3 = sin θ∂x − cos θ∂y

Let Y1, Y2 and Y3 be three other vector fields defined as follow:

Y1 = ∂x

Y2 = Y1 + (x cos θ + y sin θ)X3 − (− sin θx+ y cos θ)X1

Y3 = ∂y

which also generate the Lie Algebra of SE(2) = R2 × S 1. So Xi commutes

with Yi for i = 1, 2, 3.

Proof. We will calculate their Lie bracket, then we will restrict ourselves to

the identity (x, y, θ) = (0, 0, 0) of the group SE(2):(
[X1, Y1]

)∣∣
0

= (cos θ∂x + sin θ∂y)(∂x)− (∂x)(cos θ∂x + sin θ∂y)

= cos θ∂xx + sin θ∂yx − cos θ∂xx − sin θ∂xy = 0
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since when we give local Euclidean coordinates, second order derivatives

commute for Cauchy-Schwarz.(
[X2, Y2]

)∣∣
0

= X2(Y2)− Y2(X2)

= (∂θ)(∂x + x cos θ sin θ∂x + y sin2 θ∂x − x cos2 θ∂y +

− y sin θ cos θ∂y + x sin θ cos θ∂x − y cos2 θ∂x + x sin2 θ∂y +

− y cos θ sin θ∂y)− (∂x + x cos θ sin θ∂x + y sin2 θ∂x +

− x cos2 θ∂y − y sin θ cos θ∂y + x sin θ cos θ∂x +

− y cos2 θ∂x + x sin2 θ∂y − y cos θ sin θ∂y)(∂θ)

= 2x cos θ sin θ∂y − y cos2 θ∂y + y sin2 θ∂y + x cos2 θ∂x +

− x sin2 θ∂x + 2y cos θ sin θ∂x + 2x cos θ sin θ∂y +

+ y sin2 θ∂y − y cos2 θ∂y

= (−2y cos(2θ)∂y + x cos(2θ)∂x + 4x cos θ sin θ∂y +

+ 2y cos θ sin θ∂x)∣∣
(x,y,θ)=(0,0,0)

= 0

[X3, Y3] = (sin θ∂x − cos θ∂y)(∂y)− (∂y)(sin θ∂x − cos θ∂y)

= sin θ∂xy − cos θ∂yy − sin θ∂xy + cos θ∂yy = 0

Theorem 4.2.2. For any g ∈ C∞(R2 × S 1) there exists a unique solution

uε,δ ∈ C 2,α(R2 × S 1 × [0,∞)) of the initial value problem (4.9),

uε,δ(x, 0) = g(x) for all x ∈ R2 × S 1 (4.11)

Moreover, for all t > 0 one has:

‖uε,δ(·, t)‖L∞(R2×S1) ≤ ‖g‖L∞(R2×S1) (4.12)

‖∇̃εu
ε,δ(·, t)‖L∞(R2×S1) ≤ ‖∇̃εg‖L∞(R2×S1) (4.13)

where for ∇̃ε we denote ∇̃ε = (Y1, Y2, Y3).



4.2 Existence of viscosity solutions 59

Before we start proving the theorem we will give some preliminary results

for the cylinders which justify the use of the “parabolic maximum principle”

in the proof. The idea is that for each closed ball B(0, r) we can consider

a parabolic cylinder B(0, r) × [0, T ]. For each cylinder we can assign an

initial data on the lateral cover which does not depend on time: it is our

initial data g for t = 0, which we have defined at the beginning. For this

reason we obtain a parabolic cylinder in which the lateral cover has a data

that we can estimate with the norm of g. We now have a set where the

maximum principle is applicable1, and since this gives a estimate which does

not depend on the cylinder (and it does not depend on whether the operator

is degenerate or not), it remains true also if we send the radium to ∞.

Definition 4.5. The Hölder space C 2,α, α ∈ {0, 1} is the set of functions

having continous derivatives up to order 2 and such that the 2th partial

derivatives are Hölder continous with exponent α, i.e. ‖f(x) − f(y)‖a ≤
C‖x− y‖αa . We pose a = k + α, k a non-negative integer, α ∈ (0, 1]. Then:

‖f‖a =
∑

|β+2j≤k|

sup
∣∣Dβ

xD
j
tf
∣∣+ [f ]a + 〈f〉a

where

〈f〉a =
∑

|β+2j=k−1|

〈Dβ
xD

j
tf〉α+1

[f ]a =
∑

|β+2j=k|

[
Dβ
xD

j
tf
]
α

Note that the derivatives with respect to t weigh differently from the deriva-

tives calculate with respect to x. ‖·‖a defines a norm, for further references

see Lieberman [18] (pages 46-47). The spatial norm which referes to the

variable x is the Riemannian we have defined in chapter 2 as

‖α1X1 + α2X2 + εα3X3‖g =
√
α2

1 + α2
2 + ε2α2

3

1The maximum principle is a property of solutions to partial differential equations of

the parabolic type. The result states that the maximum of a function in a domain is to be

found on the boundary of that domain. In our case we have a bounded cylinder on which

the operator is parabolic, so we can apply the maximum principle.
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Theorem 4.2.3. Consider a smoothed cylinder with base B(0, r) and height

T > 0; we assign a C 2,α, (α ∈ (0, 1)) initial data g on the lateral cover and

on the base (in our setting we can assume g constant on the lateral cover),

and M is a positive constant. Let us consider the homogeneous problem

3∑
i,j=1

Aε,δij (∇εu
ε,δ)Xε

iX
ε
ju

ε,δ − ∂

∂t
uε,δ = 0

where Aε,δij (ξ) =

(
δij −

ξiξj
|ξ|2 + δ

)
and Aε,δ,σij (ξ) = Aε,δij (ξ) + σδij

with the assigned initial data. Assume that

‖uε,δ,σ‖∞ ≤M

Then the problem has a C 2,α solution uε,δ,σ.

Observation 11. Let us explicitly note that norms of uε,δ,σ are not uniform

in the parameters.

Corollary 4.2.4. Note that in the previous hypothesis for a parabolic op-

erator on a bounded smoothed cylinder is possible to apply the maximum

principle, then we obtain that:

M ≤ ‖g‖∞

Theorem 4.2.5. Let ξ 7→ Aε,δ,σij (ξ) be the coefficients of our parabolic op-

erator, defined in (4.9). If they are C∞ in the variable ξ and g is defined

on B(0, r) and bounded by a positive constant M , then there exist a solution

uε,δ,σ which is smooth on the interior of the domain.

Theorem 4.2.6 (Passage to the limit for r → ∞ of the cylinders). Let

us now consider a sequence of solutions (uε,δ,σr )r>0, each one defined on the

cylinder B(0, r)× [0, T ] such that

‖uε,δ,σr ‖∞ ≤ C



4.2 Existence of viscosity solutions 61

for each r. Then we can pass to the limit for r → ∞, i.e. there exist a

solution uε,δ,σ defined on Rn × [0, T ] such that

‖uε,δ,σ‖∞ ≤ C

Observation 12. We observe that C does not depend on ε, δ, σ. On the con-

trary all the other estimates depend on the parabolic coefficients and are not

uniform in ε, δ, σ.

Let us now prove the first part of the existence theorem 4.2.2, which inves-

tigates the approximations (4.9),(4.10) analytically. The previous statements

about the cylindric sets allow to generalize the estimates, based on our initial

data, for the entire space R2 × S 1.

Proof. We follow the analogue Euclidean result proved in [8] [theorem 4.1].

1. For σ > 0, consider the PDE:

∂

∂t
uε,δ,σ =

3∑
i,j=1

Aε,δ,σij (∇εu
ε,δ,σ)Xε

iX
ε
ju

ε,δ,σ inx ∈ R2 × S 1 × [0,∞)

(4.14)

with initial data:

uε,δ,σ(x, 0) = g(x), for all x ∈ R2 × S 1 (4.15)

The smooth bounded coefficientsAε,δ,σij also satisfy the uniform parabolic

condition:

σ|ξ|2 ≤ Aε,δ,σij (p)ξiξj (ξ ∈ R3) (4.16)

for each p ∈ R3. As we have seen observation (4.2.5) shows the exis-

tence of a smooth bounded solutions uε,δ,σ on varying σ (which are also

unique). (For more references see Ladyzenskaja, Solonnikov, Ural’tseva

[17]).

From what we have said before based on the previous results we obtain2

‖uε,δ,σ(·, t)‖L∞(R2×S1) ≤ ‖g‖L∞(R2×S1) (4.17)

2The L-infinite norm of a function is defined as:

‖g‖∞ = inf{C ≥ 0 : |g(x)| ≤ 0a.e.}
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2. As we have seen in Lemma (4.2.1), Y1, Y2, Y3 commute with the left-

invariant vector fields X1, X2, X3 (which generate the Lie algebra of

R2 × S 1), so we can differentiate (4.14) along the directions {Yi}i=1,2,3

and obtain the new equation:

∂

∂t
w =

3∑
i,j=1

[
Aε,δ,σi,j (∇εu

ε,δ,σ)Xε
iX

ε
jw + (δξkA

ε,δ,σ
i,j )(∇εu

ε,δ,σ)Xε
iX

ε
ju

ε,δ,σXkw
]

(4.18)

where w = Yiu
ε,δ,σ, for all i = 1, 2, 3. The parabolic maximum principle

applied to the previous equation yields:

‖∇̃εu
ε,δ,σ(·, t)‖L∞(R2×S1) ≤ ‖∇̃εg‖L∞(R2×S1) (4.19)

and since the {Yi}i=1,2,3 form the basis of the tangent bundle of R2×S 1,

the previous estimate leads to:

‖∇εu
ε,δ,σ(·, t)‖L∞(R2×S1) ≤ C‖∇̃εg‖L∞(R2×S1) (4.20)

where C is a positive constant depending only on R2 × S 1.

3. The smooth bounded coefficients {Aε,δ,σi,j } satisfy the coercivity condi-

tion (4.16) , so that

(
1− M2

M2 + δ

)
|ξ|2 ≤

3∑
i,j=1

Aε,δ,σi,j (ξ)ξiξj ≤ 3|ξ|2

for ξ ≤ M uniformly in σ. Estimates (4.17),(4.19),(4.20) are extended

by the theory of parabolic cylinders for all derivatives of uε,δ,σ which

are uniform in 0 < σ < 1. We have used the parameter σ in order to

regularise the equation, making the coefficients satisfy the coercivity

condition which leads to estimates on the derivative which we use to

conclude the proof.

If we consider the L-infinite norm on R2 × S 1 we are considering it with respect to the

norm defined on our space. In virtue of the previous consideration about cylinders, we

can extend the estimate to the L-infinite norm on R2 × S 1, because we are able to find

such a constant.
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4. We use (4.17) and (4.20) and the Ascoli-Arzelà theorem3 to show that

uε,δ,σ → uε,δ

uniformly in the C 1,0 (Lipschitz) norm when σ → 0 for a smooth

function uε,δ solving (4.9),(4.10).

4.2.2 Passage to the limit

In order to extend to our setting Evans and Spruck’s argument in the

proof of [8][Theorem 4.1], after proving the existence of approximate solutions

passing to the limit for σ → 0, we need to pass to the limit for δ → 0 and

ε → 0. The first limit guarantees the passage from approximate solutions

to (4.1) and the second limit allows the passage to the horizontal bundle,

(4.3). The advantage is that the estimate (4.20) is stable with respect to

both δ → 0 and ε→ 0.

Theorem 4.2.7. Assume that g ∈ C (R2 × S 1) is continuous and satisfies

(4.8). Then there exists a viscosity solution u ∈ C 1,0 of (4.3),(4.2) such that:

u is constant on R2 × S 1 × [0,∞) ∩ {|x|+ t ≥ R} (4.21)

for R > 0, depending only on the constant S from (4.8).

Note that Aε = (aεij) is the matrix of coefficients of Xε
1, X

ε
2, X

ε
3 in expo-

nential coordinates, i.e. Xε
i =

∑3
k=1 a

ε
ikδxk .

3The Arzelà-Ascoli theorem is a fundamental result of mathematical analysis giving

the necessary and sufficient conditions for deciding whether every sequence of a given

family of real-valued continuous functions defined on a closed and bounded interval has a

uniformly convergent subsequence (note that the group about which we are investigating

the existence of a solution is compact)
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Proof. 1. Since g is constant, from the previous consideration we can

assume that ∇g is bounded, where ∇g denotes the Euclidean gradi-

ent of g. Employing estimates (4.12),(4.13) we can extract two se-

quences {εk}, {δk} → 0 of positive numbers such that εk
δk
→ 0 and for

which we have a corresponding sequence of smooth solutions to (4.9):

{uk = uεk,δk}k∈N ⊂ {uε,δ}. These solutions with initial data g are such

that when εk, δk → 0 we have uk → u, locally uniformly in δ,ε on

R2× S 1× [0,∞), where u is a bounded, Lipschitz function (i.e. α = 1,

with respect to the distance we have defined).

2. The first argument we need to proove is that u is a viscosity solution of

(4.3),(4.2). For this, let φ ∈ C∞(R2 × S 1 × [0,∞)) and suppose u− φ
has a strict local maximum at a point (x0, t0) ∈ R2 × S 1 × [0,∞). As

uk → u uniformly near (x0, t0), uk − φ has a local maximum at a point

(xk, tk), with

(xk, tk)→ (x0, t0) as k →∞ (4.22)

Since uk and φ are smooth, we have4:

∇Eu
k = ∇Eφ , ∂tu

k = δtφ and D2
E(uk − φ) ≤ 0 at (xk, tk)

Thus (4.9) implies:

∂tφ−
(
δij −

Xεk
i φX

εk
j φ

|∇εkφ|2 + δ2
k

)
Xεk
i X

εk
j φ ≤ 0 at (xk, tk) (4.23)

We substitute this expression with the one that involves the coefficients

Aε,δi,j so that at (xk, tk)

∂tφ − Aεk,δki,j (∇εkφ)Xεk
i X

εk
j φ (4.24)

≤ ∂tu
k − Aεk,δki,j (∇εku

k)Xεk
i X

εk
j (uk + φ− uk) ≤ 0 (4.25)

Suppose first ∇0φ(x0, t0) 6= 0. Then ∇0φ(xk, tk) 6= 0 for large k. We

consequently may pass to the limits for k → ∞ in (4.25), recalling

4Note that ∇E and D2
E are the Euclidean gradient and the Euclidean differential.
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(4.22) to deduce:

∂tφ ≤
2∑

i,j=1

(
δij −

XiφXjφ

|∇0φ|2
)
XiXjφ at (x0, t0) (4.26)

which means that u satisfies the definition of viscosity subsolution.

If ∇0φ(x0, t0) = 0 then we set

ηk =
∇εkφ(xk, tk)√

|∇εkφ(xk, tk)|2 + δ2
k

There exists η ∈ Rn such that ηk → η. Notice that for j = m+1, . . . , n

one has:

|(ηk)j| =
εk|Xjφ(xk, tk)|√
|∇εkφ(xk, tk)|2 + δ2

k

≤ (εk/δk)|Xjφ(xk, tk)|√
(εk/δk)2

∑2
i=1(Xiφ(xk, tk))2 + 1

Since the expression vanishes as k →∞ we have ηj = 0 for

j = m + 1, . . . , n. (j = 3 in our case, since m=2 and n=3 are the

dimension of the horizontal and whole tangent bundle). The PDE

(4.25) now reads as:

∂tφ(xk, tk)−
3∑

i,j=1

(δij − ηki ηkj )Xεk
i X

εk
j φ(xk, tk) ≤ 0

so as k →∞ we obtain

∂tφ(x0, t0) ≤
2∑

i,j=1

(δij − ηiηj)XiXjφ(x0, t0) (4.27)

concluding the proof for the case in which u−φ has a local strict maxi-

mum at point (x0, t0). If u−φ has a local maximum, but not necessarily

a strict local maximum at (x0, t0), we can repeat the argument above

replacing φ(x, t) with

φ̃(x, t) = φ(x, t) + |x− x0|4 + (t− t0)4

again to obtain (4.26),(4.27). Consequently u is a weak subsolution.

That u is a weak supersolution follows analogously.
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Chapter 5

Applications to visual

perception

In this chapter we present an implementation of the perceptual comple-

tion model proposed by Citti and Sarti in [4][5] we have analyzed in the

previous chapters. In Citti and Sarti model an image is lifted onto a surface

in the SE(2) space. The completion was achieved in related work as [22] by

means of a propagation process modelled as a two step algorithm inspired by

neural architectures. As we have noted in Chap. 3, the algorithm converges

to a diffusion driven mean curvature flow in the sub-Riemannian settings

and this is the reason why the mean curvature flow was proposed in order

to provide completion. The result of the curvature flow we visualize through

the level set method is a minimal surface in the sub-Riemannian metric.

5.1 Citti and Sarti cortical model

Let us start by recalling Citti and Sarti model. An image I can be

represented as a bounded function defined on a domain M ⊂ R2, I : M →
R+. Points of M have coordinates (x, y). As we have previously seen, the

output of the simple cells in response to a visual stimulus I is a function u

defined on the 3D cortical space. This function can be interpreted as the

67
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cortical activity. The maximal selection mechanism then detects, at every

point (x, y) pertaining to a level line of I, the orientation θ(x, y) of that

level line. At every point of the image we detected the tangent direction to

the level lines (Iy,−Ix) where Ix and Iy are the components of the image

gradient. If θ is the angle between the tangent and the x-axis the tangent

can be rewritten as cos(θ), sin(θ)). Then

θ(x, y) = − arctan
Ix
Iy
, θ ∈ S 1

This surface Σ is the lifting of every level line in the image. This point of

view allows us to understand a remarkable property of Σ, which is that since

two level lines of an image never cross, neither do its lifted level lines.

Figure 5.1: An image is lifted into the space of positions and orientations

R2 × S 1. The resulting surface is foliated by the lifting of the image level

lines.

5.2 Level set method for mean curvature flow

We have already discuss the level set method in Chapter 3 for mean

curvature flow. The level set approach consists in studying a PDE describing
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the evolution of a function u(x, t) such that Γt = {x ∈ M |u(x, t) = 0}. The

study of mean curvature motion of an hypersurface is reconducted to the

motion of its level sets by mean curvature: this approach recostruct the

evolution of an hypersurface u by mean curvature flow through the analysis

of its level sets. When we want to complete an image, we first lift its level

sets, as we can see in Fig 5.1, i.e. we lift the gradient orientation. In this

process we lost information related to the color. For this reason we need to

codify also the tone of gray: this means we introduce a supplementary surface

defined on our lifted surface which contains the missing informations.

Figure 5.2: A supplementary surface which contains information about the

color is defined under the lifted surface to complete missing data.

The algorithm is divided in two parts: we first lift the surface through

the gradient orientation, simulating the cortical mechanisms of non-maxima

suppression and visual signal propagation. This propagation can be modelled

by a mean curvature flow equation for the surface. Then we need to complete

the information we miss such as the color: for this reason we complete it

applying the Laplace-beltrami operator on the lifted image.
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5.3 Experiments and results

We apply this algorithm to a modified surface which needs to be com-

pleted. As we can see a hole is present at the center of the image. The first

part of the algorithm we have described before completes the central part

with a mean curvature flow.

Figure 5.3: Surface with a missing hole which needs a completion process

We test the Riemannian approximation of the equation and also the sub-

Riemannian expression. As we can see from the image the Riemannian ap-

proximation is indeed more stable, the other presents a noise which would

propagate when we increase the number of iterations.
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Figure 5.4: Mean curvature flow performed with a Riemannian approxima-

tion

Figure 5.5: Mean curvature flow performed without a Riemannian approxi-

mation
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Figure 5.6: Completed surface

Last step will be the completion of the missed information for what con-

cerns the color of this last figure, which will be performed through an imple-

mentation of the Laplace-Beltrami operator.
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[17] O. A. Ladyženskaja, SOLONNIKOW,V.A. AND URAL’CEVA,N.N.,

Linear and quasilinear equations of parabolic type, Translated from the

Russian by S. Smith. Translations of Mathematical Monographs, Vol.

23. American Mathematical Society, Providence, R.I., 1967



BIBLIOGRAPHY 75

[18] G.M. Lieberman, Second order Parabolic differential equations, World

scientific, 1996

[19] S. Oscher and J.A. Sethian,Fronts propagating with curvature de-

pendent speed: algorithms based on Hamilton-Jacobi formulations,

J.Computational Phys. 79, 12-49, 1988.

[20] P. Petersen,Riemannian geometry, Springer, 1998.

[21] J. Petitot, Y. Tondut, Vers une Neuro-geometrie, Fibrations corticales,

structures de contact et contours subjectifs modaux, Mathematiques, In-

formatique et Sciences Humaines, EHESS, Paris, 145, 5-101, 1998.

[22] G. Sanguinetti, Invariant models of vision bewteen phenomenology, im-

age statistics and neurosciences, Universidad de la Republica, Montev-

ideo, 2011. Cortona, June, 15-21 2003.

[23] C. Senni Guidotti Magnani,Prescribed mean curvature graphs on exte-

rior domains of the hyperbolic plane, Università di Bologna, Bologna,
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meno ai propri doveri, la pazienza con cui mi ha sostenuto e la vita che mi

ha regalato e permesso di fare. Mia nonna Marisa per la sua capacità di
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che magari vivo nel quotidiano. È bello sapere che non sempre la vicinanza

rappresenta un mezzo cruciale per potersi volere bene.

Ringrazio Marta, che mi ha accompagnato instancabilmente durante tutti
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