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Abstract   

 

Laser Shock Peening (LSP) is a surface enhancement treatment which induces 

a significant layer of beneficial compressive residual stresses of up to several 

mm underneath the surface of metal components in order to improve the 

detrimental effects of the crack growth behavior rate in it. 

The aim of this thesis is to predict the crack growth behavior in metallic 

specimens with one or more stripes which define the compressive residual 

stress area induced by the Laser Shock Peening treatment. The process was 

applied as crack retardation stripes perpendicular to the crack propagation 

direction with the object of slowing down the crack when approaching the 

peened stripes. 

The finite element method has been applied to simulate the redistribution of 

stresses in a cracked model when it is subjected to a tension load and to a 

compressive residual stress field, and to evaluate the Stress Intensity Factor 

(SIF) in this condition.  

Finally, the Afgrow software is used to predict the crack growth behavior of 

the component following the Laser Shock Peening treatment and to detect 

the improvement in the fatigue life comparing it to the baseline specimen. 

An educational internship at the “Research & Technologies Germany – 

Hamburg” department of AIRBUS helped to achieve knowledge and 

experience to write this thesis. The main tasks of the thesis are the following: 

 To up to date Literature Survey related to “Laser Shock Peening in 

Metallic Structures” 

 To validate the FE model developed against experimental 

measurements at coupon level 

 To develop design of crack growth slowdown in Centered Cracked 

Tension specimens based on residual stress engineering approach 

using laser peened strip transversal to the crack path 
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 To evaluate the Stress Intensity Factor values for Centered Cracked 

Tension specimens after the Laser Shock Peening treatment via Finite 

Element Analysis 

 To predict the crack growth behavior in Centered Cracked Tension 

specimens using as input the SIF values evaluated with the FE 

simulations 

 To validate the results by means of experimental tests 
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Chapter One 

I. The Fatigue Phenomenon  

 

 

1.1 Introduction 
 

The current metallic aircraft manufacturing technology is in a highly saturated 

level and it is rather challenging to obtain significant weight and 

manufacturing cost savings without introduction of radical changes on the 

current design and fabrication routes and materials. Such a development was 

experienced in the recent years by application of Laser Shock Peening 

technology for metallic and aeronautics materials. 

New design and manufacturing methodologies which can give rise to 

significant improvements in the damage tolerance of metallic airframe 

components may bring two fold advantages. In fact, introducing new concepts 

which offer higher damage tolerance not only enables producers to use 

thinner sheets for manufacturing, but also it may become possible to take the 

advantage of the Laser Shock Peening technology on the more severely 

loaded sections of the fuselage. 

For an improvement in damage tolerance of structures, two basic 

methodologies exist. Firstly, the damage tolerance properties of the material 

can be improved, and secondarily, the design of the structures can be 

modified to provide crack retardation, turning or arrest. In this thesis, it is 

studied the latter case, in particular, the improvement on the crack growth 

behavior gained after the Laser Shock Peening process. 
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1.2 The Fatigue Life of Components 
 

Many mechanical components are often subject to cyclic stresses, or rather 

stresses which change their amplitude in time and a history load in which 

there are an alternate sequence of minimum and maximum values. These 

cyclic loads can lead some components to damage failure even though the 

applied loads are lower than the ultimate strength: this is the failure caused 

by the fatigue phenomenon. 

The fatigue life of a structural element depends only on the highest and 

lowest values of loads to which the material is exposed and it does not 

depend on the shape of the temporal history of the load function. 

Building materials are often irregular and anisotropic, to the contrary of what 

it is presumed by the static analysis, and this leads to an unequal aggregation 

of crystal grains in the component. One of the consequences is that, even 

though the nominal load does not exceed the yield strength, it can be seen 

locally a plastic deformation of the element due to an unequal distribution of 

the stresses loads. Generally, the fracture caused by the fatigue phenomenon 

occurs after thousands cyclic loads and it has been noticed that the most 

disadvantaged areas are those with the highest tensile stress and they are 

usually located on the surface of the specimen.   

The rate of the crack growth inside a material depends on its ductility or 

brittleness proprieties. In brittle materials it can be noticed that there is no 

plastic deformation before fracture. In fact, the fracture can occur by cleavage 

as the result of a tensile stress acting normal to crystallographic planes with 

low bonding. On the other hand, in amorphous solids, the lack of a crystalline 

structure results in a shell-shape fracture, with cracks that proceed normal to 

the applied tension. In ductile fracture, it can be observed an extensive plastic 

deformation before fracture. Rather than cracking, the material splits and 

generally leaves a rough surface. In this case, there is a slow propagation and 

absorption of large amount energy before fracture. Many ductile metals, 

especially materials with high purity, can sustain very large deformation 

before fracture under favorable loading conditions and environmental 

conditions, the strain at which the fracture happens is controlled by the purity 
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of the materials. In this case, some of the energy from stress concentrations 

at the crack tip is dissipated by plastic deformation before the crack actually 

starts to propagate. 

The fatigue phenomenon can be developed into four phases: 

1. Crack nucleation 

2. Stage I crack-growth, prevalent in malleable materials 

3. Stage II crack-growth, prevalent in brittle materials 

4. Ultimate failure 

The first step of the fatigue phenomenon is identified by a microscopic flaw, 

which is difficult to notice; as the fracture goes forward, the velocity of the 

crack growth increase more and more, to the contrary, the tough section 

decreases in amplitude as long as the stress load reaches the breakdown 

level. 

The fatigue failure is characterized by different fracture areas: the first one is 

where the flaw were born and spread and it is entirely smooth; the second 

area is where the crack propagates and it is characterized by concentric bench 

marks; the last area is where the catastrophic rupture happens and it can be 

distinguished by its rough surface. 

 

Fig. I-IFatigue Failure Phases 

An element which is exposed to static loads experiences high deformation 

which can be detected and they permit a prompt maintenance service to 
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avoid the fracture. To the contrary, the fatigue rapture is an unexpected event 

that affects the whole element and it is the reason why it is more dangerous. 

Listed below are some of the main parameters that affect the fatigue life of an 

element: 

 Cyclic stress state 

 Stress amplitude 

 Mean stress 

 In-phase or out-of-phase shear stress 

 Load sequence 

 Geometry 

 Notches 

 Variation in cross section 

 Surface quality 

 Shape and dimensions 

 Environment 

 Temperature 

 Residual stresses 

 Air or vacuum 

 Corrosion 
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1.3 Design of Aeronautical Structures 
 

The very first catastrophic failure due to the fatigue phenomenon goes back 

to the 1954, when two civil Comet aircrafts were destroyed during their flight 

causing the death of all of their passengers. These structural failures were 

attribute to cracks which were originated and propagated on the skin of the 

pressurized fuselage. Nowadays in the aeronautical industry there are two 

principal approaches to fatigue life assurance of structural elements: safe-life 

design and the damage tolerant design.  

Although the major focus of structural design in the early development of 

aircraft was on strength, now structural designers also deal with fail-safety, 

fatigue, corrosion, maintenance and possibility of inspection, and 

reproducibility of the aircraft. 

Manufacturers of modern aircraft are demanding more lightweight and more 

durable structures. Structural integrity is a major consideration of today’s 

aircraft fleet. For an aircraft to economically achieves its design specification 

and satisfy airworthiness regulations, a number of structural challenges must 

be overcome. 

Fatigue failure life of a structural member is usually defined as the time to 

initiate a crack which would tend to reduce the ultimate strength of the 

member. Fatigue design life implies the average life to be expected under 

average aircraft utilization and loads environment.  

Criteria for fatigue design have evolved through the years from infinite life to 

damage tolerance, each of the successively developed criteria still has its 

place, depending on the application; these criteria are: 

 Infinite-Life Design 

 Safe-Life Design 

 Fail-Safe Design 

 Damage-Tolerant Design 
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1.3.1 Infinite-Life Design 

 

In this design approach it is used the oldest criterion which is the unlimited 

safety. It requires local stresses or strains to be essentially elastic and safely 

below the fatigue limit. This criterion may still be used for parts subjected to 

many millions of cycles, like engine valve springs, but may not be economical 

(i.e. global competitiveness) or practical (i.e. excessive weight of aircraft) in 

many design situations. 

 

 

1.3.2 Safe-life Design 

 

The safe-life design predicts and assigns a design life to each structural 

element presuming the timing at which fatigue failure is going to happen. It is 

clearly needed a wide amount of tests in order to determine the average life 

of each component exposed to cyclic loads. The drawback of this design 

methodology is that it results very expensive and it predicts to replace many 

elements at the end of their design life in order to maintain the design safety, 

even though they may still have a considerable life ahead of them. 

Furthermore, it has to be noticed that this philosophy has brought to severe 

structural failure in the armed forces, as it was for F-111. One of the main 

problems is that in safe-life design it is not taken into consideration that the 

material may have original defects due to its manufacturing method or caused 

by maintenance operations. It is then supposed that elements, as machined, 

have a perfect structure, without any kind of damages and this is actually 

unworkable. Nevertheless, the safe-life technique is successfully employed in 

critical systems which are either very difficult to repair or may cause severe 

damage to life and property. For instance, it is used for the landing gear of 

airplanes which are designed to work for years without requirement of any 

repairs. 
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It is used in many industries (e.g. automotive industry) in pressure vessel 

design and in jet design; the calculations may be based on stress-life, strain-

life or crack growth relations. 

The safe life must include a margin for the scatter of fatigue results and for 

other unknown factors. The margin for safety in safe-life design may be taken 

in terms of life, in terms of load or by specifying that both margins must be 

satisfied. 

In this case “the structural component needs to be designed so as to be able 

to sustain the real life loads, for the whole operational life, without showing 

any dangerous crack”. Once the predicted life of the structural element is 

reached, it needs to be replaced, even if it doesn’t show ay relevant failure. 

This criterion is used for some structural elements which cannot be redundant 

or for those which is not possible to identify flaws due to the cracks through 

inspections, and which are replaced before the crack reaches the critical 

dimension. 

 

 

1.3.3 Fail-Safe Design 

 

Fail-Safe design requires that if one part fails, the system does not fail. This 

design methodology recognizes that fatigue crack may occur and structures 

are arranged so that crack will not lead to failure of the structure before they 

are detected and repaired.  

Multiple load paths, load transfer between members, crack stoppers built at 

intervals into the structure, and inspection are some of the means used to 

achieve fail-safe design. 

Fail-Safe design is achieved through material selection, proper stress levels, 

and multiple load path structural arrangements which maintain high strength 

in the presence of a crack of damage. 
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1.3.4 Damage Tolerance Design 

 

The philosophy of damage tolerance design is based on the assumption that 

flaws can exist in any structure from the begging of their life and such flaws 

propagate with usage. Therefore, the damage tolerance design considers the 

growth of a defect in the structure and the need to carry out recurring 

inspections to check whether the crack growth has reached or not its critical 

value. In the first place, the design evaluates an initial slow growth of flaws so 

that as they start to propagate into the material they have a stabile growth 

that will not lead to a sudden and unstable failure. In the second place, the 

design predicts a recurring maintenance program which main purpose is to 

intervene before cracks reach a critical value and to avoid an unexpected 

failure of the structure. Essentially, a structure is considered to be damage 

tolerant if a maintenance program has been implemented that will result in 

the detection and repair of accidental damage, corrosion and fatigue cracking 

before such damage reduces the residual strength of the structure below an 

acceptable limit. 

This philosophy is a refinements of the fail-safe philosophy. It assumes that 

cracks will exist, caused either by processing or by fatigue, and uses fracture 

mechanics analyses and tests to check whether such cracks will grow large 

enough to produce failures before they are detected by periodic inspection. 

This philosophy looks for materials with slow crack growth and high fracture 

toughness. Three key items are needed for successful damage-tolerant 

design: 

 Residual strength: 

It is the strength at any instant in the presence of a crack. With no 

crack, this could be the ultimate tensile strength or yield strength, as a 

crack forms and grows under cyclic loading, the residual strength 

decrease. 

 Fatigue crack growth behavior 

 Crack detection involving nondestructive inspection: 
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Different nondestructive inspection techniques have been developed. 

All inspection periods must be laid out such that as the crack grows, 

the applied stresses remain below the residual strength.  

 

 

1.4 Residual Stresses 
 

Some structural elements can show, during their life cycle, a premature failure 

or an improvement of their characteristic depending on the interaction 

between the material and stress to which it is exposed. In fact, it takes a lot of 

importance to know not only stresses to which the material is exposed during 

its life, but also stresses that are present inside the material and that can be 

introduced during its productive process: these are the so called residual 

stresses. 

Most of the times residual stresses are unwanted since they reduce the 

yielding stress and they can cause deformations in materials during following 

manufacturing processes. However, residual stresses can also lead to 

beneficial effects, it depends on whether they are tensile or compressive 

residual stresses. 

As a matter of fact, tensile residual stresses on the surface of a component 

reduce mechanical performance and resistance to corrosion, as well as they 

facilitate the fatigue phenomenon which leads to the collapse of a structure.  

On the other hand, compressive residual stresses may have a good effect on 

structural components as they stunt flaws origin and propagation, leading to 

an increase of the fatigue life of components. 

The component which is exposed to residual stresses has to be in equilibrium, 

reason why every compressive residual stress field is always associated to 

tensile residual stress field. In general, in elastic field, residual stresses are 

simply added to the applied load, justifying the reason why compressive 

residual stresses reduce the tension level where more elevated loads are 

applied.  
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Chapter Two 

II. Fracture Mechanics  

 

 

The fracture mechanics studies the nucleation and propagation of flaws in 

material when it is subjected to external loads. This discipline was born 

between the 1920 and 1950 with a view to explain the brittle failure of some 

structural components, and it would have been extend also to explain the 

concept of the instable failure, which can be brittle or ductile. 

After the 1950 it was born the concept of a flaw propagation due to the 

fatigue phenomenon which was studied to prevent the failure in aeronautical 

structure. One year after the other, this discipline has begun more and more 

important and it had been tried to find out new theories more reliable and 

exact in order to understand the reason why such structural elements were 

brought to failure even though the load applied was under the ultimate load 

of the material.  

 

 

2.1 Linear Elastic Fracture Mechanics 
 

Advanced crack growth predictions are essential to the damage-tolerance 

philosophy which is undisputed a major component to any aircraft design. The 

theory of Linear Elastic Fracture Mechanics (LEFM) enables all engineers who 

are involved in the assessment and improvement of structures’ performance 

to study the propagation of crack in metallic structures and the structure’s 

resistance to fracture. The prediction of crack growth and residual strength is 

the key for the damage-tolerance design philosophy, and is applied when 
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small flaws, defect or crack, are already assumed to be in a structure. In the 

aerospace industry, fracture analysis by analytical and testing approach is 

applied to justify safe operation of aircraft. Moreover, it used to define 

inspection thresholds and inspection intervals to ensure continued 

airworthiness of aircraft’s damage-tolerant structures. 

 

Fig. II-I Crack Life Periods 

The crack life of a structure is typically divided into three periods: 

 Crack initiation 

 Crack growth 

 Final failure 

For every period, different concepts and factors are used in the analysis 

because every stage has its own susceptibility to different parameters and 

effects. 

For instance, the initiation period is characterized by local microscopic 

processes which are mainly influenced by material surface condition and 

heterogeneous stress distribution which is described by the stress 

concentration factor Kt. 

On the other hand, the crack growth period is studied by means of the Linear 

Elastic Fracture Mechanics. The Stress Intensity Factor (SIF) K is the most 

important parameter which is used for the crack growth behavior prediction. 

Finally, the final failure stage is described by the fracture toughness factors KIc 

and KC. 

The crack growth behavior also depends on the material properties of the 

type of structure which is loaded. There are three different ways of applying a 

force to enable a crack to propagate: 
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Fig. II-II Crack Opening Modes 

It should be mentioned that stress intensity factor for crack opening mode I 

can be written as KI, but since crack mode I is the appropriate crack mode for 

most engineering cases, and it is the one which is studied in this thesis, K 

usually refers to the stress intensity factor in crack mode I. Therefore, further 

explanations refer to mode I only. This main crack opening mode let the crack 

propagate perpendicular to the tensile stress direction, leading the tensile 

loading to open the crack at every cycle [1][2][3]. 

Summarizing the assumptions of linear elastic fracture mechanics are: 

 Crack has been initiated 

 Material in linearly elastic 

 Material is isotropic 

 Crack has started to propagate 

 Plastic zone near crack is small 

 Points of analysis are near (r < 0.1∙crack length) the crack tip 

 

 

2.2 Stress Intensity Factor 
 

For the crack growth period, the stress intensity factor K is a meaningful 

parameter to describe the severity of the stress distribution around the crack 

tip. It is considered an infinite sheet containing a central hole through-the-

thickness and a crack length of 2a under a tension load (crack opening mode 

I). 
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Fig. II-III Ideal Infinite Sheet Under Tension Load 

 

 

Fig. II-IV  Stress Distribution Near Crack Tip 

 For this case, the elastic stress field near the crack tip (r<<a) in a polar 

coordinate system is define by following equations: 

   
    

    
    

 

 
      

 

 
   

  

 
    

   
    

    
    

 

 
      

 

 
   

  

 
  

    
    

    
    

 

 
   

 

 
   

  

 
 

Where σ is the remote loading and a is the half crack length. 

The three above mentioned equations are often summarized as: 
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The stress intensity factor K describes the stress field in the elastic region 

around the crack tip and it can be expressed as: 

        

The parameter β is the so-called beta correction factor. It accounts for various 

influences of geometrical and loading conditions in the comparison of the 

infinite sheet (β=1) under a far field tension load and any real engineering 

structure under more complex loading. The β parameter is a geometrical 

factor which depends upon the geometry of the cracked body and the 

position of the crack. 

The stress intensity factor for cyclic loading is formulated by the following 

equation: 

           

Where ΔS is the load stress range: 

 

Fig. II-V Load Range Cycle 

By applying the cyclic loading with a stress range of ΔS=Smax-Smin, the stress 

intensity factor range ΔK can be written as ΔK=Kmax-Kmin [1][2][3]. The stress 

intensity factor range is the major parameter in any crack growth prediction 

model. 
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The Stress Intensity Factor plays a fundamental role in the fracture mechanics 

as: 

 It is the crack-tip characterizing parameter 

 It measures the magnitude of the stress field near the crack tip 

 It can be used to compare different problems: any crack in a body that 

has the same KI as another crack in another body is effectively in the 

same condition 

 

Fig. II-VI Stress Intensity Factor Similitude 

 

 

2.3 Beta Correction Factor 
 

The dimensionless factor β is called beta correction factor (also geometry 

correction factor, boundary correction factor or geometry factor) and 

depends on the geometrical and load differences of the real structure in 

respect to the infinite sheet under remote tension loading conditions. 

 

Fig. II-VII Beta Correction Factor – Infinite Sheet vs. Real Engineering Structure 
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As it has been already mentioned, for an infinite sheet β=1 and K can 

described as: 

       

Beta correction factors for various geometries and loading conditions can be 

found in the literature [4][5], for real engineering structures. To derive such 

beta correction factors various approaches have been applied by many 

researchers and engineers. Among these approaches some are of analytical 

nature, such as the weight functions methods [5][6][7], and others use 

numerical approaches via Finite Element Methods (FEM) [7][8].  

Stress Intensity Factor’s beta correction factors which are derived by 

experiments are very expensive and limited in application because of the 

limited number of tests and thus investigated parameters. Testing approaches 

are applied when simulation and analytical approaches demand extremely 

high efforts [9]. This is the case when the complexity in geometry or load 

systems applied to the structure is hardly representable by models which 

could be derived by approaches mentioned previously. However, since most 

of the standard engineering cases for daily operation are already covered in 

the specific literature, engineers and researches also superimpose SIF 

solutions when applicable [10]. 

 

 

2.4 Griffith Theory 
 

Fracture mechanics was develop by Griffith, who suggested that the low 

fracture strength observed in experiments, as well as the size-dependence of 

strength, was due to the presence of microscopic flaws in the bulk material. 

He considered an infinite size cracked plate of unit thickness with a central 

transverse crack of length 2a loaded with a stress of σ (see Fig. II-III Ideal Infinite 

Sheet Under Tension Load). 
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Griffith stated that the elastic energy contained in the due to the load applied 

must be sufficient to provide all the energy required for the crack 

propagation.  

  

  
 
  

  
 

Where W is the energy required for crack growth and U is the elastic energy. 

For a crack in an infinite elastic plate: 

  

  
   

    

 
 

Where E is the elastic modulus and G is the strain energy release rate.  

It can be noticed that the energy condition for crack propagation is that G 

must be at least equal to the energy required for crack growth (dW/da), which 

lead to: 

     
    

  
 

If       the crack will grow in an unstable manner. 

 

Fig. II-VIII Limit Curve for Critical Crack Length 

It is also possible to determine the crack length a0 below which the material 

yielding precede the unstable crack propagation. 
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2.5 J-integral 
 

The J-integral is a widely used parameter to calculate SIFs in the field of LEFM 

and it is based on energy considerations. The J-integral represent the strain 

energy release rate, or work per unit fracture surface area for a cracked body 

under monotonic loading. For isotropic, perfectly brittle, linear elastic 

materials, the J-Integral can be directly related to the strain energy release 

rate: 

    

This is generally true for linear elastic materials. For materials that experience 

small-scale yielding at the crack tip, J can be used to compute the energy 

release rate under special circumstances (e.g. monotonic loading in mode III). 

Mathematically, it is a contour integral or line integral, as illustrated in figure, 

which completely enclosed the crack tip and is described by the following 

equation: 

             
  

  
    

 

 

 

Where: 

 J is the energy release rate 

 W is the elastic strain energy density 

 Г is an arbitrary contour  

 T is the stress tension vector 

 n is the outward unit normal to Г 

 u is the displacement vector  

 and ds is a differential element along the contour 
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Fig. II-IX Contour Integral Path 

The J-integral and the SIF are related to each other for a linear elastic material 

through: 

  
 

  
         

Where: 

 K = [ KI, KII, KIII]
T 

 B is the pre-logarithmic energy factor matrix 

For homogeneous, isotropic material B is diagonal and the above equation for 

mode I loading condition simplifies to: 

  
  
 

 
              

  
  
 

 
                     

In most cases, the J-integral ad thus the SIF is determined by means of FEM in 

engineering application 109[1][3][11]. Finite Element Methods to determine 

SIFs are described in more detail in chapter V. 
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Chapter Three 

III. Surface Enhancement Treatments                                                 
 

 

Fatigue failures of structural components are primarily caused by tensile 

stresses that are generated by service loads. These tensile stresses tend to 

initiate cracks on the surface, which could lead to catastrophic failure. Surface 

enhancement treatments inducing compressive residual stresses in the 

surface layers to counteract the tensile stresses, could prevent or delay the 

fatigue failure. Surface enhancement treatments of specimens are 

widespread to slow down problems related to the fatigue life phenomenon in 

aeronautical structures, or in wider terms in any metallic structure. One of the 

most effective methods is to introduce compressive residual stresses in some 

specific interested areas.  

There are a lot of surface enhancement technologies that include many 

processed for strengthening metals and alloys to extend fatigue life in critical 

safety applications. Some of them are Laser Shock Peening, shot peening, low 

plasticity burnishing, waterjet peening, ultrasonic peening, cavitation peening, 

superfinishing. 

 

 

3.1 Shot Peening 
 

Shot Peening is a cold working process in which the surface of a part is 

bombarded with millions of small spherical media, called “shots”, which are of 

steel, glass or ceramic. During the process, each shot striking the material acts 

as a tiny peening hammer creating a small dimple on the surface. In order for 
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the dimple to be created, the surface fibers of the material must be yielded in 

tension [12]. Below the surface, the fibers try to restore the surface to its 

original shape, thereby producing below the dimple, a hemisphere of cold-

worked material highly stressed in compression. 

In most of the case, cracks will not initiate or propagate in a compressively 

stressed zone. The overlapping dimples from shot peening create a uniform 

layer of compressive at metal surfaces, this is the reason why shot peening 

can provide considerable increases in part fatigue life. Compressive stresses 

are beneficial in increasing resistance to fatigue failures, corrosion fatigue, 

stress corrosion cracking, hydrogen assisted cracking, fretting, galling and 

erosion caused by cavitation. The maximum compressive residual stress 

produced just below the surface of a part by shot peening is at least as great 

as one-half the yield strength of the material being shot peened [13].  

The advantages of Shot Peening (SP) relies in a relatively inexpensive 

technique, using robust process equipment and it can be used on large or 

small areas as required. Nevertheless, the shot peening technique has several 

downsides. Firstly, in producing the compressive residual stresses, the process 

is semi-quantitative and is dependent on a metal strip, or Almen type gauge, 

to define the SP intensity. This gauge cannot guarantee that the SP intensity is 

uniform across the component surface. Secondly, the compressive residual 

stresses are limited in depth and they usually do not exceed 0.25 mm in soft 

metals such aluminum alloys, and even less in harder metals [14]. Thirdly, the 

process provides a highly roughened surface, especially in soft metals as 

aluminum. This roughness may need to be removed for some applications, in 

particular for aeronautics applications, but typical removal processes often 

eliminate the majority of the peened layer.  
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3.2 Laser Shock Peening 
 

Laser Shock Peening (LSP) is one of the surface enhancement technique that 

has been demonstrated to increase the fatigue life of a component subjected 

to fatigue loading. 

The Laser Shock Peening process produces several beneficial effects in metals 

and alloys. One of the most important benefits is to increase the resistance of 

materials to surface related failures, such as fatigue, stress corrosion and 

fretting fatigue. This is possible thanks to compressive residual stresses 

introduced beneath the treated surface of the material. This technique is 

capable of introducing much deeper residual stresses than the shot peening 

process, which is the reason why it is successfully and increasingly used. 

The Laser Shock Peening process might be used also to strengthen thin 

sections, work-harden surfaces, shape or straighten parts, break up hard 

materials, possibly to consolidate or compact powdered metals. 

The Laser Shock Peening treatment produces mechanical shock waves due to 

the high pressure plasma created on the surface of the treated specimen, as a 

consequence of high-power density laser irradiation. Most of the times, the 

surface is covered with an ablative layer, which may be a black paint or an 

extra thin layer of pure aluminum, over which runs a thin layer of water acting 

as a tamping layer. The laser light pulse passes through the tamping layer and 

hits the ablative layer, which evaporates into the plasma state. The plasma 

expands rapidly, while the plasma-tamping layer reacting force causes a 

compression shock wave propagating into the metal. 

 

Fig. III-I Laser Shock Peening Process 
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It is interesting to observe that, even if developed plasma reached 

temperatures up to 10000 °C, the process is often considered mechanical and 

not thermal, since plasma-specimen interaction time are of the order of 

nanoseconds [15]. 

The Laser Shock Peening process can also be implemented without ablative 

layer, it is then called Laser Peening without coating (LSPwC) [16]. In this case, 

the laser beam is fired directly to the treated specimen, reason why the size of 

the laser beam needs to be smaller than the one used with protective coating, 

so that the treated object is no damaged. This is the case of localized 

treatment around holes, and in and along notches, keyways, fillets, splines, 

welds and other highly stressed regions. 

 

Fig. III-II Comparison Between LSP and LSPwC [43]  

Laser Shock Peening can often be applied to the finished surface of a part, or 

just prior to the final finishing step. The effects of the mechanical forces on 

the surface itself are minimal. However, in softer alloys, a very shallow surface 

depression occurs, which decreases in depth in harder materials. For example, 

in aluminum alloys, the depression is about 6 µm deep, but on machined 

surfaces of harder alloys, it is difficult to see where the surface was laser 

shocked. The depth of the depression does increase with increasing intensity 

of LSP. 

The intensity of Laser Shock Peening can be easily controlled and monitored, 

allowing the process to be tailored to the specific service and manufacturing 

requirements demanded by the part. The flexible nature of the process 

accommodates a wide range of part geometries and sizes. It can also be used 
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in combination with other treatments to achieve the most beneficial property 

and cost advantages for each part. It is important to notice that Laser Shock 

Peening can produce high magnitude compressive residual stresses of more 

than 1 mm in depth, 4 times deeper than traditional shot peening [17].  

 

 

3.3 Laser Shock Peening vs. Shot Peening 
 

For instance, the efficiency of LSP to extend the fatigue life of thick Al 7050-

T751 structural coupon (up to 30mm thick) containing stress concentration 

factor of 2 has been proved as well as a deep compression residual stress up 

to the depth of more than 3mm [41]. 

 

Fig. III-III Induced Residual Stress: LSP vs. SP 

This effect is directly related with an advantage in terms of longer nucleation 

and initial propagation periods for cracks present in mechanical components. 

Moreover, Laser Shock Peening allows better accuracy and reproducibility, 

with smoother surface as a result, when confronted with shot peening. One of 

the main disadvantages is that this technique is usually connected with longer 

preparation times of the specimen and equipment costs.  
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Laser Shock Peening can often be applied to the finished surface of a part, or 

just prior to the final finishing step. In machine components, tooling or other 

parts, application to external surface and internal surfaces with line-of-sight 

access is straightforward. Application to internal surface without line-of-sight 

access is quite possible, but the method used needs to be studied for each 

application. LSP can also be used in manufacturing processes requiring a high, 

controllable, mechanical impact over a defined area, where mechanical 

punches are limited in how they can be adapted to the task. The impact area 

could have a variety of shapes depending on final goals that have to be 

reached.  

The use of Laser Shock Peening in order to increase the strength and 

resistance to failure offers several advantages. In fact, it can be noticed that 

after applying Laser Shock Peening to failure-prone areas on troublesome 

parts, the service life of the parts and the maintenance intervals of machinery 

can be increased while the downtime is decreased, without changing the 

design. On second thought, a part can be redesigned to make it lighter, easier 

to manufacture or less expensive, using the Laser Shock Peening technique to 

upgrade the properties to meet the original design performance 

requirements. 

In comparison with the Shot Peening treatment, the Laser Shock Peening 

process can produce a compressive residual stress minimum four times 

deeper than conventional shot peening (1 mm for hard metal such as titanium 

or steel and up to 4 mm in depth for aluminum alloys) [18]. Furthermore, in 

most modes of long-term failure, the common denominator is tensile stress. 

Tensile stresses attempt to stretch or pull the surface apart and may 

eventually lead to crack initiation. For this reason, increasing the depth of this 

layer increases crack resistance as the crack grow slowdown is significant in a 

compressive layer. 

In addition, using Laser Shock Peening treatment, the treated surface of the 

component is essentially unaffected and the laser peened components do not 

lose any dimensional accuracy. Moreover, the process can become more 

efficient in application as the laser pulse can be adjusted and optimized in real 

time and the spot geometry of laser beam can be changed to suit the 
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problem. The main disadvantages of LSP is that it requires high equipment 

costs and long preparation times due to the necessity of having a specially 

protected environment for treatment and skilled operators needed 

before/during/after processing. 

In the table below the main advantages and disadvantages of the two above 

mentioned technique are summarized: 

Shot Peening Laser Shock Peening 

 Easy to apply and 

inexpensive  

 Risk to introduce external 

material in the treated 

component  

 Lead to a roughness surface  

 Longer preparation times and 

equipment costs 

 It does not lead to any 

macroscopic variation of the 

treated area 

 It does not increase the surface 

roughness 

 The laser beam can reach areas 

which are not accessible with 

conventional shot peening 

technique 

 Treated area dimensions starts 

from few micrometer up to 100 

mm2 

 Easily verifiable and rapid 

process applications  

 Deformation rate up to  106/s 

 Ability to introduce 

compressive residual stresses 

in areas deeper up to 10 times 

than the conventional shot 

peening process 

Table III-I LSP vs. SP: Advantages and Disadvantages 
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3.4 Generation of the Compressive Residual 

 Stresses 
 

One of the main advantages of the Laser Shock Peening technique is that the 

pressure pulse, generated by the blow-off of the plasma, creates almost a 

pure uniaxial compression in the direction of the shock wave propagation and 

tensile extension in the plane parallel to the surface.  

 

Fig. III-IV Compressive Residual Stresses Generation 

After the reaction of the elastic material of the surrounding zones, a 

compressive stress field is generated within the affected volume, while the 

underlying layers are in a tensile state[19]. As the shock wave propagates into 

the material, plastic deformations occurs to a depth at which the peak stress 

no longer exceeds the Hugoniot Elastic Limit (HEL), which represents the 

maximum stress a material can withstand under uniaxial shock compression 

without any internal rearrangement. HEL is related to the dynamic yield 

strength according to [20]: 

     
       

   

      
 

Where ν is Poisson’s ratio and   
   

 is the dynamic yield strength at high 

strain rates.  

When the dynamic stresses of shock waves within a material are above the 

dynamic yield strength of the material, plastic deformations occurs and it 
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continues until the peak of dynamic stress falls below the dynamic yield 

strength. The plastic deformation induced by the shock waves results in strain 

hardening and compressive residual stresses at the material surface [21]. 

Ni-base alloy are widely used in high serving temperature fields such as space 

navigation, nuclear energy and petroleum industry due to excellent fatigue 

resistance, radiation resistance, corrosion resistance, good machinability and 

welding performance. Various mechanical surface treatment technologies, 

such as shot peening, low plastic polishing and Laser Shock Peening, have 

been used to restrain the propensity of fatigue initiation or growth by 

inducing compressive stresses on the surface and fellow-surface regions to 

improve the fatigue performance of metallic materials. Compared with other 

surface treatment technologies, LSP has unique advantages that it could be 

performed without the contact with the component and without heat-

affected zone. 

The temperature and exposure time are the primary parameters for the 

thermal relaxation of residual stress. Masmoudi et al. [22] have studied the 

thermal relaxation of residual stress in shot peened Ni-base alloy IN100 as 

exposed to different temperatures (500-750 °C). During the initial period of 

exposure, the surface residual stress decreased rapidly. Cao et al. [23] also 

observed similar phenomena. Khadhraoui et al. [24] performed an experiment 

to investigate thermal stress relaxation in IN718 with different exposure times 

at 600 °C and 650 °C. Prevey et al. [25] studied the thermal stress relaxation of 

the compressive layer produced by LSP. Cai et al. [26] studied the residual 

compressive stress field of IN718 induced by shot peening and the relaxation 

behavior during aging, and the relaxation process was described by the Zener-

Wert-Avrami function [27][28]. 

In most cases [29], the residual stress relaxation of surface treated alloys is 

studied through experimental trials which are expensive, time-consuming and 

unreliable resulting from the factors arising from setting up the Laser Shock 

Peening process and residual stress measurements. Recently, the finite 

element (FE) method has been used to study LSP induced residual stress in 

the material, and the simulations results are well consistent with the 

experimental results. 
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Chapter Four 

IV. Design Of Crack Growth Slowdown     

 

 

4.1 Introduction 
 

The centered through crack specimen is used extensively for fatigue testing. 

The fatigue characteristics of the M(T) specimen are well understood and it 

therefore offers a good opportunity to fundamentally explore the effect on 

fatigue life of LSP induced residual stress fields. 

The effect of Laser Shock Peening induced residual stress on fatigue 

performance in the aluminum specimen has been studied in the literature 

[30][33]. However, the relationship between the induced residual stress field 

and the resultant change to the fatigue life have receive little consideration. 

In the first part of this work thesis, it was used the AFGROW Software to 

determine the fatigue crack growth behavior of the specimen under 

investigation. It was employed the version 4.0012.15, which is the last version 

owned by the Air Force Research Laboratory and it is free of charge. 

The AFGROW software applies the damage tolerance philosophy to help 

eliminate the type of structural failures and cracking problems that had been 

encountered on various military aircraft. In the early 1970’s, the United States 

Air Force review of structural failures had revealed that the safe life 

philosophy did not protect against designs that were intolerant to defects that 

could be introduced during manufacturing or during in-service-use. From the 

standpoint of flight safety, it was found prudent to assume that new airframe 

structures could contain initial damage and that not all crack would be found 

during inspections of older airframes. Accordingly, a damage tolerance 
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philosophy was formulated based on the demonstration of structural safety 

under the assumption that pre-existing damage would be present at critical 

locations of all structurally significant details. 

 

 

4.2 Afgrow Software 
 

AFGROW is a workstation-based, graphically interactive computer program 

for simulations of fatigue crack growth in common structures subject to 

spectral loading. It is a highly flexible code that utilizes standard user-interface 

objects to create a simple and intuitive environment for the fracture 

mechanics analysis.  

The Stress Intensity Factor calculations in AFGROW are based on the concepts 

of Linear Elastic Fracture Mechanics. For most structural configurations these 

are determined based on closed-form solutions built into the code. The 

exceptions are the user-defined configurations, for which the SIF values for 

different crack lengths are obtained from an external source and specified by 

the user [34]. 

Moreover, one of the main advantages of the AFGROW software is the 

possibility to employ different user-defined specimen configurations through 

a graphical user interface with file management capability which allows the 

visualization and plotting of crack growth in real-time. 

 

 

4.3 Objectives of the Work 
 

The aim of this work is to determine the crack growth behavior in the M(T) 

specimen analyzed when residual stress fields are induced by Laser Shock 

Peening treatment. In order to that, it was first predict the crack growth rate 
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of the as machined specimen so that to compare it with the experimental 

results available to check the reliability of the adopted analysis method. Once 

the software is proved to be reliable, it was predicted the crack growth 

behavior of the specimen after the LSP treatment, therefore with residual 

stress fields applied. 

The next step was to detect the improvement in the crack growth behavior 

achieved with the Laser Shock Peening treatment and then to determine the 

optimum residual stress field to reduce fatigue crack growth rate in centered 

through cracked specimens. 

Finally, it is necessary to validate modeling predictions via sample 

manufacture, laser peening treatment and measurement of residual stress 

fields and fatigue lives. 

 

 

4.4 Analysis Implementation 

4.4.1 Geometry 

 

It was chosen to studied the crack growth behavior in two different centered 

crack specimens of the following geometry: 

 

Fig. IV-I Specimen Geometry 
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 Specimen A Specimen B 

W 160 mm 400 mm 

L 400 mm 800 mm 

Thickness 2 mm 

Table IV-I Specimen Dimensions 

The first step of the implementation is to define the model that should be 

introduced in the software. AFGROW has two different types of classic stress 

intensity factor solutions available: 

 Standard Stress Intensity Solutions 

 Weight Function Stress Intensity Solutions 

For what it counts in this thesis work it has been used a classic model 

geometry with an internal through crack as reported in the figure below: 

 

Fig. IV-II Standard Solutions – Internal Through Crack 

The beta correction factor that the AFGROW software uses to determine the 

Stress Intensity Factor value for a tension load is the one used in [35]. 

                
  

 
 
 

      
  

 
 
 

       
  

 
  

This solution is valid for 0 < a/W ≤ 0.5. 
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4.4.2 Load 

 

AFGROW allows to introduce a cyclic load to the specimen in the form of 

spectrum which can be created by the user. Spectra are assumed to have 

been cycle counted so that each max-min pair describes a complete cycle. A 

cycle is defined as a stress (or load) excursion from a given starting level to a 

different level and return again to the same starting level. 

Using the spectrum dialog box it is possible to introduce the Spectrum 

Multiplication Factor (SMF) which is multiplied by each maximum and 

minimum value in the user input stress spectrum. This allows a user to input 

spectra, which are normalized, and simply use one factor to predict the life for 

different stress levels. 

In the case of interest it was used a constant amplitude loading with a SMF of 

70 MPa and the R ratio of 0.1, so that it is not necessary to create a spectrum 

file as AFGROW will create it by itself. 

 

Fig. IV-III Constant Amplitude Loading 
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4.4.3 Material 

 

The material used in this analysis is the Aluminum 2024-T351 which has been 

introduced in the AFGROW software using the tabular look-up crack growth 

rate. 

A tabular look-up crack growth rate allows the user to input their own crack 

growth rate curves. The tabular data utilizes the Walker equation on a point-

by-point basis to extrapolate/interpolate data for any two, adjacent R-values.  

  

  
                                                        

The difference in the tabular lookup table is that the user doesn’t have to 

calculate all of the m values because AFGROW does it internally between each 

two input R curves.  

However, as it has been used a constant amplitude loading, it was necessary 

to introduce data only for a single R-value, which is the one of interest. In this 

case, the user-defined data will be used regardless of the stress ratio for a 

given analysis. 

Beside the crack growth rate curves, the tabular look-up crack growth rate 

needs to be filled up also with other material parameters such as the ultimate 

strength, the Young’s modulus, the Poisson’s ratio and so on. 

 

Fig. IV-IV Tabular Look-Up Data 
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The crack growth rate curves used in the analysis were derived by an average 

trend of the curve da/dN vs. ΔK values given by experimental results. In fact, 

in order to have a good agreement between the experimental results and the 

AFGROW ones, it is necessary to introduce da/dn and ΔK values manually. In 

the interest of finding average values which could represent in an acceptable 

way the Aluminum 2024-T351, different experimental values were taken into 

account [36]. 

The experimental values which were available are: 
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da/dN vs. ΔK values(1) 
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da/dN vs. ΔK values (2) 
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It needs to be noticed that the experimental values(1) are taken into account 

until a ΔK value at about 30 MPa√m, in fact the experimental specimens had a 

LSP stripe far 50mm from the centre line. For this reason it has been 

considered only the crack growth property of the specimen before the crack 

entered the LSP stripe which happens when ΔK is at about 35 MPa√m. 

Putting all together, it can be sketched an average trend which will be used as 

a reference material in simulations from now on: 

 

d
a/

d
N

 

ΔK 

da/dN vs. ΔK values (3) 

d
a/

d
N

 

ΔK 
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As it can be seen, it has been chosen to use the exponential trend as it seems 

to better represent the da/dN vs. ΔK experimental values. 

Finally, using the trend line equation: 

                  

It can be calculated 30 values of da/dN and ΔK to introduce in AFGROW in the 

tabular look-up crack growth rate in order to represent the material 

Aluminum 2024-T351 used in simulations. 

da/dN ΔK 

1,02E-04 10 

1,24E-04 11 

1,50E-04 12 

1,82E-04 13 

2,21E-04 14 

2,67E-04 15 

3,24E-04 16 

3,92E-04 17 

4,75E-04 18 

5,76E-04 19 

6,98E-04 20 

8,46E-04 21 

1,02E-03 22 

1,24E-03 23 

1,50E-3 24 

1,82E-03 25 

2,21E-03 26 

2,68E-03 27 

3,24E-03 28 

3,93E-03 29 

4,76E-03 30 
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5,77E-03 31 

6,99E-03 32 

8,47E-03 33 

1,03E-02 34 

1,24E-02 35 

1,51E-02 36 

1,83E-02 37 

2,21E-02 38 

2,68E-02 39 

Table IV-II da/dn and ΔK Values Used in Simulations 

 

 

4.5 Baseline Results 
 

Once all properties of the specimen are determinate, it is possible to run the 

simulation and to compare the results with the experimental ones [36] for the 

specimen 160x400 mm wide as there are no experimental results available for 

the specimen 400x800 mm wide. 
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The results achieved represent the behavior of the baseline specimen using an 

average da/dN vs. ΔK curve. All things considered, results achieved seem to be 

similar with the experimental ones, therefore the described procedure can be 

used to represent the behavior of an Aluminum 2024-T351 specimen without 

any treatment on it. 

 

 

4.6 Residual Stress Engineering 
 

Once Afgrow is proved to better depict the trend of non treated specimens, it 

can be used to introduce residual stress and to predict the enhancement in 

the crack growth behavior achieved after the Laser Shock Peening treatment. 

Afgrow can account for the existence of residual stresses by calculating 

additive residual stress intensities at user defined crack length increments. 
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Fig. IV-V Residual Stress Simulation 

It is possible to introduce normalized stress values in the crack plane and 

allow the Software to calculate residual stress intensity factors or enter pre-

determined residual K values. In this application, negative stress can be used 

since the residual K is merely added to the stress intensities caused by applied 

load. This will not change ΔK, but will change the stress ratio, which will result 

in a change in the crack growth rate. 

There are two methods available in Afgrow to calculate the residual stress 

intensities: 

 Gaussian Integration Method 

 Weight Function Solution 

The Gaussian Integration Method uses the point load stress intensity solution 

from the Tada, Paris and Irwin Stress intensity handbook to integrate a given 

2-D unflawed stress field to estimate K at user defined crack lengths 

increments. 
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Fig. IV-VI Cracked Model For SIF Evaluation 

      
          

 

   

 

       
 

   

         
 
       

 
  

 

     
 
  

 

      
 
  

 

    
 
  

 
 

The weight function solutions provided through the effort of Prof. Glinka 

(University of Waterloo, CA) will only be possible if a weight function solution 

is available for the geometry being analyzed. The currently available weight 

function solutions are given below: 

 

Fig. IV-VII Models For Which The Weight Function Solution is Available 
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The work plan is divided in three parts: 

I In the first one it is studied the crack growth improvement achieved 

with a LSP stripe wide 5 mm for specimens 160 and 400 mm wide  

II In the second part it is implemented the analysis for the two 

geometries when a 10 mm wide LSP stripe is used. 

III In the third part is studied how to balance the tensile and compressive 

residual stress which are introduced by the Laser Shock Peening 

treatment for different configurations. 

The aim of the work is to find the best achievement in the crack growth 

behavior reached with the lowest number of LSP stripes in order to reduce the 

manufacturing costs of specimens. 

It has to be noticed that in any case it was chosen to use an average value of 

residual stresses. It was decided to use the highest compressive residual 

stresses which allow the crack to propagate through the stripe. 

 

 

4.6.1 Specimen 160 mm Wide 

 

The first specimen studied is the one shown in figure: 

 

Fig. IV-VIII Specimen A 
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In the first step of the analysis it has been studied the crack growth behavior 

enhancement obtained with a LSP stripe 5 mm wide. For a very first approach, 

it has been considered a constant through thickness residual stress field. 

Several simulations were carried out, finally the best improvement in the 

crack growth behavior is reached when two LSP stripes 5 mm wide are placed 

as shown in the figure. 

 

Fig. IV-IX Specimen A: Residual Stress Configuration – 5 mm Stripes 
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The best improvement in the crack growth behavior is reached when the two 

stripes are placed really close from each other but further from the centre 

line. It has been tried to add a third stripes but the crack growth improvement 

was at about 10% more than the previous simulation. The improvement 

gained is not worth the cost of the stripe, so the best configuration at the 

lowest cost is the one with two LSP stripes as shown. 

In the second part of the simulation, LSP stripes 10 mm wide have been 

simulated, leading to a better crack growth behavior. The configuration 

reported in the next figure is the one which gained the best improvement. 

 

Fig. IV-X Specimen A: Residual Stress Configuration – 10 mm Stripe 
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In the specimen 160 mm wide it not possible to introduce more than one LSP 

stripe 10 mm wide due to the net section yield reached when the half crack 

length is about 60 mm. In any case, it can be notice that using wider stripes 

lead to a better crack growth behavior, in fact with only one LSP stripe the 

fatigue life of the specimen is almost doubled. 

Finally, the more the LSP stripe is placed near the centre line the better the 

crack growth behavior is. However, it is not possible to place the LSP stripe 

too close to the centre line. In fact, thinking about a real aircraft structure it is 

not known a priori where the crack would initiate and therefore the LSP 
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stripes should be equally spaced one from each other, and if the distance is 

too short the number of the LSP stripes would increase together with the 

manufacturing costs. 

In the second step of the work it has been studied how to balance the tensile 

forces and the compressive forces which are introduced by the LSP process in 

order to have a stress-free surface which will not be lead to any deformations. 

In the interest of doing that it was introduced a simplified residual stress 

profile with a linear piecewise trend and it was calculated the average force 

per unit of area in the tensile and compressive regions. The geometry used is 

shown in the figure. 

 

Fig. IV-XI Specimen A: Residual Stress Balanced Configuration – 10 mm Stripes 
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Using the residual stress profile shown in the picture it is possible to calculate 

the average force per unit area: 

 

Tensile Compressive 

Average Stress 42 MPa -73 MPa 

Total Area 1473 mm2 858 mm2 

Average Force 62613 N -62937 N 

Table IV-III Specimen A: Tensile and Compressive Average Force 

Results achieved using this residual stress field profile seem to present some 

issues. In fact, for the residual stress profile described previously there were 

not substantial differences when using the Gaussian Integration Method or 

the Weight Function Solutions, on the contrary, using this configuration lead 

to a totally different crack growth behavior, which is still not well understood. 

 

It seems that the fatigue life prediction follows two different path, although it 

was demonstrate that the Weight Function Solutions were compared to 

existing closed form solutions to prove the accuracy of the Weight Function 

Solutions method. 
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4.6.2 Specimen 400 mm Wide 

 

The second specimen studied is the one shown in figure: 

 

Fig. IV-XII Specimen B 

As it has been explained in the previous paragraph, in the first step of the 

analysis there were studied different configurations of LSP stripes 5 mm wide. 

Considering a constant through thickness residual stress field, the best 

improvement in the crack growth behavior is obtained with three stripes 

placed as shown. 

 

Fig. IV-XIII Specimen B: Residual Stress Configuration – 5 mm Stripes 
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The best crack growth behavior is reached when three stripes are placed as 

close as possible to each other. Moreover, if a fourth LSP stripe is added, 

there is an enhancement in the crack growth behavior compared to the 3-

stripes configuration. Nevertheless, at higher value of ΔK (i.e. circa 37 MPa√m) 

the crack growth behavior doesn’t change substantially and it is not worth to 

add more stripes as the cost of the stripe will not justify the slightly 

improvement in the crack growth behavior. 
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In the second part of the simulation, it was studied the crack growth behavior 

when one or more LSP stripes 10mm wide are used. The configuration shown 

is the one which lead to the best enhancement in the fatigue life. 

 

Fig. IV-XIV Specimen B: Residual Stress Configuration – 10 mm Stripes 
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In this case, it was possible to introduce two LSP stripe 10 mm wide because 

the net section yielding occurred far away from the last stripe, that is when 

the crack length is about 140 mm. 

It can be observed that using LSP stripes 10 mm wide, a better crack growth 

behavior can be achieved. However, it is recommended to reduce the number 

of LSP stripes in order to reduce the manufacturing costs. 

In this example it has been also studied the enhancement in the fatigue life 

achieved when a LSP stripe 20mm wide is used. In fact, it is clear that the 

more the residual stress area increases the better the crack growth behavior 

is. It is not possible to study this configuration in the previous geometry due 

to the limited space that the crack has to propagate. Considering a LSP stripe 

20mm wide, results achieved are shown. 

 

Fig. IV-XV Specimen B: Residual Stress Configuration – 20 mm  Stripe 
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In this case, due to the width of the LSP stripe it is necessary to take into 

account that it might be a small drop in the stress intensity at the centre of 

the stripe. 

Nevertheless, it is perfectly clear that the widest is the LSP stripe the better is 

the improvement in the crack growth behavior, in fact, using a stripe 20mm 

wide it is possible to triple the baseline fatigue life. 

In the second step of the work, as it has been explained in the previous 

paragraph, it has been studied how to balance the tensile forces and the 
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compressive forces in order to have a stress-free surface which will not be 

lead to any deformations. 

It was introduced a simplified residual stress profile with a linear piecewise 

trend and it was calculated the average force per unit of area in the tensile 

and compressive regions. The analysis were put in practice for the LSP stripe 

10 and 20 mm wide. 

The first geometry studied is reported in the figure: 

 

Fig. IV-XVI Specimen B: Residual Stress Balanced Configuration – 10 mm Stripes 

 

With the residual stress profile shown in the picture it is possible to calculate 

the average force per unit area: 
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Tensile Compressive 

Average Stress 51 MPa -80 MPa 

Total Area 3296 mm2 2107 mm2 

Average Force 168954 N -168533 N 

Table IV-IV Specimen B: Tensile and Compressive Average Force – 10 mm Stripes 

Results obtained using the balanced forces seems to present some issues as it 

was explained in the previous paragraph. In particular, when the simulation is 

running using the Gaussian Integration Method or the Weight Function 

Solutions two totally different crack  growth rates are surprisingly achieved. 

 

The same analysis was expanded for the LSP stripe 20 mm wide as reported in 

the next figures. 
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Fig. IV-XVII Specimen B: Residual Stress Balanced Configuration – 20 mm Stripe 

 

 

Tensile Compressive 

Average Stress 50 MPa -66 MPa 

Total Area 2265 mm2 1695 mm2 

Average Force 113258 N -112607 N 

Table IV-V Specimen B: Tensile and Compressive Average Force – 20 mm Stripe 
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4.7 Treated Specimen Results 
 

Results achieved in the first simulations seem to better represent the crack 

growth behavior of the treated specimen and seem to obtain an 

enhancement of the fatigue life property which is really promising. In 

particular, for both geometries studied, the improvement in the crack growth 

behavior enhances when the width of the stripe increases and the distance 

from the centre line and between two different stripes decreases. 

In any case, as it has already been above mentioned, the distance between 

two stripes or from the centre line cannot be too short, as this would lead the 

number of the LSP stripes on a real aircraft structure to increase whereas the 

aim of the analysis is to find the best achievement in the crack growth life 

with the lowest number of stripes. 

Finally, the best improvement in the crack growth behavior with the smallest 

number of LSP stripes for the specimen 160mm wide is the one with a LSP 

stripe 10 mm wide: 
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Fig. IV-XVIII Specimen A: Best Residual Stress Configuration 

This configuration causes an improvement of about 94%, that is almost 

doubled the life of the specimen. 

Concerning the specimen 400 mm wide the best configuration is: 

 

Fig. IV-XIX Specimen B: Best Residual Stress Configuration 

The LSP stripe 20 mm wide achieves an improvement in the crack growth 

behavior rate which triplicate the fatigue life of the specimen comparing to 

the non treated one. 

Nevertheless, even though these results seem to be really promising in 

improving the crack growth property of the specimen, it is necessary to 

remark that the compressive residual stress field need to be balanced with a 

tensile residual stress field, that it is exactly what happens in the reality as it 

can be seen from experimental measurement of the residual stress fields 

inside and outside the LSP stripe carried out by Open University, UK [36]. For 
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this reason, there were conducted further simulations where the balance of 

the tensile and compressive forces is taken into account. 

However, the difference noted in the crack growth rate when using the 

Gaussian Integration Method or the Weight Function solutions is not realistic, 

or at least it should not be so evident. 

 

 

4.8 Conclusion 
 

It is not clear the reason why the AFGROW software gives two different Stress 

Intensity Factor table when the two methods are used with the same stress 

intensity value used, but these results for sure don’t match the experimental 

results and cannot be reliable for further investigations.  

Moreover, it is still not comprehensible the AFGROW procedure to evaluate 

the crack growth prediction starting from a residual stress field manually 

introduced. It is not well understood which are the steps used by the software 

and how it converts the residual stress introduced manually into a slowdown 

of the crack propagation in the model. In fact, it seems that AFGROW is using 

some algorithms that generate an error in the crack growth prediction when 

two different methods are used. 

For this reason it has been decided to split the analysis in different steps, 

knowing exactly the theory which is beyond each step calculation. In 

particular, it has been chosen to restart simulations using the Finite Element 

analysis with the Abaqus software, which is a complete and reliable software 

already used successfully for different purposes, to evaluate the Stress 

Intensity Factor for different crack lengths. The second step would be to re-

use the AFGROW software to predict the crack growth behavior of the model, 

using as input a dimensionless parameter evaluated after the Finite Element 

Analysis which hopefully would avoid the unexpected behavior detected in 

the AFGROW software when a balanced compressive/tensile residual stress 

field is introduced in the model. 
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Chapter Five 

V. Introduction to the FEM Analysis  

 

 

With an increasing computing power, the finite element method has become 

one of the most important methods for the numerical solution of partial 

differential equations. Originally invented by engineering disciplines, the 

method has been given a thorough mathematical foundation over the past 

decades. 

Finite Element Analysis (FEA) was first develop in 1943 by R. Courant, who 

utilized the Ritz method of numerical analysis and minimization of variational 

calculus to obtain an approximate solutions to vibration systems. 

By the early 70’s, FEA was limited to expensive mainframe computers 

generally owned by the aeronautics, automotive, defense and nuclear 

industries. Since the rapid decline in the cost of computers and the 

phenomenal increase in computing power, FEA has been developed to an 

incredible precision.  

At present days, FEA modeling is possible to be used by any industries thanks 

to the supercomputers which are now available to produce accurate results 

for all kind of parameters. 

FEA can provide solutions to problems that would otherwise be difficult to 

obtain. In terms of fracture, FEA most often involves the determination of 

stress intensity factors, but it has applications in a much broader range of 

areas, as fluid flow and heat transfer. 
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5.1 Fundamentals of the FEM 
 

There are generally two types of analysis that are used in industries: 2-D 

modeling and 3-D modeling. While the 2-D modeling conserves simplicity and 

allows the analysis to be run on a relatively normal computer, it tends to yield 

less accurate results. On the other hand, 3-D modeling produces more 

accurate results while sacrificing the ability to run on all but the fastest 

computers effectively. Within each of these modeling schemes, the 

programmer can insert numerous algorithm which may take into account 

plastic deformation. Non-linear systems do account for plastic deformation, 

and many also are capable of testing a material all the way to fracture. 

In this work thesis, it has been used the FE software Abaqus/CAE which 

provides a complete modeling and visualization environment for 

Abaqus/Explicit and Abaqus/Implicit analysis products. 

FEA uses a complex system of points called nodes which make a grid called a 

mesh. The mesh is programmed to contain the material and structural 

properties which define how the structure will react to certain loading 

conditions. Nodes are assigned at a certain density throughout the material 

depending on the anticipated stress levels of a particular area. Regions which 

will receive large amounts of stress usually have a higher node density (i.e. a 

finer mesh) than those which experience little or no stress.  

FEA has become a solution to the task of predicting failure due to unknown 

stresses by showing problem area in a material and allowing designers to see 

all of the theoretical stress within it. This method of product design and 

testing is far superior to the manufacturing costs which would accrue if each 

sample was actually built and tested. 
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5.2 Practical Application of FEM 
 

Every FE analysis consists of model identification by node coordinate 

definition, element property definition, material definition, load definition 

and boundary conditions definition. Once all these information are given, the 

FE software tool derives the elements of the stiffness matrix and further 

defines the global stiffness matrix, the load vector and integrates the 

constraints to formulate a set of equation which represents the structure 

under analysis. Finally, the solver outputs the results (i.e. the deformations) of 

the set of equations. All other outputs, such as stresses or strains are 

calculated afterwards. 

For a complete FE analysis three basic steps which are independent from each 

other are necessary: 

 

Fig. V-I FE Analysis Steps 

 

 

5.2.1 Pre-Processing 

 

The pre-processing step involves building a mathematical model of the part 

which is analyzed and breaking it down into thousands of tiny pieces that are 

regularly shaped through a process called meshing. In this way, stresses and 

Pre-Processing 

(Meshing) 

Solving 

(Computer 
calculations) 

Post-Processing 

(Results 
Interpretation) 
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strains can be calculated for all the regular elements and then adding all those 

results together, it is possible to figure out the overall stress and strain within 

the part and the way it deform due to the applied loads. 

Element type, size, shape and quality does have a big effect on the accuracy of 

results though. In fact, the more elements are present, the more accurate 

results will be, but the analysis will take longer to run. So it is a matter of 

finding a balance between the accuracy of the model and the run time.  

Once the model is meshed, material properties need to be defined and 

applied to the meshed part. These properties include the Young’s modulus, its 

density, its elastic and plastic properties and more, depending on the 

complexity of the analysis. The next step in the pre-processing stage is to 

apply loads and boundary conditions to the model. 

 

 

5.2.2 Solving 

 

The solving stage’s purpose is to send the model off and let the computer do 

all the calculation work. The software goes through the meshed model and 

solves a set of mathematical equations for each of the nodes to figure out the 

overall stress and deformation of the part. 

These equations are based on the F=k∙x elastic equation for a spring. In FEA 

most structures can be considered as a big, complex spring, where the 

displacement needs to be calculated for each node of the model.  

 

Fig. V-II Spring Subjected to an Elastic Force 
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Once it knows the nodal displacements and how each element is deforming, it 

can also calculate stress within the element, determining if the part is going to 

break or not. 

 

 

5.2.3 Post-Processing 

 

Post-Processing is the part of the analysis process that involves reviewing and 

interpreting the results from the solver. The output is usually a deformed 

shape of the part with a stress intensity distribution based on colored 

contours where it is possible to easily understand if any ‘hot spots’ are 

present. 

The Post-Processing stage allows to understand how the stresses are 

developing and what changes can be made to improve the design in order to 

reduce areas of high stress and even to determine how much material can be 

removed from area of low stress, resulting in a stronger, lighter part. 

The final step is to determine whether a part will break by comparing the 

stress values from the analysis results to the strength of the material and to 

evaluate if any plasticity effect is present. Ideally, the whole aim of the 

analysis is to make sure the stresses within the part remain below the yield 

strength of the material. 
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5.3 FEM Simulation Strategy 
 

In the fracture mechanics field, the study of defects propagation in materials 

covers a predominant role. In fact, starting from the design phase, it is 

fundamental to know by means of theoretical and numerical model, how 

flaws propagate, in a stable or unstable manner, and in which direction. 

In the last decades, different theories were formulated, and starting from 

them it was possible to introduce several numerical techniques to reproduce 

a specific phenomenon in order to deeply understand its effects and its causes 

on a real structure.  

 

 

5.4 Objectives of the Work 
 

To investigate the mechanical behavior and predict the crack growth property 

of the material subjected to a residual stress field, Finite Element Method is 

first introduce by Braisted and Brockman with software Abaqus in 1999 [37]. 

In the past decade, several researchers have used Abaqus to analyze the laser 

generated shock waves propagating into different materials and some of 

these simulations have a close match with experimentally measured residual 

stresses. A lot of work has already been done on simulation of the Laser Shock 

Peening process via FEM analysis, simulating the geometrical constraints 

impact on Residual Stress distribution after LSP [38], or simulating the LSP 

process on curved surfaces [39], and so on. 

The effect of LSP induced residual stress on fatigue performance in different 

materials has been studied in the literature. However, the relationship 

between the induced residual stress field and the resultant change to the 

fatigue life has received little consideration. 

The aim of this thesis is indeed to study the enhancement of the crack growth 

behavior due to the introduction of compressive residual stress field after the 
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Laser Shock Peening treatment. It will not be studied the simulation of the 

process as it has already been done by several researches in the past decades. 

Therefore, the inputs of the work are the residual stress field intensity which 

are represented as a LSP stripe that is supposed to slow down the crack 

growth rate when passing through it, and the output of the FE analysis is the 

SIF table of the specimen at different crack lengths when a LSP stripe is 

present. 

 

 

5.5 Finite Element Analysis of Stress Intensity 

 Factors 
 

Finite Element Analysis (FEA) is a useful and verified method to obtain SIFs for 

widespread geometries and loading conditions which cannot be found or 

composed by standard cases in the literature. Currently, there are two FEA 

approaches existing to create a crack: 

 The “classic” FEM approach 

 The XFEM approach 

The XFEM approach (Enriched Finite Element Analysis) is the most innovative 

function which allows to study the crack growth along an arbitrary, solution-

dependent path without needing to remesh the model, so to reduce a lot the 

work effort. In reality, investigations have shown that the XFEM is still a 

research area and that it is not practical for certain geometrical boundary 

conditions to obtain accurate SIF solutions. For instance, any geometry with 

stress raisers (e.g. holes) could not contribute to accurate results for SIFs by 

using XFEM [40]. 

On the other hand, the “classical” FEM approach is capable to produce 

accurate results, but it is coupled with much bigger efforts, since a relatively 

fine and focused mesh must follow the crack front. 

Basically, there are three approaches for SIF evaluation via FEM: 
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I.    Direct Method: SIFs are obtained by numerical results of    stress, 

displacements or crack-opening displacements 

II.    Indirect Method: The stress intensity is obtained from its relation to 

other quantities such as elastic energy, work energy for crack-closure 

III. Cracked Element: A cracked element capable to represent stress 

intensities in the finite-element grid can be used to determine SIFs from 

nodal displacements along the periphery of the cracked element 

In this work thesis, the method which has been used is the indirect method. 

The indirect method uses the relationship existing between the elastic-energy 

present in a cracked structure, represented by the J-integral, and the stress 

intensity. In Abaqus the relation between the J-Integral and the SIF is the 

following: 

  
 

 
   

     
   

 

  
     

  

For plane stress, axisymmetric and three dimensional conditions. 

The FE mesh must be structured around the crack tip and the crack front to 

account for the contour integral calculations. Abaqus uses the crack front to 

compute the first contour integral using all of the elements inside the crack 

front and one layer of elements outside the crack front. It is possible to 

request more than one contour integral, in which case Abaqus adds a single 

layer of elements to the group of elements that were used to calculate the 

previous contour integral. 
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Fig. V-III Structured FE Mesh for Contour Integral Evaluation 

Moreover, if the geometry of the crack region defines a sharp crack, the strain 

field becomes singular at the crack tip, so it is necessary to include the 

singularity in the model for a small-strain analysis improving the accuracy of 

the contour integral and the stress and strain calculations. 

Finally, the mesh must allow the crack to open or close along the crack flanks. 

This needs to be implemented by generating double overlapping nodes along 

the crack flanks.  

Solutions for SIFs or J-integrals, respectively, can either be determined 

stationary for different crack sizes or by unzipping nodes as the crack is 

propagating through the FE grid. 
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5.6 Analytical Solutions for Through Centered 

 Crack in a Finite Plate 
 

Current stress intensity factor solutions for part-through crack in narrow finite 

width plates are really accurate. In this work thesis, it has been studied a M(T) 

specimen with a centered through crack which propagate through the width 

of the panel. 

 

Fig. V-IV Centered Through Crack Finite Plate 

The crack is characterized by the surface crack length 2a and it is a through-

thickness crack. The SIF along the crack front for this configuration under a 

remote uniform stress P normal to the crack pane is described by:   

             
  

  
                  

 

  
 

For a linearly varying stress distribution through the thickness, which does not 

vary with the in-plane coordinate x, the stress intensity factor KI is given by: 

                  

Where Pm and Pb are the membrane and bending stress components 

respectively, which define the stress distribution P according to: 
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P is to be taken normal to the prospective crack plane in an uncracked plate. 

The co-ordinate u is defined in the sketch above. 

The geometry function fb is equal to 1.0 at the free surface at u=0 (point A) 

and fb=-1.0 at u=B (point C), see sketch above. 

For a stress which is constant through the thickness but varies with the in-

plane dimension as P(x), 

   
 

   
       

   

   
 
   

  
 

  

 

 

 

5.7 Crack Growth Predictions 
 

Crack growth predictions are very complex in nature because of the vast 

amount of influences on the crack life by many different factors. However, 

any prediction model must be based on the assumption that flaws or small 

cracks are already present in the structure. 

Therefore, crack growth predictions represent only the crack propagation 

period, which is only a small step in the fatigue life of the components. 

 

Fig. V-V Fatigue Life of a Component 
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The main factor for the crack propagation period is the SIF and further the SIF 

range, completive. The use of the SIF range is mainly based on the similitude 

concept which will be described in the next paragraph.  

In addition, crack growth prediction models take into account other 

mechanism, e.g. crack closure behavior. There are several crack growth 

prediction models established by researches and engineers to accurately 

model crack growth for a specific configuration.  
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Chapter Six 

VI. FEM Modeling Strategy  

 

 

6.1 Work Purpose 
 

The aim of this work is to simulate the crack growth prediction of Aluminum 

specimen with a residual stress area defined by one or more LSP stripe.  

In order to simulate the crack growth behavior it has been used the AFGROW 

software which was already described in chapter IV. Unfortunately, it was 

proved that introducing compressive residual stress directly in AFGROW, a 

dissimilar crack growth prediction was obtained when two different methods 

were used, therefore it was decided to calculate the beta correction factor 

first using the Abaqus software and then introducing it in AFGROW, trying to 

avoid the different crack growth behavior. 

 

Fig. VI-I Work Flow Chart
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In order to obtain reliable results using the Abaqus software, it has been 

decided to predict the crack growth behavior of the baseline specimen and to 

compare it with the analytical results so that the reliability of the adopted 

analysis method will be proved. 

The second step of the work is to model the specimen with one or more LSP 

stripe and to evaluate the SIF values, and finally the beta correction factor, at 

different crack lengths. 

It has been carried out a linear elastic analysis with two different steps 

representing: 

1. The step where the residual stress field is introduced 

2. The step where the compressive and tensile stresses are redistributed 

in the model in order to achieve the equilibrium 

 

 

6.2 Modeling of the Baseline Specimen  

6.2.1 Geometry and Material 

 

For thin products the crack initiation is not important, mainly the crack 

propagation within the range of long cracks is a major design criterion. In this 

thesis, it has been studied the crack growth behavior in center-cracked 

tension M(T) Specimen with a width of 160 mm as it is a typical specimen for 

the investigation of the crack propagation behavior of fuselage materials [36]. 
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Fig. VI-II M(T) Specimen 

Due to symmetry reason it was possible to model in Abaqus only half of the 

specimen as shown in the picture: 

 

Fig. VI-III Baseline Geometry 

The material used for the simulation is the typical skin alloy Al 2024-T351 clad 

which shows a good machinability and surface finish capabilities, and it is a 

high strength material of adequate workability, successfully used for 

structural applications. Composition and mechanical properties are reported 

in the next charts and they are provided by the Aluminum Association, Inc. 
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Component Wt. % 

Al 90.7 – 94.7 

Cr Max 0.1 

Cu 3.8 – 4.9  

Fe Max 0.5 

Mg 1.2 – 1.8  

Mn 0.3 – 0.9 

Other, each Max 0.5 

Other, total Max 0.15 

Si Max 0.5 

Ti Max 0.15 

Zn Max 0.25 

Table VI-I Aluminum 2024-T351 Composition 

 

Mechanical Properties 

Hardness, Brinell 120 AA; Typical; 500 g load; 10 mm ball 

Hardness, Knoop 150 Converted from Brinell Hardness Value 

Hardness, Rockwell A 46.8 Converted from Brinell Hardness Value 

Hardness, Rockwell B 75 Converted from Brinell Hardness Value 

Hardness, Vickers 137 Converted from Brinell Hardness Value 

Ultimate Tensile Strength 469 MPa AA; Typical 

Tensile Yield Strength 324 MPa AA; Typical 

Elongation at Break 19 % AA; Typical; 12.7 mm diameter 

Elongation at Break 20 % AA; Typical; 1.6 mm Thickness 

Modulus of Elasticity 73.1 GPa 
AA; Typical; Average of tension and 

compression 

Ultimate Bearing 

Strength 
814 MPa Edge distance/pin diameter=2.0 

Bearing Yield Strength 441 MPa Edge distance/pin diameter=2.0 
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Poisson’s Ratio 0.33  

Fatigue Strength 138 MPa 
AA; 500’000’000 cycles completely 

reversed stress 

Fracture Toughness 26 MPa∙√m K(IC) in S-L Direction 

Fracture Toughness 32 MPa∙√m K(IC) in T-L Direction 

Fracture Toughness 37 MPa∙√m K(IC) in L-T Direction 

Machinability 70 % 0-100 Scale of Aluminum Alloys 

Shear Modulus 28 GPa  

Shear Strength 283 MPa AA; Typical 

Table VI-II Aluminum 2024-T351 Mechanical Properties 

In Abaqus, the material was simulated as a linear elastic material with the 

following characteristics:  

 Density: 2780 kg/m3 

 Young’s Modulus: 70500∙106 Pa 

 Poisson’s Ratio: 0.33 

 

 

6.2.2 Boundary and Loading Conditions 

 

In order to simulate the crack growth behavior of the specimen as close as 

possible to the real one, three different boundary conditions are introduced. 

In the picture it is possible to see the real machine used for the experimental 

test and the three boundary condition introduced in Abaqus to simulate the 

same conditions as the real machine. 
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Fig. VI-IV Fatigue Test Machine 

 

Fig. VI-V Model Boundary Conditions 

The three boundary conditions needs to take into account that one edge is 

totally clamped and every displacements and rotations are not allowed. 

Indeed, the opposite edge is allowed to move only in the load direction as it is 

the edge on which the load is applied. The last boundary conditions is 

introduced to take into account that only half of the specimen is simulated, 

therefore symmetry conditions of the panel needs to be considered. 

Moreover, it has been introduced a rigid body constraint on the edge where 

the load is applied. In fact, a rigid body constraint allows to constrain the 

motion of the edge to the motion of a reference point. Doing so, the relative 
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positions of the edge and the reference point remain constant throughout the 

analysis and it avoids any deformations of the free edge outside the loading 

plane. 

The model is loaded with a constant tensile stress of 70 MPa and it is 

simulated as a concentrated force in the reference point of 11200 N, taking 

into account that it is applied only to half of the specimen. 

 

Fig. VI-VI Model Loading Condition 

 

 

6.2.3 Crack 

 

Once the geometry and the loading conditions are defined , it is necessary to 

introduce the half crack in the model. The crack is introduced using the 

contour method integral and it is basically defined by the crack tip which 

corresponds to the first contour integral value and by the crack propagation 

direction . Moreover, as the geometry of the crack region defines a sharp 

crack and the stain becomes singular at the crack tip, it is indispensable to 

take into account the singularity at the crack tip in order to improve the 

accuracy of the contour integral evaluation, the stress intensity factors, and 

the stress and strain calculations.  
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If r is the distance from the crack tip, the strain singularity in small-strain 

analysis is: 

     
 

        for linear elasticity 

             for perfect plasticity 

      
 

   
     for power-law hardening 

The model used in this thesis simulates an elastic fracture mechanics 

application so it has been create a 1/√r strain singularity: 

 The midside node parameter is set to 0.25 to move the midside nodes 

on the sides connected to the crack tip to the ¼ point nearest the crack 

tip 

 The degenerate element control at the crack tip is set to collapsed 

element side, single node 

The crack tip is modeled with a ring of collapsed quadrilateral elements as 

shown in the figure: 

 

Fig. VI-VII Mesh Collapsed Elements 
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6.2.4 Mesh 

 

For the mesh module there were used two-dimensional elements. Abaqus 

provides several different types of two-dimensional elements, for instance for 

structural applications these include plane stress elements and plane strain 

elements: 

 Plane stress elements: they can be used when the thickness of a body 

or domain is small relative to its lateral (in-plane) dimensions. The 

stresses are functions of planar coordinates alone, and the out-of-

plane normal and shear stresses are equal to zero. 

Plane stress elements must be defined in the X-Y plane, and all loading 

and deformation are also restricted to this plane. This modeling 

method generally applies to thin, flat bodies. 

 Plane strain elements: they can be used when it can be assumed that 

the strains in a loaded body or domain are functions of planar 

coordinates alone and the out-of-plane normal and shear strains are 

equal to zero. 

Plane strain elements must be defined in the X-Y plane and all loading 

and deformation are also restricted to this plane. This modeling 

method is generally used for bodies that are very thick relative to their 

lateral dimensions. 

Due to the thickness of the specimen simulated, plane stress 

two-dimensional quadrilateral elements are used in the whole 

model. In particular, the Abaqus elements type is CPS4R, a 4-

node bilinear plane stress quadrilateral elements, reduced 

integration with hourglass control. 

Regarding the mesh control parameter, it has been chosen to 

divide the model in two different zones and mesh them 

separately. In particular, the pink zone (see picture) is mesh with 

quadrilateral element shape with the free technique control; 

while the yellow zone, which represent the area near the crack 
Fig. VI-VIII 
Meshing Areas 
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tip, is meshed with quadrilateral-dominated element shape with the sweep 

technique control. Moreover, also the element size is kept different in the two 

zones as it is not needed to have a finer mesh in the whole model, but only at 

the crack tip, where the singularity is present as it is the zone where higher 

stresses and deformations are present. For this reason, the element in pink 

zone are 2x2 mm wide, while the circle around the crack tip is meshed with 36 

elements in the circumference direction and 18 elements in the radius 

direction, which lead to an approximate size of 0.7x0.2 mm. 

 

Fig. VI-IX Model Mesh 
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6.3 Baseline Simulations Results 
 

The output of the simulation gives the value of the Stress Intensity Factor (SIF) 

for different crack length. In particular, for the analysis without any residual 

stress applied there were been carried out 15 simulations starting from a 

crack length of 5 mm until 50 mm. 

 

 

Fig. VI-X Baseline Simulation 

Abaqus calculates the SIF through the integration of the J-Integral, if the 

material response is linear. The J-Integral is related to the energy release 

associated with crack growth and is a measure of the intensity of deformation 

at a notch or crack tip. In the context of quasi-static analysis the J-Integral is 

defined in two dimensions as: 
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Where: 

─ Г is a contour beginning on the bottom crack surface and ending on 

the top surface, as shown in figure 

 

Fig. VI-XI Contour Integral 

─ The limit     indicates that Г shrinks into the crack tip 

─ q is a unit vector in the virtual crack extension direction 

─ n is the outward normal to Г 

─ H is given by 

      
  

  
 

And W is the elastic strain energy for an elastic material behavior. 

The Stress Intensity Factors KI, KII and KIII play an important role in the linear 

elastic fracture mechanics. They characterize the influence of load or 

deformation on the magnitude of the crack tip stress and strain fields, and 

measure the propensity for crack propagation or crack driving forces. 

Furthermore, the SIF can be related to the energy release rate for a linear 

elastic material through: 

  
 

  
          

Where: 

─ K=[KI, KII, KIII]
T 

─ B is the pre-logarithmic energy factor matrix 
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For homogeneous, isotropic material B is diagonal and the above equation 

simplifies to: 

  
 

   
   

     
   

 

  
    
  

          for plane stress 

    
 

    
   for plane strain 

Using the contour integral evaluation it is possible to calculate SIF values as an 

output of Abaqus simulations. SIF values achieved with the Abaqus software 

are shown in figure for different crack length. 

 

In order to check the reliability of the adopted analysis method, the FEM 

results needs to be compared to the analytical ones. The analytical results for 

a specimen with a centered through crack are present in the literature and 

they can be evaluated using the following formula: 
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Finally, it is possible to compare the analytical results with the FEM ones: 

 

It can be noticed that FEM results are in good agreement with the analytical 

ones, proving that the adopted analysis method is reliable. 
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6.4 Modeling of the Treated Specimen 
 

Once the adopted analysis method is proved to be reliable, the work has been 

focused on the simulation of the specimen after the Laser Shock Peening 

process in order to predict the Stress Intensity Factor due to the compressive 

residual stress introduced by the treatment plus the external load applied. 

As it was shown in the previous paragraphs, due to symmetry reasons only 

half of the specimen was sketched and the geometry, as well as the boundary 

conditions and the meshing section, was modeled in the same way as it was 

shown for the baseline specimen. In addition, it was necessary to reproduce 

the residual stress field induced by the Laser Shock Peening, presuming that 

the residual stresses value was already known by experimental 

measurements. 

It has been decided to simulate the crack growth behavior of a specimen with 

two symmetric LSP stripe 20 mm wide, placed at a distance of 20 mm from 

the centre line. 

 

Fig. VI-XIII Treated Specimen Geometry 

For a very first approach, the residual stress field is modeled as a constant 

stress field. It has to be noticed that this approach does not decrease the 

accuracy of the simulation, in fact it has been simulated a through crack 

model which doesn’t strictly depends on what it is happening on the surface, 

but it is influenced mainly by the stresses at the core of the material. For this 

reason, it was decided not to model the residual stress through the thickness, 

which would have lead to a very complicate and time-consuming simulation, 
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but to consider the average stress to which the specimen is subjected in order 

to achieve some very first results for the crack propagation behavior of the 

model. 

The compressive residual stress field is manually introduced and it is 

automatically balanced with a tensile residual stress by Abaqus analysis which 

calculates them in order to find the equilibrium for the whole model. 

 

Fig. VI-XIV Residual Stress Modeling 

As it can be seen in the picture above, the compressive residual stress field is 

introduced only in the y-direction (i.e. the loading direction) as constant 

predefined field with an average stress of -130 MPa, coming from 

experimental measurements of residual stress after the Laser Shock Peening 

treatment from Open University.  

In particular the model under investigation was peened by Politecnica de 

Madrid on both sides of the specimen with a laser power setting as shown in 

the chart: 

Overlapping 

distance [mm] 
Pulse/cm2 

Spot diameter 

[mm] 
Laser energy [J] 

0.75 178 2.5 2.2 

Table VI-III Laser Settings 

Using these power settings, the compressive residual stress was measured 

with the hole drilling method at the centre of the stripe as it is reported in the 

next figure. 
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Fig. VI-XV Residual Stresses Experimental Measurements 

It is still not clear why tensile stresses are measured on the surface, but in any 

case what is happening in the first 100 μm can be neglected because: 

 The material is clad with pure aluminum. Therefore the clad material 

has mechanical properties much lower than the substrate material; 

 The hole drilling technique is not suitable near surfaces stresses; 

 Crack growth behavior for through crack is influenced mainly by 

stresses at the material core and slightly at near surfaces. 

The average residual stress coming from the trend reported in the figure is 

about -130 MPa, reason why this value is used in the simulations. 

 

 

6.4.1 Crack Modeling  

 

The crack geometry is modeled in the same way as it was shown for the 

baseline specimen. However, during the simulation with the only compressive 

residual stress field applied, a deformation not compatible with the crack 

geometrical surface of the specimen occurred. In fact, if the crack is 

introduced without any contact definition, the two faces of the crack 

penetrate one into each other, as shown. 
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Fig. VI-XVI Crack Surfaces Penetration 

This unrealistic behavior needs to be avoid. In order to elude the penetration 

of the surfaces, two different approaches might be used: 

 Gap Elements Approach 

 Surface-to-Surface Interaction Approach 

 

 

6.4.2 Gap Elements Approach 

 

Gap contact elements can be used to define the contact interactions in the 

model. These elements require that matching nodes should be present on the 

opposite sides of the contact surfaces and allow only for small relative sliding 

between the surfaces. This latter assumption is usually consistent with the 

assumption of linear behavior that is built into a substructure [42]. Gap 

elements are defined by specifying the two nodes forming the gap and 

providing geometric data defining the initial state and the direction of the 

gap. 

In the case of interest, it is necessary to introduce as many gap elements as 

element nodes are in the compressive area so that the penetration of the 

surfaces is avoided. 
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Fig. VI-XVII Gap Elements Approach 

 

 

6.4.3 Surface-to-Surface Interaction Approach 

 

Abaqus does not recognize mechanical contact between part instances or 

regions of an assembly unless that contact is specified in the Interaction 

module; the mere physical proximity of two surfaces in an assembly is not 

enough to indicate any type of interaction between the surfaces. 

The surface-to-surface contact interaction describes contact between two 

deformable surfaces; in the analysis these two surfaces represent the upper 

and lower surface of the crack. It is necessary to define the master and slave 

surfaces and then it is assigned to them an interaction property which defines 

the tangential and normal behavior of the two surfaces avoiding penetration. 

   

Fig. VI-XVIII Surface-To-Surface Interaction Approach 
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It can be noticed that the two approaches are equivalent and they have the 

same SIF output values. For the sake of simplicity from now on it has been 

decided to use the surface-to-surface interaction module as it is a more 

intuitive and faster way to avoid the penetration of the two surfaces. 

 

 

6.5 Results With Only Residual Stress Applied 
 

In the next figure are reported the results obtained with the Abaqus software 

when only a compressive residual stress field is applied (without any external 

load) and when surface-to-surface interaction properties are used. 
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Fig. VI-XIX Simulations With Only Residual Stress Field Applied 

Finally, it can be evaluated the Stress Intensity Factor due to the only 

compressive residual stress field applied ( KRS) at different crack lengths. Here 

is shown an example of KRS at -130 MPa residual stress. 
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6.6 Results With External Load Applied 
 

Theoretically, since the stresses are linearly proportional to the stress 

intensity factor, it follows that the superposition principle also applies to crack 

problems. Therefore, it should be possible to calculate the SIF value of the 

model spitting the analysis into two steps. 

 

 

Fig. VI-XX Superposition Method 

However, it is not possible to use the superposition method in the range of 

crack lengths in which the contact elements interaction is defined because 

contact is a nonlinear phenomenon and the concept of linear superposition of 

results is not valid anymore. 

                         

This is the reason why further simulations were run including both the 

compressive residual stress field and the external load applied together. 

Moreover, it has to be noticed that the Abaqus software run the simulations 

with a static external load applied as it is considering a static crack which is 

not growing during the analysis, but in AFGROW a cyclic loading is considered 

since it is studied the crack growth behavior of the model and the crack needs 
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to grow at every cycle. In particular it is used a constant amplitude loading 

with an upper stress of 130 MPa and R=0.1. 

 

Fig. VI-XXI Constant Amplitude Loading Used in Simulations 

For this reason, the Keff, and at a later stage the beta factor, in Abaqus is 

estimated for a medium load in order not to overestimate or underestimate 

its effect in the cyclic loading analysis. 

 

Finally, all simulations were carried out with an external load applied of 70 

MPa and a constant residual stress field of -130 MPa for different crack 

lengths. 
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Fig. VI-XXII Simulations With Residual Stress Field And External Load Applied 
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The output of the Abaqus software gives the stress field at the crack tip for 

different crack length. In particular, it is possible to determine the Stress 

Intensity Factor by means of the J-Integral, providing that the material 

response is linear, which is related to the energy release associated with crack 

growth and it is a measure of the intensity of the deformation at the crack tip. 

The Keff was evaluated for different loading condition at different crack 

lengths, supposing that the same residual stress field is applied. 

 

 

 

6.7 Beta Correction Factor Evaluation 
 

The dimensionless factor β is called beta correction factor (also geometry 

correction factor, boundary correction factor or geometry factor) and 

depends on the geometrical and load differences of the real structure in 

respect to the infinite sheet under remote tension loading conditions. 

For an infinite sheet β=1 and K can be described as: 
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However, the    correction factor which is used in this work must not be 

confused with the geometrical β correction factor used in the LEFM and 

above-mentioned. In fact, the    correction factor is a dimensionless 

parameter which takes into account the residual stress distribution due to the 

LSP treatment and it is theoretically calculated as: 

   
        
     

 

It is introduced on purpose in this work to describe how the residual stress 

field gives benefit to the crack growth behavior of the model. It is clear that 

when     , the crack speeds up leading to a decrease in the fatigue life of 

the component, while when     , it is the case when the crack is inside the 

compressive residual stress area, the crack slows down leading to an 

improvement in the fatigue life of the component. The    correction factor 

was evaluated for different loading condition and crack lengths and it is 

reported below: 

 

It is still not well understood the reason why for lower external load applied 

the    correction factor is higher before the crack enters the stripe, i.e. the 

acceleration phase is more pronounced. In fact, it seems to be realistic that 

when a lower external load is applied the crack growth should be slower 

before it enters the stripe even though a slight acceleration should always be 

present.
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Chapter Seven 

VII. Crack Growth Prediction  

 

This chapter provides a meaning of calculating the fatigue damage evaluation 

of M(T) specimens after the Laser Shock Peening treatment is applied. 

In order to evaluate the crack growth behavior of the model under 

investigation, it has been decided to use the AFGROW software introducing 

manually the    correction factor evaluated as it was explained in the previous 

chapter. 

 

 

7.1 Crack Growth Prediction Using the Afgrow 

 Software 
 

AFGROW includes an ability to estimate SIFs for cases that may not be an 

exact match for one of the K solutions in the AFGROW library; for example, if 

it is creating to model a case with a higher/lower stress gradient. This is the 

case under examination, where a residual stress field induces a lower Stress 

Intensity Factor which may be translated into a    correction factor minor than 

one. 

In AFGROW it is possible to enter normalized stress values in the crack plane 

and allow the software to calculate beta correction factors or enter pre-

determined beta correction values. 
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Fig. VII-I Beta Correction Factor Introduction 

In this thesis, it has been decided to enter the beta correction factors 

manually, using the ones evaluated with the FEM analysis. 

The beta correction at the crack origin is set equal to 1.0 by default because 

the values are required to be normalized at the crack origin when stress 

values are input. The beta correction value at the crack origin can only be 

used as an interpolation limit since all cracks must have a finite length. 

The length dimension r is the radial distance from the crack origin. The input 

stress ratio values are shown for (r,0) along the y=0 axis which is the width 

direction 

Introducing the    correction factor into the AFGROW software it is possible to 

calculate the crack propagation rate due to the residual stress field induced by 

the LSP treatment. 

Before using AFGROW to predict the crack growth behavior for the specimen 

treated by LSP, it is necessary to set up the process to verify the reliability of 

the material parameters used. For this reason it has been firstly simulated the 

crack growth behavior of the baseline specimen.  

Nevertheless, if the material present in the AFGROW software library is used, 

the crack growth prediction shows a significant difference from the 

experimental results: 
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For this reason, it has been necessary to modify the material crack growth 

data so that the simulations results match as good as possible to the 

experimental ones. The material used for the simulation is the same one 

described in chapter IV which shows a good agreement compared to the 

experimental results. 

 

The tabular look up crack growth rate is used to introduce the material in the 

software and it allows the user to input their own crack growth rate curves. 

The tabular data utilizes the Walker equation on a point-by-point basis to 

extrapolate/interpolate data for any two, adjacent R-values.  
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In this work thesis, there were introduced data for a single R-value. In this 

case, data will be used regardless of the stress ratio for a given analysis. This 

may be useful in cases where rate data is scarce and the user is only 

interested in predicting constant amplitude loading, which is the analysis 

under investigation.  

 

 

7.2 Results 
 

Using as input the material data reported in the paragraph 4.4.3 and the    

correction factor evaluated via FEM analysis, it is possible to run simulations 

with the AFGROW software and to predict the crack growth behavior of the 

specimen after the Laser Shock Peening treatment. 

 

Loading Condition Residual Stresses    evaluated at 

130 MPa -130 MPa 70 MPa 

Table VII-I Simulation Parameters 
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However, it can be noticed that the acceleration at short crack lengths is way 

too high compared to the experimental results, as it is possible to observe 

from the da/dN vs. ΔK curve. 

 

This unexpected behavior is due to the fact that at short crack lengths the    

correction factor evaluated has quite high values which leads to a pronounced 

acceleration before the crack enters the compressive residual stress area. 

Nevertheless, it is possible to notice that this behavior is not present in the 

real model. In fact, when the baseline specimen is compared to the treated 

specimen, no relevant acceleration is detected before the crack enter the LSP 

area:  
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It is evident from the above chart that no acceleration is present before the 

crack enters the stripe as the da/dN values are really close to the baseline 

ones. Moreover, when ΔK≈40 MPa√m the crack propagation rate starts to 

grow again; this effect is due to the fact that the remaining net section is 

totally yielded and the experimental tests are no valid anymore. 

Taking into account these considerations, further simulations were run with a 

modified    correction factor which considers that no acceleration is present 

before the crack enters the compressive residual stress field and that the test 

is not valid when ΔK reaches 40 MPa√m values.  
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Simulation run with the modified    correction factor is shown in the next 

figures, including the crack propagation rate and the da/dN vs. ΔK curve. 

 

 

The good correlation of the crack growth behavior of numerical and 

experimental results induced by LSP has been verified for the adopted analysis 

method and the configuration used. These results labels the finite element 

model as a reliable model to simulate the residual stress field after the Laser 

Shock Peening process. 

Crack Propagation Rate 

Specimen 2.9 Specimen 2.10 Afgrow Simulation 

da/dN vs ΔK 

Afgrow Simulation Specimen 2.9 Specimen 2.10 



 
Chapter Seven                                                                 Crack Growth Prediction   d 

 
106 

 

The results of the analysis, conducted by means of the FE simulations 

procedure described and confirmed by experimental measurements, proofs 

that the LSP treatment results in a significant improvement in fatigue behavior 

in metallic specimens, even for high external loads applied. 

 

 

 

 

Specimen 2.9 Specimen 2.10 Baseline Afgrow Simulation 
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Chapter Eight 

VIII. Conclusion And Future Work    

 

 

8.1 Conclusion 
 

Laser Shock Peening is a novel alternative surface processing technology to 

conventional stress field induction techniques which promises considerable 

improvement in the development of residual stress fields in aircraft 

construction. 

From the results of the present work, LSP is confirmed as an effective surface 

treatment capable of introducing significant compressive residual stress in 

fatigue sensitive areas of metallic structures, improving their fatigue life. 

The application of the numerical FE simulation to evaluate the Stress Intensity 

Factor value for different crack lengths and the prediction of the crack growth 

behavior showed to achieve reasonably results for the specimen under 

investigation. In fact, the slope of the crack growth rate predicted at the 

residual stress field is really similar to the one achieved by the experimental 

tests. 

Nevertheless, it seems that the AFGROW software predicts an acceleration 

before the LSP stripe which is way too high compared to the tests one. This 

phenomenon might be caused by the interaction between the plastic zone at 

the crack tip and the tensile residual stresses area which is present before the 

LSP stripe as a consequence for the equilibrium of the whole model, which is 

not considered in this work as all simulations were carried out as linear elastic 

analysis that don’t take into account the plasticity effects. 
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Moreover, it is not well understood the reason why the acceleration is more 

pronounced for lower external load applied when the crack front is 

approaching the compressive residual stress field which causes a higher    

correction factor at short crack lengths. This behavior would mean that the 

displacement of crack surfaces would be higher when a lower external load is 

applied and that the stresses distribution around the crack is greater. 

However, this is a non realistic behavior which is not detected during the 

experimental tests and it is needed to be avoided in order to simulate the 

crack growth behavior as close as possible to the real one. 

Simulations globally show a good fitting of the experimental results proving 

the adopted strategy to be reliable for the specimen under investigation. 

 

 

8.2 Future Work 
 

Further work might be focused to understand the reason why the 

accelerations phase is so pronounced comparing to the experimental results. 

The key point to explain this effect seems to rely in the study of how the 

plastic zone at the crack tip interacts when a tensile or compressive residual 

stress field is applied around it. Further simulations using plastic analysis could 

clarify  better why the crack doesn’t accelerate before it enters the Laser 

Shock Peening stripe. 

Moreover, a study of the crack growth behavior for different geometry of the 

specimen (e.g. 3D cases) and for different position of the LSP stripe would be 

helpful to recognize if the adopted analysis method is still valid for different 

geometry conditions. 

Finally, it should be proved that the same strategy can be used also in 

complex structure (e.g. curved stiffened panel) in order to move the aim of 

the work from a coupon level to a real aeronautical structure level.
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