
Alma Mater Studiorum - Universit�a di Bologna

SCUOLA DI INGEGNERIA E ARCHITETTURA

Dipartimento di Informatica - Scienza e Ingegneria
Corso di Laurea Magistrale in Ingegneria Informatica

TESI DI LAUREA
in

ARCHITETTURE E PROTOCOLLI PER RETI SPAZIALI M

Erasure Error Correcting Codes Applied to
DTN Communications

CANDIDATO:
Pietrofrancesco Apollonio

RELATORE:
Chiar.mo Prof.
Carlo Caini

CORRELATORI:
Ph. D. Tomaso de Cola
Ph. D. Gianluigi Liva

Anno Accademico 2012/2013
III Sessione

C O N T E N T S

1 abstract in italian 1

2 introduction 5

3 space communications 7

3.1 Overview 7

3.2 Standards 7

3.3 DTN Implementations 8

3.3.1 DTN2 8

3.3.2 ION 8

3.4 LTP 9

3.4.1 Link Service Adapter 11

4 erasure codes 13

4.1 Main Principles 13

4.2 Codes Used 15

5 erasure code libraries 17

5.1 Overview 17

5.2 Libec 18

5.2.1 General Description 18

5.2.2 Data Structures 18

5.2.3 Column Content and Padding 20

5.2.4 API Function Descriptions 20

5.3 Libecpackets 22

5.3.1 Description 22

5.3.2 Packet description 23

5.3.3 Data Structures 25

5.3.4 API Function Descriptions 26

6 eclsa 29

6.1 General Description 29

6.2 ECLSO 30

6.2.1 General Description 30

6.2.2 Matrix Padding 31

6.2.3 Interaction with LTP 31

6.2.4 Threads Interaction Diagram 32

6.2.5 Data Structures 33

6.2.6 Function Descriptions 34

1

6.2.7 Invocation Method 36

6.3 ECLSI 37

6.3.1 General description 37

6.3.2 Forcing the Decoding Procedure 38

6.3.3 Threads Interaction Diagram 38

6.3.4 Data Structures 39

6.3.5 Function Descriptions 41

6.3.6 Invocation Method 42

7 performance analysis 45

7.1 General Description 45

7.2 Software Used 46

7.3 Scenarios and Testbed Configuration 46

7.4 Preliminary Tests 48

7.4.1 Uncorrelated Channel and UDPLSA 48

7.4.2 Uncorrelated Channel and ECLSA 51

7.4.3 Correlated Channel and UDPLSA 52

7.4.4 Correlated Channel and ECLSA 52

7.5 Real Scenarios 53

7.6 Green Experiments Results Analysis 56

7.7 Planned Test with Red Part Data 56

8 conclusions 59

8.1 Future works 59

2

A C R O N Y M S

DTN Delay Tolerant Networking

ARQ Automatic Retransmission reQuest

EC Erasure Codes

ION Interplanetary Overlay Network

API Application Programming Interface

LTP Licklider transmission protocol

LSA Link Service Adapter

LSI Link Service Adapter Input

LSO Link Service Adapter Output

3

1
A B S T R A C T I N I TA L I A N

La realizzazione di protocolli e di tecnologie di comunicazione applicabili in
ambienti spaziali presenta notevoli problemi implementativi, principalmente
se sono destinati ad essere utilizzati a livello fisico o a livello di trasporto. In
quest’ultimo caso, infatti, la mancanza di connettività continua, i ritardi molto
lunghi nella trasmissione dei segnali e le frequenti perdite penalizzano molto
le comunicazioni sul canale.

In ambienti che presentano i problemi sopraccitati, i normali protocolli della
suite TCP/IP sono difficilmente utilizzabili[1]. Inoltre, per la criticità delle
comunicazioni effettuate nello spazio, l’affidabilità è un requisito fondamentale,
non essendo possibile perdere informazioni o riceverle con ritardi spropositati
a causa dei problemi presenti sul canale.

In protocolli utilizzati in ambiti terresti, come ad esempio TCP, l’affidabilità
è solitamente ottenuta per mezzo di metodi basati su meccanismi di ARQ (Au-
tomatic Retransmission reQuest), che però non presentano buone prestazioni in
caso vi siano lunghi ritardi sul canale di trasmissione[2]. Un altro metodo per
ottenere affidabilità, utilizzato però a livello fisico, è l’inserimento di Forward
Error Correction codes (FEC). Questi codici si basano sull’inserimento di infor-
mazioni di ridondanza[2][3] direttamente nel flusso dati trasmesso. Nei canali
binari, dove singoli bit vengono invertiti a causa del rumore presente, questa
ridondanza viene utilizzata per riordinare le informazioni originali, mentre,
in caso di canali binari dove i bit trasmessi non vengono modificati ma persi
(Binary Erasure Channels), la ridondanza viene invece utilizzata per recuperare
queste informazioni. I codici FEC appositamente progettati per quest’ultimo
tipo di canale vengono solitamente chiamati Erasure Codes (EC). Nonostante
essi siano stati studiati, in primo luogo, per canali binari, gli EC possono essere
utilizzati anche a livelli superiori, dopo essere stati opportunamente modificati
per lavorare su interi pacchetti anziché su singoli bit[4]. Gli EC che lavorano
a livello di pacchetto offrono una interessante alternativa ai meccanismi di
ARQ, principalmente quando sono presenti dei lunghi ritardi sul canale di
trasmissione.

Il protocollo TCP non è particolarmente efficiente quando è utilizzato in
canali con lunghi tempi di propagazione. In TCP infatti, per assicurare la
corretta trasmissione dei dati, si fa largo uso di feedback inviati dal ricevi-
tore (ACK). Come in tutti i protocolli di questo tipo, con TCP si ottengono
scarse prestazioni quando i tempi di risposta si allungano. Per cercare di
risolvere questi problemi, è stato appositamente progettato un nuovo proto-
collo, chiamato Licklider Transmission Protocol (LTP). Il suo scopo principale

1

è quello di sostituire TCP (ma anche a UDP) quando si lavora in ambienti
spaziali dove, date le gradi distanze da coprire, i tempi di propagazione sono
molto lunghi. I dati trasmessi con LTP possono essere di due tipologie: Red
and Green. Se vengono utilizzati dati di tipo Red, si richiede che essi siano
trasmessi affidabilmente. Per questo motivo, LTP utilizza un protocollo basato
su ARQ per risolvere eventuali errori. I vantaggi di LTP sono però che questo
nuovo protocollo richiede meno feedback da parte del ricevente. Infatti è
solitamente richiesto un singolo ACK per tutti i dati Red di un "blocco". In
pratica, si utilizzano blocchi di dati da confermare molto più grandi di un
pacchetto TCP. Un ulteriore vantaggio di questo protocollo è il fatto che il tasso
di trasmissione dei dati è fissato a priori e che, quindi, non viene influenzato in
nessun modo da lunghi ritardi. Seppur migliore di TCP, basandosi comunque
su ARQ, il bisogno di ritrasmissioni può ancora incidere negativamente sulle
performance in caso di ritardo e tasso di perdita molto alti. Per ovviare a questi
problemi, in LTP si può utilizzare la seconda modalità di trasmissione dei dati,
che invece è chiamata Green. In questo caso, il protocollo non si preoccupa di
rendere affidabile la trasmissione dei dati, comportandosi similmente a UDP.
La mancanza di affidabilità è però bilanciata dal fatto che la comunicazione
è resa più veloce, non venendo in questo caso aggiunti ulteriori ritardi nella
trasmissione delle informazioni. Un altro importante vantaggio, nel caso che
i dati siano inviati utilizzando Green, è il fatto che il protocollo può essere
utilizzato anche su canali monodirezionali dove, ovviamente, non è possibile
pretendere la trasmissione di dati di controllo sul canale di ritorno. Per tutte
queste ragioni, LTP è il candidato ideale ad essere esteso con le funzionalità
fornite dagli EC. Infatti, in entrambe le modalità di trasmissione, l’utilizzo di
questi codici può portare a miglioramenti delle performance. Se si utilizza
Red, il numero di ritrasmissioni è limitato al solo caso in cui gli EC non ries-
cano a recuperare tutte le informazioni perse, diminuendo di conseguenza il
tempo necessario al corretto invio dei dati. In caso di Green, invece, l’utilizzo
dei codici a correzione di errore può aggiungere resistenza alle perdite, con-
siderando comunque che, teoricamente, l’affidabilità non può essere ottenuta
senza utilizzare feedback.

Lo scopo di questa tesi è l’applicazione degli EC al protocollo LTP, partendo
dagli studi preliminari e dall’implementazione dei codici veri e propri compiuti
da due dei miei supervisori: Tomaso de Cola and Gianluigi Liva. Il lavoro svolto
per questa tesi può essere diviso in tre fasi. Prima di tutto è stato necessario
studiare il protocollo LTP e progettare le modifiche da apportare a quest’ultimo
per aggiungere il supporto ai codici a correzione di errore (queste fasi vengono
trattate nei Capitoli 3 e 4). La seconda fase è stata l’implementazione del
codice necessario e la fase di test preliminari (Capitoli 5 e 6). Infine, sono
stati compiuti degli esperimenti su simulazioni di scenari reali, per valutare i
miglioramenti alle performance ottenuti utilizzando l’estensione del protocollo
LTP implementata (Capitolo 7). Le prime due fasi sono state svolte a Monaco

2

di Baviera presso il Deutsches Zentrum für Luft- und Raumfahrt (DLR), ossia
l’agenzia spaziale tedesca, grazie ad una borsa di studio di 6 mesi offertami
dall’istituto appena menzionato. L’ultima fase è stata invece svolta presso
l’Università di Bologna. Sia il mio relatore che i miei correlatori mi hanno
supportato per tutta la durata del lavoro di tesi, coordinando il mio lavoro.

Il codice è stato implementato per una versione del DTN Bundle Protocol
(BP) sviluppata dal NASA-JPL (National Aeronautics and Space Administration,
Jet Propulsion Laboratory - California Institute of Technology). Il nome di questa
implementazione è Interplanetary Overlay Network (ION). La nostra speranza è
che il codice sviluppato venga inserito nelle prossime release di tale software.

I risultati dei test preliminari svolti per questa tesi sono stati presentati
al Consultive Committee For Space Data Systems (CCSDS) Spring Meeting[5]
nel Giugno 2013 ed anche al Consultive Committee For Space Data Systems
(CCSDS) Fall Meeting[6] nell’Ottobre 2013. I risultati finali, inclusi in questa
tesi, verranno presentati al prossimo CCSDS Meeting.

3

2
I N T R O D U C T I O N

The space environment has always been one of the most challenging for
communications, both at physical and network layer. Concerning the latter,
the most common challenges are the lack of continuous network connectivity,
very long delays and relatively frequent losses. Because of these problems,
the normal TCP/IP suite protocols are hardly applicable[1]. Moreover, in
space scenarios reliability is fundamental. In fact, it is usually not tolerable
to lose important information or to receive it with a very large delay because
of a challenging transmission channel. In terrestrial protocols, such as TCP,
reliability is obtained by means of an ARQ (Automatic Retransmission reQuest)
method, which, however, has not good performance when there are long
delays on the transmission channel[2].

At physical layer, Forward Error Correction Codes (FECs), based on the inser-
tion of redundant information[2][3], are an alternative way to assure reliability.
On binary channels, when single bits are flipped because of channel noise,
redundancy bits can be exploited to recover the original information. In the
presence of binary erasure channels, where bits are not flipped but lost, re-
dundancy can still be used to recover the original information. FECs codes,
designed for this purpose, are usually called Erasure Codes (ECs). It is worth
noting that ECs, primarily studied for binary channels, can also be used at
upper layers, i.e. applied on packets instead of bits[4], offering a very interest-
ing alternative to the usual ARQ methods, especially in the presence of long
delays.

TCP is not a good choice on channels with large delays for a variety of
reasons. Without entering into too many details, it is enough to recall that
many features of TCP are based on the receiver’s feedback (i.e. on ACKs). As
in all feedback protocols, performance is severely impaired when the feedback
loop time becomes large, which is obviously the case of space environments.
As an alternative to TCP (and also to UDP), the Licklider Transmission Protocol
(LTP) has been created to obtain better performance on long delay links.

Data transmitted with LTP can be divided into two parts: Red and Green.
To enforce reliability on the Red part data, LTP uses ARQ methods, as TCP,
to recover errors occurred during the transmission. The advantage over TCP
is that LTP is less "chatty" than TCP, as it basically requires just an ACK for
the entire Red part of a "block" (an LTP packet usually much larger than a
TCP packet). Moreover, its transmission rate is fixed a priori, so that it is
not influenced by the long delay. However, although performance in LTP are
better than TCP, the need of retransmissions can still have a negatively impact

5

if the channel has long delays and losses. By contrast, LTP does not enforce
any reliability on the Green part data, thus behaving like UDP. The lack of
reliability is counterbalanced by the advantage of not adding further delays
in transmitting the information. Green parts can also be used with mono-
directional channels because of the absence of the acknowledgement flowing
back from the destination to the source. For the reasons just mentioned, LTP
appears as an ideal candidate for the application of ECs at upper layers. In
both Green and Red parts, the use of ECs can lead to better performance. In
fact, using this family of codes, retransmissions are limited in case of Red
(except when ECs fail, i.e. rarely and only in very unfavourable conditions)
while, in case of Green, ECs add robustness against losses (considering that
absolute reliability cannot be obtained without feedbacks).

The aim of this thesis is the application of ECs to LTP. I started from the
preliminary studies and from the design of the ECs, both carried out by two of
my supervisors: Tomaso de Cola and Gianluigi Liva. I have also benefited by the
great experience on Delay-Tolerant Networking (DTN) space communications
of my supervisors. This work has involved three logical phases. First, the
study of the protocols and the design of the modifications to be introduced
into the original LTP code (that will be debated in Chapter 3 and Chapter 4),
then, their actual implementation and testing (Chapter 5 and Chapter 6),
finally, the evaluation of performance improvement achieved by means of the
implemented LTP extension on realistic space scenarios (chapter Chapter 7).

The first two phases have been carried out at the Deutsches Zentrum für
Luft- und Raumfahrt (DLR), the German Aerospace Agency, thanks to a 6

month grant, generously offered to me by this institution. This thesis has been
finally completed at the University of Bologna. In these three steps, both my
Academic supervisor and the two DLR supervisors have supported my work
coordinating my efforts.

The code I developed has been included into the implementation of DTN
Bundle Protocol (BP) made by NASA-JPL (National Aeronautics and Space Ad-
ministration, Jet Propulsion Laboratory - California Institute of Technology), called
Interplanetary Overlay Network (ION). Our hope is to have our LTP extension
included into the next official ION release.

Preliminary results of this work has been presented at the Consultive Com-
mittee For Space Data Systems (CCSDS) Spring Meeting[5] in June 2013 and at the
Consultive Committee For Space Data Systems (CCSDS) Fall Meeting[6] in October
2013. The final results included in this thesis will be presented at the next
CCSDS Meeting.

6

3
S PA C E C O M M U N I C AT I O N S

3.1 overview

In 2002, the Delay Tolerant Networking Research Group (DTNRG), which is part
of the Internet Research Task Force[7] (IRTF), was formed. It is a long term
research group in charge of the development of a new architecture and new
protocols to cope with the problems of "challenged networks", i.e. of networks
where the standard TCP/IP protocols cannot operate correctly because of the
presence of one or more of the following challenges: long delays, high loss, link
asymmetry, disruption, lack of end-to-end connectivity. Among challenged
networks, there are, in a prominent role, space communications, which are
affected by many of the problems just mentioned. In 2003 a first draft was
published and after some years a new RFC of a standard architecture[8] and a
suite of protocols called Delay-Tolerant Networking (DTN) was finally released.
After some time the Consultive Committee For Space Data Systems[9] (CCSDS), a
multi-national forum composed of the major space agencies of the world (i.e.
NASA, ESA, DLR), started to work on these RFC (i.e. BP, DTN, LTP) to use
them as standard protocols for communications in future space missions.

3.2 standards

The Delay- and Disruption-Tolerant Networking[8] (DTN) architecture introduces
an overlay protocol that interfaces with either the transport layer or lower
layers. In this architecture, each node can store information for a long time
before forwarding it and, thanks to these features, DTN is particularly suited
to cope with the problems previously discussed. DTN is also essential in
"data mule applications", characterized by the absence of a continuous path
between the source and the destination. The essential point is that in such
an overlay, delays and disruptions can be handled at each DTN "hop" in a
path between a sender and a destination. Nodes on the path can then provide
the storage necessary for application data before forwarding them to the next
node on the path. This architecture confines the end-to-end features of the
transport layer to homogeneous network segments (namely, A, B and C in
Figure 1), while end-to-end data transfer, across the heterogeneous network, is
provided by the Bundle Protocol[10] (BP), which is an implementation of the
DTN architecture. Blocks of data transmitted by the BP are called bundles. A
bundle is a message that carries application layer protocol data units (APDU),

7

i.e. sender and destination names, and any additional data required for end-to-
end delivery. BP can be interfaced with other protocols underlying it through
Convergence Layer Adapters (CLAs), as can be seen in Figure 1. Various CLAs
have been defined, including the ones for TCP, UDP, and LTP[11][12][13]. The
last protocol will be explained in Section 3.4.

Figure 1: Stack with BP Layer

3.3 dtn implementations

The most important implementations of the BP are:

• DTN2

• Interplanetary Overlay Network (ION)

3.3.1 DTN2

This implementation provides a framework for experimentation, extension,
and real-world deployment. The code is instrumented with logging both for
debugging and operational purposes. The core implementation is written in
C++ using a framework called Oasys, that is designed to provide a uniform
interface to the DTN2 code hiding operating system and other support package
differences. More information can be found on the official page[14], and the
source code, released as free software, can be downloaded on Sourceforge[15].

3.3.2 ION

Interplanetary Overlay Network (ION) is a BP implementation by NASA Jet
Propulsion Laboratory (JPL) and other contributors (i.e. Ohio and other Uni-

8

versities) explicitly focused on deep space applications[16]. One of the most
important peculiarity of ION is that it contains an implementation of the LTP
protocol (explained later, in Section 3.4) and Contact Graph Routing (CGR),
a DTN routing for deterministic intermittent connectivity typical of space
environments. CGR is built on scheduled links ("contacts"), which in turns
are actually enforced only for LTP. Unlike DTN2, ION does not implement
reactive bundle fragmentation, although it can cope with bundle fragments,
as requested by RFCs. Similarly to DTN, the ION code is open source and
available from Sourceforge[17]. The latest release is 3.2.0. I used ION as BP
implementation, because my work is closely related to the LTP protocol.

3.4 ltp

LTP was designed to provide retransmission-based reliability over links with
extremely long RTT and/or frequent interruptions in connectivity. LTP can
be used to serve as a reliable convergence layer for BP over single-hop in all
these scenarios. A peculiar characteristic of LTP is its minimum "chattiness",
which makes it suitable for deep space point-to-point links. In fact, there is no
connection set-up, thus saving some RTTs in the initial phase. Besides, no real
congestion or flow control involving exchange of information between nodes
is implemented in the protocol.

A unit of data sent by LTP is called LTP block (well explained after) and it
identifies a communication session (LTP session) between two corresponding
LTP nodes. For each LTP Block a new LTP thread, is initiated and the maximum
number of possible parallel sessions poses a requirement of corresponding
storage capacity at a node. An LTP session is always unidirectional, therefore
LTP peers can only achieve a bidirectional exchange of application data by
using two independent LTP sessions. The configuration of maximum number
of parallel sessions is done statically, e.g. during space mission planning
phase. Finally, LTP may also implement a rate-based congestion control, which
avoids the saturation of network node buffers, based on transmission link
configuration, which is notified to each LTP node by means of a periodically
updated contact table. In the case of ION, for each link between two nodes,
this table contains the propagation delay, the available rate and the contact
durations, also used by LTP to schedule data transmission. In this way two
LTP nodes can send and receive data as soon as (and as long as) the link
between them is available, which leads to optimal utilization of the contact
window.

Processing of data units from the Bundle Layer to the underlying layer is
done in three steps: bundle aggregation into one block, block segmentation and
segment transmission. First, the BP LTP convergence layer adapter combines
the bundles from the BP layer into one LTP block, which is in turn forwarded

9

to LTP protocol entity. Block size is selected according to space mission
requirements. Next, the LTP protocol entity divides any incoming block into
a number of LTP segments, whose maximum size depends on the underlying
layer protocol to which they are finally forwarded. For instance, if the LTP
layer is on top of UDP, each segment will be a UDP Datagram (max 64kB,
usually about 1500B).

An LTP block consists of two parts: Red and Green. The former requires a
reliable transfer, like TCP, the latter, like UDP, does not. The red segments must
be reliably delivered to destination, by using NAK-based ARQ mechanisms. By
contrast, the green ones are just sent without any retransmission mechanism.
A block contains both a Red and a Green part or only one of the two. The
way reliability levels are assigned to blocks or part of blocks is implementation
dependent, although appropriate mapping from the Extended Class of Service
(ECOS)[18] could be used. Data transfer between two LTP peers also includes
the exchange of administrative reports from destination to sender, to solicit
the retransmission of the missing Red segments or to notify correct block
or segment reception. Check-Point (CP) segments can be issued from the
sender asking the receiver to send a Report Segment (RS) to acknowledge all
received segments, or alternatively to inform the sender about the missing
segments (i.e., NAK). In both cases, the sender will eventually generate a
Report Acknowledgement (RA), followed by retransmitted segments in case of
losses. Finally, there are some dedicated flags in the last segment of the Red
section, or of the block, respectively. These flags are: the End of Red Part
(EORP), which signals the completion of Red part and the End of Block (EOB)
indicating the end of the entire block.

A typical LTP session is shown in Figure 2. In this example, an LTP block,
made up of nine segments (six Red and three Green), is transmitted over a
deep space link. The segment #3 is flagged as CP and the Receiving LTP
Engine must reply to the sender with a RS that, in turn, has to acknowledge it
with the RA segment. The last Red segment (#6), which is flagged as both CP
and EORP, is lost during the transmission. The sending LTP engine starts a
timer, when it ends (in this case, after the transmission of the Green part) it
will be retransmitted. As we can see in the figure, the receiving LTP client is
informed of the end of the transmission only when all the Red segments are
received. Green part segments, as explained before, have a different behaviour.
In fact, as we can see in the figure, the LTP client on the receiver side is
informed whenever a Green segment is received. Moreover, Green segments
are not retransmitted when lost, as we can see for the segment #8. When all
the segments are received, the LTP session can be closed at both ends and the
corresponding buffer space freed.

10

Figure 2: Example of a LTP Session with Red and Green part data

3.4.1 Link Service Adapter

As explained before, LTP operates as follows: the LTP "sender" node generates
LTP segments from an LTP block and conducts a segment transmission "ses-
sion" that ultimately enables reconstruction of the block at the LTP "receiver"
node. Each segment, which is part of a block, must be sent from the sender
to the receiver node and LTP can use different transport protocols to transmit
these segments (as we can see in the Figure 1 where LTP is the convergence
layer). The interconnection between LTP and the layer below is called Link
Service Adapter (LSA).

As we can see in the Figure 3, an LSA consists of two different parts: the
first one is called LSI, the second LSO. LSI is the input door of the LSA, it
is the point where all the segments, sent by the other LTP peer, are received
and delivered to the upper LTP protocol. At this point, it reassembles the LTP
block and, once the block is completed, the original bundle (or bundles in
case of aggregation) is extracted and delivered to the BP layer. The output
door of LTP is LSO. It extracts LTP segments from the LTP block and packs
them into packets of the underlying transport protocol, sending them to the
correspondent LTP peer. There are some LSA included into the ION’s LTP

11

Figure 3: ION and LTP.

implementation (i.e. based on UDP, AOS, DCCP, . . .). To include ECs into LTP,
I have created a brand new LSA, which is called ECLSA (Chapter 6). It is based
on UDPLSA, which is already implemented and included in ION. ECLSA
wraps erasure codes and by using them, it offers an increased robustness
against losses even if an unreliable protocol, such as UDP, is used at transport
layer. As for physical layer FEC, packet erasure coding cannot offer a full
protection. If the loss rate is beyond a threshold (about 50% in our case, as it
will be shown later), all the losses are recovered by redundancy introduced
by the code; otherwise, some residual losses will still be found. As a result,
in order to guarantee full reliability, some forms of retransmissions must
be enforced. ECLSA is very flexible and provides advantages to both Red
and Green transmissions. When reliability is requested, bundles should be
encapsulated in the red part. In this case, the advantage of ECLSA is that
only residual losses (if any) must be recovered. Vice versa, if full reliability is
not requested, bundles can be encapsulated in the Green part. In this other
case, the advantage is the greatly reduced loss rate. Note that in the case of
unidirectional links, this is the only way to offer a great, although not full,
protection against segment losses. Moreover, by adding a CRC to the bundle
payload (as done in our experiments carried out with DTNperf_3[19]), it is
possible to check bundle integrity when Green transmission is selected, thus
allowing the application to discard corrupted bundles (and also to ask their
retransmissions, if possible and useful). In the chapter devoted to performance
evaluation, ECLSA will be evaluated when applied to either red or block
segments.

12

4
E R A S U R E C O D E S

As explained in Chapter 2, normally, physical layer channel coding is employed
in space links along with frame validation procedures performed at the data
link layer. The data units, successfully processed by this layer, are in turn
delivered to the upper layers, where data units erasures can be detected in
case of failure of the data link layer frame validation. To cope with these losses,
it is possible to use erasure correcting codes implemented at the upper layers.
In this case, a Packet Erasure Channel (PEC) is considered to carry out the code
design. In this kind of channel, packets of bits are either correctly received
or lost. The implementation of a packet-oriented code at some of the upper
layers is not aimed at replacing the physical layer channel coding, but on the
contrary, to complement it, so that the two coding schemes can coexist in the
same communication system. In this chapter, we will analyse the principles
which erasure codes are based on, and explain the basic functionalities to
understand the building blocks of the software package I developed, and the
way it works.

4.1 main principles

Figure 4: Example of encoding procedure

13

Figure 5: Example of encoding procedure

Assume that we have a set of k fixed-length input segments, each of T bytes
length, we want to send to another peer. As we can see in Figure 4 and
Figure 5, these k segments are inserted into an "encoding matrix", consisting of
n = k + m rows each of T bytes. After that, they are encoded to obtain n total
segments, each of T bytes length. The encoded segments are composed of the k
input segments followed by m = n - k checksum segments. In the same way, on
the receiver side, the n encoded segments, are inserted into a "decoding matrix"
and after the decode procedure, all the original k segments are recovered. The
aforementioned k input segments are obtained from a certain number of PDUs
belonging to the protocol stack layer in which the erasure code is implemented.
These PDUs are known as source packets and they may be of either constant
or variable length. Usually, only the payload of a source packet is introduced
into the source block, together with a few additional data necessary on the
decoder side (i.e. the length of the payload of the source packet). Each source

14

packet occupies a certain number of rows of the source block, where the last
row, associated with a source packet, is completed by padding bits if needed.

However, if erasure codes are used it has to be considered that part of
the bandwidth is used for the transmission of the redundancy information,
decreasing in this way the bandwidth usable by application data.

4.2 codes used

In this study, I have not implemented any erasure codes algorithm, but I have
used codes implemented by DLR, previously presented in another work[20].
As explained in the just mentioned paper, the EC used is based on Low-Density
Parity-Check (LDPC) and Low-Complexity Iterative (IT) decoding. This family
of codes behave exactly as explained in Section 4.1 except for the minimum
amount of segments that must be received to have a correctly decoded matrix.
In fact, theoretically ECs require at least k segments (either information or
checksum segments) to successfully decode a matrix, while, in practise, the
minimum value of packets required is slightly larger than k. This means that, if
in the receiver side k packets are successfully received, the decoding procedure
might fail and the lost segments might not be recovered. This is important to
well understand experimental results presented in Chapter 7.

15

5
E R A S U R E C O D E L I B R A R I E S

5.1 overview

The main objective of this work is to allow ION to take advantage of erasure
codes, in order to limit, in case of lossy channel, the number of either segment
losses in the case of the Green part of the LTP block, or retransmissions in the
Red part.

Now that the protocols stack has been explained, it should be clear that LTP
is the best position to insert erasure codes. In this protocol there are already
segmented data that can be used to fill an encoding matrix. Moreover, LTP can
be easily extended, creating a brand new LSA (Section 3.4) that is in charge to
create redundancy segments or to recover lost segments.

First of all, I have written some utility libraries to simplify the inclusion of
ECs into the ION code. The first library created aims to encapsulate an erasure
code needed to encode and decode the various data segments, it is called Libec.
This library is important not to bind the ECLSA code to only one erasure code
implementation. In fact, everything in the ECLSA has been designed to allow
the user to easily change the code. To this end, an API-compatible erasure
code must be created and eventually the ECLSA must be configured properly.

Considering that the segments sent to the receiver peer require information
for the decoding procedure, the original LTP segment is packed into another
packet containing additional information. For this reason, I have written
another library capable to pack or unpack the original LTP segment with
the additional information into an UDP packet. The name of this library
is Libecpackets. Similarly to the previous library, ELCSA can be used with
every transport protocol without modifying the source code of the link service
adapter. Libecpackets can be expanded and modified to use not only UDP
(like ECLSA does in my implementation) but, for example, TCP or other
protocols. In the next chapter (Chapter 6) the new LSA added to the ION
implementation will be presented. It uses the two libraries mentioned in
this chapter to dispatch the packets to the destination and to recover lost
segments. This chapter starts with a little introduction for each library, which
explains how the library itself works; than an API list with the most important
information for a developer is presented, helping him to use the two libraries.

17

5.2 libec

5.2.1 General Description

Libec has been written to encapsulate all the functions and the data structures
of the erasure codes used, in order to decouple the ECLSA from a specific
erasure code implementation. Its most important functions are the encoder
and the decoder. The former generates redundant information (segments) from
the LTP segments. The latter regenerates LTP segments lost, using segments
received (both information and redundancy segments). All the other functions
are essential to operate with the data structures required by the encoder and
the decoder.

The most important data structures are "ADT" and "columnStatus". The
former has two different functionalities. It is seen by the sender as a data
structure used to store the segments read from the LTP protocol. It is also seen
as the place where the encoder function puts the redundancy information. The
receiver, on the other hand, sees ADT as the place where it can put the data
received by the UDP socket and, after the decoding procedure, where it can
find the original information segments to be passed to the LTP protocol above.

The array "columnStatus" is very important during the decoding procedure.
In fact, it contains the status of each column of the ADT matrix. Differently
from what explained in Chapter 4, from Libec point of view, each segment
passed by the LTP protocol is inserted into a new column. By using this array,
the decoder knows which information segments are present and which are
missing and must be recovered. The array is essentially an indicator for the
decoder, which enables it to understand where it has to work.

5.2.2 Data Structures

ADT is a multidimensional array (Figure 6), it can be used to store LTP seg-
ments for a single encoding/decoding procedure. As explained in Section 4.1,
from the erasure code point of view, which works on a matrix of n rows, the
encoding procedure can start only when k rows have been filled with the
information data (Section 4.1). Otherwise, the decoding procedure requires (at
least) more than k rows because of its non-ideal behaviour. When the matrix is
ready to be encoded or decoded, it has to be locked as long as the encoding
or decoding procedure works on it. As explained in Chapter 6, the ECLSA is
a multithreaded architecture and it can concurrency do different operations.
For instance, on the sender side, there is one thread, which extracts segments
from the LTP client, and one that elaborates the ADT’s content to create redun-
dancy information. During this period, the matrix, currently elaborated by the
encoder, cannot be used to store other segments, and the first thread would

18

Figure 6: The ADT Matrix

wait until the second one finishes its work. This is a bottleneck for the system
performance. The erasure code implementation I have used operates only on
one matrix at a time. For the reasons I have explained before in this paragraph,
I have projected the ECLSA to work with more than one ADT, implementing a
matrix-switching method, based on a new data structure, which aggregates all
the ADT-related data:

typedef struct

{

uint32 **ADT;

uint8 *columnStatus;

uint8 *rowStatus;

} ec_data;

Listing 5.1: ec_data Structure

Two fields of the Listing 5.1 structure have been already explained before,
the only one that needs a explanation is rowStatus. It is used, during the
iteration of the decoding procedure, to mark an equation as resolved.

The variables N, K, M are also important. They indicate as follows:

n: the total length (the number of columns) of the ADT matrix (N = K + M),

k: the number of columns containing LTP segments,

19

Name Type

ec_data struct

T int

N int

K int

M int

ALPHAMAX int

Table 1: List of libec variables

m : the number of columns containing the redundancy information,

t: indicates the length (in bytes) of a single matrix column. It has to be
coherent with other configuration parameters like the LTP segment size.
For more information read the Section 5.3.4.

5.2.3 Column Content and Padding

A column of the ADT matrix contains not only an LTP segment but also the
information to properly interpret the bytes of the column (Figure 6). In fact,
a column has a fixed dimension T and during the initialization of the matrix
all the T bytes of each column are set to zero. When an LTP segment of X
bytes length (X< T) is copied into a column, only the X bytes are overwritten,
leaving the other ones set to zero. In this way, a padding to the column
is automatically inserted if the length of the LTP segment is lower than T.
Obviously, the receiver has to know the length of the original LTP segment
(X) and, if padding is used, where is the first byte of padding. The original
length of the LTP segment has to be recovered in case of a UDP packet is lost
during the transmission. For this purpose, the first two bytes of an information
column are filled with the actual length of the LTP segment. In this way, not
only the LTP segment but also its length is recovered in case of data losses.

5.2.4 API Function Descriptions

In Listing 5.2 the most important functions for a developer are listed. In
addition to them, Libec contains a large number of procedures used only by
the functions listed below, these other functions will not be explained.

// Library management

int init_libec(ec_data *ecdata , char *MATRIXNAME1 , int Ti,

int Ni, int Ki, int Mi, int ALPHAMAXi);

20

void close_libec(ec_data *ecdata);

// ec_data management

void init_ecdata(ec_data *ec_data);

void free_ecdata(ec_data *ec_data);

// ADT management

void reset_ADT(uint32 **ADTi , int Ni, int Ti);

void add_to_ADT(uint32 **ADTi , uint32 *toAdd , int Kp);

void get_from_ADT(uint32 **ADTi , uint32 *buff , int Kp);

Listing 5.2: Libec Functions

The functions presented in Listing 5.2 can be divided into three different
groups: library management, ec_data management and ADT management. The
first one contains init_libec and close_libec both related to the startup and the
termination of the library. The init_libec function is the first function that has
to be executed to initialize all the data structures required by the encoder
and the decoder. It requires a pointer ecdata that, after the execution of the
function, will contain references of the first ADT matrix. MATRIXNAME1 is
the name of the file where the function will find a parity check matrix, which
is required by the implementation of the erasure codes I have used. Ti, Ni,
Ki, Mi and ALPHAMAXi have been already explained in Section 5.2.2. The
close_libec function is required to close the library and free the memory used
by its data structures. For this reason, it only takes one parameter which is the
same ecdata pointer used with the previous function init_libec.

The second group of functions contains init_ecdata and free_ecdata. These
are related to the data structures explained in Section 5.2.2. Note that the
multi-matrices behaviour described in Section 5.2.2 is implemented only in
ECLSA, and that all the memory management is done outside the two function
described in the library management section. For this reason I implemented
this two functions which can be used to allocate or free the memory for a new
ec_data structure.

The last group of functions contains reset_ADT, add_to_ADT and get_from-
_ADT related to the management of a single ADT table. The first function
(reset_ADT) can be used by the application to reset an ADT matrix when its
content is invalid. It takes the pointer to the matrix (ADTi) and its dimension,
that is to say the number of columns Ni and the number of bytes of each
column Ti. The function add_to_ADT inserts an array of length T, called toAdd,
into the matrix in the position Kp. The function get_from_ADT, on the contrary,
extracts from the matrix the column Kp and inserts it into an array buff.

The last functions of the library are the encoder (Listing 5.3) and the decoder
(Listing 5.4).

21

int universal_encoder(int K, int N, int T, uint8 *

columnStatus , uint8 *rowStatus , uint32 **ADT , int *

CNDegree , int maxCNDegree , int **Hc, node *CN, node *VN,

uint32 **C, int ALPHAMAX);

Listing 5.3: The Encoder

Most of the parameters that the encoder requires have been already ex-
plained before. The others are automatically loaded by the init_libec function
and the programmer has only to write the name of the variables calling the
function. The names of the variables are the same reported in the prototype.
The return value of the function is very important. In fact, if the encoder fails,
it returns a value lower or equal to zero.

int decoder_ML(int K, int N, int T, uint8 *columnStatus ,

uint8 *rowStatus , uint32 **ADT , uint32 **ADTRec , int *

CNDegree , int maxCNDegree , int **Hc, node *CN, node *VN,

uint32 **C, int ALPHAMAX);

Listing 5.4: The Decoder

The parameters and the return value of the decoder are the same as the
encoder.

5.3 libecpackets

5.3.1 Description

Libecpackets encapsulates LTP segments into UDP packets. It is useful to not
overload the code with the packet assembling and de-assembling functions, but
it is also very important to not bind the implementation of the ECLSA to the
UDP protocol, used for the transmission of the packets in my implementation.
For the same reason, as we will see in the next section, each ECPacket (a packet
created by using Libecpackets) contains a field with 32 bit of CRC. This field
is redundant if the channel uses UDP for the transmission. This protocol has
already an optional field with CRC, which can be used on the system. But
it is not always true, because not all the transport protocols are able to filter
packets with incorrect bit in their PDUs. This is the main reason why we
decided to insert a CRC into the ECPacket.

A basic mechanism of extension has been provided into the header to permit
future protocol extensions. For instance, it is possible with this mechanism to
extend the protocol to change, at runtime, the information about the code used
for the transmission (i.e. the erasure code used, the matrix dimension, the
parity check matrix used, . . .). In my implementation this extension method

22

is only used for the padding of the ADT matrix, as will be explained in
Section 6.2.2.

Another feature of this library is the circular buffer management. Some func-
tions and data structures have been inserted to help ECLSI with the manage-
ment of the input queue of ECPackets.

5.3.2 Packet description

An ECPacket transports not only a column of the ADT matrix over the commu-
nication channel, but also the information necessary to insert this column in the
right position on the receiver’s side. The packet is composed by two different
parts: the ECHeader, which contains the information about the position in the
matrix and the ECPayload, which is the content of a column of the matrix.

Field Name Size (bits)

bid 32

pid 32

crc 32

ext 8

exts variable

Table 2: List of the fields of an ECPacket

ECHeader, as we can see in Figure 7, has some standard and fixed fields:
Block ID, Packet ID, CRC. Block ID (bid in Table 2) is the identifier to select on
the receiver’s side the right matrix where the segment has to be put. In fact,
there are a lot of different matrices of encoding; some of them are active and
some of them, instead, have been already decoded. The column index of the
matrix where the ECLSO has to insert the segment is noted into the Packet ID
field (pid in Table 2). The last field is CRC, which, as explained in the previous
section, contains the CRC (crc in Table 2) of the payload computed, using the
functions explained in Section 5.3.4.

Ext Type Value Length (bits) Description

0x1 32 Padding

0x2 16 *3 K, N, T

Table 3: List of the extensions of the header

ECHeader has also a viable extension method. There are two different fields
required to use this feature: extension type and extension value, in Table 2 the

23

names are ext for the first field and exts for the latter. Figure 8 shows the
packet with extensions but, as explained later in this paragraph, its extension
value has not a fixed dimension. The extension type identifies which extension
is used in the current ECPacket, to correctly operate on the packet. This field
is also used to know the length of the extension value part of the ECHeader.
In fact, for each extension type, there is a fixed buffer dimension thought to
contain all the data required to work on the particular packet. There are two
extension types already used, these are reported in Table 3.

Figure 7: Libec Packet Header.

Figure 8: Libec Packet Header with Extensions.

The ECPayload part of an ECPacket contains a single column of the encod-
ing/decoding matrix. As explained in Section 5.2.3 and how we can see in
Figure 7 and Figure 8, the content of the column and of the ECPayload is not
only the LTP segment but also its length.

24

5.3.3 Data Structures

There are two different structures to model the header: pack_header, which con-
tains standard and fixed information about the ECPacket and pack_ext_header,
which is used only for extensions. The two structures are reported in List-
ing 5.5. The pack_header adds to a packet 12 bytes of informations. If an
extension is used the header dimension is incremented of 1 byte for the exten-
sion type field plus a variable number of bytes for the value of the extension.
These values are indicated in Table 3.

typedef struct { // HEADER SIZE 96b=12B

uint32_t bid; // THE BLOCK NUMBER

uint32_t pid; // COLUMN ID IN THE BLOCK

uint32_t crc; // CRC

} pack_header;

typedef struct {

uint8_t *exts;

uint8_t ext; // EXTENSIONs:

// 0x1 -> padding (32b)

// 0x2 -> K, N, T (16b*3)

uint32_t length; // used locally , not included into the

header

} pack_ext_header;

Listing 5.5: ECHeader structures

ECPayload contains a column of the ADT matrix (both information columns
and redundancy columns). The dimension of a single LTP segment can be
configured in ION’s configuration files. For instance, in my implementation
and in my tests, I have fixed a maximum dimension of 1024 bytes for the
LTP segment and, for this reason, I have added two other bytes to a column
of the ADT matrix to store the actual length of the segment. Accordingly to
this dimension, the total length of the ECPayload in my implementation is
1026 bytes. As we can see in Listing 5.6, the column dimension can be easily
extended, changing the DATA_NO define. To extend the payload length, it is
important to change not only this define but also the T parameter discussed
above in Section 5.2.

#define DATA_NO 1026

typedef struct { // DATA SIZE 1024B + 2B = 1026B

uint32 data[DATA_NO];

} pack_data;

Listing 5.6: ECPayload structure

25

The last data structure contained in Libecpackets is circ_buff, as described
in Listing 5.7. As explained before, this structure is used to store received
ECPackets that are waiting to be processed. The fields of this structure are the
following:

size : the maximum number of elements of the buffer,

start : the position of the first unextracted element,

end: the position of the last queued element,

cnt : the number of elements already enqueued,

elems: an array of pointers with length size,

mutex : a mutex to synchronize the access to the queue.

typedef struct {

int size;

int start;

int end;

int cnt;

char **elems;

pthread_mutex_t mutex;

} circ_buff;

Listing 5.7: Circular Buffer Descriptor

5.3.4 API Function Descriptions

The first functions, described in Listing 5.8, are used to send or to receive a
ECPacket, using a transport protocol (in our implementation, as said before,
we used UDP). The most important functions used are the last two in the
list. They require a socket (linkSocket), a message to send (msg) with its length
(length) and, finally, the last parameter (parameters) which can be used to
exchange other information with the two functions.

void *initChannel(int mode , void *addr , void *parms);

void closeChannel(void *toClose);

int sendSegment(int linkSocket , void *msg , int length , void

*parameters);

int recvSegment(int linkSocket , void *msg , int length , void

*parameters);

Listing 5.8: Send And Receive Functions

26

The functions described in Listing 5.9 can be used to create an ECPacket. The
most important is the last one (htonHeaderData), which can be used to merge
all the information given to the function (a pack_header h, a pack_ext_header
e and a pack_data d) into an array of bytes (buffer). This array can be directly
given to the function to send the ECPackets described before.

void htonHeader(pack_header h, char *buffer , int bufsize);

void htonExtensions(pack_ext_header *e, char *buffer , int

bufsize);

void htonData(uint32 *data , char *buffer , int bufsize);

void htonHeaderData(pack_header h, pack_ext_header *e,

pack_data d, char *buffer , int bufsize);

Listing 5.9: Packet Creation Functions

On the other peer of the communication some functions to extracts LTP seg-
ments from ECPackets are required. These functions are listed in Listing 5.10.
The most important function here is ntohHeaderData, which, given a buffer
received using the function described before, extracts and fills all the data
structures required to process the data (a pack_header h, a pack_ext_header e
and a pack_data d).

void ntohHeader(pack_header *h, char *buffer , int bufsize);

void ntohExtensions(pack_ext_header *e, char *buffer , int

bufsize);

void ntohData(uint32 *data , char *buffer , int bufsize);

void ntohHeaderData(pack_header *h, pack_ext_header *e,

pack_data *d, char *buffer , int bufsize);

Listing 5.10: LTP Segment Extraction Functions

As we can see in Listing 5.11, the function ec_hext_add makes it easier to fill
the extension value fields of an ECHeader. It copies dataLength bytes of the
buffer data into the exts field of the pack_ext_header e. The extension type
contained in the pack_ext_header must have the extension type field already
set. Another useful function, if the extension method is used, is ec_hext_length,
which, using a given extension type, returns the required length in bytes of the
extension value field. This information is useful to read the correct number of
bytes when extension value is accessed by the application.

int ec_hext_add(pack_ext_header *e, char *data , int

dataLength);

uint32_t ec_hext_length(uint8_t ext_byte);

Listing 5.11: Header Extension Function

The functions necessary to use CRC are calc_crc32_d8 and calc_crc32_d32.
The prototypes are described in Listing 5.12. The final CRC of the len bytes

27

of the data parameter is returned by the function. The initialization value
for the CRC is the crc parameter. The difference between the two functions
concerns simply the type of the input data: in the first function the length of
each element of the array data is 8 bits, in the last one it is 32 bits.

uint32_t calc_crc32_d8(uint32_t crc , uint8_t *data , int len)

;

uint32_t calc_crc32_d32(uint32_t crc , uint32_t *data , int

len);

Listing 5.12: CRC Functions

The last functions, presented in Listing 5.13, are necessary to operate with a
circular buffer. The function circ_buff_init can be used to allocate the memory
for the buffer of circ_buf_len elements, while the circ_buff_free function is used
to deallocate it. There are other two functions used to check the status of the
circular buffer: one is used to check if it is full (circ_buff_is_full) and another to
check if it is empty (circ_buff_is_empty). Moreover, the function circ_buff_write
is used to insert an element buf of length buflen (in bytes) into the circular
buffer. Finally, the function called circ_buff_read is used to extract elements
from the circular buffer. The element extracted by this last function is returned
into the buf parameter.

void circ_buff_init(circ_buff *cb, int circ_buf_len);

void circ_buff_free(circ_buff *cb);

int circ_buff_is_full(circ_buff *cb);

int circ_buff_is_empty(circ_buff *cb);

void circ_buff_write(circ_buff *cb, char *buf , int buflen);

void circ_buff_read(circ_buff *cb, char *buf , int *buflen);

Listing 5.13: Circular Buffer Functions

28

6
E C L S A

6.1 general description

As explained in the previous chapters, the best solution, to easily add ECs
support in ION, is to create a brand new LSA for the LTP implementation
included in ION. As explained in Section 3.4, LTP is interfaced with the
underlying layers through various LSA, which are a kind of sub-layers of
the LTP protocol. Each LSA uses a different protocol to actually transport
the segments through the communication channel. An LSA works on LTP
segments. On the sender’s side, an LSA extracts LTP segments from a queue in
the LTP engine and sends them using the underneath level. On the receiver’s
side, LSA extracts the original LTP segments from the PDUs received and
passes these LTP segments to the LTP engine. These two functions of the LSA
are performed by two different entities: one on the sender peer, which is called
LSO, and one on the receiver peer, which is called LSI.

The link service adapter that I have created is called "Erasure Codes Link
Service Adapter" or ECLSA and it uses UDP as transport layer. The dedicated
LSO (ECLSO) extracts LTP segments and, after the encoding procedure, it
creates ECPackets to be sent to the receiver LTP peer via the UDP protocol. The
complementary LSI (ECLSI) receives ECPackets, inserts them into a decoding
matrix and, after the decoding procedure, it passes the LTP segments to the
receiver’s LTP engine. Both ECLSO and ECLSI may operate on different
encoding or decoding matrices for performance purpose (Section 5.2.2). This
feature has been implemented after some preliminary experiments carried out
with a version of ECLSA, which operated on the matrices one by one. In these
experiments, the time spent by the ECLSO to encode the ADT matrix caused a
bandwidth decrease. In fact, during this time, ECLSO has to wait until the end
of the encoding procedure, without sending anything. For the same reason,
the last version of ECLSA has a fixed number (a pool) of ADT matrices, which
can be simultaneously used.

29

Figure 9: ECLSO General Working Method.

6.2 eclso

6.2.1 General Description

Before describing the internal code structure, we will discuss the general
working method of the ECLSO, which has been partially discussed in other
paragraphs. The content of this paragraph is briefly explained in Figure 9.

The operations performed by ECLSO are the following:

1. extracting LTP segments and inserting them into an ADT matrix;

2. starting the encoder and generating redundancy columns of the ADT
matrix;

3. creating ECPackets and sending them using a UDP socket.

At the beginning (point 1), ECLSO extracts LTP segments from the LTP
queue and inserts them into the ADT matrix, one for each column, filling up
to k columns. A timeout is (re)started each time that a new LTP segment is
inserted in the matrix. If this timer expires, the ADT is filled with padding
columns, as explained in Section 6.2.2. In any case, at this point (point 2),
ECLSO starts the encoding procedure when there are k LTP segments into the
ADT matrix. The encoder takes these segments and generates m redundancy

30

columns, which are, in turn, inserted into the ADT matrix. Finally, after that
the encoding procedure has finished its work, n (k + m) total columns of the
ADT matrix contain data. During the last operation (point 3), each column of
the ADT matrix is extracted and is encapsulated into an ECPacket, which is
sent using the UDP socket to the destination LTP peer.

6.2.2 Matrix Padding

An ADT matrix needs k information columns to generate the redundancy
information. Each time a new LTP segment is extracted from the LTP block
and inserted into the ADT matrix, a timer starts. If it expires, when for instance,
there are f filled columns in the matrix (with f less than k), the remaining
r columns (r = k - f) are set to zero and the encoding procedure is started
(an example of filled ADT matrix is shown in Figure 6). In this case, where
padding is inserted, an extension of the ECPacket header is used to signal to
the destination the using of the padding. This is required, on the receiver’s
side, because the r padding columns are not sent to the destination since they
are all set to zero. If the receiver finds the padding extension in the ECHeader,
it knows that padding has been used and it fills the padding columns. The
extension values of the redundancy ECPackets (between k and (n - 1)) contain
the index of the first element not filled (i.e. f because the counter starts from
zero). It is possible to not use the padding by setting a padding threshold
(Section 6.2.7). This threshold is the number of columns, contained into the
ADT matrix, that must be passed to force the encoding procedure to start.
This means that, if the padding threshold is X, and the number of elements
contained in the ADT matrix, when the timer expires, is Y (X>Y), the padding
extension is not used in this case and only these Y elements are sent to the
destination, without starting any encoding procedure.

6.2.3 Interaction with LTP

Normally, the ION’s function to extract elements from the LTP block is a
locking function. Once called, it returns only when new data are ready to
be extracted. To use the padding method explained in the previous section,
I added two other functions, based on the standard ones, but with a timer,
which, if expired, forces the function to return the control to the caller. The
prototypes of this functions are listed in Listing 6.1.

int ltpTimedDequeueOutboundSegment(LtpVspan *vspan , char

**buf , const struct timespec *timeout);

int sm_TimedSemTake(sm_SemId i, const struct timespec *

timeout);

Listing 6.1: Functions added to ION

31

The first function is used in ECLSO, the second one is used in ltpTimedDe-
queueOutboundSegment to avoid a deadlock waiting on the semaphore, used by
LTP to notify that there are new data to be read.

6.2.4 Threads Interaction Diagram

Figure 10: ECLSO Threads.

ECLSO uses a multi-threaded architecture, to improve the performance. In
this way, as already explained, more than an ADT matrix can be processed
concurrently. There are two different threads in the implementation of ECLSO:
T1 and T2. The first one (T1 in Figure 10) extracts LTP segments from the
LTP output queue, and inserts them into one ADT matrix. After, using the
LTP columns just inserted, T1 creates new ECPackets, which are immediately
sent to the destination LTP peer, to not cause problems with the upper layer
(LPT/BP) timeouts. If the number of columns already filled is k - 1, T1 notifies
the other thread (T2) that it must start the encoding procedure.

T2 contains the encoding part of ECLSO. As soon as T1 notifies that T2 must
start with the encoding, the second thread executes the encoding function,
if it not already working on another ADT. Once finished its task, T2 sends
first of all the not already sent information columns of the matrix and, after,
the redundancy columns just generated, encapsulating each column sent into
an ECPacket. While T2 is encoding the matrix, T1 continues to extract LTP

32

segments, inserting them into another ADT matrix of the pool and sending,
if the socket is not used by T2, ECPackets to the destination. T2 has a queue
of jobs to elaborate. This queue is supplied by T1, which generates a new job
and inserts it into the queue when k columns of an ADT matrix are filled.

Obviously, only one thread at a time can send ECPackets to the destination
node. For this reason, a semaphore has been added to access sequentially
to the UDP socket. This alternation leads to a basic interleaving behaviour,
which improves the performance of error correcting codes. In fact, in this way,
information columns of different ADT matrices are sent to the destination
mixed together with redundancy columns, which can be of another ADT
matrix. In addition, another interleaver, which sends all the columns of an
ADT matrix in a random order, has been implemented and inserted in ECLSO.
The use of this additional interleaver leads to poor performance because T1

has to wait that T2 finishes its work before starting to send the content of
the ADT matrix. A way to solve this problem has been projected but not
implemented. A new output buffer can be inserted in ECLSO, which collects
all the UDP segments sent. These segments have to be extracted in a random
order from this buffer and not from each ADT matrix, improving, in this way,
the performance of the interleaver, but adding a new data structure to the
system.

6.2.5 Data Structures

The first data structure explained is eclso_vars (Listing 6.2). It is used to store
the status of a single ADT matrix. The first field is working_block, which is
the identifier of the matrix itself (bid in the ECPacket header). The variable
sent_segments is a counter to trace the number of ECPackets already sent to the
destination. In case of padding (variable padding equals to 1), the extension
value of ECPackets (only if them contains redundancy informations) header
is filled with the index of the last information column, which is the first one
before the padded columns. This value is stored into the last_segment_sent
variable.

typedef struct

{

int working_block;

int sent_segments;

uint8_t padding;

int last_segment_sent;

} eclso_vars;

Listing 6.2: ECLSO status vars

33

The second structure is EncoderThreadParms (Listing 6.3). It contains all the
parameters (linkSocket and peerInetName) required by T2 to successfully send
ECPackets to the correspondent LTP peer. If the ECLSO must be closed, T1,
using the running variable, forces T2 to quit. Finally, UDP congestion can
be controlled by setting the rate of UDP segment transmission in ECLSO.
This feature uses sleepSecPerBit to know how long it has to sleep after each
transmission. This variable must be set, as explained in Section 6.2.7, to the
value supported by the underlying network.

typedef struct {

int linkSocket;

struct sockaddr_in *peerInetName;

int sleepSecPerBit;

int running;

} EncoderThreadParms;

Listing 6.3: Receiver thread parameters

Finally, enc_job (Listing 6.4) is one of the element composing the jobs list
of T2. This structure contains the BID of the ADT matrix (wb) as already
explained in the previous chapter. The other variable i is the index identifying
the specific ADT matrix of the pool of matrices. The value returned by the
encoding function is stored in exe and the semaphore enc is used to lock the
modification on the job descriptor. Finally, there is a pointer (next) to the next
element of the list.

typedef struct job

{

int wb;

int i;

int exe;

sem_t enc;

struct job *next;

} enc_job;

Listing 6.4: T2 job structure

6.2.6 Function Descriptions

The functions used in ECLSO can be divided into four groups:

misc functions: this group contains functions operating on the variables
used inside ECLSO;

pool management functions: these are functions for managing the ADT
matrices pool;

34

ecpacket functions: functions for creating or sending ECPackets, using
the Libecpackets library;

threads functions: functions executed by the two threads.

Listing 6.5 contains the functions of the first category. The most valuable
function in this group is add_to_list. It can be used to add to the T2’s jobs list a
new enc_job for the ADT marked with BID wb and identified by the id i in the
pool.

// ** MISC FUNCTIONS **

void reset_eclso_vars(eclso_vars *eclsov , int blockno);

static void shutDownLso ();

// ADD A NEW JOB TO THE LIST

enc_job* add_to_list(enc_job *head , int wb, int i);

Listing 6.5: List of the misc functions of ECLSO

The second group of functions, listed in Listing 6.6, can be used to manage
the pool of ADT matrices. For each function in the group there is a brief
description in the comment, which describes its main functionality.

// ** ADT MATRICES POOL MANAGEMENT **

// GET THE NUMBER OF FREE MATRIX OF THE POOL

int get_free_matrix_no ();

// GET ONE FREE MATRIX FROM THE POOL

int get_free_matrix ();

// SEARCH THE MATRIX WHICH CONTAINS DATA FOR A BID

int search_for_bid(int bid);

// GET THE MATRIX WITH THE MINIMUM BID

int get_min(int *arr , int length);

Listing 6.6: List of the pool management functions of ECLSO

The code in Listing 6.7 contains functions, which help the creation of EC-
Packets and send them to the destination. The first function is createECPacket,
it creates the ECPayload and the ECHeader for the ECPacket. Both these
information are packed together into a UDP packet using the functions of the
Libecpackets. Finally, the ECPayload is inserted into the ADT matrix indicated
by the toADT parameter. The last notable function is redundancy_to_send, it
is used by T2 to send all the redundancy segments, created by the encoding
procedure.

// ** ECPACKET CREATION AND DELIVERY **

// CREATE A NEW ECPACKET

int createECPacket(char *outbuf , char *segment , int

segmentLength , char *toADT , int bid , int pid , uint8_t

ext_byte , char *data , int dataLength);

35

// SEND AN ECPACKET TO THE DESTINATION LTP PEER

int sendECPacket(char *buf , int segmentLength , int socket ,

struct sockaddr_in *peerInetName , float sleepSecPerBit);

// SEND REDUNDANCY

int redundancy_to_send(enc_job *next_job ,

ReceiverThreadParms *rtp);

Listing 6.7: List of the ECPackets management functions of ECLSO

The last list of functions is Listing 6.8. It contains the main function executed
by T1. It works extracting an LTP segment from the LTP output buffer and
generating an ECPacket, sent through the UDP socket. In addition, the related
ECPayload of the ECPacket is inserted into an ADT matrix. When the matrix,
currently used by T1, is full, the thread notifies to T2 that it can start with the
encoding procedure.

T2 main function is encode_matrix. This function takes the ADT matrix
with lower BID and encodes it. When the encoding procedure finishes, the
redundancy segments are sent to the destination LTP peer.

// ** THREADS FUNCTIONS **

// MAIN THREAD (T1)

int main(int argc , char *argv []);

void close_mainthread(ReceiverThreadParms *rtp , pthread_t *

receiverThread);

// ENCODER THREAD (T2)

static void *encode_matrix(void *parm);

Listing 6.8: List of the threads functions of ECLSO

6.2.7 Invocation Method

ELCSO must be configured, like any others LSO, in the ltpadmin part of ION’s
configuration files, using the command "a span". The command parameters
are:

eclso IP:PORT

N K M T ALPHAMAX

PADDING_THRESHOLD

TXBPS

INTERLEAVER

Listing 6.9: ECLSO invocation

IP:PORT is the IP address and the port of the correspondent LTP peer, where
an ECLSI must be previously started, as explained in Section 6.3.6. N, K,
M, T and ALPHAMAX are the EC parameters, as explained in Chapter 5.

36

PADDING_THRESHOLD has been explained in Section 6.2.2. TXBPS is used to
calculate the sleepSecPerBit, which have been explained in Section 6.2.5. Finally,
the INTERLEAVER parameter is the seed used by the interleaver (as explained
in Section 6.2.4) to randomize the extracting order of the ECPackets from an
ADT matrix. If it is set to "-1", the interleaver will be disabled.

6.3 eclsi

6.3.1 General description

Figure 11: ECLSI General Working Method.

The working method of the ECLSI, partially discussed above, is explained
in Figure 11. The basic operations are the following:

1. receiving ECPackets from the UDP socket;

2. calculating the CRC of a received ECPacket and comparing it with the
one contained in the ECHeader:

• if CRC is correct, it inserts the ECPayload into the ADT matrix and
continues from 3;

• else it discards the whole ECPacket and restarts from 1;

3. starting the decoder to recover lost columns;

37

4. forwarding all the valid LTP segments (both received and recovered) to
the LTP engine.

As shown in Figure 11, r ADT’s columns are extracted from r received
ECPackets. When there are no empty columns in the ADT matrix (or if a
timeout occurs as explained in Section 6.3.2), ECLSI starts the decoder, which
may recover d lost columns of the matrix and the LTP segments contained
in them. If a redundancy ECPacket with the padding extension is received,
padding columns are inserted in the matrix. For instance, if the extension value
of the ECPacket received with padding extension type is X, the first padding
column is the (X+1)-th, the last one is the (k-1)-th column. If the ECPackets
are received in order and there are no packets lost, the corresponding LTP
segments are immediately passed to the LTP layer. If ECPackets are received
out of order, they are reordered while they are inserted in the ADT matrix
and, as soon as a sequence of segments has been reordered, ECLSI passes
the segments to the LTP layer. If the decoding procedure fails, only the LTP
segments contained in the received information columns are passed to the LTP
protocol.

6.3.2 Forcing the Decoding Procedure

The decoding procedure of an ADT matrix starts when all its columns are
filled. If this were the only way to start the decoding function, in case of
missing ECPackets, the ECLSI would wait forever for new data. To overcome
this problem, a timer can be set up. When this timer expires, the empty
columns are considered as missing ECPackets and the decoding procedure is
started. The value of the timer can be configured in the ION configuration file
as explained in Section 6.3.6.

There is also a security mechanism to avoid packet losses, caused by both
the limited number of ADT matrix of the pool, and the limited dimension
of the circular buffer. If the number of free matrices passes a threshold
FORCE_DECODE_MATRIX_NO, the decoding of the ADT matrix with the
lower BID is forced, as it will be explained in Section 6.3.4.

6.3.3 Threads Interaction Diagram

ECLSI has three different threads cooperating to model the behaviour pre-
sented. T1 is the receiving thread that receives the ECPackets from the UDP
socket, and stores them into the circular buffer described in Section 5.3. This
intermediate step is required to operate as quick as possible to not loose any
UDP packet on the input channel.

T2 extracts ECPackets from the circular buffer and dispatch the correspond-
ing ECPayloads to the appropriate ADT matrix of the pool. T2 is in charge of

38

Figure 12: ECLSI Working Method.

the correct switching of the packets, finding for each packet the corresponding
ADT matrix. If ECPackets are received without "gaps", the extracted LTP
segments are immediately passed to the LTP engine, to not cause problems
with the upper layer timeouts. In case of out of order or missing ECPackets, as
soon as the original sequence of the packets is reconstructed, they are passed
to the upper layer for the same reasons explained before.

When the ADT matrix is full, or when it is forced to be closed, T3 starts to
decode the matrix, forwarding the remaining LTP segments to the LTP engine,
after finishing the decoding procedure. At the end the ADT matrix of the pool
is freed and it can be used for packets with different BIDs.

6.3.4 Data Structures

The data structures used in ECLSI are eclsi_vars and ReceiverThreadParms. The
first structure contains all the parameters of a single ADT matrix of the pool.
The second one is used to pass information to T2 and T3.

The structure eclsi_vars, which is described in Listing 6.10, is a descriptor
of a single ADT matrix of the pool. A structure of this type contains all the
variables used to store the status of a single ADT matrix of the pool. When an
ECPacket with a new BID is received, a free ADT matrix is taken from the pool
with the corresponding descriptor of type eclsi_vars. The variables contained
in the structure can be divided into four groups.

39

The first group (called ADT status) contains exp_bid and exp_pid, which
are the BID of the matrix and the expected PID (column index) of the next
packet. The counter wrong_columns contains the number of missing columns
of the matrix. The variable missing_k is the number of missing columns with
index lower than k. On the contrary, added_segments counts the elements
already added to the matrix. In the same group there is also the variable
last_k_received, containing the index of the last received column with PID
lower than k. The next segment that has to be passed to the LTP engine is
next_segment_to_send. If the padding extension is used, not all the k columns
of the ADT matrix has to be forwarded to the LTP engine, for this reason,
the variable last_segment_to_send contains the last column before the padding
columns.

The second group of variables stores the status of the decoding thread.
The variable flush is used to force the decoding of the matrix when required
(Section 6.3.2). The return value of the decoding function is stored into the
decoded variable.

The third group contains the timeout method, which is used while inserting
ECPayloads into the ADT matrix (as explained in Section 6.3.2), using the
variable ts_to.

Finally, the last group contains a semaphore and a mutex. The semaphore
received is used to signal to the decoding thread if a new ECPayload is inserted
into the ADT matrix with lower BID. In this way, the thread restarts the timeout
previously discussed. The mutex (mutex) is used to serialize the access to the
data structure.

typedef struct

{

// ADT STATUS

int exp_bid;

int exp_pid;

int wrong_columns;

int added_segments;

int missing_k;

uint32_t last_k_received;

int next_segment_to_send;

uint32_t last_segment_to_send;

// DECODER STATUS

uint32_t flush;

int decoded;

// TIMEOUT

struct timespec ts_to;

40

// SYNCH MUTEX

sem_t received;

pthread_mutex_t mutex;

} eclsi_vars;

Listing 6.10: eclsi_vars Structure

The second data structure is ReceiverThreadParms and it contains four differ-
ent fields. The first, which is called linkSocket, is the socket used to receive the
UDP segments. If the main thread wants to force the other threads to quit,
the variable running is set to zero. Finally, in to_sec and in to_usec, the timeout
value of a matrix, which is read as ECLSI parameter, is stored.

typedef struct

{

int linkSocket;

int running;

int to_sec;

int to_usec;

} ReceiverThreadParms;

Listing 6.11: ReceiverThreadParms Structure

6.3.5 Function Descriptions

The functions of ECLSI are divided into four groups, as we can see in List-
ing 6.12.

The first group contains only reset_eclsi_vars, which can be used to reset an
eclsi_vars data structure.

The "ADT Functions" group contains all the functions required to operate
with the ADT matrix pool. Their prototypes clearly indicate their functions.
The return value of each function is an index of the ADT matrix in the pool.

The third group contains the function sendSegmentsToLTP, which forwards
the LTP segments from the start-th column to the limit-th column of the matrix
with index matrix_index. The function add_padding inserts padding columns
into the wmi-th ADT matrix, starting from the column with index start. The
Libec decoder is wrapped by the check_and_decode function, which checks,
before starting the decoder, if there are any missing columns among the first k
columns of the ADT matrix. Finally, the main function is used to initialize all
the data structures and to start the three threads of the application.

The last group contains three functions, one for each thread. T1 executes
the addSegmentsToADT function, which extracts LTP segments from ECPackets

41

and inserts them into the correct ADT matrix. The function handleDatagram
receives UDP packets from the socket, and inserts them into the circular buffer.
The third thread executes the dispatchSegments, which waits for the reception
of the last column of the ADT table or for the expiring of the timer. At this
point, the function decodes the matrix (if there are any missing columns with
index lower than k) and sends the not already sent LTP segments to the LTP
engine.

// ** MISC FUNCTIONS **

void reset_eclsi_vars(eclsi_vars *eclsi_v , int exp_bid , int

already_locked);

// ** ADT FUNCTIONS **

int search_for_bid(int bid);

int get_free_matrix_no ();

int get_min_bid ();

int get_free_matrix ();

// ** UTILITY FUNCTIONS **

void sendSegmentsToLTP(int start , int limit , int

matrix_index);

void add_padding(int start , int wmi);

int check_and_decode(int timedout);

int main(int argc , char *argv []);

// ** THREAD FUNCTIONS **

void addSegmentsToADT(int to_sec , int to_usec); // T1

static void *handleDatagrams(void *parm); // T2

static void *dispatchSegments(void *parm); // T3

Listing 6.12: ECLSI Functions

6.3.6 Invocation Method

ELCSI must be configured, like any others LSI, in the ltpadmin part of ION’s
configuration files, using the command "s". The parameters of the command
are the following:

eclsi IP:PORT

N K M T ALPHAMAX

ADT_TIMEOUT

Listing 6.13: ECLSI Invocation

42

The only parameter which differs from the previously discussed ECLSO
(Section 6.2.7) is ADT_TIMEOUT. It is the parameter used to set up the timeout
explained in Section 6.3.2.

43

7
P E R F O R M A N C E A N A LY S I S

7.1 general description

As explained in Section 3.4, LTP is able to overcome some of the typical
problems of the space environment. Despite these improvements, the protocol
may still have problems in both its two communication methods: Green and
Red.

In the former case, erasure codes add robustness against losses, which, as
well as being often useful, it is the only possible countermeasure against losses
in mono-directional channels, where ARQ methods are not usable.

In the latter case, although the ARQ mechanism associated with Red data
provides the user with full reliability, this is not for free, especially in the case
of very high error rates and long RTTs typical of space links; in fact, in such
conditions multiple retransmission can lead to unaceptable long delivery times.
Erasure codes can greatly improve the performance, by limiting the number of
retransmissions cycles to a minimum (often zero), thus decreasing the delivery
time.

To quantitatively assess these benefits, we have planned a series of experi-
ments, with both Green and Red data. However, while we manage to complete
the tests of Green data, during the subsequent tests with Red data, we have
found an unexpected behaviour in LTP retransmission in the presence of high
PER, which causes the delivery of a number of copies of the same bundle
or that prevents a bundle to be correctly delivered. The nature of this prob-
lem is independent of the ECLSA. In fact, we found it with ECLSA disabled,
when we wanted to evaluate performance of LTP alone using UDPLSO, as a
benchmark for subsequent ECLSA tests. The problem is related to the LTP
implementation included in ION which does not work well with high PER and
big bundles. The cause of the problem will be explained in Section 7.7. This
problem, although independent, has an impact on performance and on the
accuracy of the tests also when ECLSA is enabled, in particular when residual
losses (i.e. losses not recovered by ECLSA) trigger LTP retransmissions. This
is a not frequent case, but, in order not to present results whose reliability
may be somewhat questionable, we have preferred to skip results with Red
data, although they were very promising. The results presented here will
therefore refer only to the case of Green data; even with this limitations, they
will be enough to prove the important benefits introduced by ECLSA. It is our
commitment to integrate this thesis with an Appendix presenting results for
Red data as soon as the problem of LTP retransmission is fixed.

45

7.2 software used

The entire testbed used in our experiments has been created and managed by
means of VirtualBricks[21] (VB). VB is a GUI software released under the GNU
GPLv2 and included in the official Debian distribution (actually, I am on of the
main developer of the tool). VB aims is to create and manage not just single
virtual machines, but network testbeds consisting of multiple virtual machines
interconnected by means of virtual networks components (i.e. switches, cables,
channel emulators, . . .).

Virtual Machines (VMs) can be based either on QEMU[22] or on Kernel based
Virtual Machines[23] (KVM), the virtual network devices are part of the Virtual
Distributed Network[24] (VDE) toolset.

In out testbed we will also use, as channel emulator, vde-netemu, a variant
of the vde-wirefilter specifically developed for our tests. It can be used to
add delays, bandwidth restriction, loss rate (PER). It is also able to create
a two states (good, bad) Markov chain to model correlated channels. The
two parameters used to set the Markov chain are loss and lostburst (Table 4).
The probability to exit from the bad state is described by the Equation 1, the
probability to enter the faulty state is described by Equation 2.

Po =
1

lostburst
(1)

Pi =
loss

lostburst − (1 − loss)
(2)

On the VMs, we installed the Debian 7 GNU/Linux distribution, with Linux
Kernel 3.2.0. The BP implementations used are ION 3.1.2 and, later, ION 3.2.0.
The application used to send bundles between the two nodes is DTNPerf_3[19].
This is a software tool for DTN performance evaluation developed at the
University of Bologna under the supervision of Prof. Carlo Caini. I contributed
to it by adding a CRC capability to check if bundles are correctly received
a feature that was essential in our experiments. In fact, the LTP CL fills
with zeros the gaps corresponding to the LTP segments lost. Thus, bundles
extracted from an LTP block may differ from the original ones in case of loss.
This behaviour is called "zeros-filling".

7.3 scenarios and testbed configuration

The scenarios used for my experiments is characterized by two nodes, one
on the Earth and one on the Moon, communicating over an optical channel
(numeric parameters will be listed later). Two types of channel models have

46

Figure 13: The Virtual Testbed Used.

been used for the experiments: an uncorrelated channel and a correlated
channel. As explained in Section 7.2, the used channel emulator is able to
correctly receive UDP segments or to lost them, in practice, a UDP segment
cannot be received with incorrect bits in it. For this reason, Packet Error Rate
(PER) will be used to model the channel instead of the usual Bit Error Rate.

As we can see in Figure 13, the testbed used to simulate the scenario uses
three virtual machines. VM1 is the sender, VM2 the receiver and VM3 the
monitor, i.e. an additional node with monitoring task only. It receives some
informative bundles, called Status Reports (SRs) sent by the BP of the nodes.
They are used to report the time when an application bundle (a data bundle
sent by the user) is processed (i.e. forwarded by the sender to the receiver,
received by the receiver, delivered by BP to the final application). These SRs,
which are a characteristic features of the BP, allow the user to carry out a
micro-analysis (i.e. bundle by bundle) of the traffic, which is essential to
discover possible anomalies.

The two switches Switch1 and Switch2 are required by VDE because, if
two components of the toolset have to be interconnected, they uses data sent
through the switch, which is then fundamental.

For experiments in Section 7.4, the channel emulator has been used with the
parameters described in Table 4. The parameters for the configuration of the
real scenarios experiments are explained in Section 7.5.

The test campaign for Green data was planned and carried out in the
following logical order:

• Preliminary tests:

1. uncorrelated channel with UDPLSA (as benchmark data and to
validate the channel emulator)

47

Parameter Value Description

delay 1500ms Propagation time of the channel

bandwidth 20Mbps Bandwidth restriction

loss variable Packet Error Rate

lostburst variable Losses burst length

Table 4: VDE-Netemu parameters

2. uncorrelated channel with ECLSA (as benchmark data and to vali-
date the erasure coding/decoding)

3. correlated channel with UDPLSA (basically the same as 1)

4. correlated channel with ECLSA (to assess the impact of correlation
on erasure code performance, which is an essential aspect, given the
expected high burstiness of real channel)

• Application scenarios (4 scenarios, with same RTT but different correla-
tion and PER, UDPLSA vs. ECLSA)

7.4 preliminary tests

7.4.1 Uncorrelated Channel and UDPLSA

Some preliminary tests have been carried out to prove the validity of the
channel emulator and to show that the bundle dimension has an important
impact on the relation between the packet error rate and the bundle error
rate in the case of Green data with ECLSA disabled. The benchmark param-
eter considered in these tests is the Bundle Error Rate (BndER). We uses the
values described mathematically by Equation 3, comparing them with the
experimental values calculated using Equation 4.

BndERp = 1 − (1 − p)Bundlelength (3)

BndER =
Bundless − (Bundlesl + Bundlesw)

Bundless
(4)

In Equation 3, the parameter Bundlelength is the number of LTP segments
composing the bundle. The other values, calculated using Equation 4, uses
the Bundles that is the number of bundles sent, Bundlel that is the number of
bundles lost and Bundlew that is the number of bundles wrong. A bundle is

48

Figure 14: UDPLSA and Green: Bundle Error Rates

wrong when there is at least one missing segment, because of the zeros-filling
explained before. The reason why a bundle is lost is because the LTP engine,
to extract the bundles, waits for the last segment of the block but, if the last
segment is lost, no bundles are extracted from it.

The results of these tests, obtained with an uncorrelated channel, are shown
in Figure 14, where the Bundle Error Rate (BndER) vs. the PER for various
bundle sizes considered (1kB, 10kB, 100kB, 1MB) are plotted. In the figure
theoretical results achieved by means of Equation 3 describe the curves. Crosses
on the curves identified the values obtained with experimental results. As we
can see the two results (theoretical and experimental) are very similar. Besides
the obvious result that the BndER increases with PER, we observe that for all
the bundle sizes considered, except the first one (1kB), the BndER is very close
to 1, if the PER is at the highest value considered, i.e. 0.33. The lower tolerance
to loss of large bundles is due to the fact that it is enough to have one loss in
a bundle to have a bundle received different from the original one, and this
probability increases with the bundle length.

For a better insight, in Figure 15, the different contributes to the BndER are
given, namely "wrong" and "lost" bundles, with reference to 1MB bundles. We
can observe that wrong bundles are higher than lost for all PER considered
but the highest (0.33).

49

Figure 15: Bundles Errors Using UDPLSO and Bundles of 1MB

Figure 16: MER Chart

50

7.4.2 Uncorrelated Channel and ECLSA

A second series of tests have been carried out to explore the differences
between the implementation of the erasure code included in ECLSA and an
ideal case. Erasure codes, characterized by the parameters n, k and m, as
explained in Chapter 4, require at least k (in case of ideal behaviour) columns
to correctly decode a matrix. The probability of having a fail, during the
decoding procedure of the matrix, can be mathematically described by the
binomial distribution:

b(k, n, p) = 1 −
(

n
k

)
pk(1 − p)n−k (5)

In Equation 5, k is the number of success required in a sequence of n total
experiments and p the probability of success of a single experiment. The
experiments in this section check if actually the erasure codes that I have used
have the behaviour described by the Equation 5. Moreover, these experiments
have been very useful to understand where the EC implementation starts not
to recover lost information, giving some reference points for the experiments
with the correlated channel. The value calculated is the Matrix Error Rate
(MER), described by Equation 6.

MER =
Matricese

Matricess
(6)

In Equation 6, Matricese is the number of EC decoding failures; Matricess is
the total number of matrices encoded.

These experimental results aim to validate the correctness of the EC imple-
mentation used in ECLSA. Experimental and theoretical results are compared
to this end.

The results of these experiments are shown in Table 5 and Figure 16. In the
data reported, the values obtained with the Equation 5 (the theoretical results)
are called Pemat. The crosses on the curves represent values obtained with
experimental results and computed by using Equation 6. It is clear reading
the numeric result of the Table 5 that the values obtained in the two different
ways are very similar, demonstrating that the used EC implementation works
as expected. The results in Table 5 demonstrates that all the matrices, thanks
to the used EC implementation, are correctly recovered if on the channel a
PER up to 0.46 is present.

51

PER Pemat Pecalc

0,45 0 0

0,46 3,5283E-013 0

0,47 3,6677E-008 0

0,48 0,0001 0

0,49 0,0359 0,0283

0,5 0,4955 0,4964

0,51 0,9623 0,9362

0,52 0,9998 1

0,53 0,9999 1

0,54 1 1

0,55 1 1

Table 5: Matrix Error Rate Values

7.4.3 Correlated Channel and UDPLSA

Experiments with UDPLSA on a correlated channel have a similar behaviour
of the previous tests, presented in Section 7.4.1. For this reason, the only
additional experiments carried out are presented in Section 7.5.

7.4.4 Correlated Channel and ECLSA

In this series of tests, a correlated channel has been used with our imple-
mentation of ECLSA. With a correlated channel, the success of the decoding
procedure depends on the average length of a burst of lost packets. These
experiments try to explore the relation between the burst length and the Bundle
Error Rate (BndER). BndER is calculated using the aforementioned Equation 4.
Different PERs and different losses burst lengths have been used as explained
later.

PER values, used in these tests, are near the limit, found in the previous set
of experiments, where the erasure code implementation included ECLSA is
not able to recover bundles lost. For each experiment there is a fixed PER (0.4,
0.43, 0.46) and a variable burst length (increasing percentage of the number n
of the matrix columns). Graphical results can be seen in Figure 17, Figure 18,
Figure 19. The parameters showed in each graphic are the error rates based on:
the number of wrong, lost and lost plus wrong bundles and the Pecalc (BndER
obtained with Equation 4). All these parameters are similar to the ones used
for the other experiments of the previous sections.

52

Figure 17: Correlated BndER (PER 0.40)

In Figure 17, the curves start from zero if lostburst is zero, which means
that the channel is considered as uncorrelated. As soon as the percentage is
incremented, the error rates is incremented, reaching, after that the average
burst length is the 20% of n, a value close to the one configured as the required
loss rate (in Figure 17 the value is 40). At this point the curves settle on this
loss value.

If the lostburst value reaches values close to 100% the wrong curve is de-
creased to zero and the lost curve is increased. This happens because all the lost
segments are concentrated in a single matrix, causing the decoding procedure
of this matrix to fail. It is worth noting that, for the same reason, with the
highest burst length, the Pecalc is lower than before. In fact, considering that
the total loss rate is fixed, if a large number of losses are "consumed" in a
single burst, the sequence of not lost segments will be increased too, causing
for a while a lower number of fails during the decoding procedures.

The same observations done for the Figure 17 are valid for the other images
(Figure 18 and Figure 19). The only different behaviour is that the curves are
sharper in the first part, reaching sooner the loss value.

7.5 real scenarios

After all the preliminary experiments, four real scenarios are simulated to
evaluate the real benefits, obtained using ECLSA. For these experiments 5GB
of data, divided into 2500 bundles each one of 2MB, are sent over an optical
channel from the Earth to the Moon. The parameters of the network emulator,

53

Figure 18: Correlated BndER (PER 0.43)

Figure 19: Correlated BndER (PER 0.46)

54

given by DLR, for the four scenarios are listed in Table 6. The data are sent
using both UDPLSA and ECLSA.

Name Bitrate (Mbps) RTT (s) Loss (Pe) Lostburst (Segments)

S1 20 2.5 0.33 221

S2 20 2.5 0.13 338

S3 20 2.5 0.8 124

S4 20 2.5 0.03 186

Table 6: Real Scenarios Parameters

The results can be seen in Figure 20 and read in Table 7. In all the exper-
iments BndER is considered as benchmark for performance of the transfers.
Except for the first scenario, which is the most unfavourable, ECLSA is able to
recover all the losses occurred, decreasing the BndER to zero. This result can
be achieved because PER in the last three scenarios is not too high and then the
erasure code implementation is able to recover all the lost segments. On the
contrary, the BndERs, when UDPLSA is used, is high because the bundles size
is very huge (2MB) and with these bundles, it is enough that a single segment
is lost, to mark the bundle as wrong, increasing in this way the BndER. The
result of the test using UDPLSO in S2, where the average burst length is higher
than the one used in S3, indicates that the BndER is lower than the one in the
third scenario. As explained in Section 7.4.4, this is an effect of the average
good burst length (series of segments not lost) corresponding to the lost burst
length analysed (series of segments lost). In fact, if a large number of losses
are concentrated in a single burst, the PER value obtained will be incremented
and, until this value do not return near the value set as limit in the channel
emulator, a long series of segments will not be lost, causing during this time a
lower number of fails during the decoding procedures.

In S1, ECLSA is not able to recover all the segments lost and this produces
a residual BndER. This behaviour is caused by the average losses burst that
can be worse than the one set on the channel emulator, causing the PER to be
higher for brief periods.

LSA SC1 SC2 SC3 SC4

UDP 0.991 0.640 0.765 0.032

EC 0.034 0.000 0.000 0.000

Table 7: Real Scenarios Bundle Error Rate Results (considering 2500 bundles transmit-
ted)

55

Figure 20: Real Scenarios Results (considering 2500 bundles transmitted)

7.6 green experiments results analysis

The final results, presented in this chapter, shows the bad performance of
UDPLSO if it is used with a channel with high PER. The experiments show
also how the new implemented ECLSA is able, using ECs, to limit the number
of LTP segments lost. Obviously, the bandwidth spent to send the redundancy
informations has to be considered while designing a system which uses
erasure codes. But, in some situation, where no other solutions are viable, the
constraint on the bandwidth may be ignored, adding on the receiver node the
capability to recover almost all the data lost.

7.7 planned test with red part data

As explained above, we have found a problem in the LTP implementation
used, which reduces performance of UDPLSO. In fact, trying to carry out
our experiments with an uncorrelated channel with a PER of 0.10, and big
bundles (1MB), as we have done in the previous experiments with Green, we
discovered that more than one copies of a single bundles are delivered on the
receiver. This is caused by a report segments limit which limits the number
of report segments (RS) related to the same LTP session. In fact mixing the
high PER used in our test (in preliminary tests is 0.10) and the dimension of
our bundles (1MB) we had on the receiver a larger number of bundles than
the number of bundles sent. Analysing the data transmitted on the channel,

56

we discover that, in the implementation used, the maximum number of RS
transmission limit is ten. For each RS a maximum of 20 missing LTP segments
can be reported. For instance, in order to well understand the problem, we
carried out a one test with a bundle of 2MB (PER is always 0.10). This bundle
is composed by about 1954 LTP segments, each of them of 1024 bytes. In this
case, with the PER used, there are about 195 lost segments. The sender LTP
peer sends one CP after the transmission of all the initial LTP segments (1954).
Each RS can contain 20 maximum Reception Claim which are an assertion of
reception of some number of contiguous bytes of application data (a subset of
a block). The number of lost segments generates exactly 10 RS, which flows
back from the receiver to the sender. The sender that receives 10 RS related to
the same session, close the export session; the BP sends the same bundle again,
creating a loop. In this particular example, no one bundle is received because
of the session is always closed after each transmission. This behaviour in some
circumstances (i.e. bundles of 1MB of length) leads to duplicate bundles or to
have long delays during the transmission of the bundles. In the same scenario
but using ECLSA, the problem does not occur, because ECLSA, recovering all
the segments lost (with PER up to 0.46) "solves" the problem. For this behaviour
of LTP, which must be discussed with the ION developers team, and not to
present results whose reliability may be somewhat questionable, as said before,
we have preferred to skip results with Red data.

However, We want to explain the planned tests with Red data. The aim
of these tests is to prove the benefits offered by ECLSA when Red data are
used. It is worth pointing out that here it would be no point in evaluating the
BndER as done in dealing with the Green part, as with Red a full reliability,
i.e. BndER=0, is almost always assured by the ARQ method implemented
in LTP (exceptions require a number of consecutive retransmissions higher
than a large maximum value). Vice versa, retransmissions results in a longer
delivery time; ECLSA trades bandwidth, which is halved, with a reduction
of retransmissions (necessary only in the unlikely case of a decoding failure).
The idea therefore, to consider both the delivery time (pro) and the bandwidth
halving (con) was to use goodput as figure of merit.

Similarly to the tests carried out with Green data, the experiments are
divided into several different groups:

uncorrelated with udplsa: tests to prove the bad performance of Red
data used with long RTTs;

uncorrelated with eclsa: test the improvements in term of delivery
time and goodput, obtained by using ECLSA;

real scenarios: experiments in some real scenarios with long RTTs, i.e.
further than Earth-Moon.

57

8
C O N C L U S I O N S

The objective of this thesis was twofold: to include erasure codes in the LTP
protocol, and to assess the advantages offered by this solution in a variety of
possible conditions with both green and red data. The rationale of adding
erasure codes to LTP is given by the possibility of recovering LTP segments lost
without resorting to retransmissions, as retransmissions may be too expensive
in the presence of very long RTTs typical of space links (e.g. a few seconds
to Moon, minutes to Mars, . . .), or even impossible in the presence of unidi-
rectional links. To this end a new link service adapter, the ECLSA, and some
other auxiliary software components have been developed. Once achieved this
first aim, we focused on performance evaluation. By comparing the basic UDP
link service adapter, UDPLSA, with the new ECLSA, we demonstrated that in
a variety of conditions ECLSA can offer better performance.

All the different phases of the work were carried out with the collaboration
of both DLR and University of Bologna. During the six months spent in the
Munich site of DLR, supported by a DLR grant, I carried out preliminary study,
the design, and the implementation of ECLSA. Testbed tuning, experiments
and results analysis, were then carried out at the University of Bologna.

All the experiments performed, especially the ones on real scenarios, have
demonstrated the great potentiality of ECLSA for space communications. The
interest on this subject has been perceived also in the last two CCSDS meeting
where preliminary results have been presented. We hope that the new link
service adapter may be included by NASA in the future releases of ION and
that joint use of erasure codes with LTP may be eventually standardized by
the CCSDS itself. The final wish is that our efforts, one day, will be useful in
some real space deployment.

8.1 future works

The tests presented in this thesis have demonstrated that the implementation
of ECLSA works as expected and that can provides real advantages whit
green data. However, during the first tests with Red data, we have found a
problem related to LTP retransmissions in the presence of very high PER and
huge bundles, which prevent us from carrying on the planned experiments.
Although the problem is only related to the particular implementation of the
LTP protocol used and then independent of ECLSA, it has a negative impact
on performance of UDPLSO, used as a benchmark, and then on the accuracy

59

of the tests. For this reason, before continuing with the experiments, we want
to fix the problem in a proper way, reporting the problem to the NASA’s
developers and finding with them a solution. As soon as the problem is fixed,
it is our commitment to integrate this thesis with an Appendix presenting
these new Red data results.

60

A C K N O W L E D G E M E N T S

First of all, I would like to thank my two DLR’s supervisors Tomaso de Cola and
Gianluigi Liva who helped me in all the phases of my work, especially during
the time spent in Germany. I would like also to thank Balazs Matuz who helped
me with the first phases of this thesis. This work was supported in part by a
grant from DLR, which helped me in the initial six months of work carried
out in the DLR Research Centre in Oberpfaffenhofen (Munich). Finally, I would
like to thank all the people all over the world who shares their knowledges,
releasing the results achieved and the information discovered.

61

L I S T O F F I G U R E S

Figure 1 Stack with BP Layer 8

Figure 2 Example of a LTP Session with Red and Green part
data 11

Figure 3 ION and LTP 12

Figure 4 Example of encoding procedure 13

Figure 5 Example of encoding procedure 14

Figure 6 The ADT Matrix 19

Figure 7 Libec Packet Header 24

Figure 8 Libec Packet Header with Extensions 24

Figure 9 ECLSO General Working Method 30

Figure 10 ECLSO Threads 32

Figure 11 ECLSI General Working Method 37

Figure 12 ECLSI Working Method 39

Figure 13 The Virtual Testbed Used 47

Figure 14 UDPLSA and Green: Bundle Error Rates 49

Figure 15 Bundles Errors Using UDPLSO and Bundles of 1MB 50

Figure 16 MER Chart 50

Figure 17 Correlated Channel BndER (PER 0.40) 53

Figure 18 Correlated Channel BndER (PER 0.40) 54

Figure 19 Correlated Channel BndER (PER 0.40) 54

Figure 20 Real Scenarios Results (considering 2500 bundles trans-
mitted) 56

iii

L I S T O F TA B L E S

Table 1 List of libec variables 20

Table 2 List of the fields of an ECPacket 23

Table 3 List of the extensions of the header 23

Table 4 VDE-Netemu parameters 48

Table 5 Matrix Error Rate Values 52

Table 6 Real Scenarios Parameters 55

Table 7 Real Scenarios Bundle Error Rate Results (considering
2500 bundles transmitted) 55

v

L I S T I N G S

5.1 ec_data Structure . 19

5.2 Libec Functions . 20

5.3 The Encoder . 21

5.4 The Decoder . 22

5.5 ECHeader structures . 25

5.6 ECPayload structure . 25

5.7 Circular Buffer Descriptor . 26

5.8 Send And Receive Functions . 26

5.9 Packet Creation Functions . 27

5.10 LTP Segment Extraction Functions 27

5.11 Header Extension Function . 27

5.12 CRC Functions . 28

5.13 Circular Buffer Functions . 28

6.1 Functions added to ION . 31

6.2 ECLSO status vars . 33

6.3 Receiver thread parameters . 34

6.4 T2 job structure . 34

6.5 List of the misc functions of ECLSO 35

6.6 List of the pool management functions of ECLSO 35

6.7 List of the ECPackets management functions of ECLSO 35

6.8 List of the threads functions of ECLSO 36

6.9 ECLSO invocation . 36

6.10 eclsi_vars Structure . 40

6.11 ReceiverThreadParms Structure 41

6.12 ECLSI Functions . 42

6.13 ECLSI Invocation . 42

vii

B I B L I O G R A P H Y

[1] S. Farrel, V. Cahill, D. Geraghty, and I. Humphreys. When TCP Breaks:
Delay- and Disruption- Tolerant Networking. Internet Computing, IEEE,
10(4):72–78, July-August 2006.

[2] G. Liva, B. Matuz, M. Chiani, and E. Paolini. Maximum Likelihood
Erasure Decoding of LDPC Codes: Pivoting Algorithms and Code Design.
Transactions on Communications, IEEE, 60(11):3209–3220, November 2012.

[3] L. Rizzo. Effective Erasure Codes for Reliable Computer Communication
Protocols. ACM SIGCOMM Computer Communication Review, 27(2):24–36,
April 1997.

[4] G.P. Calzolari, T. de Cola, G. Liva, and E. Paolini. Reliability Options for
Data Communications in the Future Deep-Space Missions. Proceedings of
the IEEE, 99(11):2056–2074, November 2011.

[5] P. Apollonio, C. Caini, T. de Cola, G. Liva, and B. Mutuz.
Implementation of Erasure Codes as LTP Sublayer in ION.
http://cwe.ccsds.org/sis/docs/SIS-DTN/Meeting%20Materials/

2013/Spring/LTP_erasure%20codes_final.pdf, April 2013.

[6] T. de Cola. Erasure Codes Meet LTP in ION: Update and Results.
http://cwe.ccsds.org/sis/docs/SIS-DTN/Meeting%20Materials/

2013/Fall%20--%20San%20Antonio/LTP_w_EC.pdf, October 2013.

[7] Internet Research Task Force. http://www.ietf.org.

[8] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall,
and H. Weiss. Delay Tolerant Networking Architecture. http://tools.
ietf.org/html/rfc4838. IETF - RFC 4838.

[9] Consultive Committee For Space Data Systems. http://www.ccsds.org.

[10] K. Scott and S. Burleigh. Bundle Protocol Specification. http://tools.

ietf.org/html/rfc5050. IETF - RFC 5050.

[11] S. Burleigh, M. Ramadas, and S. Farrell. Licklider Transmission Proto-
col Motivation. http://tools.ietf.org/html/rfc5325, September 2008.
IETF - RFC 5325.

[12] M. Ramadas, S. Burleigh, and S. Farrell. Licklider Transmission Proto-
col. http://tools.ietf.org/html/rfc5326, September 2008. IETF - RFC
5326.

ix

http://cwe.ccsds.org/sis/docs/SIS-DTN/Meeting%20Materials/2013/Spring/LTP_erasure%20codes_final.pdf
http://cwe.ccsds.org/sis/docs/SIS-DTN/Meeting%20Materials/2013/Spring/LTP_erasure%20codes_final.pdf
http://cwe.ccsds.org/sis/docs/SIS-DTN/Meeting%20Materials/2013/Fall%20--%20San%20Antonio/LTP_w_EC.pdf
http://cwe.ccsds.org/sis/docs/SIS-DTN/Meeting%20Materials/2013/Fall%20--%20San%20Antonio/LTP_w_EC.pdf
http://www.ietf.org
http://tools.ietf.org/html/rfc4838
http://tools.ietf.org/html/rfc4838
http://www.ccsds.org
http://tools.ietf.org/html/rfc5050
http://tools.ietf.org/html/rfc5050
http://tools.ietf.org/html/rfc5325
http://tools.ietf.org/html/rfc5326

[13] S. Farrell, M. Ramadas, and S. Burleigh. Licklider Transmission Protocol
Security Extensions. http://tools.ietf.org/html/rfc5327, September
2008. IETF - RFC 5327.

[14] DTN2 Documentation. https://sites.google.com/site/dtnresgroup/
home/code/dtn2documentation.

[15] DTN2 Sources. http://sourceforge.net/projects/dtn/.

[16] S. Burleigh. Interplanetary Overlay Network: An Implementation of the
DTN Bundle Protocol. In Proc. of 4th IEEE Consumer Communications and
Networking Conference, pages 222–226, January 2007.

[17] ION Sources. http://sourceforge.net/projects/ion-dtn/.

[18] CCSDS Bundle Protocol Specification. http://public.ccsds.org/sites/
cwe/rids/Lists/CCSDS7342R2/Attachments/734x2r2.pdf, October 2013.
CCSDS - Red Book - 734.2-R-2.

[19] DTNPerf3 Web Page. http://cnrl.dei.unibo.it/new/software.php.

[20] E. Paolini, G. Liva, B. Matuz, and M. Chiani. Maximum Likelihood
Erasure Decoding of LDPC Codes: Pivoting Algorithms and Code Design.
IEEE Transactions on Communications, 60(11):3209–3220, November 2012.

[21] Virtualbricks on Launchpad. https://launchpad.net/virtualbrick.

[22] QEMU. http://www.qemu.org.

[23] Kernel based Virtual Machine. http://www.linux-kvm.org/page/Main_
Page.

[24] Virtual Distributed Ethernet. http://vde.sourceforge.net/.

x

http://tools.ietf.org/html/rfc5327
https://sites.google.com/site/dtnresgroup/home/code/dtn2documentation
https://sites.google.com/site/dtnresgroup/home/code/dtn2documentation
http://sourceforge.net/projects/dtn/
http://sourceforge.net/projects/ion-dtn/
http://public.ccsds.org/sites/cwe/rids/Lists/CCSDS 7342R2/Attachments/734x2r2.pdf
http://public.ccsds.org/sites/cwe/rids/Lists/CCSDS 7342R2/Attachments/734x2r2.pdf
http://cnrl.dei.unibo.it/new/software.php
https://launchpad.net/virtualbrick
http://www.qemu.org
http://www.linux-kvm.org/page/Main_Page
http://www.linux-kvm.org/page/Main_Page
http://vde.sourceforge.net/

