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Riassunto della tesi

Scopo di questo lavoro di tesi € lo studio di alcune proprieta delle teorie generali della
gravita in relazione alla meccanica e la termodinamica dei buchi neri. In particolare, la
trattazione che seguira ha lo scopo di fornire un percorso autoconsistente che conduca alla
nozione di entropia di un orizzonte descritta in termini delle carica di Noether associata
all'invarianza del funzionale d’azione, che descrive la teoria gravitazionale in consider-
azione, per trasformazioni di coordinate generali. Si prestera particolare attenzione ad
alcune proprieta geometriche della Lagrangiana, proprieta che sono indipendenti dalla
particolare forma della teoria che si sta prendendo in considerazione; trattasi cioe non
di proprieta dinamiche, legate cioe alla forma delle equazioni del moto del campo gravi-
tazionale, ma piuttosto caratteristiche proprie di qualunque varieta rappresentante uno
spaziotempo curvo. Queste caratteristiche fanno si che ogni teoria generale della gravita
possieda alcune grandezze definite localmente sullo spaziotempo, in particolare una cor-
rente di Noether e la carica ad essa associata. La forma esplicita della corrente e della
carica dipende invece dalla Lagrangiana che si sceglie di adottare per descrivere il campo
gravitazionale. Il lavoro di tesi sara orientato prima a descrivere come questa corrente di
Noether emerge in qualunque teoria della gravita invariante per trasformazioni generali
e come essa viene esplicitata nel caso di Lagrangiane particolari, per poi identificare la
carica ad essa associata come una grandezza connessa all’ entropia di un orizzonte in
qualunque teoria generale della gravita.

Lo schema della tesi ¢ il seguente:

Capitolo 1: Viene ricavata l'identita di Bianchi generalizzata per teorie generali della
gravita invarianti per diffeomorfismi. Viene sottolineato che I'identita di Bianchi
& una relazione off-shell unicamente dovuta all’invarianza dell’azione sotto trasfor-
mazioni arbitrarie delle coordinate che esprime nient’altro che la covarianza gen-
erale della teoria, proprieta questa assolutamente indipendente dalla forma della
Lagrangiana.

Capitolo 2: Viene ricavata l’espressione della corrente conservata associata all’invarianza
dell’azione per diffeomorfismi generali. Si discute nel dettaglio la proprieta per cui
questa corrente ¢ conservata off-shell e come cio viene interpretato alla luce del
teorema di Noether.
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Capitolo 3: Si da l'espressione esplicita per la corrente ricavata nel capitolo precedente
nel caso di Lagrangiane generali con dipendenza arbitraria dal tensore di Riemann
ma non dalle sue derivate e per la Lagrangiana di Hilbert-Einstein. La carica
associata viene calcolata esplicitamente per la Relativita Generale su un orizzonte
a simmetria sferica di metrica assegnata.

Capitolo 4: Viene fornita un’interpretazione fisica alla carica calcolata nel capitolo 3,
precisamente andando on-shell, ossia utilizzando le equazioni del moto per il campo
gravitazionale. Si affrontera il caso di Lagrangiane generali e quindi in Relativita
Generale verra mostrato che la carica associata ad un orizzonte a simmetria sferica
coincide con l'entropia di Bekenstein-Hawking.
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Abstract

In this thesis, some features of general theories of gravity will be reviewed in relation
to the mechanics and the thermodynamics of black holes. In particular, the entropy
associated to the event horizon of a black hole can be described in terms of the conserved
charge that comes from the invariance of the action functional describing the theory
under general coordinate transformations. The attention will be focused especially on the
general geometric properties of the Lagrangian, which are independent on the theory of
gravity taken in account, i.e. they are not dynamical properties of the theory but rather
intrinsic properties of the manifold representing curved spacetime. These properties
make any general theory of gravity to possess quantities which are locally defined on the
spacetime, in particular a Noether current and the corresponding charge. The explicit
form of the current and the charge depend of the form of the Lagrangian chosen for
describing the gravitational field. The thesis will be first describe how the current comes
up in any diffeomorphism invariant theory of gravity, eventually its form will be given
in the case of particular Lagrangians, and afterwards the charge will be identified as a
quantity connected to the horizon entropy in any general theory of gravity.

The scheme of the thesis is the following

Chapter 1: The generalized Bianchi identity will be derived for diffeomorphism invari-
ant general theories of gravity. It will be pointed out that the Bianchi identity
is an off-shell relation that comes from the variation of the action under arbitrary
transformations of the coordinates. It expresses nothing but the general covariance
of the theory, hence it is independent of the form of the Lagrangian.

Chapter 2: The conserved current associated to the diffeomorphism invariance of the
theory will be studied. In particular, it will be stressed that such a current is off-
shell conserved. We will face this feature in relation with the Noether’s theorem.

Chapter 3: The particular form of the conserved current will be given here for general
gravitational actions with arbitrary dependence on curvature tensor but not on its
derivatives and Hilbert-Einstein action. The associated conserved charge will be
computed in the case of General Relativity, on a spherically symmetric horizon of
given background metric.



Chapter 4: A physical interpretation will be provided for the charge computed in chap-
ter 3 going on-shell, i.e. using the equations of motion for the gravitational field.
After a discussion involving general theories of gravity, it will be shown that the
charge for a spherically symmetric horizon in General Relativity is the Bekenstein-
Hawking entropy.
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Introduction

Undoubtedly, one of the most remarkable developments in theoretical physics to

have occurred during the past twenty five years was the discovery of a close relationship
between certain laws of black hole physics and the ordinary laws of thermodynamics.
The existence of this close relationship between these laws may provide us with a key
to our understanding of the fundamental nature of black holes in a quantum theory of
gravity, as well as to our understanding of some aspects of the nature of thermodynamics
itself.
It was first pointed out by Bekenstein [2] that a close relationship might exist between
certain laws satisfied by black holes in classical general relativity (GR) and the ordinary
laws of thermodynamics. The area theorem of classical GR [6] states that the area, A,
of a black hole can never decrease in any process

AA>0 (1)

Bekenstein noted that this result is closely analogous to the statement of ordinary second
law of thermodynamics: The total entropy, S, of a closed system never decreases in any
process

AS >0 (2)
Thus, Bekenstein proposed that the area of a black hole (times a constant of order unity
in Planck units) should be interpreted as its physical entropy. Indeed if the black hole
did not have an own entropy the second law of thermodynamic would easily violated. In
fact it easy to think of a situation in which we take some matter with some entropy, and
put it into the black hole. Since nothing can come out of the black hole, we conclude that
the entropy of the universe has reduced, hence the change in entropy, S < 0. Therefore
the second law has been violated. The way to save this apparent violation of the second
law is to associate some entropy with the black hole, Spiack nole- This entropy, will then
increase when some matter goes into the black hole. Then we may be able to show that
the net change of entropy is not negative, i.e, 6.5 + dSplack nole = 0. In GR, thanks to the
work by Bardeen, Carter and Hawking [1] and the discovery by Hawking of the black
body thermal emission of a black hole, it was proved that the entropy of a spherically

symmetric black hole is
A
Shy = — 3
o= o 3
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which is the Bekenstein-Hawking entropy. The original derivation of this formula for the
black hole entropy in GR used many detailed properties of the Einstein field equations
and, thus, appeared to be very special to GR. In this thesis we would like to answer the
following question: is it possible to introduce a notion of black hole entropy, or, more
generally, an horizon entropy which is based on quantities locally defined on the horizon
which are common to any theory of gravity?. Actually, we know that in 1993 Robert M.
Wald answered yes to this question introducing the notion of what is now known as Wald
entropy [16] constructed a new derivation of the first law of black hole mechanics for any
theory which is invariant under diffeomorphisms (i.e., coordinate transformations). In
this construction, the black hole entropy is related to the Noether charge of diffeomor-
phisms under the Killing vector field which generates the horizon in the stationary black
hole background. Further, the Wald entropy can always be expressed as a local geometric
density integrated over a space-like cross-section of the horizon.

The aim of this thesis is to convince the reader, following a path different from the one
constructed by Wald, that such a notion of horizon entropy expressed in terms of locally
defined quantities over the horizon (that are independent of how the gravitational theory
is built) really exists. We could say that we will try to give a formulation of the Wald
entropy starting from the very beginning, as if we were not aware of Wald’s results, i.e
we will discuss everything in the thesis from scratch. In doing this, the starting point
will be the project 8.1 in [11, p. 394].

The formula for the entropy as connected to the Noether charge which will be provided
in the thesis will coincide with the Bekenstein-Hawking entropy for a spherically sym-
metric horizon when the action functional of the theory is the Hilbert-Einstein action in
a D = 4 spacetime. The key point we would like to focus on is that we will recover a
notion of entropy that is specific of a certain gravitational theory, i.e. GR, starting from
quantities that can be defined also for theories described by different, and completely
general, action functionals. Thus, one expects the entropy formula we will found in the
thesis to represents the horizon entropy in any diffeomorphism invariant general theory
of gravity.

viil



Chapter 1

Bianchi identity in general theories
of gravity

1.1 Derivation of the generalized Bianchi identity

In this section we will derive the analogous of the Bianchi identity in GR, but in the
case of general class of diffeomorphism invariant theories of gravity. These theories, as
well as GR, will be treated as classical field theories, i.e. the dynamical variables will be
functions of spacetime, their dynamics being governed by a proper action functional, as
we will soon see. In this thesis we will always refer to a spacetime that can be represented
as a D-dimensional spacetime with D > 4. We will consider the case D = 4 only when
we will deal with GR. In describing a general theory of gravity we will start from some
basics principles that can be already found in GR, that is the simpler and the most
elegant and tested, at least into our solar system, gravitational theory. In a general
theory of gravity, the gravitational field will be characterized by the 10 components of
the symmetric metric tensor gq(x) defined via

ds® = gap(z)da’da’ (1.1)

where ds? is the spacetime interval that represents the distance between two infinitesi-
mally separated events of spacetime. In general, even though (1.1) defines an intrinsic
curved spacetime, it is always possible to find a locally inertial frame (or Lorentzian
frame) in which the metric g, (z) reduces to the point independent Minkowskian metric
Nap With Lorentzian signature diag(—1,1, 1, 1). This is nothing but the equivalence prin-
ciple, that leads in a quite naturally way to a geometrical description of all gravitational
effects. However, in an intrinsic curved spacetime the metric appearing in (1.1) cannot
be reduced globally to a given background form and thus all the coordinate systems have
to be treated equally, none of them has a privileged status in describing the physics of
gravitational systems. Hence, the laws of physics must be the same in any arbitrary
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frame of reference (i.e. coordinate systems). It follows that we need to formulate our
theories in a manner such that the equations are covariant under arbitrary coordinate
transformations [11]. Hereafter, we will always consider metric theories of gravity in the
sense just explained. The general covariance principle strongly constraints the form of
the action functional. We will consider an action functional of the form

S = [d°eV=g Ly(9", Rietr ViR, ) (12)

where ... stands for the higher derivatives of the curvature tensor and there are no
other dynamical fields apart from the metric. The form of the Lagrangian in (1.2) is the
one we would expect to find in a geometrical description of a general theory of gravity.
The Lagrangian is a scalar under general transformations z'* = 2*(2°), made of tensors,
namely the metric, its first and, at least, second derivatives (no non trivial scalar can be
made of the metric and its first derivative alone) enclosed into the curvature tensor, and
this fact leads to law of physics written in a tensorial form and thus valid in any arbitrary
frame of reference. Extremizing (1.2) respect to the metric g% leads to the gravitational
filed equations. One can show that it is possible to build theories of gravity which have
equations of motion involving derivatives of second order in the dynamical variables even
though higher derivatives of the curvature tensor appear into the Lagrangian [11], [13].
It can be shown that the variation of the action (1.2) under an arbitrary transformation
of the dynamical variables can be always cast in the form

5S = / dPxs(y—gL,) = / A2/ =g (Ewdg™ + V607 (1.3)

where the term V,0v® leads to a surface term. We will prove this in the next section,
first assuming, for the sake of simplicity, the Lagrangian depends on the metric and
curvature tensor but not on its derivatives and we will eventually consider the general
case in which also the derivatives of the curvature tensor enter the Lagrangian. The
first term in (1.3) contains all the terms rising from the variation of the metric alone,
instead the second term is built by terms rising from the variation of the derivatives of
the metric, and thus E,, and dv® result unambiguously defined.

A very important action functional belonging to the wider class of actions represented
by the general form (1.2) is the following

1
known as the Hilbert-Finstein action, R being the Ricci scalar, where C is a general
coupling constant that reduces to the Newton constant when D = 4, i.e. for GR. How-
ever, this action is defined, in general, on a D-dimensional spacetime. The multiplication

constant has been chosen in such a way that setting D = 4 one recovers the familiar
Hilbert-Einstein action of GR. When dealing with (1.4), (1.3) is written as

_ 1 D — ab a
0Syp = T6nC /d 2/ =g (Gapdg® + V,0v%) (1.5)

SHE



1.1. DERIVATION OF THE GENERALIZED BIANCHI IDENTITY

where

_ 1 AR
Gap = N (1.6)

is the Einstein tensor. Thus, F,, = G for the Hilbert-Einstein action. In general
thoeries of gravity, extremizing (1.3) with respect to 5g%° lead to the equations of motion
for the gravitational field. If one adds to the action describing the pure gravitational field
an action describing the effects of matter, S — S, + Sy, the equations of motion would
be 2E,, = T,;, where T, is the energy-momentum tensor of matter. When the Hilbert-
Einstein action is extremized in the presence of matter the equations of motion read
Gap = 81C Ty, that reduces to the Einstein equations Gy, = 87G Ty, when D = 4 (this
fact, again, motivates the choice of the multiplication constant). In absence of matter,
the equations of motion reduces to F,, = 0 and this must valid for any diffeomorphism
invariant theory of gravity, in particular we have G, = 0 for the Hilbert-Einstein theory.
However, we are not interested in discussing the features of the equations of motion
anymore here, but rather in the well known Bianchi identity

V.G =0 (1.7)

Using (1.6) the Bianchi identity can be written as
ab 1 ab
v, (R -9 R) —0 (1.8)

Even though all the dynamics of the metric is governed by G, the previous relation is an
identity that holds independently of the equations of motion. Bianchi identity is rather
a relation coming up from the algebraic properties of the curvature tensor. In fact, it
can be shown that (1.8) is equivalent to R% ;4 = 0, where [abc] stands for the sum over
the cyclic permutations of the indexes a,b and c. This last identity is easily proved in a
local inertial frame and, after some manipulations, it can be cast in the form (1.8). It is
important to stress that if the Bianchi identity did not hold, it could not be possible to
express the 20 components of a general tensor with the same algebraic properties of R%,_,
as functions of the 10 components of a given metric. Thus, Bianchi identity is a necessary
and sufficient condition for a general tensor with the same algebraic symmetries of the
curvature tensor to be considered as a curvature tensor of some metric. This feature is
purely geometric, due only to the fact that we are considering an intrinsic curved manifold
with a metric, and it is independent from the choice of the coordinate system and from
the form of the metric (the "way" the spacetime is curved), i.e. from the equations of
motion. Hence the content of Bianchi identity it is not dynamical, but instead it is
strictly connected to the very geometrical nature of spacetime. To be more specific, the
Bianchi identity (1.7) emerges as a direct consequence of the general covariance of the
theory, expressed by the invariance of the Lagrangian under general transformations.
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This can be better seen considering (1.7) as a collection of 4 constraints of the theory.
Thus, it simply means that the equation of motions are not linearly independent and
not all the 10 components of the metric g, are true dynamical variables. Since (1.9)
provides four conditions (constraints) that can be used to fix 4 of the 10 components of
the metric, there are only 6 components left whose time evolution can be obtained by
solving the equations of motion. In general, if one wants to preserve the manifest general
covariance of the theory, all the ten components of the metric have to be treated on the
same footage, even if four of them evolve in time through arbitrary functions of time.
The arbitrariness of these 4 components agrees perfectly with the general covariance that
always gives the freedom to change the coordinates system, x* — 2/, without changing
the physics of the theory. Thus, we expect a Bianchi-like identity should hold in any
diffeomorphism invariant theory. What happens is that the following identity holds

V.E® =0 (1.9)

for any E,, given as in (1.3). To see it, we will proceed as follows: we will consider the
variation of the Lagrangian density /—g¢L, under specific coordinate transformations of
the form 2% — 2'* = 2 4+ {*(x), where £%(z) are arbitrary, infinitesimal quantities.
Using the explicit expression (1.3) we have

[dPw8ev/=gLy) = [dPay/=g(Eu deg™ + Va(0")) (1.10)

In order to move further it is necessary to compute the local variation of the metric
tensor under the general diffeomorphism 2¢ — 2% 4 £%(x), i.e. g% = ¢'"(z) — g**(x)
that is the variation of the functional form of the metric tensor at a given location. Since
we are considering the contravariant components of the metric tensor, we can start from
its very definition, i.e. its transformation law under a change in the coordinates

la b
_ 0x'* 0x"

ab
9@ = 55 a9 (@) (1.11)
that for the coordinate transformation we are dealing with becomes
g (') = (0% + %) + ") g" ()
~ g®(x) + 996" + db¢e (1.12)

where we have dropped the terms in & of higher order than the first. Now we have to
compare ¢’ (x) and g?°(x), that is the comparison has to be made at the same spacetime
point. To do this we can expand the left member of the above equation in a Taylor series,
stopping it at the linear terms in €. Then we get

g/ab(x/) %g'“b(a?) —l—akgab(m)fk :gab(:v) +aa€b+ab€a =
lab

0eg™ = g (x) — g*(x) = —Ohg*(x)&" + 0°¢" + O"¢" (1.13)
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It is possible to give a more compact expression for the above local variation of the
metric tensor recalling that the covariant derivative of the latter is identically zero,
Vig® = 0, g + 1%, g% + %, g% = 0, from which we get 0y g** = —T'%, g*' — I'®,, g%
and then

5£gab _ Fakl gbléfk 4 Fbkl galé-k + aagb 4 abga
— aa§b+ra2§~k _i_abéfa +szlz€5k
= VU + Vi = Leg™ (1.14)
where £¢g% is the Lie derivative of the metric respect to . Let us come back to the

variation of the action. Putting into (1.10) the above expression for the local variation
of the metric we get

/ dPade(v—gL,) = / P 1/ =g Eap(VE" + VPEY) + Vo (6¢0")] (1.15)

From (1.3) we expect the tensor Ey;, to be symmetric or, to better say, it would be useless
considering its antisymmetric part since this would vanish in the contraction with §g%,
that is obviously symmetric. As we will verify later, E,;, is built from the derivatives of
the Lagrangian with respect the metric and the derivatives of the metric and hence it is
straightforward symmetric. Using this fact we get

/ dPase(y/—gL,) = / AP/ =g[2 B VE" + Vo (5c0%)]
_ / AP 1 /=g[2E®V &, + Vo(5e0%)]
- / AP/ =g12Va(E™E,) — 2V, B¢, + V,(0¢0%)] (1.16)

where in the third step we have performed an integration by parts. To reach our goal,
it is worth to express the local variation of the scalar density /—¢L, in a more useful
form. Keeping in mind that the Lagrangian is a general scalar, i.e L;(2') = Ly(x) when
x* — 2 =% 4 £*(x), we get

Lg(x" 4+ &%) = Ly(x) + §"0aLy(x) = Ly(x) =

Ly(x) = Lg(x) = =€ 0aLg(x) =

§eLy = —€°V oLy = —£¢L, (1.17)
where in the first equation we have replaced 9,L;(z) with d,L¢(x) since §* are infinites-

imal quantities (the terms in £* of higher order than the first have been dropped) and in
the last step the covariant derivative has taken the place of the ordinary one since L, is
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a scalar. Thus

0e(V—9Lg) = 0e(V—9)Lg + V=390 L,
1
= —5V=9 9a0c9" Ly + V=90¢ g
= V=9(—9a V€ Ly + ¢ L) (1.18)
where in the last step the symmetry of the metric has been implemented. In the second
equality, d¢(1/—¢) has been computed as follows. Since

1

0e(v/—g) = — 0cg (1.19
f( ) 2\/_—g 3 )

we need an expression for the variation of g. Writing
g = exp [Trn g”] (1.20)

we have
ag a @7 alngij a aby\— a
0eg = 7 -50e9% = exp [TrIn gd|Tr | == | g™ = g (¢™) 7" = g galeg™  (1.21)
dg dg
and thus

1 1
5e(vV/=9) = —5—=9 909" = — V=9 gar0ec g™ 1.22
¢(V—9) 9 ,—_ggg ) 5 9 Gab0Oeg ( )
Using (1.17) in the above expression leads to

55(\/__9Lg) = \/__g(_vafa[/g - 5avaLg) = _\/__gva<Lg§a) (1'23)
and (1.16) becomes

- / AP 1\/=gVa(L,EY) = / AP/ —g[2Va(EE,) — 2V, Ee, + Vo (5e0%)]  (1.24)

Rearranging this, we get

/ dP2\/=g 2V B¢, = / AP/ =gV o (2EE, + v + Ly£%) (1.25)

from which we see that the right member is equal to a volume integral that can be
transformed, through Gauss’s theorem, into an integral over the boundary of the term
in round bracket.

/ AP/ =g 2V, Ebe, = / doo VB (2E%€, + 50" + L,£%) (1.26)

where do, is a component of a 3-surface of intrinsic metric h. At this point, we can
use the arbitrariness of £* to take it in such a way that the variation of the metric
together with its derivatives vanish on the boundary. In this way the right member of
(1.26) is zero and since the volume of spacetime, over which the integral is performed, is
completely arbitrary, the integrand in the left member of (1.26) must vanish and hence
(1.9) immediately follows. Let us summarize the main results of this section:
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e the Bianchi identity V,E% = 0 is a direct consequence of the general covariance of
the theory.

e the Bianchi identity constraints a tensor with the same algebraic properties of the
curvature tensor to be a curvature tensor derivable from a metric.

e the Bianchi identity is an off-shell relation, i.e. no equations of motion have been
used in its derivation.

All these three facts are consequences of the geometrical nature of the theory, of seeing
all gravitational effects emerging as geometrical properties of a manifold rather than
dynamical properties of fields.

1.2 Variation of the action: a deeper insight

We will now focus on the variation of the action in order to give some more mathe-
matical details behind (1.3). In doing this we will consider a Lagrangian that depends
on the metric and the curvature tensor, but not on its derivatives

S = [aPev/=g Ly(g™, Ria) (1.27)

In all the incoming calculations, and elsewhere in the thesis unless differently specified, we
will always work in a coordinate basis {e,} with basis vectors e, = J,. Since spacetime is
a differential manifold, the very definition of manifold always allows us to refer, without
loss of generality, to a coordinate basis when we have to express the variation of the metric
and thus the variation of the action. Now, let us write (1.27) in such a manner that the
dependence upon the covariant metric and its first and second derivatives appears more
clearly

S = /dD'rV -9 Lg(gab, ac Gab, acad gab) (128)
With our choice to work with a coordinate basis, the connections and the curvature
tensor read 1
. = igak<gkc,b + Gibe — Goe k) (1.29)
and
Rabcd = I‘abd,c - Fabc,d + I‘amc]‘_‘"éd - Famdrn})c (130)

respectively, where we have used the notation A; = 0;A. The above expressions allow
us to write the action (1.28) as follows

S = / dP2v/=G Ly (gapy T%,. dal%,) (1.31)
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Equation (1.30) (with one index up) permits to read the variation of curvature tensor
entirely in terms of variations of I',, and I'%,, ; alone (only Gammas, no metric); then, if
the §R%,, we have to consider is with g% = const. all what we have to do is to compute
the variations of the I through (1.29), keeping ¢** = const in it, and use them in the
variation of (1.30). This suggests to consider g% and R%,., as independent variables, and
to compute any variation of R%, as variation of I's. Thus (1.27) is formally equivalent

to
S = /de\/—g Ly(g", T%,, 0,0%,) (1.32)

Hence, we have (from now on, we will not specify the arguments of the Lagrangian
anymore to ease the notation)

D 1 8(\/_L) ab bed
5S = /dx\/_l\/_ g 09"+ F, 6Rbcd]

1
= / dPz\/—g [( ~garLy ) 5g” + PSR bcd] (1.33)

2

where in the second equality (1.22) has been used. We have also introduced the tensor

oL
Pl = | - 1.34
a ( aRabcd> gab ( )

which has the same algebraic properties of R%,;
Pabcd _ _Pbacd _ _Pabdc7 P bed P dab’ Pa[bcd] -0 (135)

If the term coming from the variation of the Lagrangian respect to the metric is straight-
forward to express into a simple form, that is not true for the term with the variation
of the curvature tensor that needs some more manipulations. To begin with, it is conve-
nient to work in a locally inertial frame in which I'y, = 0. Again there are no troubles in
making this choice, since we are dealing with a Lagrangian that is a general scalar and
thus any relation involving it will be valid in any system of reference. Thus we can write

PrSRY = Pr0.0T%,, — 0407, (1.36)

We will now show that, even though I'%,, is not a tensor, 0I'%,, is a tensor. Let us take
two infinitesimally separated spacetime points P and P’ and a vector A* defined at P.
After a parallel displacement between P and P’ the vector will be A" = A®+ 1'%, Abdxe.
Instead, using the connection =1%.+ (5F“bc the vector will change as A"* = A* +
re cAbda: + 0T, A’dzc. Thus 5F“ b Aldze will be the difference between two vectors at
the same point P’, that is a vector, and since A* and dz° are vectors too, 61'%, must be
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a tensor. Hence, we can substitute the partial derivative with the covariant one in the
last equation and get

PadeéR%cd = Pade[VC(SFabd - {C e d}]
= 2P i 6T, (1.37)

In deriving this, we have used P’ = —P< and the fact that ¢ and d are dummy

indexes. The variation of the connection immediately follows from (1.29)
1
oy = igal(abégdl + 046 gp — 010 Gpa) (1.38)

where we use of dg% = 0, and we look at §0.g.b as 9.0 gu so that, even if 6g? = 0,
we get 0gqa, # 0 from the variations of the I's, where these variations are taken with g%
fixed.Since 6I'%; is a tensor, we can replace the ordinary derivative with the covariant

one and get .
0T = igal(vlﬂggdz + Vadgs — Vidgua) (1.39)

The vanishing of the covariant derivative of the metric does not imply any vanishing of
V.0gqb, as the quantities dg,b are small arbitrary quantities, with arbitrary covariant
derivatives. Hence, taking the covariant derivative of (1.39) leads to

1
Vcél“‘;,d = §g“lvc[vb5gdl + Vdégbl — Vldgbd] (140)

Hence using (1.40), (1.37) becomes

2PN 0T% ) = PN [Vydga + Vadgu — V10 ghd) (1.41)
= PN [VSga — Vi Gbd]
= 2PledVCVb5gdl (1.42)

Again, we have used the antisymmetry of P that makes the second term vanish in
(1.41). The next step is to arrange (1.42) as follows

2PlechVbégdl = VC(QPledVbdgdl) — 2VcPledVbégdl
VC(QPledVbégdl) — va<vcplb0dégdl> + QVbVCPled(Sgdl
= V(2PN 5 gq — 2V PGS gq) 4+ 2V, V P56 gy
= VC(SUC + 2VchPledégdl (143)
Now, we have to express this last equation in terms of dg% instead of dggy and this is

not done by simply thinking of the former as the contravariant components of the latter,
because a minus sign occurs. We can see this by noting that §(5%) = 0 = 6(g%gn) =
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59 g + g0 g1 = 96 gr = —grdg™ and contracting this equation with g,q we obtain
8ga = —Gaagndg®®. Collecting all these results together (1.33) becomes

1 9(y/—gL)
_ D — o my7n ab c
55—/d T/ —g K\/—_g g VNPt | 09 + V00

= /dD:E\/—g (B 69™° + V4607 (1.44)
where 5L .
Eab = agagb — igabLg — QVmVnPamnb (145)
and
ot = (QPlbadvb — QVbPlabd)(Sgdl (146)

As expected, E,p, is symmetric: the first two terms of (1.45) are symmetric because the
metric is and the last one is symmetric too due to the algebraic properties of P,np.
We will now focus our attention on the boundary term (1.46) in order to give a general
expression for it that will be very useful later, entirely in terms of the variation of the
metric and the variation of the connection. This can be done nothing that contracting
oTk . as given by (1.39), with Pbad

1
plhadsTk  — EPlbad[Vbégdl + Vabgn — Vidgsd] (1.47)

Now, the above expression gets higly simplified thanks to the antisymmetry of P for
the exchange b <+ [. In fact the middle term vanishes since the dgy; is symmetric and the
third term is added to the first after using P**? = — P%e4 and renaming b <+ [. Thus we
are left with

P, sTY = PPN, 5g4 (1.48)
and (1.46) becomes
Sv® = 2P, b 5T — 2V, PP 5 gy (1.49)
which can also be written as
Sv® = 2P, P 5T + 2V, P b ,6g% (1.50)

Equation (1.44), obtained for Lagrangians L, = L,(g*°, R%,.,), corresponds to a variation
of the action of the form (1.3). Now, we would like to show that the form (1.3) for the
variation of the action functional is generic, that is it holds true for general theories of
gravity, i.e. theories described by the general action functional (1.2). To do this, we
rewrite (1.28) as

S = /dD$v -9 Lg(ga67 Ok, Yabs Ok, Oky Gabs - - ) (1-51)
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where ... means derivatives of the metric of order higher than the second. The variation
(1.3) can be written as

5S = / AP /=g (U6 gay + WHP68y, gap + W50, Dy, g + - . ) (1.52)

where U = —(/=¢)*0(/=gL,)/0ga, contains the terms coming from the variation
of the metric, and W*% = 9L, /0(0y, gav), WH*2% = OL,/0(Ok, Ok, gas), cte. ete, contain
the terms coming from the variations of the derivatives of the metric, the derivatives
of the derivatives of the metric, etc. etc.. Before moving further, we note that we
have chosen to work with the variation of the metric written as dgg in (1.52) for our
convenience, but when we will come back to dg* a minus sign will occur. Since we
would like (1.52) to have the same value of (1.3), a minus sign has been introduced in
the expression for U?. We shall now see that each term with the Ws gives a contribution
proportional to d¢g,,, that will be summed up into U, and a term that can be expressed
as a divergence of a vector. For example, the first three terms are

A) W’“”‘b&kl 5gab = —8k1 Wklabégab -+ (9k1 (Wklabégab)

B) WH*% 0, 098 gap = Oy OpaW 525 gy, + Oy (WFH290),8gop, — O, WHF1%5g,)
= Oky Ok W25 gy, + Oy (W20, 6 gy, — Oy W26 g,,)

and

C) Whkksab . 1o Oy 0gab = — Ok, D2 Og W% 5 gy, + Oy (WHHFK3%0 0, 016 g
— O, WHMF® 0 §Gat + Oy Oy W17 g1
= — Ok, Opa O W35 gy, By, (WG By 6 g
— O, WHER3b G 5 Gy + Oy Oy WHHF2R305 g )

where we have used the fact that the Ws are completely symmetric in {k1, ks, ... }. Thus,
by induction, the nth term is

Wkle“'k"“baklﬁkg . aknégab = ak‘l 0k2 . (‘)kan1k2"'k”"'“bégab

+ akl (Wklkz'"k"abak2 C Oknégab — akQWkal"'k"“b8k3 C. Oknégab

N akn o akQI/ankg...klabégab)

and we immediately read the term proportional to the variation of the metric

5L,
58k1 Gab

_(1)nak1 Wklab + aklak2wk1k2ab o (1)n718k18k2akgwk1k2k3ab 4= —3k1
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where we have used the definition of W% and the Euler derivative operator

0 0 0 0
% = %—aam‘f‘aaabm‘f“”. (153)

The term inside the 4-divergence, instead, has the following structure

5,Uk1 _ Fklabfsgab + Fklkgab58k2gab + Fk1k2k3ab68k28k3gab + ... (154)
with
Fk:lab — Wk;lab _ ak Wk2k1ab + 814; ak‘ Wklk‘gk‘gab + S 6#
2 2o 5(ak1gab)
oL
Fhikeab _ yyrkikeab _ g ypkikeksab o g g yjkikeksksab o0 79
ks ke ke 6 (O Okz Gab)
oL
[Fkikoksab _ yyrkikeksab O W kkzkakaab + O, O VW kikzkskaksab - 9
4 4 O (Oky Oky Oks Gab )

5L,
5<8k18k2 cee akngab)

where we have used again the form of the W functions and the Euler derivative. Hence,
the variation (1.52) turns out to be

Fklkg... knab __

5S = /de\/—g (—E"5gq, 4 Op, 60™) (1.55)
with 5L
Eab — __Jjab g 1.
U + 9, 5o (1.56)

and the boundary term
SvM = FRabsg 4 B RabgTe o B Rk kaciabsg, oy T, ... (1.57)

In (1.55), what is in parenthesis must be a scalar since the left member is a variation a
scalar which is a scalar. But we know that E%§g,, is a scalar and thus ), 6v* must be
a scalar too. This fact allows us to replace the ordinary derivative with the covariant
one and write

4SS = /dD:E\/—g (—E®8ga + Vi, 60™) (1.58)

Since 5gab — _gak’gbl’(sgk'l" we get

—Eab(Sgab = (SIZ/(SZZ/Ekl(Sgk,l/ = Eklégkl (159)
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recovering in this way exactly the variation (1.3).

To end this section, we will see how the boundary term (1.57) changes when it is com-
puted in the correspondence of an approximate Killing vector £*. A Killing vector satisfies
Killing’s equation V,&,+ V€, = 0 from which it follows that V, V€. = RF, &.. The sec-
ond equation follows from the very definition of the curvature tensor [V,, V)&, = RF ;&
in addition to its symmetry property Rk[dm} = RF, +RF,,+ R, = 0. Combining these
we eventually arrive to a relation involving the second derivatives of the Killing vector,
namely

[vaa vb]’fc + [Vb, vc]fa + [Va Va]éb =0 (160)

which making use of the Killing’s equation becomes

Vavbﬁc + vacfa — chbga =0=
vavb€c = _Rkacbgk = Rkabcgk (161)

We will now apply these properties of a Killing vector to find out how the boundary term
transforms under infinitesimal coordinate transformation z'* = 2% + £*(x), with £%(x)
Killing vector. We get

6501“1 = Fklabéggab + Fc kl“béchab —+ 4 Fc fks... knflaba]@ c. 8;%7155F6ab + ...

It is immediate to write the variation of the first term since d¢gap = V(4&) = 0. The other
terms involve the variation of a connection d.I" which will be handled in the following
way

1
0l = 596k(va5ggbk + VuOeGak — VideGap)

1
= —50" (VaVii + VaVi& + ViVai + ViVis

= ViVe&y — ViVi&s) (1.62)

where the fact that 6" is a tensor has been used to write the first row of the above
expression. We can rearrange (1.62) into a more compact formula

1
5frcab = _Eng(Rmbkagm + Rmakbgm + v(avb)gk)

1 C 1 C
= §R aE® — gv(avb)g (1.63)

where in the second step the symmetry properties of the curvature tensor has been
implemented. Using (1.61), it is straightforward to see that 0:['%, = 0. Thus, the
boundary term, whatever the Lagrangian we are considering is, vanishes under a general
diffeomorphism induced by a vector £* that is a Killing vector at least inside the region
of spacetime in which we are considering the variation of the metric and the variation of
the connection and its derivatives, and thus the whole boundary term.

Hence, in this section,
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we have found the explicit form of F,, and dv® for a Lagrangian depending upon
the metric and the curvature tensor, but not on the derivatives of the latter. These
expressions will be very useful in further calculations.

we have shown that, whatever the form of the Lagrangian is, the variation of an
action functional describing a general theory of gravity is always casted in the form
(1.3)

for general theories, the boundary term depends not only upon the variation of the
metric and the variation of the connection, but also upon the derivatives of the
latter. However, it vanishes when evaluating on a vector that is a Killing vector
at least into a proper region of spacetime. This fact will be crucial in further
discussions.



Chapter 2

A conserved current

2.1 Existence of a conserved current

We have seen that if one implies the variation of the action (1.2) to be the one derived
in the previous chapter then the generalized Bianchi identity holds. The key point we
have used in deriving it is the general covariance of the theory, i.e. that the Lagrangian is
a scalar under general coordinate transformations. Another striking consequence of the
general covariance and the Bianchi identity of the theory is the existence of a conserved
current J, whose explicit form can be obtained equating the local variation of the
Lagrangian density \/—gL, under z* — z® + £%(z) written in two different ways (eqgs.
(1.16) and (1.23)), namely

0¢(v/=gLg) = —v/=g V(L") (2.1)

and

0e(vV/=9Lg) = V=9 2BV a&p + Va(0cv")]
= V=9 [Va(2E™& + 5cv®) — 2V, B (2.2)

that, making use of (1.9), leads to
3e(V=9Lg) = V=g Va(2E7, + 5¢v°) (2.3)
Equating (2.1) and (2.3) we get
Va(—L,E%) = V(2B + 60" (2.4)

Thus
Va(2E™&, + Ly&" + 6:0") =0 (2.5)

15
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and the conserved current reads
J* = £ L, + 2E°°¢, + §c0° (2.6)
At this point, it is very important to underline that the continuity equation
Vad*=0 (2.7)

as well as the generalized Bianchi identity (1.9), is an off-shell relation, i.e. no equations
of motion have been used to obtain that result. On one hand we have the current (2.6),
crucially tied to the general Bianchi identity, which is conserved already off-shell; on the
other hand, any symmetry in the action calls for a Noether current. For the Noether
current, however, we have an on-shell conservation. It is, thus, somehow intriguing the
off-shell conservation we find, and current (2.6) deserves some further investigation in
order to clarify its relation with the conserved current as provided by Noether theorem.

2.2 Noether theorem

In this section we will use of the symmetries of the action (1.2), to construct the
associated on-shell Noether currents, following the path provided by the usual proof of
the Noether theorem itself. Our aim is to compare the conserved current extracted in
this way with the current (2.6). Before facing this interesting fact we will give a general
proof of the theorem. We recall briefly here how the proof of Noether theorem runs
in the context relevant for us. We consider a field ¢4(x), which can be a thought of
as scalar or can carry any collection of up and down, spacetime and/or internal space,
indexes denoted collectively by A. Here z® are, for the moment, Cartesian coordinates
in a D-dimensional Minkowski spacetime. A formulation of the theorem is the following:
If an action describing a physical system is invariant under a continuous transformation
of coordinates and fields, then always a locally conserved current exists, i.e. a combina-
tion of field functions and their derivatives exist which satisfies the continuity equation.
We consider then the action functional (hereafter we will omit the indexes A and B to
ease the notation, but the field is always meant to be a general tensor)

S = [d°w L(6(x), 0u6()) (2.8)

Extremizing this respect to ¢(x) leads to the equations of motion. Now, let us introduce
the following

e total variation: A¢(z) = ¢'(2') — ¢(x)

e local variation: d¢(z) = ¢'(z) — ¢(z)
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e differential variation: do(z) = ¢(2’) — ¢(z)
In a first order approximation we have
¢'(2) = ¢/ (x + dx) = ¢/ (x) + 02"0,6(x)

where we have replaced dz*0,¢'(x) with dx#0,¢(z) since they differ in a second order
infinitesimal. Thus we get

Ap(x) = Pa(a’) — pa(x) = 0¢(z) + 62"0,¢(x) = 6¢(z) + do(x)

Now, we consider the following transformation

{x = 2%+ dx (2.9)

¢'(2') = ¢(x) + Ad(x)

and we suppose it to be a symmetry for the system we are dealing with. This is expressed
by the condition

AS =0 (2.10)
where
AS = [dP2'L(¢/(@'), 0,6 () — [dPx L(6(2), 0,0(x)) (2.11)
In general, volume elements transform as
dPz’ = |J(x)|d°x (2.12)
where >
T a
J(x) = det 5 (2.13)

is the Jacobian of the transformation. We have 2'* = 2%+ dz* and thus, in the first order
approximation, the Jacobian is

J(z) = det(d,* + 0p0z®) (2.14)

To compute this determinant we will use the general formula
detA =exp (Trin A) (2.15)
In the adopted approximation In(d, * + dp0x*) = Opdx® and thus Trdydz® = 0,02%. Hence

J(x) = exp 0,02 = 1+ 9,0z (2.16)
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Thus dPz’ = (1 + 9,62%)dPz and the total variation of the action, at the first order,
reads

AS = / dPx(1+ 0,00 L' (¢ (), 0ad/ (2)) — / APz L(p(x), Dug())
R~ /de AL(¢p(x), 0,0(x)) + /de 0a0xL(p(x), 0,0(x)) (2.17)

where we have written 0,0xL'(¢'(2'),0,¢'(2")) ~ 0,0z*L(¢(x),d,¢(x)) since we are
considering first order approximation (for the moment, it is not necessary to take the
Lagrangian as a scalar under (2.9)). Implementing the total variation of the Lagrangian
we get [14, pag.76]

AS = / P oL + / P 52°0, L + / dP2d,02°L = / AP oL + / P20, (62°L)  (2.18)
The first term in the right member is
oL . oL oL
= 5500+ .50 = ( 96 aam) 00+ O (aam ¢>

Thus, the total variation of the action becomes

o [(oL ) oL oL
AS-/dwK&b aaaa¢>5¢+a <88a¢5¢+mx>] (2.19)

Since, around any point in spacetime, the region of integration is arbitrary, the integrand
must vanish for the symmetry condition to be fullfilled and hence

oL . 0L oL AN
((% 88a¢> 3¢ + 0, <aaa¢5¢+mx ) =0 (2.20)

Implementing the equations of motion leads to

oL
0, (aaa¢5¢+L5 ):o (2.21)

And the on-shell conserved current, i.e. the current to which the usual context of the
derivation of Noether theorem brings, is

oL
00,9

Jo = 8¢ + Loz® (2.22)
The key points of this derivation are the action functional written in the form (2.8),
whose total variation under (2.9) must be zero, and the request to be on-shell, i.e. the
current is made by combinations of fields that are solutions of the equations of motion.
Now, we will try to generalize this derivation to the case of gravitational theories.
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2.3 Noether theorem for gravitational actions

In this section we would like to going through the same path of the previous section
but in the case of gravitational theories. We will take the field to be the metric tensor g,
of curved spacetime and we will try to obtain an expression for the conserved current,
following the Noether theorem. We already know that an action functional describing
a general diffeomorphism invariant theory of gravity remains always unchanged under

general transformations z/* = 2/%(x%). In fact taking the action

S = /dD:L‘\/—g L(gap, OcGap) (2.23)

where L(gap, O:9ap) is a general scalar depending upon the metric and its derivatives, it
is straightforward to see that

AS = /del \/ —g LI(Q;bv (acgab)/) - /de\/ —9 L(gap, Ocgap) = 0 (2.24)

since dPx'\/—¢ = dPx/—g and L'(g.;, (0e9as)’) = L(gap, Degap) by construction. Hence,
by Noether theorem, a conserved current is expected to exist. We will investigate this first
for an unphysical system, which will only help us to establish a formal correspondence
with the results of Noether theorem of the previous section, and then for a system
described by the action functional (1.2).

2.3.1 Noether theorem for a gravitational toy model

Consider the following action functional

S = /de V=9 L(gap, OcGap) (2.25)

Although such an action cannot describe a non trivial theory of gravity, it allows us to
make some formal parallelisms with the case described by the action (2.8). As before,

we have
AS = / P 5(v—gL) + / P 0,(62%/—gL) = 0 (2.26)

with the only difference that the square root of the determinant of the metric appears
in front of the Lagrangian. However, we eventually arrive at

(6(\/—_9L) — Oy A —gL)) 09k + O, <M5gk1 + \/__gL(Sx“> =0 (2.27)
Ogki 00a9ki 90agii

Going on-shell we get

O, <8( V_gL)agkz + \/—gL5x“> =0 (2.28)
00,011
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These have the same structure of (2.20) and (2.21), the conserved current in this case
being

oL
00agri

J*=/—g < Ogr + L(Sx“) = /—gJ° (2.29)
The expression to the left in (2.28) is not generally covariant, and the quantities Jo are
not a vector, but a vector density (the expression in round brackets in (2.29), that is J*,
it is a vector). We need to move to express (2.28) in terms of a covariant divergence of
a vector. This can be easily done by computing the covariant divergence of a vector A“.
Using the definition of covariant derivative we get

V,A* = 0,A* + T, A (2.30)

but

=g (231)

Faab — §gak(aagbk; + abgak — akgab) — §gak8bgak; _ 7_9

where we have used (1.22) for getting the last equality

1 1
i(v/—g) = —5\/—ggab5g“b = Op/—g 0zt = —5\/—ggab8kg“b Sz* (2.32)

and since ¢up0kg™ = —g®0L g We get

1 1

59" Okgar = ﬁak\/__g (2.33)
Hence ]

VoA = ——0,(v/—gA%) (2.34)

V=9
That is precisely what help us in writing the continuity equation in terms of a covariant
divergence. In our case, we have A* = J* and thus we can write

DuJ® = 04(v/—9J%) = /=g VaJ* =0 (2.35)

meaning V, J® = 0 which is the generally covariant continuity equation. We see that J e
which coincides with (2.22), is the on-shell generally covariant conserved current emerging
from the usual proof of Noether theorem for Lagrangian L in curved spacetime.

2.3.2 Noether theorem for general theories of gravity

We will ask the following question: is it possible to use the Noether approach for
a general action functional to reach a conserved current? A problem here is that the
Lagrangian is not only a function of the field and its first derivatives, but necessarily
also a function of the derivatives of the field of order higher than the first. Thus the
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Noether ‘mechanism’ considered in previous sections cannot be straightforwardly applied.
However, we already know how the local variation of the gravitational action looks like,
for a generally covariant Lagrangian which depends upon derivatives of the metric of
any order. Taking an action functional of the form (1.2) we have seen that its local
variation is given by (1.55), with £ = 0 being the equations of motion (in vacuum).
This structure is similar to the one of (2.19); we recognize in it the same two components:
one, whose vanishing gives the equations of motion, and the other which contributes to
give the on-shell Noether current considered in last sections. From (2.17), which holds
true for derivatives of any order of the fields in L, we get

AS = / P 5(v=gL,) + / dPz 9,(v/—gL,02°)
- / dPar/=g (B ga, + Vaov®) + / dP 9,(v/=gL,02°) (2.36)

The second term in the last equality can be expressed in terms of the covariant divergence
by mean of (2.34), and eventually we get

AS = / AP 1\/=g [E®6ga, + V(60" + L6z)] (2.37)
Since the total variation of the action is zero for general transformations we can write
E®Sgap + V(60 + Léz®) =0 (2.38)

This expression is formally identical to the one we have encountered previously both in
the toy model and in the canonical proof of the Noether theorem. If in this latter cases we
have needed the equations of motion to arrive at the continuity equation for the current
J® here something very special happens since we are able to express the term E%§q,,
that would vanish on-shell, as a total derivative. In fact we know that the variation of
the metric can be expressed in the form (1.14), being £* the vector field which describes
the infinitesimal coordinate transformations,and thus the above expression becomes

2BV & + V(60" + LEY) = =2V, B, + V(2B + 60" + LE* =0 (2.39)
And thanks to the Bianchi identity
V(2B + 6ev™ + LE™) = 0 (2.40)
from which we read the conserved current
J* = 2B, + §ev® + LE° (2.41)

Here we recognize the on-shell Noether expression for the conserved current, described in
previous sections, in the 2nd and the 3rd term. The current which is conserved off-shell
has however, we see, an additional off-shell component, given by the 1st term. Let us
summarize the results we have obtained in this chapter:



2.3. NOETHER THEOREM FOR GRAVITATIONAL ACTIONS

22

e The off-shell conservation law (2.40) is a pure cinematic relation, i.e it is completely
independent of the source that generates the gravitational fields. It is an intrinsic
feature of all differential manifolds, independently of how they are curved by a
gravitational source. We know that this same argument applies to the generalized
Bianchi identity, and in fact, in general, equations like (2.40) are called Noether
identities [5].

e The key factor that allows one to obtain the off-shell conserved current J¢ is that
the variation of the field, i.e. the metric, can be written in terms of a gradient of
the variation of the coordinates.

e This special transformation of the metric under general diffeomorphisms has been
already use to get the Bianchi identity.

e In general, everywhen a field transforms in this way due to a change in the coor-
dinates, an off-shell conserved current appears, as well as relations analogous to
the Bianchi identity, as one can verify by taking the Lagrangians considered in 2.2,
2.3.1 and 2.3.2.

e We expect that also for any non-gravitational Lagrangian, when the variations of
the fields can be written as a gradient of the variation of the coordinates, one can
obtain an off-shell conserved current. We will now show this in the case of the
electromagnetic field.

2.3.3 Electromagnetic field and gauge symmetry

Let us take the 4-potential A,(z) = (—¢, A) describing the electromagnetic field in
terms of the scalar and vector potential on a 4-dimensional flat Minkowskian spacetime
with constant metric 7,;, and the the following action functional

S = / ' 2 Lo (g, Oy Au) (2.42)

where the Lagrangian will be taken as a scalar under Lorentz transformations in order
to have the laws of physics written in the same way in any reference system connected
each others by a Lorentz transformation. Now, we will suppose that (2.42) is invariant
under the local transformation

P
2.43
{A; = A, + 0,0(z) (2:43)

where 0(x) is an arbitrary function of spacetime. If the above transformation is a sym-
metry of the action functional, then AS = 0 when dpA, = 9,0 and dz*=0. The total
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variation of (2.42), following (2.17) is

AS = [d'a(1+0,00")L(¢/(@'), 08/ (2') — [d's L(o(x), 0u(2))
~ /d4x AL(¢p(x), 0,0(x)) + /d4x 0,02 L(¢(x), 0,0 (2))
- / Az SL(6(x), Ded(z)) = 6 (2.44)

since we are considering transformations that leave the spacetime coordinates unchanged.
Now, the local variation of the above action functional can be written in the form

58 = / d* 2[E95 A, + 0,60%] (2.45)
where oL oL oL
po = Soem em gy = Iem 54 2.4
04,  TFop.A %Y T 99,4, 00" (2.46)

Thus, under the specific transformation (2.43), (2.45) will be
568 =0 = / d'z [E99,0 + 8,040%] = / A [0, (B0 + S40°) — 9, E°0] (2.47)
where in the second step we have performed an integration by parts. Hence
/ d'z 8,0 = / d*z 8, (B0 + 5407 (2.48)

and choosing a proper behaviour of #(z) on the frontier in such a way that the boundary
term vanishes in the second member of the above relation we are left with

0. % = 0 (2.49)

that is the analogous of the Bianchi identity in gravitational theories.
Now, implementing the" Noether’s mechanism" introduced in the previous chapter we
eventually get a relation identical to (2.20)

8£’em 8Lem aLem o
<6Aa _8k88kAa> §Aq + O, (aaaAkM’f> ~0 (2.50)

where the first term on the left vanishes on-shell and the second represents the Noether’s
charge on-shell. However, using the variation of the 4-potential due to the specific
transformation (2.43), we get

E0,0 + 0a060" = 9a(E°0 + 54v") = 0 (2.51)
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where we have used the Bianchi identity (2.49). Hence, we immediately read the off-shell

conserved current
J% = E%0 + 650° (2.52)

satisfying
0, J" =0 (2.53)

identically. As in the case of general theories of gravity, the equations of motion play no
role in finding this Noether identity. Note once again that the existence of this current
is a direct consequence of the Bianchi identity.

All this arguments are straightforwardly applied in the case of the Maxwell Lagrangian

1

Lom = =7 w(2) F () (2.54)
where F,, = 0,A, — O,A, is the Faraday’s tensor. The action functional written for the
Maxwell Lagrangian is symmetric under (2.43) since it is easily showed that the Maxwell
Lagrangian is invariant under the same transformation. In fact one can immediately see
that dpF,, = 0 when 0pA, = 0,0 assuring 6pLe,, = 0 — 65S — AS = 0. Using the

explicit form of the Maxwell Lagrangian we get
oL 1 oF, 1

em Fmn mn___ _Z fmn 5k §e 514: §a

00, A, 2 00, A, 2 (050" 1)

1 1
— _7Fka 7Fak — _Fka 9.
2 + 5 (2.55)
and in the same way
0L
U 2.56
00, Ay ( )
Hence e
F% = —9py—— = g, Fhe 2.57
Y00, A, " (2.57)
and L
St = —— 5 A, = F*9,0 2.58
YT 80,4, k (2.58)
Thus the conserved current reads
J* = 0, F*0 + F* 00 = 0p(F*0) (2.59)

We will say more about the physical meaning of this current, as well as the current for
the gravitational theories, in the next two chapters when we will face the problem of
finding the charge associated to such currents.



Chapter 3

Expressing the current and the
associated charge

In this chapter we want to give the general expression for the conserved charge @)
associated to the off-shell conserverd current J* in general theories of gravity. Before
treating this specific case, we will find out how to build a conserved charge associated to
a Noether current J* which satisfies 9,J% = 0.

3.1 The charge

Consider in a D-dimensional spacetime a vector field J%(z). The Gauss’s theorem
states that the volume integral of the D-divergence of J%(x) all over the D-dimensional
volume V is equal to the (D — 1)-surface integral of J%(x) all over the hypersurface 0V
that contains V

/&%@ﬁ: 4P 1g, J° (3.1)
v oV

where d”~!o, is one of the components of the infintesimal element of the considered
(D —1)-hypersurface. In the view of considering scalars that remain constant in time, we
can take the D-dimensional volume V' to be whole enclosed into two (D — 1)-dimensional
spacelike hypersurfaces at fixed time, namely 0V}, and 9V};,, and a (D — 1)-dimensional

timelike hypersurface 9V}, . Thus the gauss’s theorem leads to

/#%%P:/ P g, g0 — [ P lg, v [ dP g, 0 (3.2)
A% BVHQ 8\7“1 8\7‘,"

where the minus sign in front of the second term in the right member express that both
the normal of the spacelike hypersurfaces point to the future.

We will now take the region V in (3.1) to be a D-dimensional hypersphere of radius R.
Hence 9V is made of two spacelike hypersurfaces in the time interval [t1, t5], (r < R)ji=,

25
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and (7 < R)jj—y,, With t5 > ¢1, and a timelike hypersurface 0V|,—z. Thus (3.2) reads

/ 4Pz 8,J = / AP0, J¢ — / AP 1g, J° + AP 1o, J0  (3.3)
v (r<R)|t=t, (r<R)|t=t, V=g

If the vector field J* satisfies 9,J% = 0 all over the D-dimensional spacetime

/ dPlg,J% — / P15, J0 = / dP~1g,J0 (3.4)
(r<R)|t=t, (r<R)|t=t, OVr=r

from which we see that the variation of the quantity represented by the integral over
the region inside the hypersphere is equal to the flux of J* through the boundary of the
hypersphere (as happens for the electric charge). This fact allows us to take the integral

Q(t) = /( KR)“dD—lana (3.5)

to be the charge into the region (r < R) at time ¢. Since 0,J%(x) = 0 there must exist
an antisymmetric second rank tensor J% such that J* = 9,J%. Hence we get

O(t) = / 4P~ 07,3y T (3.6)
(T<R)|t
and using the Stokes’ theorem leads to
1
Q(t) = / AP 1,0, = - / 425, J% (3.7)
(r<R)), 2 Jo(r<R),
where dP~20,, is the infinitesimal coordinate element of the (D — 2)-hypersurface (r <

R);, i.e the hypersurface that "cuts" the region (r < R) at time t.

Now, we have to see how the charge associated to a conserved current results defined
in curved spacetime. In this case we have to integrate V,J* over the proper volume
integral d?z\/—¢g and thus (3.1) becomes

/dD:L‘\/_—gVaJ“:/de(()a(\/_—gJa) :/ AP,/ —gJ" (3.8)
A% v ov

where we have used (2.34) for getting the second equality. Instead, the last one comes
from the application of Gauss’s theorem. Hence, in the region (r < R) at time ¢ the
charge turns out to be

_ D—1 /— 0 — D—1 - ab
Q(t> B /(r<R)td 7a g/ /(T<R)|td 7a g Vel (39)

and using again (2.34), which is valid also for any antisymmetric second rank tensor, we
get

1
¢ :/ AP V. Oy(v/=g J® zf/ AP 25, /=g J 3.10
Q= [, a5 [ ey (0
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Hence the (D —2)-hypersurface integral all over the region d(r < R) at time ¢ of \/—g J®
is conserved. For general theories of gravity, we will now show that if an antisymmetric

tensor .J% exists such that J¢ = V,J% (and we will always suppose that such a tensor
exists) then V,J* = 0. In fact

1
Vo] =V, V,J% = 5[va, V)% (3.11)

where we used the antisymmetry of J% in getting the last equality. By the definition of
the curvature tensor we get

1 1
5 Va: Vi) J = §(R“kabj’“b + Ry J™) = RypJ =0 (3.12)

due to the symmetry of Ry,. Thus V,V,;J% = 0 and we have the continuity equation in
terms of J.

3.2 Current and charge for Lagrangians L, = L,(¢", R%.,)

In chapter 2, we have seen that the generalized Bianchi identity V,E%® = 0 leads to
an off-shell conservation law expressed by equation (2.40)

VoJ* =0 (3.13)

with

J* = 2B + 6cv* + Ly&" (3.14)
where E* and v are defined by (1.3) and £ is the displacement vector defining the
diffeomorphism z'* = 2% + £*(x). The conservation of J* implies that there exists an
antisymmetric tensor J% such that J* = V,J%. We are interested in finding an explicit
formula for J essentialy because it will help us writing the conserved charge associated
to the current J¢, as we have seen in 3.1. We note that the general expression (3.14) for
the current is valid in any general theory of gravity; in the case of Lagrangians written
in the form L, = L,(g*, R%.,) we are able to give an explicit expression for J¢. In order
to achieve this goal, we need to put the known formulas for £ and §;0 into (3.14).
We will begin computing J for a theory of gravity described by a Lagrangian made of
the metric g? and the curvature tensor R%,;, and we will eventually give the expression
for J for the Hilbert-Einstein action.

3.2.1 The general case

We already know that for an action functional written in the form (1.27), an abitrary
variation of the dynamical variables leads to

or, 1

Eak —
agak 2

L,g™ — 2V 4V, P (3.15)




3.2. CURRENT AND CHARGE FOR LAGRANGIANS L¢ = Lo(GAB, R4,.p)

28

and hence

OL
2E"¢E, =2 i & — L& — AV V, POk, (3.16)

g

Noting that
0L, _ 0L, ORI _ PnpaRﬁgg
8gak aRﬁg agak Im agak

8gmh
hnp B gak

- ‘PZZSRZ - PZT:rIL)Rl hnp6am5kh

= P,'"" Ry (3.17)

(where we have use RZ’I} = R! hnpgmh and the fact that the derivation is made keeping
the curvature tensor, which does not depend on the contravariant metric, fixed), we get

2B g, = 2P RE ) & — Lo&" — AV V, PUEg, (3.18)
Now, recalling (1.49), we get
551]@ = 2Pl bad (5§Flbd - QVbPlbadéggdl (319)

where

d¢gar = —V @& (3.20)

Thus the second term of the boundary term is

=2V, P05 gq = 2V, PV 3& + Vi&y) (3.21)
and after the exchange [ <+ d in the second term of the last identity we get

—2V, PP gy = 2V, (P4 4 pPalyy ¢, (3.22)

The first term involves the variation of a connection we have already computed in 1.2,
namely

0l = ;Rl wal® — ;V(bvd)ﬁl (3.23)
We can go further in manipualitng this and get
—i(vbvdfl +VaVig') = —;(wdvb&l + V1, Vdl¢')
= —V Ve + ;Rl el (3.24)
and thus

1
5§Flbd = -Vl + §(Rl wap + Bl oar + B i) € (3.25)
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Adding and subtracting R';,,; in the term involving the sum of curvature tensors we get
5Ty = — Ve + (R R R Ry — Bl )"
el = —VaVil + 2( kdb T AU par T U o + LU pia o) €
1 1
= V4V + i(Rl var — B pra + iRl [dbk])gk
- _Vdngl + Rl bdkgk (326)

where R = 2(R! g + Ry + R'yyq) = 0 and the antisymmetry of the curvature
tensor have been used to obtain the final result. Hence

2P 5Ty = 2P (—=VaVies' + Ry 6Y)
= 2P V& — 2P P Ry g €F (3.27)

and the boundary term is

(55?](1 — 2vb(Plbad + deal)vdél + 2Padblvdvb€l o 2P&dbledbl§k
— —2Vb(Padbl + Palbd)Vdfl + 2PadblVdVb€l _ QPadbledblgk (328)

The conserved current now reads

Jo = 2Padbledbl€k o Lgfa . 4vdvbpadbk€k + Lgfa
- 2vb(Padbl 4 Palbd>vd§l + 2PadblVdVb§l o 2Padbledbl€k
— _2vb(Padbl + Palbd)vd& + 2PadblVdVb§l . 4VdVbPadbl§l (329)

Now we can guess the form of J% simply observing that the above current depends upon
the displacement & and its first and second derivatives. Thus we choose the following
ansatz for J% (a similar calculation can be found in [4])

JW — Aoy e 4 Blg, (3.30)
Differetianting it we get
Vi J® = VAN i& + AN,V 46 + VB + BV (3.31)
and comparing to (3.29) we can make the following identifications
Aabdl _ o pabdl (3.32)
and

VbBablgl — _4vdvbpadbl§l — _4vbvdpabdl€l =
Babl — _4vdpabdl + Vabl (333)
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with V,V% = 0. Moreover, the following identity must hold
vbAabdl + Badl — _2vb(Padbl + Palbd) (334)
and we will now verify it

QVbPabdl _ 4vbpadbl + Vabl — 2Vb(Pabdl o 2Padbl) + Vabl
— _zvb<Padbl 4 Palbd) 4 Vabl (335>

where the symmetry property P = 0 has been used to obtain the final equality. We
see that, for inner consistency, it must be V% = 0. Thus J reads

J® = 2PN 46 — 4V, P (3.36)

J% is not unique, since any change J% — J% 4 V% with V,V% = 0 leads to the same
conserved current J* We can now write down the charge in the region r < R at time ¢
for this general case, namely

B 1
2 Joer<n),

Q) d2oap/—g (2PN 4& — AV 4P (3.37)

In general
1
Q) = 3 /8 N o ap/—g (2PPUN 1& — AV PYUE) (3.38)
It

where A; is any spacelike region at time ¢ and JA; is its boundary. For further applica-
tions, it is worth to effort the case in which the displacement £ is a Killing vector, at least
into a region around a spacetime event, and see how the current J* and the correspond-
ing J look like. If £* is a Killing vector, it satisfies V(,&) = 0 and V,V,& = R, &
Thus, in (3.29) the first term vanishes by symmetry and we are left with

J% = 2PN V6 — 4V 4V, P ¢ (3.39)
and using the second property of £ recalled above
J% = 2P RE € — AV V, P PR, (3.40)

and we see that when computed in the corrispondence of a Killing vector, the current
can be written in such a way it is just proportional to & The above expression is also
equal to

J% = (2E* + L,g"™)&, (3.41)
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We could have reached immediately this expression for the current just remembering the
form (3.14) and the fact that the boundary term vanishes in corrispondence of a Killing
vector, as we have seen in chapter 2. For an action functional

S = 1620 / dPz/=g Ly(g”, R.q) (3.42)
we get
Qt) = 32;0 /8 oy, POV (2PN ¢, — 4V, P (3.43)
and .
Q) = 352G Jop, LoV =9 @PHIVaG — AVaP™G) (3.44)
where c oL,
Pl = (aRabcd)gab (3.45)

i.e. the Ps remain defined via the Lagrangian L,.

3.2.2 Hilbert-Einstein case

We will now specialize the previous discussion in the case of the Hilbert-Einstein
action and we will see how J looks like in this special case. We consider the Lagrangian

S = / 4Pz \/—gR = / Pz /=gL, (3.46)
which can be at once written in terms of the curvature tensor. Since R = g™ Ry, we get
S = / dPx /=g g" Ry, = / dPz /=g " R,

= [ PG (R~ R (347

From the action written this way, the tensor P9 _;, which is the key to write down the
current J* and the corresponding J%, is easily extracted. In fact we immediately get

OL 1 OR™
Pabcd: _[ab kml le]
aFiabcd 2 aRabccl { }
1 1
= 5 (%07 0k0n 07 — {1 & m}) = (99" — d79"™) (3.48)

where in the second step the fact that g is kept fixed while deriving the Lagrangian
with respect the curvature tensor has been used. For our applications we need the full
contravariant tensor P%4 which is simply

1 1
Pabdl — gakpli)dl — 59“’“((5,?9“ o 5]l€gbd) — 5(gadgbl o galgbd) (3'49)
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From this, we see that P9 is divergence-less in all its indexes. Hence, for the Hilbert-
Einstein action, (3.36) reads

Jab — 2pabled§[ — (gadgbl algbd)vdfl — (Vafb . nga) (350)
(which is not unique for a given J*) with the corresponding current
J* = V,(V2EP — Vi) (3.51)

The charge in a spatial region A; at time ¢, instead, is

QW) =5 [ "o/ gV 7 (3.52)
For
167TC’ / d"z\/—gR (3.53)
we get X
Q) =55~ 8Ath*20ab\/—_g(V“£b — VY (3.54)

3.3 Horizons in static spherically-symmetric metrics

For our purposes, we will consider horizons that come from a given background metric.
In a general theory of gravity living in a D-dimensional spacetime, when one considers
a spherically-symmetric mass distribution collapsed in such a way that it can be viewed
as a pointlike source, the gravitational field outside the source in vacuum will be the one
described by the following spacetime interval

ds? = — f(r)dt* + ELEPN dx? (3.55)
f(r)

where f(r) = (1 —rg/r) and dX? denotes the metric on the ¢ = constant, r = constant
surface. The surface H = r — rgy defines an horizon, i.e. a region of spacetime that
behaves like a semipermeable membrane. No signal of any kind can cross the horizon
from the inner region r < ry to reach the outside region r > ry. On this surface,
f(rg) = 0 and the spacetime interval apparently diverges, but this behaviour it is not
linked to the existence of a true singularity, i.e. a region of spacetime in which the
curvature tensor becomes infinite, rather to a bad choice of our coordinates system.
However, in physical terms this surface is an infinite redshift surface, i.e. a luminous
signal moving from the inside of the horizon towards the outer space will take an infinite
time to reach an observer placed outside the horizon, because the dilatation of time, as
measured by the external observer, diverges when r = ry. The metric defined by (3.55)
describes a static gravitational filed, as stated by the Birkhoff theorem.
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Now, we would like to find the charge (3.10) associated to the horizon H. It is evident
that one has a charge for each diffeomorphism 2/ = 2 4+ £%(z) i.e. a charge for each
displacement vector £*(z). However, we will consider just one, particular vector &%,
namely the vector that generates an isometry of spacetime, i.e. a diffeomorphisms that
leaves the metric unchanged, dg,, = 0. Hence, in order to represent an isometry, the
vector {* must be a Killing vector, i.e. it must satisfy Killing’s equation V(&) = 0.
Since the metric (3.55) is static, we will consider the isometry that represents the time-
translation invariance of the metric in Schwarzschild geometry. Such an isometry is
generated by the Killing vector & = 9/0t. We will now show that this vector is normal
to the horizon H. For doing this let us consider the gradient of H which is a covariant
vector normal to H by construction whose components are

Ng = O, H (3.56)
The corresponding contravariant components are
n® = g"ny = g H (3.57)
and since the only non vanishing component of n, is n, we get

and the contravariant normal vector is

n=n'0, = f(r)ﬁar (3.59)

Now, as r — rg, & — n, as we will see. To show this, it is convenient to introduce the
Kruskal-Szekeres coordinates

kU = —exp(—ku), u=t—r"

KV = exp(kv), v=t+r" (3.60)

where

o [db
r _/f(l) (3.61)

is the so called tortoise-coordinate, and x = 1/2f'(ry) is what we will later call the
surface gravity. In terms of this new coordinates the Killing vector & becomes

g 90U 9 IV 0O ( 0 6)

§

o aou tarav ="\ Var tav

The condition U = 0 (¢ — oo) defines the future horizon and the above vector on this

horizon reads 5
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Now, if one writes the normal vector n in the Kruskal-Szekeres coordinates finds that

0 0
n=r (UaU + Vav) (3.63)

which on the future horizon becomes

ny = f (aa) — 5 (vaav> Y (3.64)

Hence, on the horizon H the Killing vector & = 0/t is normal to H. Moreover, it is a
null vector. In fact its norm is given by [11]

2
87ir

£ =CUV, C*= (3.65)

r

and since the condition UV = 0 defines the horizon in the Kruskal-Szekeres coordinates,
£? vanishes on the horizon. Hence the Killing vector € = 9/t is a vector normal to the
horizon H whose norm vanishes on H. In order to apply the results of previous sections,
we compute the charge associated to the horizon, QQy, as the charge associated to any
region (r < R) with R > ry, and taking the limit R — rp.

3.4 The charge for the general case

Consider the action

- = / dPar/=g Ly (g%, R4, ViR, ...) (3.66)

that is the one given by (1.2) with a dimensional normalization factor, required to give

the strength of the coupling between gravity and matter sectors in total Lagrangian.
The charge associated to £* = (8/815)“ is

Q= 3 % G dD’Qaab V=g J® (3.67)

where J% is derived as in (3.36) from L,. If the frontier OA is taken to be a spherically
symmetric hypersurface with metric given by (3.55) we get

~ d7%ay, \/—_gjab> =

1
= 1
Qu = lim (327r0 —R

dP 20,4 /—q J® 3.68
327 C rT=TH Oab g ( )

where now dP~20,, is the infinitesimal coordinate area element of a (D — 2)-sphere of
radius R = rgy. The charge associated to H does not depend upon time anymore since
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the background metric is static. (3.68) is the more general expression we can provide
for the charge associated to a horizon through &% = ((’9/ o0t)*. We can go a little more
further considering Lagrangians of the form L, = L,(g®, R%.,). In this case. the charge
associated to the horizon can be expressed in terms of P bed = (QL,/OR%,.,) and reads

1
327 C T=TH

Qu = AP 2o /=g (2PN 4 — 4V 4 PE)) (3.69)

3.5 The charge in General Relativity

We would like to apply the above strategy to compute the charge (3.68) associated
to the conserved current J¢ in the case of GR, i.e. for a theory of gravity described by
the Hilbert-Einstein action (1.4), with C' = G, in a D = 4-dimensional spacetime. The
spacial cross-section of the horizon is the 2-sphere at » = ry and we consider a slightly
larger 2-sphere with R = ry + €.

The charge associated to (7" < R) is

/ Lo/ —g J =

In the above expression we have introduced the proper infinitesimal area element

/ 28, J% (3.70)

327TG 327TG

6'do? (3.71)

d*Sap = \/__ngUab \/_\/_ [abed] |a<(91 g2)>

where [abcd] denotes the complete antisymmetric symbol, v is the determinant of the
intrinsic metric of the 2-sphere and h is the determinant of the metric of the (¢ —r) plane
orthogonal to the 2-sphere. This can be rewritten as

d*Sy, = v/ —hlab] dS (3.72)

where dS is the proper infinitesimal area element of the 2-sphere. The antisymmetric
combination [ab] can be written in terms of two covariant vectors noting that the 2-sphere
has two normals belonging to the (¢ — r) plane. We can implement this by considering
the following covariant vectors

= (=1,0,0,0), w, = (0,1,0,0) (3.73)

and the combination
[ab] = —vawy, + vywq (3.74)

which is antisymmetric by construction. Now, the charge reads

1
Q=53 / S (v + vgw,) I (3.75)
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where we used the fact that v/—h = 1 for the metric defined by (3.55). By virtue of the
antisymmetry of J% we get

Q:_

1
dS vawy, J* :
el Svawy J (3.76)
Inserting the form of J% given for the Hilbert-Einstein action by (3.50) into the above
expression, leads to
Q-

/ dS vawy (VIE° — WPea) = — / dS v wy VO (3.77)

167TG &G
where in the last equality we have used the fact that £* is a Killing vector. Now we see
that the vectors v, and w, can be written in terms of £%. In fact since & = 9/0t we have

€*=(1,0,0,0). Thus

1 1

v = g%y, = v = (,0,0,0) = ¢ 3.78
g Uy 7 ff ( )

and a
w" = g"w, = w* = (0, f,0,0) = f (;) (3.79)

and the charge reads
B 1 1 0 arh

Q= 3G T:RdS ?faf (ar>bv & (3.80)

Now, we have to compute the quantity &, V2. Consider a surface S and vector [* normal
to S. Since [* is orthogonal to S one can write |, = u(z)0,S, where p(z) is an arbitrary
function of spacetime. Hence the product 19V,[° is

19V 1" = 1°V o u(2)0"S + 1° () V,0°S
= 10" H(2)Oup(2)1° + ¢"* 1 () V 40k S

= ()] P+ () Vel ()

Dl (@)1 + Lov2 — 2on (o) (3.81)
~dx 2

Now, we suppose that the vector [ is null on S, i.e. 12 = 0 on S. Hence, the last term
in the above expression is trivially zero. In addition, since {2 is constant on S, ¢,0°1*> = 0
for any vector ¢, tangential to S. Thus if one chose t, = [, it follows that 9°1% o< [’ and
19V 41° o< I°. The function p(x) can be chosen such that [ -V = 0. Thus, let £¢ a Killing
vector normal to S and [* a vector normal to S such that [ -V = 0. Then, on S

£ = fI° (3.82)
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for some function f, and thus it follows that
9V, &0 = k&b (3.83)

where k = £ - Oln|f]| is called the surface gravity. We can provide a formula for £ in
terms of quantity related to the metric of the horizon. Since £* is normal to H, we can
invoke the Frobenius’ theorem which implies that

f[avbfc] =0 (384)

where [...] indicates total antisymmetry in the indices a,b,c. For a Killing vector &%,
Va&s = V& (symmetric part of V,&, vanishes). In this case (3.84) becomes

gcvagb + (éavbfc - ébvafc) = 0 (385)
Multiplying by V%&£ we get

E(VE)(Va&s) = —2(V*E")Ea(Viée) (3.86)
and using (3.83)

ét:(vafb)(vafl;) = _2H£b<vb50)
= —2K%¢, (3.87)

Hence 1
= (V)6 (3.58)

It is important to note that x is defined only by the Killing’s field which is given by the
metric, independently of how this metric has been generated. Let us come back to the
charge. The relation (3.83) holds on the horizon. However, if we compute it explicitly
we get

a a 1,99
A T T = (3.89)
and since gog = —f(r)
£V €0 = —; fo.fob, (3.90)

showing that £¢V,£° is in the direction of 7. On the horizon, we know that it must
have the direction of ¢ because of (3.83). This is assured since f(9/0r) — (0/0t) when
R — ry. On a larger horizon instead we can write

V6 = nf (a)b (3.91)
“ or '
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Using this, (3.80) can be written as

K

0
e

Now in the limit R — rg we get

_ A OV = " _ K (Au
@n = RILI?H <_87TG T:RdS / H(é’r)H) - 8nG 'r’:erS G ( 4 ) (3.93)

where in the second equality we have used the fact that the norm of (9/9r)* is f~!. In
the last equality, Ay represents the area of the whole horizon. The most important result
which has to be stressed here is that in deriving never the horizon charge for the more
general action (1.27) nor for the horizon charge in GR, we have invoked the equations of
motion, i.e. both of these are off-shell conserved charges. This fact has the immediate
consequence that the surface gravity x contains no dynamical information, but on the
contrary it is a pure cinematic quantity that comes up as a result of the choice of the
background metric.



Chapter 4

Horizon entropy

A remarkable connection between thermodynamics and gravity arises in black hole
physics, namely, black holes carry an intrinsic entropy. This result relies on the founda-
mental property that a black hole is a region of spacetime which is inaccessible to ob-
servations, and an essential role is played by the event horizon, the boundary between
the regions observable and unobservable from infinity. Consider a box carrying some
thermal systems, one may expect that its internal state will be taken out of equilib-
rium. According to the Second Law of thermodynamics, the subsequent evolution would
then be characterized by a continued increase of the entropy, as the system returns to
equilibrium. If the box were to fall into a black hole, it would move out of the region
of spacetime in which measurements can be observed from infinity, and there would no
longer be any evidence of the entropy carried by the box. The entropy in the observable
spacetime would thus appear to have decreased, yelding an apparent violation of the
Second Law. To restore the validity of the Second Law, one can assign an extra entropy
to the black hole or to the horizon.

Similar reasoning led Bekenstein to make the bold conjecture, within GR, black hole
carry an intrinsic entropy given by the surface area of the horizon measured in Planck
units multiplied by a dimensionless number of order one [2]. This conjecture was also sug-
gested by Christodoulou’s works about the mechanical transformations involving black
holes area and the subsequent Hawking’s area theorem, which had shown that, like en-
tropy, the horizon area can never decrease in classical GR (see [3] and [6]).

The next crucial insight came from Hawking while investigating quantum fields in a
black hole spacetime. He found that external observers detect the emission of thermal
radiation from a black hole with a temperature proportional to its surface gravity x

T= (4.1)

What Hawking found is that if one faces the problem of describing a collapsing system
in GR from the point of view of QFT, for example in terms of a scalar field, it happens
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that when matter collapses to form a black hole, observers at large distances will receive
thermal radiation of particles from the black hole at late times, with a thermal spectrum
at the temperature (4.1), (see [8] and [7]). Due to the emission of particle a balancing
relation of the kind dM = dFE should hold and since we are speaking of a thermal
radiation one should have dM = TdSpy, in accordance to the energy conservation
principle. It seems natural to assume that the source of this energy radiated to infinity
is the mass of the collapsing structure. In GR, given the temperature of a spherically
symmetric black hole T(F) = (87GM)~! as a function of the energy F = M, we can
integrate the expression dSgpy = dE/T(FE) to define an entropy S(F)py for the black
hole

% 1 /A
Sy — /0 AB(8TGE) = 4rGM* = <G{’> (4.2)

where Ay is the area of the r = ry = 2GM, t = const surface. This is the Bekenstein-
Hawking entropy as appears in [2]. Hence, for getting the notion of horizon entropy in
the Bekenstein-Hawking approach, it is crucial to have a black body radiation flux from
the black hole. Trying to generalize this same approach to general theories of gravity,
means to be able to manage QFT in D-dimensional, with D > 4, curved spacetimes of
general background metric. This can result in a difficult or, depending on the theory
under consideration, in a hopeless task. We should look to another way of introducing
the notion of entropy of horizons, potentially free of the difficulty above. The stress on
this point is precisely the main motivation of the thesis.

First of all, we notice that the association of a temperature to a horizon is conceptually
distinct from the calculation of any radiation flux from it. We know that in Rindler
spacetime, a temperature is assigned to the horizon (the accelerating observer feels her-
self immersed in a thermal bath) but no flux of radiation from the horizon is present.
Any horizon which is locally approximated by a Rindler spacetime is naturally endowed
with a notion of (Rindler horizon) temperature of the form (4.1). For any assigned metric
with a horizon, the association (4.1) intended in this way is well-defined and is unrelated
to the gravitational theory. In fact the surface gravity depends only upon quantities de-
fined via the metric as appears clearly looking at (3.83) or (3.88). The association (4.1)
results well defined even in flat spacetime in Rindler coordinates, i.e. even in conditions
with no curvature at all. More details and examples about this interesting issue can be
found in [15].

Thus, given a spacetime with an horizon of a given background metric, what we immedi-
ately have is a temperature associated to the horizon, whatever the gravitational theory
is, i.e. whatever the theory which has the considered background metric as a solution of
the equations of motion is.

We are now interested in joining this notion of temperature to the notion of Noether
charge of the horizon as introduced in the previous chapter for general theories, to try
to construct a sensible notion of entropy for the horizon. If we manage to do that, what
we obtain is an expression Snoetner fOr the horizon entropy that is valid for any general
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diffeomorphisms invariant theory of gravity, tackling this way the difficulty mentioned
above with Sgp.

4.1 Horizon entropy

Let us summarize what we have obtained so far:

e For any general theory of gravity described by the action (1.2), for which the
Lagrangian is a scalar under general diffeomorphisms, it is possible to extract a
current (3.14), J% = 2E%¢;, + L & + d¢v® which satisfies V,J% = 0 off-shell.

e Associated to J* there is a charge ) whose expression is given by (3.5). This
charge, as well as J¢, is off-shell conserved, in the sense explained in chapter 3.

e In GR, the charge associated to the Killing vector £* representing the time transla-
tion invariance of the metric generated by a collapsed spherically symmetric mass
distribution, i.e. the Schwarzschild’s metric, when evaluated on the event horizon
represented by a spacial 2-sphere of radius R = r; = 2M | which £ is normal to,
is given by (3.93)

Hence, looking at (4.2), it seems natural to write

Sxoatter = — (2 ) @ (4.4

as it gives Snoether = Spg. Rewriting equation (4.2) as

M (%)M
2 2

K

we see that Qg in (4.3) plays the role of —(M/2) in GR. Indeed, we recognize in the
formula (3.70) for the charge, with J% given by (3.50), minus half of the mass in the
Komar expression for the latter [18, p. 289], [9]. This relation connecting the charge and
the mass contained inside the horizon is crucial to recover the first law of thermodynamics
written in terms of (4.4). In fact, in GR (4.5) holds and differentiating it we get

TdSpy = dM (4.6)
Thus, the relation Qg = —M /2 allows to write

TdSNoether =dM (4 7)
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which reproduces (4.6) in GR. We have now to understand better the general role of Q.
Is the relation (4.4) an artifact of GR as a particular case? Or can be considered instead
a general result? The crucial point is to verify if we can write in all generality a relation
—2dQg = dM across any (hyper)surface. This would imply T'dSxoether = dM for any
horizon, that is the first law of thermodynamics [1] as applied to horizons, indicating
that the position (4.4) is a sensible definition of horizon entropy for general theories. In
fact, form first law we know that dSxeether/dM = 1/T', and thus it is independent of the
theory taken in account. This implies that, even if both Sxoetner and M do depend on
the theory under consideration, their functional relationship must be independent of it,
and will be identical to that found in GR. Hence, in any theory of gravity, we should
have T'SNoether = M /2 and thus Qy = —M /2, from which —2dQy = dM. We will now
prove this relation considering general theories of gravity.

4.2 The charge and the matter flux

We will now see that (4.4) is really the entropy associated to horizon in a a general
diffeomorphism invariant gravitational theory. In order to do that, we will consider any
(D—1)-dimensional spacial hypersurface whose normal n® is orthogonal to the the Killing
vector field £ = (0/0t)*. We want now to evaluate the infinitesimal amount of matter
dM that crosses the horizon and compare it to dQQg. The former is

dM = —/=g T*&n,dAdr (4.8)

where the minus sign means that the matter flux occurs in the opposite verse respect to
the normal to the hypersurface n* = (0,1,0,0,...) which lies into the r-plane. In (4.8)
xi® is the Killing vector (9/0t)®. The normal is taken in such a way that n,{* = 0. Now,
if we use the equations of motion E% = 87C T we get

1
167C

From the expression for the current (2.6) we know that 2E£9¢, = J* — 2L,£% — §¢v®, with
the boundary term d¢v® given by (1.57). In chapter 2 we have showed that the boundary
term vanishes everywhen it is computed in correspondence of a Killing vector and this
is true in any general theory of gravity. Thus 2E%¢, = J* — 2L,£% and since n,&* =0 ,
(4.9) becomes

dM = — V=9 2E®&n.dAdr (4.9)

1 1
AM = ———— /=g J*n,dAdr = ————/— PYn,dAd 4.1
torc Y 9 MadAddr = = m V=g (Vo Tned Adr (4.10)
where in the second equality we have used J¢ = V,J%. The above expression can be
rewritten as

_ 1 ab ab
dM__167rC —g[Ve(J¥n,) — J¥Vipn,|dAdr (4.11)
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Now, Vyn, = Oyng — 'Y, ny and hence Vipng = Opng), since the terms involving the
connections cancels out by symmetry. But n, = J, since we are working in a coordinate
basis. Thus, Vyng, = 0 = Vyn, = Vny, and the second term in the square bracket of
(4.11) vanishes because of the antisymmetry of J*%. Hence we are left with

dM = —L\/—g Vb(J“bna)dAdr (4.12)
167C

which, using (2.34) applied to the vector J%n,, becomes

1

dM = =16

O(v/—g J*n,)dAdr (4.13)

By the means of Gauss’s theorem in the radial direction, we can write
dM = —(167C)*y/—g (J“b|,,f - J“bm)nbnadA = —(167C) '/ =g AT n nyd A
= —(167C) /=g AJ"dP 20, = —2[(327C) "1 /—g ATPdP 204 (4.14)

and recalling the charge written in terms of J®

Qn = (327C)~" [P 20, =g " (4.15)

we are lead to
dM = —2dQy (4.16)

Indeed, equation (4.16), in combination with (4.4), is equivalent to T'dSnoether = dM
locally [12] and (4.4) really can be taken as the notion of horizon entropy in any general
diffeomorphism invariant theory of gravity.

4.3 Remarks

We shall summarize the main results of this chapter:

e The locally off-shell conserved current J* leads to a charge, which is proportional
to a quarter of the area of the horizon in GR. This charge is off-shell conserved.

e The charge is showed to be —M /2 and the quantity Sxoether = Q1 /T is the physical
horizon entropy when the equations of motion are implemented.

e The local equation of state T'dSnoether = dM is obtained thanks to the equations
of motion.
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These observations have again an instructive parallelism with the electromagnetism. In
section 2.3.3 we have seen that the locally off-shell conserved current corresponding to
the invariance of the Maxwell Lagrangian under the gauge transformation dyA, = 0,0 is

J* = Op(F*9) (4.17)

The associated conserved charge is
Q= / PrJ° = / Prdy(F9) = — / &2V - (E6) (4.18)
v v v

If we impose 0, F?* = J¢, that is if we impose equations of motion in which J¢, as given
by (4.17), be the source, we must have

JY = 0L F™0 + F*0,0 = 0, F* (4.19)

This implies 00 = 0 and § = —1. Thus the charge reads

Q= /vd3xV -E = /Vd?’xp(ﬂc) =q (4.20)

that is nothing but the electric charge contained inside the region of space with volume
V. Thus, when one implements the equations of motion (on-shell conserved current) the
charge acquires a precise physical meaning. This is exactly what happens also in the
case of gravitational theories. Finally, we stress that

e The horizon temperature, T = (k/27), does not depend on the gravitational theory,
instead, in general, the horizon entropy does.

e The horizon entropy depends on the curvature of the horizon, that in general
changes point by point over the surfaces. This does not happen in GR, where the
horizon entropy is always A/4, independently of the choice of the horizon patch.



Conclusions

In this thesis we have discussed some important features that we summarize here.
In any diffeomorphism invariant theory of gravity there exists certain relations involv-
ing the dynamical variables (i.e. quantities describing the gravitational field) that are
not linked to the particular form of the Lagrangian and consequently the equations of
motion, but they are rather identities coming from peculiar geometrical aspects of the
Lagrangian. Namely, we have discussed the generalized Bianchi identity (1.9) and the
off-shell conservation of the current (2.6). Given an action functional written as (1.2)
and its variation, which, as we have proved in the thesis, can be always cast in the
form given by (1.3) for any general theory of gravity, Bianchi identity is derived using
the fact that we are considering gravitational theories for which L'(z') = L(z) under
general infinitesimal diffeomorphisms. Strictly connected to the Bianchi identity is the
existence of the current (2.6) that is defined locally on the spacetime and that is off-shell
conserved thanks to the form that takes the local transformation of the metric under
general infinitesimal diffeomorphisms. Again, the way the metric transforms locally is
independent of the gravitational theory. Thus, for any diffeomorphism invariant general
theory of gravity it is possible to define such a current. Its explicit form, instead, is
determined by the form of the Lagrangian, and hence by the gravitational theory. This
same argument applies to the associated charge. Any diffeomorphism invariant general
theory of gravity has a conserved charge whose form can be explicitly established once
the Lagrangian has been specified. In this thesis we have computed the charge associated
to a spherically symmetric horizon in classical general relativity. What emerges is that
this charge is proportional to a quarter of the area of the horizon. Using the notion of
horizon temperature, which is well founded once the metric is defined, one can estab-
lish a connection between the charge of the horizon and the horizon entropy. We have
shown that this connection can be generalized to any differomorphism invariant theory
of gravity. In fact, using the equations of motion, one can see that —2dQy = dM and
consequently T'dSnoether = dM. Thus, the key result of the thesis is that the entropy
given by (4.4) is really the horizon entropy in any diffeomorphism invariant theory of
gravity.
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