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Summary

Superstring theory is one of the most plausible candidates for a theory describing

quantum gravity. Due to consistency reasons, this theory requires the existence of ex-

tra dimensions which are compactified. The low-energy effective field theory of string

compactifications is populated by hundreds of moduli fields.

String moduli correspond to massless scalar fields in the 4-dimensional Minkowski

spacetime, so they can act as mediators for new unobserved forces. However, they

are massless at three level: taking into account quantum correction they acquire mass.

The dynamics which stabilises the moduli generally also breaks supersymmetry, and

so the moduli masses are related to the masses of the soft supersymmetry breaking

terms. The requirement of TeV-scale supersymmetry in order to solve the hierarchy

problem leads to moduli masses in the range from 1 MeV to 103 TeV, depending on the

model. Furthermore, moduli couple only gravitationally so they have Planck suppressed

interactions with Standard Model particles.

Moduli are produced by the Big Bang, and in a lesser extend, by any phase transition.

Thanks to this features, after inflation the moduli come to dominate the energy density

of the Universe, until they decay. Light moduli decay very late in the history of our

Universe: after they decay, the reheating temperature has to be larger than O(1) MeV to

allow successful Big Bang Nucleosynthesis (BBN). If this is not the case, the theory would

suffer from a serious problem: the so-called cosmological moduli problem (CMP), which

is the stringy version of the Polonyi problem encountered in supergravity. Furthermore,

the decay of such particles generates a huge amount of entropy, which in turn could wash

out any previously generated baryon-antibaryon asymmetry. This might be a welcomed

effect if the mechanism generating the asymmetry in the early Universe is too efficient,
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but it can also be a problem.

From the cosmological point view, the usual recipe to get rid of unwanted relic is to in-

voke a period of inflation. Hence, in order to solve this problem, one has to realize a short

period of (low temperature) inflation. This inflation has to take place at low temperature

and has to last no more than 10 e-foldings, in order not to affect density perturbation

(generated in “ordinary inflation”) and not to create too much CMB anisotropies. For

this reason, this kind of inflation should be different by ordinary slow-roll inflation. The

most successful model is thermal inflation. This mechanism is roughly based on finite-

temperature corrections to the effective potential of a scalar field named “flaton” which

drives this inflationary period. Fields with flat potential and large Vacuum Expectation

Value (VEV) are very common in supersymmetric extension of the Standard Model and

if they are in thermal equilibrium there can be finite temperature corrections to their

effective masses making them able to develop a short period of inflation, which, under

several circumstances, may solve, or at least relax, the cosmological moduli problem.



Abstract

I have studied the possibility to solve the cosmological moduli problem which affects

some string compactifications by the dilution induced by a low-energy period of thermal

inflation caused by finite temperature effects. I have then applied this general dilution

mechanism to the study of the cosmological moduli problem in the particular case of

type IIB Large Volume compactifications. The thesis in divided into five chapters.

The first chapter introduces the reader to moduli fields starting from the simplest

example: the Kaluza-Klein five dimensional theory.

The second chapter is devoted to the cosmological moduli problem and other cos-

mological problems caused by moduli fields. Here it should be stressed that the real

problem, that is the cosmological moduli problem, is that if the moduli decay after Big

Bang Nucleosynthesis, their decay would change the abundances of the light nuclei. Fur-

thermore there are also other important problems, as gravitini overproduction through

moduli decay, distortion from the black-body spectrum of CMB radiation and finally

stable moduli can overclose the universe unless the mass is below the eV-scale.

The third chapter contains a description of thermal inflation and something about

flaton cosmology. In the past decade a lot of work have been made in the context of

the cosmology with flat potentials. In particular, it has been recognized that they are

able to develop a short period of inflation different from the primordial one. Since this

mechanism is based on finite temperature corrections acquired by the flaton potential,

it has been called Thermal Inflation.

The fourth chapter is devoted to the type IIB stabilization mechanism known as the

Large Volume Scenario (LVS). Since all the parameters of the low energy effective field

theory are tied to moduli VEVs, the moduli need to be stabilized. Moduli stabilization
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is today an area of attractive research and it seems to be (at least partially) understood

only in type IIB string theory. The Large Volume Scenario is a promising stabilization

mechanism since it leads to a dynamical solution of the gauge hierarchy problem (why

is the Higgs mass so smaller than the Planck mass?) by using a volume of the extra

dimensions which is exponentially large in string units. Here there are two Kähler moduli,

whose canonical normalisation leads to the moduli fields Φ and χ. It is found that the

first decays rapidly in the history of the universe, while the second is extremely long-

lived. Furthermore since the latter oscillates with a Planckian amplitude, it is subject

to the CMP.

In the last chapter, the dilution of the moduli number density has been computed,

starting from a more general case and then focusing on the light modulus χ of the LVS. In

particular it is found that even if thermal inflation provides a huge dilution, there is still a

large moduli reproduction due to its relatively low mass. It seems that this modulus after

two stages of thermal inflation is able to reproduce as a typical modulus after one stage of

thermal inflation. The conclusion is that, even if the computations have been performed

by order of magnitude and there are many free parameters, this modulus seems to need

a further stage of thermal inflation, because it behaves as if it had “lost” one stage

of thermal inflation. Other possible way-outs would be either to increase the modulus

mass by paying the price of not having anymore low-energy supersymmetry, or invoking

a mechanism to suppress the original amplitude of the modulus oscillations. Another

interesting option would be to consider models where the visible sector is sequestered

from supersymmetry breaking, and so the modulus mass can be increased keeping still

at the same time TeV-scale supersymmetry.
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Introduction

String theory is a very plausible candidate for a high energy theory beyond the

Standard Model. Consistency of this theory requires ten spacetime dimensions: it is

expected that this ten dimensional spacetime is the product M1,3×X of the four dimen-

sional Minkowski spacetime M1,3 with a six dimensional space X; the latter has to be

very tiny, which would explain why it has not been detected so far in high energy exper-

iments. Each choice of X lead to a different effective field theory (EFT) on Minkowski

spacetime which should be the theory that describes our world.

This poses a severe constraint for the space X. Indeed, this cannot be arbitrary

but it has to be such that the four dimensional effective field theory admits N = 1

supersymmetry (SUSY) which has then to be dynamically broken leading to TeV-scale

soft terms in order to solve the gauge hierarchy problem. It has been shown [1] that this

requires the internal space X to be a Calabi-Yau manifold of complex dimension 3.

Size and shape of Calabi-Yau are controlled by parameters called moduli. Compact-

ification to four dimensions typically produces dozens of hundreds of these fields in the

spectrum of the four dimensional theory.

All the five superstring theory contain moduli in the low energy EFT spectrum, so

the moduli problem is an independent feature.

The moduli parameters in string theory corresponds to massless scalars in four di-

mensional effective supergravity (SUGRA) and this implies the possibly of long range

interactions, i.e. they could be mediators for new forces. There are experiments search-

ing for a “fifth force” studying apparent deviations from inverse square law of Newtonian

gravity, but nowadays there is no compelling experimental evidence for such deviation,

although there some anomalous results which remain to be understood [2] . Futhermore,
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moduli couplings to matter fields are model dependent, which implies that matter fields

will experience different accelerations: this is a violation of equivalence principle, which

has been tested [3] by the ratio of inertial to gravitational mass up to 10−13.

The very natural consequence is that all of moduli should be massive. Indeed, they

are massless at three level: taking into account quantum corrections they acquire mass-

squareds proportional to the second derivative of the effective scalar potential. The

latter determines the vacuum configurations of the theory as local minima, since it plays

the same role of potential energy for a quantum field theory. All the parameters of the

low energy effective field theory as the electron mass, the Yukawa and gauge couplings,

etc... are related to the vacuum expectation value (VEV) of moduli. Therefore, to do

realistic phenomenology, it is important to have models with stabilized moduli. Moduli

stabilization has been subject of study for many string theorists [15,16,17]. This goal has

been achieved in type IIB string, throught the Large Volume Scenario (LVS) [4]. Models

with unstabilized moduli generally suffer of lack of predictability.

But what can we infer about moduli masses? Since they receive mass from SUSY

breaking and non perturbative effects, one expects for them masses of the same order

of the gravitino mass. Furthermore, since in gravity mediated models the mass of the

soft terms is of order the gravitino mass and the solution to the gauge hierarchy problem

requires supersymmetry at the TeV scale, at the first sight one expects that the gravitino

and all the moduli share the same mass of O(1) TeV. However moduli masses also depend

on the stabilization mechanism: generally speaking there is no favoured value for their

masses. Put in other words, their masses are model dependent.

Constraints and bounds for their values come from cosmological observation. Indeed,

it is found that heavy moduli (i.e. moduli with mass O(100) TeV) decay very rapidly

while light moduli are long lived [4,12]. Because of their feature and since they behave as

non relativistic matter, soon after the inflation they come to dominate energy density of

the universe till they decay. After they decay, radiation era begins and the cosmological

history is the usual one. If these light moduli decay after Big Bang Nucleosynthesis, they

would destroy the successful predictions of the abundances of the light elements. This

problem is known as The Cosmological Moduli Problem (for the first time pointed out

in [25]). Furthermore the decay of such light particles might generate a huge amount of
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entropy, washing out any matter-antimatter asymmetry generated in the early universe.

This is however not necessarily a problem if this original mechanism was too efficient.

Also supergravity, the low energy limit of string theory, suffers from a similar cosmological

problem, namely the Polonyi Problem [13,14].

This is a quite general problem: fields with “almost” flat potentials and masses of

order of the soft supersymmetry breaking scale that couple only gravitationally are fatal

for standard cosmology. Fields with such feature have been called flatons 1 and, despite

they could be troublesome, it has been recognized that they may be cosmological signif-

icant [18,19,20]. They are very common in supersymmetric extension of the Standard

Model and they are interesting because, under certain circumstances, they can drive a

short period of inflation that could be the solution to the CMP. This kind of inflation

is different from ordinary slow-roll inflation and it has been called thermal inflation,

for the first time developed in [21]and then revisited and improved in [22]. It could

be seen as a complement of ordinary inflation to diluite relics abundances. It works as

follows: in the early universe, if the flaton is in thermal equilibrium it can acquire finite

temperature contributions to its effective potential, forcing it to stay in a false vacuum

situation. A short period of inflation develops and when the temperature drops below a

critical value, the flaton rolls away from the origin and thermal inflation shuts off; then

the flaton start to oscillate around its vev. This inflation lasts only for a few e-foldings,

so the density perturbations accounting for CMB anisotropies and large scale structures

are appoximately left unaltered. There is also the possibility of two or more stages of

thermal inflation, where the second diluites the relic left over from the previous period.

1This name is due to the flatness of the effective potential and should not be confused with inflaton.
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Chapter 1

String Compactifications and Light

Scalars

One of the most important problems in string theory is to connect it with what has

been measured in high-energy experiment. Toward this direction a lot of progress has

been made, but we still have many problems to solve and up to now there is no direct

evidence that elementary particles that we observe are strings. Around 1985 it was

established that there are five different ten-dimensional string theories: type I strings,

type IIA and IIB strings, E8 × E8 strings and SO(32) heterotic strings. Since these

theories are all supersymmetric, we are dealing with superstring theories. Furthermore,

since all of them unifies gauge theories with gravity in a consistent quantum theory, they

could be candidate for a quantum gravity theory.

In 1990 there was recognized that they are all part of a single eleven dimensional

theory, and that was called M-theory. The synthesis of the five different string theories

into a single underlying theory is a fascinating story that is far from fully understood

and remains a major area of research in string theory today.

If we want to connect string theory with experiments we first of all have to explain

why the observed space-time has only four dimensions rather than ten, that is what has

happened to the other six dimensions. This is usually achieved by compactifying six of

the ten dimensions on a compact six-dimensional manifold, sufficiently small to avoid

detection. Since supersymmetry has not been observed so far in particle experiments,
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1. String Compactifications and Light Scalars

we also need to understand how it gets broken on the way from the string scale to the

length scale probed by current experiments. It is often assumed that supersymmetry

is preserved at the characteristic length scale of the compact manifold and is instead

broken by some effect in the four-dimensional field theory at lower energies. In this

case the compact manifold must satisfy rather stringent mathematical conditions which

string theorists have studied in detail. In string compactifications the four dimensional

physics depend not only on the string length, but also on size and shape of the compact

manifold. The parameters characterizing a particular compactification are called moduli

and their values, together with that of another string theory field called the dilaton, must

somehow be determined in order to make contact with the observed particle physics.

Until few years ago it was not known how to stabilize the moduli because their poten-

tial was flat to each order of string perturbation theory with no particular values favored.

It turns out however, that a potential can be generated for the moduli by introducing

fluxes of closed string gauge fields along different directions inside the compact manifold.

The minima of this potential correspond to favored values of the moduli which in turn

determine couplings and particles masses in the four dimensional EFT. While this allows

us in principle to predict various features of particle physics from a given string model,

the moduli can be fixed in a huge numbers of ways and this lead to an enormous numbers

of different predictions that are a priori equally valid. This looks like a big trouble for

any theory, in particular for string theory, which suppose to predict from first principles

the behaviour of elementary particles that we observe in high-energy experiments. The

multitude of potential minima for the moduli goes under the name of string landscape

which has been studied by many string theorists in recent years. The program of con-

necting string theory to particle phenomenology faces many challenges in addition to

the landscape problem. There are essentially two approaches to string compactification.

The first is mostly based on the heterotic string theory and assumed both string length

and size of the compact manifold are of the order of the Planck length. The second one

is based on the so-called Dirichlet branes of type I and II theories and allows much larger

values for the string length and size of the compact manifold, even as large as the length

scale that will be proved in the upcoming experiments at the LHC.

In the second approach, which is referred as brane-world compactification, the gauge
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theories of the Standard Model (and Minimal Supersymmetric Standard Model) are

defined inside the world volume of stacks of D-branes. Gauge fields then correspond to

open string with both ends attached to branes in a particular stack, while quarks and

leptons correspond to open strings having their two end points attached to two different

stacks of D-branes. In order to have chiral matter, the two stacks of the D-brane must

be at angles or carry different magnetizations in the compact extra-dimensions. Simple

toy model of this type, where the compact manifold is a flat six dimensional torus, can

be studied in considerable detail and can serve as prototype for more general model

of string compactifications. Several technical issues need to be addressed in order to

make these models fully consistent. So called orientifold planes are introduced to enable

cancellations of certain tadpoles and supersymmetry can be fully or partially broken

introducing orbifold singularities into the compact geometry.

Semi-realistic models that are stringy extensions of the SM and MSSM have been

constructed using both the top-down and bottom-up approaches to string compactifica-

tion.

As a consequence of the compactification, a huge number of massless scalar fields

appear in the spectrum of the four dimensional EFT: all the five superstring theories share

this feature. This is very discouraging because these particles have not been observed

yet and might induce some problems, both phenomenologically and cosmologically. To

see the way these fields are tied to the compactification mechanism, it is useful to recall

the pedagogical example of the Kaluza-Klein theory of gravity.

1.1 Basics of Kaluza-Klein theories

1.1.1 A bit of history

It is an old idea that unification of forces may be tied to the existence of extra

space-time dimensions (EDs). Already in 1920 Oscar Kaluza developed a theory in

five dimensions, unifying Maxwell’s theory of electromagnetism and Einstein’s General

Relativity, the two theories well understood at that time. In this framework the electro-

magnetic field emerge as a component of gravity as a consequence of general coordinate

transformation invariance. However he was faced with two important questions. Firstly,
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is this fifth dimension a real, physical dimension or it is only a mathematical device?

Secondly, if it is a real meaningful dimension, why haven’t we seen yet in high energy

experiments? Kaluza himself didn’t really understand if this dimension has to be consid-

ered as a physical dimension: indeed, although there are experimental phenomena that

could be interpreted as a four dimensional coordinate invariance, there is no evidence for

a fifth dimension. Kaluza then demanded that all the derivative with respect to this di-

mension had to vanish: physics, in his opinion, was to take place in the four dimensional

Minkowski spacetime. This passed through the history as the cylinder condition.

In 1926 Oscar Klein showed that the cylinder condition is equivalent to a circular

topology for the fifth dimension: the total space M5 is factorized in the following way

M5 = M1,3×S1, where S1 is a circle of some radius R and M1,3 is the Minkowski space-

time. It is assumed that all the fields depend on it periodically and so one can perform

a Fourier expansion. In order to understand better what produces the compactification

mechanism, let’s see as example the behaviour of the fields in this space M5, focusing

our attention to the cases of scalar field, vector field and an antisymmetric tensor field.

1.1.2 Scalar field in M 5

Let’s label the M5 coordinate with xA A = 0, 1, 2, 3, 4, the M1,3 ones with xµ where

µ = 0, 1, 2, 3 and that of S1 with y and let’s consider a five dimensional action for a

massless scalar field Φ(xM)

S5 =

∫
d5x ∂MΦ ∂MΦ (1.1)

Periodicity in y allow us to write

Φ(xµ, y) =
+∞∑

n=−∞

φn(xµ) exp

(
ıny

R

)
(1.2)

for some set of four dimensional, orthonormal and complete eigenfunction φn(xµ) (in

general these are complex object). Equation of motion are easily obtained by varying

the five dimensional action with respect to Φ: obviously one has

∂M∂
MΦ = 0 (1.3)
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where ∂M∂
M = �5 = ∂µ∂

µ + ∂y∂
y. Plugging the normal modes expansion in (1.1) one

has a relation for the eigenfunctions

+∞∑
n=−∞

(
∂µ∂

µ − n2

R2

)
φn(xµ) exp

(
ıny

R

)
= 0

But the vanishing of a linear combination on a basis implies that all the coefficients of

the linear combination have to vanish, that is(
∂µ∂

µ − n2

R2

)
φn(xµ) = 0 (1.4)

This describes an infinite number of equations for four dimensional scalars fields whose

mass squared is related to the integer n by m2
n = n2

R2 . Only the zero mode is massless

while non-zero modes have a mass inversely proportional to the radius of the circle.

To recover the four dimensional action starting from (1.1) one has to substitute the

expansion of Φ into (1.1) and integrate over the fifth coordinate y. The result is

S5 =

∫
d4x

∫
dy

+∞∑
n,m=−∞

(
∂µφn(xµ) ∂µφm(xµ)− nm

R2
φn(xµ)φ∗m(xµ)

)
exp

(
ı(n−m)y

R

)

= 2πR δnm

∫
d4x

+∞∑
n,m=−∞

(
∂µφn(xµ) ∂µφm(xµ)− nm

R2
φn(xµ)φ∗m(xµ)

)

= 2πR

∫
d4x

+∞∑
n=−∞

(
∂µφn(xµ) ∂µφn(xµ)− n2

R2
|φ(xµ)|2

)
We are usually interested in the limit R → 0 in which φ0 remains light and φn with

n 6= 0 are heavy and can be discarded. We refer to this limit as dimensional reduction:

under this assumption one has

S5 = 2πR

∫
d4x

(
∂µφ0(xµ) ∂µφ0(xµ)

)
+ . . .

= S4 + ∞ tower of massive state

The action of the five-dimensional massless scalar field is reduced to the action for a

massless four-dimensional scalar field plus a tower of massive state. We restrict our

attention to the zero mode, i.e. we discard the tower of massive fields: in this case

one speaks about dimensional reduction and this is formally equivalent to the cylinder

condition. If we keep all the massive modes we speak about compactification.
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1.1.3 Vector in M 5

Now we move to the simpler next case: the abelian vector field in five dimensions

AM(xM). Upon reduction to four dimensions, this object became equivalent to a vector

Aµ(xµ) (the abelian gauge potential) and a scalar A4 ≡ ρ. The Fourier modes expansion

for both these fields reads

Aµ =
+∞∑

n=−∞

Aµn exp

(
ıny

R

)

ρ =
+∞∑

n=−∞

ρn exp

(
ıny

R

)
The five dimensional action is given by

S5 =
1

g2
5

∫
d5xFMNF

MN

where the field strength FMN is related to AM via FMN = ∂MAN − ∂NAM , implying

∂M∂MAN − ∂M∂NAM = 0. Choosing a gauge such that ∂MAM = 0 and A0 = 0, one

has �5AN = 0. In this way this situation in the same of the massless scalar field for

each component of AM : indeed the latter implies both �5Aµ = 0 and �5ρ = 0. To each

massless state in five dimensions correspond a massless state plus a tower of massive

states in four dimensions. Plugging the normal modes expansion into the lagrangian and

integrating over the fifth variable y one readily has

S4 =

∫
d4x

(
2πR

g2
5

F(0)µνF
µν
(0) +

2πR

g2
5

∂µρ0∂
µρ0 + . . .

)
So we have obtained a four dimensional theory of massless gauge potential, a massless

scalar field and an infinite tower of massive states.

Comment

The relation between the gauge coupling of the five dimensional and four dimensional

action is given by
1

g2
4

=
2πR

g2
5
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This can be immediately generalized to the case of a D-dimensional compact manifold

(say a D-sphere of radius R)
1

g2
4

=
VD−4

g2
5

being VD the volume of the D-dimensional compact manifold.

1.1.4 Antisymmetric tensor field

Up to now we have considered a scalar field and a vector field defined in a five dimen-

sional manifold. Now we turn to the case of an antisymmetric tensor field FMN . First

of all we have to clarify the matter content of this object. Technically one has to study

the decomposition of SO(1, 4) under SO(1, 3)×SO(2): the result is Fµν (antisymmetric

tensor in four dimension), F4ν and Fµ4 (four components vectors) and F55 (scalar). In

the language of group theory this decomposition is written as 5⊗5 = 16⊕4⊕4⊕1. The

fact that the five dimensional antisymmetric tensor field is also equivalent to scalar and

four vectors in four dimensions is due to a particular symmetry known as duality. The

simplest example of duality can be found in Maxwell’s equations of electromagnetism:

indeed employing the covariant formalism these are described by the Maxwell tensor Fµν

and its dual F̃µν . The latter is derived from the Levi-Civita symbol

εµνρσ =


+1 even permutation of 0123

−1 odd permutation of 0123

0 two or more index are equal

ε0123 = 1 in the following way

F̃ µν =
1

2
εµνρσFρσ (1.5)

where the pre-factor 1/2 takes the antisymmetric properties of both εµνρσ and Fµν into

account. Furthermore, also F̃ µν is antisymmetric with respect to its index µ and ν and

the electromagnetic field equation in vacuo are

∂µF
µν = 0 Maxwell equations

∂µF̃
µν = 0 Bianchi identities
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The exchange F ↔ F̃ corresponds to the swap E ↔ B in the equations above. Notice

that in four dimensions both the Maxwell tensor Fµν and its dual F̃µν have the same

number of index; in a generic D-dimensions this could not necessarily be true. In the

language of differential geometry an antisymmetric (p + 1)-tensor AM1...M(p+1)
that is

called (p+ 1)-form and with this one, a field strength tensor can be constructed

FM1...Mp+2 = ∂[M1AM2...Mp+2]

and the latter is a (p + 2)-form. Let’s see what we can say about the dual: since the

dimension is fixed to D, the dual of FM1...Mp+2 must have D − (p+ 2) index, indeed

F̃M1...MD−p−2
= εM1...MD

FD−p−1...MD

Example in D = 4

We have just seen in four dimensions how we can derive a field strength tensor F µν

starting from the gauge potential Aµ. Indeed we found Fµν = ∂[µAν] ≡ ∂µAν −∂νAµ and

associated to F µν there exists its dual F̃ µν given by (1.5). What can we say about a third

rank tensor? And what about its dual? Let’s consider a third rank field strength tensor

Fµνρ and suppose it can be derived from a potential Bµν in this way Fµνρ = ∂[µBνρ].

It is easy to construct its dual, indeed Fµνρε
µνρσ = F̃ σ = ∂σa. From these simple

considerations we find that the dual potentials that yield the fields strength have a

different number of index: indeed we have a two rank tensor Bµν and a scalar potential

a.

Example in D = 6

Now let’s consider a six dimensional space. Suppose we have a third dimensional

field strength tensor FIJK derived from a two index potential BJK in the usual way

FIJK = ∂[IBJK]. We can construct F̃LMN , that is the dual of FIJK , employing the six

dimensional Levi-Civita symbol εIJKLMN : one has εIJKLMNFIJK = F̃LMN and F̃LMN =

∂LB̃MN ]. Here the potential BIJ and its dual B̃IJ have the same number of index.

Furthermore they both have 15 degrees of freedom. This can understand as follows: an

antisymmetric tensor of rank two in a generic D dimension has D(D− 1)/2 independent
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component, so since D = 6 a generic two rank tensor BIJ has 15 independent component.

Generalization to a generic tensor with Mp+1 index immediately follows. If we want

to find the degrees of freedom of a generic BM1,...,Mp+1 tensor we have to consider its

decomposition under the little group BM1,...,Mp+1 → Bi1,...,ip+1 where ik = 1, . . . , D − 2.

These are
(
D−2
p+1

)
independent components: since in this particular case D = 6 and p = 1

(because p+ 1 = 2) we have 4!
2! 2!

= 3 · 2 = 6 degrees of freedom.

1.2 Gravity in Kaluza-Klein theory

Here we recall some basic facts of Kaluza-Klein theory. Since the very last goal of

this section is to point out how the moduli emerge in higher dimensional theories, we

do not explain Kaluza-Klein theory in detail but we briefly summarize the main results.

Consider a five dimensional Minkowski spacetime described by the metric tensor

gAB = φ−1/3

(
gµν − κ2φAµAν −κφAµ
−κφAν φ

)

Here κ is a constant, φ is a scalar field and Aµ is a yet-undefined vector. A Fourier

expansions reads

gAB = φ(0) −1/3

(
g

(0)
µν − κ2φ(0)A

(0)
µ A

(0)
ν −κφ(0)A

(0)
µ

−κφ(0)A
(0)
ν φ(0)

)
+ ∞ tower of massive state

(1.6)

Now let’s consider the so called minimal extension of General Relativity: the five dimen-

sional Hilbert Einstein action is

S5 =

∫ √
−g5

(5)R d5x

and inserting (1.6) and reducing to four dimensions we arrive at

S4 =

∫
d4x
√
−g4

[
M2

Pl
(4)R− 1

4
F (0)
µν F

(0) µν +
1

6

∂µφ
(0)∂µφ0

(φ(0))2
+ . . .

]
that is a unified theory of electromagnetism, gravity and scalar fields.
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1.2.1 Symmetries

The five dimensional theory is defined onM5 = M1,3×S1 whereM1,3 is the Minkowski

spacetime and S1 is a circle of radius R. The coordinate on S1 is denoted by y. It is

assumed that the radius of the fifth dimension is very small 1 in order to explain why

this dimension has not be seen in high energy experiments. The five dimensional theory

is invariant under general coordinate transformation

g′AB =
∂xC

∂x′A
∂xD

∂x′B
gCD

Furthermore the field equation are scale invariant, that is if gAB is a solution then also

λgAB with λ constant is a solution. However it is assumed that the fifth dimension is

compactified so as to have the geometry of a circle of very small radius. Then there is

a residual four dimensional general coordinate invariance, an abelian gauge invariance

associated with the transformation of the compact manifold and the overall rescaling. In

other words, the original five dimensional general coordinate invariance is spontaneously

broken in the ground state in four dimensional coordinate invariance plus an abelian

gauge invariance: this last feature allows the identification of Aµ with the gauge potential.

Let’s see these two last features in more detail. Recall that the line element can be written

employing (1.6) as

ds2 = φ(0)−1/3
[
g(0)
µν dx

µdxν − φ(0)(dy − κA(0)
µ dxµ)2

]
(1.7)

y transformation

The most general transformation for the y variable is expected to be of the form

y → y′ = F (xµ, y)

In order to leave (1.7) invariant, the F dependence of xµ and y cannot be arbitrary.

Indeed the latter must be

y′ = F (xµ, y) = y + f(xµ)

1For simplicity the radius is assumed to be of the same order of the Planck length, so that an energy

equal to the Planck energy is needed to resolve it
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so that differential on y′ leads to

dy′ = dy +
∂f(xµ)

∂xµ
dxµ

and since we want (1.7) invariant

A′(0)
µ = A(0)

µ +
1

κ

∂f(xµ)

∂xµ
dxµ (1.8)

It is well known that (1.8) represents the abelian gauge transformation associated to the

vector potential A
(0)
µ (modulo a constant κ irrelevant for this purpose).

Overall rescaling

Consider the line element (1.7). Clearly the transformations

y → y′ = λy

A(0)
µ → A′(0)

µ = λA(0)
µ

φ(0) → φ′(0) =
1

λ2
φ(0)

imply

ds2 → ds′2 = λ2/3ds2

This means that if ds2 is a solution and λ is a constant, then ds′2 = λ2/3ds2 is also a

solution. This reflects the fact that classical gravity is a scale invariant theory.

Comments

We have just pointed out that the price to pay to built a five dimensional theory

unifying gravity and electromagnetism is the appearance of a massless scalar field φ(0)

in the spectrum of the four dimensional theory. In the original Kaluza-Klein theory φ(0)

was called radion while in the string theory context it has been called modulus. φ(0) is a

massless modulus field that parameterize the flat direction in the potential and so 〈φ(0)〉
and then the size of the fifth dimension is arbitrary and the theory does not provide any

way to fix it. In other words, it looks like all the values of the radius are equally good.

This is a manifestation of the fact that the theory cannot prefer a flat five dimensional

Minkowski spacetime over M1,3 × S1 or over M1,2 × S1 × S1 as a solution.



1.3 Scales and hierarchies 1. String Compactifications and Light Scalars

Now one can asks what kind of manifold can produce a theory ”roughly similar”

to the SM one with SUSY at the TeV scale (and a little but non vanishing value of

the cosmological constant in order to justify the recent observation of the accelerated

expansion). The answer was found in [1]: the internal manifold must be Calabi-Yau one

of complex dimension three. Size and shape (and therefore the volume) of the Calabi-

Yau are controlled by moduli and the compactification on this manifold leads to the

appearence of dozen of hundreds of these parmeters in the spectrum of the low energy

EFT. The geometrical moduli can be divided into complex structure and Kähler moduli

and since all the parameters of the low energy theory are tied to their VEV, moduli

need to be stabilized. As said in the introduction, a theory with unstabilized moduli will

suffer of lack of predictability.

Recent developments (fluxes, perturbative and non perturbative effects) allows to fix

the volume and the shape of EDs leading to a large but discrete set of solutions. In a

typical model the latter are estimated to be of the order of 10500, leading to the so-called

string landscape of solutions. From a mathematical point of view all of them are equally

good, but from the physical it is expected that only one will describe the world we live

in.

1.3 Scales and hierarchies

The aim of this section is to point out the scale of energy of the fundamental theory.

We work in natural unit ~ = c = 1 and the only free parameter is assumed to be the

string tension α′. The string length ls is tied to the tension by ls = 2π
√
α′ and the

string mass is Ms = l−1
s . Now consider the Einstein-Hilbert action in a D dimensional

spacetime

S ∼MD−2
∗

∫
dDx
√
−gR (1.9)

where M∗ is the D dimensional (or fundamental) Planck mass andR is the D dimensional

Ricci scalar. In the example of type II string compactification the D = 10 string frame

action takes the form

S ∼M8
s

∫
d10x
√
−g e−2φR (1.10)
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being φ the dilaton and the string coupling is gs = e〈φ〉. Comparing (1.9) and (1.10) we

e find the relation between the fundamental Planck scale and the string scale. Setting

D = 10 in (1.9) one has

M∗ ∼Ms g
−1/4
s

Now we focus our attention to the case D = 4 and we call the four dimensional Planck

mass simply as MPl. Comparing now the four dimensional Einstein - Hilbert action and

the ten dimensional string action we find

M2
Pl = M8

s Vol (X6) (1.11)

where Vol (X6) denotes the overall volume of the internal manifold. The latter can be

written in terms of the string length and an dimensionless quantity V as

Vol (X6) = V l6s =
V
M6

s

Finally from (1.11) follows the relation

Ms =
MPl

V1/2
(1.12)

To estimate Kaluza-Klein mass we first recall the toroidal compactification. A stringy

ground state of Kaluza-Klein and winding integers n and w has mass2

m2
KK =

n2

R2
+
w2R2

α′2
(1.13)

where R is the dimensionful Kaluza-Klein radius, that can be written in terms of the

string length as R = Rsls where Rs � 1. If this holds, then we can estimate Kaluza-Klein

mass as

mKK ∼
Ms

Rs

and if we assume V ∼ R6
s we readily get

mKK ∼
Ms

V1/6
∼ MPl

V2/3
(1.14)

where the last relation follows immediately from (1.12).

2Strictly speaking (1.13) holds only for toroidal compactification, but it suffices to estimate the

relevant mass scale.
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How large can EDs be?

So far we have pointed out all the relevant mass scale for a typical theory. These

can be written as a function of the (four dimensional) Planck mass and an dimensionless

volume, as in (1.12) and (1.14). Furthermore, the Planck mass MPl can be written in

terms of the fundamental Planck mass M∗ and the volume of the D-dimensional internal

manifold X as

M2
Pl = MD−2

∗ Vol(XD−4) (1.15)

∼MD−2
∗ RD−4 (1.16)

Since in high energy experiments we have explored regions near O(10−16) cm, consistency

requires R ≤ O(10−16) and so M∗ ≥ O(1) TeV. In Kaluza-Klein theories there are no

reasons to suppose a large value of the volume and it has usually been assumed that

M∗ ∼ MPl. However the actual value of M∗ has to be determined dynamically by

moduli stabilization.



Chapter 2

The Cosmological Moduli Problem

Despite the differences between the various type of string theory, the presence of a

moduli sector is a generic and model independent feature. String moduli are fields that

interact only via gravitational strength interactions and hence have Planck-suppressed

couplings to Standard Model’s fields. Their potential is exactly flat in the supersym-

metric limit but become curved due to supersymmetry breaking and non-perturbative

effects, obtaining then a defined vev. Moduli are produced by Big Bang and, in a lesser

extend, by any phase transition. After (ordinary) inflation, they are expected to be far

from the low energy minimum and they begin to oscillate. Energy stored in the oscilla-

tions redshifts as a−3(t) (a(t) being the scale factor) so they behave as non relativistic

matter, opposed to radiation. This, in turn, implies that moduli can dominate the energy

density of the universe until they decay: thanks to their long lifetime this occur late in

history of the universe, spoiling the successful predictions of Big Bang Nucleosynthesis

(BBN). This happens because they decay at a temperature too low to allow nucleosyn-

thesis; furthermore decay product may destroy hydrogen leaving an overproduction of

helium and entropy release will reset the baryon/antibaryon asymmetry. These are the

main problems, but there are also other as overproduction of gravitini and dark matter.

Let’s see this in more formal term.

27
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2.1 Moduli dynamics

It is usually assumed that the history of the universe begin with a period of inflation.

This period is invoked to solve the problems left over by the Hot Big Bang theory, such as

flatness, horizons and also provide an explanation for Large Scale Structures and CMB

anisotropies. However inflation can’t provide an exhaustive explanation about topologi-

cal defects and relics (this problem was noted in [21]). Since universe had undergone to

many phase transitions, one expects topological defect may be produced: so why haven’t

we seen them yet? The usual answer to this question is that these objects were diluited

by the inflation, so even if universe is populated by a huge amount of them, they can’t

be seen because they are diluited too much.

However, the problem is not so simple, especially when one tries to conciliate the

Standard Cosmology Theory with SUSY and SUGRA. The problem essentially lies in

the fact that relics and other potentially dangerous fields may be produced after the

end of the inflation, and typically this is the case. Let’s focus our attention on moduli.

In the previous chapter we learnt that the price to pay to have a theory unifying both

electromagnetism and gravity was the appearance of a scalar, non-physical field in the

spectrum of the four dimensional effective theory; this was due to the compactification

on the circle S1. Then after the discovery of strong and weak forces, and later of SUSY,

physicists were faced with this question: what is the manifold that, after compactifi-

cation, can give a four dimensional SUSY theory? As pointed out in [1], the manifold

must be a Calabi-Yau one of complex dimension 3. Compactification on this manifold

typically produces dozen of hundred of these scalar fields, in modern language are called

moduli, which parametrize size and shape of the Calabi-Yau.

Moduli are produced in the first universe as coherent oscillation and, in a lesser

extend, by any phase transition. Inflation cannot address the moduli problem because

an excessive number of these is produced after the inflation has ended. Let’s see this in

detail. Consider a modulus Φ; its evolution is governed by the effective potential, which

depends not only on Φ, but also on other scalar fields φ and the temperature T . An

useful parametrization is [35]

Veff(Φ, φ, T ) = V0(φ, T ) + V1(φ, T ) + V2(φ, T ) + . . .
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where ellipses denotes higher order irrelevant terms. Referring to the present, the Vn’s

are given by

V0(φ0, T0) = V1(φ0, T0) = 0 (2.1)

V2 = m2
0/2 (2.2)

where φ0, T0 and m0 denotes the present VEV of φ, the temperature and the present

mass of Φ. The vanishing of V0 is due to the extremely small value of the cosmological

constant. In the early universe this values are significantly different: it is expected that

V2(φ, T ) ∼ α2H2 and so the effective mass mΦ is thought to be different from the present

value m0. The expected form is

Veff(Φ, T ) =
m2

0

2
(Φ− Φ0)2 +

α2H2

2
(Φ− Φ1)2 + . . . (2.3)

Here Φ1 is the VEV of Φ in the early universe and generally it is different from Φ0.

The displacement from the true VEV is quantified by δΦ = Φ−Φ0 and introducing the

variable Φ2 defined as Φ2 = Φ1 − Φ0 ∼MPl we can rewrite the effective potential as

Veff(Φ, T ) =
m2

0

2
(δΦ)2 +

α2H2

2
(δΦ− Φ2)2 + . . . (2.4)

=
(m2

0 + α2H2)

2

(
δΦ− α2H2

m2
Φ + αH2

Φ2

)2

+ . . . (2.5)

To obtain a more accurate results one has to solve the equation of motion for Φ

Φ̈ + 3HΦ̇ + (m2
0 + α2H2)Φ = α2H2Φ1 (2.6)

We can treat both α and Φ1 as time independent constant and we set as initial conditions

Φ(ti) = Φi (2.7)

Φ̇(ti) = 0

This equation has to be solved during inflation, where H(t) can be treated as time

independent constant, and both during radiation-dominated era (when H = 1/2t) and

matter-dominated era (for which H = 2/3t).
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2.1.1 Moduli dynamics during inflation

In this section we study the behaviour of the moduli fields during inflation. Compu-

tation can be found in A.1 so we limit our discussion to some comments.

Comments

We can consider some interesting limit for the solutions of (A.12). Let’s consider β

and suppose α � 1 and m0/H � 1 and set x = α2 + m2
0/H

2. Clearly x � 1 and a

Taylor expansion of the square roots yields

β ∼ 1− 1

2
x2 = 1− 2

9

(
α2 +

m2
0

H2

)
Calling Φf the modulus’s value after inflation, this is given in terms of the e-folding

number Nef by

Φf ' Φi −
Nef

3
(Φi − Φmin)

(
H2

m2
0 + α2H2

)
and in this case Nef � H2

m2
0+α2H2 . This is the behaviour during inflation: before consider-

ing the role of H due to expansion, Φ is frozen at some initial value Φi.

If m0 � H but α ∼ 1 the final modulus value is

Φf ' Φmin + (Φi − Φmin)×O
(
e
−3Nef

2

)
showing that independently from the initial value Φi the modulus tends to reach the

temporal minimum Φmin ' Φi. Finally we consider the limit m0 � H. The modulus

exponentially approaches to the minimum Φmin ' α2H2

m2
0

Φ1 with exponentially decreasing

oscillations.

2.1.2 Post-inflationary dynamics

In the post-inflationary dynamics, the equation of motion (2.6) get a further compli-

cation due to the time dependence of H(t) encoded by H = p/t where p = 1
2

(RD) and

p = 2
3

(MD). Introducing a new variable z = m0t, the solution is [35]

Φ(z) = p2α2Φ1
Sθ−1,ν(z)

zθ
+ C1

Jν(z)

zθ
+ C2

Yν(z)

zθ
(2.8)
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where ν2 = θ2 − p2α2 ≥ 0 for θ = 3p−1
2

, Jν(z) and Yν(z) are Bessel functions and Sµ,ν(z)

is the Lommel function

Sµ,ν(z) =
π

2

[
Yν(z)

∫ z

0

yµJν(y) dy − Jν(z)

∫ z

0

yµYν(y) dy

]
+ 2µ−1Γ

(
µ− ν + 1

2

)
Γ

(
µ+−ν + 1

2

)[
sin

(
µ− ν

2
π

)
Jν(z)− cos

(
µ− ν

2
π

)
Yν(z)

]
From the initial condition follows the values of the constants C1 and C2

C1 = A1Φi +B1α
2Φ1

C2 = A2Φi +B2α
2Φ1

where

A1 =
π

2
zθi [zi Y

′
ν(zi)− θ Yν(zi)]

A2 = −π
2
zθi [zi J

′
ν(zi)− θ Jν(zi)]

B1 = −π
2
zθi [Y ′ν(zi)Sθ−1,ν(zi)− Yν(zi)S ′θ−1,ν(zi)]p

2

B2 =
π

2
zθi [J ′ν(zi)Sθ−1,ν(zi)− Jν(zi)S ′θ−1,ν(zi)]p

2

and the primes denotes the differentiation with respect to z. We are interesting in

moduli abundance coming from coherent oscillations. For z � 1, Φ(z) is dominated by

the oscillatory tail

Φ(z) ∼
(

2

π

) 1
2

z−
3p
2

{
C1 cos

[
z − (ν + 1/2)π

2

]
+ C2 sin

[
z − (ν + 1/2)π

2

]}
From this last relation we can estimate moduli number density nΦ as

nΦ =
m0

2
Φ2 ∼

(
1

π

)
z−3pm0(C2

1 + C2
2) (2.9)

and the energy density as ρΦ = nΦm0. We can introduce the quantity YΦ defined as

YΦ =
nΦ

s
(2.10)

where s is the entropy density of the radiation

s =
2π2

45
g∗(T )T 3
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Unless some entropy is produced, the quantity YΦ remains constant during the history

of the universe and so it has a crucial role in the calculation of moduli abundances. Its

value is

YΦ =
45

2π2g∗
(C2

1 + C2
2)

m0

z3pT 3
(2.11)

Most of the cosmological implications are associate to the amplitude of the oscillations

δΦ ≡
(
C2

1 + C2
2

π

)1/2

(2.12)

which represent the initial moduli misalignment. If this value gets too large, moduli are

able to oscillate to a relatively long epoch, leading to a matter dominated-era before the

radiation one and spoiling the predictions of the Big Bang Nucleosynthesis.

2.2 Cosmological Moduli Problem

Consider a modulus Φ with effective mass mΦ moving in a Freedman-Robertson-

Walker background: oscillations’ amplitude fulfill

Φ̈ + (3H + ΓΦ) Φ̇ + V,Φ = 0 (2.13)

where H = H(t) = ȧ
a
(t) is the Hubble parameter, ΓΦ ∼ m3

Φ/M
2
Pl is the decay rate and

V,Φ denotes the derivative of the potential energy respect to Φ. When H ≥ mΦ, at some

time t ≤ tin, the friction term dominates in the evolution equation forcing Φ to stay at

some initial value, say Φ = Φin. Then, when Hubble parameter become of the same order

of modulus mass (H ∼ mΦ), at t > tin, modulus starts to oscillate around the minimum

and soon dominates the energy density. This occurs because at t > tin, the moduli

energy density at temperature Tin ∼ (mΦMPl)
1/2 is ρΦ ∼ m2

ΦΦ2
in while, since Friedmann

equations implies H ∼ T 2/MPl for radiation, its energy density is ρrad ∼ H2M2
Pl. Since

for a modulus we expect Φin ∼ MPl, one has ρrad ∼ ρΦ. Moduli coherent oscillations

will soon dominate energy density of the universe because oscillations energy decrease

as a−3 while radiation energy density decrease as a−4: then we are entering in a moduli

dominated universe. Then, consider the relation

ρΦ(T )

ρΦ(Tin)
=

(
T

Tin

)3

(2.14)
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If the field Φ is stable, oscillations may overclose the universe. Imposing ρΦ(T ) < ρcrit ∼
(10−3eV)4 one finds that a scalar fields of mass mΦ > 10−26eV will overclose the universe.

But generally moduli decay and so many other problems arise. The scalar field Φ decays

at temperature TD for which H(TD) ∼ ΓΦ; evaluating (2.14) at T = TD when moduli

energy density is ρΦ(TD) = (ΓΦMPl)
2 one can find the decay temperature, that is

TD = Tin

(
ρΦ(TD)

ρΦ(Tin)

)1/3

= (mΦMPl)
1/2

(
(ΓΦMPl)

2

(mΦΦin)2

)1/3

= m
11/6
Φ M

−1/6
Pl Φ

−2/3
in

Moduli decay reheat the universe. We can estimate the reheating temperature TRH

supposing the decay product promptly thermalize TRH ' (ρΦ(TD))1/4 ∼ (ΓΦMPl)
1/2,

that is

TRH ∼
(
m3

Φ

MPl

)1/2

(2.15)

In order not to upset nucleosynthesis is required TRH ≥ O(10) MeV and this put a

lower bound on modulus mass. Indeed it has to be m3
Φ/MPl ∼ 10−4 (GeV)2 and so

m3
Φ ∼ 1014 (GeV)3: we conclude that moduli whose mass is mΦ ≥ O(100) TeV are not

dangerous for Standard Cosmology because they decay before BBN. However moduli with

mass lower than this bound have a reheating temperature too low to allow successful

nucleosynthesis: this is The Cosmological Moduli Problem of string theories. In fact, if in

this case the moduli decay into photons and their energy exceeds the binding energy of

light nuclei, photo-dissociation process are allowed and abundance of light elements may

be profoundly altered, causing a significant discrepancy between theory and observation.

Knowing the abundances of Hydrogen, Deuterium and Helium today we can infer bounds

of moduli number density, masses and lifetimes [27].

There are also others problems, as we can see in the next section.
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2.3 Other cosmological problems

2.3.1 Gravitino overproduction

If mΦ � m3/2, the decay of a modulus into gravitini is allowed. This, together with

the fact that gravitini may also be produced by scattering process caused by thermal

radiation after moduli decay, leads to an overproduction of gravitini at low energies

whose decay products can destroy light nuclei produced in early universe. As an example,

for gravitino mass 102−3 GeV, scalar masses must be large than O(100) TeV to ensure

the validity of BBN [6] (here scalar masses denotes any scalar field that interact only

gravitationally).

2.3.2 Baryogenesis

Moduli decay generate a huge amount of entropy: this is quantified by

∆ =
s(TRH)

s(TD)
∼
(
TRH
TD

)3

=

(
(m3

Φ/MPl)
1/2

m
11/6
Φ M

−1/6
Pl Φ

−2/3
in

)3

∼ Φ2
in

mΦMPl

Since for a modulus Φin ∼MPl and mΦ ∼ m3/2 ∼ O(1) TeV, it is expected that ∆ ∼ 1015.

This is an enormous increase of entropy that can erase the previous baryon-antibaryon

asymmetry. At high temperature there are mechanisms to generate this asymmetry: for

example the electro-weak baryogenesis [23]which uses electroweak phase transition and

sphalerons. However, the reheat temperature after flaton decay will be too low to make

this mechanism works. Maybe the most efficient mechanism could be the Affleck-Dine

(AD) baryogenesis [24], because it can generate huge asymmetries which can survive to

the full entropy production of the thermal inflation needed to diluite moduli to acceptable

levels.



Chapter 3

Thermal Inflation

In the previous chapter we have noticed the cosmological difficulties associated to

string moduli. From a cosmological point of view this problem could be solved by a

short period of low energy inflation, such to leave unaffected the large scale density

perturbation accounting for the CMB anisotropies and the large scale structure.

Indeed following [21]the problems of flatness and horizon as well as the formation of

large scale structures are solved by the (ordinary) inflation while a short second period

of weak-scale energy inflation diluites relics left over and solves the CMP.

Let’s see why this kind of inflation should be different from the slow-roll one. This

essentially lies on the bound imposed by the slow-roll conditions: necessary condition for

the slow-roll inflation is that the inflaton mass must be less than the Hubble parameter.

Since to avoid too much moduli reproduction there must be

V
1/4

0 ∼ 107 to 108 GeV (3.1)

one has a severe constraint on the inflaton mass: knowing H ∼ V
1/2

0 /MPl one has

H ∼ O(1) MeV and to have inflation is needed minf � O(1) MeV, i.e. the inflaton

should have a very low mass. But thermal inflation naturally occurs at the energy scale

displayed in (3.1) and since at these scales H � ms one can expect that under optimistic

circumstances the thermal inflation to solve the CMP. Indeed a generic modulus is ex-

pected to have a mass of the same order of ms, defined as the mass of the supersymmetric

partners of the Standard Model’s particles: slow-roll inflation can’t solve the problem

because it occurs at H � ms while moduli are generate at H ∼ ms and in a lesser extend
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by any phase transition at H < ms. Therefore, in order to address the problem it is

needed inflation at H � ms and thermal inflation is the most plausible candidate. Since

flatons have central role in thermal inflation, before going further it is useful to examine

carefully their properties and dynamics.

3.1 Flaton’s dynamics

Flaton’s dynamics is determined by the form of its effective potential. The effective

potential in early universe is generally expected to be different from the effective potential

today: while the first is fundamental for the dynamic at high energy, the latter play a

central role in the low-energy dynamic. It is necessary to know both them to have a

complete picture of the flaton’s dynamic. First of all we need to clarify what is meant

for high (resp.) low energy effective potential.

3.1.1 High energy Effective Potential

In early universe, the interactions of a given field σ with other fields φ, ψ modify

the form of its effective potential V (σ). So we have to clarify the statement ”effective

potential of σ”. There exists only one effective potential V , and this is a function of all

the scalar fields V (σ, φ, ψ, . . . ). In early universe it is reasonable to assume the fields are

displaced from their VEVs, so saying effective potential of a given field we have in mind

the full effective potential where all the others fields are taken with their current time

average, so that terms like σ2φ2 gets replaced by σ2〈φ2〉t (here 〈. . . 〉t denotes a temporal

average). Even if the effective potential V (σ) changes with the history of the universe,

we can always assume a vanishing gradient at the origin: this is due to the invariance

respect with one ore more Zn. Indeed if we expand the full potential V (σ, φ, ψ, . . . ) as

a power series of its fields, each term is expected to be invariant upon one (or more)

Zn symmetry, unless it consist in just the first power of of one field. As an example,

a term like σ2φ2 is Z2 invariant with respect both σ and φ. Since only a few leading

terms are important, it is reasonable to assume the full effective potential contain one

or more Zn symmetry and so a vanishing gradient at the origin. Now let’s say what

we can infer about the effective mass squared V ′′(0) in early universe. During inflation,
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all the fields are expected to acquire contribution of order ±H2 due to expansion to

their effective mass square: this is precisely what happens for the moduli, because they

feel only gravitational strength interaction. For other fields one can think to a stronger

contribution, that is ±α2H2 with α� 1: this is true for flatons σ with a smaller VEV.

If we set 〈σ〉 ≡M then we can identify α = MPl/M . This is what we think to happened

during inflation. After inflation it is not clear what the mass-squared will be. If the

interaction is of gravitational strength, one expect contributions of the same order of

±H2. We can say that near the origin the flaton can have unsuppressed interactions

with other fields. Let’s consider an interaction term like λ|σ|2φ2: when the flaton σ is

in the vev it gives a contribution 2λ〈σ〉 = 2λM to m2
φ. Since M is large, if mφ is small

then λ must be small. If instead mφ is of the same order of M and it is generated by

this interaction, then λ ∼ 1 is expected for the flaton near the origin and the field φ

becomes light. This address the fact that the flaton near the origin can have unsuppressed

interaction with light fields. If these fields have an effective mass of order |σ|, the flaton

will be in thermal equilibrium in the regime |σ| ≤ T , because fields with effective mass

greater than T are too rare to be maintained in thermal equilibrium. If this is the case,

one can consider the finite temperature correction to the effective potential, that in turn

gives a contribution (T 2 − m2
0) to the effective mass. The effective potential acquires

a local minimum in the origin for some T bigger than TC ∼ m0 ∼ m, being m0 the

effective T = 0 mass squared. In this situation the flaton is forced to stay at the origin.

At T ∼ TC the phase transition occurs and the flaton moves from the origin towards its

true VEV, that is the true minimum of the effective potential.

3.1.2 Low energy Effective Potential

Consider a flaton σ. In the limit of absolutely flat potential there is a U(1) symmetry,

so the effective potential depends on σ only through |σ|. In reality one cannot speak

about ”low energy effective potential of σ”: there exists only one effective potential V

and this is a function of all the scalar fields V (φ, ψ, σ, . . . ). Saying low energy effective

potential one has in mind V (φ, ψ, σ, . . . ) where all the fields φ, ψ except the flaton are

evaluated at their VEVs, so terms like ψ2φ2 get replaced by 〈ψ2〉〈φ2〉. The U(1) symmetry

may survive or may be broken: if it remains exact, the Goldstone boson corresponding
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to the angular direction is massless; if it gets broken, the Goldstone boson will acquire

mass. Its mass depends from how the symmetry is broken: if the symmetry is slightly

broken the Goldstone boson is light, while if it is strongly broken the Goldstone boson

became just another flaton. In what follows we consider the case when the symmetry

survive.

Global U(1) symmetry

We consider the case where the symmetry survive. The effective potential along the

flat direction can be written as

V ( |σ| ) = V0 −m2
0 |σ|2 +

∞∑
n=1

λn
|σ|2n+4

M2n
P l

(3.2)

where m0 ∼ 102 to 103 GeV is the true effective mass of the flaton and higher order non

renormalizable terms make the effective potential ”almost flat” near the VEV. We have

in mind the case where the true mass squared at the origin is negative: this assigns a non

vanishing VEV, but rather 〈σ〉 ≡M � m0 and we can safely assume M ≥ 1010GeV (see

appendix A.6 how to reach this conclusion). V0 is tuned to have a vanishing cosmological

constant at the VEV V0 = m2
σM

2 and

m2
σ = 2(n+ 1)m2

0

M2n+2M−2n
P l = [2(n+ 1)(n+ 2)λn]−1m2

σ

V0 = [2(n+ 2)]−1m2
σM

2

where mσ = V ′′(M)/2 has been used. Observe that the potential (3.2) does not contain

the term λ|σ|4: this term is forbidden by discrete or continuous gauge symmetry in

combination with SUSY. SUSY breaking generate this term with suppressed coupling

λ ∼ (m0/MPl)
2 and it is negligible for all flatons that are not moduli.
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3.2 Cosmology with flatons

3.2.1 Flaton initially held at the origin

Suppose that the flaton is trapped at the origin because of finite temperature correc-

tion, giving to it a positive effective mass squared. The energy density is

ρ = V0 +
π2

30
g∗ T

4 (3.3)

where g∗ is the effective number of species in thermal equilibrium. When the flaton

is held at the origin, the vacuum energy V0 dominates and a short period of inflation

develops. This era starts at Tin ∼ V
1/4

0 ∼ (m0M)1/2 and ends at Tend ∼ m0 when the

flaton rolls away from the origin and move towards the true VEV M and start oscillating

around it. The e-folding number is estimated as

Nef ∼ ln

(
Tin

Tend

)
∼ 1

2
ln

(
M

m0

)
and we can safely assume Nef

<∼ 10, so thermal inflation can never replace ordinary

inflation. Recall that the latter takes place at a very high energy scale: in most of the

models V
1/4

0 ∼ 1016 GeV and the lowest value proposed is V
1/4

0 ∼ 1012 GeV while thermal

inflation follows the bound displayed in (3.1). After the end of thermal inflation we enter

in a matter dominated era by flaton particles.

Conditions for the trapping

In the previous section we speak about a trapping due to the finite temperature

correction: this has to be meant as a contribution to the scalar potential of the flaton.

Let’s see how this is made possible. Consider a flaton σ: in order to be held at the origin

it has to interact rapidly with the fields in the thermal bath of the universe. Suppose

there is a very massive scalar field ψ that interact with the flaton through the interaction

g|σ|2ψ (here g is a coupling constant). Recalling (3.2), the one loop thermal corrections

associated to ψ will alter the effective potential, that in turn looks as

Veff(|σ|) = V0 + (gT 2 −m2
0)|σ|2 + . . . (3.4)



3.2 Cosmology with flatons 3. Thermal Inflation

At high temperature the flaton has a positive effective mass squared that forces it to

stay in a false vacuum situation. When the temperature drops below the critical value

TC ∼ m0

g1/2 the phase transition occurs and the effective potential develops two minima.

The flaton then starts rolling towards the T = 0 minimum and begins to oscillate around

it. Once the minimum has been reached, the mass terms for ψ is generated and we can

say that mψ ∼M .

Thermal correction to the flaton itself

One can also consider thermal correction to the flaton itself. However, as pointed

out in [31], these are irrelevant because they can neither trap the field nor cause a phase

transition. Let’s consider one loop thermal correction: these describe an ideal gas of non

interacting particles and they have the standard form

V1(m0, T ) = ± T 4

2π2

∫ ∞
0

dxx2 ln

(
1∓ e−

√
x2+m2

0/T
2

)
(3.5)

where the upper (lower) signs are for bosons (fermions). Since we are interested in

high temperature regime T � m0, we have to look for solution in the approximation

m0/T � 1. It is found that

V1(m0, T ) = −π
2T 4

90
α +

T 2m2
0

24
+O(Tm3

0) (3.6)

where α = 1 for bosons and α = 7/8 for fermions. These corrections can be interpreted

as a σ independent shift in the potential: this corresponds to add a constant to the

energy density and so equation of motion are left unaltered. But one can go beyond the

one loop approximation, hoping to find a correction to m2
0 proportional to σ2: it happens

that this correction occurs at the (n + 1)-loop and it is of the order T (T 2/MPl)
2n, so it

is negligible.

This can also be understood in a simpler way as follows: since one loop thermal

correction goes as

VT ∼ T 2m2
0 = T 2dV (|σ|)

d|σ|
(3.7)

and in (3.2) there isn’t the term λσ4 we cannot have a term proportional to σ2 and then

we cannot give to the flaton the effective mass required to be held at the origin.
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3.2.2 Flaton initially displaced from the origin

Now suppose that the flaton field is displaced from the origin, that is it has a large

value in early universe. In this case the flaton cannot be held in thermal equilibrium

because we know its interactions are too weak. The potential energy can be parameterize

as

V (|σ|) = m2
0(|σ| −M)2 + α2H2(|σ| − σ0)2 (3.8)

Here M denotes the true VEV, i.e. the minimum of the effective potential at small H

while σ0 is the minimum of the effective potential at large H. To simplify our analysis

let’s suppose σ0 time-independent, so the only time dependence is encoded in H. Then

we have to distinguish both the cases α ∼ 1 and α� 1.

Case α ∼ 1

For flatons such as moduli is expected α ∼ 1. Furthermore since moduli feel only

gravitational strength interaction we set M ∼ MPl. For large H the minimum is σ0

and when H drops below m0 the flaton moves towards the true minimum and start to

oscillate around it with large amplitude, since |σ0 −M | ∼M .

Case α� 1

If α � 1, things drastically changes. Indeed, as pointed out by Linde [37]the flaton

reaches the true minimum without appreciable oscillations. Put in other words, the flaton

is all times near to the small H minimum. If this is the case, cosmological production of

flaton fields is strongly suppressed.

3.2.3 The flaton decay rates and reheating temperature

After the thermal inflation has ended, the flaton moves toward its true vev and starts

to oscillate around it. We enter in a matter dominated era by flaton particles because

they behave as matter (opposed to the radiation) and so they redshifts as a−3/2. It

is commonnly believed that the interactions with other fields take away some of the

oscillations energy, so oscillations amplitude decrease faster. If oscillations amplitude

is sufficiently small and interactions are sufficiently weak, each field decay at a single
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particle decay rate Γ. The decay temperature TD can be estimated setting Γ−1 ∼ H−1:

recalling H = g
1/2
∗ T 2/MPl we find

TD =

(
ΓMPl

g
1/2
∗

) 1
2

GeV (3.9)

The assumption that each flaton decay at a single particle decay rate is thought to

be incorrect because one has also to take into account non linear-relaxation effect as

parametric resonance. As soon as oscillations begin, parametric resonance can drain off

much of the oscillations energy, converting it in marginally relativistic scalar particles

(also spin 1 particles may be produced while fermions cannot be produced in a significant

number because of the Pauli exclusion principle). If the decay product thermalize they

get converted into relativistic radiation while if nothing happened to the produced scalar

particles they are expected to decay after few Hubble times at one particle decay rate.

Nowadays it is not clear how parametric resonance can create particles which thermalize

successfully; it is however clear that the flaton components of the produced particles

cannot thermalize because the interactions are too weak to be maintained in thermal

equilibrium. Any radiation produced by parametric resonance will redshift away in few

Hubble times, so after the end of thermal inflation the energy density is dominated by

non relativistic scalar particles, including the flatons. Each particle will decay at a single

particle decay rate, so we are expected to find only the long-lived particles, that dominate

the energy density until they decay.

To simplify our analysis we assume each flaton decay at a single particle decay rate.

To estimate the decay temperature TD we need the relation between the decay rate Γ

and the VEV M of the flaton. From a näıf dimensional analysis it is expected that

Γ ∼ m3
0/M

2 where m0 ∼ 103GeV and set g
−1/4
∗ ∼ 1 1

TD ∼
1014

M
GeV2 (3.10)

Now we are going to point out some bonds on TD: in particular, since TD and M are

inversely proportional, it follows that the larger is M , the smaller gets TD.

1According to the Standard Model, g
1/4
∗ range from 1 to 2 if T & 100 MeV and amounts to 4 when

T & 100 GeV in supersymmetric extension of the Standard Model
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Electro-weak baryogenesis

Electro-weak baryogenesis requires T & 100 GeV so from (3.10) it follows that M .

1012 GeV

Thermalization of stable LSP

Thermalization of stable LSP requires T & 1 GeV so from (3.10) it follows that

M . 1014 GeV

Successful nucleosynthesis

Successful nucleosynthesis requires T & 10 MeV so from (3.10) it follows that M .

1016 GeV

Comment

The most serious problem lies in the nucleosynthesis: this because thermal inflation

can provide itself a mechanism for baryogenesis [36]. Otherwise baryogenesis can also be

implemented through Affleck-Dine mechanism [24].

If the decay product promptly thermalize, the reheating temperature TR is equal to

the decay temperature TD. From the discussion above it should be clear that a modulus

with a Planckian VEV is nothing but a disaster for standard cosmology. Indeed the

reheating temperature (in this approximation) associated to a modulus with the same

mass of the flaton amounts to TR ∼ O(10−4)MeV, that is five order of magnitude below

the bound required to allow nucleosynthesis.
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Chapter 4

Moduli stabilization

One of the mayor problem facing the past decade was to find a well-defined vacuum

solution with all moduli stabilized. This is a very important task because values of low

energy parameters, such as coupling constants, fine-structure constant are tied to moduli

VEVs. Having a model with moduli stabilized we are able to do realistic phenomenology

and compute all the relevant scales: Kaluza-Klein mass, gravitino mass and also masses

of different particles in moduli sector. This issue has been successfully attempt in the

context of type IIB string theory (for exhaustive reviews see [8,9]). In this framework

there are Kähler moduli, complex structure moduli and the dilaton. Most of the geo-

metric moduli are stabilized by fluxes and for the remainig moduli was at first proposed

the KKLT scenario, then ameliorated and extended in the Large Volume Scenario. Here

there is a simple overview.

4.1 KKLT Mechanism

String theory type IIB take place in 10 dimensions and has 32 supercharges. The

ten dimensional bosonic massless field consist of the metric (gMN), the dilaton (φ), RR

antisymmetric forms (C0, C2, C4 with the self-dual field strength) and NS-NS antisym-

metric tensor (B2). To obtain the four dimensional model we compactify on Calabi-Yau

orientifold. Fluxes for the RR 3-form F3 = dC2 and NS-NS 3-form H3 = dB2 can be
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turned on and quantisation conditions must be imposed

1

(2π)2α′

∫
Σa

F3 = na ∈ Z
1

(2π)2α′

∫
Σb

H3 = mb ∈ Z

where Σa,b represent the 3-cycles of Calabi-Yau manifold. Furthermore, fluxes should

satisfy tadpole condition.

The superpotential at three level is independent of the Kähler moduli and is given

by the Gukov-Vafa-Witten superpotential [10 ]

W =

∫
CY

G3 ∧ Ω = W (S, U)

where G3 = F3 − ıSH3, being S the dilaton-axion field and Ω the holomorphic (3, 0)

form of CY and the last equality enforce the superpotential’s dependence of the dilaton,

as it appears in G3 and of the complex structure moduli U through Ω.

Kähler potential is the sum of three terms, depending on different moduli: it is given

by

K = −2 ln [V ] + ln

[
− ı
∫
CY

Ω ∧ Ω̄

]
− ln (S + S̄)

where the first term depends on Kähler moduli via CY volume V , the second on complex

structure moduli U and the last on dilaton- axion field. CY volume is given by

V =

∫
CY

J ∧ J ∧ J =
κijl t

itjtl

6

Here J represent the Kähler class and ti are moduli measuring the size of 2-cycles. The

corresponding 4-cycles moduli τi are defined by

τi =
∂V
∂ti

=
κjl t

jtl

2

The complexified Kähler moduli are

Tj = τj + ıbj

where the real parts are 4-cycles volumes and the imaginary parts bj are axionic fields

coming from RR four-form. The standard N = 1 SUGRA scalar potential is given by

V = eK(KAB̄DAW DB̄W̄ − 3 |W |2)
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where the index A,B run over all moduli fields, DAW = ∂AW + W∂AK is the Kähler-

covariant derivative and KAB̄ = (KAB̄)−1, being KA = ∂AK. Scalar potential at three

level has the important property that the sum over Kähler moduli and −3 |W |2 exactly

vanishes: it is no-scale type. Let a, b denote the dilaton and complex structure moduli

and i, j the Kähler moduli, so one has

V = eK(Kab̄DaW Db̄W̄ +Kij̄ DiW Dj̄W̄ − 3 |W |2)

= eK(Kab̄DaW Db̄W̄ )

≡ Vno−scale

Since Vnoscale is positive definite, one can stabilize complex structure moduli and dilaton

by solving DaW = 0 = Db̄W̄ . The W satisfying this constraint is then set to W0, and

from now regard as fixed. To stabilize Kähler moduli, non perturbative correction to

superpotential have to be included. The full non-perturbative superpotential is expected

to be

W = W0 +
∑
i

Ai e
−aiTi

Here, ai’s and Ai’s are model-dependent constant. No-scale structure is broken and

this non perturbative effects allow T moduli to be stabilized by solving DTW = 0. To

understand better the situation, let’s consider only one modulus [11], denoted by τ and

the corresponding axion set to zero. Kähler potential, superpotential and scalar potential

are given by

K = −3 ln(T + T̄ )

W = W0 + Ae−aT

V = eK(KT T̄ |DTW |2 − 3|W |2)

The condition of unbroken SUSY allows to find W0, whose expression is

W0 = −Ae−aτ
(

1 +
2

3
aτ

)
and in a straightforward way the scalar potential minimum

V = −3eK|W |2 = −a
2A2e−2aτ

6τ
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This is a SUSY, AdS (Anti-de Sitter) minimum. The important feature is that no scale

is broken by non perturbative contribution Wnp to superpotential W . Since each term

in Wnp is exponentially suppressed on Kähler moduli, we generally expect a similar sup-

pression occurs in scalar potential. However, this is not consistent with the neglect of

α′ and gs correction because these go as some powers of Kähler moduli and so dominate

exponentially suppressed terms coming from Wnp. Their neglect can be justified if com-

plex structure and dilaton moduli are stabilized at a very small value of W0, so one has

to fine-tune W0 to a very small value, that is the stabilization only works for a small

parameters range.

Now, one needs to uplift this minimum to a de Sitter one (introducing positive energy

density) and the lifting term has to be choose in a way to give vanishing cosmological

constant.

If one consider more than one Kähler modulus, the expression of the scalar potential

is more complicated. In particular one has to check that the minimum is a true minimum

and not only a saddle point (minimum respect one variable).

4.2 Large Volume Scenario

KKLT Scenario presents some difficulties:

• consistency requires W0 � 1 while fluxes prefers W0 ∼ O(1);

• moduli are stabilized in two steps;

• AdS and SUSY minimum;

• SUSY broken by uplifting mechanism, so it is not well controlled.

Large Volume Scenario goes along the line of KKLT, with the difference that perturbative

α′ corrections are now included to Kähler potential and no-scale structure is broken

K = −2 ln

[
V +

ξ(S + S̄)3/2

2

]
+ ln

[
− ı
∫
CY

Ω ∧ Ω̄

]
− ln (S + S̄)
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where ξ = −χ/2(2π)3 with χ the Euler number of the Calabi-Yau three-fold. For large

volume, corrections go as inverse powers in the volume

ln

[
V +

ξ(S + S̄)3/2

2

]
∼ lnV +

ξ(S + S̄)3/2

V
− ξ2(S + S̄)2

2V2
+O

(
1

V3

)
and will dominate in the scalar potential the exponentially suppressed terms coming from

non perturbative contribution to superpotential. Using the superpotential one finds that

scalar potential is split into three terms

V = eK(Vnp1 + Vnp2 + Vα′) (4.1)

where the explicit expression are

Vnp1 = Kij̄∂iWnp∂j̄W̄np

Vnp2 = Kij̄[∂iWnpKj̄(W̄0 + W̄np) +Ki(W̄0 + W̄np)∂j̄W̄np]

Vα′ = (Kij̄KiKj̄ − 3)|W |2

Inserting these relations in (4.1) one has a full analytic expression of scalar potential.

Since we are interested only on the solutions at large volume, we can take only the

leading terms in the scalar potential. For concrete calculations one can use the P[1,1,1,6,9]

Calabi-Yau with two Kähler moduli: Tb = τb + ıbb and Ts = τs + ıbs. Their name suggest

that τb modulus is stabilized big and τs is stabilized small. The Calabi-Yau volume can

be written in terms of Kähler moduli yielding

V =
1

9
√

2
(τ

3/2
b − τ 3/2

s ) (4.2)

In terms of these we can write Kähler potential and superpotential

K = −2 ln

(
1

9
√

2
(τ

3/2
b − τ 3/2

s ) +
ξ

2g
3/2
s

)
(4.3)

W = W0 + Ase
−asτs (4.4)

where ξ is the term that take into account perturbative α′ correction and gs is the string

coupling. After extremizing the axionic field one has the supergravity scalar potential

at large volume. The latter at the leading order is given by

V =
λ
√
τse
−2asτs

3τ
3/2
b

− µas|W0|τse−asτs
τ 3
b

+
ν|W0|2

τ
9/2
b

(4.5)
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with λ = 8(asAs)
2 and µ = 4As. This potential has a non-SUSY AdS minimum at

V ∼ easτs � 1 with τs = ξ2/3/gs. This minimum has a negative cosmological constant

and there exists various method to introduce positive energy and uplift this to a de

Sitter one (for the details of this construction see [11,26]). The stabilized exponentially

large volume can generate hierarchies because to small variations of asτs correspond large

variations of V . The gravitino mass m3/2 is given by

m3/2 = eK/2|W0| =
|W0|
V

MPl

Phenomenological reasons require m3/2 ∼ O(TeV) from which V ∼ 1015 in string unit

and the string scale is related to the volume by

Ms =
MPl

V1/2

From (4.5) we can compute moduli masses. These are given by m2
b ∼ KbbVbb and

m2
s ∼ KssVss with

mτb ∼
MPl

V3/2
(4.6)

mτs ∼
MPl lnV
V

(4.7)

Also the axionic partners bb and bs of τb and τs receive masses after stabilization: bs has

the same mass of τs while bb is essentially massless.1

4.3 Canonical normalization

Once the minimum has been located (A.17) (A.18) we can expand the lagrangian

around it. Setting (
τb

τs

)
= τ = 〈τ 〉+ δτ =

(
〈τb〉+ δτb

〈τs〉+ δτs

)
(4.8)

where 〈τ 〉 = 〈τi〉 (i = b, s) represent the VEVs and δτ = (δτ)i (i = b, s) are the real

fields, one has the following lagrangian

Lfree = ∂µδτ
T ·K · ∂µδτ − V0 − δτ T ·M 2 · δτ −O(δτ )3 (4.9)

1We shall not analyse in depth the cosmological role played by axion fields.
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To write (4.9) in terms of the canonical normalized fields Φ and χ, related to τb and τs

via

δτ = vΦ
Φ√
2

+ vχ
χ√
2

(4.10)

one has to impose the normalization condition for the kinetic terms

vΦ ·K · vχ = δΦ,χ (4.11)

and the eigenvalues equations for vΦ and vχ

K−1M 2vΦ = m2
ΦvΦ (4.12)

K−1M 2vχ = m2
χvχ (4.13)

being

vΦ =

(
(vΦ)b

(vΦ)s

)
vχ =

(
(vχ)b

(vχ)s

)

As shown in appendix A.5 the lagrangian is terms of Φ and χ has the following form

L =
1

2
∂µΦ∂µΦ +

1

2
∂µχ∂

µχ− V0 −
1

2
m2

ΦΦ2 − 1

2
m2
χχ

2 (4.14)

We can also consider and interaction term between the small modulus and the electro-

magnetic field, described by the interaction energy

Vint = τsFµνF
µν

and add this to the lagrangian, which become

L = ∂µδτ
T ·K · ∂µδτ − V0 − δτ T ·M 2 · δτ −O(δτ )3︸ ︷︷ ︸

=Lfree

− τsFµνF µν︸ ︷︷ ︸
=Lint

(4.15)

that is, in terms of Φ and χ

L =
1

2
∂µΦ∂µΦ+

1

2
∂µχ∂

µχ−V0−
1

2
m2

ΦΦ2− 1

2
m2
χχ

2− 1

4
FµνF

µν− (Φ(vΦ)s + χ(vχ)s)

4
√

2〈τs〉MPl

FµνF
µν

(4.16)
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The coupling of the two moduli to photons, denoted by λ, is

λΦγγ =
(vΦ)s√
2〈τs〉

λχγγ =
(vχ)s√
2〈τs〉

To go further we need explicit expression, eigenvalues and normalized eigenvectors of

K−1M 2. This is given by

K−1M 2 =
2as〈τs〉|W0|2ν

3〈τb〉9/2

(
−9(1− 7ε) 6as〈τb〉(1− 5ε+ 16ε2)

−6〈τb〉1/2
〈τs〉1/2

(1− 5ε+ 4ε2) 4as〈τb〉3/2
〈τs〉1/2

(1− 3ε+ 6ε2)

)
(4.17)

where ε = (4as〈τs〉)−1. To obtain the eigenvalues m2
Φ and m2

χ one can observe since we

have m2
Φ � m2

χ in first approximation

m2
Φ ' Tr (K−1M 2) ' 8a2

s|W0|2〈τs〉1/2ν
3〈τb〉3

∼
(

lnV
V

)2

M2
Pl (4.18)

m2
χ '

Det (K−1M 2)

Tr (K−1M 2)
' 27|W0|2ν

4as〈τs〉〈τb〉9/2
∼ M2

Pl

V3 lnV
(4.19)

Finding the eigenvectors of K−1M 2 we can write δτb and δτs in terms of the canonical

normalized fields Φ and χ (see A.5) [4,12]

δτb =

(√
6〈τb〉1/4〈τs〉3/4

)
Φ

MPl

√
2

+

(√
4

3
〈τb〉
)

χ

MPl

√
2
∼ O(V1/6)

Φ

MPl

+O(V2/3)
χ

MPl

(4.20)

δτs =

(
2
√

6

3
〈τb〉3/4〈τs〉1/4

)
Φ

MPl

√
2

+

(√
3

as

)
χ

MPl

√
2
∼ O(V1/2)

Φ

MPl

+O(1)
χ

MPl

(4.21)

From this we deduce that τb is mostly χ while τs is mostly χ. There is however an

important mixing which is subleading and coefficients depending on different powers of

V .

The dimensionful χ lagrangian is

Lχ =
1

2
∂µχ∂

µχ− 1

2
m2
χχ

2 − 1

4
FµνF

µν − 1

4

( √
6

2as〈τs〉

)
χ

MPl

FµνF
µν
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which show that the coupling of χ to photons is not only suppressed by MPl, but there

is a further suppression factor proportional to

as〈τs〉 ∼ lnV ∼ ln(MPl/m3/2)

The dimensionful coupling of χ to photons is

λχγγ =

(
3

2

)1/2
1

MPl lnV

different from the näıf expectation λχγγ ∼ 1/MPl while the dimensionful coupling of Φ

is

λΦγγ ∼
(

2√
3

〈τb〉3/4

〈τs〉3/4MPl

)
∼ V

1/2

MPl

∼ 1

Ms

This shows that the interactions of Φ with photons are suppressed by the string scale

and therefore the decay rates are much faster than is usually assumed for moduli fields.

4.3.1 Decay rates and lifetimes

the discussion of the previous section allows to estimate decay rates and lifetimes of

the two fields. From (4.18) and (4.19)

mΦ =

(
lnV
V

Mpl

)
GeV ∼ 105 GeV (4.22)

mχ =

(
MPl

(V3 lnV)1/2

)
GeV ∼ 10−3 GeV (4.23)

Since we know the coupling constant λΦγγ and λχγγ we can estimate the decay rates

ΓΦ−→γγ and Γχ−→γγ of Φ and χ into photons

ΓΦ−→γγ =

(
λΦγγ

64π

m3
Φ

M2
s

)
GeV ∼ 10−8 GeV (4.24)

Γχ−→γγ =

(
λχγγ
64π

m3
χ

M2
Pl

)
GeV ∼ 10−50 GeV (4.25)

The lifetimes are related to the decay mode by Γ−1 = τ . From the relation M−1
Pl ∼

10−18 GeV−1 ∼ 10−43 sec we can write

τΦ ∼ 10−17 sec (4.26)

τχ ∼ 1025 sec (4.27)
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As expected, the heavy modulus decay suddenly in the history of the universe while the

light modulus has a lifetimes longer than the age of the universe2 and their lifetimes

differs of a factor 1042 sec.

2Remember that the age of the universe is estimated about 1017 sec.



Chapter 5

Cosmology with Thermal Inflation

We are going to see how the thermal inflation can provide a solution for the CMP.

Before going further it is instructive to summarize the main results of the previous

chapters.

We have learnt that compactification leads to an enormous number of massless scalar

fields (called moduli) in the spectrum of the low energy EFT. These fields are gauge

singlet and interact only via gravitational strength interaction, so they are expected to

have Planck-suppressed couplings to Standard Model’s particles.

Classically moduli are massless, so they could mediate new, non-physical forces. This

happens because their potential is flat to all order in the SUSY limit. However SUSY,

if it is realized in Nature, can’t be an exact symmetry, otherwise s-particles would have

been observed long time ago. So SUSY must be broken at some low energy 1 and taking

into account SUSY breaking and quantum corrections, moduli acquire mass. At a first

sight, their mass is expected to be of the same order of the gravitino mass. Furthermore,

since they feel only gravitational strength interactions, they have a very long lifetime:

indeed in the most general case one expects that τΦ ∼ N−1M
2
Pl

m3
Φ

(here N denotes the

decay channel). Since in gravity mediated models the gravitino mass is estimated as

m3/2 ∼ O(1) TeV, modulus lifetime amounts to τΦ ∼ 1017 secN−1

(
100 MeV
mΦ

)3

, that is

much more than the age of the universe. Thanks to their relatively weak interactions,

they came to dominate the energy density of the universe, until they decay. When the

1Phenomenological reasons and stabilization of Higgs’ mass require a SUSY theory at the TeV scale
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decay occurs, the reheating temperature is very low and nucleosynthesis cannot take

place. This is the CMP in the context of (super)string theories.

Then we describe the thermal inflation and we say that this mechanism could provide

a solution to the CMP: this essentially lies in the fact that the decay of the flaton release

a huge amount of entropy. Let’s see how this can happened.

5.1 Cosmology with Thermal Inflation and CMP

Now we explain how the cosmological history can be recast if thermal inflation really

takes place.

5.1.1 Before Thermal Inflation

It is commonly believed that the history of the universe begin with a period of

inflation. This period is typically invoked in order to solve the problems of flatness and

horizons. After the inflation, the inflaton decay and (supposing that the decay product

promptly thermalize) the universe gets reheated.

Depending on the specific model of inflation, moduli can oscillate either after or before

the end of the primordial inflation. Indeed there are some models of inflation with a low

reheating temperature and moduli oscillations begin before the end of the inflation. If

this is the case, one can also consider a dilution of moduli abundance due to inflation.

Note however that the moduli problem could not be solved by choosing the model of

the primordial inflation, even if one assumes an extremely low reheating temperature

O(10) MeV.

If ϕ is the inflaton and Γϕ its decay rate, moduli oscillations begin after (before) the

end of the inflation if Γϕ > mΦ (Γϕ < mΦ).

As said in 2.1, when H ∼ mΦ moduli begin to oscillate with amplitude Φin ∼ MPl.

Moduli number density amounts to nΦ = 1
2
mΦΦ2

in and the energy stored in the oscillations

is ρΦ = mΦnΦ. Moduli abundance is encoded in YΦ defined in 2.1. Suppose first that

the oscillations begin after the full reheating of the inflation: if this is the case, then the
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cosmic temperature is

Tosc =

(
90

π2g∗

)1/4√
mΦMPl (5.1)

Setting g∗ ' 200 we have Tosc ∼ O(108) GeV. The ratio between moduli number density

to the radiation entropy is

YΦ =
nΦ

s
=

1
2
mΦΦ2

in

2π2

45
g∗T 3

osc

∼ mΦΦ2
in

(mΦMPl)3/2
=

(
MPl

mΦ

)1/2(
Φin

MPl

)2

(5.2)

Since for a modulus Φin ∼ MPl, we have YΦ ∼ O(MPl

mΦ
)1/2. In the opposite case moduli

oscillations begin before the end of the inflation. The reheating temperature at the end

of the inflation TRϕ is

TRϕ =

(
90

π2g∗

)1/4√
ΓϕMPl (5.3)

and moduli abundance is

YΦ =
3TRϕ

8

(
Φin

MPl

)
(5.4)

5.1.2 Moduli dilution from Thermal Inflation

When the cosmic temperature is in the range 108 GeV . T . 103 GeV we suppose

the universe experience the thermal inflation. The entropy released in the decay of the

flaton amounts to

∆ =
safter

sbefore

=
4V0

3TD
2π2

45
g∗T 3

end

(5.5)

where TD denotes the decay temperature 2 associated to the flaton σ and Tend is the

cosmic temperature at the end of the thermal inflation . The decay temperature is

related to the decay rate Γσ of the flaton: indeed Γσ ∼ m3
σ/M

2, where as usual M = 〈σ〉.
To estimate the order of magnitude of ∆, set mσ ∼ O(103) GeV, M ∼ O(1012) GeV and

recall V
1/4

0 ∼ 107 to 108 GeV and Tend ∼ mσ: one has ∆ ∼ 1016. Moduli abundance get

a huge dilution: at the end of the thermal inflation the moduli abundance drastically

changes

YΦ −→ Y ′Φ =
YΦ

∆
=

1
2
mΦΦ2

in

2π2

45
g∗T 3

osc

× 1

∆
(5.6)

2We suppose that decay product promptly thermalize, so that the decay temperature is equal to the

reheating temperature
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However, as pointed out in 2.1, during the thermal inflation the moduli are a bit displaced

from the minimum (in 2.1 this displacement was called misalignment). This displacement

is quantified by δΦ ∼ (V0/m
2
ΦM

2
Pl)Φin ∼ V0/m

2
ΦMPl and this causes a further oscillation

for the modulus. Usually moduli produced during thermal inflation are called Thermal

Inflation Moduli, in order to distinguish them for the Big Bang Moduli. Clearly there

is not a huge reproduction but this may still be dangerous. The abundance of thermal

inflation moduli is

YΦTI =
1
2
mΦδΦ

2

2π2

45
g∗T 3

end

× 1

∆
∼ V 2

0

m3
σm

3
ΦM

2
Pl

× 10−16 (5.7)

while the total moduli number density is

YΦ TOT =
YΦ + YΦTI

∆
(5.8)

If moduli oscillations begin before the full reheating of the inflation, then Tosc ≥ TRϕ

YΦ =
3TRϕ

8

(
Φin

MPl

)
× 1

∆
∼ 10−2Γ1/2

ϕ M
1/2
Pl

(
Φin

MPl

)2

× 1

∆
(5.9)

However moduli can be produced by the decay of the flaton, so in order to have a further

dilution of moduli abundance, a second stage of thermal inflation can be implemented.

5.1.3 Double Thermal Inflation

We have just seen that even after the thermal inflation, the moduli oscillations can

still be dangerous and this is due to the fact that during the thermal inflation the moduli

are expected to be displaced from the low energy minimum: this distance is quantified

by δΦ. We can consider a second stage of thermal inflation to dilute moduli abundance

left over from the first stage. In the simplest model one can consider two non interacting

flatons σi with i = 1, 2 and assume their potential is of the form (3.2),

V (|σ1|, |σ2|) = V1 + V2 −m2
σ1
|σ1|2 −m2

σ2
|σ2|2 + . . . (5.10)

where the ellipses denote the higher order terms that stabilize each flaton near the VEV

〈σi〉 = Mi, Vi ∼ m2
σi
M2

i are the value of the potentials energies at the origin. The

temperature for which the phase transitions occurs are set to TC,i. The mechanism
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works as follows: when the background temperature drops below the value TC,1 the first

flaton is destabilized from the origin and rolls towards its true VEV M1. Meanwhile

the other flaton is still held at the origin and when the background temperature drops

below the critical value TC,2 also the second flaton is destabilized from the origin and

rolls towards its true VEV M2. Since we have implicitly supposed TC,1 > TC,2, it follows

that mσ1 > mσ2 . Finally suppose that Tend , i ∼ mσi denotes the temperature for which

the i-th thermal inflation shuts off. From (5.5) the entropy production coming from both

the stage of thermal inflation can be estimated

∆1 ∼
T

3/2
D,1

T 3
end,1

V1

V
5/8

2

∆2 ∼
V2

T 3
end,2TD,2

In order to make the mechanism work we suppose V1 � V2.

5.1.4 Moduli dilution from double Thermal Inflation

From the result of the previous section we can estimate moduli abundance during the

overall history of the universe. Big Bang Moduli experienced a double thermal inflation,

so they get a huge dilution

YΦ −→ Y ′Φ =
YΦ

∆1∆2

∼ Φ2
in

m
1/2
Φ M

3/2
Pl

× 1

∆1

× 1

∆2

∼
Φ2

inT
3
end , 1T

3
end , 2

m1/2ΦV
3/4

1 V
3/4

2 M
3/2
Pl

(5.11)

This clearly depends upon the VEVs Mi, the vacuum energies Vi, the temperature at

the end of each inflationary stage Tend,i and the modulus mass mΦ. For typical values it

has been found that YΦ ∼ O(10−18) and thus Big Bang Moduli abundance is diluted to

a safer level. Recall that when nucleosynthesis begin there must be YΦ ∼ 10−12 to 10−15.

Moduli produced at the first stage of thermal inflation. Now we focus our attention on

moduli produced by the first stage of thermal inflation: their abundance is estimated as

YΦ ∼
Φ2

inV
2

2 /m
3
ΦM

4
Pl

V
3/4

1 ∆2

(5.12)
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that amounts to O(10−15). Finally the abundance of moduli produced at the end of the

second stage of thermal inflation is

YΦ ∼
Φ2

inV
2

2 /m
3
ΦM

4
Pl

V
3/4

2

∼ Φ2
inV

5/4
2

m3
ΦM

4
Pl

∼ V
5/4

2

m3
ΦM

2
Pl

(5.13)

This shows that the reproduction of moduli after a double stage of thermal inflation is

strongly suppressed, because the YΦ goes as the inverse of the second power of MPl.

5.2 CMP in LVS models

As we have already pointed out, in LVS we are faced with two kind of Kähler moduli,

whose canonical normalization leads to the fields Φ and χ. The first is the modulus

controlling the volume of the small 4-cycle τs: it has mass mΦ ∼ O(105)GeV and in

early universe it starts to oscillate with stringy amplitude, so it has a very short lifetime.

Indeed it is found that τΦ ∼ 10−17sec: its decay occurs before the BBN, hence it is harm-

less and we don’t have to worry about it. Instead we can consider entropy production

from its decay as a dilution source for dangerous moduli [28].

The canonically normalized modulus associated with the 4-cycles τb controlling the

overall volume has mass mχ ∼ O(1)MeV and in early universe stars to oscillate with

Planckian amplitude so this is subject to CMP. The modulus abundance follows directly

from the previous discussion: indeed it amounts to Yχ ∼ O(1011). Such a huge number

of χ moduli is a cosmological disaster! If we try to dilute its abundance with a single

thermal inflation we find that the χ abundance after thermal inflation is reduced to

O(10−5) but there is a huge reproduction due to its low mass: indeed thermal inflation

moduli are reproduced with abundance

YχTI ∼ O(10−5)

(
GeV

mχ

)3

(5.14)

where (5.7) was used with mσ ∼ 103 GeV. So if by one side thermal inflation gives a huge

dilution of the χ moduli coming from Big Bang, by the other it creates a reproduction

that yields YχTI ∼ O(104) for mχ ∼ 1 MeV. So a further stage of thermal inflation is

needed to relax this problem. But instead consider the χ moduli reproduction after the
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second stage of thermal inflation: even if this quantity goes as M−2
Pl , there is still a non

negligible reproduction, indeed for typical values one has

YΦTI2 ∼ O(10−2) (5.15)

Also this is due to the fact that this modulus has a mass well below the GeV. This is

the result expected for a typical modulus at the end of the first thermal inflation: so this

modulus seems to need a further sources of dilution. Clearly we have take into account

only entropy coming from the thermal inflation and computations have been taken by

order of magnitude, however it looks as thermal inflation in LVS fails in diluting the

light modulus abundance.

There are however three possible way-outs:

1. If one does not insist on low-energy supersymmetry, then the mass of χ can be

increased so to make this modulus decay before BBN. Of course, one would then

have to rely on tuning in order to solve the gauge hierarchy problem.

2. In the presence of a primordial mechanism that suppresses the initial amplitude

of the modulus oscillations, χ would initially store much less energy, resulting in a

very suppressed original production of Big Bang moduli. See [37] for an example

of such a mechanism which would relax the CMP that could be then completely

solved by a late period of thermal inflation.

3. In this analysis, we considered models where the soft terms acquire masses of order

the gravitino mass: Msoft ∼ m3/2. However, in models where the visible sector

is sequestered from supersymmetry breaking, the soft terms can be hierarchically

lighter than the gravitino: Msoft � m3/2. In this case, the modulus mass could be

increased above 100 TeV evading the CMP but still keeping TeV-scale supersym-

metry for the solution of the hierarchy problem.
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Appendix A

Computational details

A.1 Moduli equation of motion

Let’s consider the equation (2.6) treating H(t) as time independent constant with

the initial conditions provided by (2.7). First of all we have to locate the minimum of Φ

solving

V ′eff(Φ, T ) =
Veff(Φ, T )

∂Φ
= 0

This implies

m2
0Φ∗ + α2H2(Φ∗ − Φ1) = 0

whose solution for Φ∗ is

Φ∗ =
α2H2

m2
0 + α2H2

Φ1

Since V ′′eff(Φ∗, T ) > 0, Φ∗ clearly defines a minimum for the effective potential, so we set

Φ∗ =
α2H2

m2
0 + α2H2

Φ1 ≡ Φmin (A.1)

Then let’s consider the secular equation associated to (2.6)

λ2 + 3Hλ+ (m2
0 + α2H2) = α2H2Φ1 (A.2)

The most general solution for this second order differential equation is the sum of the

homogeneous solution and a particular one. The homogeneous equation is

λ2 + 3Hλ+ (m2
0 + α2H2) = 0 (A.3)
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A.1 Moduli equation of motion A. Computational details

The discriminant is

∆ = 9H2 − 4(m2
0 + α2H2) (A.4)

and we have to consider the case ∆ > 0 and ∆ < 0 separately.

Case ∆ > 0

Here we consider the case ∆ > 0. The relation (A.4) can be recast to(
3H

2

)2

> m2
0 + α2H2 (A.5)

and the solution of (A.3) can be written as

λ =
−3H ±

√
9H2 − 4(m2

0 + α2H2)

2

=

−3H ±

√
9H2

[
1− 4(m2

0+α2H2)

9H2

]
2

=
−3H ± 3H

√
1− 4(m2

0+α2H2)

9H2

2

= −3H

2

[
1∓

√
1− 4(m2

0 + α2H2)

9H2

]
= −3H

2

[
1∓

√
1− 4

9

(
α2 +

m2
0

H2

)]

Setting β =

√
1− 4

9

(
α2 +

m2
0

H2

)
one has

λ = −3H

2
[1∓ β] (A.6)

From the theory of differential equation we can write the solution as

Φ(t) = c1e
λ1t + c2e

λ2t (A.7)

To avoid a cumbersome notation we impose (2.7) directly on (A.7). This leads to

Φi = c1e
λ1ti + c2e

λ2ti (A.8)

0 = c1λ1e
λ1ti + c2λ2e

λ2ti (A.9)
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where Φi is fixed. From the second one obtains

c1e
λ1ti = −c2

λ2

λ1

eλ2ti (A.10)

so that

Φi =

(
1− λ2

λ1

)
c2e

λ2ti (A.11)

Since

λ2

λ1

=
1 + β

1− β

1− λ2

λ1

= − 2β

1− β

one has

c2e
λ2ti = −1 + β

2β
Φi

c1e
λ1ti = −1− β

1 + β

(
− 1 + β

2β

)
Φi =

1− β
2β

Φi

and so the value of the two integrations constants

c1 =
1− β

2β
Φie

−λ1ti

c2 = −1 + β

2β
Φie

−λ2ti

The solution of the homogeneous equation is then

Φ(t) =
1− β

2β
Φie

− 3H(1−β)
2

(t−ti) − 1 + β

2β
Φie

− 3H(1+β)
2

(t−ti)

and recalling the expression of Φmin we can write the most general solution as

Φ(t)− Φmin = (Φi − Φmin)

[
1 + β

2β
e
−3(1−β)

2
H(t−ti) − 1− β

2β
e
−3(1+β)

2
H(t−ti)

]
(A.12)

Case ∆ < 0

Now we move to the case ∆ < 0, that is 9H2 − 4(m2
0 + α2H2) < 0 and this means

that 4(m2
0 + α2H2) > 9H2. A little algebra yields

4m2
0

(
1 +

α2H2

4m2
0

− 9H2

4m2
0

)
> 0



A.2 Kähler metric components A. Computational details

that is

4m2
0

[
1−

(
9

4
− α2

)
H2

m2
0

]
> 0

In this case, setting β′ =

√
1−

(
9
4
− α2

)
H2

m2
0

we can write the solution as

Φ(t)− Φmin = Φi − Φmin e
− 3

2
H(t−ti)

[
cos[β′m0(t− ti)−

3H

2β′m0

sin[β′m0(t− ti)]
]

(A.13)

A.2 Kähler metric components

Starting from the expression (4.3) of Kähler potential let us calculate the matrix

Kij̄ =

(
Kbb̄ Kbs̄
Ksb̄ Kss̄

)

where

Kij̄ ≡
∂2K
∂Ti∂T̄j̄

i, j running over Kähler moduli. Let’s start with the first element: one has

Kb =
∂K
∂Tb

=
∂K
∂τb

∂τb
∂Tb

=
1

2

∂K
∂τb

=
1

2
(−2)

3/2 τ
1/2
b

τ
3/2
b − τ 3/2

s + ξ′

= −3

2

τ
1/2
b

τ
3/2
b − τ 3/2

s + ξ′

Deriving now with respect to T̄b̄

Kbb̄ =
∂Kb
∂T̄b̄

=
∂Kb
∂τb

∂τb
∂T̄b̄

=
1

2

∂Kb
∂τb

= −
(

1

2

)(
3

2

)[
(1/2)τ

−1/2
b (τ

3/2
b − τ 3/2

s + ξ′)− τ 1/2
b (3/2)τ

1/2
b

(τ
3/2
b − τ 3/2

s + ξ′)2

]
∼ −

(
3

4

)
(1/2)τb − (3/2)τb

τ 3
b

=
3

4τ 2
b
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Now let’s calculate the off-diagonal elements. Since the Kähler metric is symmetric, one

needs to calculate only element.

Ksb̄ =
∂Kb̄
∂Ts

=
∂Kb̄
∂τs

∂τs
∂Ts

=
1

2

∂Kb̄
∂τs

=

(
1

2

)(
− 3τ

1/2
b

2

)
(−1)(τ

3/2
b − τ 3/2

s + ξ′)−2

(
− 3

2
τ 1/2
s

)
= −

(
9

8

)
τ

1/2
b τ

1/2
s

(τ
3/2
b − τ 3/2

s + ξ′)2

∼ −9 τ
1/2
s

8 τ
5/2
b

It is easy to see that

Ks =
3

2

τ
1/2
s

τ
3/2
b − τ 3/2

s + ξ′

and

Kss̄ =
∂Ks
∂T̄s̄

=
∂Ks
∂τs

∂τs
∂T̄s̄

=
1

2

∂Ks
∂τs

=

(
3

4

)
(1/2)τ

−1/2
s (τ

3/2
b − τ 3/2

s + ξ′)− τ 1/2
s (−3/2)τ

1/2
s

(τ
3/2
b − τ 3/2

s + ξ′)2

∼ 3

8

τ
3/2
b τ

−1/2
s

(τ
3/2
b − τ 3/2

s + ξ′)2

∼ 3

8τ
3/2
b τ

1/2
s

Kähler metrics components are

Kij̄ =

 3
4τ2
b

−9 τ
1/2
s

8 τ
5/2
b

−9 τ
1/2
s

8 τ
5/2
b

3

8τ
3/2
b τ

1/2
s

 (A.14)

Now, since we are interested in Kij̄ = (Kij̄)−1, we have to invert (A.14). Kähler metric

is non singular, so the inverse of (A.14) exists. It can be calculated from(
A B

C D

)−1

=

(
(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
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One has

D − CA−1B =
3

8τ
3/2
b τ

1/2
s

−
(
− 9 τ

1/2
s

8 τ
5/2
b

)(
3

4τ 2
b

)−1(
− 9 τ

1/2
s

8 τ
5/2
b

)
=

3

8τ
3/2
b τ

1/2
s

− 27τs
8τ 3
b

=
3

8τ
3/2
b τ

1/2
s

+O
(

1

τ 3
b

)
(D − CA−1B)−1 ∼ 8τ

3/2
b τ

1/2
s

3

The second and the third elements are given by

−A−1B(D − CA−1B)−1 ∼ −
(

3

4τ 2
b

)−1(
− 9 τ

1/2
s

8 τ
5/2
b

)(
8τ

3/2
b τ

1/2
s

3

)
= 4τsτb

−(D − CA−1B)−1CA−1 ∼ −
(

8τ
3/2
b τ

1/2
s

3

)(
− 9 τ

1/2
s

8 τ
5/2
b

)(
3

4τ 2
b

)−1

= 4τsτb

Then we have to calculate the first element of (A.14). One has

A−BD−1C =
3

4τ 2
b

−
(
− 9 τ

1/2
s

8 τ
5/2
b

)(
8τ

3/2
b τ

1/2
s

3

)(
− 9 τ

1/2
s

8 τ
5/2
b

)
=

3

4τ 2
b

− 27τ
3/2
s

8τ
7/2
b

=
3

4τ 2
b

+O
(

1

τ
7/2
b

)
(A−BD−1C)−1 ∼ 4τ 2

b

3

At the leading order in τb we find

Kij̄
(

4τ2
b

3
4τbτs

4τbτs
8τ

3/2
b τ

1/2
s

3

)

A.3 Minimum of the scalar potential

The explicit expression of the scalar potential is

V =
λa2

sτ
1/2
s e−2asτs

τ
3/2
b

− µ|W0|asτse−asτs
τ 3
b

+
ν|W0|2

τ
9/2
b

(A.15)
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and it has to be minimized with respect to τb, τs, so we look at the solutions of

∂V

∂τb
= 0 =

∂V

∂τs

Let’s start with the first of these relations

0 =
∂V

∂τb
= −3λa2

sτ
1/2
s e−2asτs

2τ
5/2
b

+
3µ|W0|asτse−asτs

τ 4
b

− 9ν|W0|2

2τ
11/2
b

= −
(

3λa2
sτ

1/2
s e−2asτs

2τ
11/2
b

)(
τ 3
b −

2µ|W0|τ 1/2
s

λase−asτs
τ

3/2
b +

3ν|W0|2

λa2
sτ

1/2
s e−2asτs

)
This can be recast in a second order equation: to this purpose, set x = τ

3/2
b , then this

relation is equivalent to

x2 − 2µ|W0|τ 1/2
s

λase−asτs
x+

3ν|W0|2

λa2
sτ

1/2
s e−2asτs

= 0

whose solutions are

x =
µ|W0|τ 1/2

s

λase−asτs
±

√√√√(µ|W0|τ 1/2
s

λase−asτs

)2

− 3ν|W0|2

λa2
sτ

1/2
s e−2asτs

=
µ|W0|τ 1/2

s

λase−asτs
±

√(
µ|W0|τ 1/2

s

λase−asτs

)2(
1− 3νλ

µ2τ
3/2
s

)
=
µ|W0|τ 1/2

s

λase−asτs

(
1±

√
1− 3νλ

µ2τ
3/2
s

)
Now let’s minimize with respect the other variable τs

0 =
∂V

∂τs
=
λa2

s

τ
3/2
b

e−2asτs [(1/2)τ−1/2
s − 2asτ

1/2
s ]− µ|W0|as

τ 3
b

e−asτs(1− asτs)

=
λa2

s

τ
3/2
b

e−2asτs

[
1

2τ
1/2
s

(1− 4asτs)−
µ|W0|

λasτ
3/2
b e−asτs

(1− asτs)
]

This requirement is equivalent to

1− 4asτs

2τ
1/2
s

=
µ|W0|

λasτ
3/2
b e−asτs

(1− asτs)

e−asτs =
2µ|W0|τ 1/2

s

λasτ
3/2
b

1− asτs
1− 4asτs

(A.16)
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We can simplify the last factor observing that τs � 1. For computations, set y = asτs

and perform a Taylor expansion in the limit y � 1. One has 1

1− y
1− 4y

=
1

4
− 3

16y2
− 3

64y2
+O

(
1

y3

)
Inserting this result in (A.16)

e−asτs =
µ|W0|τ 1/2

s

2λasτ
3/2
b

[
1− 3

4asτs
− 3

16a2
sτ

2
s

+O
(

1

a3
sτ

3
s

)]
(A.17)

Now, the previous result

τ
3/2
b =

µ|W0|τ 1/2
s

λase−asτs

(
1±

√
1− 3νλ

µ2τ
3/2
s

)
allows us to obtain an implicit equation for τs: combining these relations one finds

τ
3/2
b =

µ|W0|τ 1/2
s

λas

(
1±

√
1− 3νλ

µ2τ
3/2
s

)
2λasτ

3/2
b

µ|W0|τ 1/2
s

[
1− 3

4asτs
− 3

16a2
sτ

2
s

+O
(

1

a3
sτ

3
s

)]−1

1 = 2

[
1− 3

4asτs
− 3

16a2
sτ

2
s

+O
(

1

a3
sτ

3
s

)]−1(
1±

√
1− 3νλ

µ2τ
3/2
s

)
Multiplying both sides of this equation for the square-bracket term

1

2

[
1− 3

4asτs
− 3

16a2
sτ

2
s

+O
(

1

a3
sτ

3
s

)]
= 1±

√
1− 3νλ

µ2τ
3/2
s

1

2

[
1− 3

4asτs
− 3

16a2
sτ

2
s

+O
(

1

a3
sτ

3
s

)]
− 1 = ±

√
1− 3νλ

µ2τ
3/2
s

−1

2
− 3

4asτs
− 3

16a2
sτ

2
s

+O
(

1

a3
sτ

3
s

)
= ±

√
1− 3νλ

µ2τ
3/2
s

Squaring both sides

1

4

[
1 +

3

2asτs
+

9

(4asτs)2
+

6

(4asτs)2
+O

(
1

a3
sτ

3
s

)]
= 1− 3νλ

µ2τ
3/2
s

1For this result Wolfram Alpha has been used
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A little algebra yields

µ2

4λ
τ 3/2
s = ν

[
1− 1

2asτs
− 5

(4asτs)2
+O

(
1

a3
sτ

3
s

)]−1

Since y = asτs � 1 we can expanding the term in square bracket

[
1− 1

2y
− 5

16y2

]−1

= 1 +
1

2y
+

9

16y2
+O

(
1

y3

)

and finally we obtain an implicit relation defining the minimum for τs, that is

µ2

4λ
τ 3/2
s = ν

(
1 +

1

2asτs
+

9

(4asτs)2
+ . . .

)
(A.18)

A.4 Mass matrix elements

This section is devoted to the calculation of mass matrix elements. This is given by

M2
ij =

1

2

(
∂2V
∂τ2
b

∂2V
∂τb∂τs

∂2V
∂τs∂τb

∂2V
∂τ2
s

)
(A.19)

We need the second derivative of the scalar potential evaluated at the minimum. Remem-

ber this is characterized by (A.17), (A.18). The first derivative of the scalar potential

with respect to τb and τs has been calculated in the previous section; using the previous
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results one has

∂2V

∂2τb
=

∂

∂τb

[
− 3λa2

sτ
1/2
s e−2asτs

2τ
5/2
b

+
3µ|W0|asτse−asτs

τ 4
b

− 9ν|W0|2

2τ
11/2
b

]
=

15λa2
sτ

1/2
s e−2asτs

4τ
7/2
b

− 12µ|W0|asτse−asτs
τ 5
b

+
99ν|W0|2

4τ
13/2
b

=
15λa2

sτ
1/2
s

4τ
7/2
b

[
µ|W0|τ 1/2

s

2λasτ
3/2
b

(
1− 3

4asτs
− 3

16a2
sτ

2
s

)]2

− 12µ|W0|asτs
τ 5
b

[
µ|W0|τ 1/2

s

2λasτ
3/2
b

(
1− 3

4asτs
− 3

16a2
sτ

2
s

)]
+

99ν|W0|2

4τ
13/2
b

=
15µ2|W0|2τ 3/2

s

16λτ
13/2
b

(
1− 3

2asτs
+

3

(4asτs)2

)
− 12µ2|W0|2τ 3/2

s

2λτ
13/2
b

(
1− 3

2asτs
− 3

(4asτs)2

)
+

99ν|W0|2

4τ
13/2
b

=
15|W0|2ν

4τ
13/2
b

(
1 +

1

2asτs
+

9

(4asτs)2

)(
1− 3

2asτs
+

3

(4asτs)2

)
− 24|W0|2ν

τ
13/2
b

(
1 +

1

2asτs
+

9

(4asτs)2

)(
1− 3

2asτs
− 3

(4asτs)2

)
+

99ν|W0|2

4τ
13/2
b

=
15|W0|2ν

4τ
13/2
b

(
1− 1

2asτs

)
− 24|W0|2ν

τ
13/2
b

(
1− 1

4asτs

)
+

99ν|W0|2

4τ
13/2
b

The first element of (A.19) is given by

∂2V

∂τ 2
b

=
9|W0|2ν
2τ

13/2
b

(
1 +

1

2asτs

)
(A.20)

in agreement with [4]. Others elements are easy calculated: they are given by

∂2V

∂τ 2
s

=
2a2

s|W0|2ν
τ

9/2
b

(
1− 3

4asτs
+

6

(4asτs)2

)
(A.21)

∂2V

∂τbτs
= −3as|W0|2ν

τ
11/2
b

(
1− 5

4asτs
+

4

(4asτs)2

)
(A.22)
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so together with (A.20) and recalling (A.19) one has

M2
ij =


9|W0|2ν
4τ

13/2
b

(
1 + 1

2asτs

)
−3as|W0|2ν

2τ
11/2
b

(
1− 5

4asτs
+ 4

(4asτs)2

)
−3as|W0|2ν

2τ
11/2
b

(
1− 5

4asτs
+ 4

(4asτs)2

)
a2
s|W0|2ν
τ

9/2
b

(
1− 3

4asτs
+ 6

(4asτs)2

)
 (A.23)

A.5 Lagrangian in terms of canonically normalized

fields

In this section we show how to write (4.16). Let’s begin with the kinetic terms

∂µδτ
T ·K · ∂µδτ = ∂µ

[
Φ√
2

(vΦ)T +
χ√
2

(vχ)T
]
·K · ∂µ

[
Φ√
2
vΦ +

χ√
2
vχ

]
=

1

2
∂µΦ∂µΦ +

1

2
∂µχ∂

µχ

where the normalization condition (4.11) was used. Now let us see the potential energy,

in particular the mass term has

δτ T ·M 2 · δτ = δτ T ·K ·K−1M 2 · δτ

=

[
Φ√
2

(vΦ)T +
χ√
2

(vχ)T
]
·K ·K−1M 2

[
Φ√
2
vΦ +

χ√
2
vχ

]
=

[
Φ√
2

(vΦ)T +
χ√
2

(vχ)T
]
·K ·

[
m2

Φ

Φ√
2
vΦ +m2

χ

χ√
2
vχ

]
=

1

2
m2

ΦΦ2 +
1

2
m2
χχ

2

where eigenvalues equations (4.12) were used. Then we have to recover the Maxwell

lagrangian and the interaction term; for this purpose set MPl = 1

κ τs FµνF
µν = κ ( 〈τs〉+ δτs)FµνF

µν

= κ 〈τs〉FµνF µν + κ δτs FµνF
µν

Setting

κ 〈τs〉FµνF µν =
1

4
GµνG

µν

and evidently

FµνF
µν =

1

4κ 〈τs〉
GµνG

µν
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one obtains

κ 〈τs〉FµνF µν + κ δτs FµνF
µν =

1

4
GµνG

µν + κ δτs
1

4κ 〈τs〉
GµνG

µν

=
1

4
GµνG

µν +
δτs
〈τs〉

GµνG
µν

Renaming G with F and recalling the expression of δτs in terms of Φ and χ

κ τs FµνF
µν =

1

4
FµνF

µν − (Φ(vΦ)s + χ(vχ)s)

4
√

2〈τs〉

The matrix K−1M 2 of (4.17) is obtained by a simply multiplication of matrix. This is

a tedious calculation, but there are no difficulties in having the expression (4.17). Its

eigenvalues are m2
Φ and m2

χ and we know that m2
Φ � m2

χ, then at the leading order in ε

Tr (K−1M 2) = (m2
Φ +m2

χ) ' m2
Φ

Det (K−1M 2) = m2
Φm

2
χ

Det (K−1M 2)

Tr (K−1M 2)
' m2

χ

These quantities are easy calculated

Tr (K−1M 2) =
2as〈τs〉|W0|2ν

3〈τb〉9/2

[
− 9 (1− 7ε) +

4as〈τb〉3/2

〈τs〉1/2
(1− 3ε+ 6ε2)

]
'
(

2as〈τs〉|W0|2ν
3〈τb〉9/2

)(
4as〈τb〉3/2

〈τs〉1/2

)
=

8a2
s〈τs〉1/2|W0|2ν

3〈τb〉3

Det (K−1M 2) =
4a2

s〈τs〉2|W0|4ν2

9〈τb〉9

[
− 9 (1− 7ε) · 4as〈τb〉3/2

〈τs〉1/2
(1− 3ε+ 6ε2)−

+ 6as〈τb〉(1− 5ε+ 16ε2) · (1− 5ε+ 16ε2)
−6〈τb〉1/2

〈τs〉1/2

]
=

18as〈τs〉2|W0|4ν2

〈τb〉15/2〈τs〉1/2

Det (K−1M 2)

Tr (K−1M 2)
=

(
18as〈τs〉2|W0|4ν2

〈τb〉15/2〈τs〉1/2

)(
3〈τb〉3

8a2
s〈τs〉1/2|W0|2ν

)
=

27|W0|2ν
4as〈τs〉〈τb〉9/2



A. Computational details 75

Next we want the eigenvectors relatives to these eigenvalues. In other words we have to

solve

K−1M 2

(
(vΦ)b

(vΦ)s

)
= m2

Φ

(
(vΦ)b

(vΦ)s

)
(A.24)

K−1M 2

(
(vχ)b

(vχ)s

)
= m2

χ

(
(vχ)b

(vχ)s

)
(A.25)

Let’s start with (A.24). Recall that τb � τs � 1, ε = (4as〈τs〉)−1 and we are interested

at the leading order in τb.

2as〈τs〉|W0|2ν
3〈τb〉9/2

(
−9(1− 7ε) 6as〈τb〉(1− 5ε+ 16ε2)

−6〈τb〉1/2
〈τs〉1/2

(1− 5ε+ 4ε2) 4as〈τb〉3/2
〈τs〉1/2

(1− 3ε+ 6ε2)

)(
(vΦ)b

(vΦ)s

)
= m2

Φ

(
(vΦ)b

(vΦ)s

)

This is equivalent to the following relations

8a2
s〈τs〉1/2|W0|2ν

3〈τb〉3
(vΦ)b =

2as〈τs〉|W0|2ν
3〈τb〉9/2

[
− 9(vΦ)b + 6as〈τb〉(vΦ)s

]
(A.26)

8a2
s〈τs〉1/2|W0|2ν

3〈τb〉3
(vΦ)s =

2as〈τs〉|W0|2ν
3〈τb〉9/2

[
− 6〈τb〉1/2

〈τs〉1/2
(vΦ)b +

4as〈τb〉3/2

〈τs〉1/2
(vΦ)s

]
(A.27)

From the first of these

8a2
s〈τs〉1/2|W0|2ν

3〈τb〉3
(vΦ)b ∼

2as〈τs〉|W0|2ν
3〈τb〉9/2

6as〈τb〉(vΦ)s

while the second tells us nothing new. We have the relation between (vΦ)b and (vΦ)s

(vΦ)s =
8a2

s〈τs〉1/2|W0|2ν
3〈τb〉3

3〈τb〉9/2

2as〈τs〉|W0|2ν
1

6as〈τb〉

=
2〈τb〉1/2

3〈τs〉1/2
(vΦ)b
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Employing the normalization condition

1 = vTΦ ·K · vΦ =
(

(vΦ)b (vΦ)s

)(Kbb̄ Kbs̄
Ksb̄ Kss̄

)(
(vΦ)b

(vΦ)s

)

= (vΦ)Tb

(
1 2〈τb〉1/2

3〈τs〉1/2

)( 3
4〈τb〉2

−9 〈τs〉1/2
8 〈τb〉5/2

−9 〈τs〉1/2
8 〈τb〉5/2

3
8〈τb〉3/2〈τs〉1/2

)(
1

2〈τb〉1/2
3〈τs〉1/2

)
(vΦ)b

= (vΦ)Tb

(
0 1

4〈τb〉〈τs〉
+O(τ

−5/2
b )

)( 1
2〈τb〉1/2
3〈τs〉1/2

)
(vΦ)b

=

[
1

6〈τb〉1/2〈τs〉3/2
+O(τ 3

b )

]
(vΦ)2

b

from which it is easy to see that

vΦ =

(
(vΦ)b

(vΦ)s

)(√
6〈τb〉1/4〈τs〉3/4

2
√

6
3
〈τb〉3/4〈τs〉1/4

)
(A.28)

Now we have to solve (A.25)

2as〈τs〉|W0|2ν
3〈τb〉9/2

(
−9(1− 7ε) 6as〈τb〉(1− 5ε+ 16ε2)

−6〈τb〉1/2
〈τs〉1/2

(1− 5ε+ 4ε2) 4as〈τb〉3/2
〈τs〉1/2

(1− 3ε+ 6ε2)

)(
(vχ)b

(vχ)s

)
= m2

χ

(
(vχ)b

(vχ)s

)

so we have

27|W0|2ν
4as〈τs〉〈τb〉9/2

(vχ)b =
2as〈τs〉|W0|2ν

3〈τb〉9/2

[
− 9(vχ)b + 6as〈τb〉(vχ)s

]
(A.29)

27|W0|2ν
4as〈τs〉〈τb〉9/2

(vχ)s =
2as〈τs〉|W0|2ν

3〈τb〉9/2

[
− 6〈τb〉1/2

〈τs〉1/2
(vΦ)b +

4as〈τb〉3/2

〈τs〉1/2
(vχ)s

]
(A.30)

From the first of these

(vχ)s ∼
2as〈τs〉|W0|2ν

3〈τb〉9/2
(6as〈τb〉)

27|W0|2ν
4as〈τs〉〈τb〉9/2

(vχ)s

=
27

16a3
s〈τs〉2〈τb〉

(vχ)s =
27ε2

as〈τb〉
(vχ)b
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Normalization requires

1 = vTχ ·K · vχ =
(

(vχ)b (vχ)s

)(Kbb̄ Kbs̄
Ksb̄ Kss̄

)(
(vχ)b

(vχ)s

)

= (vχ)Tb

(
1 27ε2

as〈τb〉

)( 3
4〈τb〉2

−9 〈τs〉1/2
8 〈τb〉5/2

−9 〈τs〉1/2
8 〈τb〉5/2

3
8〈τb〉3/2〈τs〉1/2

)(
1

27ε2

as〈τb〉

)
(vχ)b

= (vχ)Tb

(
3

4〈τb〉2
− 243ε2〈τs〉1/2

8as〈τb〉7/2
−9 〈τs〉1/2

8 〈τb〉5/2
+ 81ε2

8as〈τb〉5/2〈τs〉1/2

)( 1
27ε2

as〈τb〉

)
(vχ)b

= (vχ)Tb

(
3

4〈τb〉2
+O(〈τb〉−7/2) O(〈τb〉−5/2)

)( 1
27ε2

as〈τb〉

)
(vχ)b

∼
[

3

4〈τb〉2
+O(〈τb〉−7/2)

]
(vχ)2

b

from which one has the expression (vχ)b, that is

(vχ)b =

√
4

3
〈τb〉

Remembering the first of (A.29) we obtain

27|W0|2ν
4as〈τs〉〈τb〉9/2

3〈τb〉9/2

2as〈τs〉|W0|2ν

√
4

3
〈τb〉 =

[
− 9

√
4

3
〈τb〉+ 6as〈τb〉(vχ)s

]
but

27|W0|2ν
4as〈τs〉〈τb〉9/2

3〈τb〉9/2

2as〈τs〉|W0|2ν
=

81

8a2
s〈τs〉2

√
4

3
〈τb〉 = (162ε2)

√
4

3
〈τb〉

and since ε� 1 we are left with

9

√
4

3
〈τb〉 ∼ 6as〈τb〉(vχ)s

The correctly normalized eigenvector is

vχ =

(
(vχ)b

(vχ)s

)
=

√4
3
〈τb〉
√

3
as

 (A.31)
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A.6 The VEV of the flaton

In this section we want to justify the assumption 〈σ〉 ≡ M ≥ 1010 GeV. Keeping |σ|
as variable, the critical points are the solution of V ′( |σ| ) = 0. This implies

|σ|2n+2 =
m2

0M
2n
P l

(n+ 2)λn
(A.32)

We now verify that this is a minimum for the effective potential. The second derivative

is

V ′′(|σ|) = −2m2
0 + 2(n+ 2)(2n+ 3)λnM

−2n
P l |σ|

2n+2 (A.33)

and using the result (A.32)

V ′′(|σ|∗) = −2m2
0 + 2(n+ 2)(2n+ 3)λnM

−2n
P l

m2
0M

2n
P l

(n+ 2)λn

= (2n+ 1)m2
0

Since (2n+1)m2
0 > 0, the critical point found in (A.32) is a minimum, so setting 〈σ〉 = M ,

one has the following relation

M2n+2 =
m2

0M
2n
P l

(n+ 2)λn
(A.34)

and the flaton has an effective mass squared m2
σ = V ′′(M)/2, that is

m2
σ = 2(n+ 1)m2

0 (A.35)

We can rewrite (A.34) as a function of m2
σ instead of m2

0

M2n+2M−2n
P l =

m2
σ

2(n+ 1)(n+ 2)λn
(A.36)

To estimate the VEV, suppose that only the first term of (3.2) dominates and λ1 ∼ 1,

then it is easy to see that M = (3λ1)−1/4(m0MPl)
1/2 ∼ (3λ1)−1/4 × 1010 to 1011 GeV. If

there are two terms and the second is dominating with λ2 ∼ 1, thenM = (4λ2)−1/6(m0)1/3(MPl)
2/3 ∼

(4λ1)−1/6× 1013 GeV. So the claim M > 1010 GeV is justified. The height of the barrier
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V0 follows from V (M) = 0

0 = V0 −m2
0M

2 + λnM
−2n
P l M2

(
m2

0M
2n
P l

(n+ 2)λn

)
V0 = m2

0M
2

(
1− 1

n+ 2

)
=

m2
σM

2

2(n+ 2)



A.6 The VEV of the flaton A. Computational details



Bibliography

[1] P.Candelas, Gary T. Horowitz, Andrew Strominger, Edward Witten, ”Vacuum con-

figurations for superstrings,” Nuclear Physics B, Volume 258 (1985), Pages 46-74.

[2] Ephraim Fischbach and Carrick Talmadge, ”Ten years of the fifht force,” Physics

Department, Purdue University, West Lafayette, IN 47907-1396 USA.

[3] C.Will, ”The confrontation between General Relativity and Experiments,” Living Re-

views in Relativity 4 (May, 2001) 4, arXiv:gr-qc/0103036.

[4] Joseph P. Conlon, Fernando Quevedo, ”Astrophysical and Cosmological Implications

of Large Volume String Compactification,” arXiv:0705.3460v2 [hep-ph] 24 Jun 2007.

[5] B. de Carlos, J.A. Casas, F.Quevedo, E. Roulet, ”Model-Independent properties

and Cosmological Implications of the Dilaton and Moduli Sectors of 4-D Strings,”

arXiv:hep-ph/9308325v1.

[6] Masashi Hashimoto, Ken-Iti Izawa, Masahiro Yamaguchi and Tsutomu Yanagida,

”Gravitino Overproduction through Moduli Decay,” Progress of Theoretical Physics,

Vol.100. No. 2, August 1998, Pages 395-398

[7] Rouzbeh Allahverdi, Blaskar Dutta, and Kuver Sinha, ”Baryogenesis and Late-

Decaying Moduli,” MIFPA-10-19, May, 2010, arXiv:1005.2804v1 [hep-ph] 17 May

2010.

[8] Maria Graña, ”Flux compactification in string theory: a comprehensive review,”

arXiv:hep-th/0509003v3, 15 Dec 2005.

81



BIBLIOGRAPHY BIBLIOGRAPHY

[9] Michael R. Douglas, Shamit Kachru, ”Flux Compactification,” 12 Jan 2007 ,

arXiv:hep-th/0610102v3.

[10] S. Gukov, C: Vafa and E: Witten, ”CFT’s from Calabi-Yau fourfolds,” Nucl. Phys.

B 584, 69 (2000) [Erratum-ibid. B 608, 477 (2001)][arXiv:hep-th/9906070].

[11] Shamit Kachru, Renata Kallosh, Andrei Linde and Sandip P. Trivedi, de Sitter

Vacua in String Theory, arXiv:hep-th/030140v2, 10 Feb 2003.
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