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Abstract 

 

Nel presente lavoro di tesi magistrale, svolto presso l’istituto Fraunhofer-ISE, Fraunhofer Institute for 

Solar Energy Systems, a Friburgo in Brisgovia, sono stati depositati e caratterizzati sottili film di ossido 

di alluminio, Al2O3, (di spessore compreso tra 3-30 nm) su un substrato di FZ-Si, silicio cresciuto con 

il metodo float zone, drogato p. La deposizione è avvenuta mediante plasma ALD (plasma enhanced 

Atomic Layer Depostion). La tecnica spettroscopica EPR (Electron Paramagnetic Resonance) è stata 

utilizzata per studiare l’interfaccia Si/Al2O3, con e senza la presenza di un sottile strato di ossido di 

silicio, SiOx, tra di essi, con lo scopo di scoprire l’origine della formazione di densità di carica negativa 

Qf all’interfaccia Si/Al2O3: tale carica negativa induce una passivazione per effetto di campo ed è 

quindi la ragione per cui il dielettrico Al2O3 risulta essere un ottimo materiale passivante. 

In tale studio, si è deciso di variare alcuni parametri, come lo spessore dello strato di Al2O3, lo 

spessore dello strato intermedio di ossido di silicio, depositato mediante ossidazione termica (dry 

thermal oxidation), e la superficie del substrato di silicio. Oggetto di studio è stato inoltre l’effetto di 

trattamenti termici, come l’annealing, sui campioni di Si/Al2O3 e Si/SiOx/Al2O3. 

 

Sono stati realizzati cinque differenti gruppi di campioni: per ciascuno di essi sono state impiegate 

varie tecniche di caratterizzazione dei materiali, come la QSSPC (Quasi Steady State 

Photoconuctance), per la misura della vita media dei portatori minoritari, e la tecnica di spettroscopia 

ottica SE (spettroscopic ellipsometry). Per quattro di tali gruppi è stato utilizzato come substrato uno 

strato di FZ-Si drogato p, di spessore 50 µm, e con una resistività di 100 Ohm·cm; per il quinto gruppo 

di campioni, invece, lo spessore il substrato FZ-Si ha uno spessore 250 µm e una resistività di 100 

Ohm·cm. 

Per ogni gruppo di campioni sono stati riportati gli spettri EPR ottenuti ed i rispettivi fit, da cui è stato 

possibile risalire ai fattori giromagnetici di spin g, i quali sono stati riportati in tabelle con le loro 

possibili attribuzioni. 



E’ stato dimostrato che la presenza di uno strato di ossido di silicio tra il substrato di silicio e lo strato 

di ossido di alluminio risulta essere fondamentale per la formazione di densità di carica negativa 

all’interfaccia: aumentando lo spessore dello strato di SiOx (nel range 1-30 nm) si assiste ad una 

diminuzione di carica negativa Qf. Infatti, l’ossido di silicio si comporta come una barriera riducendo 

l’iniezione di portatori dal substrato di silico agli stati difettivi all’interfaccia SiOx/Al2O3. In questo 

studio, l’effetto sopradescritto è stato dimostrato utilizzando la tecnica COCOS (Corona-Oxide-

Semiconductor Characterization).  

Inoltre, è stato dimostrato, sempre utilizzando la tecnica COCOS, che per i campioni sottoposti ad 

annealing, la denistà di carica negativa Qf tende ad aumentare, così come il tempo di vita media dei 

portatori minoritari. 

 

Analizzando gli spettri EPR, è stato possibile concludere che all’interfaccia Si/Al2O3 sono presenti 

difetti, denominati �� , caratteristici dell’interfaccia Si/SiOx. Le nostre osservazioni, dunque, sono 

coerenti con la formazione di uno strato di ossido di silicio tra Si e Al2O3. 

Dallo studio degli spettri EPR del gruppo 1, è stato possibile indentificare tre principali stati difettivi: un 

centro isotropo, un centro E’ e un centro anisotropo (di tipo ��). Una volta sottoposti i campioni ad 

annealing, gli spettri EPR non hanno rivelato la presenza di stati difettivi. 

In tale lavoro, infine, è stata studiata la dipendenza angolare del fattore giromagnetico di spin, 

variando l’angolo tra il campo magnetico B e la normale all’interfaccia (100) in un range compreso tra 

0°-90°.  

 

 

 

  



 



Abstract 

 

In the present thesis, performed at the Fraunhofer Institute for Solar Energy Systems, thin layers of 

aluminium oxide (Al2O3) were characterized and deposited on a silicon substrate (FZ-Si, p doped). 

Al2O3 deposition was performed using plasma enhanced Atomic Layer Deposition. Electron 

Paramagnetic Resonance (EPR) has been used to investigate the interface between Si and the high-k 

dielectric Al2O3, with or without the presence of a thermal grown SiOx layer. The aim of this work is 

trying to understand the origin of the fixed negative charge density Qf, that induces field effect 

passivation, formed at the SiO2/Al2O3 interface. In our study several parameters were varied: the 

thickness of the Al2O3 layer, the interlayer SiOx thickness, the thickness and the surface of the Si 

substrate. Also the effect of treatments (annealing) on Si/Al2O3 and Si/SiOx/Al2O3 stacks were 

considered.  

Five different groups of samples have been under study: for the first four groups, the starting 

substrates was p FZ-Si, 50 µm thick and with a resistivity of 100 Ohm·cm; the starting substrate for 

group 5 is p-FZ Si, with a thickness of 250 µm and a resistivity of 100 Ohm·cm. For each group 

characterization techniques were used: the optical spectroscopy technique SE (spettroscopic 

ellipsometry), for thickness measurements and the QSSPC (Quasi Steady State Photoconuctance), for 

lifetime measurements. In addition, for each group of samples, EPR spectra and fits were reported. 

From these fits, it was possible to obtain the electron spin g-factors: g-factor values and their possible 

attributions were reported in tables. It has been demonstated that the presence of a SiOx interlayer 

between Si and Al2O3 plays a key role in the origin of the negative charge formation and in the 

interface defect density: an increase in the SiOx interlayer thickness over the range 1-30 nm gives rise 

to a decrease in negative Qf. As a matter of fact, SiOx acts as a barrier, reducing charge injection from 

the Si substrate into defect states at the SiOx/Al2O3 interface. In our study this effect has been 

demonstrated using the COCOS technique (Corona-Oxide-Semiconductor Characterization) 



technique: we measured the total negative charge at the Si/SiOx/Al2O3 interface of three reference 

wafers and we found out the the negative charge denisity Qf decreases with the increase of the SiOx 

layer thickness.   

Our observations, using EPR spectroscopy, are in line with the formation of an interfacial SiOx layer. 

Analysing the spectra of group 1 (Si/Al2O3), it was possible to identify an isotropic center, an E’-like 

defect and an anisotropic center P !-like. The E’-like defects are associated with the SiOx interface. 

After an annealing step, EPR did not reveal the presence of any defect states. Finally, in our work we 

studied the angular dependence of the g values varying the angle between B and the (100) interface 

normal in a range 0°-90°. In all the spectra we found the presence of signals due to the trigonal 

anisotropic center, the isotropic center and the E’-like center in line with our expectations.                                                                                                        
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1 Introduction 

In order to reduce the costs of photovoltaic energy, the introduction of a passivation layer on the 

rear of the crystalline-silicon solar cells seems to be a successful strategy. This layer allows the 

increase of the light trapping, the decrease of the surface recombination losses and higher conver-

sion efficiency. Also the use of thinner wafers becomes possible. In 2006, aluminum oxide (Al2O3) 

nanolayers were found to be a new solution for the passivation of p- and n- type crystalline Si 

surfaces [2]. Fixed negative charges induce an accumulation layer at the p-type silicon interface 

that yields to a very effective field-effect passivation. 

 

2 Objectives of this Thesis 

In this work, Electron paramagnetic resonance, EPR, has been used to investigate the interface 

between Si and the high-k dielectric Al2O3, with or without the presence of a thermal grown SiOx 

layer. We also tried to understand the origin of the negative charge formation at the SiO2/Al2O3 

interface. In this section the main properties of the dielectric Al2O3 are reported. 

Al2O3 can deliver excellent passivation qualities on Si substrates [1]. Several Al2O3 deposition 

techniques has been established in the last few years like Plasma Enhanced Chemical vapor 

Deposition (PECVD) [2], plasma enhanced and thermal Atomic Layer Deposition [3], plasma 

enhanced and thermal ALD [4], [5] have very low surface recombination velocities 

ly~10cm ∙ s��[2][3, 6] [7]. 



6 Objectives of this Thesis  

At the present time high efficiencies have been realized by the implementation of ultrathin Al2O3 

films in laboratory and industrial solar cells.  

Why is Al2O3 a very good surface passivation material?  

The passivation properties of Al2O3 were already reported by Hezel and Jaeger in 1989 [8]. Al2O3 

features a good field effect passivation. Due to the presence of a high density of inherent negative 

charges at the interface, the electric field enhanced by negative charge accumulation at the p-type 

Si/Al2O3 interface deflects minority charge carriers.  

In addition to the field effect passivation, the Al2O3 also provides good chemical passivation of the 

dangling bongs, reducing interface defect density [2]. 

As far as optical properties are concerned, with a low refractive index of 1.65 Al2O3 is well suited to 

improve the optical quality at the front or at the back of the solar [3] because of low absorption in 

the visible part of solar spectrum. It acts as a back surface reflector for the long wavelength spectra 

of light to increase the light trapping inside the solar cells.  

Al2O3 shows also a low dependence on injection levels [9]. Even at low illumination conditions, the 

solar cells passivation using aluminum oxide provides a good passivation quality. 

Moreover Al2O3 has a high thermal stability [10]. In fact the passivation quality of the dielectric 

material should be thermally stable in order to sustain high temperature processes used in solar 

cell production. 

 During deposition processes an interfacial SiOx layer is commonly formed between the Al2O3 film 

and the c-Si substrate [3]. This thin SiOx layer can be formed during the Al2O3 deposition process 

but also during the post deposition annealing. Hoex et al. found an interfacial SiOx layer of ~ 1.5 

nm using High resolution TEM image[3]. 
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Figure 2-1: High resolution TEM image showing a 20 nm thick Al2O3 film on c-Si prepared by plasma-assisted 

atomic layer deposition after 30 min annealing at 425°C in a N2 environment [3] 

 

This could be a result of the deposition process, possibly from the exposure of the substrate to the 

O2 plasma in the first ALD cycles [3].  

The microscopic origin of defect states in the Si/Al2O3 system that lead to fixed negative charges 

Qf has not been clearly understood so far. It is known that the origin of the charge traps are point 

defects, such as vacancies and interstitials [11]. Al vacancy  !" and O interstitial $% produce 

levels in the Al2O3 bandgap below midgap [12]. These both defects are in fact likely candidates to 

trap negative fixed charge. When the negative charge is related to these two defects a slightly 

oxygen-rich structure in proximity of the Si interface would be expected. Another issue is the role of 

Charging of Defect states. Electron injection in the conduction band and tunneling from the dielec-

tric into the substrate can change the charge state of an ionized defect. As far as Si/Al2O3 system 

is related, there are some indications that charge injection from Si into Al2O3 could play an im-

portant role in the negative charge formation. For annealed Al2O3 samples, the fixed charged 

density was observed to increase on the Al2O3 surface. It has been demonstrate also that an 

increase in the SiO2 interlayer thickness over the range 1-30 nm gave rise to a decrease in nega-

tive Qf [11, 13].  



8 Objectives of this Thesis  

2.1 Structure of this work  

In Chapter 3, some basic concepts of photovoltaic devices are discussed. After an introduction 

about photovoltaic technologies, a short description of a standard Si solar cell is given. The most 

significant material properties, fundamental to achive high efficiency solar cells, are summarized. 

Finally, a short introduction of the PERC solar cells is given: they are based of the concept of 

passivated emitter and rear cells. 

In Chapter 4, the fundamental properties of semiconductors are reported: Silicon fundamental 

properties, dopant atoms and energy levels, carrier concentration, Fermi energy level and the main 

defects in semiconductor materials. 

In Chapter 5, the main recombination mechanisms in semiconductors are discussed: radiative 

recombination, Auger recombination, recombination mediated by defects, surface recombination 

and emitter recombination. 

In Chapter 6, the two main ways to achieve surface passivation are reported: chemical passivation 

and field effect passivation. Finally, a short review of surface passivation materials is given. 

In Chapter 7, a short description of crystal lattices is given: the silicon crystal structure is described. 

In Chapter 8, the main characterization techniques used in this work are reported: Quasi-Steady 

State Photoconductance (QSSPC), Spectral Ellipsometry and Electron Paramagnetic Resonance 

(EPR). 

In Chapter 9, the main theoretical aspects of EPR are discussed. After a hystorical overview, orbital 

magnetic dipole, Larmor precession, spin-orbit interaction and electron-nuclear hyperfine interac-

tion are described.  

In Chapter 10, an analysis of the four essential components of an EPR spectrometer is carried out: 

Source, EPR cavity, magnetic field, signal channel, magnetic field controller and spectrum. 
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In Chapter 11, the deposition and oxidation techniques used in this work are discussed: Atomic 

Layer Deposition (ALD) and Dry Thermal Oxidation. 

In Chapter 12, the detailed plan, methodology and results obtained are discussed for the five main 

experiments performed using EPR. The aim of the experiments is explained and for each group the 

detailed experimental process flow is described. The EPR sprectra are reported and compared.  

The final sections of each group of experiments discuss the analysis and conclusion of the experi-

mental findings. 

 Chapter 13 gives the overall summary of the thesis work and the main conclusions. 

Chapter 14 is the Appendix section: it includes also additional figures to supplement the information 

in the main work. 

 

3 Photovoltaic technologies 

3.1 Introduction 

Infrared active gases, such as water vapor (H2O), carbon dioxide (CO2) and ozone (O3), absorb 

thermal infrared radiation emitted by the Earth’s atmosphere and surface. This mechanism warms 

the atmosphere that emits infrared radiation: a significant portion of this energy warms the surface 

and the lower atmosphere. This phenomenon is called “greenhouse effect” and consituets at the 

present time the main origin of global warming. The amplitude of the dramatic consequences of this 

global warming on human, as well as vegetal and animal life is difficult to predict. Some predictions 

however are based largely on computer models that simulate fundamental geophysical process-
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es.Modern civilization has a big need of energy, which is mainly provided by fussil fuels. As world-

wide energy demand increases, conventional fossil fuels will be exhausted within the next century 

(the resources of fossil fuels will probably not last longer than 50 years). The side effect of using 

fossil fuels is the release of greenhouse gases such as carbon dioxide to the environment. The 

transition from fossil fuel to renewable energy sources is therefore necessary. Renewable electricity 

or power from wind, water and sun will play a main role in a safe and stable energy transition [1]. 

 The major candidate for obtaining energy from the sun is the solar cell[1]. Solar Photovoltaic 

systems provide clean energy from small scale residential to large industrial applications. Recently 

researches of low-cost flat-panel solar panels, thin-film devices and many innovative concepts have 

increased. The global solar photovoltaic market has shown a significant growth due to the use of 

this source of solar power generation. 

New photovoltaic installation have been made in the year 2010 and in 2011, a total of 69 GWp of PV 

panels were installed worldwide with a capacity to generate some 85TWh of electricity annually. PV 

technology is become more and more important and constitutes a competitive solution for power 

generation with high effriciency (obtained in laboratory) of above 24 %. 

 

Figure 3-1: Worl PV Cell/Module Production from 1990 to 2007 (data source: PV News[Pvn 2008], Photon Interna-

tional [Pho 2008]) 
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To reduce the total cost related to solar technology must be reduced. One way to achieve this goal 

is the reduction of wafer thickness. A new generation of thinner solar cell has begun. However, 

increasing the surface to volume ratio electrical losses occur due to surface recombination. This 

problem causes losses in electrical efficiency in the solar cells. To minimize these losses, due 

mostly to the presence of dangling bonds at the crystal surface, thin dielectric layers are applied to 

reduce surface recombination. Standard passivation layers are Silicon dioxide (SiO2), Silicon 

Nitride (SiNx) and hydrogenated amorphous Silicon (a-Si:H). These passivation layers however are 

found not to be suitable during all cases of application limitin solar cell efficiency.  

New technologies and new passivation layer are therefore required. One such technology coul be 

the passivated emitter and rear solar cell (PERC): the cell is passivated on both emitter and rear 

side in order to reduce recombination at the interface. An alternative passivation layer colud be 

Aluminum Oxide (Al2O3): it has suitable properties such as a refractive index of about 1.65 with low 

absorption in the visible region of the solar spectrum and low density of interface states leading to 

high quality of chemical passivation. 

3.2 The photovoltaic effect: history 

 

Solar cells operate by converting sunlight directly into electricity using the electronic properties of a 

class of material known as semiconductors. A semiconductor material or device is said to be 

“photovoltaic” when exposure of the material to light that can be absorbed by the material is able to 

transform the energy of the light photons into electrical energy in the form of a current and voltage. 

The number of materials that are able to exhibit photovoltaic characteristic is large but the number 

of such materials or devices that are able to make the transformation of solar radiation to electrical 

energy with high efficiency , of the order of 20%, at low cost and with stability is not large [3]. 
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The photovoltaic effect was discovered by Becquerel, a French experi-

mental physicist, while experimenting with an electrolytic cell made up of 

two metal electrodes in 1839 [3]. Willoughby Smith discovered the photo-

conductivity of selenium in 1873. In 1904 Hallwachs discovered that a 

combination of copper and cuprous oxide was photosensitive. Solar 

efficiencies of about 1% characterized selenium and copper oxide cell by 

about 1914.[3] In this year Einstein published his paper on the photoelec-

tric effect. 

Millikan provided experimental proof of the photoelectric effect in 1916. Two year later a Polish 

scientist named Czochralski developed a way to grow single-crystal silicon. In 1954 the PV effect in 

Cd was reported; primary work was performed by Rappaport, Loferski and Jenny at RCA. Bell Labs 

researchers Pearson, Chapin, and Fuller reported their discovery of 4.5% efficient silicon solar 

cells; this was raised to 6% only a few months later (by a work team including Mort Prince). Chapin, 

Fuller, Pearson (AT&T) submitted their results to the Journal of Applied Physics. AT&T demonstrat-

ed solar cells in Murray Hill, New Jersey, then at the National Academy of Science Meeting in 

Washington, DC. The year 1954 also dates the announcement of the first all-thin-film cell composed 

of a Cu&S/ CdS junction with an efficiency of 6%, later increased to over 9%. One year later, 

Western Electric began to sell commercial licenses for silicon PV technologies; early successful 

products included PV-powered dollar bill changers and devices that decoded computer punch 

cards and tape. Bell System's demonstration of the type P rural carrier system began in Americus, 

Georgia.[1, 3] In 1964 Peter Glaser, A.D. Little, conceived the idea of a satellite solar power station. 

Tyco Labs developed the edge-defined, film-fed growth (EFG) process, first to grow crystal sap-

phire ribbons and then silicon. To date, solar cells have been made out of many other semiconduc-

tors, using various device configurations and employing single crystal, polycrystal, and amorphous 

thin-film structures [1]. 

Figure 3-2: Antoine-Henri 
Becquerel 
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3.3 Solar radiation  

Nuclear fusion reaction is the origin of the radiative energy output from the sun. In every second, 

about 6x10
11

 kg of H' is converted to He, that corresponds to a net mass loss of about 4x10
3
 kg , 

that is converted through the Einstein relation: 

  

( = )*' (3.1) 

 

 

to 4x10
20

 kg . This energy is emitted primarily as electromagnetic radiation in the ultraviolet to 

infrared and radio spectral ranges. Now the total mass of the sun is about 2x10
30

 kg. The sunlight is 

attenuated by the atmosphere when it reaches the earth’s surface: this is mainly due to water-vapor 

absorption in the infrared, ozone absorption in the ultraviolet, and scattering by airborne dust and 

aerosols. Air mass quantifies the degree to which the atmosphere affects the sunlight received at 

the earth’s surface. The air mass number (AM) is the secant of the angle between the sun and the 

zenith and it measures the atmospheric path length relative to the minimum path length when the 

sun is directly overhead. The AM0 spectrum represents the solar spectra outside the earth’s at-

mosphere and the AM1 spectrum represents the sunlight at the earth’s surface when the sun is at 

zenith and the incident power is about 925 W/m
2
 .The AM2 spectrum is the spectrum for =

60  and has an incident power of  691 W/m'[1]. 
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Figure 3-3: Solar spectrum at different air-mass conditions [1] 

Figure 3-3 shows the solar spectrums at various AM conditions. The upper curve is the AM0 condi-

tion. This spectrum is the relevant one for satellite and space-vehicle application. For terrestrial 

applications, the AM1.5 conditions, with sun at 45° above the horizon, represent an energy-

weighted average. Because each photon produces an electron-hole pair, the solar power has to be 

converted in photon flux [1]. To convert the wavelength to photon energy we have to use this 

expression is used: 

 

+ = *
, = 1.24

ℎ,(5V)  µm 

 

(3.2) 

The total power for AM1.5 is 844 W/m'[1]. 

 

 

3.4 Solar cell short description 

Semiconductors are crystalline materials whose outer shell atomic levels exhibit an energy band 

structure.This band structure is due to the close, periodic arrangement of the atoms in the crystal 

which causes an overlapping of the electron wavefunctions. The so called Valence Band (VB) is the 
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highest occupied energy level at zero point temperature. The Conduction Band (CB) is the next 

unoccupied energy level at the zero point. There is an energy gap between valence and conduc-

tion bands of the order of ∼ 1eV. Figure (3.4) schematically illustrates this basic structure consist-

ing of a valence band,a forbidden energy gap and a conduction band. The band configuration for 

conductors and insulators is also shown for comparison. At zero temperature all allowed energy 

states in the valence band are completely occupied and all allowed energy states in the conduction 

band are completely empty. As the temperature increases, the number of thermally excited elec-

trons across the forbidden band gap increases. The Fermi energy level corresponds to the energy 

of the highest occupied state in the system. 

The probability of occupation of allowed energy states of any given energy E in thermal equilibrium 

is described by the Fermi-Dirac distribution [4]: 

<(() = 1
1 + exp ?( − (ABDE F

 (3.3) 

 

where T is the temperature in Kelvin and BD is the Boltzmann’s constant and (A is the Fermi 

energy level. 

Figure (3.4) schematically illustrates this basic structure consisting of a valence band,a forbidden 

energy gap and a conduction band. The band configuration for conductors and insulators is also 

shown for comparison. 
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Figure 3-4: Energy band structure of conductors, insulators and semiconductors  

 

When a photon with energy larger than the Band Gap strikes an electron in the silicon crystal 

lattice, the energy gets absorbed and the electron is ejected from its state in the Valence Band to a 

free excited state in the Conduction State and it can contribute to the electrical conduction. 

A solar cell works on the principle of the ‘’ photovoltaic effect’’. When a solar cell is exposed to light, 

the photon energy is absorbed by the semiconducting material: electron-hole pairs are created, 

resulting in the generation of free charge carriers. These charge carriers are separated across a 

space charge region (p-n junction). At the p-n junction the potential energy of the n-type and p-type 

substates become identical.The p-n junction permits the partial separation of charges, allowing 

electrons to diffuse to emitter and holes to diffuse to the bulk to reach the junction terminals. Near 

the p-n junction the electrons diffuse into the vacant holes in the p material causing a depletion 

zone, the space charge region (SCR)This depletion zone acts like an insulator preventing other free 

electrons in the n-type silicon and holes in the p-type silicon from combining[1, 4].This forms an 

electric field across the p-n junction, opposing the diffusion force.Finally, the movement of these 

charges through an external circuit creates electrical generation. A potential difference is built by 

the charge accumulation at the emitter (n-region) and bulk (p-region) terminals. The charge con-

centration at these terminals develops a photocurrent which flows in the opposite direction respect 

to the diffusion current. An external load is connected between the front and the back contacts of 
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the solar cell. When the overall magnitude of photocurrent is bigger than the diffusion current a 

current flow is extracted. 

The crystalline silicon (c-Si) solar cell, which dominates the PV market at present, has a simple 

structure, and provides a good example of a typical solar cell structure. In the next chapter a 

standard Si solar cell is described. 

3.5 Standard Si solar cell 

The structure of a silicon solar cell is composed of a bulk substrate (usually p-type semiconductor) 

and an emitter (n-type semiconductor) forming a p-n junction.  

 

Figure 3-5: Illustratiuon of a standard solar-cell. The base and the emitter form a p-n junction. Electrons and holes 

are separated by an electric field and a potential difference is created 

                                        

At the front surface above the emitter a thin dielectric layer is usually employed as an Anti-

ReflectionCoating (ARC).This Anti-Reflection Coating is used to reduce reflection losses at the front 

surface.  
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ARC consists of a thin dielectric layer, with a certain thickness so that light reflection gets disabled 

due to destructive interference. Of course this interference condition is true only for a certain 

wavelength. The antireflection coating is usually optimized for l=600 nm. 

 

Figure 3-6: ARC consist of a dielectric layer, with a specially chosen thickness so that interference effects in the 

coating cause the wave reflected from the anti-reflection coating top surface to be out of phase with the wave 

reflected from the semiconductor surfaces. These out-of-phase reflected waves destructively interfere with one 

another, resulting in zero net reflected energy 

 

3.6 Simplest description of photovoltaic devices 

 

 

Figure 3-7: Simple equivalent circuit for a photovoltaic cell, with a current generator with total light current IG, a 

diode with total dark current IJ, a series resistance RK, and a parallel resistance RL [3] 
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We can consider an “ideal device” with MN = 0 and MO = ∞. The current density J flowing in the 

device in the presence of photo excitation can be expressed with this equation: 

 

Q = QT Uexp X YZ
[BE\ − 1] − Q^  

 

(3.4) 

The first term on the right, QT _exp ? `a
bfgF − 1h, is the forward current driven by the voltage Z 

and the second term, Q^ is the reverse current that is associated with photoexcitation. QT is also 

called “reverse saturation current” of the diode. A is the “ideality factor” that has a value depending 

on the mechanism of the junction transport. If the voltage is 0 we have the short-circuit condition 

and there is zero current in the dark. 

In the light we have: 

Qij = −Q^  

 
(3.5) 

The short circuit current is controlled only by the photoinduced current generation and recombina-

tion processes. If the total current under illumination is zero (open-circuit condition) we obtain: 

 

ϕOC= XAkT
q \ ln UXJL

J0
\ +1] 

 

(3.6) 

 

We can see that the open-circuit voltage is controlled by the current generation and recombination 

processes but also by the nature of the junction transport currents. 

The relation between Qij  and Zzj  is given by: 

 

Qij = QT Uexp XYZzj
[BE \ − 1] (3.7) 
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3.7 Figures of merit 

 

The efficiency of a solar cell is maximal when the product of the current density Q and the voltage Z 

is a maximal. The efficiency { can be expressed in this way: 

 

{ = |}
|���

= Q}Z}
|���

= QN�Z����
|���

 

 

(3.8) 

 

where |���  is the total radiation power incident on the cell and �� is called the fill factor: it is the 

measure of the “sqareness” of the light � − � curve.  

 

 

 

Figure 3-8: I-V characteristic of a solar cell during light and dark condition[3] 

 

 �  and !  are respectively the values of current density and voltage at the condition correspond-

ing to maximum power. 

The definition of the fill factor FF is given by the following equation: 

 

"" = � ! /�#$!%$  (3.9) 
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with: 

 

! = !%$ − (&')*/+)ln [(+! /&')*) + 1] 

 
(3.10) 

 

Once a value for !  has been obtained, the value of � and the maximum power . = � !  

can be obtained. 

 

3.8 Material properties 

We can summarize the most significant material properties that are fundamental to achive high 

efficiency solar cells.  

 

The band gap of the absorbing material should be small enough to allow absorption of an appre-

ciable portion of the solar spectrum but at the same time large enough to minimize the reverse 

saturation junction current density. The diffusion length of minority carriers 0 23  must be as large 

as possible so that carriers excited by light will be able to diffuse to the junction and be collected 

before they recombine with carriers of the opposite sign. 

 

0 23 = (4 235 23)6 

 
(3.11) 

 

4 23 ist he diffusion constant and 5 23 ist he lifetime of minority carriers 

Using the Einstein relation: 

43
73

= 48
78

= ')*
+  (3.12) 
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Equation (3.9) becomes: 

 

0 23 = 9:')*
+ ; (75) 23<

>/6
  

 

(3.13) 

 

where 7 23 and ') are the mobility for minority carriers and the Boltzmann constant respectively. 

It is desired, therefore, to have a material in which the minority carriers have large mobility and 

lifetime. 

The junction structure and composition are also important because they determine the magnitude 

of the junction transport current density �?and of the ideality factor A. To produce junctions with as 

low junction current as possible the formation of the semiconductor junction must be carefully 

controlled [3]. 

 

3.9 The PERC concept 

In PERC solar cells, based of the concept of passivated emitter and rear cells, surface passivation 

is used to enhance the efficiency of solar cells. In fact recombination losses at the cell surface are 

reduced. In contrast to standard solar cells, here passivation is applied at the front as well at the 

rear surface. In addition to the ARC, Anti-Refletion Coating, in these solar cells additional technolo-

gies such as laser fired electrical contacts and local Aluminum BSF (Back surface field) are applied 

[5]. 

High-efficiency crystalline solar cells require three basic elements: 

· The silicon substrate must be high quality with a long carrier lifetime. 
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· The cell should have low surface reflection with a good light-trapping capability. 

· Emitter design should be able to collect all light-generated carriers and good metal con-

tacts for low series resistance. 

Advanced crystalline cell types such as PERC have been developed to integrate the three basic 

cell design requirement. 

   

Figure 3-9: Schematic diagram of a typical industrial solar cell with a full-area Al-BSF (left) and a PERC solar cell 

(right) with a dielectric rear side passivation layer and screen-printed local aluminum contacts on the rear. The 

emitter on the textured front side is covered with an anti-reflective coating (ARC) 

 

The development of p-type PERC solar cells using mono-crystalline silicon substrates involves an 

alkaline chemical texturing process: silicon wafers are put in an alkaline solution to create upright 

pyramids on the surface. Since the wafers are dipped in a chemical bath, ther is pyramid formation 

at the rear as well as at the front surfaces although ideally texturing process is required only on the 

front surface of the cells to reduce reflection losses. The texturing step is a high temperature 

diffusion process to create an emitter above the bulk substrate: in this way we have a p-n junction 

diode at the semiconductor front interface. During the diffusion process, there is a formation of an 

emitter layer at the rear surfaces of the c-Si substrate: an undesired process. During the diffusion 

process we have another undesirable process: the formation of an emitter layer at the rear surfaces 

of the c-Si substrate. The rear surface is polished in order to remove the emitter layer formed at the 
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rear surface and also to increase the effect of surface passivation and the texture. The total rear 

surface area is reduced after the polishing of the surface: that lowers the probability of defects at 

the cell surface. Therefore, flat surface results in reduced probability of surface recombination at 

the rear interface. When the dielectric material is applied, the effect of passivation is further in-

creased. The next step is the application of passivation layers at the front surface that acts also as 

an ARC in order to avoid surface recombination of charge carriers at the interface. The final step is 

the creation of electrical metal. 

 

Figure 3-10: Complete PERC solar cell 

 

4 Fundamental properties of 

semiconductors 

We define an intrinsic semiconductor as a material without impurities like foreign atoms within the 

crystal. An extrinsic semiconductor is defined as a semiconductor in which a certain number of 

impurities are located. This technic is called doping. Doping has a fundamental influence on the 
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semiconductor characteristics. For example the thermal-equilibrium of the electron and hole con-

centration differs from the intrinsic carrier concentration [1, 2]. 

 

4.1 Silicon fundamental properties 

 

 

Silicon is a light chemical element belonging to group 4 in the periodic table. The atom has 14 

electrons in its shells. The two inner shells are full (2 and 8 electrons) while the outmost shell con-

tains 4 electrons. Silicon is the second most abundant element and comprises over 20 per cent of 

the earth’s crust. It occurs in nature never as the element, but as silica (SiO_2) and silicates. SiO_2 

abounds in massive form as quartzite, agate, jasper, carnelian, opal and flint. The silicates include 

such minerals as micas and zeolites. 

To be used as semiconductor, silicon needs to have high purity. Otherwise it is not capable of 

reaching high enough efficiency for the solar cell marked. 

4.2 Dopant atoms and energy levels 

We can consider a silicon lattice in which we add a group V element, such as phosphorous as a 

substitutional impurity. The group V element, such as phosphorous, has five valence electrons and 

four of these will contribute to the covalent bonding with the silicon atoms. The fifth Phosphorus 

open bound provides an additionally electron. The phosphorus atom without the donor electron is 

positively charged. This donor electron is bound to the phosphorus atom at very low temperatures. 

If a small amount of energy is added to the donor electron, it can go to the conduction band, 

leaving behind a positive charged phosphorus ion. Now the electron in the conduction band can 

move through the crystal and leaving the positive charged ion fixed in the crystal. This type of 
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impurity atoms is called “donor impurity atoms”. These atoms add electrons to the conduction band 

but they don’t create holes in the valence band. The material is at this moment an n-type semicon-

ductor.  

    

We can consider now a group 3 element, such as boron. It has three valence electrons, which are 

all taken up in the covalent bonding. To occupy this empty position, its energy must be greater than 

that of the valence electrons, since the net charge state of the boron atom would now be negative. 

This energy however is not sufficient to reach the conduction band. The empty position associated 

where the boron atom becomes occupied and other valence electron positions become vacated: 

they are holes in the semiconductor material. The group 3 atom accepts an electron from the 

valence band and so is referred to as an “acceptor impurity atom”.  This type of material is a p-type 

semiconductor [2]. 

 

 

Figure 4-1: Simplified energy-band diagrams for degenerately doped n-type (left) and p-type (right) semiconduc-

tors 

  

4.3 Carrier concentration 

The Boltzmann statistic can be used to calculate the carrier concentration for non-degenerate 

semiconductors in equilibrium: 
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@? = @2 exp :AB − A2
+�CD

; 

 

(4.1) 

 

E? = E2 exp :A2 − AB
+�CD

; 

 

(4.2) 

 

where @? and E? are the equilibrium electron and hole densities, @2  is the intrinsic carrier density, 

A2 and AB are the intrinsic energy level and the Fermi level respectively. The expression of the 

thermal voltage is: 

 

�CD = ')*
+  

 

(4.3) 

 

') is the Boltzmann constant, T is the temperature and q in the charge. By definition, in non-

degenerate semiconductors, the doping concentrations are smaller respect to FG , the effective 

density of states in the conduction band, and the Fermi levels are more than several  ')* below 

A$ , the energy of the conduction band.  

In the case of degenerate semiconductors, where n- or p-concentrations are near or beyond the 

effective density of states, the value of Fermi-Dirac integral has to be used instead of the Boltzmann 

statistics. 
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4.3.1 Intrinsic concentration 

For intrinsic semiconductors at finite temperatures, thermal agitation occurs, which results in 

continuous excitation of electrons from the valence to the conduction band, and leaving an equal 

number of holes in the valence band. At steady state, the net result is: 

 

@ = E = @2  

 
(4.4) 

The Fermi level for an intrinsic semiconductor is: 

 

AB = A2 = (AG + AH) 
2 + ')*

2 ln :FH
FG

; 

 

(4.5) 

For non-degenerate semiconductors the product of the majority and minority carrier concentration 

is fixed to be: 

 

E@ = FGFH exp 9− AJ
')*< = @26 

 

(4.6) 

which is known as the mass-action law. For degenerate semiconductors, E@ < @26. 

 

4.3.2 Charge neutrality 

 

In thermal equilibrium, the semiconductor crystal is electrically neutral. The electrons are distributed 

among the various energy states, creating negative and positive charges, but the net charge 
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density is zero. This condition of charge-neutrality is used to determine the thermal-equilibrium 

electron and hole concentrations as a function of the impurity doping concentration. 

A compensated semiconductor is one semiconductor that contains both donor and acceptor 

impurity atoms in the same region. If FL = FM we have a completely compensated semiconduc-

tor, that is the characteristics of an intrinsic material. The charge neutrality condition is express by 

equating the density of negative charges to the density of positive charges. 

 

Figure 4-2: Electron concentration versus temperature showing three regions: partial ionization, extrinsic and 

intrinsic [1] 

 

4.4 Fermi energy level  

The position of the Fermi energy level within the bandgap can be determined for the thermal 

equilibrium electron and hole concentrations. We assume the Boltzmann approximation to be valid 

then we have: 

 

@? = FG exp 9− (AG − AB)
')* < 

 

(4.7) 
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And we can solve for AG − AB. If we consider an n-type semiconductor in which the concentration 

of donors, FN  is >> @2  we have: 

AG − AB = ')*O@ :FG
FN

; 

 

(4.8) 

The distance between the bottom of the conduction band and the Fermi energy is a logarithmic 

function of the donor concentration: as the donor concentration increases, the Fermi level moves 

closer to the conduction band. We can derive the same type of equation for a p-type semiconduc-

tor, assuming that the concentration of acceptors, FPis >>@2. We have: 

 

AB − AH = ')*O@ :FH
FP

; 

 

 

(4.9) 

The distance between the Fermi level and the top of the valence-band energy for a p-type semi-

conductor is a logarithmic function of the acceptor concentration: as the acceptor concentration 

increases the Fermi level moves closer to the valence band.  

AB is a function of temperature also. As the temperature increases, @2  increases, and AB moves 

closer to the intrinsic Fermi level.  

Figure 4-3: Fermi level for (a) Si and (b) GaAs 
as a function of temperature and impurity 
concentration [1] 
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4.4.1 Quasi Fermi energy levels 

If excess carriers are created in a semiconductor, we are no longer in thermal equilibrium and the 

Fermi energy is strictly no longer defined. However we can define a quasi-Fermi level for electron 

and a quasi-Fermi level for holes that apply for non-equilibrium. We can call Q@ and QE the excess 

electron and hole concentration respectively and we can write: 

 

@? + Q@ = @2 exp((AB3 − AB2) /')*) (4.10) 

 

 

And 

E? + QE = @2 exp(RAB2 − AB8S /')*) 

 
(4.11) 

 

Where AB3 and AB8 are the quasi-Fermi energy levels for electrons and holes respectively. The 

total electron concentration and the total concentration are function of the quasi-Fermi levels. 

 

4.5 Defects in semiconductors 

Crystalline defects are regions where the microscopic arrangement of ions differs from that of a 

perfect crystal. Defects are called surface, line, or point defects if the imperfect region is bounded 

on the atomic scale in one, two or three dimension respectively [6]. 

The most important kinds of defects in a semiconductor material are the following: 

· Vacancy and interstitial 
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These defects are called point defects and they consist of the absence of ions or presence of extra 

ions. Such defects are entirely responsible for the electrical conductivity of ionic crystal and can 

alter the optical properties such as their color.  

 

Figure 4-4: Schematic representation of vacancy and interstitial impurity 

 

· Line defects 

Linear crystal defects are edge and screw dislocations. 

Edge dislocations consist of an extra half plane of atoms “inserted” into the crystal lattice. Due to 

the edge dislocations metals possess high plasticity characteristics: ductility and malleability. 

Screw dislocation forms when one part of crystal lattice is shifted relative to the other crystal part. It 

is called screw as atomic planes form a spiral surface around the dislocation line. 

 

Figure 4-5: a) edge dislocation b) screw dislocation 

 

· Two dimensional defects 

Stacking faults (SF), Twin Boundaries (TB), Grain Boundaries (GB) Subboundaries (SB) and Sur-

faces are the typical examples of two dimensional defects in crystal. They have significant influence 
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on the electrical and oprical properties of semiconductors. Most of these influenced is caused by 

the defct levels at the boundaries of the semiconductors which are charged and attract compensat-

ing charges in the adjacent space charge of the crystal. 

· Shallow- and Deep Level Defects 

In a semiconductor there may exist following two types of electronically active defects: Shallow 

Level Defects and Deep Level Defects. This distinction is related to their different position in the 

energy band gap with respect to the conduction or valence band. Deep levels have highly locali-

zed wave function. 

4.5.1 Silicon Dangling Bonds 

The silicon atoms possess four valence electrons and therefore require four bonds to saturate the 

valence shell. In the crystalline structure each silicon atom establishes bonds to its four neighboring 

atoms, leaving no unsaturated bond behind. At the surface of the silicon crystal atoms are missing 

and traps are formed. 

 

Figure 4-6: Traps formation at the silicon surface 

After oxidation most interface states are saturated with oxygen atoms [6]. 
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5 Recombination mechanisms 

When the thermal-equilibrium condition of a semiconductor system is disturbed the mass-action law 

is no more valid: 

 

E@ ≠ @ 26 (5.1) 

 

 Processes exist to restore the system in equilibrium.  

 

These processes are recombination processes when E@ > @ 26 and thermal generation process-

es when E@ < @ 26. 

There are three fundamental recombination mechanisms in semiconductors: radiative, Auger and 

multi-phonon recombination. These three processes differ in the way the excess carrier energy is 

dispersed, being mediated by phonons, electrons and phonons respectively All three mechanisms 

can occur either from band-edge to band-edge, or via an intermediate level in the band-gap. 

However, when recombination occurs from band to band, it occurs principally through the radiative 

and Auger processes. In contrast, recombination through intermediate levels is almost exclusively 

dominated by multi-phonon emission. 

Multi-phonon recombination through intermediate levels is known as Shockley-Read-Hall (SRH) 

recombination. This defect-mediated process is not intrinsic: it requires the presence of localized 

levels within the band-gap. SRH recombination can occur either as a result of surface states, which 

are typically caused by dangling bonds, or through bulk defects or impurities [4]. 
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5.1 Radiative recombination  

Radiative recombination is the process of optical absorption: it involves the emission of a photon 

with energy approximately equal to that of the band gap. These emitted photons may be absorbed 

again before they escape from the crystal. However these low-energy photons are weakly ab-

sorbed. The radiative recombination rate VWPN depends on both the electron and hole concentra-

tions, since one of each is required for the process to occur. In p-type material we have the follo-

wing expression: 

 

VWPN = X∆@(FP + ∆@) 

 
(5.2) 

 

where B is a constant and the equilibrium electron concentration has been neglected. The radiative 

recombination lifetime 5Z\\  is given by: 

 

5Z\\ = 1
X(FL + ∆@) 

 

(5.3) 

 

because the recombination lifetime is expressed in this form: 

 

5 = ∆@
V  

 

(5.4) 

Radiative recombination is the dominant recombination process in direct semiconductors such as 

GaAs. In indirect semiconductors such as Silicon such processes are less probable because of the 

requirement for simultaneous photon and phonon emission. Figure (5.1) shows the radiative lifetime 
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as a function of excess carrier concentration ∆@ in comparison to Auger and Shockley-Reed Hall, 

SRH recombination lifetime for a 1 cm p-type silicon, a typical resistivity for solar cells.  

 

 

Figure 5-1: Radiative lifetime as a function of excess carrier concentration ∆@ in comparison to Auger and 

Shockley-Reed Hall, SRH recombination lifetime for a  1 cm p-type silicon [1] 

 

The figure shows that SRH recombination tends to dominate at low carrier concentrations. For more 

lightly doped samples, radiative recombination can overtake the Auger process in low-injection, but 

in these cases SRH recombination is usually completely dominant.  

The radiative recombination coefficient is temperature dependent and it decreases with increasing 

temperature. Its temperature dependence is shown in table: 

 

 

Table 5-1: Temperature dependence oft he radiative recombination coefficient 

*^_E^`abd`^(f) ∆@ (cmgh) X(*)(cmh/s) 

77 1.95 × 10g6? 8.01 × 10g>r 

90 8.87 × 10g>u 4.57 × 10g>r 

112 3.69 × 10gz 2.14 × 10g>r 

300 9.97 × 10g{ 4.73 × 10g>u 
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5.2 Auger recombination 

Auger recombination occurs when the energy released by the recombination of an electron-hole 

pair is carried off by a third free carrier. In lowly-injected p-type silicon, the third carrier is most 

likely to be a hole, and the corresponding recombination rate: 

 

VL|JZW =  }8∆@FP6 (5.5) 

 

 

where }� = 9.9 × 10����m��s�  is the low-injection Auger coefficient for p-type silicon. A 

similar expression holds for n-type silicon where !" = 2.8 × 10�� cm��s� . 

The low-injection Auger lifetime then for p-type silicon is: 

  

#$%&'( = 1
!�)*� 

 

(5.6) 

For low injection and: 

#$%&'( = 1
!*∆,�  

 

(5.7) 

 

For high injection; where !* = 1.66 × 10��/cm��s�  is the ambipolar Auger coefficient. Non 

interacting free particles should result in !* being equal to the sum of !" and !�. 

Like radiative recombination, Auger processes are intrinsic, in the sense that their presence does 

not depend on the specific techniques used for silicon crystal growth. 
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Figure 5-2: Example of Auger recombination 

5.3 Recombination mediated by defects 

Recombination center can act also as traps, in which a carrier is captured and subsequently 

injected back into the band from which it came. Trapping changes the free carrier concentration 

and can impact strongly on the overall carrier dynamics. We can write the first order differential 

equations in ∆, e ∆3: 

 

4' − 7∆,
7: = ∆,

#" = 1
#"/ ;(,/ + , + ∆,)(∆, − ∆3)

) + ∆,, ,/ + , @ (5.8) 

 

 

4' − 7∆3
7: = ∆3

#� = 1
#�/ ;(3/ + 3 + ∆3)(∆3 − ∆,)

) + ∆33 3/ + 3 @ (5.9) 

 

 

Here 4' is the generation rate arising from external illumination and ,/ and 3/ are the electron 

and hole concentration in thermal equilibrium. #"/ and #�/ are the fundamental electron and hole 

lifetimes and are related to the carrier thermal velocity ABC, the recombination center density N and 

the capture cross-sections D" and D� of the center. 
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#�/ = 1/)ABCD� (5.10) 

 

#"/ = 1/)ABCD" (5.11) 

 

The factors , and 3  are the electron and hole densities when the Fermi level corresponds to the 

recombination center energy FG : 

 

, = )H exp IFG − FHJK L 

 

(5.12) 

 

3 = )M exp IFH − FN − FGJK L 

 

(5.13) 

 

where )H  and )M are the effective densities of states at the conduction and valence band edges, 

and FH and FN  are the conduction band energy and the band-gap energy. 

The equations on the left of equation (5.8) and equation (5.9) define the carrier lifetimes in terms of 

the carrier densities and generation rate, which may be a function of time. The lifetime defined in 

this way is valid for arbitrary illumination conditions. If we consider the full equations, the aim is to 

solve them for #" and #� in terms of ∆, or ∆3. Under steady-state conditions, when the derivative 

terms are zero, there exist general analytic solutions for #" and #�.  

In samples where the recombination center density N is relatively large, these full expressions 

should be used. If N is small compared to ∆, and ∆3 and the dopant density, the long expres-

sions reduce to the expressions of the Shockley-Read-Hall model. We can write this expression with 

the use of the following identities: 
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,/,/ + , = 3/3/ + 3  

 

(5.14) 

And 

3 , = 3/,/ 

 

 

(5.15) 

 

4' = ∆,
#" = ∆3

#� = ∆,3/ + ∆3,/ + ∆,∆3
#"/(3/ + 3 + ∆3) + #�/(,/ + , + ∆,) 

 

 

(5.16) 

 

In the SRH model, N is small: the trapping of the carriers by the centers is negligible in comparison 

to the excess densities and we can consider ∆, = ∆3. We can now write the equation for the 

recombination lifetime #OPQ = #" = #� : 

 

#OPQ = #"/(3/ + 3 + ∆,) + #�/(,/ + , + ∆,)
,/ + 3/ + ∆,  

 

(5.17) 

 

This equation reduces for p-type silicon to: 

 

#OPQ = #"/()$ + 3 + ∆,) + #�/(, + ∆,)
)$ + ∆,  

 

(5.18) 
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This equation shows that the SRH lifetime is in general function of the excess carrier concentration. 

This equation could also be simplified in the case of very low and high injection. 

In the case of deep centers, ,  and 3  are much smaller than )$ and ∆,, the expression be-

comes: 

 

#OPQ = #"/;    7SS3 �S,:ST, VWX − Y,ZS�:YW, (5.19) 

 

#OPQ =  #"/ + #�/;    7SS3 �S,:ST, ℎY4ℎ − Y,ZS�:YW, (5.20) 

 

 

 

Figure 5-3: SRH recombination lifetimes for two different resistivities and different values of #�/ 

 

 

5.4 Surface recombination 

Surface recombination is a special case of SRH recombination in which the localized states occur 

at the surface. These states, unlike bulk SRH centers, do not usually occupy a single energy level 

but form a set of states distributed across the band-gap. Analysis of the surface recombination is 

made in terms of surface recombination velocity.  
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In the simpler case, we can consider a sample with a constant bulk lifetime, #\, and a small con-

stant SRV. The effective lifetime is: 

 

1
#']] = 1

#\ + 2^
_  (5.21) 

 

In the extreme case of infinite surface recombination velocity, the effective lifetime will be dominat-

ed by the transit time of carriers to the surfaces, provided the bulk lifetime is not very small. Under 

steady state conditions, the effective lifetime in this case is given by: 

 

1
#']] = 1

#\ + 12`
_�  (5.22) 

 

 

D is the carrier diffusivity. In low injection conditions should be used the value D for the minority 

carriers while in high injection conditions an ambipolar diffusivity is more appropriate. This equation 

is used to estimate bulk lifetimes in samples with very high surface recombination velocities and low 

bulk lifetimes.   In the transient decay mode, we have this equation: 

 

1
#']] = 1

#\ + a�`
_�  

 

(5.23) 

 

This amounts to a 22% higher effective lifetime measured in decay mode for a sample with a long 

bulk lifetime. For low bulk lifetime the difference is reduced. 
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5.5 Emitter recombination 

Recombination within the heavily doped emitter region is another import source of carrier loss in 

silicon solar cells. Essentially, the high recombination rate in this region is due to Auger processes. 

It is possible to characterize total emitter recombination in terms of a single parameter: the emitter 

saturation current density, b/' . This parameter contains recombination at the emitter surface as well 

as within the emitter bulk. 

The effective recombination lifetime due to the emitter can be written as:  

 

#'dfBB'( = g, �_
b/'()$ + ∆,) 

 

(5.24) 

 

In conditions of low injection, the lifetime is injection-level independent but in high-injection condi-

tions, it decreases linearly with excess carrier density. Values for b/'  vary depending on the diffu-

sion profile and the passivation quality. 

5.6 Effective lifetime 

For independent processes, the net recombination rate is the sum of all the single contributes, 

resulting in an effective lifetime #']] : 

 

1
#']] = 1

#OPQ + 1
#$%&'( + 1

#'dfBB'(  

 

(5.25) 
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Figure 5-4: Lifetime in function of excess carrier density for a substrate with )$ = 1 × 10 h cm�� and a 

deep SRH center with #"/ = 1 ms and #�i = 1 s 

 

In low injection, the sample is dominated by SRH recombination, at highest injection levels Auger 

recombination is the most important process. 

 

6 Surface passivation 

In order to minimize surface recombination, thin films of dielectric materials are used on crystalline 

solar cells as passivating layers. Surface passivation can be achieved mainly in two ways: 

· reducing the recombination of charge carriers at the interface (chemical passivation) 

· electrostatically, shielding the charge carriers from the interface by an internal electric field 

(field-effect passivation) 
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6.1 Chemical passivation 

The chemical passivation mechanism reduces the surface recombination of charge carriers 

reducing the interface defect density. 

We can write the equation for the surface recombination rate:[7] 

jO = k,O3O − ,f�l
= n oBC f̀B(FB)7FB[,O + , (FG)]D�� (FG) + [3O + 3 (FG)]D"� (FG)

tu

tv
 

(6.1) 

 

where: 

jO= surface recombination rate per unit area 

,O= electron density per unit volume at the cell surface 

3O= hole density per unit volume at the cell surface 

,f= intrinsic charge carrier density 

D"= capture cross section of electron 

D�= capture cross section of hole 

oBC= thermal velocity of charge 

FG= Defect energy carrier level 

f̀B= Interface defect concentration 

 

, − 3 = SRH electron and hole density 
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From equation (6.1) we can see that the surface recombination rate is directly proportional to the 

Dit:  a lower Dit value results in fact in a lower SRV. 

The recombination is mainly due to the presence of dangling bonds and impurities at the surface. 

One way to reduce the recombination and thus lower the recombination velocity is by chemically 

saturating these dangling bonds with the application of a passivation layer (dielectric layer as 

Al2O3). Elements such hydrogen and oxygen atoms that are present in the passivation layer bind 

with the dangling bonds in order to make these trapping centers electrically inactive: lifetime of 

charge carriers will increase. Chemical passivation has the advantages that it is simple and low 

cost to apply and can be performed at room temperature.  

 

6.2 Field effect passivation 

Passivation can also be achieved electrostatically, shielding the charge carriers from the interface 

by an internal electric field. Due to the inclusion of additional charges into the semiconducting 

material, the minority charge carriers can be repelled from the cell surface to avoid recombination. 

This is called field effect passivation. 

The first experimental attempts to reduce surface recombination losses in solar cells by means of 

the field effect passivation method were performed in the late 70s by Schartz et al.  

Field effect passivation can be achieved in two ways: 

• Passivation through diffused surface 

Through the additional doping of donor and acceptor atoms in the semiconductor, an additional 

electric field such as n+/p+ or n-/p- layer is formed near the cell surface and that repeals the 

minority charge carriers 
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• Passivation through fixed charges in the dielectric layer 

Some passivation materials contain fixed positive or negative charges in the dielectric layers. These 

charges influence the movement of charge carriers. When a dielectric material containing negative 

charges such as Al2O3 is applied to p-type silicon, the high negative charge density in the pas-

sivation layer acts as a shield and causes the repulsion of minority charge carriers, reducing the 

rate of charge carrier recombination at the interface. This results in a lower surface recombination 

velocity, SRV. 

At the same way, when a dielectric material containing inherent positive charges such a SiNx is 

applied to p-type silicon, the high positive charge density at the interface attracts minority charge 

carriers. This causes the formation of an inversion layer at the interface between p-type silicon and 

the dielectric layers. We have a depletion of majority charge carriers, in this case holes, at the 

active recombination sites.  Recombination rate at the surface is reduced. 

6.3 A short review of surface passivation materials 

Three of the most important surface passivation materials used for photovoltaic technologies are 

silicon dioxide, SiO2, hydrogenated amorphous silicon nitride, a-SiNx:H, and hydrogenated amor-

phous Si, a-Si:H. 

· Silicon dioxide,SiO2 

 

The high quality of interface between thermally grown SiO2 and Si is responsible for high solar cell 

efficiencies . [8]Silicon thermal oxide layers allow for a surface recombination velocity of below 10 

cm/s on p-type surfaces .[9] The passivation mechanism of these films is based on chemical 

passivation and that leads to a low interface trap density at the Si/SiO2 interface (Dyz ≈
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10 /cm�� ∙ eV� ). Typical values for the positive fixed charge density are in the range of 

1 to 5 × 10   cm�� [9].This high level of chemical passivation can be achieved for both n- and 

p-type surfaces. Forming gas annealing for example introduces hydrogen that passivates the 

electronically active defects such as Pb-type defect that is a Si-dangling bond [2]. 

· Hydrogenated amorphous silicon nitride, a-SiNx:H 

 

The optical properties of this material can be varied in a wide range; SiNx is in fact the standard 

material for antireflection coatings in solar cells. Films containing nitrogen exhibit refractive indices 

around 2: for this reason they are applied at the front of a solar cell. In addiction SiNx releases 

hydrogen during firing und this plays an important role in the bulk passivation of multicrystalline Si 

[10]. The passivation mechanisms of a-SiNx:H films depends on the content of nitrogen. For exam-

ple, when the nitrogen content is low, the high level of passivation is mainly due to chemical pas-

sivation. When the concentration of N is high, on the other hand, the films induce a significant 

amount of field effect passivation [2, 10]. 

· Hydrogenated amorphous Si, a-Si:H 

 

 The deposition of hydrogenated amorphous silicon (a-Si:H) is another way to obtain excellent 

passivation. In contrast to hydrogenated amorphous silicon nitride (a-SiNx: H), the amorphous 

silicon (a-Si: H) does not contain inherent positive charges in the dielectric layer. This avoids 

shunting at the rear surface and the recombination in the interface [11]. Limitation of the application 

of a-Si:H surface passivation films are parasitic absorption effects and the lack of thermal stability 

during firing [2]. 
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7 Crystal lattices 

In this section a short overview of crystallography is given, expecially Silicon crystal structure has 

been analyzed. Most of the equations of this section have been taken from the textbook Solid State 

Physics, Ashcroft Neil W., Mermin N. David [6]. 

An ideal crystal consists of the infinite repetition of identical units in space. This unit constitutes of a 

single atom or of many atoms or molecules [6]. One lattice is described through three fundamental 

vectors, � ,��,�� .The atomic arrangement looks the same when viewed from the point � and 

viewed from the point: 

 

�� = � + � � + ���� + ���� (7.1) 

 

 

where � ,��and �� are arbitrary integers.  

The points ��defined by equation (7.1) for all � ,��and �� defines a lattice: a set of periodic array 

of points in space. A crystal structure is defined by this relation: 

 

V�::Y�S + ���Y� = �T��:�V �:T��:�TS 

 

A basis of atoms consists of identical copies of the same physical unit. 

If any two points ��and � from which the atomic arrangement looks the same always satisfy the 

equation (7.1) then lattice and translational vectors are called primitive [12]. 
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The number of atoms in the basis is not always the same for every crystal: it could be one or more 

than one. The position of the center of an atom j of the basis relative to the associated lattice point 

is: 

 

�� = ��� + ���� + ���� 

 
(7.2) 

 

7.1 Primitive lattice cell 

A primitive cell is a type of cell or unit cell whose volume is the minimum. The number of atoms in a 

primitive cell or primitive basis is always the same for a given crystal structure. There is always one 

lattice point per primitive cell.  

The volume of a parallelepiped with axes � ,��,��is: 

 

�H = |� ∙ �� × ��| 

 
(7.3) 

 

The primitive basis is the basis associated with primitive cell. It doesn’t exist a basis which contains 

fewer atoms than a primitive cell [6, 12]. 
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7.2 Types of lattice 

 

A lattice in three dimensional crystals is defined by three vectors � ,��,��and three angles 

�,�and �. There are an infinite number of possible crystals but a finite number of lattice types. The 

different types are called Bravais lattices. When a Bravais lattice is repeated it can fill the whole 

space.  A three dimensional Bravais lattice consists of all points with position vectors � of this form:  

 

� = � � + ���� + ���� 

 
(7.4) 

 

In three dimensions we have five distinct Bravais lattices but in three dimensions there are fourteen 

that can be grouped in 7 lattice systems: triclinic, monoclinic, orthorhombic, trigonal, tetragonal, 

cubic and hexagonal [6]. 

 

There are three lattices in the cubic system: the simple cubic (SC) lattice, the body-centered cubic 

(BCC) and the face-centered cubic (FCC) lattice. The characteristic of these cubic lattices are 

summarized below:  
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Figure 7-1: Three lattices in the cubic system: simple cubic (SC), body center cubic (BCC) and face centered 

cubic (FCC)  

 

7.3 Coordination number 

The points in a Bravais lattice that are closest to a given point are called nearest neighbors. Each 

point, because of the periodic nature of the Bravais lattice, has the same number of nearest neigh-

bors. This number of nearest neighbors is called coordination number of the lattice. A simple cubic 

lattice has coordination number 6; a body center cubic lattice has coordination number 8; and a 

face-centered cubic lattice 12 [12]. 

7.4 Reciprocal lattice 

The reciprocal lattice is the lattice in which the Fourier transform of the spatial wavefunction of the 

direct lattice is represented. 
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A reciprocal lattice is defined as the set of all wave vectors K that yields plane waves with the 

periodicity of a given Bravais lattice.  

 � belongs to the reciprocal lattice of a Bravais lattice of points �; 

the following expression holds for r and for all R in the Bravais lattice: 

 

Sf�∙(���) = Sf�∙� 

 
(7.5) 

 

The reciprocal lattice can be also represented as the set of wave vectors � satisfying this equation: 

 

Sf�∙� = 1 

 
(7.6) 

 

for all � in the Bravais lattice.  

 

The reciprocal lattice is a Bravais lattice. Consider  � , �� and ��, a set of primitive vectors for the 

direct lattice. We can define three primitive vectros that can generate the reciprocal lattice: 

 

� = 2a �� × ��� ∙ (�� × ��) 

 

�� = 2a �� × � � ∙ (�� × ��) 

 

�� = 2a �� × ��� ∙ (�� × ��) 

 

 

(7.7) 
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And �f  satisfy: 

�f ∙ �� = 2a�f�  (7.8) 

 

 

Where �f� is the Kronecker delta symbol. 

 

At this point any vector � can be written has a linear combination of the  �f  as follows: 

 

� = � � + ���� + ���� 

 
(7.9) 

 

And if � is any direct lattice vector, then: 

� =  � � + ���� + ���� 

 
(7.10) 

 

Where the � ,��and �� are integers. It follows form the equation (7.8) that: 

 

� ∙ � = 2a(� � + ���� + ����) 

 
(7.11) 

 

[6, 12] 
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7.5 Lattice planes and Miller indices 

 

A lattice plane is defined as any plane containing at least three noncollinear Bravais lattice points. A 

family of lattice planes is a set of parallel, equally spaced lattice planes, that contain all the points of 

the three dimensional Bravais lattice. Any family of lattice planes separated by a distance 7 is 

associate with reciprocal lattice vectors perpendicular to the planes, the shortest of which have a 

length of 2a/7 [6]. 

The Miller indices of a lattice plane are the coordinates of the shortest reciprocal lattice vector 

normal to that plane, with respect to a specific set of primitive reciprocal lattice vectors. A plane 

with Miller indices h,k,l, is normal to the reciprocal lattice vector: 

 

ℎ� + ��� + V�� (7.12) 

 

 

Table 7-1: Miller indices: notation and interpretation 

 

Miller indices are used to specify directions and planes; these could be in lattices or in crystals and 

the number of indices will match with the dimension of the lattice of the crystal [6, 12]. 
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Figure 7-2: Silicon crystal planes 

 

7.6 Silicon crystal structure 

As far as the silicon crystal structure is concenrned, silicon crystallizes as diamond, the unit celli is 

cubic and each Si atom has 4 nearest neighbors. The lattice constant is 5.431 Å.  4 atoms are 

completely inside the cell and each of the 8 atoms on corner is shared among shells. Each of the 6 

atoms on the faces is shared among 2 cells [6]. 

 

 

Diamond Structure 

 

The diamond lattice consists of two interpenetrating face-centered cubic Bravais lattices. It can be 

considered as a face-centered cubic lattice with the two point basis 0 and (�/4)(¡¢ + £¢ + ¤¥). 

The coordination number is 4. The diamond lattice is not a Bravais lattice because the environment 

of any point differs in orientation from the environment of its nearest neighbors. In table we can find 

elements crystallizing in the diamond structure:[6, 12] 
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Table 7-2: Cube side of  carbon, silicon and germanium 

F¦F§F)K ���� !"#� $(%̇) 

C (diamond) 3.57 

Si 5.43 

Ge 5.66 

 

 

 

7.6.1 Silicon wafer orientation 

 

Figure 7-3: crystal orientation in FZ-Si wafers with SEMI M1 specification 

 

Standard silicon wafers used in semiconductor manufacturing are extensively standardized by 

SEMI (Semiconductor Equipment and Material International). These standards stipulate most of the 

important parameters, like dimensions, dimensional tolerances, key measurement technique. In this 

work p-type FZ-Silicon wafers with SEMI M1 specification are used, with flat specification: [13] 
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Figure 7-4: Image of the crystal orientation in FZ-Si wafers with SEMI M1 specification from the Siltronic AG 

corporation, Münche 

8 Characterization techniques 

8.1 Quasi-Steady State Photo Conductance (QSSPC)   

In this work we used the QSSPC, “quasi-steady-state-photoconductance” technique to measure the 

lifetime of our samples. This technique was first suggested by Sinton and Cuevas in 1996 [14]. 

Measurements of minority carrier lifetimes in silicon are extremely important for process control and 

device optimization as well as material device research The QSSPC method monitors the decay of 

optically excessed charged carriers to their equilibrium conditions [14]. 
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The QSSPC method is based on the principle of electromagnetic induction: a change in the sample 

conductivity is measured. 

Suppose we have no traps in the bulk of the semiconductor ∆* = ∆+ the net excess conduct-

ance ∆, is given by this equation: 

 

∆, = -∆*(./ + .1)2 

. 
(8.1) 

 

Where W is the width of the sample and ./ and .1 are the mobilities of electrons and holes. 

A flash lamp is used as generation source. There are three different ways to obtain lifetime meas-

urements: it depends on the illumination time with the flash lamp. 

When we have to measure low lifetime, Quasi-Static measurement is used and the sample is 

exposed to light for a significantly long time to obtain the lifetime value [15]. 

As seen is section 5, the relation between excess carrier density and carrier lifetime is obtain by the 

following equation: 

 

3(∆*) = ∆*(4)
5  

 

(8.2) 

G is the excess carrier generation rate after illumination and depends on the intensity of illumina-

tion, on the optical properties and material characteristic. 

The Transient Measurements method is used to measure high values of sample lifetimes. The 

sample is illuminated for a short time and the generation rate G is neglected due to dark measure-

ment. The lifetime in this case is expressed by the following expression: 
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3(∆*) = ∆*
67∆*(4)8

∆4
 

 

(8.3) 

Nagel et al. proposed also another method, more accurate, to determine carrier lifetime. In this 

method, lifetime measurements are independent from the duration of the flash lamp [16]. 

 

3(∆*) = ∆*
5(4) − 67∆*(4)8

∆4
 

 

(8.4) 

In this method, a specific parameter, before the measurement, has to be known. This parameter is 

called the optical factor :;<> .  

 

5 = ?1@:;<>
2  

 

(8.5) 

where ?1@  is the flux of photons and W is the thickness of the sample [17]. 

 

  

Figure 8-1: Schematic of the QSSPC working principle 
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8.2 Spectral ellipsometry 

Spectral ellipsometry measurements are based on the principle that, when a linearly polarized 

beam of light is made incident on a surface, there is a change in the polarization of the light beam 

from the material surface. 

Table 8-1: Features of spectral ellipsometry [18] 

Measurement probe Light 

Measurement value (Ψ, Δ) 

Measurements region  Infrared-visible/ultraviolet region 

Application area: semiconductor Substrates, thin film, gate dielectrics, lithogra-

phy films 

Real-time monitoring Chemical vapor deposition(CVD), molecular 

beam epitaxy(MBE), etching, oxidation, thermal 

annealing, liquid phase processing etc. 

Restrictions Surface roughness of samples has to be small 

Measurement has to be performed at oblique 

incidence 

 

To measure the thickness of our sample we use a spectral Ellipsometer that works on the principle 

described above. Ellipsometry is also applied to characterize composition, roughness, doping 

concentration, and other material properties associated with a change in optical response.[18] The 

spectral Ellipsometer measures the two values,(Ψ, Δ): the amplitude ratio  and phase differ-

ence  between light waves known as p- and s-polarized light waves. The change in light polari-

zation after reflection can be measured using this expression (according to Fresnel equations): 

D = EF1
F>

G = tan( ) HI∆  (8.6) 
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Where: 

D is the complex reflectance ratio; 

F1 is the component of the beam parallel to the angle of incidence (p-polarized waves) 

F> is the component of the beam perpendicular to the angle of  incidence (s-polarized waves) 

 is the amplitude ratio 

 is the phase difference between F1 and F> after reflection 

 

8.3 Electron paramagnetic resonance (EPR)  

 

Electron Paramagnetic Resonance is an analytical tool that can provide chemical and structural 

information about trapping centers. In addition, it can also provide measurements of the density of 

these centers. Most trapping centers will capture a single electron or a single hole: with the capture 

of either an electron or a hole an initially diamagnetic center will be rendered paramagnetic and it 

will turn to be EPR active. and a Also an initially paramagnetic center can be rendered diamagnetic 

and  thus EPR inactive with the capture of either an electron or a hole. EPR can identify the re-

sponse of a defect to charge carriers, measure its density, and identify its chemical and structural 

nature.  
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9 EPR: theoretical aspects 

9.1 Historical overview 

  

 

Figure 9-1: Scheme oft he Stern-Gerlach apparatus 

 

The technique of electron paramagnetic resonance spectroscopy may be seen as an extension of 

the Stern-Gerlach experiment.  

This experiment in the 1922 discovered a new aspect of nature and at the same time found the 

simplest quantum system in existence. In the Stern-Gerlach experiment a beam of hot atoms (silver) 

is passed through a non uniform magnetic field. This field would interact with the magnetic dipole 

moment of the atom and deflect it.  

The quantum mechanics predictions are that .JK, the orbital magnetic dipole moment in the z 

direction, can have only the quantized values: 
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.JK = −LJ.MNJ  

. 
(9.1) 

 

where: 

.M= Bohr magneton 

LJ= orbital g-factor 

NJ= magnetic dipole moment 

and  

 

 
NJ =  −O, −O + 1, … ,0 … , +O − 1, +O 

 
(9.2) 

 

Thus, the quantum mechanical prediction is that the deflected beam would be spread in discrete 

components. As far as the classical predictions are concerned, a continuous distribution of values 

of .JK would be expected and thus the beam would be spread in a continuous band. 

 

Stern and Gerlach found out that the beam of silver atoms is split into two discrete components: 

one component was bent in the positive z direction and the other in the negative z direction. They 

showed also that this result was independent of the choice of the negative z direction. 
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Figure 9-2: The actual images taken from the post card Gerlach sent to Bohr announcing his results (February 

1922). It shows a photograph of the beam splitting 

 

This experiment discovered that the atoms, specifically the unpaired outer electron, did have a 

magnetic dipole moment. In effect, in addition to being charged, electrons acted like bar magnets. 

An electron has in fact an intrinsic magnetic dipole moment .>, due to the fact that it has an intrin-

sic angular momentum S called spin. The magnitude S and the z component of the spin angular 

momentum are related to two quantum number, s and N> , by quantisation relations which are 

identical to those for orbital angular momentum: 

 

 
! =  RS(S + 1)ħ 

 
(9.3) 

 

 
!U =  N>ħ 

 
(9.4) 

 

 

 VW =  − L>.M
ħ X (9.5) 
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.>K = −L>.MN>  

 
(9.6) 

 

The quantity L> is called the spin g factor. From the experimental observation that the beam of 

hydrogen atoms is split into two symmetrically deflected components, it is apparent that .>K can 

assume just two values, which are equal in magnitude but opposite in sign. The possible values of 

N> differ by one and range from –s and +s: 

 

N> =  − 1
2 , + 1

2 

 

(9.7) 

 

And that s has the single value  

S = 1/2 

 

By measuring the splitting of the beam of hydrogen atoms, it is possible to evaluate the net force 

[Kthey feel while traversing the magnetic field: 

 

 

[K =  − E \�U
\] G L>.MN>  

 

(9.8) 

 

Since .M  is known and  ^M_
^K  can be measured the experiments determine the value of the quantity  

L>N> and it was found that: 
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  L>N> =  ±1. This implies: 

 

L> = 2 

 

These conclusions are confirmed by many different experiments.  

The splitting of energy levels of an atom when it is placed in an external magnetic field is called the 

Zeeman effect. The splitting occurs because of the interaction of the magnetic moment of the atom 

with the magnetic field B slightly shifts the energy of the magnetic levels. This splitting corresponds 

of the two possible values of the orientational potential energy: 

 

∆� =  −VW ∙ b =  −.>K ∙ � =  L>.MN>� =  ± L>.M�
2  (9.9) 

 

where the z axis is taken into the direction of the applied field.  This energy shift depends on the 

relative orientation of the magnetic moment and the magnetic field. Electron spin resonance de-

pends on the Zeeman splitting of a single energy level within the atom. 

 

The first observation of an electron paramagnetic resonance peak was made in 1945 when Za-

voisky’s results were interpreted by Frenkel as paramagnetic resonance absorption. Other experi-

ments were undertaken at higher microwave frequencies in magnetic field of 100-300 mT: it was 

showed the advantage of use of high frequencies and field. After the World War 2 equipment for the 

9-GHz region had been extensively used for radar. Also in the United States and in England studies 

were made in this field. Theorists such as Abgram, Bleaney, Pryce and Van Vleck contributed in the 

interpretation of the EPR spectra. In the 1980s, the equipment became cheaper and the first com-

mercial pulse EPR was released to the market. Ten years later, the first commecial high field spec-

trometer was released [20-22].  
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9.2 Orbital magnetic dipole and Larmor precession 

An electron of mass m and charge –e that moves with velocity of magnitude v in a circular orbit of 

radius r, produces a current of magnitude: 

 

 

c = H
d = He

2fF 

 

(9.10) 

 

T= orbital period of the electron whose charge has magnitude e.  

This loop produces a magnetic field orientated perpendicular to its plane. If we consider a current I 

circulating is a loop of area A, the magnitude of the orbital magnetic dipole moment .J  of the 

equivalent dipole is: 

 

.J = c% 

 
(9.11) 

 

Electrons are negative charged: for that reason its magnetic moment  .J  is antiparallel to its orbital 

quantum momentum L: 

 

g = NeF (9.12) 

 

 

Combining these two first expressions and evaluating i from the first equation, we obtain: 
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.J = c% = HeF
2  

 

(9.13) 

And we can obtain 

 

.J
g = HeF

2NeF = H
2N 

 

 

(9.14) 

This ration can be written as: 

 

.J
g = L.M

ħ  

 

 

(9.15) 

 

where 

.M = Hħ
2N = 0.927 × 10klm amp − ml 

 

 is called the Bohr magneton. 

 The quantity g is called the orbital g factor.  

Equation (8.15) can be written also as a vector equation: 

 

Vq =  − L.M
ħ r 

 

(9.16) 

Because the ratio .J/g does not depend on the size of the orbit or on the orbital frequency this 

equation can also be rewritten in this way:  
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Vq =  L.M
ħ g =  L.M

ħ RO(O + 1)ħ = L.M  RO(O + 1) 

 

 

(9.17) 

(using the quantum mechanical expression:  g = RO(O + 1)ħ )  
And: 

.JK = − L.M
ħ gK = −L.MNJ  

 

 

(9.18) 

If we consider the behavior of a magnetic dipole of moment .J   placed in an external magnetic field 

B, it will experience a torque: 

 

s =  !" × # 

 

 

(9.19) 

This torque tends to align the dipole to the field. There is also a potential energy associated to this 

torque: 

 

∆% =  −!" ∙ # 

 
(9.20) 

 

The orientational potential energy ∆% of the system must remain constant if there are not possibili-

ties for the system to dissipate energy. In this situation  !" cannot align itself with B. The magnetic 

dipole moment will precess around B but the angle between these two vectors must remain con-

stant such as the magnitude of both vectors.  
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Figure 9-3: The magnetic dipole moment precesses around the magnetic field B 

 

We can write at this point the angular frequency of precession of ()  about B: 

 

* = +(,ħ #  
 

(9.21) 

This equation shows the phenomenon called Larmor precession: the sense of the precession is in 

the direction of B [19, 20]. 

 

The phenomenon of electron spin resonance spectroscopy can be explained by considering the 

behavior of a free electron. According to quantum theory the electron has a spin which can be 

understood as an angular momentum leading to a magnetic moment. 

Consequently, the negative charge that the electron carries is also spinning and constitutes a 

circulating electric current. The circulating current induces a magnetic moment which, if the elec-

tron is subjected to a steady magnetic field, ./||0 , causes the electron to experience a torque 

tending to align the magnetic moment with the field. As seen in the section 8.1, the relation between 

the magnetic moment and the spin vector is: 
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(1 =  −+(,2/ħ 

 

where (, = 4ℎ/4789   is the Bohr magneton and + = 2.002319 is the Lande’ factor. The 

energy of the system depends on the projection of the spin vector along the field ./.Only two 

values are permitted for an electron 

2A =  ± ħ
B 

 

which means that the electron magnetic moment can only assume two projections on the applied 

field as shown in Figure. 

 

 

Figure 9-4: Energy level scheme for the simplest system, the free electron as a function of the applied magnetic 

field B, showing EPR absorption 

 

(A = ± +(,2  (9.22) 

 

and the two values of the energy levels are: 

%± = +(,2 ./ (9.23) 
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Magnetic resonance occurs when the energy difference between the two electron orientations is 

equal to Planck’s constant,h, times the microwave frequency. For the case of an isolated electron, 

the resonance requirement may be expressed as: 

 

∆% = %C − %D = ℎE = +(,. 

 
(9.24) 

 

This expression describes the resonance condition for a single electron that is not supposed to 

interact with its surroundings. 

 

 

 

Figure 9-5: The absorption peak corresponds to the resonance condition for a single electron that not interacts 

with the surroundings 

 

 

For electrons bound into an atom or into a molecule, the phenomenon of EPR may not be observed 

at all, because electron spins pair off in atomic or molecular orbitals so that no net spin magnetism 

is exhibited and the material is said to be diamagnetic.  

When an atom or a molecule has an odd number of electrons, however, complete pairing is not 

possible and the material is said to be paramagnetic. In that case EPR signal can be observed. 
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In EPR measurements, the sample under study is exposed to a large slowly varying magnetic field 

and a microwave frequency (300 GHz – 300 MHz) magnetic field oriented perpendicular to the 

applied field. Usually the measurements are made at the X band: that corresponds to a microwave 

frequency of  E = 9.5 G.0.  

At the resonance condition the microwave energy allows the transition between the two electron 

energy levels and thus the inversion of the spin orientation with respect to the direction of the 

applied magnetic field.  

EPR samples consist of collections of many paramagnetic species, and not single isolated para-

magnetic centers.  

If the population of radicals is in thermodynamic equilibrium, its statistical distribution is described 

by the Maxwell-Boltzmann equation: 

 

 

HIJJ9KH)LM9K = exp N−%IJJ9K − %)LM9KOP Q = exp R− %
OP S

= exp N− ℎE
OPQ 

(9.25) 

 

 

where HIJJ9K  is the number of paramagnetic centers occupying the upper energy state, H)LM9K  

is the number of paramagnetic centers occupying the lower energy state, K is the Boltzmann 

constant, and T is the temperature in Kelvins.  At 298 K, X-band microwave frequencies (9.75 GHz) 

give 

HIJJ9KH)LM9K = 0.998 
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That means that the upper energy level has a smaller population than the lower one. Therefore, 

transitions from the lower to the higher level are more probable than the reverse, which is why there 

is a net absorption of energy. 

 

 

DEVIATION: 

The structural information provided by EPR is due to some deviation from this expression. The most 

important deviations are due to spin-orbit coupling and electron-nuclear hyperfine interaction [21]. 

 

9.3 Spin-orbit interaction 

In a one-electron atom, if we consider the motion of the nucleus from the point of view of the elec-

tron, the origin of the magnetic field experienced by the electron can be easily understood. In a 

frame of reference fixed on the electron, the charged nucleus moves around the electron and the 

electron is placed in a current loop which produces a magnetic field.  

 

Figure 9-6: Spin-orbit coupling in the rest frame of the nucleus and of the electron 
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The charge nucleus moving with velocity −U constitutes a current element V = −W4U  

According to the Ampere’s law, this produces a magnetic field X: 

 

X = (/47
Y × Z

[\ = W4(/47
U × [

[\  

 

(9.26) 

 

at the position of the electron. 

 According to Coulomb’s law we can also express this expression in terms of the electric field E: 

 

% = W4
47]/

Z
[\ 

 

(9.27) 

And from this last equation we have: 

 

X = −]/(/^ × _ 

 
(9.28) 

Or: 

X =  − 1
`B ^ × _ (9.29) 

 

where ` = 1/a]/(/. 

The quantity B is the magnetic field experienced by the electron when it is moving relative to the 

nucleus. 

 

The orientational potential energy of the magnetic dipole moment in this magnetic field is: 
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∆% = −!b  ∙ # 

 
(9.30) 

Or, in terms of the electron spin angular momentum S: 

 

∆% = +1(,ħ b ∙ # (9.31) 

 

 

These equations are valid in a frame of reference in which the electron is at rest. For the evaluation 

of the energy in the normal frame of reference (in which the nucleus is at rest) relativistic transfor-

mation of velocities has to be taken into account. 

The spin-orbit energy is: 

∆% = +1(,2ħ b ∙ # 

 

(9.32) 

The spin-orbit coupling may thus be included in the EPR resonance condition by replacing the 

constant +1 with a symmetric rank tensor +cd. The symmetry of this tensor reflects the symmetry of 

the paramagnetic center. Perturbation theory allows calculation of the g tensor for simple defects. 

The components of the g tensor are given by: 

 

 
(9.33) 

 

 

Here +/ is the free electron value, f the atomic spin-orbit coupling constant, gcand gd  are angular 

momentum operators appropriate for the x,y or z directions and the summation is over all excited 

states k. State  hand energy %i correspond to the paramagnetic ground state of the system [19, 

20]. 
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9.4 Electron-nuclear hyperfine interaction 

The hyperfine interaction of the unpaired electron with the nuclei is another source of deviation from 

this expression: 

 

ℎE = +/(,X (9.34) 

 

 

A hyperfine splitting of the energy levels can be observed for many atoms. It is smaller than the 

spin-orbit splitting by three orders of magnitude. Hyperfine splitting can be due to the interaction 

between an intrinsic magnetic dipole moment of the nucleus and a magnetic field produced by the 

atomic electrons, and/or to the interaction between a nonspherically symmetrical nuclear charge 

distribution and a nonspherically symmetrical electric field produce by the atomic electrons. These 

effects can provide useful information about the nucleus . 

 

In metal/insulator/silicon systems we can report the most significant magnetic nuclei: 

Si(spin 1/2), H(spin 1/2), P(spin 1/2) and N (spin 1). A spin ½ has two possible orientations in the 

applied field and a spin 1 nucleus three possible orientations. 

 We can consider the nuclear moment interacting with an unpaired electron whose wave function is 

a linear combination of atomic orbitals (LCAO, linear combination of atomic orbitals). The wave 

functions of molecular orbitals can be approximated by taking linear combinations of atomic orbit-

als. 

 The LCAO for an unpaired electron can be written as: 

 
(9.35) 
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Where s and p represent the atomic orbitals corresponding to the nth site, 

jkB  is the localization on the nth site, 

`1B and `JB represent the amount of s and p character of the wave function on the nth atomic site. 

To first order we can consider  jkB ≅ 1 because the unpaired electron can be considered well 

localized at a single nuclear site. To first order then we can interpret EPR spectra in term of s/p 

hybridized atomic orbitals localized at a central site. 

  

The electron nuclear interaction of an electron in a p orbital is anisotropic: 

 

Figure 9-7: Schematic illustration of an electron in a p orbital interacting with a magnetic nucleus.  a) In the first 

case the nuclear moment is parallel to the symmetry axis. b) In the second case the nuclear moment is perpen-

dicular to the symmetry axis 

 

The interaction is strongest when the field is parallel to the symmetry axis. When the field is per-

pendicular to the symmetry axis the sign of the interaction changes and the magnitude is decrease. 

The electron-nuclear hyperfine interaction is isotropic in a s orbital: 
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Figure 9-8: Diagram of the isotropic interaction of an s orbital electron with a magnetic nucleus 

 

Because of the spherical symmetry of the orbital the interaction with this field is zero; the interaction 

is not zero only in a spherical region about the nucleus (with a radius of an imaginary current loop 

generating the nuclear moment’s field). When the s orbital has a probability density at the nucleus 

that differs from zero we have a large isotropic interaction. For the s orbital hyperfine interaction we 

can consider the magnetic field at the center of a current loop of radius j: 

 

2(
j\  

   

(9.36) 

 according to the Biot-Savart law, where j is the radius of the current loop and ( is the magnetic 

moment of the current loop. We can consider the probability density of the electron to be constant 

because it doesn’t vary much over the volume of the nucleus.  

At this point we can write the isotropic interaction 

 

m(oqrs[rto`) = N 43 7j\|h(0)|BQ N2(
j\Q 

   

(9.37) 

 

We have considered only the fraction of the electron wave function at the nucleus: 
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4
3 7j\|h(0)|B 

   

(9.38) 

 

The magnetic moment of the nucleus is the nuclear g factor, +k, times the nuclear Bohr magneton, 

(,k. The isotropic or Fermi contact interaction can be rewritten as: 

 

m(oqrs[rto`) = N 83 7 +k(,k|h(0)|BQ 

   

(9.39) 

 

The hyperfine interaction is expressed in terms of a second rank tensor. In good approximation, the 

wave functions of the paramagnetic centers in Silicon thin films are axially symmetric and thus an 

axially symmetric tensor is appropriate.  The component of the hyperfine tensor correspond to sums 

of the isotropic and anisotropic interactions for the applied field parallel and perpendicular to the 

unpaired electron’s orbital symmetry axis: 

 

 m∥ =  mc1L + 2mykc1L; 
 

m{ = mc1L − mykc1L  

   

(9.40) 

 

If we consider a paramagnetic center with a specific orientation the resonance condition is: 

 

. =  ./ + }~m 

   
(9.41) 
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. =  ./ +  }~m 

Where 

./ = ℎE
+(,  

And }~ is the nuclear spin quantum number. 

 

+ =  +∥B cos �B + +{B sin �B 

   
(9.42) 

 

And  

m = (m∥B cos �B + m{B sin �B ) 

 

   

(9.43) 

These equations are a very reliable basis for analyzing EPR results for defects with a specific 

orientation with respect to the applied magnetic field. The evaluation of EPR hyperfine tensor allows 

a reliable identification of the wave function of unpaired electrons [19, 20]. 

9.5 g-factor 

 

An unpaired electron responds not only to a spectrometer's applied magnetic field B but also to 

any local magnetic fields of atoms or molecules: 

 

���� = � + ������ 
 

(9.44) 
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Where  

���� = (1 − )� 

 

   

(9.45) 

 

� includes effect of local fields (positive or negative). 

At this point we can rewrite equation (9.34) 

 

ℎE = +/(,(1 − )X 

   
(9.46) 

 

and the quantity: 

+ = +/(1 − σ) 

   
(9.47) 

is given as g-factor. 

In many free radicals and some transition ions the g factor determined from EPR experiment is 

equal to +/. There are also many systems that show deviations from this value. That tells us that the 

ratio of spin magnetic moment to angular moment could be different than free electron. Thus the 

electron must have gained or lost angular momentum through spin-orbit coupling.  

The magnitude of the change gives information about the nature of the atomic or molecular orbital 

containing the unpaired electron. 

 

The anisotropy of the g factor is related to the symmetry of the electronic orbital of the unpaired 

electron under study. The origin of g anisotropy is the spin-orbit coupling (seen in section 9.3). 
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An isotropic g factor corresponds to a symmetric environment such as cubic, octahedral and 

tetrahedral symmetry: g is a scalar. As far as the anisotropic g factor is concerned, the system has 

an axial symmetry or rotational. The g factor consists of a matrix/tensor. Choosing an appropriate 

coordinate system (x,y,z for example) we can "diagonalize" this tensor, reducing the maximum 

number of its components from nine to three 

 

+� 0 00 +� 0
0 0 +�

 

 

 

Figure 9-9: absorption and first-derivative spectra for three different classes of anisotropy. In the first class, called 

isotropic, all of the principal g factors are the same. In the second class, called axial, there is a unique axis that 

differs from the other two (+� = +� ≠ +�). The g factor along the unique axis is said to be parallel with it,  

+� = +∥ while the remaining two axes are perpendicular to it, +� = +{. The last class, called rhombic, 

occurs when all the g factors differ [21]. 
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10 EPR spectrometer 

An EPR spectrometer consists of four essential components: 

1) A monochromatic microwave source 

2) A waveguide for guiding the microwave power to the sample 

3) A cavity designed to ensure a proper coupling between the sample and the incoming wave 

4) A detector for microwave power to detect the response of the sample to microwave irradiation 

 

A schematic drawing of the EPR spectrometer is shown in Figure 10-1: 

 

 

 

Figure 10-1: General layout of an EPR spectrometer 

 

The electromagnetic radiation source and the detector are in a box called ‘the microwave bridge’. 

The sample is a microwave cavity, which is a metal box that helps to amplify weak signals from the 

sample. There is a magnet to tune the electronic energy levels. We have also a console which 
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contains signal processing and control electronics and a computer. The computer is used for 

analyzing data and coordinating all the units for acquiring a spectrum. 

 

10.1 Source 

The frequency of radiant energy used in the majority of EPR spectrometers is approximately 9.5 

GHz, in the medium-frequency microwave region. This frequency corresponds to a wavelength of 

about 32 mm. This source is usually a klystron, a vacuum tube with a low-noise characteristic. The 

field B is generated by oscillations within its own tunable cavity.  

 

 

Table 10-10.1: Microwave frequency bands 

Band Frequency � #�(� =  ) 

L 1 GHz 30 cm 36 mT 

C 3 GHz 10 cm 0.1 T 

X 10 GHz 3 cm 0.35 T 

K 24 GHz 1.25 cm 0.86 T 

Q 35 GHz 8.5 mm 1.25 T 

V 70 GHz 4.3 mm  2.5 T 

W 94 GHz 3 mm 3.4 T 
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10.2 EPR cavity 

In the EPR machine, a microwave cavity is used to amplify weak signals to the sample. A micro-

wave cavity is a metal box with a rectangular or cylindrical shape which resonates with microwaves. 

The cavity stores the microwave energy; therefore at the resonance frequency of the cavity micro-

wave will remain inside the cavity instead of being reflected back. Every cavity is characterized by 

the Q or quality factor, it is an indicator of how efficiently the cavity stores microwave energy. As Q 

increases, the sensitivity of the spectrometer increases. We can measure Q factors from this 

equation: 

! =  #$%&
#  

   

(10.1) 

 

where #$%& is the resonant frequency of the cavity and # is the width at half height of the reso-

nance.  

Another way to express the quality factor is: 

 

! =  2'(*+*,-. /01,*3)
*+*,-. 34//4560*3 5*, 7.78* 

   

(10.2) 

 

Where the energy dissipated per cycle is the amount of energy lost during one microwave period. 

The presence of a standing wave inside the cavity is the consequence of the resonance condition. 

Standing electromagnetic waves have their electric and magnetic field component exactly out of 

phase (where the magnetic field is maximum, the electric field is minimum and vice versa). In the 
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following figure we can see the spatial distribution of the amplitudes of the electric and magnetic 

fields in the most common EPR cavity:  

 

Figure 10-2: Magnetic and electric field patterns in an EPR cavity 

We can use the spatial separation of the electric a magnetic fields in a cavity to great advantage. 

Most samples have non-resonant absorption of the microwaves via the electric field and the Q 

factor will be degraded by an increase in the dissipated energy. It is the magnetic field that drives 

the absorption in EPR. Therefore, if we place our sample in the electric field minimum we obtain the 

biggest signals and the highest sensitivity. 

 

10.3 Magnetic field 

In magnetic resonance experiments, the static magnetic field B usually must be very well controlled 

and stable. Variations of this field correspond to variations in energy separation. The magnitude of 

B may be measured and controlled by a Hall-effect detector. Since every absorption line has a non-

zero width, it is convenient to use a scanning unit to traverse the region of field B encompassing the 

line. Unless B is uniform over the sample volume, the observed spectral line is broadened [21]. 
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10.4 Signal channel 

To enhance the sensitivity of the spectrometer a technique known as phase sensitive detection is 

used in order to have less noise from the detection diode and to eliminate baseline instabilities. The 

signal channel fits in the spectrometer console and contains the required electronics for the phase 

sensitive detection.The sample experienced a magnetic field strength that is modulated sinusoidal-

ly at the modulation frequency.  

The signal channel is known as a lock-in amplifier of phase sensitive detector and produce a DC 

signal proportional to the amplitude of the modulated EPR signal: it compares the modulated signal 

with a reference signal having the same frequency as the field modulation and it is only sensitive to 

that signals which have the same frequency and phase as the field modulation. All the signals that 

not fulfill these requirements are suppresses. 

 

10.5 Magnetic field controller  

The magnetic field controller allows us to sweep the magnetic field in a controlled and precise 

manner for our EPR experiment. It consists of two parts; a part which sets the field values and the 

timing of the field sweep and a part which regulates the current in the windings of the magnet. A 

microprocessor in the controller controls the magnetic field values and the timing of the magnetic 

field sweep.  

In Figure we can see a block diagram of the field controller and the associated components. 
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Figure 10-3: Block diagram of a field controller 

  

The magnetic field regulation occurs via a Hall probe placed in the gap of the magnet. It produces 

a voltage that is dependent on the magnetic field perpendicular to the probe. 

 

10.6 Spectrum 

In figure we can see a block diagram of an EPR spectrometer containing all the analyzed individual 

components [21]. 
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Figure 10-4: Block diagram of an EPR spectrometer 

11 Oxidation and Deposition 

techniques 

This chapter explains the oxidation and deposition techniques used to realize our EPR samples. 

Al2O3 was deposited for each group using Plasma Atomic Layer Deposition from OpAl. The OpAl 

system can provide both plasma and thermal ALD in a single tool. As far as the SiOx deposition is 

concerned, a dry thermal oxidation process was used.  

11.1 Atomic Layer Deposition (ALD) 

To deposit Al2O3 on our FZ-Si wafers we used the Atomic Layer Deposition Technique (ALD). In this 

section a small overview about this technique is given.  
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The ALD process is based on self-limiting surface reactions: the substrate surface is exposed to 

gas phase-precursors [22]. The reactions are self limiting because they automatically stop when all 

available surface groups have reacted: every surface chemical reaction occurs between a reactant 

(gas-phase) and a surface functional group [2, 22]. 

 

Figure 11-1: Schema of ALD cycle: two precursor dosing steps and two purge steps [2] 

 

A standard ALD process uses two different precursors, that we can call A and B.  An ALD cycle is 

based on the following steps: precursor A react with the substrate; the remaining precursor and 

reaction products are pumped away; precursor B is introduced; reaction occurs with the new 

surface functional group; at the end the initial surface groups are restored [2] . 

 

Al2O3 can be deposited using ALD using trimethylaluminum (Al(CH3))3 as aluminum source.There 

are two possible method of ALD: thermal- and plasma assisted ALD. When processes with water 

and ozone are involved we can speak about thermal ALD, while the processes employing a plasma 

are typical of the plasma assisted ALD. In our work we decide to use the last one: plasma assisted 

ALD. The reactivity of plasma ALD can offer a better film quality with lower impurity levels [2].  

Al2O3 deposition can be realized also by other techniques, such as sputtering and Plasma-

enhanced chemical vapor deposition (PECVD). Advantages of ALD over PECVD are the perfect 
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uniformity achievable on large substrates, the low substrate temperatures used in the process. ALD 

allows also the production of multilayer structures [2]. 

In the following picture we can see a schematic representation of a thermal and plasma cycle. 

 

 

Figure 11-2: Schematic representationof typical plasma and thermal ALD cycles for AL2O3 [2]. 

 

For the first half-cycle the surface chemistry is the same for plasma and thermal ALD. During the 

second half-step we have a change of the surface from methyl-terminated to hydroxyl-terminated. 

In this second-half cycle the chemistry for plasma and thermal ALD is different: for thermal ALD for 

example methane is produced during the second half-cycle [2]. 

The following picture shows the thickness of the Al2O3 film in function of the number of ALD cycles, 

for both plasma and thermal ALD.  

 

Figure 11-3: Al2O3 film thickness vs Number of cycles for both Plasma ALD (blue line) and Thermal ALD (red line) 

[2] 
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11.2 Dry thermal oxidation 

In order to realize our Si/SiOx/Al2O3 layer stack systems, part of our Si samples underwent a dry 

thermal oxidation process before the Al2O3 ALD deposition.  Thermal oxidation is one of the most 

important methods used to oxidize semiconductors. Other oxidation methods are for example 

electrochemical anodization and plasmaenhanced chemical vapor deposition (PECVD). 

 In the following picture we can see a schematic cross section of a resistance-heated oxidation 

furnace. 

 

Figure 11-4: Schematic cross section of a resistance-heated oxidation furnace 

  

Thermal oxidation of silicon in oxygen is called dry oxidation (equation (11.1)) and we call wet 

oxidation (equation (11.2)) thermal oxidation with water vapor wet: 

 

Si(solid) + O:(gas) → SiO2(solid) 

   

(11.1) 

 

 

Si(solid) + 2H:O(gas) → SiO:(solid) + 2H:(gas) (11.2) 
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During the formation of the oxide of thickness x a layer of silicon of thick-

ness 0.44 x is consumed. 

 

Figure 11-5: Growth of silicon dioxide by thermal oxidation 

 

We can now summarize the basic model for silicon thermal oxidation. 

A silicon slice contacts the oxidizing species (oxygen and water vapor): that results in a surface 

concentration of <>for these species. The magnitude of <> is equal to the equilibrium bulk concen-

tration of the species in the oxidation temperature. The equilibrium concentration is proportional to 

the partial pressure of the oxidant adjacent to the oxide surface. The oxidizing species diffuses 

through the silicon dioxide layer, resulting in a concentration <&at the surface of silicon. We can 

write at this point the expression for the flux ?@as follows: 

 

?@ = A 3<
3B ≅ A(<> − <&)

B  (11.2) 

 

where D is the diffusion coefficient of the oxidizing species and x is the thickness of the oxide layer 

already present. 

At the silicon surface, the flux ?: is given by: 
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?: = E<& (11.3) 

 

where E is the surface reaction rate constant oxidation. 

 

Figure 11-6: Thermal oxidation model 

From equation (11.2) and equation (11.3) we can write: 

? = A<>

B + FA
EG

 

 

(11.4) 

  

And the growth rate of the oxide layer thickness is given by: 

dx
dt = ?

<@
=

A<>
<@

B + FA
EG

 

 

(11.5) 

This equation can be solved to find the oxide thickness x after an oxida time t.  

During the early stages of oxide growth the oxide thickness varies linearly with time. As the oxide 

layer becomes thicker, the oxidant must diffuse though the oxide layer to react at the silicon-silicon 

dioxide interface, and the reaction becomes diffusion limited. The oxide growth at this point be-

comes proportional to the square root of the oxidizing time, which results into parabolic growth rate. 
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12 Experimental plan and results 

12.1 Introduction 

Electron paramagnetic resonance (EPR) has been used to investigate the interface between Si and 

the high-k dielectric Al2O3, with or without the presence of a thermal grown SiOx layer. We also 

tried to understand the origin of fixed negative charges formed at the SiO2/Al2O3 interface. In our 

study several parameters were varied: the thickness of the Al2O3 layer, the interlayer SiOx thick-

ness, the thickness and the surface of the Si substrate. Also the effect of different temperature 

treatments (annealing) on Si/Al2O3 and Si/SiOx/Al2O3 stacks were considered. We studied 5 

different groups of samples: for the first 4 groups we used as starting substrates p FZ-Si, 50 µm 

thick and with a resistivity of 100 Ohm·cm; the starting substrate for group 5 is  p-FZ Si, with a 

thickness of 250 µm and a resistivity of 100 Ohm·cm. 

 

12.2 EPR experiments 

Group 1 
 

 

The aim of this experiment is to investigate the effect of annealing on Si/Al2O3 stack layers, com-

paring the spectra obtained by EPR 

spectroscopy. 

All the samples underwent a 30% KOH cleaning at 80°C for 1 minute. Potassium hydroxide is one 

of the anisotropic wet etching agents for silicon. The KOH etch rate is strongly affected by the 
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crystallographic orientation of the silicon. The wet etch process can be described by three basic 

steps: diffusion of the liquid etchant to the structure that is to be removed; the reaction between the 

liquid etchant and the material being etch away; diffusion of the byproducts in the reaction from the 

reacted surface. 

Then the wafers underwent a HCl, hydrochloric acid, cleaning (3%) for 2 minutes, wet chemical 

cleaning using Nitric acid (HNO3) for 10 minutes at 110°C, followed by (HF) solution for 1 minute. 

Isotropic etchant, such as HF and HNO3, having dissolution rates independent of orientation are 

needed: these tend to uniformly remove material and are limited by the mass transport of chemical 

species [23]. 

 

After the cleaning step the wafers are deposited with an Aluminum oxide passivation layer on both 

sides with Plasma Enhanced ALD, 300 cycles, 180°C. 300 cycles correspond to a thickness of 

about 35 nm. 

Different annealing conditions were performed: three different samples were prepared. One sub-

group did not undergo annealing after the Al2O3 deposition; the second one underwent an anneal-

ing process for 2 minutes (450°C, hot plates) and the last one underwent an annealing step for 5 

minutes. The lifetime of the reference wafers before and after annealing step is measured using the 

QSSPC technique. To ensure that the desired thickness is achieved, the layer thickness of the 

reference wafer is measured using the ellipsometer characterization after the deposition process.  

For all these three subgroups 10 small samples were put in a quartz tube for EPR measurements. 

EPR measurements were performed at room temperature with a Bruker EMX machine, using a 

microwave frequency of approximately 9.8 GHz (X-band). The g values were calculated by com-

paring the field position of the resonance with that of a resonance of known value, in our case 2,2-

diphenyl-1-picrylhydrazyl radical,  DPPH. DPPH is in fact the most popular standard of the position 

(g-marker) and intensity of electron paramagnetic resonance: the EPR splitting factor for DPPH is 

calibrated at g = 2.0036.  
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To improve the signal-to noise ratio without distorting the EPR line, each spectrum has been aver-

aged over a large number of scans, 537scans. Measurements were conducted at non saturating 

power with an attenuation of 20 dB. 

Measurements were conducted at non saturating power. A measurement was conducted to test the 

saturating power. We obtained three spectra, measured at three attenuation values: 40 dB, 25 dB 

and 10 dB. This measurement showed that also measuring with attenuation value of 10 dB satura-

tion did not occur; that allowed us to use a higher power for our measurements. 

In figure we can see the experimental flow for group 1. 

 

 

 

Figure 12-1: experimental flow for group 1 
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This table shows the different annealing conditions for the three subgroups under study.  We also 

reported lifetime and thickness values, measured with the QSSPC technique and the Ellipsometer 

spectroscopy respectively.  

 

 

 

 

 

Table 12-1: Annealing conditions, lifetime and thickness values of group 1 

Sub-groups substrates p-FZ-Si 

thickness 

Al2O3 thickness 

(ALD cycles) 

Annealing 

conditions 

QSSPC lifetime 

measurements 

Al2O3 thickness 

(nm): 

Ellipsometer meas-

urements  

1A 50 µm 300 - 05  µs (39.48 ± 0.08) 

1B 50 µm 300 2 mins,450°C, 

hotmplates 

3.829 µs (39.48 ± 0.08) 

1C 50 µm 300 5 mins, 450°C, 

hotplates 

7.051 µs (39.48 ± 0.08) 

 

For the lifetime measurement the principal errors that can be identified are the uncertainty of the 

resistivity of the wafer given by the manufacturer and the one related to the arbitrary choice of the 

optical constant (in the generalized mode).  

 

The following figure shows the spectra observed at room temperature for a p-type FZ-Si layer. EPR 

allows the detection of both bulk and interface defects. We wanted therefore to compare this 

spectrum with those observed for Al2O3/Si systems in order to establish the nature of the detected 
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defects (bulk or interface). We fit this spectrum with known g-factors values, relating to Boron 

interstitial.  

 

 

 

 

 

 

Figure 12-2: Electron Paramagnetic Resonance (EPR) spectra observed at room temperature for a p-type FZ-Si 

layer.  The thick black solid line shows the measured data. The thin lines represent the signals of the anisotropic 

center (orange dashes) used to fit the experimental data. The thick green solid line is the overall result of the 

deconvolution 

 

Table 12-2: g-factor  values obtained for Si samples 

Center number g factor value Possible Attribution 

Center 0 gx =  2.0058 ± 0.0002 

gy =  2.0028 ± 0.0002 

gz =  2.0019 ± 0.0002 

Boron interstitial [24, 25] 

 

 

 

 

Si, T=300 K, 9.84 GHz 
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Figure 12-3: Electron Paramagnetic Resonance (EPR) spectra observed at room temperature for atomic layer 

deposition (ALD, 300 cycles)-grown Si/Al2O3 interfaces.  The thick black solid line shows the measured data. The 

thin lines represent the signals of the trigonal anisotropic center (black dots-dashes), the isotropic center (red 

solid) and the E’-like center (blue dots-dashes) used to fit the experimental data. The thick green solid line is the 

overall result of the deconvolution 

 

Table 12-3: g-factor  values obtained for sub-group 1A 

Center number g factor value Possible Attribution 

Center 1 gR = gT = gU = 2.0068 ± 0.0002 Si-db [26] 

Center 2 g∥ = 2.0012 ± 0.0002 

gX = 2.0065 ± 0.0002 

Pb0 center [2, 27, 28] 

Center 3 g = 1.9993 ± 0.0001 E’-like defect [2] 

 

Interface defects: Pb0 and Pb1 

 

Pb0 and Pb1 are typically (100)Si/SiO2 interface defects. Also Si/Al2O3 interface as well as Si 

interface with other high k dielectric such as ZrO2 exhibits this kind of defects. The Pb-type defect 

is a trivalent bonded Si atom. At the electronic point of view, the Si/Al2O3 interface can be regarded 

1A, T=300 K, 9.44 GHz 
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as Si/SiO2-like. Many EPR studies have proved the similarity between Si/Al2O3 and Si/thermally 

grown SiOx.  

The Pb-type defect is a trivalent bonded Si atom.  

 

Figure 12-4: Schematic illustration of a Pb center at the (111)Si/SiO2 interface [29] 

 

At the (111) Si/SiO2 interface the Pb center is supposed to be a (111) oriented silicon dangling 

bond. On (100) silicon, two related defects called Pb0 and Pb1 are observed. Poindexter and co-

workers found that the Pb0( 100)center is almost identical to the Pb(111) center, as far as its EPR 

spectrum and its electrical levels are concerned. The Pb1 (100) center, on the other hand, is 

characterized by a lower symmetry and lower electron-electron correlation energy. The Pb1 center 

could be considered characteristic for the (100) orientation because it has not been observed for 

the other orientation. The structure of the Pb( 111) center is quite well understood; on the other 

hand the precise origin of the Pb0 and Pb1 resonances on ( 100) silicon is still an open question 

[27]. Poindexter et al. have proposed a model in which all of these defects are considered silicon 

dangling-bond centers: the only differences are the orientation and the neighbors (silicon or oxygen 

atoms) [30]. 

The Poindexter Pb0 (100) center corresponds to a (111) oriented dangling bond with three nearest-

neighbor silicon atoms and a second-nearest neighbor oxygen, while the Pb1( 100) center has one 

nearest neighbor oxygen [30, 31]. 
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Figure 12-5: a) Dangling bond at the (111) interface b) Pointdexter model for Pb center at the (100) interface [31] 

 

 

SPECTRA ANALYSIS AND DISCUSSION 

 

The spectrum in Figure 12-3 appears to be the superposition of an isotropic signal with g=2.0068, 

an E’ –like signal with g=1.9993 and an anisotropic signal ( g∥= 2.0012 and gX= 2.0065). Be-

cause of the overlapping of the different lines, it is difficult to extract the anisotropic lines present in 

the spectra. Therefore we have tried several possible decompositions of the spectra and the best 

deconvolution has been obtained for the case described above.  All the fits in our work assume 

Pseudo-Voigt lines. 

No signal related to boron interstitial has been observed: that should lead to the conclusion that all 

the detected defects come from the interface (see spectrum SV0).  

Dingemans et al. have already observed the E’-like center analyzing the EDMR spectra obtained for 

plasma ALD Al2O3 films deposited on Si(100)[2]. The E’ like defect is associated with the SiOx 

interface.  
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E’ centers can act as hole traps and they play an important role in trap-assisted tunneling phenom-

ena in electrically stressed oxides. Both positively charged and neutral E’ centers can be generated 

in SiO2 films; several E’ variant can be generated in thin films and most of them involve hydrogen 

complexed E’ centers. 

For the isotropic signal we found g=2.0068; it is related to a common dangling bond center ob-

served in disordered and amorphous silicon [2, 28]. 

It was possible also to identify the Pb0 anisotropic center (g∥= 2.0012 and gX= 2.0065). 

Stesmans and Afanas’ev have reported that Si/Al2O3 interface exhibits Pb-type defects: Pb0 and 

Pb1.[32] The same results were also obtained by Dingemans et al. [2] In table 1 the principal 

values of the Pb0 g-tensor obtained in different scientific works are reported. 

 

 

Table 12-4: principal values of the Pb0 g-tensor obtained in different scientific works 

Layers and interface orientation g tensor: principal values 

(100)Si/SiO2 g1= 2.0015 

g2= g3= 2.0087 [27] 

(100)Si/Al2O3 g1= 2.0036 

g2= g3= 2.0087 [2] 

(100)Si/Al2O3 g1= 2.0024 

g2= g3= 2.0074 [28]  

(100)Si/Al2O3/ZrO2 g1= 2.00185 

g2= g3= 2.0081[32] 
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Figure 12-6: Electron Paramagnetic Resonance (EPR) spectra observed at room temperature for atomic layer 

deposition (ALD, 300 cycles)-grown Si/Al2O3 interfaces. Overall results of the deconvolution for sub-group 1A 

(black line), 1B (red line), 1C (green line) 

 

As far as sub-groups 1B and 1C are concerned, our spectra did not reveal the presence of Si-

dangling bonds (see figure 12-6). It seems therefore that the 5 minutes hot plates exposure doesn’t 

cause further reduction in the concentration of unpassivated defects in compare with the 2 minutes 

annealing process. This fact is in good agreement with the results obtained by Dingemans et al [2]. 

In many studies a low defect interface density, AYZ , was found after annealing. 
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Figure 12-7: Dingemans et al. reported the influence of annealing on the negative charge Qf and on the interface 

defect density, Dit, obtained in various studies. Annealing took place at about 400°C  [2] 

 

As we can see from Table 12-1, lifetime of sub-groups 1B and 1C samples has increased after 

annealing. Comparing the two values of lifetime, we can notice that an annealing time of 2 minutes 

can already be sufficient to strongly reduce the surface recombination velocity and therefore 

activate the passivation performance. For an annealing time of 5 minutes we haven’t noticed a 

further increase in the sample lifetime. As seen in section 6, Qf, the negative charge density, 

increases as the surface recombination velocity decreases. Therefore, we can say that the negative 

fixed charge density has increased after annealing.     

Therefore we found out a correlation between the increase of negative charge density Qf and the 

absence of paramagnetic silicon dangling bonds. 
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Group 2  
 

 

In the second experiment samples were prepared varying the thickness of the Al2O3 layer.We also 

investigated the effect of annealing on these Si/Al2O3 stack layers. EPR spectra were compared 

with those of group 1.  

In figure we can see the experimental flow for group 2. 

 

 

 

Figure 12-8: experimental flow for group 2 
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All the samples of group 2 underwent the same cleaning step as group 1. After the cleaning step 

the wafers are deposited with an Aluminum oxide passivation layer on both sides with Plasma 

Enhanced ALD, 18 cycles, 180°C. The thickness of Al2O3 was varied: 18 cycles corresponds to a 

thickness of a few nm. To ensure that the desired thickness is achieved, the layer thickness of the 

reference wafer is measured using the ellipsometer characterization after the deposition process. 

Different annealing conditions were performed: three different samples were prepared. One sub-

group did not undergo annealing after the Al2O3 deposition, the second one underwent an anneal-

ing process for 2 minutes (450°C, hot plates) and the last one underwent an annealing step for 5 

minutes.The lifetime of the reference wafer before the annealing step is measured using the QSSPC 

technique. 

EPR measurements were conducted with the same parameter as group 1 (See group 1). 

In this case, to improve the signal-to noise ratio without distorting the EPR line, each spectrum has 

been averaged over a 999 scans.  

 

 

Table 12-5:  Annealing conditions, lifetime  values of group 2 

Sub-groups substrates p-FZ-Si 

thickness 

Al2O3 thickness 

(ALD cycles) 

Annealing 

conditions 

QSSPC lifetime 

measurements 

2A 50 µm 18 - 23 µs 

2B 50 µm 18 2 mins,450°C, 

hotplates 

344 µs 

2C 50 µm 18 5 mins, 450°C, 

hotplates 

501 µs 
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Figure 12-9: Electron Paramagnetic Resonance (EPR) spectra observed at room temperature for atomic layer 

deposition (ALD, 18 cycles)-grown Si/Al2O3 interfaces. The thin lines represent the signals of the anisotropic 

center (blue dashes) used to fit the experimental data. The thick green solid line is the overall result of the 

deconvolution 

 

 

Table 12-6: g-factor  values obtained for sub-group 2A 

Center number g factor value Possible Attribution 

Center 0 gR =  2.0058 ± 0.0002 

gT =  2.0028 ± 0.0002 

gU =  2.0001 ± 0.0002 

Boron interstitial [24, 25] 

 

 

 

 

 

 

 

 

 

2A, T=300 K, 9.85 GHz 
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Figure 12-10:  Electron Paramagnetic Resonance (EPR) spectra observed at room temperature for atomic layer 

deposition (ALD, 18 cycles)-grown Si/Al2O3 interfaces (2 mins,450°C, hotplates).  The thin lines represent the 

signals of the anisotropic center (blue dashes) used to fit the experimental data. The thick green solid line is the 

overall result of the deconvolution 

 

Table 12-7: g-factor  values obtained for sub-group 2B 

Center number g factor value Possible Attribution 

Center 0 gR = 2.0058 ± 0.0002 

gT =  2.0028 ± 0.0002 

gU =  2.0000 ± 0.0002 

Boron interstitial [24, 25] 

 

 

2B, T=300 K, 9.85 GHz 



112 Experimental plan and results  

 

Figure 12-11: Electron Paramagnetic Resonance (EPR) spectra observed at room temperature for atomic layer 

deposition (ALD, 18 cycles)-grown Si/Al2O3 interfaces (5 mins, 450°C,  hotplates).  The thin lines represent the 

signals of the anisotropic center (blue dashes) used to fit the experimental data. The thick green solid line is the 

overall result of the deconvolution 

 

Table 12-8: g-factor  values obtained for sub-group 2B 

Center number g factor value Possible Attribution 

Center 1 gR =  2.0058 ± 0.0002 

gT =  2.0028 ± 0.0002 

Boron interstitial [24, 25] 

 

 

SPECTRA ANALYSIS AND DISCUSSION 

 

For this second experiment we fitted our spectra assuming only the presence of an isotropic center 

(blue dashes), possibly related to a boron interstitial. Pseudo-Voigt lines have been therefore fixed 

at the known g-values for Boron interstitial: gx=2.0058; gy=2.0028 and gz=2.0000. No lines related 

to Silicon dangling bonds, E’ center has been detected. This could probably be due to the thinner 

Al2O3 deposited layer: 18 cycles correspond to a few nm in thickness. That should explain why we 

2C, T=300 K, 9.85 GHz 
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can see only defects related to the bulk. It was also more difficult to fit our spectra because the 

sensitivity of the EPR apparatus is directly proportional to the volume of the samples: in this case 

we put in the quartz tube the same amount of samples (10) but we lowered the thickness of the 

Al2O3 layer. 

 

COCOS MEASUREMENTS 

 

We measured the total negative charge at the Si/Al2O3 interface of two reference wafers using the 

COCOS technique: “Corona-Oxide-Semiconductor Characterization” (see Appendix). 

One wafer underwent usual cleaning steps and the Al2O3 ALD deposition (18 cycles) 

The second wafer underwent the usual cleaning steps, the ALD deposition (18 cycles) and an 

annealing process using hot plates (450°C, 5 minutes). In this table we show the results: 

 

Table 12-9: Annealing condition, AL2O3 thickness (cycles) and Qtot measured using the COCOS technique  

Sub-group Annealing condition Al2O3 thickness(cycles) Qtot(cm\: ) 

2A 5 minutes, 450°C 

hotplates 

18  − 7 ∙ 10@: 

2C Without annealing 18  − 3.6 ∙ 10@: 

 

The results show that although we can’t detect with the EPR analysis any paramagnetic Silicon 

dangling bonds, at the Si/Al2O3 interface a negative charge density is still present and the value 

increase after annealing treatment. QSSPC measurements (see table 12-5) show also a strong 

increase in the lifetime for the two samples that underwent the annealing process. 
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Group 3 
 

 

The thickness of the SiOx layer between the Si substrate and the Al2O3 layer strongly impacts the 

passivation quality and interface parameters of the stack.  S.Mack et al. found out that a certain 

thermal SiOx thickness is required to achieve appropriate chemical passivation [33]. 

It has been demonstrated that an increased in the SiO2 layer thickness over the range of 1-30 nm 

leads to a decrease in negative Qf, with a transition from net negative charge to positive fixed 

charge[2]. In figure we can see the experimental flow for group 3. 

 

 

Figure 12-12: experimental flow for group 3 
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We prepared three groups of samples with different SiOx layer thicknesses to investigate this effect 

with the EPR technique. 

The samples of this group underwent the same cleaning steps as group 1 and 2. After the cleaning 

step, thermal SiOx was deposited: 900°C, 15 nm SiOx, 30 minutes. 

For this group the thickness of the SiOx layer between the Si substrate and the Al2O3 layer is the 

varying parameter. We decided to study the effect due to three different thicknesses of SiOx: ~15 

nm, ~7nm and ~3 nm.  

To achieve our scope two reference wafers underwent an etch back process using a HF solution in 

order to reduce the thickness of the SiOx layer.  

A wafer test was used to establish the duration of the etch back process to obtain the desirable 

thicknesses. The initial thickness of the SiOx layer was measured with the ellipsometer characteri-

zation.  After that, this wafer underwent a 30 s etch back process using a HF solution. The next step 

was to measure the thickness of the SiOx layer after the HF etch back with the ellipsometer charac-

terization. This procedure was repeated three times. Figure (12-13) shows the plot of the SiOx layer 

thickness in function of the etching time. 

 

Figure 12-13: Thickness of the thermal oxide SiOx layer versus time of etching. Black dots represent the num-

bered side and the red dots represent the not numbered side of the reference wafer 
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From this plot we were able to establish the duration of the etch back process to achieve the 

desirable thicknesses: 

105 s of etching correspond to a thickness of about 3 nm. 

65 s of etching correspond to a thickness of about 7 nm.  

 

After the etch back process, all the wafers are deposited with an Aluminum oxide passivation layer 

on both sides with Plasma Enhanced ALD, 300 cycles, 180°C. Lifetime of the reference wafers was 

measured using the QSSPC technique. 

 

 

Table 12-10:  Al2O3 thickness (cycles) and lifetime  values of group 3 

Sub-

groups 

substrates p 

FZ-Si 

thickness 

Etch back 

time(s) 

Al2O3 

thickness 

(ALD 

cycles) 

QSSPC lifetime 

measurements 

3A 50 µm - 300 64 µs 

3B 50 µm 65 300 47 µs 

3C 50 µm 105 300 42 µs 

 

 

 

EPR measurements were made with the same parameters of group 1.To improve the signal-to noise 

ratio without distorting the EPR line, each spectrum has been averaged over a 537 scans. Meas-

urements were conducted at non saturating power with an attenuation of 20 dB. 
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Figure 12-14: Electron Paramagnetic Resonance (EPR) spectra observed at room temperature for atomic layer 

deposition (ALD, 300 cycles)-grown Si/SiOx (15nm)/Al2O3 interfaces.  The thin lines represent the signals of the 

trigonal anisotropic center (black dots-dashes), the isotropic center (red solid) and the E’-like center (blue dots-

dashes) used to fit the experimental data. The thick green solid line is the overall result of the deconvolution 

 

 

Table 12-11: g-factor  values obtained for sub-group 3A 

Center number g factor value Possible Attribution 

Center 1 g = g! = g" =  2.0076 ± 0.0002 Si-db [26] 

Center 2 g∥ =  2.0080 ± 0.0003 

g% =  2.0126 ± 0.0002 

Pb0 center [2, 27, 

28] 

Center 3 g = 1.9996 ± 0.0001 E’-like defect [2] 

 

 

 

 

 

3A, T=300 K, 9.43 GHz 
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Figure 12-15: Electron Paramagnetic Resonance (EPR) spectra observed at room temperature for atomic layer 

deposition (ALD, 300 cycles)-grown Si/SiOx (7nm)/Al2O3 interfaces.  The thin lines represent the signals of the 

trigonal anisotropic center (black dots-dashes), the isotropic center (red solid) and the E’-like center (blue dots-

dashes) used to fit the experimental data. The thick green solid line is the overall result of the deconvolution 

 

Table 12-12: g-factor  values obtained for sub-group 3B 

Center number g factor value Possible Attribution 

Center 1 g = g! = g" =  2.0069 ± 0.0001 Si-db [26] 

Center 2 g∥ = 2.0102 ± 0.0001 

g% = 2.0126 ± 0.0001 

Pb0 center [2, 27, 28] 

Center 3 g = 1.9996 ± 0.0001 E’-like defect [2] 
 

 

 

 

 

 

 

 

 

 

3B, T=300 K, 9.43 GHz 
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Figure 12-16:  Electron Paramagnetic Resonance (EPR) spectra observed at room temperature for atomic layer 

deposition (ALD, 300 cycles)-grown Si/SiOx (3nm)/Al2O3 interfaces.  The thin lines represent the signals of the 

trigonal anisotropic center (black dots-dashes), the isotropic center (red solid) and the E’-like center (blue dots-

dashes) used to fit the experimental data. The thick green solid line is the overall result of the deconvolution 

 

Table 12-13: g-factor  values obtained for sub-group 3C 

Center number g factor value Possible Attribution 

Center 1 g = g! = g" =  2.0096 ± 0.0001 Si-db [26] 

Center 2 g∥ = 2.0149 ± 0.0002 

g% = 2.0098 ± 0.0001 

Pb0 center [2, 27, 28] 

Center 3 g =  2.0020 ± 0.0001 E’-like defect [2] 

 

 

 

 

 

 

 

 

 

3C, T=300 K, 9.44 GHz 
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COCOS MEASUREMENTS 

 

We measured the total negative charge at the Si/SiOx/Al2O3 interface of three reference wafers 

using the COCOS technique: 

 

Figure 12-17: Negative fixed charge density vs. thickness of thermal oxide film SiOx 

 

We plotted Qf, the total negative charge at the interface, in function of the SiOx layer thickness.   

The results are shown in table: 

 

Table 12-14: total negative charge at the interface in function of the SiOx layer thickness   

Sub-group SiOx thickness(nm) Qtot(cm&' ) 

3A 15 −4,3 ∙ 10-- 

3B 7 −10,43 ∙ 10-- 

3C 3 −15,8 ∙ 10-- 
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Figure 12-18: Surface recombination velocity versus thermal SiOx thickness for three capping layer systems [33] 

 

Our results are in agreement with those obtained by Mack et al. [34](see figure, Group 1). 

 

The thin thermal SiO2 layer between Si and Al2O3 influences the physical properties of the inter-

face. The surface recombination velocity SRV increases strongly with increasing thickness of the 

thin thermal SiOx and this leads to a reduction of the density of negative charge to |/:;:| < 5 ×

10--
 cm&' for >?@A' ≥ 12 nm and thus reduces field effect passivation [33]. One explanation 

to this phenomenon could be that SiO2 acts as a barrier: it could reduce charge injection from the 

Si substrate into defects states at the SiOx/Al2O3 interface. Studies have demonstrated that this 

charge injection across the interface may play a role in the formation of the negative charge [2]. 

 

 

SPECTRA ANALYSIS AND DISCUSSION 

 

The spectra in figure appear to be the superposition of an isotropic signal, an E’ –like signal and an 

anisotropic signal. The same results have been obtained for the sub-group 1A.  Because of the 

overlapping of the different lines, it is difficult to extract the anisotropic lines present in the spectra. 
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All the fits in our work assume Pseudo-Voigt lines. Like subgroup 1A, no signal related to boron 

interstitial has been observed: all the detected defects may come from the interface.  

 

Table 12-15: g-factor values from spectrum 1A and 3C 

Center 

number 

g factor value Possible 

Attribution 

 Sub-group 1A Sub-group 3C  

Center 1 g = g! = g" = 2.0068 ± 0.0002 g = g! = g" =  2.0096 ± 0.0001 Si-db [26] 

Center 2 g∥ = 2.0012 ± 0.0002 

g% = 2.0065 ± 0.0002 

g∥ = 2.0149 ± 0.0002 

g% = 2.0098 ± 0.0001 

Pb0 center [2, 

27, 28] 

Center 3 g = 1.9993 ± 0.0001 g =  2.0020 ± 0.0001 E’-like defect 

[2] 

 

As far as sub-groups 1A and 3C are concerned, the thickness of the SiOx layer between the Si 

substrate and the Al2O3 layer should be comparable. In fact, Al2O3 deposited by ALD on Si(100) 

substrates exhibits a very thin interfacial SiOx layer [2, 34]. The presence of this thin SiOx layer was 

also confirmed by the EPR spectra. In the case of sub-group 3C, on the other hand, we controlled 

the thickness of the thermal SiOx layer (3nm).  If we compare the spectra, they appear to be the 

superposition of the same signals: an isotropic signal, a E’ –like signal and an anisotropic signal. 

Comparing the spectra however a big shift in the g-factor components of the Center 2 was found. A 

possible explanation could be the different nature of the oxide. In the case of sub-group 1A, a 

native SiOx layer is present; for sub-group 3A on the other hand, we deposited a thermal oxide. 

This difference could be due to different molecular structures.  
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Figure 12-19: g-factors versus thermal oxide thickness of the samples 

 

 

 

Group 4 
 

 

In this experiment we analyzed the EPR spectra of Si/Al2O3 stacked layer after texturing the sub-

strate Si surface.  

Surface texturing 

Surface texturing is essentially a process used in standard silicon solar cell fabrication to minimize 

the reflection losses at the front surface. During the process of texturing in mono-crystalline Si 

substrates, the planar surface of Si wafers is etched along the faces of the crystal planes [35]. 

When the surface is appropriately aligned with respect to the internal atoms, the structure of the c-

Si wafer results in a surface made of pyramids. Commercial mono-crystalline silicon solar cells are 

textured with tetrahedral pyramids consisting of four planes (111) and four edges (100) [35]. To 

texture Si solar cells anisotropic wet alkaline etchants such as KOH are used. 
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For these reasons, we expected the concentration of dangling bonds at the Si/Al2O3 surface to be 

different. 

In figure we can see the experimental flow for group 4. 

 

Figure 12-20: experimental flow for group 4 

 

In order to texture the surface of our wafer, the samples underwent a KOH/Dow texture cleaning for 

35 minutes. After that they underwent a HCl cleaning for 2 minutes, a HNO3 cleaning for 10 minutes 

and an HF cleaning for 1 minute as usual.  

After the cleaning step the wafers are deposited with an Aluminum oxide passivation layer on both 

sides with Plasma Enhanced ALD, 300 cycles, 180°C. Lifetime of the reference wafers, with and 

without Al2O3, was measured using the QSSPC technique. 
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To improve the signal-to noise ratio without distorting the EPR line, the spectrum has been aver-

aged over a 537 scans. Measurements were conducted at non saturating power with an attenuation 

of 20 dB. 

 

Table 12-16: substrates thickness and Al2O3 thickness (cycles) of group 4 

Sub-groups substrates p-FZ-Si 

thickness 

Al2O3 thickness 

(ALD cycles) 

4A 50 µm - 

4B 50 µm 300 

 

 

 

 

Figure 12-21: Electron Paramagnetic Resonance (EPR) spectra observed at room temperature for a p-type 

textured FZ-Si layer.  The thick black solid line shows the measured data. The thin lines represent the signals of 

the anisotropic center (orange dashes) used to fit the experimental data. The thick green solid line is the overall 

result of the deconvolution 

 

 

4A, T=300 K, 9.38 GHz 
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Table 12-17: g-factor  values obtained for sub-group 4A 

Center number g factor value Possible Attribution 

Center 0 g =  2.0058 ± 0.0001 

gC =  2.0028 ± 0.0001 

g" =  2.0019 ± 0.0001 

Boron interstitial [24, 25] 

 

 

 

 

Figure 12-22: Electron Paramagnetic Resonance (EPR) spectra observed at room temperature for atomic layer 

deposition (ALD, 300 cycles)-grown Si/SiOx (7nm)/Al2O3 textured interfaces.  The thin lines represent the signals 

of the trigonal anisotropic center (black dots-dashes), the isotropic center (red solid), the E’-like center (blue dots-

dashes) and the  anisotropic center (orange dashes) used to fit the experimental data. The thick green solid line is 

the overall result of the deconvolution 

 

Table 12-18: g-factor  values obtained for sub-group 4B 

Center number g factor value Possible Attribution 

Center 1 g = g! = g" =  2.0052 ± 0.0001 Si-db [26] 

Center 2 g∥ = 2.0069 ± 0.0001 

g% = 2.0089 ± 0.0002 

Pb0 center [2, 27, 28] 

Center 3 g = 1.9993 ± 0.0001 E’-like defect [2] 

Center 0 g = 2.0055 ± 0.0001 

g! = 2.0028 ± 0.0001 

g" = 2.0019 ± 0.0001 

Boron interstitial [24, 25] 

4B, T=300 K, 9.38 GHz 



127 

SPECTRA ANALYSIS AND DISCUSSION 

 

We can at this point make a comparison between spectra Si and 4A. We fitted spectrum 4A with 

known g-factors values relating to Boron interstitial (gx= 2.0058, gy= 2.0028 and gz= 2.0019). 

Although our spectra can be well fitted using the same g-factor values, a difference in the shape 

has been noticed.  

 

 

  
 

In the first spectrum, the two g-factor components gy=2.0028 and gz= tend to overlap. After 

texturing the Si surface we can see clearly the effect due to these two different components.  

 

 

 

Group 5 
 

 

In this experiment we analyzed the EPR spectra of Si/Al2O3 stacked layer with a starting substrate 

of a different thickness in respect with group 1,2,3 and 4. Al2O3 is deposited on a p FZ Si sub-

strate, 250 µm thick and with a resistivity of 100 Ohm ·cm. 

4A, T=300 K, 9.38 GHz Si, T=300 K, 9.84 GHz 
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The aim of this experiment is to investigate the effect of a different thickness of the FZ-Si substrate 

in the EPR signal and to study the angular dependence of the g values varying the angle between 

B and the (100) interface normal D E in a range 0°-90°.  

The samples underwent a wet chemical cleaning using Nitric acid (HNO3) for 10 minutes at 110°C, 

followed by (HF) solution for 1 minute. In order to maintain the surface crystal orientation, the 

samples were not subjected to KOH cleaning.  

After the cleaning step the wafers are deposited with an Aluminum oxide passivation layer on both 

sides with Plasma Enhanced ALD, 300 cycles, 180°C.  

In figure we can see the experimental flow for group 5. 

 

 

Figure 12-23: experimental flow for group 5 
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Measurements were carried out on a bundle of ten slices and were conducted at room temperature 

(300 K). In order to align the samples along the z axis, a thinner quartz tube was inserted in the 

standard quartz tube. The first measurement was conducted at F ⊥  D E : the angle was fixed 0°. 

After each measurement the angle was increased to 15° up to 90°. 

 

 

Figure 12-24: experiment set up for our measurements of group 5 

 

The figure above shows the experiment set up for our measurements. 

EPR measurements were made with the same parameters of group 1.To improve the signal-to noise 

ratio without distorting the EPR line, each spectrum has been averaged over a 537 scans. Meas-

urements were conducted at non saturating power with an attenuation of 20 dB. 

 

In the following pictures we reported the spectra of group 5. 
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Figure 12-25: Electron Paramagnetic Resonance (EPR) spectra observed at room temperature for atomic layer 

deposition (ALD, 300 cycles)-grown Si/Al2O3 interfaces.  The thick black solid line shows the measured data. The 

thin lines represent the signals of the trigonal anisotropic center (black dots-dashes), the isotropic center (red 

solid) and the E’-like center (blue dots-dashes) used to fit the experimental data. The thick green solid line is the 

overall result of the deconvolution (ϕ = 0°) 

 

 

Table 12-19: g-factor  values obtained for sub-group ϕ=0° 

Center number g factor value Possible Attribution 

Center 1 g = gC = g" =  2.0055 ± 0.0001 Si-db [26] 

Center 2 g∥ = 2.0094 ± 0.0002 

g% = 2.0046 ± 0.0002 

Pb0 center [2, 27, 28] 

Center 3 g =  1.9967 ± 0.0001 E’-like defect [2] 
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Figure 12-26: Electron Paramagnetic Resonance (EPR) spectra observed at room temperature for atomic layer 

deposition (ALD, 300 cycles)-grown Si/Al2O3 interfaces.  The thick black solid line shows the measured data. The 

thin lines represent the signals of the trigonal anisotropic center (black dots-dashes), the isotropic center (red 

solid) and the E’-like center (blue dots-dashes) used to fit the experimental data. The thick green solid line is the 

overall result of the deconvolution (ϕ = 15°) 

 

 

Table 12-20: g-factor  values obtained for sub-group ϕ=15° 

Center number g factor value Possible Attribution 

Center 1 g = gC = g" =  2.0058 ± 0.0001 Si-db [26] 

Center 2 g∥ = 2.0095 ± 0.0002 

g% = 2.0050 ± 0.0003 

Pb0 center [2, 27, 28] 

Center 3 g =  1.9967 ± 0.0001 E’-like defect [2] 
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Figure 12-27:  Electron Paramagnetic Resonance (EPR) spectra observed at room temperature for atomic layer 

deposition (ALD, 300 cycles)-grown Si/Al2O3 interfaces.  The thick black solid line shows the measured data. The 

thin lines represent the signals of the trigonal anisotropic center (black dots-dashes), the isotropic center (red 

solid) and the E’-like center (blue dots-dashes) used to fit the experimental data. The thick green solid line is the 

overall result of the deconvolution (ϕ = 30°) 

 

 

Table 12-21: g-factor  values obtained for sub-group ϕ=30° 

Center number g factor value Possible Attribution 

Center 1 g = gC = g" =  2.0060 ± 0.0001 Si-db [26] 

Center 2 g = 2.0094 ± 0.0002 

g = 2.0052 ± 0.0002 

 g =  2.0026 ± 0.0001 

Pb0 center [2, 27, 28] 

Center 3 g =  1.9967 ± 0.0001 E’-like defect [2] 
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Figure 12-28: Electron Paramagnetic Resonance (EPR) spectra observed at room temperature for atomic layer 

deposition (ALD, 300 cycles)-grown Si/Al2O3 interfaces.  The thick black solid line shows the measured data. The 

thin lines represent the signals of the trigonal anisotropic center (black dots-dashes), the isotropic center (red 

solid) and the E’-like center (blue dots-dashes) used to fit the experimental data. The thick green solid line is the 

overall result of the deconvolution (ϕ = 45°) 

 

 

Table 12-22: g-factor  values obtained for sub-group ϕ=45° 

Center number g factor value Possible Attribution 

Center 1 g = gC = g" =  2.0060 ± 0.0001 Si-db [26] 

Center 2 g∥ = 2.0092 ± 0.0001 

g% = 2.0050 ± 0.0002 

g =  2.0025 ± 0.0001 

Pb0 center [2, 27, 28] 

Center 3 g =  1.9967 ± 0.0001 E’-like defect [2] 
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Figure 12-29: Electron Paramagnetic Resonance (EPR) spectra observed at room temperature for atomic layer 

deposition (ALD, 300 cycles)-grown Si/Al2O3 interfaces.  The thick black solid line shows the measured data. The 

thin lines represent the signals of the trigonal anisotropic center (black dots-dashes), the isotropic center (red 

solid) and the E’-like center (blue dots-dashes) used to fit the experimental data. The thick green solid line is the 

overall result of the deconvolution (ϕ = 60°) 

 

 

Table 12-23: g-factor  values obtained for sub-group ϕ=60° 

Center number g factor value Possible Attribution 

Center 1 g = gC = g" =  2.0063 ± 0.0001 Si-db [26] 

Center 2 g = 2.0092 ± 0.0002 

g = 2.0049 ± 0.0002 

                  g =  2.0025 ± 0.0002 

Pb0 center [2, 27, 

28] 

Center 3 g =  1.9967 ± 0.0001 E’-like defect [2] 
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Figure 12-30: Electron Paramagnetic Resonance (EPR) spectra observed at room temperature for atomic layer 

deposition (ALD, 300 cycles)-grown Si/Al2O3 interfaces.  The thick black solid line shows the measured data. The 

thin lines represent the signals of the trigonal anisotropic center (black dots-dashes), the isotropic center (red 

solid) and the E’-like center (blue dots-dashes) used to fit the experimental data. The thick green solid line is the 

overall result of the deconvolution (ϕ = 75°) 

 

 

Table 12-24: g-factor  values obtained for sub-group ϕ=75° 

Center number g factor value Possible Attribution 

Center 1 g = gC = g" =  2.0062 ± 0.0001 Si-db [26] 

Center 2 g = 2.0092 ± 0.0001 

g = 2.0052 ± 0.0001 

 g =  2.0034 ± 0.0001 

Pb0 center [2, 27, 28] 

Center 3 g =  1.9967 ± 0.0001 E’-like defect [2] 
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Figure 12-31: Electron Paramagnetic Resonance (EPR) spectra observed at room temperature for atomic layer 

deposition (ALD, 300 cycles)-grown Si/Al2O3 interfaces.  The thick black solid line shows the measured data. The 

thin lines represent the signals of the trigonal anisotropic center (black dots-dashes), the isotropic center (red 

solid) and the E’-like center (blue dots-dashes) used to fit the experimental data. The thick green solid line is the 

overall result of the deconvolution (ϕ = 90°) 

 

 

Table 12-25: g-factor  values obtained for sub-group ϕ=90° 

Center number g factor value Possible Attribution 

Center 1 g = gC = g" =  2.0062 ± 0.0002 Si-db [26] 

Center 2 g = 2.0088 ± 0.0004 

g = 2.0049 ± 0.0002 

g =  2.0039 ± 0.0003 

Pb0 center [2, 27, 28] 

Center 3 g =  1.9967 ± 0.0001 E’-like defect [2] 
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SPECTRA ANALYSIS AND DISCUSSION 

 

In all the spectra we found the presence of signals due to the trigonal anisotropic center, the 

isotropic center and the E’-like center. For the first two sub-group ϕ = 0° and ϕ = 15°, the best 

fit were obtained using for the trigonal anisotropic center, as fitting parameters,  g∥ = 2.0094 ±

0.0002; g% = 2.0046 ± 0.0002 (for  ϕ = 0°) and g∥ = 2.0095 ± 0.0002; g% =

2.0050 ± 0.0003 (for ϕ = 15°).  

As far as the anisotropic trigonal center is concerned, for the other angles the best fit were obtained 

using three g-factor components as fitting parameters.  

In the figure below we reported a graph showing the angular dependence of the g-factors ob-

served in ALD grown Si/Al2O3, rotating the sample: angles were varied in the range 0°-90° with an 

accuracy of 5°. Figure 14-6 shows our experiment set up. 

 

 

Figure 12-32: Angular dependence of the g-factors observed in ALD grown Si/Al2O3, rotating the sample  
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13 Conclusion             

The reduction of the film thickness to nanometer dimensions is one possible way to achieve cost 

competitiveness in the semiconductor industry. The surface to volume ratio is increasing and that 

leads to electrical losses due to surface recombination. Thin films of Al2O3 are favorable for the 

passivation of the p-type silicon surfaces. The passivation properties of this dielectric material are 

related to a decrease of the interface defect density combined with an enhancement of the field 

effect passivation by a significant increase of negative fixed charge density Qf during annealing.  

Therefore, experiments were carried out to understand the origin of this negative fixed charge. The 

presence of a SiOx interlayer between Si and Al2O3 appers to play a key role in the origin of the 

negative charge formation and in the interface defect density. It has been demonstrated that an 

increase in the SiOx interlayer thickness over the range 1-30 nm gives rise to a decrease in nega-

tive Qf. As a matter of fact, SiOx acts as a barrier, reducing charge injection from the Si substrate 

into defect states at the SiOx/Al2O3 interface. In our study this effect has been demonstrated using 

the COCOS technique (see Appendix): we measured the total negative charge at the Si/SiOx/Al2O3 

interface of three reference wafers and we found out the the negative charge denisity Qf decreases 

with the increase of the SiOx layer thickness.   

Simulations and experiments have provided evidence that the negative charge at the SiOx/Al2O3 

interface may be related to Al vacancy IJK and O interstitial L@ .  

In addition, for annealed Al2O3 samples, the fixed negative charge density was observed to 

increase. In our study, using the COCOS technique, also this effect has been demonstrated (see 

group 2 in section 12-2). 
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To detect the physical and chemical nature of the interfacial defects, electron paramagnetic reso-

nance (EPR) was found to be a powerful technique. EPR is a spectroscopic technique that detects 

species that have unpaired electrons. Many authors have reported that Si/Al2O3 interface exhibits 

PM-type defect. This kind of defects is a trivalently bonded Si atom and it represents the prominent 

electronically active defects characteristic of the Si/SiOx interface. Our observations, using EPR 

spectroscopy, are in line with the formation of an interfacial SiOx layer. Analysing the spectra of 

group 1 (Si/Al2O3), it was possible to identify an isotropic center, an E’-like defect and an aniso-

tropic center (  PMN-like). The same results were obtained by Dingemans et al. [2]. The E’-like 

defects are associated with the SiOx interface. After an annealing step, EPR did not reveal the 

presence of any defect states.     

Finally, in our work we studied the angular dependence of the g values varying the angle between 

B and the (100) interface normal D E in a range 0°-90°. In all the spectra we found the presence of 

signals due to the trigonal anisotropic center, the isotropic center and the E’-like center in line with 

our expectations.        
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14 Appendix 

14.1 Corona-Oxide-Semiconductor Characterization 

Corona-oxide-semiconductor characterization is a technique for characterization of semiconductor. 

Positive or negative charge comes from a corona source and it deposited on a semiconductor 

sample surface. A high voltage source is used by the corona source to ionize room air. The corona 

source produces a uniform flow of ionized air molecules toward the wafer surface. The molecules 

retain very little kinetic energy during the process because of the short atmospheric mean free path 

of ionized gas. 

 

Figure 14-1: Negative charge is deposited locally on an oxidized p-Si wafer  [36] 

 

Positive charge is deposited in two possible modes: 
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Figure 14-2: Semiconductor substrate pulsed into deep-depletion from a) accumaltion, b) depletion [36] 

 

In the first mode, the device is driven by the positive charge pulse from accumulation into deep 

depletion. Also in the second mode the charge pulse drives the device from accumulation into 

deep depletion: the device can then reach inversion. After that, a second positive charge pulse 

drives the device from inversion into deep depletion. In this mode only the substrate bulk properties 

are measured: interface electron- hole pair generation is reduced. Then, after the deposition of the 

charge, we have to determine the transient response of the device. The sample moves from the 

corona source to a Kelvin probe, where the voltage is measured [36]. 
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14.2 Experimental set up: pictures 

In this section some pictures of our experimental set up are reported. 

 

 

  

Figure 14-3: The sample is in a cavity, which is a metal box that helps to amplify 

weak signals from the sample.There is a magnet to tune the electronic energy levels 

    

                             

                             

Figure 14-4:  The Bruker console contains signal processing and control electronics and a computer 
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Figure 14-5: The computer is used for analyzing data and coordinating all the units for acquiring a spectrum 

 

 

 

Figure 14-6: our experiment set up for the measurements of group 5 
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