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“Don’t Panic.”

− Douglas Adams, The Hitchhiker’s Guide to the Galaxy





Abstract

What stops the breakdown?

This is the question. What stops the Pulsed Plasma Thruster, PPT,

Spark Plug breakdown? What is a PPT? How does the PPT spark plug

work? These are the first questions to which this MSc thesis work tries to

answer. Several are the parameters involved in such questions, for examples

materials, spark plug geometry, erosion and deposition mechanisms on its

surface exposed in the PPT discharge chamber, ignition circuit and ignition

energy.

This MSc thesis is divided into three parts. In the first one, the result

of a literature review on the Pulsed Plasma Thruster spark plug lifetime is

exposed. Than, the basics concepts of vacuum arc science are summarized.

The second part of the work concerns the design of a test facility to

investigate on some parameters which are involved in the spark plug lifetime

problem. The test design includes both the electronics and the spark plug.

In particular, the electronics has been the focal point of the work, trying to

understand how the electronics influences the spark plug breakdown and vice

versa. To do so, two types of ignition, or trigger, circuit have been designed,

manufactured and tested. The former is the classic configuration using a

switching device and a step-up coaxial pulse transformer to achieve an high

voltage trigger pulse. The other one, is a transformer-less MOSFETs series

circuit.

The last part shows the manufactured electronics and spark plugs. Than

the spark plugs and the designed ignition circuits are tested, in air and in

vacuum. The data acquired during the tests are the breakdown voltage,

measured on the spark plug interior electrode with respect to the ground,
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and the current, measured by means of a Rogowski coil. From these results

some conclusions and future work are suggested.
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Chapter 1

PPT Spark Plug Lifetime

1.1 Introduction

In a Pulsed Plasma Thruster the ignition system is generally composed by

a spark plug (1.1). It is mounted in the thruster’s cathode into the dis-

charge chamber. The spark plug is driven by an ignition, or trigger, circuit

which gives a fast risetime voltage pulse and then allows a spark to form

between the electrodes of plug. The result of the arc breakdown between

the plug’s electrodes, is the production of a plasma puff. This one initiates

the discharge of the main capacitor, which provides the energy to produce

the thrust, by forming an arc discharge between the thruster’s cathode and

anode electrodes. This arc is self-sustained by the ablation and ionization of

the solid propellant bar until the energy storage capacitor has been totally

discharged. The electromagnetic body forces, described by the Lorentz force

and created by the closing circuit discharging current, accelerates the plasma

layer with exhaust velocities that can reach 50, 000m/s. A Pulsed Plasma

Thruster typically has an arc discharge pulse length on the order of 10-µs, a

spark plug trigger circuit pulse width on the order of 1-µs, a lifetime of 107

pulses, yielding to a total impulse on the order of 100, 000Ns.

For its role, the spark plug is a critical component, which affects the

operation of the thruster. The spark plug is the fundamental element, with

its ignition circuit, that forms the ignition system of the PPT. For this

reason, to understand the spark plug lifetime problem, an investigation on

3



4 1. PPT Spark Plug Lifetime

Figure 1.1: Solid propellant Pulsed Plasma Thruster configuration

the whole ignition subsystem of the PPT is essential.

As the spark plug is part of a spacecraft, it must satisfy some essential

requirements. It has to be able to work reliably in the space environment,

such as vacuum and radiation, and into the thruster environment as well.

Considering its location into the thruster’s cathode, for instance into the

discharge chamber, its end-surface will operate at the same temperature of

the main cathode and it will be contaminated by the propellant ablated

products. These contaminating products, which deposit on the spark plug

end-surface, and the repeated effect of heat and electricity change its con-

ducting characteristics, eventually degrading the spark plug performance.

Differently from an automobile engine spark plug, which serves to ig-

nite the fuel-air mixture, the PPT spark plug is used to initiate the main

vacuum electric discharge of this thruster. Furthermore it has to operate

during the entire lifetime of the spacecraft engine without any maintenance.

Therefore, to work reliably during its lifetime, it should have abilities of

anti-contamination and anti-erosion.

Parameters that affect the lifetime are discussed in the following sections.

They are: spark plug structure, resistance between electrodes and breakdown

voltage; surface deposition and erosion; electrical coupling between plug’s

and thruster’s cathodes; last but not least, the ignition circuit characteristics.
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For the many variables involved, it is clear that a total analysis of the problem

would involve necessarily the testing of the spark plug mounted into the

thruster and to produce a big amount of sparks for every change of the

above mentioned parameters.

1.2 Selection of the Spark Plug Structure

Considering a coaxial spark plug, the possible geometries can be summarized

as following:

Gap type: This is the kind of spark plug commonly used in a internal

combustion engine. Typically such spark plug has a central electrode,

electrically isolated from a metal threaded shell by a porcelain insu-

lator. The central electrode is connected by an insulated wire to the

output terminal of an ignition coil. Generally the breakdown voltage of

this spark plug is very high, especially considering the purpose to use it

in vacuum environment. The MDT thruster research group has tested

this geometry using a tungsten wire for the inner electrode. Their con-

clusion is that this geometry is not suitable for space application, in

fact to generate the high voltage pulses required, the ignition circuit

would be too heavy.

Surface Discharge type: The idea of this configuration, is to produce the

spark on the end-surface of the spark plug. For instance the two elec-

trode are separated by the means of an insulator, that can be for

example alumina ceramic. In a vacuum environment the spark pro-

duced between the two electrodes will certainly pass over the insulator

ring-surface.

Xue-Zhang and Han-Ji [19] observed that the still high breakdown

voltage of a surface discharge spark plug, but lower than the gap type

one, can be beyond lowered treating the insulator ring-surface with

carbon powder using a pencil. This particular semiconductor material

decreases the insulation resistance of the spark plug surface, so that the

breakdown voltage. Of course by applying the material by means of a

pencil, that layer easily burn off the surface. Because of the spark plug
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ability to exclude contamination spark by spark, and because of the

deposition process of the propellant products on its surface, to reach a

good equilibrium between these two phenomena is not a trivial task.

Semiconductor Type: A strengthened spark plug geometry, commonly

used for PPT applications, is the semiconductor spark plug type, where

the semiconductor layer is applied on the insulator using the cathodic

arc deposition technology. The key to establish an equilibrium between

the above mentioned phenomena, is the choice of the semiconductor

coating material and the layer thickness. This configuration allows to

reach attractive breakdown voltage on the order of 102− 103-V. More-

over, if the spark plug quality of the finish is high, then the breakdown

voltage is independent on the pressure around it. The requirements for

the ignition circuit are suitable for space applications.

Some important parameters affect the spark plug performance rather

than the PPT performances:

• Influence of the spark plug diameter on its performance:

During the MDT spark plug selection, it was found that a bigger

exterior diameter, of the external electrode, could improve the

fashion of the ablated solid propellant profile, due to the increased

moving area of the main discharge arc. It was also found that

a proportionally bigger diameter of the center electrode, could

mitigate the erosion of the same, slowing the breakdown voltage

growth during the spark plug lifetime. The conclusion of this

study led to select a large spark plug, in order to optimize the

fashion of the ablated propellant area, and to use a large diameter

for the center electrode with the purpose to mitigate the erosion

of the same, improving the spark plug lifetime.

• Structure of the semiconductor layer:

In [19] they tested two different configuration of the semiconduc-

tor layer: a fully coated insulator and a grooved-type spark plug.

The tests on this two configurations, showed that a fully coated

configuration has up to the double lifetime, because the other
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type of spark plug has little ability to contrast the solid propel-

lant material deposition.

• End-surface structure:

Tests showed that the best configuration in terms of lifetime, is

a flat-end surface. Some tests using a concave-end surface plug,

where the end insulator surface coated with semiconductor ma-

terial is rearward in respect to the electrodes, showed that this

plug configuration accumulate easily deposit, obtaining a shorter

lifetime.

For the reasons showed in this section, the best PPT coaxial spark plug

structure has a flat-end surface, with a fully coated insulator with semicon-

ductor and with a large center electrode.

1.3 The Performance of Spark Plug

1.3.1 Characteristic parameters

The main parameters that characterize the performances of spark plug are

the following:

1. Resistance;

2. Breakdown voltage VB;

3. Lifetime of spark plug.

The resistance of a spark plug includes two parts: the resistance Re
between the electrodes, and the resistance Rs of the semiconductor layer.

Because of the semiconductor negative temperature effect, such as the Rs
decreases as the temperature increases, Rs depends on the temperature and

obviously on the material. The relation between Rs and the temperature T

is the following:

Rs(T ) = Rs0 · e−b(T−T0)
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where Rs0 is the resistance of the semiconductor material when the tem-

perature is equal to T0 and b is a temperature coefficient of the semiconductor

material.

Re is dependent on the quality of the finish and on the assembly accuracy,

which is characterized by the following formula:

A = Ra0 −Ra

where, Ra is the resistance at normal temperature and in atmosphere,

whilst Ra0 is the plug resistance at normal temperature and in vacuum con-

dition. The purpose is to minimize A in order to maximize the assembly

accuracy. The spark plug lifetime is defined as the numbers of PPT main

discharges that can be fired continuously by firing the plug.

1.3.2 Performance Requirements

In a Pulsed Plasma Thruster the performance parameters of the ignition

circuit, and consequently of the spark plug, can be listed as follows.

1. Breakdown Voltage VB

The selection of the maximum spark plug breakdown voltage, VB, fol-

lows from the particular ignition circuit used. The typical electric con-

figuration of this one, see figure 1.2, uses a step-up transformer with

a winding ratio of 1 : n, in order to multiply by n the input voltage

V1. The closing switch, SW, showed in the schematics, is a device that

can realize very fast operation in order to release the energy, which is

stored into the capacitor C1 at voltage V1, in the shortest time interval

as possible. In the section 5.1 (p.36), the main categories of high volt-

age pulse generators will be discussed, in order to find out the most

suitable configurations to realize and test.

The breakdown voltage of the spark plug has a maximum, VB,max, and

a minimum value, VB,min. The minimum is defined by the smallest

amount of energy necessary to initiate reliably the thruster discharge

between the main electrodes. Therefore this value depends on the

thruster electrode configuration and dimensions. In general, the same
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Figure 1.2: Typical transformer circuit configuration of a PPT ignition cir-

cuit

amount of energy can be delivered by the spark plug with smaller pulse

width, but with higher current. In particular, the pulse energy εpulse
is defined as:

εpulse =

∫ T

0
v(t)i(t)dt (1.1)

Where, i(t) is the current pulse, v(t) is the voltage pulse and T the pulse

period. These considerations, concerning the ignition circuit design,

will be discuss in section 5.1.The minimum breakdown voltage should

be defined in vacuum condition and at normal temperature. Finally,

the maximum breakdown voltage can be estimated starting from the

ignition circuit maximum output voltage. Considering a safety margin

from that value, VB,max can be fixed.

2. Semiconductor Resistance Rs

In the next section 1.4, the relationship between the carbonaceous

deposit amount on the plug surface and the semiconductor resistance

will be highlighted. The semiconductor resistance, a surface resistance,

is measured by using a constant low DC current, on the order of 100-

µA, with a resistance measuring circuit. The current should be low

because it can heat significantly the thin semiconductor layer, with a

thickness on the order of 100 µm.

3. Spark Plug Resistance Ra0
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The breakdown voltage is related to the resistance value of the plug at

the normal temperature and in vacuum condition Ra0. In particular,

the higher the plug resistance, the higher the breakdown voltage. To

increase the ability of the plug surface to exclude contamination, Ra0
should be taken as high as possible.

4. Lifetime

Depending on the PPT thruster mission requirement, the spark plug

lifetime requirement is defined. A typical value is between 106 and

107 discharges. Of course it should be as high as possible because,

as already mentioned, the spark plug is, in general, one of the most

critical component in a PPT.

1.4 Coupling Element

Aston and Pless 3 found an important link between the connection of the

spark plug and the thruster cathodes and the spark plug lifetime, using a

coupling element (see Fig.1.3). In particular they studied the behavior of two

coupling elements: resistor and inductor. They started their work noticing

that the plug suffered severe erosion when it was slot into the thruster cath-

ode, thus with thruster and plug cathodes directly connected together. By

that observation, they tested the spark plug behavior with the above men-

tioned coupling elements. The spark plug was insulated from the thruster

cathode by a little vacuum gap, less than 1-mm.

1.4.1 Coupling Resistance

Due to the solid propellant depolymerization products, a certain amount of

carbonaceous deposits accumulate on the plug surface. This is unavoidable,

but for a reliable spark plug operation the deposit should not be too much or

too low. In particular, with too low deposit the ignition firing leads to exces-

sive plug wear. Conversely, too much deposit behave like a low impedance in

parallel with the semiconductor ring, eventually it can be sufficiently thick

and conducting to short the spark plug semiconductor element and thus

leading to misfire.
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Figure 1.3: 1 − mlb pulsed plasma thruster discharge chamber component

locations [3]

The plug deposition amount is affected by the value of the coupling re-

sistor used to electrically couple the cathodes (Fig.1.3). The parameter that

is most representative of the deposit amount on the plug face, is the semi-

conductor resistance Rs. Fig.1.4 shows that a smaller value of the coupling

resistance has a negative effect on the plug operation. In the test showed, the

plug misfiring became to happen when the semiconductor resistance reached

about 1.5 Ω. The plug deposit increases with the number of thruster pulses.

At the same time, a weak erosion of the plug anode is observed.

A lower value of the coupling resistance gives a larger value of the coupling

current during the pulse operation. It is possible to measure this value

using a Rogowski coil as indicated in Fig.1.3. The largest current value is

obtained using a shorting wire to connect the cathodes. For these reasons,

the hypothesis is that larger currents, and thus larger arc attachments to

the plug surface, is the mechanism by which the ablated propellant products

deposit on the plug surface. It is remarkable the fact that the coupling peak

current on the resistor isn’t proportional to its value. To reduce the peak

current of one order, the resistance could be four order bigger (Fig.1.5).
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Figure 1.4: Semiconductor spark plug resistance variation varying the cou-

pling resistor value [3]
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1.4.2 Coupling Inductor

In order to limit the coupling current, an inductance elements can be also

used. The test made by Aston and Pless, represent an example (Fig.1.5).

The charging time of the inductor has a damping effect on the current. A

spark plug lifetime test would show that the semiconductor resistance, Rs,

would keep almost a constant value when using an inductor coupling. On

the contrary a resistive coupling would reduce dramatically the resistance to

reach a lower resistance value with respect of that one of the brand-new plug.

Finally, the coupling inductance value and peak current have a hyperbolic

relationship that can be experimentally evaluated. This means that, above

a certain inductance value, the reduction of the coupling peak current is

negligible.

Figure 1.5: Coupling current comparison [3]

1.4.3 Conclusions

The inductive coupling of the spark plug and thruster electrodes, has a ben-

eficial effect on the spark plug lifetime. The parameter to highlight that

is the plug semiconductor resistance, Rs, which remain around a constant

value. In particular, the inductance limits the coupling current peak and, at

the same time as an effect, it significantly limits the carbonaceous deposit

on the plug face.
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1.5 Ignition Circuit

In section 5.1, the available and most important circuitry solution to produce

high voltage pulses will be discussed. The aim of studying the possible

solutions, has been to understand the functioning of a classical transformer-

based circuit and to investigate on possible new solutions.

For what concerns the spark plug lifetime, the ignition circuit strongly

affects it, and together with the spark plug characteristics, it defines the

ignition system goodness. Especially, a lower voltage and higher current

trigger pulse, thus keeping constant the energy, contributes to the reduction

of plug deposition.

The important conclusion exposed above has been verified experimentally

by comparing different trigger circuit to fire the spark plug and producing

the main thruster discharge [3]. Adopting a trigger circuit composed by a

1.5 : 1 step-down 400V output pulse transformer, instead of a 3:1 step-up

with 1800V output pulse transformer, the trigger circuit current increased

significantly with a corresponding reduction of carbonaceous deposit. If the

energy provided to the spark plug is constant, by increasing the switching

speed and reducing the pulse length, the current must increase. In the case

of the transformer-based circuit the pulse width depends on the transformer

itself and on the closing switching device. An example is given by Fig.1.6.

Figure 1.6: Effect of different closing switch device on the trigger current

pulse [3]

For these reasons, a trigger circuit that provides a pulse length on the

same order of the main thruster discharge, is to avoid. To minimize the con-

tribution of the trigger current, concerning the plug surface deposit problem,
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corresponds to minimize its pulse length.

1.6 Current Interactions

It has been observed that the coupling current, both with the coupling resis-

tor or inductor, reaches very large values. Too large to be sustained by the

ignition circuit energy capacitor. For this reason, it follows that the energy

must come from the thruster energy storage capacitors. This means that, im-

mediately after the plug ignition, the plasma puff created, or micro-plasma,

creates a low impedance path between the cathodes. In fact the voltage drop

across the coupling element is next to the energy storage capacitor voltage of

the thruster. At a later stage, when the main discharge between the thruster

electrodes occurs, the coupling voltage falls to zero. The explanation is that

the plasma suddenly creates a shorting path between the plug and thruster

cathodes.

The phenomena described shortly above, means that, if the trigger circuit

pulse lasts further the thruster discharge starting, a current path will connect

the plug anode with the thruster cathode. To limit this phenomenon, a short-

pulse-length trigger circuit and an inductance coupling are the solutions to

opt for.

1.7 Spark Plug Erosion

The erosion mechanisms that can be observed on the spark plug surface are,

in order of importance: the embrittlement ; the erosion due to the normal

plasma sputter erosion processes; the amount of erosion by plug vaporiza-

tion caused by the trigger circuit pulse. The former and most important

erosion mechanism, is directly related to the amount of deposit located on

the plug surface. This fact can be easily proven removing the deposit on the

plug surface and observing that the embrittlement occurs mainly where the

deposit layer is thicker. Most of deposit occurs on the cathode ring surface.

Finally, it has to be observed that a certain amount of deposit can prevent

most of the damage caused by the trigger circuit current. In fact, if the

semiconductor spark plug is tested alone in vacuum, higher erosion on the
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anode would be observed and large amounts of cathode and semiconductor

material would vaporize and be removed.

1.8 Spark Plug Lifetime

Once the spark plug structure and the ignition system have been selected, it is

necessary to test the lifetime. Firstly the spark plugs selection process should

happen. In fact, to manufacture a perfect coaxial semiconductor spark plug

is challenging. Once they have been produced, it should be checked that they

meet the requirements defined in section 1.2. Finally, through accumulative

or/and accelerated lifetime tests, they can be qualified.



Chapter 2

Vacuum Arc Physics

Background

The electric arc is defined as “discharge of electricity between two electrodes

in a gas or vapor that has a voltage drop at the cathode of the order of the

minimum ionizing or exiting potential of the gas or vapor”. In general, the

arc is self-sustained and supports large current, on the order of kA, by the

electron emission mechanism from the negative electrode.

Into the vacuum environment, the vacuum arc is defined instead as “high

current, low voltage electrical discharge between two electrodes situated in

vacuum environment. Vacuum itself cannot support a high current discharge

at low voltage”. Hence, a medium is required to perform the vacuum arc.

This medium is a highly ionized plasma produced by electrode material va-

porization, and caused by the interaction between the plasma itself and the

electrode. By this observation, the proper description would be “metal vapor

arc in vacuum”, while it is commonly called vacuum arc.

The production of plasma comes from the cathode spots. They are highly

luminous and tiny region on the cathode, which represent the most stu-

died aspect of vacuum arc. They are responsible to provide the conducting

medium in form of metal vapor and they provide the electron flow. Thanks to

their small dimensions, even a small arc current can create extremely high lo-

cal temperature and electric field that provide the condition for plasma and

electron production. The metal vapor produced by the cathode is almost

17
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fully ionized and it contains different ionized species.

The ions kinetic energy is around 80 − 150eV even with 20V voltage.

The plasma flow velocity is on the order of 10km/s with direction outward

the cathode spots. The ion current plasma is only 10% of the arc current,

while the rest is given by the electron flow.

The cathode plasma jets originated from the cathode spots, expand in

all the directions. As a consequence a fraction of plasma reaches the anode

electrode (Fig.2.1). It follows an electron flowing from the cathode to the

anode, faster than the ion current, which has same charge density and direc-

tion. Plasma flow and current flux are subjected to magnetic fields that is

either self-produced by the arc current or imposed externally. If the ion and

electron flux heats the anode sufficiently, the anode can become a source of

plasma by vaporization or anode spot formation.

Figure 2.1: General structure of a Multi-Cathode Spot vacuum arc [5]

The properties of vacuum arc are used in several technological applica-

tions. While the vacuum is a good insulator, the metal vapor plasma and

the metal arc electrodes are good conductors. Conduction can be initiated

essentially in two ways: by switch opening and switch closing techniques.

The former is more challenging to realize. The main issue is that, when

high current is established between two electrodes in vacuum, when they

are separated that current generates an arc and consequently a conducting

plasma. This arc therefore continues the current flowing. To stop the arc,

the current must reach momentarily zero.

The thermal time constant of cathode spots is extremely short, on the

order of ns, while, because of the plasma velocity, the time required for the
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plasma to reach a cool surface, where it condenses, is on the order of µs.

The vacuum arc production of large amount of electrode material, is a

fact used in a series of technological application. In particular in metallur-

gical processes like the vacuum arc melting or vacuum arc degassing. But

the most important application in the case of the PPT spark plug, is the

coating, mentioned in section 1.2. It is obtained starting from the vacuum

arc and using the metal vapor plasma flux produced, which condenses on the

target cool surface to coat it.

Vacuum arc physics is a complicated field to study experimentally. The

phenomena are complex e dynamically correlated and several are the un-

known behavior still to understand. Anyway it was right and proper to

develop a basic knowledge of vacuum arc science, at least to develop a

global idea on what might happen on a spark plug surface for pulsed plasma

thruster. The main reference of this chapter is [5] (Boxman et al., 1995).

2.1 Plasmas and Arc Discharges

An electrical discharge is the passage of current through a medium or an in-

sulator. The breakdown happens when the insulator changes state to become

conductor. This happens when sufficient high voltage or an electrical field is

applied. A fraction of atoms of the medium is ionized and forms a plasma,

of which the electrical current is established primarily by free electron move-

ments and, secondly, by ions movement. The vacuum arc is self-sustained

by the processes involved in the passage of electrical current and maintains

the insulator in conducting state.

The processes involved in plasma and electric discharges, are the collision

processes, the collective behavior, the conduction of electrical current, the

magnetic effects and the electrode effects.

The motion of electrons is limited by collisions with ions and atoms.

Some of them may ionize the atoms, the fundamental fact that maintain

fraction of plasma ionized contrasting the losses. The collective behavior

leads to concentration of charged particles, which, with their motion, cause

electrical and magnetic fields. These fields influence the characteristic of

plasma, such as concentration and motion. The plasma results to be neu-
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tral as a consequence of the collective behavior. In particular, unbalanced

positive and negative charges create an electric field, which put back the

plasma in the neutrality condition. In particular, the magnetic fields confine

the flow of electric current in perpendicular direction, making it responsible

of the plasma macroscopic motion. Some neutral metal atoms are emitted

by the electrodes sputtering or evaporation. The cathode spots supplies the

rest of discharge providing electron current, which is approximately the 90%

of the circuit current.

2.2 Arc Ignition

The metal vapor discharge can develop into an arc only if the external circuit

resistance is sufficiently low. A variety of methods are adopted to initiate

an arc: breakdown-to-arc transition; laser ignition; hollow cathode arc; arc

ignition from low voltage sources. The latter considers low voltage the 50V to

200V range and it is capable to maintain several amperes of current needed

to hold the arc. Ignition from low voltage can be achieved in several ways,

one of which is the triggered arc. Each one of these methods is a mechanism

to develop a stable cathode spot. Spark plug in a PPT is an example of

triggered arc ignition.

As already described in section 1.2, the spark plug insulator can be coated

with a semiconductor in order to increase the lifetime and, in particular, to

reduce its breakdown voltage 2.2. Several references report the use of coating

material on the spark plug insulator both in experimental work and in flight

qualified PPT, such as LES series and MDT-2A [7, 2, 12, 5, 19, 6, 1, 3, 10, 18].

However in most cases the authors don’t specify the material used, in the

other cases they give some indications. Moreover, varying the coating, the

PPT spark plug performances change widely, for example the breakdown

voltage: between 200V and 300V in [18]; approximately 300V in [3]; between

100V and 500V in [6]; between 1000V and 2600V in [19]; between 1kV and

10kV in [13]. In addition also the erosion mechanism (section 1.7) varies

with the coating material and deposition process parameters.

In [5], the Titanium hydride coating is suggested for the triggered arc

ignition system shown in Fig.2.3. The main advantage to use this material is
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Figure 2.2: 1-mlb ignitor plug semiconductor [3]

that it releases gas that allows triggering at lower power. When the tube is

newly, the breakdown voltage initially required is about 1kV , but the break-

down voltage stabilizes at 100V -500V after subsequent use. In [10], a similar

device with Alumina as insulator and coated with a Mn/Ti alloy, has been

tested in vacuum. This inorganic ceramic coating decreases the Alumina re-

sistivity and, at the same time, the combination of this two elements allows

a good penetration of the coating. This fact increases the insulator lifetime

and protect it from the abrasion mechanism.

Figure 2.3: Hydride type trigger for ignition of vacuum arcs in a three ter-

minal device [5]

Finally, a brief note on the Paschen’s Law is necessary. This equation was

formulated by Friedrich Paschen who discovered it empirically in 1889. This

equation gives the breakdown voltage of two electrodes in a gas as a func-
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tion of pressure, p, and gap length, d. Fig.2.4 shows typical Paschen curves

assuming a uniform electric field (obtained with parallel metal plates), show-

ing gas breakdown voltage versus the pressure and gap length product, p · d.
For example in air, with atmospheric pressure and 1cm gap, the breakdown

occurs at about 30kV . Since the breakdown is a function of the product p ·d,
the same value can be obtained with double the gap and half the pressure,

or the contrary. The interesting fact is that, given a gas, there is a minimum

breakdown voltage possible, above which it increases with the product p · d,
and below of which it increases with the reduction of the product p · d.

Figure 2.4: Typical Paschen curves, log-log plot, showing gas breakdown

voltage versus the product of pressure and gap length, p · d [5]

2.3 Cathode Spots

The cathode spot is a phenomenon not fully understood both in terms of

experimental and theoretical characterization. It takes place in very limited

surface area and it is of many forms. The most common consists on small,

luminous spots that move over the cathode surface. Their displacements are

chaotic and towards cold surface areas. As a result, neither their direction nor

their motion is sufficiently understood.The cathode spot has many functions:

it provides discharge medium into the electrodes gap and it provides current

by emission of electrons. It forms a dense plasma in front of the surface and

it contains four phases: solid, liquid, vapor and plasma.

From the cathode spot, a plasma jet goes away from it as a consequence
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of the electrode local explosion. Several plasma jets, in the PPT cathode

electrode, form the plasma bulk that is accelerated to give thrust. The

origin process of cathode spots is shown in Fig.2.5. In general, the electrode

are not smooth, instead their surface is rough. At these sharp geometric

point, the field emission occurs and promotes the ion bombardment. The

interested area is heated by the ion bombardment and thermionic emission

starts. The increased presence of electrons promotes more ion bombardment

and a thermal runaway heats the surface, until the local cathode surface

explodes, leaving a crater.

Figure 2.5: Evolution of the cathode spot process and macro particle forma-

tion as a result of plasma pressure on the liquid cathode material [14]
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Test Design
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Chapter 3

Foreword

The spark plug lifetime hes been detected as one of the most critical parts

to design in a pulsed plasma thruster total lifetime. In chapter 1, the main

issues concerning the spark plug design and ignition circuit design have been

exposed. In particular the parameters involved in the optimization of the

spark plug lifetime are the following:

• Spark Plug structure;

• Ignition circuit characteristics: pulse length, breakdown current and

voltage;

• Pulsed Plasma Thruster characteristics: coupling element between

thruster’s and spark plug’s cathode electrodes.

The aim of the thesis project was to investigate on the spark plug lifetime.

Obviously it was impossible to study all the numerous aspects of the problem,

especially because a test facility had to be created and started. The test

design therefore has been to be as simple as possible.

It was noticed that on of the main parameter involving the spark plug

lifetime was the trigger pulse-length. Through a literature review on the

existing high voltage pulse generator technologies (see section 4), a MOSFET

based high voltage switch circuit, has been selected as a good candidate to

test the spark plug breakdown. In particular it gives the possibility to change

the pulse length parameter, for instance since a very narrow window on about

100ns.

27
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Chapter 4

Spark Plug Design

The MDT-2A spark plug design [1] is coaxial, with semiconductor coated

insulator and with interior electrode of large diameter. With this design the

spark plug lifetime was respecting the thruster requirement of the spacecraft,

which was about 107 pulses.

In agreement with the supervisors, it was decided to do not investigate

on the spark plug insulator coating. The decision was well motivated by the

following reasons:

• there wasn’t any clear information on certified coating materials and

thickness;

• the coating would have took a long time, a couple of month in total, to

be prepared and realized. In particular to have access to the nanofab-

rication facilities of the Nano Research Group through an induction;

• the coating introduces a variable on the breakdown mechanism that

could complicate further the breakdown process understanding;

• the coating for the Mars Space Ltd PPT thruster projects, are cur-

rently in phase of studying and approval. Moreover it wouldn’t be

possible to have precise information on the material composition and

layer thickness.

For all the reasons described above, the spark plug insulator coating

has been excluded from the design. The consequence of introducing this

29
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parameter would have complicated the spark plug manufacturing, reliability

and beyond extended the manufacture schedule. Finally, because of the poor

details available, it was decided that the time-budget was too low to consider

possible the investigation of this spark plug structural characteristic.

A possible spark plug parameter to investigate was the geometry. In par-

ticular the size of the interior electrode and the dimension of the insulator

ring. For what concerns the material, several are those known to work reli-

ably as electrodes even in the specific case of the PPT spark plug. But the

most common used materials are Tungsten, Copper and Tungsten/Copper

alloys. As insulator the choice can be between the Shapal™1, Teflon®2 and

Macor®3.

The spark plug design proposed was the coaxial type shown in appendix

B. In order to minimize the costs, some suitable materials, already avail-

able at the TDHVL mechanical workshop, were considered. In particular,

a Tungsten (purity 99.95%) rod of 1.5mm diameter, was selected for the

inner electrode. As insulator some Macor pipes were also available. There

were two size pipes, of 1.55mm and 0.85mm interior diameter respectively,

with 0.6mm and 0.25mm thickness respectively. Starting from these avail-

able material, two size of spark plugs have been designed, the big-SP and

the small-SP. For both a stainless steel external electrode has been manu-

factured, drilling 5mmm rods to slot in the insulator pipe and the interior

electrode.

To roughly forecast the spark plug breakdown voltage in air, the Paschen

curves for the air can be used (Fig.4.1). The separation between the coaxial

electrodes is 0.6mm for the big-SP, and 0.25mm for the small one. Since

the atmospheric pressure, at 20°C, is p = 760torr, the resulting p · d values

are respectively 45.6mmHgcm and 19mmHgcm, leading to the respective

predicted breakdown voltages of 3.0kV and 1.5kV . If this values will occur

during the in air tests, the spark plug breakdown will probably occur in air

rather than on the Macor insulator surface.

1Aluminum nitride ceramics
2Polytetrafluoroethylene (PTFE)
3Macor is the trademark for a machinable glass-ceramic developed and sold by Corning

Inc
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Figure 4.1: Paschen curve to forecast the air breakdown voltage of two types

of the spark plugs manufactured
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Chapter 5

Ignition Circuit Design

The power delivery of one watt, is defined as one joule of energy delivered in

one second. If a certain amount of energy is delivered to the load in a short

time, the resulting power is large. In a pulsed power application, even if the

average power may not be large, the peak power may reach huge values. An

example in nature is represented by the lightnings, which develop megajoules

of energy in microseconds, while examples in technology are radar, particle

accelerators and lasers. The purpose of using a pulsed power system, is to

realize a power compression. The use of pulsed power is justified by two main

reasons: to deliver the high power required is impracticable continuously or

to use pulsed power lead to an efficiency advantage.

The vacuum arc plays three different roles in pulsed power systems:

1. it is used as switch, such as a mechanism to control the delivery of a

high power pulse to the load;

2. it occurs in case of a catastrophic failure of the electrical insulation of

a high power device;

3. the vacuum arc is used as the energy conversion mechanism to convert

power into, for example, x-rays, or, in the case of a semiconductor spar

plug, in metal vapor, or plasma.

The use of vacuum arc is practically as a switch or as a load. The case of

interest, such as to manufacture the ignition system to generate a plasma

puff by means of a spark plug, is to use it as a load. In this particular case,
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the load that the spark represents, will probably be time-varying and with

non-linear properties. For these reasons, in order to optimize the energy

transfer to it, a careful design of the pulsed power system has to be done.

The temporal power compression is achieved by accumulating, in a cer-

tain amount of time, the energy required in a storage device. In order to

maximize the pulsed power, this energy should be realized in a relatively

short amount of time. The simplest form of a pulsed power system, which is

all long used in the pulsed plasma thruster ignition system, uses an energy

storage capacitor as the energy storage element (Fig5.1).

Figure 5.1: High peak power delivering to a resistive load, RL, with a capac-

itive energy storage system. The current limited high voltage source charges

the capacitor over a relatively long time interval. Activating the closing

switch device, the energy is quickly delivered to the load [5]

The electrical energy accumulated by the capacitor is given by the fol-

lowing equation:

E =
1

2

C

V 2
=

1

2

Q2

C
(5.1)

Where Q is the quantity of charge stored, V is the voltage difference

between the capacitor plates and C is the capacitance. The power delivered,

as a function of time, by the source to charge the capacitor, is given by:

Pc(t) =
V 2

RS
e
− 2t

RSC (5.2)

Where RS is the high voltage source limiting current resistor. Theoreti-

cally, half of the energy produced by the source, is dissipated in the source
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resistance. The peak power delivered, when t = 0, depends on the open cir-

cuit voltage and on the source resistance value. The duration of the power

delivery, depends instead on the charging time constant τc = RSC.

The stored energy is delivered to the load, which as already mentioned

can be a vacuum arc itself, by the closing switch that connects the capacitor

to the load. The closing switch can be also a vacuum arc but, in the case of

a trigger circuit for pulsed plasma thruster, it is made by a particular device,

for example a power MOSFET. The possible device to use and the ignition

circuit possible solutions, will be discussed in the next section 5.1. In the

case of a load resistance, also the power delivered to the load obtained by

closing the switch, has the exponential form:

Pd(t) =
V 2

RL
e
− 2t

RLC (5.3)

In this case, the power decay is determined by the discharging constant

τd = RLC. The power gain, Pgain, is defined as the ratio of peak power

delivery to the load over peak power delivered by the source. The Temporal

compression, Tcomp, is defined instead as the ratio of charging time constant

to discharging time constant. As a result these two parameters, are equiva-

lent:

Pgain = Tcomp =
RS
RL

(5.4)

There are three main critical requirements concerning the capacitive en-

ergy storage system:

1. the closing switch must remain opened when the high voltage is applied

across it, and for a time preferably much greater than the charging time

constant τc;

2. the switching transition, from opened to fully closed, must occur prefer-

ably in a time much shorter than the discharging time constant τd;

3. the closing switch must reliably conduct the large current discharge.
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5.1 Investigation of High Voltage Pulse Generators

The most commonly used techniques of high voltage pulse generation are:

Marx cells and spark gaps, non-linear capacitor, static induction thyristor,

modular high voltage, combination of energy storage components and trans-

former, IGBT and MOSFET series and parallel. These techniques have

a long list of application, such as industrial, medicine and biotechnology.

Some examples in biotechnology are electro-chemotherapy and water and

food treatment. Industrial application of high voltage pulse generator are

treatment of metal and polymer, laser technology and insulation testing.

In general, a high voltage pulse generator is composed by two modules:

the High Voltage Power Supply, HVPS, which charges in a relatively long

time an energy storage capacitor with a current-controlled output; and a

power modulator that deliver the energy to the load in a short amount of

time, obtaining a high power electrical pulse. The fast discharge of the energy

storage capacitor is accomplished by a Pulse Forming Network, PFN. It con-

sists normally of switching devices, resistors, inductors and capacitors. The

switches can be one of the several available devices, which can accomplish

fast operation and are characterized by many maximum rating parameters,

such as power dissipation, continued and pulsed current, breakdown voltage

and operating temperature. They are also characterize by dynamic param-

eters like delay times, rise and fall times and switching speed. The most

used and common switches are: ignitron, thyratron, tetrode, spark gaps and

semiconductors. The lifetime ratings are on the order of 106 for the spark

gaps, 108 for thyratrons and 1012 for semiconductor devices. Anyway if these

devices don’t operate in nominal conditions, such as arcing or non-optimal

condition in general, their lifetime is drastically reduced.

The electric power, from a low utility level, is transformed into pulsed

high intensity magnetic fields by the pulse modulation. The simplest circuit

exposed in the previous section (Fig.5.1) has an exponential decay pulse.

In the following sections two different types of pulse generators will be de-

scribed. The first one is the high voltage pulse generator using energy storage

device components and a transformer. The second is a high voltage pulse

generators that uses a series or parallel MOSFETs configuration.
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5.1.1 MOSFET Circuit

High voltage pulse generator using power MOSFETs can be divided into two

categories: parallel and series solutions. In general it can provides an high

voltage controllable square pulse with amplitudes proportional to the device’s

breakdown voltage and pulse width on the order of hundred nanoseconds.

Parallel-MOSFETs

A parallel-MOSFET pulse generator circuit diagram is shown in Fig.5.2, in

the case of three parallel devices. As shown in the schematics, a resistor

between the source terminals is not needed. In fact the MOSFETs have a

positive temperature coefficient. This means that, if one of them starts to

take more current, it heat up and, thus for that feature its on-state resistance

increases reducing the amount of current passing through the drain-source

terminals. The motivation to use the parallel-MOSFET configuration, is

to decrease the equivalent on-state resistance of the switch. In particular,

by switching two or three MOSFETs in parallel and assuming that they are

identical (more precisely with the same on-resistance), it can be reduced to a

half or a third. In Fig.5.2 the load is a cuvette made of resistor and capacitor

in parallel. Here the load represents some kind of food, as this circuit can

be used for the bacterial transformation application.

The circuit is composed by a low voltage MOSFET Driver Circuit, MDC,

and by the power modulator to generate the high voltage pulse. The MDC

is powered by 15V DC source and take in input a microcontroller input

signal. The output square pulse generated by the MDC, is the input of

the MOSFET gate. The current-limiting resistor of 4Ω protects the device

by damping the signal oscillation during the switch-on time. This resistor

has a low value beacause added to the gate resistance of the MOSFET, it

increase the switching time by increasing the charging time of the source

capacitance Cgs. The anti-parallel diode to the gate resistor, serves to turn

off the MOSFET faster by allowing the current to bypass the resistor. A

good diode for this purpose has a short recovery time.The two zener diodes

in back-to-back configuration (Fig.5.31), serves to protect the gate source

1http://www.electronics-tutorials.ws/diode/diode_7.html

http://www.electronics-tutorials.ws/diode/diode_7.html
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terminal of the MOSFET, thus to prevent from damaging the gate oxide. It

is one of the most common cause of failure in power MOSFETs.

The HVPS charges, with the power MOSFET switch opened, the energy

storage capacitor, here 8µF , through the high voltage current-limiting re-

sistor. When the capacitor is charged, a positive pulse of the MDC switch

on the power MOSFETs, allowing the capacitor to discharge through the

switch and load. Here, the pulse seen by the cuvette is negative. The bigger

is the capacitance, the higher is the pulse energy and the lower is the possible

number of pulse per second. A large capacitance is better for a single and

relatively long pulse, but worst in terms of repetition rate.

Figure 5.2: Parallel-MOSFET pulse generator circuit diagram [11]

Figure 5.3: Zener diodes in back-to-back configuration
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Series-MOSFETs

The schematics of the series-MOSFET circuit shown in Fig.5.4 is similar to

the previous. The difference is the power MOSFETs coupling. The aim of

this configuration is to produce controllable square pulses with amplitude

multiple of the single device breakdown voltage. Connecting for example

two MOSFETs, with the configuration shown, they will be able to increase

the high voltage applicable to the total switch. As in the parallel-MOSFET

configuration, the same MDC and gate protection circuit can be used.

Figure 5.4: Series-MOSFET pulse generator circuit diagram [11]

The series operation of power MOS devices uses a gate-side technique,

which make possible the synchronization of the gate signals, using their in-

ternal capacitance. As a result, a fast and balanced turn on of the switch is

possible. The name of this technique, is Capacitive Coupling of Gate Signals.

Most in general, Fig.5.5 shows the case of three MOSFETs in series.

The drain of each device is connected with the source of its neighbor.

The most important aspects of this technique are the following:

1. The nearest MOSFET to the common ground, takes as input the trig-

gering signal on the gate terminal. The other MOSFET gates have a

capacitor linked to common ground;
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Figure 5.5: Methodology for reliable operation of stacked power MOSFETs

[8]

2. A resistive divider, made by series resistors R, serves to stabilize the

voltage rise at turn-off (because the pulse produced is negative);

3. A zener diode is adopte as simple protection circuit for the MOSFETs.

The switching behavior model, uses the following assumption: the drain

current ID is zero when MOSFET is in cutoff region of operation; the drain

current is given by gm(VGS − Vth), with gm the transconductance, VGS the

gate-source voltage and Vth the threshold voltage; the drain current in linear

region is equal to VDS/RDS,on, with VDS the drain-source voltage and RDS,on
the drain-source on-resistance. During the delay time, the time that occurs

between the drive signal and the drain current flowing, the MOSFET is in

cutoff region. It is in saturation region when the current is between 10% and

90% of the final value. Above the 90% the MOSFET is in linear region.

Given the power MOSFET parameter, it is possible to dimension the the

capacitor C2 and C3 using the following observations. Before the triggering

signal, the drain-source voltages of the MOSFETs are DC and equal, such

as VDS1 = VDS2 = VDS3. The gate-source voltage of each device is instead

0V . When the trigger signal happens, and neglecting the drain-source ca-

pacitance, the effective capacitance between the gate and the source of each
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MOSFET is given by:

CGS,eff = CGS +
dVd
dVg
·Ggd (5.5)

During the switch C2 and C3 are used to charge the CGS,eff of, respec-

tively,M2 andM3. Assuming the the drain-source voltage are the same prior

switching, the initial charge on C2 is:

Q = C2 · VDS (5.6)

After switching starts, the above described charge is given to CGS,eff
and C2, that is:

Q = (C2 + CGS,eff ) · VGS (5.7)

Combining eq.5.6 and eq.5.7, the capacitance C2 can be calculated as

follows:

C2 =
CGS,eff · VGS
VDS − VGS

(5.8)

Similarly the next capacitance C3 can be calculate. Considering that it

stores a charge of Q = 2 · C3 · VDS , its value is given by:

C3 =
CGS,eff · VGS
2 · VDS−VGS

≈ 1

2
C2 (5.9)

Where the approximation is valid if VDS >> VGS . Normally this is a

valid assumption because, for power MOSFETs, 20−V < VGS < 30−V and

500 − V < VDS < 1500 − V . The procedure can be applied to an m-series

MOSFET circuit, with m power MOSFETs. In particular Cn ≈ 1/(n−1)C2.

The gate capacitors can also be combined as shown in Fig.5.6. In this

case, is C ′2 to supply charge to the gates ofM2andM3. In this case the result

is given by C ′n ≈ (m− n+ 1) · C2.

5.1.2 PPT Ignition Circuit examples

In literature poor details have been found about the Discharge Initiator cir-

cuit, or Ignition Circuit of Pulsed Plasma Thrusters. Furthermore it wasn’t

possible to obtain circuitry design detail of the Pulsed Plasma Thruster
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Figure 5.6: Alternative topology for reliable operation of stacked power

MOSFETs [8]

projects in development at Mars Space Ltd, the . A general overview on

the ignition system has been found in literature [4, 1, 19]. They respectively

refers to the EO-1, MDT-2A and MDT series spacecrafts.

The references [1, 19] describe the ignition circuit schematics exposed

in section 1.3 (Fig.1.6), using as closing switch device a Silicon Controlled

Rectifier, SCR. In particular, the MDT-2A pulsed plasma thruster, con-

sists of three subsystems: the thruster subsystem, the power conditioner

and telemetry signal converter subsystem and the ignition subsystem. The

power conditioner takes as input a low DC voltage, about 25V , from the

battery package and provides from it both a 2kV and 150V DC needed by

the thruster and ignition circuit respectively. The thruster has two nozzles

in a side-by-side configuration, which have a common main energy storage

capacitor and ignition capacitor. Fig.5.7 shows the circuit schematics of this

thruster.

The MDT-2A thruster uses a low voltage discharging initiating circuit

with a coaxial spark plug as the type described in section 1.2. The SCRs con-

trol, alternatively, the ignition energy storage capacitor C1, which discharges

into the respective transformer. The selection of the SCR as closing switch

component, has been validate after soling the following problem. SCR for-

merly failed in the vacuum tests, when it was used an input voltage around

500V . It has been noticed that under vacuum condition, the commercial SCR
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Figure 5.7: Ignition circuit schematic of MDT-2A [1]

used wasn’t sufficiently sealed. Therefore, during the test, the trapped air

leaked out slowly. At a certain point, the pressure inside the device was re-

duced to a critical value since the Paschen breakdown occurred. Because the

minimum Paschen breakdown voltage is not less than 200V (independently

from electrodes separation, pressure and gas composition), the transformer

and capacitors where re-designed to give the same output voltage, but with

a lower input voltage on the SCRs devices of 150V . The SCR failure didn’t

occur after this modification.

In [4] (1999) the Earth Orbiting 12 mission is described. The primary

objective of the mission is to demonstrate new technologies in Earth imaging

instruments. In addition to that, several complementary technologies have

been selected for demonstration. One of them is a PPT for attitude con-

trol. Primary goals of the mission are to test a low mass PPT, with highly

throttler system mass, high reliability and long life. In order to achieve these

tasks, several improvements were required with respect of the LES-8/9 com-

munication satellite PPT, which was taken as reference. These improvements

were in the capacitor design, electronics, material and discharge initiation

switching.

Fig.5.8 shows the schematics of the PPT grounding. The bottom-right

components represent the ignition circuit (IGBT, Discharge Initial Trans-

former, 1µF energy storage capacitor, the command circuit and the spark

plug). The selection of an high energy switching device for the triggering

circuit has been a critical point. With respect of the LES-8/9 and the MDT-

2http://eo1.usgs.gov/

http://eo1.usgs.gov/
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2A closing switching device, even if the SCR has an important flight heritage

and higher resistance to the space radiation, they have been replaced with

the IGBT, because they had many latch up failures and they have bigger

and heavier package with respect to IGBTs. The MOSFETs were ruled out

because of their power and peak current limitations. The IGBT were se-

lected for the following reasons: higher peak current capacity than the other

devices; available in 1200V configuration; small size and mass; lath proof

design. Anyway the IGBT integration were initially sensitive to the PPT

discharges, producing spurious discharges without any trigger signal. This

fact led to premature device failure. In order to validate the IGBT usage,

several circuit modifications were adopted to provide additional filtering of

the discharge circuit. For further protection a zener diode were installed on

the device gate.

5.2 Ignition Circuit Design

After the electronics investigation, it was proposed the possibility to use a

transformer-less ignition circuit to trigger the spark plug. The proposal was

well accepted by the supervisors, mainly because of the following advantages:

• the output high voltage pulse generated is non-oscillating, like in the

transformer case, but it is a square pulse with exponential decay;

• this kind of circuit gives the possibility to change the pulse length, such

as the closing time of the switch.

A vacuum gap between copper electrodes may support an imposed aver-

age electric field up to 10kV/mm while, at atmospheric pressure will usually

breakdown when the applied electric field passes 3kV/mm. Moreover, if the

vacuum gap is bridged with an insulator, the breakdown voltage can perhaps

be a third of these value [5]. In the manufactured spark plugs case, as their

electrodes are bridged by a Macor pipe insulator (see section 6.1), the thresh-

old should be about 3.3kV/mm in vacuum and 1kV/mm in air. Therefore,

the breakdown voltage for the large and the tiny spark plug manufactured,

can be estimated by these observation. For these reasons, the voltage output

requirement for the Ignition Circuit, has been set to 5kV .
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Figure 5.8: EO-1 PPT Ground schematics diagram [4]
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5.2.1 MOSFETs Ignition Circuit

At the beginning, a single PCB including both the MOSFETs Ignition Circuit

and the MOSFET Driver Circuit was designed (Fig.5.9). However it was

decided to separate the two circuits, in order to use the MDC also to drive

the Transformer Ignition Circuit. Moreover, it was more practicable to have

the high voltage and the low voltage boards separated. Finally, the MIC

was modified (Fig.5.10) to have larger PCB tracks to ensure the current

transportation and to increase the tracks distance to avoid the breakdown

to occur on the PCB. The components selected are indicated in the circuit

schematic in appendix C. At the beginning the STW9N150 power MOSFET

was selected, but during the experiments, other two different devices were

tested, both in the MIC and in the TIC circuits. A summarizing table of

the power MOSFETs characteristics are shown in Table.5.1 (values from

datasheets: [16], [17] and [9] respectively)

Table 5.1: Absolute maximum ratings of the N-channel power MOSFET

selected

STW9N150 IRFPG50 IPW60R045CP

VDS 1500V 1000V 650V

RDS(on) 2.5Ω 2Ω 0.045Ω

IDM
3 32A 24A 230A

EAS 720mJ 800mJ 1950mJ

EAR none 19mJ 3mJ

PD 320W 190W 431W

Where VDS is the breakdown drain-source voltage, RDS(on) the drain-

source on-state resistance, IDM the pulsed drain current, EAS the single

pulse avalanche energy, EAR the repetitive avalanche energy and PD the

maximum power dissipation.

3Pulse width limited by the maximum junction temperature
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Figure 5.9: Former design of a single PCB including MOSFETs Ignition

Circuit and MOSFET Driver Circuit

Figure 5.10: Separated MOSFETs Ignition Circuit adopted





Part III

Manufacturing, Testing and

Modeling
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Chapter 6

Test Devices Manufacturing

6.1 Spark Plugs

Five different spark plugs haven been manufactured. As already mentioned

in section 4, they are two different size spark plugs:

• big-SP: SP1 (fig.6.1), SP2 (fig.6.2), SP3 (fig.6.3) and SP4 (fig.6.4).

• small-SP SP5 (fig.6.5).

For budget reasons, the following spark plugs have been manufactured

in the TDHVL mechanical workshop without using CNC machines. For this

reason the quality if the product is not the maximum, and it will give some

consequences reported in the conclusions of this work 107.

Figure 6.1: Big size spark plug manufactured SP1
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Figure 6.2: Big size spark plug manufactured SP2

Figure 6.3: Big size spark plug manufactured SP3

Figure 6.4: Big size spark plug manufactured SP4
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Figure 6.5: Small size spark plug manufactured SP5

6.2 MOSFETs Ignition Circuit

The following figures show the PCB manufacturing detail. In particular an

optocoupler (Fig.6.6) has been inserted in the circuit in order to insulate the

pulse generator with MDC.

Figure 6.6: Optocoupler with PCB socket
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Figure 6.7: MOSFET Driver Circuit PCB track

Figure 6.8: MOSFET Driver Circuit PCB completed with components
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Figure 6.9: Sketch of spark plug crocodiles positioning on PCB

Figure 6.10: Power MOSFET high voltage PCB tracks
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Figure 6.11: High voltage banana connectors

Figure 6.12: Power MOSFETs soldered and heatsinks mounted
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Figure 6.13: Crocodiles connectors to ensure the SP on the PCB
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6.3 Coaxial Transformer

A coaxial pulse transformer has been manufactured starting from a ferrite

core and plastic formwork provided gently by Mars Space Ltd. The wind-

ing ration used is 1 : n ≈ 1 : 30. The additional material used are:

• double layer magnet wires SWG 24 (0.51mm, 0.8A) for the primary

winding of 30 turns;

• double layer magnet wires SWG 30 (0.25mm, 0.22A) for the secondary

winding of 900 turns;

• Kapton to isolate the winding layers;

• 1kV DC wire for primary winding external connection;

• 40kV DC wire for secondary winding external connection;

• fine sandpaper to remove the wire insulation to solder the wires tips;

• heat shrinking tubes to ensure mechanical reliability of the external

connection.

The procedure used to realize the pulse transformer, followed these steps:

1. removal of a 5mm rubber coating insulation of the secondary winding

wire;

2. pre-tin of it;

3. removal of 5mm insulation of the secondary winding magnet wire;

4. soldering of the two cables;

5. mechanical joint with a 3mm diameter heat-thermal shrinking tube;

6. secure the wire with masking tape;

7. winding of magnet wire insulating the layers with kapton and masking

tape;

8. insertion of wire tips into the slats;
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9. same procedure for the primary winding;

10. covering with a lot of masking tape and kapton.

Figure 6.14: Coaxial transformer disassembled

Figure 6.15: Secondary winding wire SWG30
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Figure 6.16: Primary winding wire SWG24

Figure 6.17: Primary winding mounted over the insulated secondary winding
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Figure 6.18: Pulse transformer completed with outer Kapton insulation





Chapter 7

Tests

7.1 Breadboard Preliminary Tests

A MOSFET Driver Circuit, MDC, breadboard has been designed and tested.

Fig.7.1 shows the OrCAD schematic used for early circuit simulations. The

input pulse named RD1, which will be provided by the TGP110 10 MHz

Pulse Generator, has been modeled with an ideal pulse having both rise and

fall times of 25ns. Fig.7.2 shows the early MDC test.

Figure 7.1: Mosfet Driver Circuit OrCAD schematic

A first breakdown test has been performed using the spark plug SP1 with

63
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the MOSFET Ignition Circuit breadboard (Fig.7.3). The main experiment

parameters used are: High Voltage Power Supplier set to HV = 1.2kV , en-

ergy storage capacitor C = 220nF , pulse period T = 4s and pulse width

pw = 200ns. With the capacitor and high voltage used, the energy stored

was E = 1/2CV 2 ≈ 160mJ . Because the HV was insufficient to have

breakdown, the SP1 surface was coated with graphite using simply a pencil

(Fig.7.5). At this early test, a video has been taken, and the following Table

7.1 shows the event succession. At the switch ON a tiny spark was pro-

duced. Several spark plug surface breakdown were recorded, Fig.7.4 shows

two frames from the video. A part from the first spark caused by the HVPS

switch on, the MIC pulse operation caused the following breakdowns starting

from time 3 : 45. After the 7th spark, a first misfire occurred, then others

as far as the 5 : 07 breakdown, after which 5 consecutive misfires happened.

The cause of this behavior is the graphite coating outwear taking place spark

after spark, of course due to the weak cohesion of it on the insulator surface.

The breadboard circuit has been tested with higher voltage. In particular

it showed its limitation at about HV = 2kV when the breadboard tracks

started to short in several points. Fig.7.6 shows the breadboard tracks, with

the standard distance of 0.1′′ (2.54mm). HV = 2kV wasn’t sufficient to

breakdown the SP1 surface without using the graphite coating. After these

preliminary tests, the breadboard was replaced with a PCB in order to reach

reliably the high voltage required.
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Figure 7.2: MDC breadboard test with one STW9N150 Power MOSFET

Table 7.1: MOSFETs Ignition Circuit, MIC, breadboard earlier experiment

Time Spark# Misfire# (cumulative)

3:31 switched ON

3:45 1

3:57 2

4:00 3

4:04 4

4:08 5

4:12 6

4:16 7 1(1)

4:24 8 1(2)

4:32 9 1(3)

4:40 10 1(4)

4:48 11

4:51 12 1(5)

4:59 13 1(6)

5:07 14 5(11)

5:32 15
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Figure 7.3: MOSFET Ignition Circuit breadboard

(a) Image frame from experiment video

(b) Spark on the SP1 surface

Figure 7.4: SP1 with graphite breadboard experiment
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Figure 7.5: SP1 surface with graphite on the Macor insulator

Figure 7.6: Power MOSFET breadboard copper tracks detail
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7.2 MOSFETs Ignition Circuit - Air Tests

Figure 7.7: MIC Experiment setup for high voltage breakdown experiments

at TDHVL

7.2.1 MIC Attempt 1

After the validation, with the preliminary breadboard tests, of the MOSFETs

circuit, a Printed Circuit Board, PCB, has been designed and manufactured

both for the MOSFET Driver Circuit and, most important, the Power MOS-

FET Circuit. The first test has been done to validate the MDC. Fig.7.8

shows the output signal of the circuit using an input signal of 4V , high-to-

low pulse and with a 100ns pulse width. The test was made with V1 = 23V

DC current-limited source (see Fig.7.1). The equipment used for this test

was: a Tektronix TDS2614C (100 MHz 2GS/s) oscilloscope; a TGP110 10

MHz Pulse Generator to provide the square pulse input of MDC; two 10x

200 MHz 300VDC Tektronix probes. The optocoupler output is irregular

because of the load, but the current provided to the MOSFETs is sufficient
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to give a beautiful MDC output (BLUE).

Figure 7.8: MDC output signal with: V1 = 23V , pw = 100ns and Vpulse =

4V . BLUE:MDC output, ORANGE: optocoupler out

The MDC parameters above specified, are used in the following tests,

unless otherwise specified. Using a high voltage resistor R9 = 1.7kΩ (10%),

the MDC was used to the a single STW9N150 Power MOSFET. Fig.7.9

shows the output signal of the circuit.

Figure 7.9: Single STW9N150 Power MOSFET output signal with HV =

34V . BLUE: HV pulse, ORANGE: MDC output

The above test showed that MDC is working properly with one Power

MOSFET, switched ON with the VGS input signal. Therefore, a low voltage
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test has been performed using the complete Power MOSFET PCB using 5-

series devices. As expected (Fig.7.10), the HV pulse is not complete. The

happened because the capacitor used wasn’t correctly dimensioned, but a

1kV set-up capacitor has been used.

Figure 7.10: 5-STW9N150 Power MOSFETs output signal withHV = 34V .

BLUE:HV pulse, ORANGE: Pulse Generator

After the low voltage validation of the circuit, the next tests where made

at the TDHVL. The experiment setup if shown in Fig.7.7 and it includes:

DPO7254 real-time digital phosphor oscilloscope by Tektronix, 4-Channel,

2.5GHz; current-controlled HVPS up to 5kV DC and 5mA; low voltage

power supplier up to 30V DC; TTi TGP 110 Pulse Generator ; the grounded

cage used for the high voltage tests. This oscilloscope permits to collect data

automatically each time an event occurs, when the signal is triggered. This

instrument guarantees to collect every spark plug breakdown event during

the tests, which is impossible to do manually above a frequency of about

0.3Hz using the USB connection.

A former test where made with HV = 200V without using neither the

energy storage capacitor C13 and the spark plug. The purpose of this test

was to validate the PCB for the high voltage. At HV = 200V , it was

noticed that drain-source signal of the five power MOSFET weren’t perfectly

shared. This happened because the C2 − 5 capacitors were dimensioned for

HV = 1150V . Increasing the high voltage up to 1kV , the perfect sharing
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between the drain-source terminals during the switch operation occurred as

designed. The period T = 2s was selected through the FastFrame setup of

the oscilloscope (Fig.7.13).

Two high voltage probe where available:

P6015A High Voltage – 20kV DC/40kV Peak (100ms Pulse Width), DC

to 75MHz Silicone Dielectric Optional 1000X Readout Coding Wide

Compensation Range (7 to 49pF )

P5122 DC to 200MHz 1000V RMS CAT II when DC-coupled, Floatable

up to 600 VRMS CAT II 100X

Because of the fast switching operation of the MOSFETs Circuit, which

has fall time on the order of 10ns, a comparison between the 200MHz and

the 75MHz bandwidth probes was made. The results suggested that the

75MHz probe was insufficient to record the MOSFETs Circuit output signal.

Fig.7.14 shows the the P6015A probe, is unable to follow the 1kV falling edge

signal (the ringing effect can be attributed to the probe grounding cable

length). For this reason, with the available probes, it hasn’t been possible

to measure accurately the breakdown voltage of the spark plugs and, in

particular, above a pulse amplitude of 1kV when using the 200MHz probe

needed. As a result, most of the voltage measured will be use to evaluate

the general behaviors of the spark plug breakdown but without be useful for

a numerical evaluation.

The Nyquist theorem says that the signal must be sampled at least twice

as fast as its highest frequency component. Practically, because of the os-

cilloscope limitations of finite record length and measurement glitches, the

above mentioned factor must be higher than two to completely reconstruct

the signal. During experimentation the sample rate selected at least 1GS/s,

five times the hypothetical required bandwidth of 200MHz.

In the following experiments the P5122 probe is used to measure VDS1,

because to observe the breakdown voltage directly on the SP electrodes re-

sulted impossible with the probes available.

The MOSFETs Circuit has been certified to work (switch operation with-

out spark plug load) with HV source up to 5kV without incurring any issue.
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A first test with the MOSFETs Ignition Circuit, MIC, with the the spark

plug SP1 has been performed. Unfortunately, a conceptual design error pre-

vent the breakdown happen. In particular the capacitor C13 doesn’t charge,

because the spark plug used is a open-circuit. If the spark plug was the

semiconductor type, it had a even large resistance to permit the capacitor

charging through it. Anyway the designer wouldn’t use the SP to charge

the capacitor! As a result, several issues appeared: a spark was produced at

the HVPS switch on; when the HV level was increased with the circuitry on,

sparks were produced; some sparks were produced only at the first trigger

pulses at 4 − 5kV ; after a few tests some power MOSFETs failed, it was

noticed from their warming up. After that, the MOSFETs were analyzed to

detect which one failed. Also a thermal camera, TESTO875, were used to

monitor the power MOSFETs temperature.

7.2.2 MIC Attempt 2

As in the MIC1 tests, in the following experiments the P5122 probe is used

to measure VDS1 and the power MOSFETs used are the STW9N150.

To solve the above mentioned problem, a second attempt were made

on the design circuit. Fig.7.11a and 7.11b show the former and the latter

MIC design. The MIC2 uses a parallel resistor, Rcharge, to the SP, in order

to charge the capacitor through it. MIC2 was tested at 3kV recalculating

the C2 − 5 capacitors. In the preliminary switch test, without SP, there

were verified: perfect drain-source voltage sharing between the 5 MOSFETs;

perfect temperature sharing with a stable value of about 35°C. A test was

made selecting: period T = 2s, HV = 3kV , C2 = 150pF and pw = 200ns.

Fig.7.15 shows a later test made with pw = 400ns. In both cases the spark

produced were a few: 10/100 with the pw = 200ns test and 6/100 with

pw = 400ns. Another test was made using the new SP2, instead of SP1. Only

a few breakdown occurred (one of them: Fig.7.16), and after 5-6 of them the

circuit stopped to work again. A possible cause of failure is the transient

over-voltage of the drain-source terminals (observed in VDS1), eventually

above the device breakdown voltage of 1500V .

Next to this second failure of the STW9N150 Power MOSFETs, after
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Figure 7.11: MOSFET Ignition Circuit schematics

(a) MIC attempt 1 schematic

(b) MIC attempt 2 schematic
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further investigation, the avalanche rating was detected as a possible crit-

ical parameter to consider. In Power MOSFETs, with built-in avalanche

capability, this feature serves to safeguard against unexpected voltage that

over-stresses the device1. The STW9N150 is avalanche tested for a single

pulse, with an avalanche energy EAS of 720mJ and an avalanche current

IAR, repetitive or not, of 8A.

A new power MOSFET was selected, the IRFPG50, which has EAS =

800mJ and, in addition, it is repetitive avalanche tested with EAR = 19mJ .

To test these new devices both the zener diodes and the C2 − 5 capacitor

where changed. To make a conservative test, the energy storage capacitor C13

was selected to give a maximum energy of 19mJ , the same as the MOSFET

EAR rating. In the meanwhile a Rogowski coil was available to measure the

spark plug current during the breakdown. A test was performed and only

one spark was produced before MOSFET failure. The current peak measured

was about 155A well over the maximum pulsed drain current IDM 2 of 24A.

7.2.3 MIC Attempt 3

A last attempt on the MOSFET Driver Circuit design was made. The

schematic showed in Fig.7.12 was realized modifying the PCB. The con-

cept of this circuit is different from the typical transformer circuit, in which

the spark plug breakdowns because of a trigger pulse that goes from 0V to

−HV to come back again to 0V . Looking at the schematic, MIC3, when the

switch made of 5 STW9N150 in series is opened, the spark plug electrode is

floating. When the trigger pulse closes the switch, the spark plug electrode is

ideally connected to the ground. At this point, the energy storage capacitor

discharges through the 5 series MOSFETs RDSon.

The tests confirm this behavior. Fig.7.17 shows one of the several sparks

produced with: HV = 3500V , SP2, C2 = 150pF , pw = 150ns and C13 =

0.33nF leading to a maximum energy Emax ≈ 2mJ . The working key points

of MIC3, and some observation are in the following:

1VISHAY SILICONIX - Application Note AN-1005
2IDM , Peak or Pulsed Drain Current, is the maximum drain current the device is

allowed to carry for a pulse of 10µ or less.
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Figure 7.12: MIC attempt 3 schematic

1. Immediately after the switch closes, the SP electrodes have a potential

drop equal to the HV provided;

2. If the SP Vb < HV , the surface breakdown happens;

3. the current measured on the spark plug rapidly rises to a maximum of

about 32A (see Table 8.1), which happens to be the maximum MOS-

FET rating IDM . The IDM , normally equal to the peak source current

ISM
3, is fixed by the current limit to prevent die heating that otherwise

could result in a burnout site4;

4. the MOSFETs switch should stay closed for the pw provided, on the

order of 100ns, which is the time allowed to the spark electrode to be

grounded;

5. holding the HVPS ON shouldn’t affect the current measure, because it

charges the energy storage capacitor through the high voltage resistor,

with a time constant much higher than the discharging time (for exam-

ple in a test where C = 33nF and R = 1.7kΩ, the charging constant

results τ = 56.1µs, while the discharging time constant on the order

of 100ns);
3The peak source current ISM is the maximum current pulse that the MOSFET body

diode is guaranteed to carry
4ADVANCED POWER TECHNOLOGY, Application Note ATP-0403 Rev B, March

2, 2006
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6. during the discharge, both the MOSFETs and the plasma resistance

could vary in time.

Sometime, the SP electrode potential doesn’t go to zero, but it should

if all the energy stored into the capacitor is used. Cause of the 75MHz

probe, the measurement doesn’t represent the reality. The probe issue was

already discussed and showed in Fig.7.14. The RLC series semi-empirical

model proposed (see chapter 8), shows that effectively the voltage measured

is not correct; anyway sometimes, not all the energy is used during a single

breakdown. Statistical values of MIC breakdown tests, are reported in sec-

tion 8.2.1 and the most important data collected and processed are shown

in appendix A, section A.1.

Figure 7.13: DPO7254 oscilloscope FastFrame setup window to set the pulse

width of MDC
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Figure 7.14: HV probes comparison on the MOSFETs Circuit output signal.

CH1: VGS1, CH2: P5122 probe, CH3: P6015A probe
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Figure 7.15: SP1 breakdown with period T = 2s, HV = 3kV , C2 = 150pF

and pw = 200ns
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Figure 7.16: SP2 breakdown with period T = 2s, HV = 3kV , C2 = 150pF

and pw = 200ns
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Figure 7.17: MIC3 test: HV = 3500V , SP2, C ′2 = 150pF , pw = 150ns and

C13 = 0.33nF leading to a maximum energy Emax ≈ 2mJ

7.3 Transformer Ignition Circuit - Air and Vacuum

Tests

A coaxial transformer of 1 : 30 winding ratio has been manufactured6.3.

The power MOSFET used as switch device is the IPW60R045CP[9], which

is driven by the MOSFET Drier Circuit. The TIC schematic is reported in

Fig.7.18. At the beginning the IRFPG50 power MOSFET was used but

it resulted inadequate since it broke very soon after some tens spark plug

breakdowns.

The MDC has been set to give an output pw of 1.2µs. With this value

it is guaranteed that all the energy is transferred to the coaxial transformer,

or better to the primary winding inductor (validated experimentally). The

energy storage capacitor bank value is 1.2µF , made with 8 150nF ceramic

capacitors in parallel. A transformer output lead is grounded to make possi-

ble the use of the high voltage probe. The SP has been connected in order to

have a negative pulse on the central electrode. Tests have been performed on

the following spark plugs: a spare Spark Plug gently offered Mars Space
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Figure 7.18: Transformer Ignition Circuit schematic

Ltd coming from the Micro-PPT for NanoSats (NanoSat PPT) project5;

SP1 large spark plug; SP4 tiny spark plug. Fig.7.20 and 7.21 shows the

air and vacuum experiment setups. The vacuum experiments have been per-

formed at the Tony Davis High Voltage Laboratory, using one of the vacuum

chambers available (called Delta v micro HV 4− 5, Fig.7.19).

Once the experiment has been setup into the vacuum chamber, the fol-

lowing procedure followed to test the Transformer Ignition Circuit with the

different spark plugs:

1. Test the system in air and save a set of breakdown events (voltage and

current);

2. Create vacuum;

3. Perform the vacuum test and save a set of breakdown events;

4. Depressurization.

The connections between the TIC and the outside instrumentation, has been

performed using some of the available connectors. The vacuum chamber

connections used are:

• DB9 connector with the following ordering: (1,6) ⇒ ground, (2) ⇒ +

MDC pulse, (3) ⇒ - MDC pulse, (8) ⇒ +28V , (5,9) ⇒ +300V ;

• HVPS and low voltage power supplier grounded to the chamber struc-

ture;
5http://www.mars-space.co.uk/Pages/NanosatPPT.aspx

http://www.mars-space.co.uk/Pages/NanosatPPT.aspx
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• Rogowski coil located in the vacuum chamber and connected using

BNC cable to the oscilloscope;

• P6015A high voltage probe outside the chamber. Grounded to the

chamber body and signal crocodile clip connected with high voltage

connection;

Figure 7.19: Vacuum chamber used for tests (location: Delta v micro HV

4-5 at TDHVL)

Unfortunately two issues involve the measurements: the Rogowski coil

used does not give reliable current measurement for low current (less than

5A); the P6015A high voltage probe can guarantee the breakdown voltage,

VB, measurement but not the after-breakdown high frequency oscillation.

7.3.1 MSL Spark Plug Test

The Mars Space Ltd spark plug has a different design. In particular, the

cathode electrodes of plug and thruster are the same. The plug is inserted
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Figure 7.20: Transformer Ignition Circuit, air experiment setup. Energy

storage capacitor bank of 1.2µF
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Figure 7.21: Transformer Ignition Circuit, vacuum experiment setup. Energy

storage capacitor bank of 1.2µF
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in the thruster cathode electrode and it is coupled with an insulator pipe

coated with a particular semiconductor. Fig.7.22 shows the MSL spark plug

unmounted. The thruster electrode has a particular geometry that won’t

be discussed. The materials for both the electrodes are a Copper/Tungsten

alloy, while the pipe insulator is made of Teflon and its surface is coated

with not specified semiconductor layer. The insulator that serves to sepa-

rate cathode and anode, wasn’t provided. Hence, it was used some Kapton

tape to do that. It has to be noticed that this spark plug wasn’t brand-new

and the Teflon pipe end-surface wasn’t flat. Moreover this spark plug ge-

ometry is different from those one produced for this project. In particular

they have been design to have a flat end-surface, with both the spark plug

electrodes and the pipe insulator aligned. Instead, the MSL spark plug pro-

vided, has the thruster cathode electrode, the spark plug anode electrode

and the insulator end-surface on different levels.

Former tests were made with MSL Spark Plug, MSL-SP, in air. These

tests led to a breakdown between 1.5kV and 1.8kV . Fig.7.23 shows a typical

breakdown current and voltage profiles. In the middle of these one, also the

Rogowski coil signal is reported. The current peaks registered are between

5A and −6A.

Figure 7.22: The Mars Space Ltd spark plug and thruster cathode elec-

trodes

After the air tests, the vacuum tests took place. Unfortunately the break-

down voltage slowly decreased, spark after spark, as a result of the Kapton

tape layer degradation. At a certain point the thruster and plug electrodes

shorted, bringing to spark plug failure. More exactly the breakdown still
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Figure 7.23: MSL-SP air test, typical breakdown voltage, Rogowski signal

and current data

occurred, but at much lower voltage and with irregular and much longer

signals. Some data before the Kapton failure are reported in Fig.7.24, 7.25

and 7.26. Respectively the breakdown voltage measured are: 9kV , 7.3kV

and 4kV .

7.3.2 Manufactured Spark Plugs Tests

For the low manufacturing quality of the spark plugs, only three of them

were able to generate repetitively the breakdown: the large insulator type

SP1 and SP4, and the small insulator type SP5. The breakdown voltage

firstly collected for these spark plug are summarized in Table 7.2, for the

complete statistical overview see chapter 8, section 8.2.2. Unfortunately

it isn’t possible to compare the breakdown voltage between the MSL-SP,

which uses a semiconductor coating on the insulator discharge surface, and

the manufactured coaxial spark plugs. While the latter produced repetitively

the breakdown, of course with shot to shot variations, the MSL-SP, because

of the Kapton issue, decreased its breakdown voltage till premature failure.

While testing SP4, the breakdown in air test was 30% higher than that
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Figure 7.24: MSL-SP vacuum test, Vb ≈ 9000

Figure 7.25: MSL-SP vacuum test, Vb ≈ 7300
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Figure 7.26: MSL-SP vacuum test, Vb ≈ 4000

one of SP1, which hypothetically should be identical. Obviously, also the

vacuum breakdown was bad, such as with very high Vb and peak current (??).

The cause was the lower quality of the spark plug breakdown surface, actually

possible to check naked-eye. In fact there was non-regular space between the

spark plug electrodes and the insulator alongside the ring circumference. For

this reason the Vb happened to be almost 60% higher than with SP1. After

the first breakdown the power MOSFET prematurely broke.

With the SP5 testing, a particular behavior was observed. Successively it

will be noticed that also with the other spark plugs, SP1 and SP5, it occurs.

Fig.7.28 shows that after the main breakdown, sometimes a succession of

secondary sparks, at lower Vb, happens. In particular this phenomenon is

more marked when the energy provided by means of the energy storage

capacitor, is higher. In order to try to solve this inconvenient, the minimum

voltage input, Vi, was found. By slightly increasing the input voltage, the

minimum SP5 Vi was found to be about 85V . Fig.7.29 shows that the

breakdown occurred at about −4000V . After that voltage again goes down,

because there’s still energy into the secondary winding of the transformer.

Since, with Vi = 85V , the breakdown in vacuum didn’t occur after ev-
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Figure 7.27: TIC with SP4 vacuum test, Vb ≈ −10kV , Imax ≈ 23A
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ery trigger pulse , it was increased to Vi = 200V that seemed to ensure

breakdown continuity. But of course, increasing the input voltage, also the

energy increases, for instance with the voltage squared value. Therefore,

sometimes secondary breakdown occurred (7.30). From these consideration,

the conclusion about the TIC are:

• if the energy provided to the spark plug is too high, secondary spark

can occur;

• not all the energy in the tests is consumed in a single spark. The reason

can be that for the SP characteristics (size, geometry, materials, fin-

ishing), the maximum energy that it can deliver by means of a vacuum

arc, is lower than that one provided.

Figure 7.28: TIC with SP5 vacuum test, multiple breakdowns

6Only one measurement before MOSFET failure
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Figure 7.29: TIC with SP5 vacuum test, minimum Vi to have breakdown

Table 7.2: Summarizing table of manufactured spark plugs breakdown volt-

age

Spark Plug Air test Vacuum test

(kV ) (kV )

SP1 [2.6, 3.0] [3.5, 5]

SP4 [3.2, 3.6] 7.66

SP5 [1.8, 2.2] [3.8, 5.2]
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Figure 7.30: TIC with SP5 vacuum test, secondary breakdown with Vi =

200V
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Complete statistical values of the TIC breakdown experiments, are re-

ported in section 8.2.1 and the most important data collected and processed

are shown in appendix A, section A.1.





Chapter 8

Semi-empirical Breakdown

Model

8.1 Foreword

A semi-empirical model for the MOSFET Ignition Circuit (attempt 3), has

been realized. The current measurements made by the Rogowski coil, are

considered valid above about 10A of peak current. Under this value the

current measurements aren’t enough accurate. This condition occurs in the

transformer air tests. Before to consider a semi-empirical model of the spark

plug breakdown, the data collected for both MIC and TIC have been evalu-

ated statistically.

8.2 Statistical Data

8.2.1 MOSFET Ignition Circuit statistics

The experiments that have been consider with a statistical value for the

MOSFET Ignition Circuit (all in air), are shown in Tab.8.1 and summarized

in the following:

• SP1 with graphite coating,

HV = 1kV , C = 4.4nF , pw = [100ns, 200ns, 400ns];

• SP1, HV = 2.5kV , C = 0.5nF (E = 1.6mJ), pw = 150ns;

95



96 8. Semi-empirical Breakdown Model

• SP1, HV = 3.5kV , C = 0.33nF (E = 2.02mJ), pw = 150ns.

8.2.2 Transformer Ignition Circuit statistics

The experiments that have been consider with a statistical value for the

Transformer Ignition Circuit, are the following:

MSL-SP statistic values, the row of Tab. 8.2 refers to following test pa-

rameters: AIR, C = 1.2µF , Vi = 300V .

SP1 statistic values, each row of Tab. 8.3 refers to following test param-

eters:

• row1: AIR, C = 1.2µF , Vi = 300V ;

• row2: VACUUM, C = 1.2µF , Vi = 120V ;

• row3: VACUUM, C = 1.2µF , Vi = 140V ;

• row4: VACUUM, C = 1.2µF , Vi = 160V ;

• row5: VACUUM, C = 1.2µF , Vi = 300V .

SP4 statistic values, each row of Tab. 8.4 refers to following test param-

eters:

• row1: AIR, C = 1.2uF , Vi = 300V .

SP5 statistic values, each row of Tab. 8.5 refers to following test param-

eters:

• row1: AIR, C = 150nF , Vi = 300V ;

• row2: VACUUM, C = 300nF , Vi = 200V ;

• row3: VACUUM, C = 1.2µF , Vi = 300V .
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Table 8.1: SP1 MIC tests, average and standard deviation of Imax and

dI/dtmax

pw = 100ns 200ns 400ns 150ns 150ns

HV = 1kV 1kV 1kV 2.5kV 3.5kV

Imax 22.7126 24.8772 26.2478 22.4684 30.8166

σImax 4.0144 4.0939 1.6390 0.7796 4.4613

dI/dtmax 0.9890 1.0757 0.8082 1.9178 3.3537

σdI/dtmax
0.2110 0.1046 0.1624 0.1504 0.5517

Table 8.2: MSL-SP TIC tests, average and standard deviation of VB, Imax
and dI/dtmax

VB σVB Imax σImax dI/dtmax σdI/dtmax

-2800 313.4 6.1805 0.99187 0.93843 0.29362

Table 8.3: SP1 TIC tests, average and standard deviation of VB, Imax and

dI/dtmax

VB σVB Imax σImax dI/dtmax σdI/dtmax

-2802.7 225.95 6.0972 0.66588 0.86174 0.19795

-5960 1002.2 12.253 2.0971 5.3632 0.98166

-6216 497.67 13.028 0.82119 5.7139 0.57683

-6212.9 1065 12.999 2.3351 5.4053 0.99093

-4104 684.35 8.1802 3.3854 3.3413 0.9986

Table 8.4: SP4 TIC tests, average and standard deviation of VB, Imax and

dI/dtmax

VB σVB Imax σImax dI/dtmax σdI/dtmax

-3450.7 110.01 6.1979 0.50776 2.0521 0.43777
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Table 8.5: SP5 TIC tests, average and standard deviation of VB, Imax and

dI/dtmax

VB σVB Imax σImax dI/dtmax σdI/dtmax

-2029.7 120.47 2.8021 0.41068 1.0454 0.13689

-5336.8 1062.9 9.5648 1.9661 3.6706 0.74359

-6410.5 1234.8 11.858 2.5943 5.9075 1.0845
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8.3 RLC Series Circuit Semi-empirical Model for

MIC

A semi-empirical model for the MIC3 (using STW9N150 power MOSFETs)

spark plug breakdown, has been created using MATLAB. The model is based

on the resolution of a series RLC circuit, considering R, L and C constants.

Each component has the following meaning:

• RTOT : total resistance. The resistance value includes the contribution

of the MOSFET switch equivalent RDSON
, the spark plug breakdown

resistance RB and the MIC tracks resistance in series. The last value

is considered to be approximately zero;

• CTOT : energy storage capacitor. The value of the total capacitance is

fixed for each experiment, considering the energy storage capacitor the

only contribution;

• LTOT : total inductance. The inductance value includes the contribu-

tion of the MIC inductance and the spark plug breakdown inductance.

Let apply the Kirchhoff’s voltage law to the circuit shown in Fig.8.11:VR(t) + VL(t) + VC(t) = const

Ri(t) + Ldi
dt + 1

C

∫ −∞
t=τ i(τ)dτ = Vcap

(8.1)

Differentiating second of eq.8.1 and dividing by L, the ODE equation to

integrate results:

d2i

dt2
+
R

L

di

dt
+

1

LC
i(t) = 0 (8.2)

Normally expressed with the parameters α, the attenuation, and ω0, the

angular resonance frequency :

d2i

dt2
+ 2α

di

dt
+ ω2

0i(t) = 0 (8.3)

The MATLAB script accomplishes the following steps:
1NOTE: the current in the model is called i(t), while the current measured in the

experiment is called I(t).
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Figure 8.1: RLC series circuit schematic

1. load the data of a single experiment. In particular, it load the break-

down peak current, Imax, and the maximum current derivative dI/dtmax;

2. solve the differential eq.(8.2), implemented as a system of 2 ODE:

y′(1) = y(2)

y′(2) = −R/L · y(2)− 1/LC · y(1)

+i.c.

y0(1)

y0(2)

(8.4)

Where y(1) is the current i(t), and the initial condition are taken as

y0(1) = i(0) = 0A and y0(2) = di/dt(0) = 2dI/dtmax. The solver

used is the ode23s, good for stiff differential equations. As already

mentioned the model uses constant values of R, L and C. Therefore,

for the first resolution of the model the value of R and L are taken

from the critically damped case. In this case the analytical solution

of i(t) can be found imposing the initial conditions. Then, calculating

the derivative and posing it equal to zero, it is possible to find the time

which maximize i(t):

tmax = 1/α (8.5)

Substituting this value in the current equation, the values of R and L,
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in the critically damped case, can be found:Lc = (e2i2max)/(Cy0(2)2)

Rc = 2
√
Lc/C

(8.6)

Where e is the Euler’s number and I put imax = Imax. At this step,

the time evolution of i(t) and di/dt(t) have been found;

3. starting from the critically damped solution, through an iterative cycle2

the value of the inductance is increased or decreased in order to adjust

the Vcap value. The final value requested is the high voltage, HV , at

which the capacitor is charged at the beginning of the experiment;

4. a following iterative procedure adjusts the value of the resistance.

Changing this value, the maximum current changes. In particular by

decreasing R, the peak current increases. Hence, a final value of R is

chosen iteratively asking the current peak to be equal to the experi-

mental value, with a tolerance.

5. the final solution is plotted together with the experimental breakdown.

In addition to the script procedure, if the resulting current doesn’t fit the

experimental data, by trial and error a lower value of HV is chosen, until

the right value is selected. This strategy is adopted when the breakdown

doesn’t consume all the energy stored into the capacitor. In fact, during the

experimentation, it was noticed that sometimes the Vcap didn’t go to zero

after the breakdown. This information wasn’t sure at early experiment, but

later it was confirm by measuring Vcap with a multimeter and a DC high

voltage probe.

A brief discussion of the model is necessary. Fig.8.1 is not the same as

the circuit configuration. Let consider Fig.7.12 (page 75). The left branch

can be excluded from the model because it doesn’t affect the breakdown. In

fact, the HVPS is limited in current, and the charge constant of the capacitor

is very big in comparison with the breakdown discharge time. In particular,

τcharge = R · C, is on the order of kΩ · nF = o(µs), while the discharge

2the ODE system, described by eq.(8.4), is solved for each iteration.
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time is ten time faster Ω · nF = o(ns). Moreover, it was checked during

experimentation, that disconnecting the HVPS, the breakdown data doesn’t

change in terms of noise. For this reason, it has to be considered ino the

model only the second and third branches.

The second branch of Fig.7.12, contain the capacitor charged at HV .

The right branch during the breakdown, can be considered as an RL circuit,

where L and R are the sum of the spark plug, power MOSFET switch and

circuit inductances and resistances. The equivalence of the RLC series cir-

cuit and the breakdown MIC approximation described above, follows from

the equivalence, with opposite sign, of the current i(t) in the following two

cases: capacitor, charged at HV , that discharges through R and L; capaci-

tor charging, to HV , through R and L. Hence, when in an experiment the

breakdown doesn’t discharge completely the capacitor, the equivalent model

is obtained selecting a lower HV .

An complete example of the above described procedure is shown in the

Fig.8.3 and 8.4. In appendix A, a set of model examples is reported. For

each of these examples, the damping factor, ζ = R/2
√
C/L, is also reported.

Among the data analyzed, is possible to notice a wide range of ζ, from 0.4 to

1.47 depending on the different experiment parameters. It has to be noticed

that the initial condition di/dt(0), has been taken as 2dI/dtmax rather than

dI/dtmax. This fact has been noticed occasionally and can be attributed

to following reason: the RLC series model, is a second order ODE model

while the breakdown is of higher order. In fact a second order model can

describe an oscillation either exponentially convergent or divergent, but not

both cases at the same time. The model is clearly an approximation of the

breakdown using the MIC circuit but fits quite well the experimental data.

In some cases it is possible to distinguish more the one current peak, like that

one reported in Fig.8.2. Possibly, the meaning is that a second breakdown

occurs immediately after the first one, causing the double current peak. This

can be attributed to the formation of another plasma jet located in another

on the spark plug surface.
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Figure 8.2: Case of double peak current



104 8. Semi-empirical Breakdown Model

Figure 8.3: RLC series modeling: step 2 and 3
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Figure 8.4: RLC series modeling step 3 and HV correction





Summary and Conclusions

After the literature review made on the Pulsed Plasma Thruster spark plug

lifetime problem, it was clear that the parameters involved-in were too many

to investigate together in a six months period of research. In particular the

thesis project has been started from zero, with the purpose to produce some

test facility to look into some new aspect of the problem. Some conclusions

have been made and summarized in the following.

Let compare the breakdown voltages of the spark plugs with the pre-

dictions made through the Paschen curve and with the Boxman et al.[5]

observations made in section 5. Table 8.6 shows the comparison between the

two predictions considering the insulator size of the big-SP and small-SP. The

following nomenclature adopted (VAST: Handbook of Vacuum Arc Science

and Technology - Fundamentals and Application [5]), means the breakdown

voltage predictions, as it follows:

• VAST A: considering two electrodes in air;

• VAST A+I: considering two electrodes in air bridged by an insulator;

• VAST V: considering two electrodes in vacuum;

• VAST V+I: considering two electrodes in vacuum bridged by an insu-

lator;

Making a comparison with the experimental results of the breakdown

voltage (section 8.2.2), some conclusions can be made:

1. the average big-SP (SP1 and SP4) breakdown voltage in air tests, is

similar to the Paschen value. For this reason, these spark plugs proba-

bly didn’t use the insulator as means of breakdown, but the breakdown

107
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Table 8.6: Comparison of breakdown voltage predictions made through the

Paschen curve and Boxman et al. observation in VAST

VB Paschen VAST A VAST A+I VAST V VAST V+I

(V ) (V ) (V ) (V ) (V )

big-SP 3,000 1,800 600 6,000 2,000

small-SP 1,500 750 250 2,000 825

occurred through air. If the breakdown, registered during the air tests,

was less than 1kV , it would occurred using the insulator;

2. the same considerations count for the small-SP;

3. the average SP1 breakdown voltage in vacuum tests, are similar to the

VAST V values. This means that probably this spark plug didn’t use

properly the insulator surface to lower the breakdown voltage. Any-

way SP4 registered higher Vb, that means SP1 has better manufacture

quality;

4. the average small-SP, SP5, breakdown voltage in vacuum tests, are

higher than the VAST V value. This means that is almost sure that

the breakdown of this spark plug never occurred using the insulator.

The general conclusion on the spark plugs breakdown voltage, is that all

the spark plug are not well manufactured, otherwise they didn’t ensure suf-

ficient continuity between electrodes and insulator. One spark plug showed

better behavior in this sense, SP1. For this reason, it is to notice that over

the 5 spark plugs produced, only one of them was decent.

During the literature review on the high voltage pulse generator, the

MOSFETs circuit has been selected as a good candidate to produce a very

short-pulse-length ignition and in particular with very fast rise time. Then,

the direction of the MSc thesis project looked mostly toward the research of

advantages/disadvantages obtainable using a classic transformer-based igni-

tion circuit versus a MOSFET-based ignition circuit.

A reliable MOSFETs Ignition Circuit is MIC3, where the spark plug is

forced to breakdown immediately after the MOSFETs switch closure. As a
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result, the energy storage capacitor discharges through the discharge vacuum

arc, formed on the spark plug surface, in series with the equivalent MOSFETs

switch resistance (RMOSFET,Switch = RDS(on)× 5). Not only the spark plug

impedance, but also the MOSFETs resistance changes in time, in particular

with ID and the junction temperature. Hence, the discharging profile is

exponentially decaying and gives a current mostly positive and larger with

respect of the Transformer Ignition Circuit (considering the same switch

device).

Finally, in this MSc thesis project, for the reasons already specified, the

spark plugs manufactured didn’t use a semiconductor coated insulator. It

follows a relatively high breakdown voltage, sometimes higher than that one

estimated, because of the materials and manufacture low quality (in particu-

lar surface smoothness and mechanical matching of the spark plug electrodes

and insulator). For future work the following suggestion go in the direction

of further investigation on the MOSFETs Ignition Circuit application:

• test this circuit using semiconductor type spark plugs with low break-

down voltage, on the order of 100V ;

• consider to test a parallel-MOSFETs Ignition Circuit in order to carry

higher current. In fact, while in the series MOSFETs circuit the ca-

pacitor discharge through the SP and the five RDS(on) in series, in this

case a fraction of the current is taken by each MOSFETs.

The power MOSFET device provides fast operation (MHz) with respect

of the IGBT rather than the SCR devices, which have respectively a fre-

quency domain on the order of 10−100kHz and 100Hz. On the other hand

the power MOSFET have a lower power rating, hence lower peak voltage

and current. These limitation can be overcome by utilizing different archi-

tectures, like the mentioned parallel or the experimented series MOSFET

configuration, and maintaining the fast operation. Of course the peak power

limitation exists but it has to be investigated the possible applications of

such Ignition Circuit.

For what concerns the spark plug manufacturing an important fact has

been notice observing the behavior of the TIC. In particular, the spark plug
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should be designed to provide the right amount of energy for the PPT ig-

nition. This means that, in the particular analyzed case of coaxial and flat

end-surface spark plug, the property of the breakdown surface must guaran-

tee to sustain the vacuum arc for a sufficient time. Of course, the circuit

must be designed to assure a low impedance in order to provide the highest

peak current possible.
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Experimental Data and RLC

Series Model

A.1 Experimental Data
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Figure A.1: MIC, SP1 with graphite breakdown tests (pw = 200ns)
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Figure A.2: MIC, SP1 with graphite breakdown tests (pw = 100ns)
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Figure A.3: MIC, SP1 breakdown tests (pw = 150ns)
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Figure A.4: TIC, MSL-SP breakdown tests in air
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Figure A.5: TIC, MSL-SP breakdown tests in vacuum
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Figure A.6: TIC, SP1 breakdown tests in air
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Figure A.7: TIC, SP1 breakdown tests in vacuum
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Figure A.8: TIC, SP4 breakdown tests in air
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Figure A.9: TIC, SP4 breakdown tests in vacuum
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Figure A.10: TIC, SP5 breakdown tests in air
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Figure A.11: TIC, SP5 breakdown tests in vacuum
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A.2 RLC Series Modeling Examples
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Figure A.12: RLC series modeling of spark plug breakdown for MIC,

HV = 1kV
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Figure A.13: RLC series modeling of spark plug breakdown for MIC,

HV = 2.5kV
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Figure A.14: RLC series modeling of spark plug breakdown for MIC,

HV = 3.5kV
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MOSFETs Ignition Circuit

Design
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